BVE fosiStand

TestStand User Manual

7NATIONAL ' D ber 1998 Editi
Winstrimers Sl

Internet Support

E-mail: support@natinst.com

FTP Siteftp.natinst.com

Web Addresshttp://www.natinst.com

Bulletin Board Support

BBS United States: 512 794 5422
BBS United Kingdom: 01635 551422
BBS France: 01 48 65 15 59

Fax-on-Demand Support
512 418 1111

Telephone Support (USA)
Tel: 512 795 8248
Fax: 512 794 5678

International Offices

Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 288 3336,

Canada (Ontario) 905 785 0085, Canada (Québec) 514 694 8521, Denmark 45 76 26 00, Finland 09 725 725 11,
France 01 48 14 24 24, Germany 089 741 31 30, Hong Kong 2645 3186, Israel 03 6120092, Italy 02 413091,
Japan 03 5472 2970, Korea 02 596 7456, Mexico 5 520 2635, Netherlands 0348 433466, Norway 32 84 84 00,
Singapore 2265886, Spain 91 640 0085, Sweden 08 730 49 70, Switzerland 056 200 51 51, Taiwan 02 377 1200,
United Kingdom 01635 523545

National Instruments Corporate Headquarters
6504 Bridge Point Parkway Austin, Texas 78730-5039 USA Tel: 512 794 0100

© Copyright 1998 National Instruments Corporation. All rights reserved.

Important Information

Warranty

The media on which you receive National Instruments software are warranted not to fail to execute programming
instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced
by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not
execute programming instructions if National Instruments receives notice of such defects during the warranty period.
National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside
of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs
of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this manual is accurate. The document has been carefully reviewed
for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to
make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should
consult National Instruments if errors are suspected. In no event shall National Instruments be liable for any damages
arising out of or related to this document or the information contained in it.

ExcepTAS SPECIFIEDHEREIN, NATIONAL INSTRUMENTSMAKES NO WARRANTIES, EXPRESSOR IMPLIED, AND SPECIFICALLY DISCLAIMS

ANY WARRANTY OF MERCHANTABILITY OR FITNESSFORA PARTICULAR PURPOSE CUSTOMER S RIGHT TO RECOVERDAMAGES CAUSED

BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL INSTRUMENTSSHALL BE LIMITED TO THE AMOUNT THERETOFOREPAID BY THE
CUSTOMER NATIONAL INSTRUMENTSWILL NOT BE LIABLE FORDAMAGES RESULTING FROM LOSSOF DATA, PROFITS USE OF PRODUCTS

OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY THEREOFR This limitation of the liability of

National Instruments will apply regardless of the form of action, whether in contract or tort, including negligence.

Any action against National Instruments must be brought within one year after the cause of action accrues. National
Instruments shall not be liable for any delay in performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service failures caused by owner’s failure to follow
the National Instruments installation, operation, or maintenance instructions; owner’s modification of the product;
owner’s abuse, misuse, or negligent acts; and power failure or surges, fire, flood, accident, actions of third parties,

or other events outside reasonable control.

Copyright

Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical,
including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without
the prior written consent of National Instruments Corporation.

Trademarks

CVI™, LabVIEW™, and TestStartlare trademarks of National Instruments Corporation.
Product and company names listed are trademarks or trade names of their respective companies.

WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

National Instruments products are not designed with components and testing intended to ensure a level of reliability
suitable for use in treatment and diagnosis of humans. Applications of National Instruments products involving medical
or clinical treatment can create a potential for accidental injury caused by product failure, or by errors on the part of the
user or application designer. Any use or application of National Instruments products for or involving medical or clinical
treatment must be performed by properly trained and qualified medical personnel, and all traditional medical safeguards,
equipment, and procedures that are appropriate in the particular situation to prevent serious injury or death should always
continue to be used when National Instruments products are being used. National Instruments products are NOT intended
to be a substitute for any form of established process, procedure, or equipment used to monitor or safeguard human health
and safety in medical or clinical treatment.

Contents

About This Manual
Organization of ThiS ManUal............ccccuviiiiiiiie e XXiii
Conventions Used in ThisS Manual..........ccccooviiiiiiiieee e XXV
Related DOCUMENTALION........cciiriieiiiieeiee ettt ee e XXV
Customer COMMUNICALIONc.veviiiiieiiie et XXV
Chapter 1
TestStand Architecture Overview
General Test EXECULIVE CONCEPLSeiiiiiiiiiiee ittt ettt st 1-1
TestStand Capabilities and CONCEPLS......oiuuiiiiiiiiiie e 1-2
Major Software Components Of TESESTANG.........oocuviiiiiiiiiiie e 1-4
TestStand Sequence EdItOr...... ..o 1-5
TestStand Run-Time Operator INterfaces.........cccovvieiiiiiiie e 1-5
TestStand Test EXeCULIVE ENQINEeiiiiiiiiiieiiiii e 1-6
MOAUIE AQAPLELS ...t e 1-6
TestStand BUilding BIOCKScoouuiiiiiiiiiiiie e 1-7
Variables and PropertieS.........ooo it 1-7
EXPIESSIONS ...eiieiiiiiiie ettt ettt et 1-8
Categories Of PrOpertieS ... 1-9
Y (= T PP PPOUPTPPPRPPPPPR 1-11
BUilt-In Step Properties........cuuueeiiiiiieiiiiee e 1-11
SEEP TYPES .ttt 1-12
SEOUBINICES ...ttt e e e et e e e e e e e e s e e e e e e s s 1-15
SEQUENCE ParamMeterS. iiieeieie i e ettt 1-15
Sequence Local Variables.........ccueevvviiie s 1-15
Lifetime of Locals Variables, Parameters, and
CUSLOM StEP PrOPErtiESvveeeeiiiiiiie e 1-15
SEEP GrOUPS ..eteeeieieeee ettt ettt e e e e e s rr e e e e e e e e nannes 1-16
Built-in Sequence Properties. ... 1-16
SEUUENCE FlBS ...ttt e e e e e e e e s 1-16
Storage of TYPes iN FIleS ... 1-17
ProCeSS MOUEIS........coiieiieee et e e e s e s e eeeeee s 1-17
Station MOEl ..o ———— 1-17
Main Sequence and Client Sequence File..........cccoooviiiiniiiiininineen. 1-18
Model CallDACKSocvvieiieieiree e 1-18
ENrY POINTS ... e 1-19
Automatic ReSUlt COIIECHIONccvviieiciiee e 1-22

© National Instruments Corporation v TestStand User Manual

Contents

CallDack SEQUENCES........oeiiiiiiiiii e 1-23
Engine Callbackscooueiiiiiiiii 1-23
Front-End Callbacksoooiiiiiiiiii e 1-24
SEQUENCE EXECULIONS.eiiiiiiiiiiie ittt ettt 1-24
Normal and Interactive EXECULIONScoocuvieiiiiiiiiiieiiiece e, 1-25
Terminating and Aborting EXECULIONScccceeeiiiiieieeiniiiee e, 1-26
Chapter 2
Sequence Editor Concepts
SEQUENCE EQItOr SCIEEN ...ccii ittt e e e e e e e eeeaaaeeeas 2-1
WWINAOWS ..ttt e et e e e sk e e e e s bbb e e e e e anbneeeeens 2-2
VIBWS Lttt e e 2-2
TADS e 2-3
LiStS AN TIESeiiiiiiiiiiie ittt 2-3
CONEXE MEBNUS ... 2-4
Copy, Cut, and Paste..........ooiiuiiiiiiiiiiee e 2-5
Drag and DIOPcveeeeiiiiiiee ettt 2-5
MENU BT 2-5
TOOIDAIS ...t 2-5
STALUS BT ..ciiiiiiiiiiiiee et e 2-5
Sequence Editor WINAOWSc.uueiiiiiiiiiieiiiiee et 2-6
Sequence File WINAOWocuiiiiiiiiiiee et 2-6
EXECULION WINGOW.....ciiiiiiiiiiiiiiiiice ettt 2-6
Type Palette WINAOW...........eeiiiiiiiieeiee e 2-7
Station GlobalS WINAOWccoiiiiiiiiiiiiiiie e 2-8
USEIS WINOOWceiiiiiiiiei ittt 2-9
Basics Of USING TESISTANG......coiuiiiiiiiiiiiii e 2-9
Creating 8 SEOUENCEcoiuiiie ettt et e et e e e 2-9
Controlling SEQUENCE FIOW..........ciiiiiiiiiii e 2-13
POSE ACHON ... 2-14
Preconditions ..o e 2-14
GOt BUIlt-IN STEP TYPE .ooeiiiiiiie et 2-16
RUN-TIME EITOIS...ciiiiiiiiiie ittt 2-16
RUNNING 8 SEUENCEcooiiiiiiiiiitie e 2-16
Debugging & SEQUENCE.........coiiiiiiiiie et 2-17
Generating TeSt REPOIS.........uiiiiiiiiieei it 2-18
Using an Operator INTEIMACEeviiiiiiiie e 2-20

TestStand User Manual vi © National Instruments Corporation

Contents

Chapter 3
Configuring and Customizing TestStand
ConfiguriNg TESESTANG ...t e e e e e e e e e e e e e e e aaaes 3-1
Sequence Editor Startup OPLioNS.......c..uueieiiiiiiaaai e 3-1
CONFIQUIE IMBINUL ...ttt e e e e e e et eeeaaaa e as 3-1
CUSLOMIZING TESESTANGeeeeiieiee et e e e e e e e e e e e e e beeeeeas 3-3
TestStand DireCtory SIFUCTUIEoooieiiiiieeee et 3-3
NI and User SUBIreCtoriesccoiiiiiiiiiiiiiee e 3-4
The Components DIF€CIOMYocuveiieiiiiiiie et 3-4
Creating String Resource Files..........coociiiiiiiiiiiiiie e 3-6
Resource String File FOrmMatcooouviiiiiiiiiieiiiieee e 3-7
USING DAA TYPES oottt ettt et st e e e st e e e e s annneeee e e 3-8
Creating STEP TYPES ..oiii ittt ettt ettt e s e b e st e e enes 3-8
USING the TOOIS MENUeeiiiiiiiiiie e 3-9
Customizing the Engine and Front-End Callbackscccoooieiniiiinnnnn 3-9
Modifying the Process Modelccuuviiiiiiiiiiiie e 3-10
Using Process Model Callbackscceeeeiiiiiiiiiiiiiceeceee e 3-10
Creating Code TEMPIALEScocuviiiiiiiiee e 3-11
Modifying Run-Time Operator INterfaces..........coocveveeiiiiiiie e 3-11
Adding Users and Managing User Privilegescccoceeeiiiieiiiniiieeiieeeee 3-11
Chapter 4
Sequence Editor Menu Bar
MEBINUS ...ttt 4-1.....
FHIE MBINUL ..t 4-1
1o o 1o PSSR 4-2
(0T o o 11 | S P TUPPPPPTU 4-2
INBW L.ttt 4-2
PN e 4-2
ClOSE... e 4-2
SAVE ..ot e 4-2
SAVE AS .. 4-2
SAVE AllL. e 4-3
Unload All MOAUIES........ccoiiiiiiiiiiee e 4-3
Most Recently Opened Files.........ooocuiiiiiiiiiiii e 4-3
X et 4-3
EQIEIMENU ... e 4-3
CUL AN COPY -eeveieiiiieeeeieeiie ettt e e e e e e e s bbb e e e e e e e e e e aaaas 4-4
PASTE ...t 4-4
DIBTE ..t 4-4
SEIBCE Al 4-4
SEQUENCE PrOPEITIES ..ottt e e 4-5

© MNational Instruments Corporation

vii

TestStand User Manual

Contents

Sequence File Propertiesoccueveeiiiiiiie e 4-5
Sequence File Callbacks.........coouvviiiiiiiiiiiiie e 4-6
RV C T AV 1= o SR 4-7
Station GIODAISeeiiiieeiieee e 4-8
TYPE PAIELE ..o 4-8
USEI MANAGETeveiiieieiiitteee e e e e e ee e 4-8
PathS. .. 4-8
FING TY P e 4-11
Browse Sequence CONEXL.........ooveeiriiiiiiieiee e 4-12
TOOIDAIS ...t ————————————— 4-13
Y= 1L LS == 1 S 4-13
Launch REPOIt VIEWETcciiiiiiiiie ittt 4-13
EXECULE MEINU ...ttt e e e e e e erb e e e eeeenen 4-14
Execution Entry POINt LIStoeiiiiiiiiiiiiiiiee e 4-14
RUN ACHIVE SEOUENCE.......eviiiiiiiiiiee ittt 4-14
RESTAN ... e 4-14
RUN Selected SEPSvviiiiiiiiiiiie e 4-15
LOOP 0N Selected StEPS....ccoiiiiiieiiiiee e 4-15
Break On FirSt STEP ...coiiiiiiieie e 4-16
Tracing ENADIEd........ocuviiiiii e 4-16
DEIBUG MEBNU.....ciiiiiiiiiiie et 4-17
RESUME ..ottt e e e er e e aees 4-17
SEEP OV ..ttt e s 4-17
SEEP N0 4-17
SEEP OUL ..ottt 4-17
BrEaAK. ...ttt 4-18
TOIMINALEeeiiee it 4-18
ADbOrt (N0 ClEANUP) ... e e e e 4-18
Break AllL. ..o s 4-18
Terminate All. ... 4-18
Abort All (N0 ClEANUP)ccci it 4-18
RESUME All ..o 4-18
(@] a1To [0 T\, =T o U SR 4-19
Station OPLIONSeeeeiiiiieii e e 4-19
SEArCh DIr€CIOMES. ... viiiie it 4-29
EXIErNal VIBWETS ...ttt 4-30
y Y0 F= 1 01 £=] £ PSR 4-30
=T 0 To] @] o] i o] 1SS 4-30
LI 10 3117 1= 0 O PRSPPI 4-31
Sequence File Documentationcccvvvveeieeieeee e e 4-31
Sequence File CONVEIMEISuuuiiiiieee e 4-31
IMPOIt/EXPOrt LIMItS ...vvviieeeee i 4-31
Update Automation Identifierscccceveeeeeeeeiiiiicccieeeeeee e 4-31
TestStand User Manual viii © National Instruments Corporation

Contents

Run Engine Installation Wizard...........ccccieeiiiiiiieinie e 4-32
CUSTOIMIZE. ..ttt 4-32
WINAOW IMEBNU ..ttt ettt e e s 4-34
CASCAAR ..t 4-34
Il e 4-34
Close Completed Execution Displays..........ccccceveiiiiiiieiiniiieeeene 4-34
OPEN WINAOWS.....eeiieiiiiiiie ettt 4-34
Chapter 5
Sequence Files
Sequence File WINAOW VIBWS ..ottt e e e e e e e e 5-1
All SEQUENCES VIBW ...coiiiiiiiiiiiteee ettt e e e e e ettt e e e e e e e e s et abeeeeaaaaaeaeaanns 5-2
Sequence VieW CONtEXE MENUuuuiiiiiiiaaeie et a e 5-3
OPEN SEUUENCE.....cciiiiiiiiiiiieiit ittt e e e e e e e e e e e ae e e e e e e eeeeeeaeaeenes 5-3
INSEIT SEQUENCE 5-3
RENAIME.....o e 5-3
Browse Sequence CONEXLcoovviiiiriiiiiiiiiee e 5-3
VIEW CONTENTSeiiiiieiitii et 5-3
SEQUENCE PrOPEItIESeeiiie ittt ettt 5-3
Sequence File Properties...........ooi i 5-6
Sequence File Callbacks ... 5-9
INIVIAUAI SEQUENCE VIBW ...ttt ettt 5-10
Main, Setup, and Cleanup TabS.........cccviieiiiiiie e 5-11
Step Group List View and Tree VIeW.........cccvvvvviiiieiieiiiiieee e 5-11
Step Group List View COIUMNScvvviiiiiiiiiiieiiieee e 5-12
Step Group ConteXt MENUcuvviiieiiiiieeeir e 5-14
Parameters Tabooooiiiii e 5-27
Parameters Tab ContexXt MeNU..........cueeiiiiiiiiie i 5-27
LOCAIS TAD .. 5-30
Locals Tab Context MeNU.........cccoiiiiiiiiiiiiiiieeiee e 5-31
Preconditions Dialog BOXuuiiiiiiiiiieeiiiieee ettt 5-32
Sequence File GIODAIS VIBW...........oiiiiiiiiii e 5-36
Lifetime and Scope of Sequence File Global Variables..............ccccccevniiieeee 5-36
Sequence File Globals View Context Menuccccccvviieeeeeiiiiiiiiiiiieeeeeeeen 5-37
INSErt GIODAL........oooiiiiiii e 5-37
VIEW CONLENTSeiiiiiei ittt e 5-38
GO UP ONE LEVEL ... 5-38
Browse SequenCe CONEXLccooviiiiiiriiiiiiiiee e 5-38
RENAME......oiiiiiiie e 5-38
PIOPEITIES ...eiiiiiiiiiie ettt e e 5-38
SequUENCE File TYPES VIBWueiiiiiiiiiiee ettt e 5-39

© MNational Instruments Corporation ix TestStand User Manual

Contents

Chapter 6
Sequence Execution
Sequence Editor and Run-Time Operator Interfaces............cccuviiiieiiiiiiiiiiniiiiieeeeeen 6-1
What iS &N EXECULIONT ...ccoiiiiiii it 6-1
Starting an EXECULIONeiiiiiiaii et e e e e e e e e e e 6-2
EXecution ENtry POINTS... ... 6-2
Executing @ Sequence DIreCHYueeiiiiiiiiiiiiee e 6-2
Interactively EXECULING STEPS. .. .uuuieiiiiiiieaeie it e e 6-3
Sequence Editor EXeCUtion WINGOW............coiuiiiieiiiiiiee e 6-3
SEEPS TAD .ttt 6-4
TRACING .ttt 6-4
DEBUGGING -.veiiiiiiiiii e 6-5
StePs Tab COlUMNS ...ccooiiiiiei e 6-5
Steps Tab ConteXt MENUceiiiiiiiiieiiee e 6-6
CONEXE TAD ...ei it 6-7
Context Tab ContexXt MENUccooiiiiiiiiiiiiieeeiecce e 6-8
REPOM TAD ... e 6-9
Call STACK PANE ... 6-10
WatCh EXPreSSioN PaNE........cccoiiiiiiiiiiiiiieeiiie ettt 6-12
Edit EXPreSSIONoiiiiiiiiiie et 6-12
A WALCH ... 6-13
MOIfY VaIUE ... 6-13
RETTESN ... 6-13
STALUS BT ..ciiiiiiiiiiiree e e e 6-13
RESUIL COIIECLION ... e 4....6-1
CUSIOM RESUIL PrOPEITIES...ccci it 6-16
Standard ReSUIt Properties........c..eeieiiiiiiiiiiiee e 6-17
SUDSEQUENCE RESUIES ..ot 6-18
LOOP RESUIES ... 6-19
ENGINE CallDACKS ... s 6-20
SEEP EXECULION ..eiiiiiiiiii ettt 23......6-
SEEP STALUS ... e e 6-24.....
RUN-TIME EITOIS .ttt ettt e et e e e st bt e e s s bb et e e e anbbeeeeeaae 6-25
Chapter 7
Station Global Variables
Station GloODAIS WINGOW.vviiiiiiiiec et 7-1
Station Globals VIEW RINGuuiiiiiiiiiii e 7-2
Globals VIew CONEXE MENU.........cuviiieiiiiiiie ettt 7-2
INSErt GIODALcoiiiiiiie e 7-2
VIEW CONEENES ...ttt 7-3
GO UP ONE LEVEL. e 7-3

TestStand User Manual X © National Instruments Corporation

Contents

Browse Sequence CONEXEoccevrriiiiiiieeee e 7-3
RENAIME... . et 7-3
Global Variable Properties.........ccuviiiiiiiiiiiiieiee e 7-3
Reload Station GIobals............coocviiiiiiii e 7-4
[1) (= o S 1:4........
Special TestStand Station GIODAIS............eiiiiiiiii e 7-5
Chapter 8
Sequence Context and Expressions
SEQUENCE CONEXE .ttt r e e e e e e e e e e e e e e et et e et et et eeeesesbebebebe b a e e e e e e e e e e e e e e aeaaaaaeas 8-1
Sequence Context SUDProPerties........c..uvuiiiiiiiie e 8-3
StationNGIoDalS ..o 8-3
RUNSTALE ... 8-4
RunState.SequenceFile and Other SequenceFile Objects................. 8-8
RunState.Sequence and Other Sequence Objects..........cccceeeeeeeeeennn. 8-9
RunState.Step and Other Step ObJECtS.......ccovvviiiiiiiiiiiieieee e, 8-10
RunState.InitialSelection..............ueei e 8-10
Using the SEqUENCE CONIEXL.......ccciiriiiieiiiiiie ettt 8-11
EXPIESSIONS ...t 8:12......
Chapter 9
Types
Windows and Views that DiSplay TYPESuuuiieeiiiiiiiiiiiieieeee e e e 9-1
Storage of Types in Files and MEmMOIYccoovviiiiiiiiiiiiieee e 9-2
L0 LS o T - L= B 18] 1= PR 9-3
SPECIHYING AITAY SIZESuuiiiiiiiiieeee et e e e e e e ereaaees 9-5
DyNamic Array SiZiNGcooccvvvieiiieriee e e ce st e e e e e e e s srnrre e eeee s 9-7
EMPLY ATTAYS vttt e e e ees 9-7
Display Of Data TYPES ...uuuuerieiiiiiiieieie i it e e e e et e 9-8
Modifying Data Types and ValUEs..............cooiviiiriieieieiiiers s 9-9
SINGIE VAIUEBS ... e 9-9
F N4 =\ TSP SUPPPPIN 9-11
1070]] r=1] g 1=] = TP PPPPRPON 9-11
Using the Standard Named Data TYPES.....cuuueiieiariiiiriiiiiiieeee e 9-12
PN e 9-12
Error and Common RESUIS...........ccvvviiiiiiiice e 9-13
Creating and Modifying Data TYPESuuuiiiiiiiiiiiiiiiiiei it 9-13
Custom Data Types Tab Tree and LiSt VIEWS........cccuueeieeiiieiiiiiiiiiiieeeeeeenn 9-13
ValUE FIeld ... 9-16
Creating a New CuStOom Data TYPE......uuuuueiiieiieeaieiiiiiieiieeee e 9-17
Adding Fields t0 Data TYPES...cccoiiiiiiiiieeet ettt e e 9-18

© MNational Instruments Corporation Xi TestStand User Manual

Contents

Properties Dialog Box for Custom Data TYPESceevviirireriiiiieeeeiniiieee e 9-19
Property Dialog Box for Data Type Fields........cccoocovveiiiiiieenninnn. 9-20
OS] a Lo IS (=] o Y] o= T PSSP PRI 9-21
Creating and Modifying CUStOM StEP TYPESvveiieiiiiiiee et 9-22
Custom Step TYPE PrOPEITIES.......uveiieiiiiiiee ettt 9-23
Built-In Step TYpPe Propertiescuueieeiiiiiieiiiiieee et 9-24
GeNEral TaD ..o 9-26
MENU TaD ... 9-28
SUDSIEPS TaD ... 9-30
Disable Properties Tab........cccoouiiiiiiiiiiiiee e 9-32
Code TemMPIates Tabocuviieiiiiiiee e 9-34
View Contents BULLONcooiiiiiiiiiiiiiii e 9-41
Type Palette WINAOWcooiiiiiiiiiieiie et 9-41
Chapter 10
Built-In Step Types
OVEIVIBW ...ttt ettt et e e e e e e s e bbb e bt et e e e e e e e s e banbbaeeeaaaaaeeesaannnes 10-1.....
Common CUSLOM PrOPEITIES e e 10-1
Step Status, Error Occurred Flag, and Run-Time Errors..........ccccovveeeeeneeeennn. 10-2
Customizing BuUilt-IN SteP TYPES...cccei ittt 10-2
Step Types That You Can Use with Any Module Adapter...........ccccoiiiiiieiiiieiiiniinns 10-3
Yo 1T] o D P PO P PPT U PPPTON 10-3
PASS/FAI TEST ...eteieeiiiiiie et 10-4
NUMENC LIMIE TEST...eiiiiiiiiiie it 10-6
SEING VAIUE TEST ..ttt e e 10-9
Step Types That Work With a Specific Module Adapter............ccoceeeviiiiieeiiiiiee e, 10-12
SEQUENCE Call......eeiiiiiiiiiei s 10-12
Step Types That Do Not Use Module AdapLers..........ccoouiiieiiiiiiieeiniiee e 10-14
SEALEMENT. ...t 10-14
MESSAGE POPUP ...ttt 10-15
Call EXECULADIE ... e 10-18
LIMIE LOBAEY ..eeieiitieiee ettt e s 10-21
Import/Export Limits Command in the Tools Menu........................ 10-26
L€ To) (o T OO T PP PPPPP 10-28
LADEL. .. e 10-29
Chapter 11
User Management
User Manager WINQOW.uuiiiiiiriiieesiire e e e 11-1
USEIS VIBW ..ttt sttt s et e e e e e s s e e e 1-2.....1
USEr LISt Tab ... 11-3
User List CoNteXt MENUcvvviiiiiiiiieee e 11-3

TestStand User Manual Xii © National Instruments Corporation

Contents

0 11T 1= o USRS 11-5
Profiles Tab ContexXt MENUccoiiiiiiiiiiiie e 11-6
TYPES VIBW ..ttt e et e e e e e e e s e e st e e e e e e e e e s e e annernnneeeeeeeeas 1-7....1
User Standard DAt TYPESooeiiiriiieiiiiiiee ettt e e 11-8
Adding New Properties and Privileges to the User Data Typecccoeuveeee. 11-10
Verifying USEr PriVIIEESuuieiiiiie ittt e e e e e er e e e e e e e e s annnneees 11-11
Accessing Privilege Settings for the Current USer..........ococceeviiiiiieeiiiiiieeeens 11-11
Accessing Privilege Settings for ANy USErooiiiiiiiiiiiie e 11-12
Chapter 12
Module Adapters
OVBIVIBW ...ttt et e e e oottt et e e e e e e e e e eaaab bbbt e e e aaaeeeeeeannbnbbneeeeee 12-1....
(7o) a1 iTo U g1 gTo Yo F= o 1=] £ T U ET TP SRP 12-2
SOUICE COAE TEMPIALESttt e e e e e e e s st r e e e e e e e e e aaaanes 12-3
DLL Flexible Prototype AGAPLENcoo it e e e e e e 12-4
Configuring the DLL AdApLer........coooiiiiiiiiieeiee et 12-4
Specifying a DLL Adapter Module............ooooiiiiiiiiiieeeeee e 12-5
MOAUIE TaD ..o 12-5
SOUICE COUE TaD ..eiiiiiieie e 12-10
DEDUGGING DLLS ..ottt e e 12-12
USING MFEC iN @ DLL .ot 12-13
LabVIEW Standard Prototype AJaPLEreviiiiiiiiieiiiieeee it 12-13
LabVIEW Standard Prototype Adapter Module Structure............ccccvvveeeeeennn.. 12-13
TSt DAt@ CIUSTEN ...eeiiiiiiiee e 12-14
EXrOr OUL CIUSTEIuuiiiiiiiiie ettt 12-16
INPUL BUFTEI o 12-17
Invocation INformationeeeviiiiiiiiiii e 12-17
SEQUENCE CONEXE....ciiiiiiiiiiiiiii e 12-18
Configuring the LabVIEW Standard Prototype Adapterccccoocveveernnnnen. 12-19
Specifying a LabVIEW Standard Prototype Adapter Moduleccceeeeee 12-20
Debugging a LabVIEW Standard Prototype Adapter Module........................ 12-21
C/CVI Standard Prototype AAPLENcoieiiiieiiiiie ettt 12-23
C/CVI Standard Adapter Module Prototypes...........ccourvieieiiniieeienniiin e 12-23
Example C/CVI Standard Prototype Code Module............ccccoocviviiiiiiieneenne. 12-27
Specifying a C/CVI Standard Prototype Adapter Moduleccccceevvininnen. 12-28
Configuring the C/CVI Standard Prototype Adapterccooccveveviiivieeennnnnnn. 12-31
Executing Code Modules IN-ProCessccccovuveeieiiiiiiieeiniiieeeeee 12-32
Executing Code Modules in an External Instance of
LabWINAOWS/CV I ...t 12-34
SEOUENCE AGAPTET ..ottt ettt e e et bt e e s ettt e e e et b e e e e e e 12-35
Specifying a Sequence Adapter Moduleoooiiiiiiiiiiiiiee e 12-36
Edit Sequence Call Tab ..o 12-37

© MNational Instruments Corporation Xiii TestStand User Manual

Contents

Remote EXeCUtion Tabcoooiiiiiiiiiiiiic e 12-39
Setting up TestStand as a Server for Remote Executioncccccccceveeeeeennn. 12-41
ActiveX AULOMALION AGAPLET.......cciiiiiiii ittt e e e 12-43
Configuring the ActiveX Automation Adapter..........cccceveviiiieeiiiniieeee e, 12-43
Specifying an ActiveX Automation Adapter Module.............ccccccvvviivienneennn. 12-44
Running and Debugging ActiveX Automation Servers..........ccccccovvveeeeennnen. 12-49
Using ActiveX Servers with TeStStandccccceiiiiiiiiiiiiiee e 12-49
REQISLEIING @ SEIVET......eiiiiiiiiiii e 12-49
Compatibility Issues with Visual BasiC..........ccccceevviiieeeiniiiieeeene, 12-49
Chapter 13
Process Models
Directory Structure for Process Model Files ... 13-1
Special Editing Capabilities for Process Model Sequence Files...........ccccooviiiiennnnnn. 13-2
Sequence Properties Model Tabooiiiiiiii e 13-3
NOIMAl SEQUENCESeeeiiiieeeieiiiee et e e e e e e eeaees 13-3
CallDACK SEUUENCESeeeiiieeiiiiiiiiieee et e e e 13-4
Entry POINt SEQUENCES ... 13-4
Contents of the Default Process Model..............ooeoiiiiiiiii e 13-8
Test UUTS ENtry POINT.......cooiiiiiiiiiiiiee et 13-12
Single Pass ENtry POINT.........oociiiiiiie e 13-13
Support Files for the Default Process Modelccccovviiiiiiiiiciniice e, 13-14
Chapter 14
Managing Reports
Implementation of the Test Report Capabilitycccccccoivvicciiiiiii e, 14-1
L0 LS o IF=) B =T o o £ PSPPI 14-2
Report Options DIialog BOXccccuiiiiiiiiiiie st e e e e e e e e s st neeaea s 14-4
CONENES TAD ..o 14-5
Report File Pathname Tab.......ccooooiiiiii i 14-8
Chapter 15
Run-Time Operator Interfaces
OVEIVIBW ...t ettt e et e e ettt e e e e e e e s st e e e eeaeaeeesannansbeseaeaaaaeeeesnnnnes 15-1.....
TestStand Run-Time Operator INtErfaCes.coouiiiiiiiiiiiii e 15-2
The LabWindows/CVI Run-Time Operator Interface..........cccooeveevvierennnnen. 15-2
The LabVIEW Run-Time Operator Interface..........ccooeveiiieieiiniieee e 15-4
Building a Standalone Executable............cccooveiiiiiieiiiiiiiee e 15-4
The Visual Basic Run-Time Operator Interfaceccccccvvvveeeniiiieeenniineen, 15-6
Distributing a Run-Time Operator INterface ... 15-8

TestStand User Manual Xiv © National Instruments Corporation

Contents

Chapter 16
Distributing TestStand
Creating a Run-Time TestStand Engine Installationcccccoiiiiiiiiiie, 16-1
Using a Custom TestStand Engine Installation.............ccccccveeieiiiiiiiiiieeeeeeen, 16-5
Distributing your Operator INterfaceeeiiiiiiiiie e 16-6
Installing the Customized ENQINE........ccooiiiiiiiiiiieaeee e 16-6
LABVIEW ...ttt 16-6
LabWINAOWS/CVI ...t 16-6
VISUAI BASICveeiieiiiiiie it 16-7
Distributing Sequences and Code MOAUIESuiiiiiiiiiie e 16-8
Distributing SeqUeNnCe FIleS. ..o 16-8
Distributing DLL Code MOUIES............coiiiiiiiiieiiiiie e 16-8
Distributing Object and Static Library Code Modules.............ccccveeiiiieeeenns 16-8
Distributing LADVIEW TSt VISevviiiiiiiie ittt 16-9
Packaging VIs and SubViIs for a Sequence Fileccccvveeeeee.n. 16-10
Distributing VIs by Saving Them without Full Hierarchy 16-10
Distributing VIs by Saving Them with Full Hierarchy..................... 16-11
Distributing ActiveX Automation Code Modules............cccccovviiiieiniiiieennnnn. 16-12
Customizing and Distributing a LabVIEW Run-Time Server.........cccccoovciieeiniiieeennene, 16-12
Rebuilding the TestStand LabVIEW Run-Time Server........c.ccocceevniieeeennnnne. 16-13
Distributing the TestStand LabVIEW Run-Time Serverccccccevviveeeennnee. 16-14
Appendix A
Customer Communication
Glossary
Index
Figures
Figure 1-1. TestStand System ArchiteCtureccccvevviieieiiiieee e 1-4
Figure 1-2. The Expression Browser Dialog BOX..........cccueeeiiiiiiiiiiiieieiniieeee e 1-9
Figure 1-3. Flowchart of TestUUTs Sequence in the Default Process Model......... 1-20
Figure 1-4. Test UUTs Entry Point Sequence in the Default TestStand
ProCess MOUEIveiiiiiiiie e 1-21
Figure 1-5. List of All Sequences in TestStand Process Model............cccccceeernneeen. 1-22
Figure 2-1. Example Sequence Editor SCreen.........cccccviviiiiie i 2-2
Figure 2-2. Example Sequence File WINAOWcccccoeiiiiiiiiniieiie e 2-6
Figure 2-3. Example EXecUtion WINAOW............coiiueiiiiiiiiiieeiiiiiee e 2-7

© MNational Instruments Corporation Xv TestStand User Manual

Contents

Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.
Figure 2-8.
Figure 2-9.
Figure 2-10.
Figure 2-11.

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.
Figure 4-9.
Figure 4-10.

Figure 4-11.
Figure 4-12.
Figure 4-13.

Figure 4-14.
Figure 4-15.
Figure 4-16.
Figure 4-17.
Figure 4-18.
Figure 4-19.
Figure 4-20.

Figure 4-21.
Figure 4-22.
Figure 4-23.
Figure 4-24.
Figure 4-25.

Figure 5-1.
Figure 5-2.
Figure 5-3.
Figure 5-4.
Figure 5-5.
Figure 5-6.
Figure 5-7.

TestStand User Manual

Example Type Palette WINAOWccoociiiiiiiiiieiiiiiiiee e 2-8
Example Station Globals WiNdOW.............cocceviiiiiiinniiiece e 2-8
Example USers WINQOWoceeiiiiiiiiiiiiiee e 2-9
Main Step Group in an Example SequeNncCecccocceeeeiiiiieeeiniiiiee e 2-10
INSErt SteP SUDMENUveiiiiiiie e 2-10
Step Properties Dialog BOX.........ccuueiiiiiiiiieiiiiiiie e 2-12
Preconditions DIialog BOXcccoiiiiiiiiiiiiiee et 2-15
HTML Report for an Example SeqUENCE.cc.eeeeviiieeeniiiieeeiiieeee s 2-19
FIlE MENU ...ttt e e e e e e e e ar e e e e e e e e enes 4-1
o101/ =T 0T PSR 4-3
Sequence Properties Dialog BOXccoviiiiieiiiiiiiiiiiie e 4-5
Sequence File Properties Dialog BOXccooviviieeiiiiiiieiniiiiee i 4-6
Sequence File Callbacks Dialog BOX.........ccceviviieieiiiiieeiiiiiiee s iiieeeees 4-7
Yo 1Y 1= o 4-7
Edit Paths in Files Dialog BOX........cccovuviieiiiiiiieiie e 4-8
Edit Paths Dialog BOX........cooiiiiiiiiiiiiiiiiie e 4-9
FiNd Type Dialog BOXcceiiiiiiiiieiiiiiee i 4-11
Browse Variables and Properties in Sequence Context
(D] T= 1[0 To [=10) QPP UPPRTTRPRP 4-12
EXECULE MENU ..o e 4-14
Loop on Selected Steps Dialog Box—Loop Count Tab..........cccceee..... 4-15
Loop on Selected Steps Dialog Box—Stop Expression Tab................ 4-16
DEBUG MEBNU. ..coiiiiiiiiieii et 4-17
CONfIGUIE MENU ..ot 4-19
o CTol U 1110 T @] o] 1 o o =P 4-20
Time LimitS OPLIONSuvviiiiiiiie e e et er e e e e e e e e s nnnnaneeeees 4-23
Preferences OPLiONSuuiiiiiiee e e e 4-25
1Y/ [o [I @] o] 1o =S 4-26
User Manager OPLiONSuuueeeeieeeereiiiiiiiieeeeresee e e s s sssssnnreeeeereeeeeeesennnnes 4-27
Language OPtiONScceveeeiis it e e e e e e e e e e 4-28
Search Directories Dialog BOXccccvviviierieeiiiiiiiiieeeee e 4-29
TOOIS MENU ..ttt sbaeea s 4-31
Customize Tool Menu Dialog BOX...........coveuviiiiiiieeeisiiiiiieiieee e e e 4-32
WINAOW MENU ...ttt e e 4-34
Sequence File VIEW RiNG.......ccccviiiiiieeee et ee e e 5-2
All Sequences View in the Sequence File Window............cccccvvevveeeennn. 5-2
Sequence Properties Dialog BOXcocovvcviiiiiiiiee e 5-4
General Tab on the Sequence File Properties Dialog Box 5-6
Advanced Tab on the Sequence File Properties Dialog Box................ 5-8
Callbacks Dialog BOXuuviiiieeeeeiiiiiiiiiieeeeeee e s e s eee e e e e e s e e 5-9
Individual Sequence View for an Example Sequence...........cccccvveeeee... 5-10
Xvi © National Instruments Corporation

Figure 5-8.
Figure 5-9.

Figure 5-10.
Figure 5-11.

Figure 5-12.
Figure 5-13.
Figure 5-14.
Figure 5-15.
Figure 5-16.
Figure 5-17.
Figure 5-18.
Figure 5-19.
Figure 5-20.
Figure 5-21.
Figure 5-22.
Figure 5-23.
Figure 5-24.

Figure 6-1.
Figure 6-2.
Figure 6-3.
Figure 6-4.
Figure 6-5.

Figure 6-6.
Figure 6-7.
Figure 6-8.
Figure 6-9.

Figure 7-1.
Figure 7-2.

Figure 8-1.
Figure 8-2.

Figure 9-1.
Figure 9-2.
Figure 9-3.
Figure 9-4.

Figure 9-5.
Figure 9-6.

© National Instruments Corporation XVii

Contents

The Step Group Tree View (Left) and List View (Right)..................... 5-11
Step Group List View Columns for StEPS.......ccvveveiiiiiiieiiiiiee e 5-12
Step Group List View Columns for Step Propertiesccccovcveeernnee 5-13
Insert Step Menu with LabVIEW Standard Prototype

Adapter SElECLEd.uuiiiiiiiiie e 5-14
General Tab on the Step Properties Dialog BOXccccevvviiieenninnenn. 5-18
Run Options Tab on the Step Properties Dialog BOX...........ccceveeennnne. 5-19
Post Actions Tab on the Step Properties Dialog BOX..........c.cccveeeennee 5-22
Loop Options Tab on the Step Properties Dialog BOX........cccccveveeeiennes 5-24
Expressions Tab on the Step Properties Dialog BOX...........ccccevveininneen. 5-26
Parameters Tabcocciiiiiicee e 5-27
Insert Parameter SUBMENU...........ccoiiiiiiiiiiiiiiicc e 5-28
o Tor= | £ I o TR 5-30
INsert Local SUDMENU.......ccviiiiiii i 5-31
Preconditions Dialog Box for @ SEqUENCE.............coovvvvieiiiiiiiieeeiiiieeen, 5-33
Sequence File Globals View for an Example Sequencecc.cc...... 5-36
Insert Global SUBMENU..........ccooi i 5-37
Step Types Tab in Sequence File Types VIeW.........occvevveiiiieeeenniinennn, 5-39
Steps Tab in the Sequence Editor Execution Window................cc........ 6-4
The Context Tab in an Execution Windowccccceeevviiiiviiinieeneennn. 6-8
HTML Report for an Example SeqUENCE..........cceeveviiiieeiiiiiieee i, 6-10
Call Stack Pane while Suspended in a Subsequence............c.ccecuueeeene 6-11
Steps Tab Displaying a Sequence Invocation in the

Middle of the Call StaCK...........ccevvieeeiiiiiiiire e 6-11
Watch EXPresSsion Pan@........ccooviioiciiiiiiicce et 6-12
Execution Window Status Barccceeeeeiiiiieieiiiieeee i 6-13
A Result in @ RESUILLISt AMTAYvvveeieeeiesiciiiieie e e e e e e e e e e e e e sneees 6-15
RUN-Time Error Dialog BOX.......c.oovvcuviiiiieieee e ieciiieeee e e e sesiveeeeeaeee e 6-26
Station Globals WINAOWcocuiiiiiiiiiiii et 7-1
The Insert Global SUDMENU..........occiiii e, 7-2
Variables/Properties Tab of the Expression Browser...........ccccocecvvvvnen. 8-13
Operators/Functions Tab of the Expression Browser...........c.ccccceeuveeee. 8-14
Type Conflict In File Dialog BOX.......cc.vvvviiiieeiiiiiiiiieice e eeiveeeeeee 9-3
Insert Local SUDMENU.........cooiiiiiiiiii e 9-5
Initial State of Array Bounds Dialog BOX..........ccccvveveeeeeiiiiiciiiieeeeeen, 9-5
Array Bounds Dialog Box with Settings for a

Three-DimenSioNal ArTAY.......cc.uverereieeee e e e e e e e e e e e e e 9-6
Array Bounds Dialog Box with an Initially Empty Arrayc........ 9-7
Local Variables with Various Data TYPeScccccvereeevieeeeesieciiinvieeeen, 9-8

TestStand User Manual

Contents

Figure 9-7.

Figure 9-8.

Figure 9-9.

Figure 9-10.
Figure 9-11.
Figure 9-12.
Figure 9-13.
Figure 9-14.
Figure 9-15.
Figure 9-16.
Figure 9-17.
Figure 9-18.
Figure 9-19.
Figure 9-20.
Figure 9-21.
Figure 9-22.
Figure 9-23.
Figure 9-24.
Figure 9-25.
Figure 9-26.

Figure 10-1.
Figure 10-2.
Figure 10-3.
Figure 10-4.
Figure 10-5.
Figure 10-6.
Figure 10-7.
Figure 10-8.
Figure 10-9.

Figure 10-10.
Figure 10-11.
Figure 10-12.
Figure 10-13.
Figure 10-14.
Figure 10-15.
Figure 10-16.
Figure 10-17.
Figure 10-18.
Figure 10-19.
Figure 10-20.
Figure 10-21.

TestStand User Manual

Properties Dialog Box for a Number Local Variablecc......... 9-10
Contents of Array Local Variable in List VIieW........ccccccceevviiiiiiiennnnn. 9-11
Standard Data Types Tab of the Type Palette Window........................ 9-12
Custom Data Types Tab with Root Node Selectedcccccceevvvnnnneee. 9-14
Custom Data Types Tab Showing the Contents of a Container 9-15
Custom Data Types Tab Showing the Value Field for a Number 9-16
Modify Numeric Value Dialog BOXccceeveiiiiiiiiiiiiiiiie e 9-17
Insert Custom Data Type SUDMENUcooiiuiiiiiiiiiiie e 9-17
Insert Fields SUDMENU..........oooiiii e 9-18
Properties Dialog Box for a Numeric Data TYpe......ccccceevviivveeenininnnenn. 9-19
INSert Step SUDMENU ... 9-21
Step Types Tab of the Type Palette Windowcccccceveeevviiiciiivinnnnnn. 9-23
Custom Properties of a StEep TYPE ...evvviiiiiieee e 9-24
Step Type Properties Dialog Box—General Tab........cccccceveevviiicivnnnee, 9-26
Step Type Properties Dialog Box—Menu Tab...........cooovccvvvviinnnneeeenn, 9-28
Step Type Properties Dialog Box—Substeps Tabcccccoevvcvvvvnnnnnn. 9-31
Step Type Properties Dialog Box—Disable Properties Tab................. 9-33
Step Type Properties Dialog Box—Code Templates Tab..................... 9-37
Create Code Templates Dialog BOXceveviiiiiiiiiiiiiie e 9-38
Edit Code Template Dialog BOX........ccocuveeeeiiiiiiieiiiiiiee e 9-39
Properties That All Steps COoNtaiN...........coocvivieiiiiiee e 10-1
Edit Pass/Fail Source Dialog BOX.........ccueeiiiiiiiiiieiiiieie e 10-5
Pass/Fail Test Step PropertieS ... 10-5
Limits Tab on Edit Numeric Limit Test Dialog BOX.........ccccccvvvuvnneen. 10-6
Data Source Tab on Edit Numeric Limit Test Dialog BoX................... 10-8
Numeric Limit Test Step Propertiescccccccveviiiiviiiiieeereeeee e 10-8
Limits Tab on the Edit String Value Test Dialog BOX..............ccccuvvvnes 10-10
Data Source Tab on Edit String Value Test Dialog BOXcccceeeeennnn. 10-11
String Limit Test Step Properties........ccvveveeeeeei i i e e e 10-11
Specify Module Dialog Box for Sequence Call Step...........cccccvvvveeeenn. 10-13
Edit Statement Step Dialog BOXuvviiiiiereeeiiiiiiiiiiiieee e 10-15
Configure Message Box Step Dialog BOX........ceeevveeeeeririiicininineeeeeeeenn. 10-16
Message Popup Step Propertie€S......ccovvivevciieieiieieee e csiniieeneeaee e 10-17
Configure Call Executable Dialog BOXccccvviiviiiieeee e 10-19
Message Popup Step PropertieS........ccouuvieiciiiieieiieee s csenniieeeeenae e 10-20
Example Sequence File with Limit StePScvvvveeeiiiiiiciiiiiieeeeee e 10-22
Limits File Tab on Edit Limit Loader Step Dialog BoX............cccc....... 10-22
Layout Tab on Edit Limit Loader Step Dialog BOXcccccvvvvvvereeennnn. 10-23
Limit Loader Step PropertieS..........uuuieeeeeiiiiiiiiieiieeeeeesseinienereeee e s e 10-24
Import/Exports Sequence Limits Dialog BOX.........ccoovvvcivvieeereeeeeiiinnnns 10-26
Edit Goto Step Dialog BOXccceeiiieiiiiiiiiie e e ccciiveee e e e st e e 10-28
XViii © National Instruments Corporation

Figure 11-1.
Figure 11-2.
Figure 11-3.
Figure 11-4.
Figure 11-5.
Figure 11-6.
Figure 11-7.

Figure 12-1.
Figure 12-2.
Figure 12-3.

Figure 12-4.

Figure 12-5.
Figure 12-6.
Figure 12-7.
Figure 12-8.
Figure 12-9.

Figure 12-10.

Figure 12-11.
Figure 12-12.

Figure 12-13.
Figure 12-14.
Figure 12-15.
Figure 12-16.
Figure 12-17.
Figure 12-18.

Figure 12-19.
Figure 12-20.

Figure 13-1.

Figure 13-2.
Figure 13-3.
Figure 13-4.

© MNational Instruments Corporation

Contents

Users View in the User Manager WindOW............cccvveeriiieeeniniieee s, 11-2
User List Tab for USErs VIEW........c.uuvuiiiieeiieiiiiiieeee e e 11-3
Insert New User Dialog BOXeeviiiiiiiiiiiiiiie e 11-4
Edit User Dialog BOXcuveeiiiiiiiiiiiiieeee et 11-5
Profile Tab in the USErs VIEWccoociiiiiiiiiee e 11-6
Types View in the User Manager WindoWccccovvveeiiiniieeeniiieeeens 11-7
User Standard Data TYPEccveeveeiiiiiieiiiiieee et 11-8
Adapter Configuration Dialog BOX..........ccoeviiiieeiiiiiieeiiiiee e 12-2
Choose Code Template Dialog BOX.........cccuvveeiiiiieeiiiiieee e 12-4
Specify Module Dialog Box for DLL Flexible Prototype

Adapter—Module Taboeiiiiiii 12-5
Specify Module Dialog Box for DLL Flexible Prototype

Adapter—Source Code Tab ... 12-10
TeSt DAta ClUSTEI ... e e e e e e e 12-14
EFTOr OUL CIUSTEN ..oviiie ettt e ree e e e e e 12-16
Invocation Information CIUSEENcceeviiiiiiiiiiiiece e 12-17
Sequence Context CONLrOl...........eeeeiiiiiiiiiiiiee e 12-18
LabVIEW Adapter Configuration Dialog BOXccccceevviveeeiiiineeenns 12-19
Specify Module Dialog Box for LabVIEW Standard

Prototype AapLer......coveiiiiiiice s 12-20
Stepping iNto @ LAbVIEW V..o 12-22
Specify Module Dialog Box for C/CVI Standard

Prototype Adapter—Module Tab ... 12-29
Specify Module Dialog Box for C/CVI Standard

Prototype Adapter—Source Code Tab.......cccccvveeeeeeiiiciiieeeeee e 12-30
C/CVI Standard Adapter Configuration Dialog BOXccccvvveeveeeennn. 12-32
Auto-Load Library Configuration Dialog BOXcccccvvvvveveeeeiiiiiinnen, 12-33
Example Sequence Parameters.........cccuveeveeeeiiiecciiieiieee e s scvveneeeea e 12-36
Specify Module Dialog Box for the Sequence Adapter—Edit

Sequence Call Tab ... 12-37

Specify Module Dialog Box for the Sequence Adapter—Remote

EXECULION TaAD ...ttt 12-39
Specify Module Dialog Box for ActiveX Automation Adapter............ 12-44
Edit Parameter Value Dialog BOX..........ccccvviiiiiieeiiiiciiieeeeee e 12-47
Process Model Settings in the Advanced Tab of the Sequence

1L I 1o I = o) PSRRI 13-2
Type Ring Control in the Sequence Properties Model Tab................... 13-3
Model Tab for an Execution Entry Point Sequence.............cccccvvvvvnneen. 13-5
List of All Sequences in the Default TestStand Process Model File.....13-8

Xix TestStand User Manual

Contents

Figure 14-1.
Figure 14-2.
Figure 14-3.
Figure 14-4.

Figure 16-1.
Figure 16-2.
Figure 16-3.
Figure 16-4.

Tables
Table 1-1.

Table 2-1.

Table 2-2.

Table 3-1.
Table 3-2.
Table 3-3.
Table 3-4.

Table 6-1.

Table 6-2.
Table 6-3.
Table 6-4.
Table 6-5.
Table 6-6.

Table 8-1.
Table 8-2.
Table 8-3.
Table 8-4.

Table 8-5.
Table 8-6.
Table 8-7.

Table 8-8.
Table 8-9.

TestStand User Manual

HTML Test Report in the Report Tab ... 14-3
ASCII Text Test Report in the Report Tab ..o 14-4
Report Options Dialog Box—Contents Tab........cccoccvveeiiiieiiiiiieenens 14-5
Report Options Dialog Box—Report File Pathname Tab 14-8
Opening Dialog Box for the TestStand Engine Installation Wizard..... 16-1
Default Components to Include in the Installationccccccceveeenn. 16-2
Customize Files to Include in Installation Dialog BOX..........c.c.ccueeeenne 16-3
Select Files to Include Dialog BOXc..ceeeiiiiiieiiiiiieeiniieee e 16-4
CallDACK TYPES. ..ttt e e e e e ee s 1-23
Mouse and Keyboard Actions for Navigating List and

TPEE VIBWS ..ottt 2-3
Standard Values for the Status Property after Execution

COMPIELES ..ot e e e e e e e e e e 2-13
Sequence Editor Startup OPLioNSoocuveireiiiiiiieeeiieee e 3-1
TestStand SUDIrECIONESoviiiiiiiiii e 3-3
TestStand Component SUbdIrectoriescccovvvvveeeiiiieic e, 3-5
Resource String File Escape Codescccceeiiiiieiiiiiieieiiiiiee e 3-7

Custom Properties in the Step Results for Steps That Use

the BUilt-In SIEP TYPES ..eveiiiiiiie e 6-16
Standard Step Result Properties ..o 6-17
Property Names for Subsequence ReSUltSccccoooiiiiiiiiiiiineneennnnn. 6-18
Engine CallDacksooooiiiiiiiiiii e 6-20
Order of Actions That a Step Performsccccocieeeiniiiec e 6-23
Standard Values for the Status Propertycccoccveeeiiiiiieeennnieeee e 6-24
First-Level Properties of the Sequence Contextoccocvveevvciieeeennnne 8-2
The StationGlobals TS Subproperty in the Sequence Context............. 8-3
The RunState Subproperty in the Sequence Contextccccovvveeen. 8-4
The Subproperties of the SequenceFile Objects in the

SEOUENCE CONEEXL.....etiiiiiiieiie et e e 8-8
The Subproperties of the Sequence Objects in the

Y= T0 [T gL O 0] 1= 8-9
The InitialSelection Subproperty in the Sequence Context.................. 8-10
EXPresSSion OPEIAtOrSuvveeerieieeeiiiiiiiiieeeeeseeeessssssssteeneeeeeseeessssnnnnnes 8-15
Function EXpression OPEratorsccccuveeerieeeeeeisiiiiiiiineeeeeeeeeeessnnnnns 8-16
Levels of Precedence in EXPreSSIONSuuviiieeeeeeeiiieiiiiinieeeeeeeeeesnnnnnns 8-19

XX © National Instruments Corporation

Table 9-1.

Table 10-1.

Table 11-1.

Table 12-1.
Table 12-2.
Table 12-3.
Table 12-4.
Table 12-5.
Table 12-6.
Table 12-7.
Table 12-8.
Table 12-9.
Table 12-10.

Table 12-11.
Table 12-12.
Table 13-1.
Table 13-2.
Table 13-3.

Table 15-1.

Table 15-2.
Table 15-3.

Table 16-1.

Contents

Adapter Dialog BOX NAITBRocuuiiiiiiiiiie e 9-22
Numeric Limit Test CompariSon TYPE.......coocveverriiieeeeiniieee e 10-7
Description of Subproperties in User Data &yp.........ccccccveveeeenne 11-8
TestStand Numeric Data TYPE......ceeeeiiiieeeeiiiiee e 12-7
TestStand String Data TYPE......coiviiiiiiiiiiiiee e 12-8
Adapter Interpretation of Ambiguous Declarasan....................... 12-12
Test Data Cluster EIememnt............cocciviiiiiieee e 12-15
Old Test Data Cluster Elements from LabVIEW Test Exeeutiv...12-16
Error Out Cluster EIEMESIL..........ooovvcciviiiiieieieee e e 12-17
Error Out Cluster EIEmMESIL..........oovvvevviiiiieiiiee e 12-18
tTestData Structure Member Fisld...........ccccccvviiieiiiece 12-23
tTestError Structure Member Fiald...........ccoociviiii 12-26
Step Properties Updated by C/CVI Standard

Prototype Adaplie.........coooiiiiiiiii e 12-27
Path Resolution of Sequence Pathnames for Remotely

EXECULET STEP.....eiiiiiiiiiiie i 12-40
Variant Data Types Supported by the ActiveX

AUtOMALTIOT AAPLEeeeeiiiiiiee e 12-48
Order of Actions in the Test UUTs Entry Poin.............occcceeenn 13-12
Order of Actions in the Single Pass Entry Rain..............cccceeevin 13-13
Default Process Model FBe..........ccooveeeiiiiiciiiiiiieecce e 13:14

Files in the LabWindows/CVI Run-Time Operator

Interface ProjeCt Fll..........cvvvevvieee e 15-2
Top-Level Files in the LabVIEW Run-Time Operator Integfac.....15-4
Top-Level Files in the Visual Basic Run-Time Operator Interfac 15-6

Custom TestStand Engine Installer ACBON.............cccccvvveveeeennnne 16-5

© MNational Instruments Corporation XXi TestStand User Manual

About This Manual

Organization of This Manual

TheProduct UseManual is organized as follows:

© National Instruments Corporation

Chapter 1TestStand Architecture Overvigdescribes the TestStand
architecture and provides an overview of important TestStand
concepts and components.

Chapter 2Sequence Editor Conceptiescribes the various parts of
the main window for the TestStand sequence editor. It also describes
how you perform basic tasks in the sequence editor.

Chapter 3Configuring and Customizing TestStarsdimmarizes how
you can configure and customize a TestStand station.

Chapter 4Sequence Editor Menu Batescribes the menu items in the
sequence editor menu bar.

Chapter 5Sequence Fileslescribes TestStand sequence files.

Chapter 6 Sequence Executipdescribes the execution of sequences
in TestStand. It also describes the Execution window in the TestStand
sequence editor.

Chapter 7Station Global Variabledescribes station global variables
and the Station Globals window.

Chapter 8Sequence Context and Expressjaescribes the properties
in the TestStand sequence context and how to use expressions in
TestStand.

Chapter 9Types discusses how you create, modify, and use step
types, custom named data types, and standard named data types in
TestStand. This chapter also describes the Type Palette window.

Chapter 10Built-In Step Typeglescribes the predefined step types
that TestStand includes.

Chapter 11Jser Managementlescribes TestStand user
management, the User Manager window, and how you can add users
and manage user privileges.

Chapter 12Module Adaptersdescribes the module adapters that
TestStand includes.

Chapter 13Process Mode|discusses the default process model that
TestStand includes. It also describes the directory structure that
TestStand uses for process model files and the special capabilities that

XXiii TestStand User Manual

About This Manual

the TestStand sequence editor has for editing process model sequence
files.

« Chapter 14Managing Reportsdescribes how you manage and use
test reports in TestStand.

e Chapter 15Run-Time Operator Interfacegives you an overview of
how to create or customize an operator interface application. It also
describes the various operator interface applications that TestStand
includes.

e Chapter 16Distributing TestStanddescribes how to create an
installer for a customized TestStand engine, how to distribute the
TestStand engine with a run-time operator interface, and how to
distribute each type of code module that TestStand supports. This
chapter also describes how to customize and distribute a LabVIEW
run-time server.

* Appendix A,Customer Communicatipnontains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

e TheGlossarycontains an alphabetical list and description of terms
used in this manual, including abbreviations, acronyms, metric
prefixes, mnemonics, and symbols.

¢ Thelndexcontains an alphabetical list of key terms and topics in this
manual, including the page where you can find each one.

Conventions Used in This Manual

The following conventions are used in this manual:

<> Angle brackets enclose the name of a key on the keyboard—for example,
<Enter>.
[l Square brackets enclose optional items—for exampspdnse].

- A hyphen between two or more key names enclosed in angle brackets
denotes that you should simultaneously press the named keys—for
example, <Ctrl-Alt-Delete>.

» The» symbol leads you through nested menu items and dialog box options
to a final action. The sequenE#ge»Page Setup»Options»Substitute
Fonts directs you to pull down thigile menu, select theage Setuptem,
selectOptions, and finally select th8ubstitute Fontsoptions from the
last dialog box.

TestStand User Manual XXiv © National Instruments Corporation

bold

bold italic

italic

monospace

monospace italic

paths

About This Manual

Bold text denotes the names of menus, menu items, parameters, or dialog
box buttons.

Bold italic text denotes a note.

Italic text denotes variables, emphasis, a cross reference, or an introduction
to a key concept. This font also denotes text from which you supply the
appropriate word or value, as in Windows. 3.

Text in this font denotes text or characters that you should literally enter
from the keyboard, sections of code, programming examples, and syntax
examples. This font is also used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines, device names, functions,
operations, variables, classes, entry points, properties, user profiles, login
names, filenames and extensions, and for statements and comments taken
from programs.

Italic text in this font denotes that you must enter the appropriate words or
values in the place of these items.

Paths in this manual are denoted using backslashes (\) to separate drive
names, directories, folders, and files.

Related Documentation

» Getting Started with TestStand
e TestStand ActiveX API Refereraadine help

* Ivo Salmre, “Building, Versioning, and Maintaining Visual Basic
Components,Microsoft Developer Netwoykicrosoft Corporation,
February 1998.

Customer Communication

National Instruments wants to receive your comments on our products
and manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendi€iéstomer
Communicationat the end of this manual.

© National Instruments Corporation XXV TestStand User Manual

TestStand Architecture
Overview

This chapter describes the TestStand architecture and provides an overview
of important TestStand concepts and components. This chapter introduces
many terms and features that later chapters discuss in more detalil. It is a
good idea to become familiar with the contents of this chapter before
proceeding to other chapters in the manual.

Getting Started with TestStdoontains brief descriptions d&stStand
components and the installation instructionsTestStand. It is a good idea
to readGetting Started with TestStabefore you read this manu&br a
brief description of th@estStand sequence editor amwtyou perform
basic tasks in it, refer to Chap® Sequence Editor Concepts

General Test Executive Concepts

A test executive is a program that allows you to organize and execute
sequences of reusable test modules. The test modules often have a standard
interface. Ideally, you can create the modules in a variety of programming
environments.

This document uses a number of concepts that are applicable to test
executves in general and some that are unique tg#séStandrest
Executve. The folbwing concepts are applicable to testcuives in
general.

e Code module-A program module, such asd¥indows dynamic link
library (dll) or LabVIEW VI (vi), containing one or more
functions that perform a spéicitest or other action.

» Test module-A code module that performs a test.

» Step—Any action that you can include within a sequence of other
actions, such calling a test module to perform a fipaesst.

e Step module-The code module that a step calls.

© MNational Instruments Corporation 1-1 TestStand User Manual

Chapter 1 TestStand Architecture Overview

Sequence-A series of steps you specify fetecution in a particular
orda. Whether and when a stepeiecuted can depend on the results
of previous steps.

SubsequeneeA sequence that another sequence cédis. specify a
subsequence call as a step in the calling sequence.

Sequence file-A file that contains the fiaition of one or more
sequences.

Sequence editerA program that mvides a graphical user interface
for creating, editing, and Begging sequences.

Run-time operator interfaeeA program that pvides a graphical
user interface foexecuting sequences on a production station. A
sequence editor and run-time operator interface can be separate
application programs or fliérent aspects of the same program.

Test executive engireA module or set of modules thatogide an
application programming intixce (API) for creating, editing,
executing, and daugging sequences. A sequence editor or run-time
operator interface uses the services of agestutve engine.

Application Development Environment (APEA programming
environment such as LabVI&, LabwWindows/CVI, or Microsoft

Visual C, in which you can create test modules and run-time operator
interfaces.

Unit Under Test (UUB-The dvice or component that you are
testing.

TestStand Capabilities and Concepts

TestStand User Manual

TestStand is a flexible, powerful test executive framework that has the
following major features:

Out-of-the-box cofiguration and components thavg you a
ready-to-run, full-featured teskecuive.

Numerous ways for you to modify the out-of-the-boxfaguration
and components or to adedwmcomponents. Thestensibility
mechanisms enable you to create theeestutive that meets your
particular requirements without modifying thestStand test
execution engineYou can upgrade toewer versions ofTestStand
without losing your customizations.

1-2 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

* Sophisticated sequencirexecution, and daugging capabilities and a
powerful sequence editor that is separate from the run-time operator
interfaces.

» Three separate run-time operator interfaces with source code for
LabVIEW, LabwWindows/CVI, andVisual Basic.

* Independence from particular ADB%u can create test modules in a
widevariety of ADEs and call pegisting modules oexecutablesYou
can create youswn run-time operator interface imaprogramming
language that can control Ag¢X automation seers.

» Conversion of sequenddes from the LabVIEWTest Executve
Toolkit Version 2.0 or the Lalindows/CVI Test Executve Toolkit
Version 2.0 tdrestStand.

» Comprehenise AciveX API for building multithreaded test
executves and other sequencing applications.

To provide these feature3estStandxpands on the traditional test
executve concepts and introduces mganew ones. The ew concepts
includestep typesstep propertig, sequence variablesequence
parametersmodule adaptersandprocess model

The remainder of this chapter consistsmad tnajor sections that introduce

the rew concepts as well as the enhancements to the traditional concepts.
Thefirst section discusses the major s@fte components dfestStand.

The second section discusses the featurebudlting blocks inTestStand

that you use to create test sequences and entire test systems.

© National Instruments Corporation 1-3 TestStand User Manual

Chapter 1 TestStand Architecture Overview

Major Software Components of TestStand

This section provides an overview of the major software components of
TestStand.

Figure 1-1 shows the high-level relationships between elements of the
TestStand system architecture.

Operator Interface Programs with Full Source Code Sequence Editor
LabVIEW | CvI | Visual Basic A
A A A
\4

TestStand ActiveX API <€¢—»| Process Model

TestStand Engine

\ 4

Adapter Interface
Load, Unload, Execute, Step Into,
Create Code, Edit Code, ...

v

¢ A4 ¢ ¢

LabVIEW cicvi DLL ActiveX
Standard Standard Flexible A . Sequence
utomation
Prototype Prototype Prototype Adapter Adapter
Adapter Adapter Adapter P
\ 4 \ 4 \ 4 \ 4 \ 4
.DLL, .0BJ,
i LB .C DLL DLL, EXE Se,:c?lléince
\/_] J_- J_
Figure 1-1. TestStand System Architecture
As shown in Figure 1-1, the TestStand engine plays a pivotal role in the
TestStand architecture. The TestStand engine can run sequences.
Sequences contain steps that can call external code modules. By using
module adapters that have a standard adapter interface, the TestStand
engine can load and execute different types of code modules. TestStand
sequences can call subsequences through the same adapter interface.
TestStand uses a special type of sequence called a process model to direct
the high-level sequence flow. The TestStand engine exports an ActiveX
TestStand User Manual 1-4 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Automation API that the TestStand sequence editor and run-time operator
interfaces use.

TestStand Sequence Editor

The TestStand sequence editor is an application program in which you
create, modify, and debug sequences. The sequence editor gives you easy
access to all the powerful TestStand features, such as step types and process
models. The sequence editor has the debugging tools you are familiar with

in ADEs such as LabVIEW, LabWindows/CVI, and

Microsoft Visual C/C++. These debugging tools include breakpoints,
single-stepping, stepping into or over function calls, tracing, a variable
display, and a watch window.

In the TestStand sequence editor, you can start multiple concurrent
executions. You can execute multiple instances of the same sequence,

and you can execute different sequences at the same time. Each execution
instance has its own Execution window. In trace mode, the Execution
window displays the steps in the currently executing sequence. When
execution is suspended, the Execution window displays the next step to
execute and provides single-stepping options.

TestStand Run-Time Operator Interfaces

Your TestStand software includes three run-time operator interfaces in
source and executable form. Each run-time operator interface is a separate
application program. The operator interfaces differ primarily based on the
programming language and ADE in which each is developed. TestStand
ships with run-time operator interfaces developed in LabVIEW,
LabWindows/CVI, and Visual Basic.

Although you can use the TestStand sequence editor at a production station,
the TestStand run-time operator interfaces are simpler and fully
customizable. Like the sequence editor, the run-time operator interfaces
allow you to start multiple concurrent executions, set breakpoints, and
single- step. Unlike the sequence editor, however, the run-time operator
interfaces do not allow you to modify sequences, and they do not display
sequence variables, sequence parameters, step properties, and so on.

If you want to customize one of the run-time operator interfaces, modify the
source code for the program. If you want to write your own run-time
operator interface, use the source code of one of the run-time operator
interfaces as a starting point. Refer to ChapteRLE-Time Operator
Interfaces for more information on the run-time operator interfaces that
ship with TestStand.

© National Instruments Corporation 1-5 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand Test Executive Engine

Module Adapters

TestStand User Manual

The TestStand test executive engine is a set of DLLs that export an ActiveX
Automatian Application Programming Interfac@PI) you can use to

create, edit, execute, and debug sequences. The TestStand sequence editor
and run-time operator interfaces use the engine API. You can call the
engine API from any programming environment that supports access to
ActiveX Automation Servers. Thus, you can call the engine API from test
modules, including test modules you write in LabVIEW and
LabWindows/CVI.

The documentation for the engine APhkisilable only as online help.
You can access it through thielp menu of the sequence edito

Most steps in a TestStand sequence invoke code in another sequence or in
a code module. When invoking code in a code module, TestStand must
know the type of code module, how to call it, and how to pass parameters
to it. The different types of code modules include LabVIEW Vs, objects in
ActiveX Automation Servers, C functions in DLLs, and C functions in
source, object, or library modules that you create in LabWindows/CVI or
other compilers. Also, TestStand must know the list of parameters the code
module requires.

TestStand usesodule adapterto obtain this kowledge.TestStand
currently povides the folbwing module adapters for the faling
purposes:

e DLL Flexible Prototype Adapter—Calls C functions in a DLL with
avariety of parameter types.

¢ LabVIEW Standard Prototype Adapter—Calls aty LabVIEW VI
that has thdestStand standard G parameter list.

e C/CVI Standard Prototype Adapter—Calls any C function that has
the TestStand standard C parameter list. The function can be in an
objectfile, libraryfile, or DLL. It also can be in a sourfik that is in
the project you are currently using in the Wahdows/CVI ADE.

« ActiveX Automation Adapter—Calls methods and accesses the
properties of an ActeX object.

¢ Sequence Adapter—Calls subsequences with parameters.

The module adapters contain other important information besides the
calling cawention and parameter lists. If the module adapter is fépéwi
an ADE, the adapter ks how to open the ADE, ¢w to create source

1-6 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

code for a aw code module in the ADE, anawu to display the source for
anexisting code module in the ADE. The AgtX Automation Adapter and
the DLL Flexible Prototype Adapter can query the type library foveseor
DLL for the parameter list information and display it to the sequence
develope.

TestStand Building Blocks

This section provides an overview of the TestStand features and building
blocks you use to create test sequences and entire test systems.

Variables and Properties

TestStand gives you various places in which you can store data values.
These places are calledriablesard properties.

Variables are properties you can freely create in certaiexsntou can

have variables that arglobal to a sequencie orlocal to a particular
sequenceYou also canéve station globalariables. Thealues of station
globalvariables are persistent acrosatentexecutions an@ven across
different nvocations of the sequence editor or run-time operator interfaces.
TheTestStand engine maintains tredue of station globalariables in a

file on the run-time compute

Each step in a sequence camehproperties-or example, a step mighthe

an ineger error code propsttThe type of a step determines the set of
properties it has. Refer to ttep Typesection later in this chapter for

more information on types of steps.

You can us&estStandrariables to share data among tests that you write in
different programming languagegen if they do not lave compatible data
representations’ou can pasgalues you store iwariables and properties

to code modulesrou also can use thiestStand Ad¢veX API to access
variable and propertyalues directly from code modules.

Whenexecuting sequences$estStand maintairssequence contethat
contains references to all globhariables and all localariables and step
properties in ad¥e sequences. The contents of the sequencextont
changes depending on the curreitgcuting sequence and step. If you
pass a sequence cexttobject reference to the code module, you can use
the TestStand AdéveX API to access theriables and properties in the
sequence coett.

© MNational Instruments Corporation 1-7 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand User Manual

Expressions

In TestStand, you can use the values of variables and properties in
numerous ways, such as passing a variable to a code module or using a
property value to determine whether to execute a step. Sometimes you want
to use an expression, which is a formula that calculates a new value from
the values of multiple variable or properties. You can use an expression
anywhere you can use a simple variable or property value. In expressions,
you can access all variables and properties in the sequence context that is
active when TestStand evaluates the expression. The following is an
example of an expression:

Locals.MidBandFrequency = (Step.HighFrequency +
Step.LowFrequency) / 2

TestStand supports all applicable expression operators and syntax that you
use in C, C++, Java, and Visual Basic. If you are not familiar with
expressions in these standard languages, TestStand also provides an
expression browser dialog box you can access by clicking drtvese

button that appears next to controls that accept expressions. The expression
browser allows you to interactively build an expression by selecting from
lists of available variables, properties, and expression operators. The
expression browser also lists a number of functions you can use in
expressions. The expression browser has help text for each expression
operator and function.

1-8 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Figure 1-2 shows the Expression Browser dialog box.

Expression Browser E

‘ariables/Properties Operators/Functions |

(peratars Simbol | DEeration |
.-’-‘-.:ssignment N Mifius
E:;br:lszlison = Multiplication
s / Division
Logical MOD M odulus [B azic)
Other % Modulus (C/C++)
Functions ++ Increment
Aaray - Decrement
Mumeric
Property =]
Description:
Binary addition and unary plus. |f one operand iz a stiing and the other iz a ;I
numenic value, the operatar first corverts the string to a numenic value, 1f bath
argurments are strings, the operatar creates a new stiing that concatenates the
contents of the bwo strings. ;I

Replace |

E xpressian:

ILDcaIs.MidBandFrequency = [Step. HighFrequency B Step. LowFrequency) / 2

Check Syntax | 0K Cancel

Figure 1-2. The Expression Browser Dialog Box

Categories of Properties

A property is a container of information. A property can contain a single
value, an array of values for the same type, or no value at all. A property
also can contain any number of subproperties. Each property has a name.

Avalue is a number, a string, a Boolean, or an ActiveX reference. TestStand
stores numbers as 64-bit, floating-point values in the IEEE 754 format.
TestStand stores an ActiveX reference aa@patch pointer or an
IUnknown pointer. Values are not containers and thus cannot contain
subproperties. Arrays of values can have multiple dimensions.

© National Instruments Corporation 1-9 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand User Manual

The following are the major cegories of properties according the kinds of
values tley contain.

* A single-valued propeytcontains a singlealue. BecauséestStand
has four types ofalues,TestStand has four types of singlued
properties: number properties, string properties, Boolean properties,
and ActveX reference properties.

« Anarray propertycontains an array efalues.TestStand has number
array properties, string array properties, Boolean array properties, and
ActiveX reference array properties.

« A property-array propertycontains avalue that is an array of
subproperties of a single type. In addition to the array of subproperties,
property-array properties can contaity aumber of subproperties of
other types.

« A container propertyontains nwvalues. Usuayl, container properties
contain multiple subproperties. Container properties are analogous to
structures in C/C++ and to clusters in LabWE

Standard and Custom Named Data Types

When you create a variable or property, you specify its data type. In some
cases, you use a simple data type such as a number or a Boolean. In other
cases, you want to define your own data type in which you add
subproperties to create an arbitrarily complex data structure. You can do so
by creating mamed data typ&Vhen you create a named data type, you can
reuse it for multiple variables or properties. Although each variable or
property you create with a named data type has the same data structure, the
values they contain can differ.

TestStand dines certairstandard named data typérou can add
subproperties to the standard data typesyou cannot deleteng of their
built-in subproperties. The standard named data typegagiie Erro r,
andCommonResults .

You can déne yourown custom named data typé&%u must choose a
unique name for each of your custom data tyjes.can add or delete
subproperties in each custom data type without restridtmrexample,
you might create Transmitter ~ data type that contains subproperties
such asNumChannels andPowerLevel

When you create aariable or propeyt you can select from among the
simple property types and the named data types.

1-10 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Built-In and Custom Properties

TestStand defines a number of properties that are always present for objects
such as steps and sequences. An example is the step run mode property.
TestStand normally hides these properties in the sequence editor, although
it lets you modify some of them through dialog boxes. Such properties are
calledbuilt-in properties

You can déine rew properties in addition to tHauiilt-in properties.
Examples are high- andw-limit properties in a step or locaariables in
a sequence. Such properties are dallestom properties

Steps

A sequence consists of a series of steps. In TestStand, a step can do many
things, such as initializing an instrument, performing a complex test, or
making a decision that affects the flow of execution in a sequence. Steps
can perform these actions through several types of mechanisms. A step can
jump to another step, execute an expression, call a subsequence, or call an
external code module. This document refers to the code module that a step
calls as thestep module

In TestStand, steps caave custom propertiegor steps that call code
modules, custom step properties are useful for storing parameters to pass to
the code module for the step.gjtalso seve as a place for the code module

to store its resultstou can use th&estStand AdveX API to access the

values of custom step properties from code modules.

Not all steps call code modules. Some steps perform standard actions you
corfigure using a dialog box. In this case, custom step properties are useful
for storing the cofiguration settings you spegif

Built-In Step Properties

TestStand steps have a number of built-in properties you can specify using
the various tabs on the Step Properties dialog box. These built-in step
properties include the following:

» Preconditionsallow you to specify the conditions that must be true for
TestStand texecute the step during the normalflof execution in a
sequence.

* Load/UnloadOptionsallow you to control wheffestStand loads and
unloads the code modules or subsequences eacmsikps.

* Run Modeallows you to skip a step or force it to passawithout
executing the step module.

© MNational Instruments Corporation 1-11 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand User Manual

* Record Resultallow you to specify whethéFestStand stores the
results of the step in a list. Refer to thetomatic Result Collection
section later in this chapter for more information.

» Step Failure Causes Sequence Failallews you to specify whether
TestStand sets the status of the sequerfesleal when the status of
the step igailed

¢ Ignore Run-Time Errorallows you to specify whethéllest Stand
continuesexecution normally after the stegen though a run-time
error occurs in the step.

< Post Actionsallows you toexecute callbacks or jump to other steps
afterexecuting the step, depending on the fagstatus of the step or
any custom condition.

* Loopoptions albw you to cause a single stepei@cute multiple times
beforeexecuting the axt step.You can specify the conditions under
which to terminate the loofYou also can specify whether to collect
results for each loop iteration, for the loop as a whole, or for both.

« Pre Expressionallow you to specify amexpression t@valuate before
executing the step module.

« Post Expressianallow you to specify aexpression t@valuate after
executing the step module.

e Status Expressivallows you to specify aaxpression to use to set the
value of thestatus property of the step automaticall

Step Types

Just as each variable or property has a data type, each stegtdrasype

A step type can contaimanumber of custom properties. Each step of that
type has the custom step properties in addition tbuhein step

properties. All steps of the same tymwdthe same propertidajt the
values of the properties carffer.

The step type spdas the initiabalues of all the step properties. When you
create the step in the sequence edhiestStand sets the initizlues of the
step properties from thelues that the step type sfes.

You can modify thealues of theuilt-in step propertieby using the Step
Properties dialog box. Usugllyou can modify thealues of custom step
properties using a dialog box sfexto the step type. If the step type does
not have a dialog box for the custom properties, you caw tine custom
propertiedy selectingview Contentsfrom the corgxt menu for the step.
Although step modules usually do not modify ¥iagues of thduilt-in step

1-12 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

properties at run time, & often modify and interrogate thalues of the
custom step properties.

A step type also can fiee standard belior for each step of that type. It

does this using a set sfibstepsSubsteps are actions that FestStand

engine performs for a step besides calling the step module. The substeps of
a step type perform the same actionssf@ry step of that type. The

different types of substeps are asdob:

e Edit substep
* Pre Step substep
» Post Step substep

The sequenceadeloper nvokes the Edit substdgy selecting a menu item
in the context menu for the steplyrclicking on abutton in the Step
Properties dialog box for the step. The step type psthe name of the
menu item and the caption of thietton. The Edit substep displays a dialog
box in which the sequencevéloper edits thealues of custom step
propertiesFor example, an Edit substep might display a dialog box in
which the sequenceseeloper spedies the high andolv limits for a test.
The Edit substep might then store the high aadlimit values as step
properties.

The engine calls the Pre Step substep before calling the step mdémlule.
can specify an adapter and a modulawoke in the Pre Step substéjor
example, a Pre Step substep might call a code module thatestri
measurement ciguration parameters and stores those parameters in step
properties for usby the step module.

The engine calls the Post Step substep after calling the step nitmlule.
can specify an adapter and a modulentoke in the Post Step substep. A
Post Step substep might call a code module that comparealties the
step module stored in step properties against liatites the Edit substep
stored in other step properties.

© MNational Instruments Corporation 1-13 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand contains a set of priéded step types, as folls:
e Action

e Numeric LimitTest
e StringValueTest

¢ PassFail Test

e Label

« Goto

e Statement

e Limit Loader

e Message Popup

e Call Executable

e Sequence Call

For a description of each of these step types, refer to GrEptBuilt-In

Step TypesAlthough you can create a test application using only the
preddined step types, you also can create ywunr step types. By creating
yourown step types, you canfilee standard, reusable classes of steps that
apply spedically to yourown applicationFor example, you might dne

a Switch Matrix Cofiguration step or aransmitter Adjacent Channel
Power Test step.

The sequencesadeloper creates aew stepby selecting tk Insert Step

item in the corext menu that appears when you right-click on a sequence
window. Thelnsert Stepitem opens a hierarchical submenu that contains
the step typeavailable on the computé/Nhen you create a&w step type,

you specify its name and position within the submenu.

Source Code Templates

When you create a step type, you also can dsfinrce code templatésr

that step type. When the sequence developer creates a new step of that type,
the developer can use a source code template to generate source code for
the step module. For a particular step type, you can specify different source
code templates for the different module adapters.

TestStand User Manual 1-14 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Sequences
In TestStand, a sequence consists of the following:
e Any number of local variables
e Any number of parameters
A main group of steps
» A group of setup steps
e A group of cleanup steps
e Built-in sequence properties

Sequence Parameters

Each sequence has its own list of parameters. You can specify the number
of parameters and the data type of each parameter. You also can specify a
default value for each parameter. When the sequence developer creates a
step that calls one sequence from another, the developer can specify the
values to pass for the parameters of the subsequence. If the developer does
not specify the value of a parameter, TestStand passes the default value.
You can use the TestStand ActiveX API to access sequence parameter
values from code modules that the steps in the sequence call.

You can pass local variables by value or by reference to any step in the
sequence that calls a subsequence, a DLL using the DLL Flexible Prototype
Adapter, or a method or property on an object using the ActiveX
Automation Adapter.

Sequence Local Variables

You can create an unlimited number of local variables in a sequence.

You can use local variables to store data relevant to the execution of the
sequence. You can use the TestStand ActiveX API to access local variables
from code modules that steps in the sequence call. You also can pass local
variables by value or by reference to any step in the sequence that calls a
subsequence, a DLL using the DLL Flexible Prototype Adapter, or a
method or property on an object using the ActiveX Automation Adapter.

Lifetime of Locals Variables, Parameters, and
Custom Step Properties

Multiple instances of a sequence can run at the same time. This can occur
when you call a sequence recursively or when a sequence runs in multiple
concurrent executions. Each instance of the sequence has its own copy of
the sequence parameters, local variables, and custom properties of each

© MNational Instruments Corporation 1-15 TestStand User Manual

Chapter 1 TestStand Architecture Overview

Sequence Files

TestStand User Manual

step. When a sequence completes, TestStand discards the values of the
parameters, local variables, and custom properties.

Step Groups

A sequence can contain the following groups of steps: Setup, Main, and
Cleanup. When TestStand executes a sequence, the steps in the Setup group
execute first. The steps in the Main group execute next. The steps in the
Cleanup group execute last. Usually, the Setup group contains steps that
initialize instruments, fixtures, or a UUT. The Main group usually contains

the bulk of the steps in a sequence, including the steps that test the UUT.
The Cleanup group contains steps that power down or de-initialize the
instruments, fixtures, and UUT.

One of the reasons for having separate step groups is to ensure that the steps
in the Cleanup group execute regardless of whether the sequence completes
successfully or a run-time error occurs in the sequence. If a Setup or Main
step causes a run-time error to occur, the flow of execution jumps to the
Cleanup step group. The Cleanup steps always run even if some of the
Setup steps do not run. If a Cleanup step causes a run-time error, execution
continues at the next Cleanup step.

If a run-time error occurs in a sequence, TestStand reports the run-time
error to the calling sequence. Execution in the calling sequence jumps to the
Cleanup group in the calling sequence. This process continues up through
the top-level sequence. Thus, when a run-time error occurs, TestStand
terminates execution after running all the Cleanup steps of the sequences
that are active when the run-time error occurs.

Built-in Sequence Properties

Sequences have a few built-in properties that you can specify using the
Sequence Properties dialog box. For example, you can specify that the flow
of execution jumps to the Cleanup step group whenever a step sets the
status property of the sequencé-ailed

Sequence files can contain one or more sequences. Sequence files also can
contain global variables that all sequences in the sequence file can access.

Sequences files have a few built-in properties you can specify using the
Sequence File Properties dialog box. For example, you can specify Load
and Unload Options that override the Load and Unload Options of all the
steps in all the sequences in the file.

1-16 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Storage of Types in Files

Each sequence file contains the definitions of all property and step types
that the variables, parameters, and steps in the sequence file use. This is true
for all TestStand files that use types.

In memoy, TestStand adiws only one dinition for each type. If you load
afile that contains a type firition and a type daition of the same name
alreadyexists in memoy, TestStandrerifies that the two type fiaitions
are identical. If thy are not identicallestStand informs you of the conflict.
You can select one of thefifétions to replace the otheor you can rename
one of them so that &y can cexist.

Process Models

Testing a Unit Under Test (UUT) requires more than just executing a set of
tests. Usually, the test executive must perform a series of operations before
and after it executes the sequence that performs the tests. Common
operations include identifying the UUT, notifying the operator of pass/fail
status, generating a test report, and logging results. These operations define
the testingorocess The set of such operations and their flow of execution

is called gprocess modeSome traditional test executives implement their
process models internally and do not allow you to modify them. Other test
executives do not define a process model at all. TestStand comes with a
default process model that you can modify or replace.

Having a process model is essential so that you can wffegaft test
sequences without repeating standard testing operations in each sequence.
Ability to modify the process model is essential because the testing process
canvary based on your production line, your production site, or the systems
and practices of your compa

TestStand mvides a mechanism for fieing a process model. A process
model is in the form of a sequerfdle. You can edit a process model just
as you edit your other sequencésstStand ships with a fully functional
default process modefou can write youown process model, or you can
copy the default process model and then modify it.

Station Model

You can select a process model file to use for all sequence files. This
process model file is calleddistation modefile. The TestStand

installation program establish&sstStandModel.seq as the station

model file. You can use the Station Options dialog box to select a different
station model. You also can use the Station Options dialog box to allow

© MNational Instruments Corporation 1-17 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand User Manual

individual sequence files to specify their own process model file, but
usually this is not necessary.

Main Sequence and Client Sequence File

In TestStand, the sequence that initiates the tests on a UUT is called the
main sequence’ou must name each main sequeMeiSequence .

When you create a new sequence file, TestStand automatically inserts a
MainSequence sequence in the file. The process model invokes the main
sequence as part of the overall testing process. The process model defines
what is constant about your testing process, whereas main sequences define
the steps that are unique to the different types of tests you run.

When you legin anexecution, you usually do so from a main sequence in
one of your sequendies. TestStand determines which process mébel

to use with the main sequengdestStand uses the station mdielunless
the sequenchle specfies a diferent process modéle and you set the
Station Options to ailv sequencéiles tooverride your station model
setting.

After TestStand iderfiies the process model to use with a main sequence,
thefile that contains the main sequence becondigmat sequence filef
the process model.

Model Callbacks

By default, each main sequence you execute uses the process model that
you select for the entire test station. TestStand has a mechanism called a
model callbackhat allows the sequence developer to customize the
behavior of a process model for each main sequence that uses it. By
defining one or more model callbacks in a process model, you specify the
set of process model operations that the sequence developer can customize.

You ddine a model callbaddy adding a sequence to the process niidel
marking it as a callback, and calling it from the process model. The
sequenceealeloper caroverride the callback in the model sequefileghy

using the Sequence File Callbacks dialog box to create a sequence of the
same name in the client sequefite

For example, the defaullestStand process modefides aTestReport
callback that generates the test report for each. Wdrmally, the
TestReport callback in the dault process modéile is suficient
because it handles matypes of test results. The sequeneestbper can,
however, override the defaultestReport callbackby ddfining a dfferent
TestReport callback in a particular client sequeriie.

1-18 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Process models use callbacksrke the main sequence in the client
sequencéle. Each client sequenéiée must déine a sequendasy the name
of MainSequence . The process model containgainSequence callback
that is merely a placeholdd heMainSequence in the client sequendie
overrides theMainSequence placeholder in the modéile.

To alter the bedvior of the process model for all sequences, you can
modify the process model or replace it engiréb reddine the set of
customizable operations, you caifide rew callbacks in, or deletxisting
callbacks from, the process modié.

Entry Points

A process model defines a séentry points Each entry point is a
sequence in the process model file. You mark a sequence in the model file
as an entry point in the Sequence Properties dialog box.

By defining multiple entry points in a process model, yoteghe test
station operator ffierent ways torivoke a main sequendeor example, the
defaultTestStand process modebpides two entry point§est UUTsand
Single Pass. TheTest UUTsentry point initiates a loop that repeatedly
identifies and tests UUTSs. Elsingle Pass entry point tests a single UUT
without identifying it. Such entry points are callexecution entry points
Execution entry points appear in thgecutemenu of the sequence editor
or operator interface when the i@etwindow contains a hon-model
sequencéile that hasaMainSequence callback.

Figure 1-3 contains a éiwchart of the major operations ofthest UUTs
entry point sequence in the default process model. Notice that the sequence
implements may of its operations as callbacks. The box on the lefivsh

© MNational Instruments Corporation 1-19 TestStand User Manual

Chapter 1 TestStand Architecture Overview

the flow of control. The box on the right shows the action that each callback
in the default model performs if you do not override it.

Call PreUUTLoop I No Action (Place Holder)

No Action (Place Holder)

Call ConfigureReportOptions

Call PreUUT I Display UUT Serial Number Dialog
Yes ‘
I Run the Main Sequence

¢

Call MainSequence from the Selected File

Display Pass/Fail/Error/Terminated

Call PostuuT
Banners

Generate Report

Call TestReport from Main Sequence Results

Call LogToDatabase No Action (Place Holder)

Call PostUUTLoop No Action (Place Holder)

Figure 1-3. Flowchart of TestUUTs Sequence in the Default Process Model

Like any other sequence, the sequence for a process model entry point can
contain calls to DLLs, calls to subsequences, Goto steps, and so on.

TestStand User Manual 1-20 © MNational Instruments Corporation

Chapter 1 TestStand Architecture Overview

Figure 1-4 shows the entire set of steps fods UUTsentry point in the
default process model.

& TestStandModel seq

I [=] 3

Main | Setup I Cleanup | Parameters I Lacals | e I@ Test UUTs j
| Step | Description | E xecution Flow | Comment |
2 Check Far Froper Use Error Fre, Post In case someone accidently tries to execute ..
%ﬁ Clear Report Action, SetReportRunSiate Execution, ™; Clear the report in case we are restarting a p...
PrellUTLoop Callback Call PreUUT Loop [Current Filex)
Get Report Options Call Get Repart Options [<Cument Filex) Reads report options, and calls the Reportd...
Get Database Options Call Get D atabase Options [<Current File>) Pre
% Include Limits in Results Action, AddEstraResult(FunState Execution, "S... Pre Configures the execution to include limits in t...
q{p Include Comparizon Type in Results Action, AddE straResul(FunState Execution, "5... Pre Configures the execution to include limit com...
& Mewt UUT
Increment UUT Index Locals UUT.UUTLooplndes++ Increment the UUJT index. The first UUT ind...
PrellUT Callback Call PrelUT [<Current Filex>) Dizplay the UUT dialog box.
G0 Goto End of UUT Loop If Mo More UUTs - Gota 'End of UUT Loop' Pre, Post
cé;p Determine Feport File Path Action, DetermineR eportFilePathMame(ThisCon... Pre Detemmines the repart file path using the Fep...
Cﬁg Put 'Test In Progress' In Repart Action, SetRepart{RunState Execution, ResSt... Put the "'Test in Progress' sting into the rep...
Clear Results List SethumE lements(Locals ResultList, 0) Dizcard results from previous laop
Clear Report Local Variable Locals. Repart = ™" Dizcard the report from the previous loop.
Get Start Time Locals.StartTime = Time({), Locals StatDate = D...
tainSequence Callback Call MainSequence [<Current Filex] Call MainSequence in the client sequence file.
PaostUUT Callback Call PastUUT [<Current Filex]
Cm Clear Report Action, SetReport(RunState. Execution, "™; Remove the "Testing in progress"” message.
TestReport Callback Call TestRepart [<Current File»] Pre Generates the test report string for the curre...
Cﬁm SetRepart Action, SetRepart{RunState Execution, Locals.... Attaches the report sting for the current UL
%Wnte UUT Report Action, WriteReport[RunState Report, Localz.R... Pre Wwiites or appends the report string for the cu...
Log To Database Callback Call Log To D atabase [Database.zeq) Fre
2 Handle Termination Testing Terminated for Current UUT Fre, Post If you terminate execution in the MainSeque. .
GO Goto Mext UUT Gata 'Next UUT' Past
1% End of UUIT Loop
PaostUUTLoop Callback Call PastUUTLaop [<Current File>]
ClazeDBHandles Call Cloze DB Handles [Database.zeq) Fre
q{p Read Entire Report Action, ReadReportRunState Report, Localz R... Pre Read entire report file 2o that the uzer can s..

Figure 1-4. Test UUTs Entry Point Sequence in the Default TestStand Process Model

You can execute a sequence without a process model by selectitgnthe
Sequence Namiem in theExecutemenu, wher&equence Names the
name of the sequence you are currently viewing. This option is useful for
debugging. It executes the sequence directly, skipping the process model
operations such as UUT identification and test report generation. You can
execute any sequence this way, not just main sequences.

A process model can define other types of entry points, such as
configuration entry pointsAn example is th€onfig Report Options

entry point, which appears Beport Options in theConfigure menu of

the sequence editor or run-time operator interface. Refer to Chapter 13,
Process Mode|dor more information on process model entry points.

© MNational Instruments Corporation 1-21 TestStand User Manual

Chapter 1 TestStand Architecture Overview

Figure 1-5 shows a list of all the sequences in the default TestStand process
model. The first three sequences are entry points. The last sequence is a
utility subsequence that the execution entry points call. The other
sequences are callbacks that you can override in a client sequence file.

Wiew: I All Sequences j
Seguence | Comment |

Test UUTs If you inzert a new step in thig zequence, dizable the Record Results option for the ..

Single Pass If pou inzert a new step in this sequence, disable the Fecord Results option for the .

Canfigure Report Options Appears as Repart Optionz in the Configure menu.
M ainS equence Owerride thiz in the client file with a requence that performs tests on the JUJT.
PrelUT Dizplaps a dialog box in which the operator enters the UUT senal number, Overide ...
PostUUT Digplays a pass, fail, eror, or terminated banner. Overide this in client file to chang...
FrelUTLoop Test UUTs calls this before looping on UUTs. |z empty in model file. Overide this i...
PostIUTLoop Test UUTs calls thiz after looping on UUTs. 1z empty in model file. Override this in
Report0ptions GetReportOptions calls thiz after reading the report aptions from disk Overide it ta
TestReport Generates the contents of the test repart for one UUT. Owernide in client filz to cha...
M odifyReportHeader TestReport calls thig. Ovemride it to modify the header that TestReport generates,
M odifyRepartE ritry TestReport calls this for each result inresult list. Override it to modify the repoart sec.
t odifyFepartFooter TestReport calls this. Owveride it to modify the footer text that TestReport generates.
LogT oD atabase Execution entry paints call this after writing a test report to dizk. Ovemide to log res...
Get Report Options Reads test station report options from disk and call: ReportOptions callback.

Figure 1-5. List of All Sequences in TestStand Process Model

Automatic Result Collection

TestStand can automatically collect the results of each step. You can enable
or disable result collection for a step, a sequence, or for the entire test
station.

Each sequence has a local array that stores the results of each step. The
contents in the results for each step can vary depending on the step type.
When TestStand stores the results for a step into the array, it adds
information such as the name of the step and its position in the sequence.
For a step that calls a sequence, TestStand also adds the result array from
the subsequence.

Refer to theResult Collectiorsection in Chapter &gequence Executipn
for more information on how TestStand collects results.

TestStand User Manual 1-22 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

Callback Sequences

Callbacks are sequences that TestStand calls under specific circumstances.
You can create new callback sequences or replace existing callbacks to
customize the operation of the test station. You use the Sequence File
Callbacks dialog box to add a callback sequence to a sequence file.

TestStand dines three cagories of callbacks. The @gpries are based on
the entity thatrivokes the callback and the location in which yofirgethe
callback.Table 1-1 stows the diferent types of callbacks.

Table 1-1. Callback Types

Callback Type

Where You Ddine the Callback Who Calls the Callback

Model Callbacks Process modéile or client Sequences in the process model
sequencdile file
Engine Callbacks StationCallbacks.seq , Engine

the process modéie, or
a regular sequenchle

Front-End Callbacks

FrontEndCallbacks.seq Operator interface program

The Process Modelsection earlier in this chapter discusses model
callbacks in detail.

Engine Callbacks

The TestStand engine defines a set of callbacks it invokes at specific points
during execution. These callbacks are cafledine callbacksTestStand
defines the name of each engine callback.

Engine callbacks arevaay for you to cofigure TestStand to call certain
sequences before and after ékecution of indvidual steps, before and
after interadive executions, after loading a sequeffibe, and before
unloading a sequendie. Because th&estStand engine controls the
execution of steps and the loading and unloading of seqddese
TestStand dénes the set of engine callbacks and their names.

© MNational Instruments Corporation 1-23 TestStand User Manual

Chapter 1 TestStand Architecture Overview

The engine callbacks are in three general groups, basedfda thevhich
the callback sequence appediau can déne engine callbacks in sequence
files, in process modéles, and in tk StationCallbacks.seq file.

Note TestStand installs an emp8tationCallbacks.seq file in the
TestStand\Components\NI\Callbacks\Station directory. You can add
your own station engine callbeks in the StationCallbacks.seq file in the
TestStand\Components\User\Callbacks\Station directory.

Front-End Callbacks

Front-end callbacksre sequences in tReontEndCallbacks.seq file

that operator interface programs call. Front-end callbacks allow multiple
operator interfaces to share the same implementation for a specific
operation. The version ¢fontEndCallback.seq that TestStand

installs contains one front-end callback sequeboginLogout . The
sequence editor and all operator interfaces that come with TestStand call
LoginLogout

When you implement operations as front-end callbacks, you write them as
sequences. Thus you can modify a front-end callback without modifying
the source code for the operator interfaceshurilding theexecutables for
them.For example, to changedw thevarious operator intéaces perform

the login procedure, you onlhave to modify the.oginLogout sequence

in FrontEndCallbacks.seq

You can createaw front-end callbackby adding sequences to
FrontEndCallbacks.seq file. You can thennivoke this sequence from
each of the operator interface programs you ¥ise.invoke the sequence
using functions in th&estStand AdéveX API. You cannot edit the source
for theTestStand sequence editbhus, you cannot make the sequence
editor call rew front-end callbacks that you create.

Note TestStand installs predefined front-end calltdes in the
FrontEndCallbacks.seq file in the TestStand\Components\NI\
Callbacks\FrontEnd directory. You can add youwown front-end callbaks or
override a predefined callbek in the FrontEndCallbacks.seq file in the
TestStand\Components\User\Callbacks\FrontEnd directoly.

Sequence Executions

TestStand User Manual

When you run a sequence, TestStand creategecution objectThe

execution object contains all the information that TestStand needs to run
your sequence and the subsequences it calls. While an execution is active,
you can start another execution by running the same sequence again or by

1-24 © National Instruments Corporation

Chapter 1 TestStand Architecture Overview

running a different one. TestStand does not limit the number of executions
you can run concurrently. Each execution runs in a different thread.

Usually, theTestStand sequence editor createsvawindow for each
execution. This windw is called arExecution winde. In the Execution
window, you can v@w steps as 8y execute, thevalues ofvariables and
properties, and the test report. Usyallin-time operator interface
programs alsodve a view or window for eachexecution.

Normal and Interactive Executions

You can start an execution in the sequence editor by selectiRRyithe
Sequence Namitem or one of the process model entry points from the
Executemenu. This is called mormal execution

You can run steps interactive modéy selecting one or more steps in and
choosing thdRun Selected Stepsr Loop Selected Stepgems in the
context menuln interacive mode, only the selected steps in the sequence
execute, egardless of my branching logic that the sequence contains. The
selected steps run in the order in whickythppear in the sequence.

You can run steps in interac mode from two diierent congxts. You run

steps interactely from a Sequence File wiag. When you do so, you

create a ew execution. This is called @ot interactive executioryou can

set station options to control whether the Setup and Cleanup step groups of
the sequence run as part of a root intévaeiecution. Root interaite
executions do notnvoke process models. Thiny,default, root interacte
executions do not generate test reports.

You also can run steps interiaety from anexisting Execution winaw for

a normakxecution that is suspended at a breakp®iod. can run steps only
in the sequence and step group in wigidcution is suspended. When you
do this, the selected steps run within the exinaf the normakxecution.
This is called aested interactive executiolhe steps that you run
interactvely can access thivariablevalues of the normakecution and add
to its results. When the selected steps completexéduaition returns to the
step at which itvas suspended when you caéain Selected Stepsr
Loop Selected Steps

© MNational Instruments Corporation 1-25 TestStand User Manual

Chapter 1 TestStand Architecture Overview

TestStand User Manual

Terminating and Aborting Executions

The menus in the sequence editor and run-time operator interfaces have
commands that allow you to stop execution before the execution has
completed normally. The TestStand engine API has corresponding
methods that allow you to stop execution from a code module. You can stop
one execution or all executions. You can issue the stop request at any time,
but it does not take effect in each execution until the currently executing
code module returns control.

You can stogxecutions in two ways. When yderminatean eecution,

all the Cleanup step groups in the sequences on the call stack run before
execution ends. Also, the process model can continue to run. Depending on
the process model, it might continue testing with e DUT or generate

a test report.

When yai abort anexecution, the Cleanup step grougsrbt run, and

process model cannot continue. In general, it is better to terminate
execution so that the Cleanup step groups can return your system to a
known stateYou abort arexecution when yowant theexecution to stop
completely as soon as possible. Usyaibu abort amxecution only when

you are dbugging and you are sure that is safe to not run the cleanup steps
for a sequence.

1-26 © National Instruments Corporation

Sequence Editor Concepts

This chapter describes the various parts of the main window for the
TestStand sequence editor. It also describes how you perform basic tasks in
the sequence editor.

Sequence Editor Screen

The sequence editor main window contains standard window features
common to Windows applications, such as windows, menus, toolbars,
and a status bar.

© National Instruments Corporation 2-1 TestStand User Manual

Chapter 2 Sequence

Editor Concepts

Figure 2-1 shows an example of the sequence editor main window.

=] Sequence Editor [Pause] - Single Pass - computer.seq [2] [Pause] [_ (O] =]
File Edit “iew Egecute Debug Configure Tools ‘Window Help

D|=|E| 2= =2

ﬁl}l'{_}ll{fill @|*{}| ‘ I@ C/CWI Standard Prototype Adapter j @l‘Esliil ‘

. ‘Uzer Manager

FF User List | e Prufilesl

15 [=] B
Wigw: I Users l

Ei‘i User List
E|'i‘ adrinistrator
i LoginMame

8 computer.seq [Loaded for execution]

Main |Setup | Cleanup | Parameters | Locals |

User | Comment
'i‘ adminiztrator

iew: I@ MainSequence

Ste | Description | Execution Flow | Comment
@ Power On GELE [»= <=). Call PoweOnT est [computer. dl]
Epﬂid Single Pass - computer.zseq [2] [Pause]
@ HTAM pf, Steps | @ Cortext I T I Threads: IMainSequence - M ain [computer. seq) [0x2] j
@\I‘(ff:booard Stey | Deseription | Status | E zecution Flow |
@ FOM Diagn Power On GELE [»= <=], Call PowerOnTest [computer.dil] Paszed
@ Fiéh Diagn CRU Call MainSequence [cpu.zeq) Paszed Fre
. . @ ROM Call ROMT est [computer.dil) Pazzed Fre
@Vldeo Diagr
@ Keyboard D @ Fiéskd Call RakTest [computer.dil] Paszed Fre
Q@Video GELE [»= <=], Call VideaTest [computer.dii] Fre
@ K.eyboard Call KeyboardTest [computer.dil) Fre
@ ROM Diagnostics Call ROMDiagnostics [computer. dil] Fre
@ Fiékd Diagnostics Call R&kDiagnostics [computer.dll] Fre
@Video Diagnostics Call VideoDiagnostics [computer.dil) Fre
@ Keyboard Diagnostics Call KeyboardDiagnostics [computer.dll] Pre
END
Call Stack. ‘watch Expression | Context | Walue
O Single Pass - Main [TestStandod |6 BunState. S equence Main[0]. Result Numeric current execution contest 14
'={> W] MainSequence - Main [computer. s |6 FunState S equence Main[3] Result Status current execution contest "Pazzed"”
4] | 24l | *
@ | | Report Location: none i
Pause |User: administrator |Madel zATsb14Components\H WM odel:\T estStandM odeh T estStandi, 2
Figure 2-1. Example Sequence Editor Screen
Windows
The sequence editor uses child windows to display sequence files,
sequence executions, station globals, data types, step types, users, and user
privileges. This manual refers to these child windows simplyiadows
Views
Each TestStand window can contain different views to display various
elements of sequence files, sequence executions, types, or globals. For
example, a sequence file contains multiple sequences. The pull-down ring
in the upper right corner of the Sequence File window selects the current
view for the Sequence File window. The Sequence File window views
TestStand User Manual 2-2 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

include a list of all sequences, a list of steps in a particular sequence, a list
of the sequence file global variables, and a list of types that the sequence
file uses.

Tabs

TestStand windows use a series of tabs to display detailed information
unique to the view. For example, when viewing a sequence in a sequence
file, the following tabs are available:

e Main—Displays the steps in the main sequence.
» Setup—Displays steps that execute before the Main step group runs.
* Cleanup—Displays steps that execute after the Main step group runs.

» Parameters—Lists the values that the sequence receives when
another sequence calls it.

* Locals—Displays variables accessible by any of the steps in the
sequence.

Lists and Trees

The sequence editor uses lists and trees to show the relationship and
hierarchical nature of the data that appears in each view. For example, a list
view for the Sequence File window displays all the sequences in a sequence
file. When you select a sequence in that list and press <Ctrl-Enter>, the
view changes to a list of all steps in the selected sequence. You also can
display the steps of a sequence in a tree view where the steps are the nodes
and the step properties are the branches of the tree.

Table 2-1 describes the standard behavior for keyboard and mouse actions
that you perform on objects in list views and tree views.

Table 2-1. Mouse and Keyboard Actions for Navigating List and Tree Views

Mouse Action

Keyboard Action Type of View Behavior

Double-click

Press <Enter> List view Displays the Properties
dialog box for the object

<Ctrl>-Double-click

Press <Ctrl-Enter> | List view Expands the object to
show its contents.

Double-click on a Press <Enter> Tree view Expands the tree view
closed node or <+> node.

Double-click on an Press <Enter> Tree view Collapses the tree view
opened node or <-> node.

© MNational Instruments Corporation 2-3 TestStand User Manual

Chapter 2 Sequence Editor Concepts

Table 2-1. Mouse and Keyboard Actions for Navigating List and Tree Views (Continued)

Mouse Action Keyboard Action Type of View Behavior
Click to select node Use arrows to selec| Tree view Show contents of tree
node node in list view
<Alt>-Double-click Press <Alt-Enter> | List or tree view Displays the Properties

dialog box for the object]

(None)

<Backspace> List or tree view Go up one level in tree
view and show contents
of that level in list view

TestStand User Manual

Each item in a list view can have multiple columns. For example, a step in
a list view has a Step column, a Description column, an Execution Flow
column, and a Comment column. You can expand a column to the width of
its largest entry by double-clicking on the vertical separator at the right
edge of the column heading. This is especially useful when an item has a
long comment.

Context Menus

You can open a context menu in a window by pressing the right mouse
button. The list of menu items in a context menu varies depending on the
view, the mouse position, and whether any items are selected. Most of the
context menu items do not appear in the main window menu bar, so you can
access them only from the context menus. For example, you can insert a
step into a sequence only by using ltigert Step context menu item.

Certain items appear in several different context menus. They act upon the
object on which you right-click to display the context menu. For example,
theProperties item displays the Properties dialog box for the object. The
View Contentsitem displays the contents of the object in the list view.

In the context menu you can display by right-clicking on the list view
background, th&o Up 1 Levelmenu item moves up one level in the tree
view and shows the contents of that level in the list view.

2-4 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Copy, Cut, and Paste

When displaying sequences, steps, types, or globals in a list or tree format,
you can cut, copy, and paste items between different views and windows.

Drag and Drop

When displaying sequences, steps, types, or globals in a list or tree format,
you can drag and drop items between different views and windows.

Menu Bar

The sequence editor uses a common menu bar. Some menu items may be
dim depending on the state of the sequence editor session and which
window is active. Refer to Chapter8equence Editor Menu Bdor

information on the sequence editor main menu bar and menu items.

Toolbars

Toolbars and their icons give you quick access to commonly used menu
items. To find out what a toolbar button does, position the mouse cursor
over the button. A help description appears on the status bar of the main
window.

The sequence editor maintains three toolbars: the Standard, Debug, and
Environment toolbars. To configure which toolbars are visible, select
View»Toolbar or right-click on the toolbar area.

Status Bar

The status bar at the bottom of the sequence editor window displays the
current state of the editor or displays help information. The left portion of
the status bar displays help messages. When you select menu items or
toolbar icons, a short description appears for the selected item. Otherwise,
the status bar displays the current execution state, swcfit asr

running

The center portion of the status bar displays the current user and the process
model for the active sequence window.

The right portion of the status bar displays the state of the keyboard, such
as numeric lock indicator.

© MNational Instruments Corporation 2-5 TestStand User Manual

Chapter 2 Sequence Editor Concepts

Sequence Editor Windows

This section describes all the windows in the sequence editor.

Sequence File Window

In the sequence editor, you use a Sequence File window to view and edit a
sequence file. Figure 2-2 shows an example Sequence File window. You
can use the View ring control at the top right of the Sequence File window
to view an individual sequence, a list of all sequences in the file, the global
variables in the file, or the types you use in the file. In an individual
sequence view, you use the tabs to view the Main, Setup, or Cleanup step
groups, the sequence parameters, or the sequence local variables.

12 Example.zeq Hi=l E3
Main | Setup I Cleatup I P arameters I Locals I Wiew: I Transmitter Tests j
Step I Description I E xecution Flow I Comment I
@ Tranzmitter Power Level Test Call Powerlevel [TransmittersT ests.c) Fre, Loop
@ Tranzmitter Burst Tirming T est Call BurstTirning [Transmittars T ests.c) Pre
@ Transmitter Adjacent Channel Power Test GELE, Call PowerLevel [TranzmitterT ests.c) Force Pass Charnels 11 to 35
EE i { in Control Test Gain. vi
Call SpuriousE missions (Emizsions. dll)

Execution Window

TestStand User Manual

Figure 2-2. Example Sequence File Window

Refer to Chapter S5equence Fileso learn more about editing a sequence
file using the Sequence File window.

The sequence editor displays each execution in a separate window, called
the Execution window. The Execution window is divided into several
areas. The top half of the window contains tabs that display the Steps View,
the Context View, and the Report View. The bottom half of the window is
divided into the Call Stack View and the Watch Expression View. A status
bar appears at the bottom edge of the window.

2-6 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Figure 2-3 shows an example sequence editor Execution window.

Single Pass - computer.seq [2] [Pause] M=l &

Threads: IMainSequence - Main [cpu.zeq] [0x7]

25 Steps |@ Cnnte:-:tl Heportl

Step | Description | Statuz | Execution Flow
@ Reqister Call RegizterT ezt [computer. dil] Pazzed
@ Instruction Set Call InstiSetT est [computer.dll] Passed
@@ Cache Call CacheT est [computer.dll)
@ FFU Call FPUT est [computer. dil]
EMD
1] |]
Call Stack | ‘wiatch ERpression | Cantest | Walue
[Single Pass - Main [TestStandMode... | |6" BunState PreviousStep Result Status | curent esecution co... "Passed”

O Main5equence - Main [computer. zeq)
'4> (=] MainSequence - Main [cpu.seq)

4] | 2

@ | |Report Locatior: Z:\tsa2\E wampleshDemohCt 2

Figure 2-3. Example Execution Window

Refer to Chapter &equence Executipto learn more about starting and
debugging an execution using the Execution window.

Type Palette Window

You use the Type Palette window to store the data types and step types that
you want to be available to you in the sequence editor at all times. The Type
Palette window contains tabs for step types, custom data types, and
standard data types.

© MNational Instruments Corporation 2-7 TestStand User Manual

Chapter 2

_ Type Palette

£% Step T_l,lpesl & CustomDataTypes F8 Builtin Data Types |

Sequence Editor Concepts

Figure 2-4 shows an example Type Palette window.

[=] B3

=18

| Yalue | Llzage |
Tupe Palette; TestStandModel Seq

Type Palette; Seguence Filel; TestStandkodel....
Type Palette; TestStandModel. Seg

Built-in Data Type | Type

TE Enar Object, Type Definition

Tg Path Path ‘Value, Type Definition
LEQ CommonResults Object, Type Definition

4| J i

Figure 2-4. Example Type Palette Window

Refer to Chapter Fypes to learn more about using data types and step

types.

Station Globals Window

The Station Globals window displays the variables that TestStand

maintains from one TestStand session to the next. Usually, you use station
global variables to maintain statistics or to represent the configuration of

your test station.

Figure 2-5 shows an example Station Globals window.

Wiew: IGIobaIs 'I

=g StationGlobals Field | Type | Walue -
=-EE TS B 1] Shing "Pagved"
: Currerit zer EE[1] Shing "Passed"

Bt] Lastlzertame EE [2] Stiing "Pazzed" [
----- MostRecentUUTStatuses 3 Sting “F siled”
{128 NumFa!IuresToFlay B (4] Sting "Passed"
Dty
[E] String "Pazzed"

Debugkode .

5 Global EET [7] String "Paszed"
8] String "Passed"
] String "Pazsed"

(0] Sting =

4| | 27

TestStand User Manual

Figure 2-5. Example Station Globals Window

2-8

© National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Refer to Chapter Station Global Variablego learn more about using
station globals. Refer to ChapterT,pes to learn more about using data

types.

Users Window

You can use the Users window to view and change the user list, user
privileges, and the profiles for adding new users. Figure 2-6 shows an

example Users window.

“utiUser Manager *

TR User List | g Prnfilesl

[100] %]

Wigw: I Users - I

ER U iser List
adrniniztrabar
Johin Smith
- Debbie Jones
- Jagt] LoginMame
Password
- fe] FulMame

- Privileges

==

- Configure
gy Cormment

Llzer

| Camment

’i‘ adrinistrator
F Jahn Smith
’i‘ Debbie Jores

|

Techrician
Developer

Figure 2-6. Example Users Window

Refer to thdJser Manager Windowection in Chapter 11ser
Managementto learn more about adding users and changing user

privileges.

Basics of Using TestStand

This section describes how you perform some basic tasks in TestStand.

Creating a Sequence
In the sequence editor, you use a Sequence File window to view and edit a

sequence file. You can open an existing sequence file by selecting

File»Open, or you can create a new Sequence File window by selecting
File»New.

© MNational Instruments Corporation

TestStand User Manual

Chapter 2 Sequence Editor Concepts

You can use the View ring control at the top right of the Sequence File
window to view an individual sequence, a list of all sequences in the file,
the global variables in the file, or the types that you use in the file. In an
individual sequence view, you use the tabs to view the Main, Setup, or

Cleanup step groups, the sequence parameters, or the sequence local
variables.

Figure 2-7 shows the Main step group of an example sequence in the
Sequence File window.

12 Example.zeq Hi=l E3
Main I Setup I Cleanup I Parameters I Locals I Wigw: I Transmitter Tests j
Step I Description I E xecution Flow I Comment I
@ Tranzmitter Power Level Test Call Powerlevel [TransmittersT ests.c) Fre, Loop
@ Tranzmitter Burst Timing Test Call BurstTiming [Transmitters T ests.c) Pre
@ Tranzmitter Adjacent Channel Power Test GELE, Call Powerlevel [TransmitterT ests c) Force Pass Charnelz 11 to 35
= itter Automatic Gain Control Test Gain.vi
Call SpuriousE missions [Emizsions.dll)

Figure 2-7. Main Step Group in an Example Sequence

Each step in a sequence has a step type. The step type defines the custom
step properties and standard behavior for each step of that type. You can
insert steps in the Main, Setup, and Cleanup tabs of an individual sequence
view. Thelnsert Stepitem in the context menu displays a submenu of all
the step types, including the step types that come with TestStand and any
custom step types that you create.

Figure 2-8 shows the submenu for theert Stepitem.

d (2 Pass/Fail Test
Paste Actian Jumeric Limit Test
Golp 1 Level (BkSpacs] Sequence Call [Sting Value Test
Open Tree Yiew Statement 24 Custom Transmitter Test
Brovese Variables. .. 22 Message Popup
Sequence Properties. . Eee| Call Executable
Lirnit Loader
G0 Gato
% Label

Figure 2-8. Insert Step Submenu

TestStand User Manual 2-10 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

An icon appears to the left of each step type in the submenu. When you
select a step type, TestStand displays the same icon next to the name of the
new step in the list view. Many step types, such as the Pass/Fail Test and
Action step types, can work with any module adapter. For these step types,
the icon that appears in the submenu is the same as the icon for the module
adapter that you select in the ring control on the tool bar. In Figure 2-8, the
LabVIEW Standard Prototype Adapter is the current adapter, and its icon
appears next to several step types, including Pass/Fail Test and Action. If
you select one of these step types, TestStand uses the LabVIEW Standard
Prototype Adapter for the new step.

Some step types require a particular module adapter and always use the
icon for that adapter. For example, the Sequence Call step type always uses
the Sequence Adapter icon. Other step types, such as Statement and Goto,
do not use module adapters and have their own icons.

When you select an entry in the submenu, TestStand creates a step using the
step type and module adapter that the submenu entry indicates. After you
insert the step, you use tBpecify Moduleitem in the context menu for

the step to specify the code module or sequence, if any, that the step calls.
The Specify Modulecommand displays a dialog box that is different for
each adapter. Some adapters require you to specify the values to pass as
arguments when executing the code module. Refer to Chapteiotiz)e
Adapters for information on the Specify Module dialog box for each

adapter.

For each step type, another item can appear in the context menu above
Specify Module For example, thEdit Limits item appears in the context
menu for Numeric Limit Test steps, and &t Destination item appears

in the context menu for Goto steps. You use this menu item to modify step
properties that are specific to the step type. Refer to ChaptBuilBln

Step Typedor information on the menu item for each step type.

To modify step properties that are common to all step types, use the
Properties command in the context menu, double-click on the step,
or press <Enter> when the step is selected.

© MNational Instruments Corporation 2-11 TestStand User Manual

Chapter 2 Sequence Editor Concepts

TestStand User Manual

Figure 2-9 shows the Step Properties dialog box.

& Transmitter Adjacent Channel Power Test Std C¥l Step Properties

General | Run Options | Post Actions | Loop Options | Expressions

@ Tranzmitter Adjacent Channel Power Test
Type: Std Cwl Step, Instance of Type MurmericLimitT est'
Adapter: C/CV| Standard Pratatype Adapter
Dezcription: GELE [x=<=]. Call Powerlewvel [Transmitter T ests.c]
Comment:
Channels 11 to 55 |=]
E dit Limits... Preconditions. .. |
Wiew Contents (1] Cancel

Figure 2-9. Step Properties Dialog Box

The Step Properties dialog box contains the following five tabs:

General—Contains buttons to display the Specify Module dialog box,
the step-type-specific dialog box and the Preconditions dialog box.

Run Options—Specifies various options for loading and running the
step code module.

Post Actions—Specifies what action to take when the step finishes
executing.

Loop Options—Specifies whether the TestStand loops on the step.
TestStand can loop a fixed number of times or loop until a specified
number of iterations pass or fail. You also can customize the loop
conditions.

Expressions—Specifies expressions that TestStand executes before
and after the step executes.

2-12 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Refer to Chapter S5equence Filesor more information on sequence files
and adding steps to sequences.

Controlling Sequence Flow

TestStand has several features you can use to control the flow of execution
in a sequence. These include the post actions for a step, the preconditions
for a step, and the Goto step type. You can combine these features in
various ways. For example, you can use the preconditions on a Goto step
to specify when to loop back to an earlier statement.

Every step in TestStand has a status property. The status property is a string
that indicates the result of the step execution. Although TestStand imposes
no restrictions on the values to which the step or its code module can set the
status property upon completion, TestStand recognizes the values that
appear in Table 2-2.

Table 2-2. Standard Values for the Status Property after Execution Completes

Value Meaning

Passed Indicates that the step performed a test that pagsed.

Failed Indicates that the step performed a test that failed.

Error Indicates that a run-time error occurred.

Done Indicates that the step completed without setting its
status.

Terminated Indicates that the step called a subsequence that
terminated.

Skipped Indicates that the step did not execute.

The post actions and preconditions you define can use the step status to
control the flow of execution.

© MNational Instruments Corporation 2-13 TestStand User Manual

Chapter 2

TestStand User Manual

Sequence Editor Concepts

Post Action

You can use the Post Actions tab on the Step Properties dialog box to
specify an action that occurs after the step executes. You can make the
action conditional on the Pass/Fail status of the step or on any custom
condition. Your choices of actions include:

« Goto next step—Execution continues normally with the next step.
This is the default value.

« Goto destination—Execution branches to the destination you select.
You can branch to any step in the current step group, to the end of the
current step group, or to the Cleanup step group. If the post action for
a step specifies that execution branches to the Cleanup step group and
the current step is in the Cleanup step group, execution proceeds
normally with the next step in the Cleanup group.

* Terminate execution—Execution terminates. Refer to the
Terminating and Aborting Executiossction in Chapter T,estStand
Architecture Overviewfor more information on execution
termination.

« Call sequence—TestStand calls a sequence before continuing to the
next step. You can select any sequence in the sequence file. TestStand
does not pass any arguments to the sequence. If the sequence has
parameters, TestStand uses their default values.

¢ Break—TestStand breakpoints before continuing to the next step.

Refer to theStep Properties Dialog Bosection in Chapter Jjequence
Files, for more information on the Post Action tab of the Step Properties
dialog box.

Preconditions

The preconditions for a step specify the conditions that must be true for
TestStand to execute the step during the normal flow of execution in a
sequence. You can display the Preconditions dialog box by clicking on the
Preconditionsbutton on the Sequence Properties dialog box or by clicking
on thePreconditions button on the Step Properties dialog box.

2-14 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Figure 2-10 shows the Preconditions dialog box.

Preconditions - MainSequence E
Step Group: Step:
IMain j I@ Spuriaus Emizsiong Test j Cut |
Preconditions for "Spunious Emissions Test', Copy |
AN Paste |
PASS Trangmitter Power Level Test 5
PASS Transmitter Burst Timing Test Insert Mew Expression |
A0
EXECUTED Transmitter Adjacent Channel Power Test Insert Al |
EndyD A Irzert AnpOF |
End AIDt hange Froup |
| rgrauE |
— Edit¥iew Expreszion —Inzert Step Status

Local:VWaoltage » 12.0 IMain j Insert Step Pass

@ Transmitter Power Level Test Inzsert Step Fail |
@Transmitter Burst Tirning Test

T -y Inzert Step Eror |
74 Transmitter &djacent Chan...

@ Transmitter Automatic G ai... Inzert Step Executed |

@ Transmitter Autamatic: Gain...

Browse. .. | [~ Megate

ak. Catcel

Figure 2-10. Preconditions Dialog Box

You can use a simple step status comparison as a condition. For example,
you might want to execute a step only when the Power On Test passes. The
Preconditions dialog box has special controls to make this easy. You also
can specify an arbitrary expression that TestStand evaluates at run time. For
example, you might want to execute the Keyboard test only when the
Locals.Keyboardinstalled variable isTrue . You also can create

complex preconditions by grouping conditions with Alffie Of and the

Any Of operators. Thall Of operator evaluates Tue when all

conditions in its group arerue . TheAny Of operator evaluates Toue

when at least one condition in its grougise .

Refer to the sectioRreconditions Dialog Boin Chapter 5Sequence
Files, for more information on how to use preconditions.

© MNational Instruments Corporation 2-15 TestStand User Manual

Chapter 2 Sequence Editor Concepts

Goto Built-In Step Type

You use Goto steps to set the next step that the TestStand engine executes.
You usually use a Label step as the target of a Goto step. This allows you
to rearrange or delete steps in a sequence without having to change the
target names in Goto steps. You can specify the Goto step target by
selecting théedit Destination item from the step context menu or the

Edit Destination button on the Step Properties dialog box.

Refer to theGoto section in Chapter 1®uilt-In Step Typedor more
information on how to use the Goto step type.

Run-Time Errors

When a run-time error occurs in a step, execution in the sequence jumps to
the Cleanup step group. After the Cleanup step group completes executing,
TestStand reports the run-time error to the sequence call step in the calling
sequence. This process continues up through the top-level sequence. Thus,
when a run-time error occurs, TestStand terminates execution after running
all the Cleanup steps of the sequences that are active at the time of the
run-time error.

Running a Sequence

TestStand User Manual

You can initiate an execution by launching a sequence through a model
entry point, by launching a sequence directly, or by executing a group of
steps interactively.

A list of entry points appears in tiexecutemenu of the sequence editor

and operator interfaces. Each entry point in the menu represents a separate
entry point sequence in the process model that applies to the active
sequence file. When you select an entry point fronE#teEzutemenu, you
actually run an entry point sequence in a process model file. The entry point
sequence, in turn, invokes the main sequence in the active sequence file.
The default TestStand process model provides two execution entry points:
Test UUTsandSingle Pass. TheTest UUTsentry point initiates a loop

that repeatedly identifies and tests UUTs. Thgle Pass entry point

tests a single UUT without identifying it.

To execute a sequence without using a process model, selBetrthe
Sequence Naméem in theExecutemenu, wher&equence Names the

name of the sequence you are currently viewing. This command executes
the sequence directly, skipping the process model operations such as UUT
identification and test report generation. You can execute any sequence this

2-16 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

way, not just main sequences. Usually, you execute a sequence in this way
to perform unit testing or debugging.

You can execute selected steps in a sequence interactively by cliRasing
Selected StepsrLoop Selected Stepfrom the context menu in the
sequence editor or by clicking on tRen Testsor Loop Testsbuttons in

the run-time operator interfaces. When you run steps interactively,
TestStand does not evaluate step preconditions. If you execute steps in a
Sequence File window, you initiate the interactive execution as an
independent, top-level execution. If you execute steps in an Execution
window when the execution is suspended, you initiate a nested interactive
execution.

When you start a new execution, the sequence editor creates a new
Execution window. Run-time operator interface programs update a view or
create a new window for each new execution.

Refer to Chapter 1Rrocess Modeldor more information on process
models. Refer to Chapter 8equence Executipfor more information on
starting executions.

Debugging a Sequence

TestStand has several features you can use to debug the execution in a
sequence. These include tracing, breakpoints, single-stepping, the
sequence context browser, and watch expressions.

If tracing is enabled, the sequence editor and operator interfaces display the
progress of an execution by highlighting the currently executing step in a
step view. Usually, you disable tracing if you want to avoid using computer
time to display the progress of your execution. You can usertféng
Enableditem in theExecutemenu to enable or disable tracing. You can set
tracing options on the Execution tab in the Station Options dialog box.
Refer to theConfigure MenwandExecute Mengections in Chapter 4,
Sequence Editor Menu B&or more information on the tracing options.

The sequence editor and operator interfaces allow you to set breakpoints,
to step into or step over steps, to step out of sequences, and to set the next
step to execute. You also can terminate execution, abort execution, and run
or loop on selected steps while at a breakpoint. In the sequence editor, these
commands are in tHeebugmenu. Refer to thBebug Mentsection in

Chapter 4Sequence Editor Menu Bdor more information on debugging
commands.

© MNational Instruments Corporation 2-17 TestStand User Manual

Chapter 2 Sequence Editor Concepts

When using the sequence editgou can display theariables and
properties during aexecutionby selecting the Cosxt view of the
Execution windw. The Context \aw displays the sequence context for
the sequencenvocation that is currently selected in the call stack. The
sequence coeatt contains all theariables and properties that the steps in
the selected sequengwacation can accessou use the Conkt view to
examine and modify thealues of thesegariables and properties.

You can drag indidualvariables or properties from the Cexttview to the
Watch Expressiomiew so that you can &iv changes in spéit values
while you single-step or trace through the sequence.

Refer to Chapte8, Sequence Context and Expressjdasmore
information on sequence certs. Refer to Chapte, Sequence Executipn
for more information on running andhileyging arexecution.

Generating Test Reports

TestStand User Manual

TestStand automatically collects the results of an execution. As each step
executes, TestStand appends the results from the step to a tree of results for
an entire execution. When an execution completes, the default process
model can generate a report from the information stored in the result tree.
By default, an execution generates a report only when you start the
execution through a model entry point susffest UUTsor Single

Pass.

You can set options that control report generatioselecting th&keport
Options item in theConfigure menu.You can select eithéiTML or
ASClltext formats.You can specify the repdite name and whether
TestStand generates thile name from the sequenfile name, the time

and date, or the UUT serial numh&ou can specify a resuliitering
expressionFor example, you can choose to include results only for steps
that fail during arexecution.You can specify whethéiestStand appends
results to théile if it alreadyexists.You also can specify whether the report
includes outpuvalues, test limits andkecution times.

The Report \véw of the sequence editoxécution winaw displays the
report for the currergxecution. Usuayl, the Report \aw is empty until
execution completesrou also can use amternal application to @w
reportshy selecting thé.aunch External Viewer command from the
View menu.You can use thExternal Viewers menu item in the
Configure menu to specify thexternal application thatestStand launches
to display a particular report format.

2-18 © National Instruments Corporation

Chapter 2 Sequence Editor Concepts

Figure 2-11 shows an HTML report for an example sequence.

Pf’ Steps Fiepart I Threads: IMainSequence - Setup (auto.zeq) [0x3] ﬂ
« | =2 | @ A
Eack Fanard Stop Refresh Home
UUT Report B

* Serial Number: abc123

* Date: Thursday, July 16, 1998

* Time: 2:27:10 PM

= Operator: user

* Execution Time: 10. 2116286 seconds
* Number of Results: 10

« UUT Result: Failed

Begin Sequence: MainSequence
(Z:\testexec'Examples'\Demo’, Clauto seq)

FPre-test

Status: ||Passed

[oduls Time: |lo.895012 |

[Battery Voltage Test |

[tatus: Faed]

Ileasurernent: 10353

High Lirait: 125

Lo Lirit: 1125

|Compa.rison Type: ||GELE |

[[lodule Time: |[p.000201

_l r
@ | | Feport Location: 2:4hardy. html 4

© National Instruments Corporation 2-19

Figure 2-11. HTML Report for an Example Sequence.

Refer to theResult Collectiorsection in Chapter gequence Executipn
for more information on how TestStand collects results. Refer to
Chapter 14Managing Reportsfor more information on available report
options and customizing the report output.

TestStand User Manual

Chapter 2 Sequence Editor Concepts

Using an Operator Interface

Although you can use the TestStand sequence editor at a production station,
the TestStand run-time operator interfaces are simpler. Also, they come
with full source code so that you can customize them. Like the sequence
editor, the run-time operator interfaces allow you to start multiple,
concurrent executions, set breakpoints, and single-step. Refer to

Chapter 15Run-Time Operator Interfacem this document for more
information on the operator interfaces included with TestStand.

TestStand User Manual 2-20 © National Instruments Corporation

Configuring and
Customizing TestStand

This chapter summarizes how you can configure and customize a
TestStand station.

Configuring TestStand

This section outlines the various configuration options in TestStand.

Sequence Editor Startup Options

You can append certain options to the sequence editor command line,
separating various parameters by spaces. The valid startup options for the
sequence editor appear in Table 3-1.

Table 3-1. Sequence Editor Startup Options

Option Purpose
filenamel{filename2... | The sequence editor automatically loads the sequence files at startup.
Example:
SeqEdit "C:\MySegs\seql.seq" "C:\MySeqs\seq2.seq"

Configure Menu

The Configure menu in the sequence editor and in the operator interfaces
contains various commands to control the operation of the TestStand
station. This section gives a brief overview of the item inQbefigure

menu. Refer the t6onfigure Menwsection in Chapter equence Editor
Menu Bar for more information on each menu item.

© National Instruments Corporation 3-1 TestStand User Manual

Chapter 3

TestStand User Manual

Configuring and Customizing TestStand

You can use th8tation Options command to set preferences for your
TestStand station. The settings affect all sequence editor and operator
interface sessions that you run on your computer. The command displays a
dialog box with the following tabs.

« Execution—Contains options for breakpoints, tracing, and interactive
execution.

¢ Time Limits —Allows you to specify time limits for executions. If you
specify a time limit, you choose an action to take when a time limit
expires.

« Preferences—Specifies general options for the TestStand station, such
as whether to save files before starting an execution.

* Model—Specifies the process model file for the station as a whole and
whether each individual sequence can specify its own process model
file.

« User Manager—Specifies whether TestStand enforces user
privileges. It also specifies the location of the user manager
configuration file.

* Language—Specifies language in which to show text.

The Search Directoriescommand lets you customize the search paths for
finding files. The dialog box displays a list of paths. The paths that appear
first in the list take precedence over the paths that appear later. When you
first run TestStand, the list contains a default set of directory paths.

TheExternal Viewers command displays a dialog box in which you can
specify the external viewer to use for each particular report format.

TheAdapters command displays a dialog box in which you can configure

a specific module adapter or specify the active module adapter. Refer to the
Configuring Adaptersection in Chapter 12/odule Adaptersfor more
information.

TheReport Options command displays a dialog box in which you can

customize the generation of report files. Refer to ChaptePiti@ess
Models for more information on available report options.

3-2 © National Instruments Corporation

Chapter 3 Configuring and Customizing TestStand

Customizing TestStand

This section outlines the various methods you can use to customize a
TestStand station.

TestStand Directory Structure

The TestStand installation program installs the TestStand engine, the
sequence editor, the module adapters, and additional components on your
system.

Table 3-2 shows the names and contents of each subdirectory.

Table 3-2. TestStand Subdirectories

Directory Name

Contents

AdapterSupport Support files for the LabVIEW and C/CVI Standard Prototype
Adapters.

Api TestStand ActiveX Automation Server libraries for LabWindows/QVI
and MFC.

Bin TestStand sequence editor executable, engine DLLs, and suppor]t files.

Cfg Configuration files for TestStand engine and sequence editor 0pt|ions.

CodeTemplates

Source code templates for step types. This directory contaixis an
and aUser subdirectory.

Components Components that come with TestStand and components that yol
develop—This includes callback files, converters, icons, language
files, process model files, step type support files, and utility files. This
directory contains aNl and aUser subdirectory.

Doc Documentation files.

Examples Example sequences and tests.

Operatorinterfaces

LabVIEW, LabWindows/CVI, and Visual Basic operator interfaces
with source code. This directory containshinand aUser
subdirectory.

Setup

TestStand Installer/Uninstaller.

Tutorial

Sequences and code modules that you use in the tutorial sessions in the
Getting Started with TestStantanual.

© National Instruments Corporation 3-3 TestStand User Manual

Chapter 3 Configuring and Customizing TestStand

TestStand User Manual

NI and User Subdirectories

Three of the TestStand directories contain source files that you might want
to modify or replace. They are thperatorinterfaces ,

CodeTemplates , andComponents directories. Each directory contains
anNI and aUser subdirectory.

TestStand installs its files into the subdirectory. If you modify these files
directly, the installers for newer versions of TestStand might overwrite your
customizations. Consequently, it is best to keep the files you create or
modify separate from the files that TestStand installs.

For this purpose, the TestStand installer creates@asubdirectory tree for
you. Not only do you use théser subdirectory to protect your customized
components, you use it as the staging area for the components that you
include in your own run-time distribution of TestStand.

The Components Directory

TestStand installs the sequences, executables, project files, and source files
for TestStand components in thestStand\Components\NI directory.

Most of the subdirectories under thestStand\Components\NI

directory have the name of a type of TestStand component. For example,
the TestStand\Components\NI\StepTypes subdirectory contains

support files for the TestStand built-in step types.

In general, if you want to create a new component or customize a TestStand
component, copy the component files fromNihesubdirectory to theser
subdirectory before customizing. This ensures that the installers for newer
versions of TestStand do not overwrite your customizations. If you copy the
component files as the basis for creating a new component, make sure that
you rename the files so that your customizations do not conflict with the
default TestStand components.

The TestStand engine searches for sequences and code modules using the
TestStand search directory path. The default search precedence places the
TestStand\Components\User directory tree before the
TestStand\Components\NI directory tree. This ensures that TestStand
loads the sequences and code modules that you customize instead of
loading the default TestStand versions of the files. You can modify the
precedence of the TestStand search directory paths wiSetireh

Directories command in th€onfigure menu of the sequence editor

menu bar.

3-4 © National Instruments Corporation

Chapter 3 Configuring and Customizing TestStand

When you distribute a run-time version of the TestStand engine, you can
bundle your components in the User directory with the TestStand run-time
distribution. Refer to Chapter 1Bjstributing TestStandor more

information on how to distribute the TestStand engine and your custom
components.

Table 3-3 lists each subdirectory in theandUser directory trees under
TestStand\Components

Table 3-3. TestStand Component Subdirectories

Directory Name Contents

Callbacks TheCallbacks directory contains the sequence files in which
TestStand stores station engine callbacks and front-end callbacks
TestStand installs the station engine and front-end callback files into the
TestStand\Components\NI\Callbacks directory tree. Refer to
Customizing the Engine and Front-End Callbaskstion later in this
chapter for more information on customizing the station and front-end
callbacks.

Icons Thelcons directory contains icon files for module adapters and step
types. TestStand installs the icon files for module adapters and buljlt-in
step types into th&estStand\Components\NI\Icons directory.
Refer to theCreating Step Typesection in this chapter for more

information on creating your own icons for your custom step types,

Language ThelLanguage directory contains string resource files. It has one

subdirectory per language, for exameglish . Refer to th€reating
String Resource Filesection in this chapter for more information on
creating resource string files in thenguage directory tree.

Models TheModels directory contains the default process model sequencelfiles
and supporting code modules. Refer taMtoalifying the Process Modell
section in this chapter for more information on customizing the process
model.

RuntimeServers TheRuntimeServers directory contains a LabVIEW run-time
application for executing LabVIEW code modules. Refer to the
Customizing and Distributing a LabVIEW Run-Time Seseetion in
Chapter 16Distributing TestStandor more information on using
LabVIEW run-time servers.

© National Instruments Corporation 3-5 TestStand User Manual

Chapter 3 Configuring and Customizing TestStand

Table 3-3. TestStand Component Subdirectories (Continued)

Directory Name

Contents

StepTypes

TheStepTypes directory contains support files for step types.
TestStand installs the support files for the built-in step types into the
TestStand\Components\NI\StepTypes directory tree. Refer to the
Creating Step Typesection in this chapter for more information on
customizing your own step types.

Tools

TheTools directory contains sequences and supporting files for the
Tools menu commands. Refer to thising the Tools Mensection in
this chapter for more information on customizing Tle®ls menu.

Creating String Resource Files

TestStand User Manual

TestStand uses thl@etResourceString function to obtain the string
messages that it displays on windows and dialog boxes in the sequence
editor and operator interfacesetResourceString works with string
resource files that are iniai style formatGetResourceString takes

a string category and a tag name as arguméntResourceString

searches for the string resource in all string resource files that are in a
predefined set of directories.

The directory search order is as follows:

1. TestStand\Components\User\Language\< current
language >

TestStand\Components\User\Language
TestStand\Components\NI\Language\< current language >

TestStand\Components\NI\Language\English

ok wbn

TestStand\Components\NI\Language

You can change the current language setting by selecting
Configure»Station Options

TestStand installs the default resource string files in the
TestStand\Components\NI\Language directory tree. If you want to
customize a resource string file for a different language, you must copy an
existing language file from thel directory tree, place it in theéser

directory tree under a language subdirectory, and modify it. If you want to
create a resource string file that applies to all languages, place the resource
file in the bas&estStand\Components\User\Language directory.

3-6 © National Instruments Corporation

Chapter 3 Configuring and Customizing TestStand

If you want to create your own resource string file for your custom
components, make sure the category and tag names inside the resource file
are unique so that they do not conflict with any that TestStand includes.

Resource String File Format

Each string resource file must have the file extension. The format of
a string resource file is as follows:

[categoryl]

tagl = "string value 1"

tag2 = "string value 2"

[category2]
tagl = "string value 1"
tag2 = "string value 2"

When you specify custom resource strings, you create the category and tag
names. The number of categories and tags is unlimited.

A string can be of unlimited size. If a string has more than 512 characters,
you must break it into multiple lines. Each line has a tag suffix of

line NNNNwhereNNNNs the line number with zero padding. The

following is an example of a multiple-line string:

[categoryl]

tagl line0001 = "This is the first line of a very long "

tagl line0002 = "paragraph. This is the second line"

You can insert unprintable characters using escape codes. Table 3-4 lists the
escape codes you can use.

Table 3-4. Resource String File Escape Codes

Escape Code Description

\n Linefeed character.

\r Carriage return character.

\t Tab character.

\x nn Hexadecimal value. For exampiglB represents
the ASCII ESC character, which has a decimal
value of 27.

\ Backslash character.

© National Instruments Corporation 3-7 TestStand User Manual

Chapter 3 Configuring and Customizing TestStand

Using Data Types

For example, the following string contains an embedded linefeed character:

tagl line0001 = "This is the first line.\nThis is the
second line"

You can use data types as station globals, sequence file globals, sequence
locals, or properties of steps and step types. You can create and modify
your own data types in TestStand. You also can modify the TestStand
standard named data types by adding subproperties to them. Refer to the
Creating and Modifying Data TypesdUsing the Standard Named Data
Typessections in Chapter Jypes for more information.

Creating Step Types

TestStand User Manual

If you want to change or enhance a TestStand built-in step type, do not edit
the built-in step type or any of its supporting source code modules. Instead,
copy and rename the built-in step type in the sequence editor. Also, copy
its supporting modules from thestStand\Components\NI\

StepTypes directory tree taestStand\Components\User\

StepTypes directory. Make the changes to the copies. This ensures that
you do not lose your changes when you install newer versions of TestStand.
Refer to thdJsing Step Typesection in Chapter Jypes for more

information on step types and how you use them.

When creating a new step type, you can designate a specific icon to
associate with that step type. The TestStand engine loads all available icons
when you start the engine, so you must restart the sequence editor before
you can associate a new icon with a step type.TEktStand\
Components\NI\icons directory contains icon files for the TestStand
engine, the module adapters, and the built-in step types. If you want to
override theTestStand\Components\NI icons or load icons for your
custom step types, place the new icon file inTisStand\
Components\User\icons directory and restart the engine. The

TestStand engine loads all icons from TletStand\Components\

Usenlicons andTestStand\Components\NI\icons directories. Ifan
icon of the same name is in both directories, the TestStand engine uses the
one from theTestStand\Components\User\icons directory. The

TestStand engine does not search for icon files in any other directories.

3-8 © National Instruments Corporation

Chapter 3 Configuring and Customizing TestStand

Using the Tools Menu

The TestStand\Components\NI\Tools directory contains sequences
and supporting files for the default TestStdmdls menu commands. The
tools include a documentation generator, converters for LabVIEW and
LabWindows/CVI Test Executive sequences, and compatibility tools for
the LabVIEW and LabWindows/CVI Test Executive sequences that you
convert.

If you want to create your owhools menu commands, place any
supporting code modules in thestStand\Components\User\Tools

directory tree. If you want to change or enhance a TestSioid menu
command, do not edit the supporting source code modules. Instead, copy
the files toTestStand\Components\UsernTools directory tree, and

make the changes to this copy. This ensures that you do not lose your
changes when you install newer versions of TestStand.

Refer to thelools Menuwsection in Chapter £equence Editor Menu Bar
for more information on how to add your own commands to the
Tools menu.

Refer to Chapter 1®istributing TestStandor more information on
distributing a custoritools menu with the run-time version of TestStand.

Customizing the Engine and Front-End Callbacks

The TestStand\Components\NI\Callbacks directory tree contains
sequences and supporting files for the default TestStand front-end and
station engine callbacks. TestStand installs the station engine callbacks in
theStation subdirectory and the front-end callbacks inRhentEnd
subdirectory.

You can replace these callbacks individually. To do so, you must create a
callback file in theTestStand\Components\User\Callbacks

directory tree that has same name and relative location &$ thieectory
copy. For example, therontEndCallbacks.seq in the
TestStand\NI\Callbacks\FrontEnd directory contains the default
LoginLogout callback. You can overridenginLogout by creating a
LoginLogout sequence in a new versionrbntEndCallbacks.seq

in theTestStand\User\Callbacks\FrontEnd directory. TestStand

then loads theoginLogout sequence from thgser directory instead of
from theNI directory.

© National Instruments Corporation 3-9 TestStand User Manual

Chapter 3 Configuring and Customizing TestStand

Refer to theCallback Sequencesection in Chapter TestStand
Architecture Overviewfor an overview of the different categories of
callbacks. Refer to thengine Callbacksection in Chapter é&gequence
Execution for more information on engine callbacks.

Note You must not define &equenceFileUnload callback in the
FrontEndCallback.seq or StationCallbacks.seq sequence files. When you
do this, TestStand will hang when you shut down the TestStand engine.

Modifying the Process Model

TestStand installs the default process model sequence file,
TestStandModel.seq , and its supporting files into the
TestStand\Components\NI\Models\TestStandModel directory.

If you want to change or enhance the default process model file, do not edit
TestStandModel.seq or any of its supporting files. Instead, copy the

files you want to change to a subdirectory that you name under the
TestStand\Components\User\Models directory, and make the

changes to the copies. This ensures that you do not lose your changes when
you install newer versions of TestStand.

For example, if you want to change the HTML report output for all
sequences, copy theportgen_html.seq from theNI directory tree to
theUser directory tree and make changes to the new copy.

Refer to Chapter 1Rrocess Mode|for more information on the default
process model.

Refer to Chapter 14Managing Reportsfor more information on
customizing the reports that TestStand generates.

Using Process Model Callbacks

TestStand User Manual

Model callbacks allow you to customize the behavior of a process model
for each main sequence that uses it. By defining one or more model
callbacks in a process model, you specify which process model operations
the sequence developer can customize. You can override the callback in the
model sequence file by using the Sequence File Callbacks dialog box to
create a sequence of the same name in the client sequence file.

Refer to theProcess Modelsection in Chapter TestStand Architecture
Overview for an overview of process models and model callbacks. Refer
to Chapter 13Process Mode|dor more information on the default process
model and its callbacks.

3-10 © National Instruments Corporation

Chapter 3 Configuring and Customizing TestStand

Creating Code Templates

When creating step types, you can associate one or more code templates
with the step type. Each code template has a name. TestStand installs its
code templates under thestStand\CodeTemplates\N| directory

tree, where each subdirectory name is the name of a code template. Each
code template has different source code files for each module adapter.
TestStand stores the source files for the different module adapters in the
template subdirectory. TestStand also maintaiins a file in each

template subdirectory. Thimi file contains a description string that
TestStand uses for the code template. TestStand installs a default template
in theDefault_Template subdirectory.

Refer to theCode Templates Tadection in Chapter 9ypes for more
information on using and creating your own code templates.

Modifying Run-Time Operator Interfaces

TestStand installs the executable, project, and source files for each run-time
operator interface in theestStand\Operatorinterfaces\NI

directory tree. If you want to customize one of the run-time operator
interfaces, copy the operator interface project and source files frawn the
subdirectory to th&estStand\Operatorinterfaces\User

subdirectory before customizing. This ensures that you do not lose your
customizations when you install newer versions of TestStand.

Refer to Chapter 153un-Time Operator Interface®r more information
on the operator interfaces that ship with TestStand.

Adding Users and Managing User Privileges

You can add users to the TestStand user list by selébtinfigure»User
Manager. Refer to Chapter 11)ser Managemenfor more information
on adding new users, changing user privileges, and adding new user
privileges.

© MNational Instruments Corporation 3-11 TestStand User Manual

Sequence Editor Menu Bar

This chapter describes the menu items in the sequence editor menu bar.

Menus
The sequence editor menu bar contains commands that apply to the
entire test station. This section contains descriptions of the menu items
in the sequence editor menu bar. For some commands, the description
summarizes the features of the command and refers you to additional
information later in this document.

File Menu

This section describes tiide menu, as shown in Figure 4-1.

Edit Wiew Ewecute Debug Configure Toolz ‘Window Help _|5’|ﬂ|

Lagin...
Logaout. ..

Hew Clrl+M
Open... Ctrl+0
Close

Save Clrl+5
Save Az

Save All

Unload All MModules

Printt.... Clrl+F
Frint Prewview
Frint Setup...

1 gotobeep.zeq

2 C:ATestStand'. . \Chcpu.seq

3 C:ATestStand' . \computer. zeq
4 FrontEndCallbacks.zeq

Exit

Figure 4-1. File Menu

© National Instruments Corporation 4-1 TestStand User Manual

Chapter 4

TestStand User Manual

Sequence Editor Menu Bar

Login

TheLogin command, which automatically executes when you open the
sequence editor, prompts you for a login name and password. If you cancel
out of the dialog box, you have no privileges. UselLibgin command to

log in as a different user. Each user can have different privilege settings,
so logging in as a different user can change your privileges. Refer to
Chapter 11User Managemenfor more information.

Logout

TheLogout command logs out the current user and displays the Login
prompts.

New
Use theNew command to create a new Sequence File window.

Open

Use theDpencommand to open an existing sequence file. When you select
Open, a dialog box appears prompting you for a filename to load into a new
window.

Close

Use theClosecommand to close an existing window. When you select
Close a dialog box might appear, prompting you to save any changes
before closing the window.

Save

Use theSavecommand to write the contents of the active Sequence File
window to disk.

Save As

Use theSave Ascommand to write the contents of the active Sequence File
window to disk using a new name you specify. The title bar on the
Sequence File window displays the new name.

4-2 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Save All

The Save Allcommand saves all open files to disk, which includes
sequence files, globals, type palette, users, and configuration information.

Unload All Modules

TheUnload All Modules command removes from memory all step code
modules, all code modules that substeps call, and all sequence files that are
not currently in a window. You can use this command only if no executions
are active. This command is useful when you want to rebuild a DLL after
an execution, but the DLL is still loaded in TestStand. The ADE that you
use to build the DLL cannot write out the new contents of the DLL until
TestStand unloads it.

Most Recently Opened Files

For your reference, a list of the most recently opened files appears in the
File menu.

Exit
Use theExit command to close the current sequence editor session. If you

have modified any open files since the last save, or if any windows contain
unnamed files, the sequence editor prompts you to save them.

Edit Menu
You use the items in tHedit menu for editing sequences and steps.

Figure 4-2 shows thEdit menu.

Eileyiew Ezecute Debug Configure Took ‘window Help _|5’|5||

Cut Chil+x
Copy Chrl+C
Paste Chrl+
Delete Del

Select Al Chrl+&

Sequence Properties. ..
Sequence File Properties. ..
Sequence File Callbacks. ..

Figure 4-2. Edit Menu

© National Instruments Corporation 4-3 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

Cut and Copy

The Cut andCopy commands place text or objects in the Clipboard. The
Cut command removes the selected text or objects and places them in the
Clipboard. TheCopy command copies the selected text or objects and
places them in the Clipboard, leaving them in their original location.

The text or objects that you cut or copy do not accumulate in the Clipboard.
Every time you cut or copy text or objects, you replace the previous
contents of the Clipboard.

Paste

ThePastecommand inserts text or objects from the Clipboard. You can
paste text or objects from the Clipboard as many times as you like. The text
or objects that you paste remain in the Clipboard until yo€Cuser Copy

again.

Delete

TheDeletecommand deletes selected text or objects without replacing the
contents of the Clipboard. Becau3eletedoes not place the selected text
or objects in the Clipboard, you cannot restore them usingdbkte
command.

Select All

The Select Allcommand highlights all the objects in the active window.

4-4 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Sequence Properties

The Sequence Propertiecommand displays the properties for a selected
sequence in the active Sequence File window, as shown in Figure 4-3.
Refer to theSequence View Context Mesection in Chapter Sequence
Files, for more information.

Main5equence Sequence Properties E

General | tadel |

[iGoto Cleanup on Sequence Failure

™ Disable Result Recording for &1 Steps

[Optimize Mon-reentrant Calls to This Sequence

[['o not enable thiz option i your zequence depends on an initial shep property
walue that you change during the execution of wour sequence]

Comment:

Owerride thiz in the client file with a sequence that performs tests on the UUT. ;l
2

Precanditions...

(1] I Cancel

Figure 4-3. Sequence Properties Dialog Box

Sequence File Properties

TheSequence File Propertiesommand displays the pathname, disk size,
and disk date of the active sequence file. You also can use it to edit various
properties of a sequence file, including the load and unload options, a
comment, and the sequence file type. If the sequence file type is normal,
you also can specify a process model file for the sequence file.

© National Instruments Corporation 4-5 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Figure 4-4 shows the Sequence File Properties dialog box.

computer.seq Properties

General | Advanced |

Full Path; |Z:'\tsa2\E:¢ampIes‘\Demo\C'\cnmpuler.seq

Saved: Manday, June 29, 1998 5:03:05 PM

Size: 24565 bytes

Load Option: Preload when opening sequence file

Unload Option: IUnIoad when sequence file iz clozed j

Comment; ;I
[-

Figure 4-4. Sequence File Properties Dialog Box

Refer to theSequence View Context Mesection in Chapter Ssequence
Files, for more information on sequence file properties.

Sequence File Callbacks

The Sequence File Callbacksommand displays a dialog box of all
callbacks that you can override in the sequence file. This includes the
Engine Callbacks that TestStand defines, and the Model Callbacks that
the process model for the sequence file defines.

TestStand User Manual 4-6 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Figure 4-5 shows the Sequence File Callbacks dialog box.

Callback Hame Callback Type Freszent Add

1 L.allDack, no

Fezerved Callback

SequenceFilePrelnteractive Rezerved Calback no [DElEte |
SequenceFileFostinteractive Reserved Calback no
SequenceFilzLoad Rezerved Callback ho :
SequenceFilellnload Rezerved Calback no Edit |
MainSequence Model Callback (=
PrelUIT Model Callback ho
PostUIIT Model Callback no
PrelJUTLoop Model Callback no
PostlJUTLoop Model Callback no -
[PN m Y ey kd Al Tl =l ey
< | LIJ

Figure 4-5. Sequence File Callbacks Dialog Box

Refer to theSequence View Context Mesection in Chapter Ssequence
Files, for more information on using the Sequence File Callbacks
dialog box.

View Menu

This section explains how to use the commands iV menu.
Figure 4-6 shows th€iew menu.

File Edit Execute Debug Configure Toolz Window Help _Iﬁllﬂl

Station Globalz Cirl+5
Type Palette Ctrl+T
Uzer Manager Ctrl+L
Paths...
Find Type...
Browse Seguence Contegt...
Toolbars...

v Status Bar

Figure 4-6. View Menu

© National Instruments Corporation 4-7 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Station Globals

The Station Globalscommand displays a window containing the station
global variables and the types they use, including built-in and custom data
types. For a detailed discussion of station globals, refer to Chapter 7,
Station Global Variables

Type Palette

TheType Palettecommand displays a window that contains a list of
commonly used step types, built-in data types, and custom data types. For
a detailed discussion of the types and the type palette, refer to Chapter 9,
Types

User Manager

TheUser Managercommand displays a window for managing TestStand
users and their privileges. From this window you can add new users, update
user privileges, and change the types of privileges that users can have. For
a detailed discussion of user management, refer to Chaptgséd,
Management

Paths

ThePathscommand lets you modify the directory portion of pathnames in
sequence files and station configuration files. This can be useful after you
copy a sequence file or configuration file from one computer to another.

Figure 4-7 shows the Edit Paths in Files dialog box.

Edit Paths in Files E

Select Files in which to Edit Paths:

Engine Settings [2A\T estStand\CighT estE Rec.ini] -
Station Globals [T estStandCighStationGlobals. in)
TestStandModel Seq [T estStandWComponentziHIsModels\Te
Type Palette [T estStand\CighTypePalette. ini)

Jzer Manager [T estStandhClghU sers.ini) =
| | 3

Browsze. .. | ok I Cancel

Figure 4-7. Edit Paths in Files Dialog Box

TestStand User Manual 4-8 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

The list box contains three station configuration files and the sequence files
currently in memory. For each of the sequence files in memory, the list box
shows the simple filename and the complete pathname. For each of the
station configuration files, the list box shows a symbolic tag and a
pathname. The following are the symbolic tags and purposes of the station
configuration files:

* Config is the file in which TestStand stores the station options.

e Globals isthe file in which TestStand stores that names and values of
the station global variables.

* TypePalette isthe file in which TestStand stores the information in
the type palette.

To edit the paths in one of the files in the list box, double-click on the file.
To edit paths in multiple files in the list box, select the files and click on the
OK button. To edit the paths in a sequence file that is not in the list box, use
the Browse button.

When you select one or more files to edit, the Edit Paths dialog box appears.
Figure 4-8 shows the Edit Paths dialog box.

Edit Paths [X]

Paths:
Path L Status__|
*
cpu.zeq computer. zeq MainSequence CPU SFPath
computer. prj computer. zeq MainSequence FPower On ModulePriPath
computer.c computer. zeq MainSequence Power On ModuleSrcPath
computer.dil computer.zeq MainSequence Fower On ModulePath
Empty Type Palette; ReportGe.. FlexCStepaddditions ModuleSrcPath
Empty Type Palette; ReportGe.. FlexCStepaddditions LibPath
Empty Type Palette; computer.... MumericLimitT est Edit ModuleSrcPath
CommonSubsteps.dll Type Palette; computer.... MumericLimitT est Edit LibPath
Empty ReportGen_htmlseq; T... SegCallStepédditions SFPath
Empty computer.zeq; cpu.seq; .. StdCWIStepddditions ModulePriPath
Empty computer.zeq; cpu.seq; .. StdCWIStepddditions ModuleSrcPath
Ernpty computer.zeq; cpu.geq; ... StdCWIStepddditions ModulePath =
Crambn Tumem Dalobbm: mmesmaab=r D mmn D =il T ommk C A hdm A~ rm Db le,
| [;l_l
Full Path: 24 TestStandYE xamplesiDematChcomputer.dil Change. .. | Rewvert I Replace... |
Ok I Cancel |
Figure 4-8. Edit Paths Dialog Box
© National Instruments Corporation 4-9 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

Each entry in the list box represents a property that hasathedata type.

The list box contains many columns of information for each entry. The Path
column displays the current value of the property. The current value can be
a simple pathname, a relative pathname, or an absolute pathname. The
Status column display@mpty when the current value of the property is an
empty pathname or when it is a pathname that TestStand cannot find on
disk. The File column displays the name of the file that contains the
property. The Sequence column displays the name of the sequence, if any,
that contains the property. The location column specifies that particular part
of the sequence that contains the property, for example, a step type or one
of the step groups. The Step column displays the name of the step or
substep, if any, that contains the property. The Property column displays the
name of the property.

The Full Path indicator in the bottom left corner of the dialog box shows
the absolute pathname to which TestStand can resolve the current value of
the selected property. TestStand searches for the file through the search
paths you specify using the Search Directories dialog box. If TestStand
cannot find the file, the Full Path indicator shaws Found.

Use theChangebutton to browse on disk for the file to which you want the
property value to refer. If you find such a file, a dialog box prompts you to
set the property value to the absolute pathname or to save the directory path
in the list of search paths.

Use theRevert button to set the selected property to the value it had when
you opened the dialog box.

Use theReplacebutton to change a substring in one or more of the property
values. This is particularly useful for property values that are absolute
pathnames. For example, if several properties contain pathnames that start

with c:\myfiles , but the files are now idi\testfiles , you can use
the Replacebutton to change all instancescdfnyfiles in the list to
d:\testfiles

4-10 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Find Type

TheFind Type command displays a dialog box that contains a list of all
types currently in memory. TestStand generates the list of types from all
sequences currently in memory, the types that the user manager uses, the
types that station global variables use, and types in the Type Palette
window. You can jump to the window that contains a type by
double-clicking on the type or by selecting the type and then clicking on the
Goto button.

Figure 4-9 shows the Find Type dialog box.

Find Type [x|

Step Type
Step Type
Step Type
Step Type
Step Type
Step Type
Step Type
Step Type
Step Type
Cugtom Data Type
Cuztomn Data Type
Built-in D ata Type
Built-in Data Type
Built-in D ata Type
Built-in Data Type

; wpe P I

MumericLimitT est Type Palette; computer.seq; StepTypes.seq

StringyalueT est Tvpe Palette; StepTypes. zeq

Action Type Palette; TestStandtodel Seq; computer seq; StepTypes. seq
SeguencelCall Type Palette; TestStandModel Seq; computer.seq; StepTypes.zeq
Statemant Type Palette; TestStandiodel Seq; computer seq; StepT ypes seg
teszageFopup Type Palette; TestStandtodel Seq; StepTypes.zeq
CallEsecutable Tupe Palette; StepTypes. zeq

LimitLoaderStep Type Palette; StepTypes. zeq

Goto Type Palette; TestStandModel Seq; StepTypes.seq

Lahel Type Palette; TestStandtodel Seq; StepTypes.zeq

T TestStandModel Seq

Repartdptions TestStandtodel Seq

Fath Type Palette; StationCallbacks. Seq; TestStandModel Seq; computer.seq; StepTy...
zer Idzer Manager

Errar Type Palette; TestStandtodel Seq; computer seq; StepTypes.zeq
CornmonB esults Tvpe Palette; TestStandModel Seq; computer seq; StepT ypes.seg

Goto I Cancel

Figure 4-9. Find Type Dialog Box

© MNational Instruments Corporation 4-11 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

Browse Sequence Context

The Browse Sequence Contextommand displays a tree view of variable
and property names, as shown in Fegnl10.

Browsze Yariables and Properties in Sequence Context E3

File: Samplel.zeq
Sequence: MainSequence
Step Group: Main

Step: ROM Diagnostics

[=- Step

[Result

- Limits

: ?----Low [Mumber]

i LoHigh (Mumber)
Comp [Sting)

-~ InBuf - [String]

- DataSource [String)
5----Disp|ayFiadi>: [Mumber]
[+ Locals

- Parameters

[+- FileGlobals LI

Wariable

| »

Step.Limits. Low

Copy Property Path |

Figure 4-10. Browse Variables and Properties in Sequence Context Dialog Box

The tree véw shows variables and properties that you can access in
expressions or in step modules. The sefaofable and property names that
appears in the treeewi depends on the aegé window and the currently
selected item.

For example, theStep base property name appears when you select
Browse Sequence Contexin a step in the @gk sequence wiraiv. A text
message ave the tree \vaw describes the agt window and selected item.

Also, thevariables and properties that you can access at run-tffee di
depending on the state ofeeution. Asequence conteid theTestStand
API object that contains thariables and properties you can access at a
particular point duringxecution.

4-12 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

In expressions you access tWedue of avariable or propertypy specifying
apathfrom the sequence cat to the particulavariable or propeyt For
example, you can set the status of a step using trevialy expression:

Step.Result.Status = "Passed"

In step modules, you access tadue of avariable or propertiy using
PropertyObiject methods in th@estStand AéveX API on the sequence
coniext. As withexpressions, you must specify a path from the sequence
congext to the particular property ariable.

You can use thBrowse Sequence Contéxcommand tduild a string
literal that spedies the path to a statimariable, sequendde variable,
sequence localariable, sequence parametar step propeyt Selecting
Copy Variable Name copies the string literal to the system clipboard,
which you can then paste into @tpression or the code for a step module.

Toolbars

The Toolbars command displays a list of available toolbars. Visible
toolbars have checkmarks beside them in the toolbar list.

Status Bar

Use theStatus Barcommand to specify whether the status bar is visible at
the bottom of the main window. When the status bar is visible, a checkmark
appears beside this command in the menu.

Launch Report Viewer

Use theLaunch Report Viewer command to display the report for the
current Execution window using the external viewer associated with the
report format. This option is available only when an Execution window is
active and the execution is complete.

© MNational Instruments Corporation 4-13 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Execute Menu

This section explains how to use the commands iEgeeutemenu, as
shown in Figure 4-11.

File Edit Y“iew @308 Debug Configure Toolz: Window Help _|5|£||
Test UUTs F5
Single Pass Clrl+F5

Run MainSequence

Bun Selected Steps
Loop on Selected Steps. .

Break At First Step
v Tracing Enabled

Figure 4-11. Execute Menu

Execution Entry Point List

Model execution entry points appear at the top obBkecutemenu. For
example, the default TestStand process model provides two entry points:
Test UUTsandSingle Pass. Selecting a model entry point invokes an
execution using the active sequence. Refer t&thding an Execution
section in Chapter &gequence Executipfor more information on using
execution entry points to start an execution.

Run Active Sequence

Use theRun Active Sequencecommand to initiate an execution of the
active sequence without using a process model.

Restart

Use theRestart command to rerun a completed execution. This option is
available only when an Execution window is active and the execution is
complete.

TestStand User Manual 4-14 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Run Selected Steps

You can execute selected steps in a sequence interactively by choosing
Run Selected Stepdf you execute steps in a Sequence File window, you
initiate the interactive execution as an independent, top-level execution. If
you execute steps in an Execution window for a sequence execution that is
suspended, you initiate the interactive execution as an extension of the
suspended execution. When you run steps interactively, TestStand does not
evaluate step preconditions.

Refer to thdnteractively Executing Stejgection in Chapter gequence
Execution for more information on running steps interactively.

Loop on Selected Steps

You can execute and loop on selected steps in a sequence interactively by
choosingLoop on Selected Steps

Figure 4-12 shows the Loop Count tab on the Loop on Selected Steps
dialog box.

Loop on Selected Steps E3

Loop Count | Stop Expression I

Loop Count;

100 _:I [Loop Indefinitely
Stop On Condition:

|<None> j

ak. I Cancel

Figure 4-12. Loop on Selected Steps Dialog Box—Loop Count Tab

The Loop Count control specifies the maximum number of iterations that
TestStand executes the selected steps. If you enable the Loop Indefinitely
checkbox, the Loop Count control dims. You can also specify that
TestStand stop the interactive execution when any step status is error, pass
or fail. If you want TestStand to evaluate a custom expression after each
step executes to determine whether TestStand continues the interactive
execution, you can use the Stop Expression tab to specify the expression.
The stop expression must evaluate to a Boolean value. TestStand stops
looping if the stop expression evaluates to True.

© MNational Instruments Corporation 4-15 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Figure 4-13 shows the Stop Expression tab. When you enable the Specify
Custom Stop Expression checkbox, the Stop On Condition control dims on
the Loop Count tab.

Loop on Selected Steps E

Loop Count - Stop Expressian |

[w iSpecify Custam Stop Espressiors

Stop E xprezsion:

LI Browse... |
I
Q. I Cancel

Figure 4-13. Loop on Selected Steps Dialog Box—Stop Expression Tab

If you execute steps in a Sequence File window, you initiate the interactive
execution as an independent, top-level execution. If you execute steps in an
Execution window for a sequence execution that is suspended, you initiate
the interactive execution as an extension of the suspended execution. When
you run steps interactively, TestStand does not evaluate step preconditions.

Refer to thdnteractively Executing Stegection in Chapter égequence
Execution for more information on running steps in a loop interactively.

Break On First Step

UseBreak On First Stepto suspend execution on the first step that you
execute whenever you initiate execution in the active sequence. When
enabled, this command has a checkmark beside it in the menu.

Tracing Enabled

UseTracing Enabled to highlight each step as it becomes the active step
during execution. When disabled, updates to the sequence execution
display occur only when execution is suspended. When enabled, this
command has a checkmark beside it in the menu.

TestStand User Manual 4-16 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Debug Menu

This section explains how to use the commands iD#tmig menu, as
shown in Figure 4-14.

|j’ File Edit “iew Eﬁecutegnnfigure Toolz ‘Window Help _|5’|5||

Fesume F5

Step Inta F8

Step Over F10
Step Out Shift+F7
Break Ctrl+F3
Terminate Ctrl+Shift+F3
Abart [ho cleanup]

Break Al

Terminate All

Abort 2l [no cleanup)

Besume Al

Figure 4-14. Debug Menu

Resume

Use theResumecommand to continue execution when in a breakpoint
state.

Step Over

Use theStep Overcommand to execute an outlined step when in a
breakpoint state. If the program last suspended on a call to another
sequenceStep Overexecutes the entire sequence and then enters a
breakpoint state on the step following the sequence step. If the engine
encounters a breakpoint within the sequence Stejp, Overpauses at the
breakpoint.

Step Into

The Step Into command is similar to thetep Overcommand except that
Step Into enters the function and suspends at the first step in the sequence
call.

Step Out

The Step Outcommand resumes execution through the end of the current
sequence and breakpoints on the next step in the calling sequence.

© MNational Instruments Corporation 4-17 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Break

TheBreak command suspends the active execution after completing the
execution of the current step.

Terminate

TheTerminate command terminates a running or suspended execution. A

running execution terminates only after completing the currently executing

step. When you terminate an execution, TestStand runs the Cleanup step
groups for all active sequences on the call stack.

Note If any of your step modules wait for user input or do not return quickly for any
other reason, the step module can monitor for termination or abort requests by
using theExecution class in the TestStand ActiveX API.

Abort (no cleanup)

TheAbort command aborts a running or suspended execution. A running
execution aborts only after completing the currently executing step. When
an execution aborts, TestStand does not run any Cleanup step groups.

Note If any of your step modules wait for user input or do not return quickly for any
other reason, the step module can monitor for termination or abort requests by
using theExecution class in the TestStand ActiveX API.

Break All

TheBreak All command is similar to thBreak command except that
Break All suspends all running executions.

Terminate All

TheTerminate All command is similar to tHeerminate command except
thatTerminate All terminates all running executions.

Abort All (no cleanup)

TheAbort All command is similar to th&bort command except that
Abort All aborts all running executions.

Resume All

TheResume Allcommand is similar to thieResumecommand except that
Resume Allcontinues all suspended executions.

TestStand User Manual 4-18 © National Instruments Corporation

Configure Menu

Chapter 4 Sequence Editor Menu Bar

This section describes how to use the commands i@dhégure menu,
as shown in Figure 4-15.

|Ei|e Edit ‘iew Execute Debug EMSgiaMCl Took: ‘window Help ;lilﬂl
Station Options...

Search Directories. ..
External Wiewers...

Adapters...

Report Options. ..
Databasze Options...

Figure 4-15. Configure Menu

Station Options

Use theStation Options command to set preferences for your TestStand
station. The settings affect all sequence editor sessions you run on your
computer. The command displays a dialog box with the following tabs.

© MNational Instruments Corporation 4-19 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

Execution

The Execution tab has options for breakpoints, tracing, and interactive
execution. Figure 4-16 shows the Execution tab.

Station Dptions E
zer Manager I Language I Remote Execution
Execution | Time Limits I Preferences I Model

—I¥ Enable Ereakpoints

[T Allow Break While Teminating
¥ Show Dislog On Run-Time Error

—Iv Enable Tracing

Speed: Slow Fast

L

[allow Tracing lnto 5 etup/Cleanup

™ Allow Tracing Into Pre/Post Step Callbacks

[Allow Tracing lnta Post Action Callbacks

[allow Tracing Inta Sequence Calls Marked 'With Tracing "OfF"
™ Allow Tracing ‘while Teminating

[Trace Into Separate Execution Callbacks

™ Trace Into Entry Points

-~ Interactive Mode
¥ Record Results in Interactive Mode

¥ Run Setup and Cleanup for Interactive Execution

[Always Goto Cleanup On Sequence Falure
[Disable Besult Recording for &1 S equences

ak. I Cancel

Figure 4-16. Execution Options

The following options are available on the Execution tab.

L]

Enable Breakpoints—You can use this option to enable or disable all
breakpoints. When you enable breakpoints, the following additional
options are available.

— Allow Break While Terminating—Honors breakpoints when
terminating an execution.

— Show Dialog On Run-Time Error—Displays a dialog box when a
run-time error occurs. The dialog box lists the failing step, the
cause of the failure, and prompts you with options for handling the

4-20 © National Instruments Corporation

© MNational Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

error. The options include ignoring the failure and continuing
execution, jumping to the Cleanup step group, and aborting
immediately.

You also can choose to break at the current step and to suppress
the run-time error dialog box during the current execution. Refer
to theRun-Time Errorsection in Chapter Gequence Executipn

for more information.

Enable Tracing—You can use this option to enable or disable tracing.
When tracing is in effect, the sequence editor or operator interface
program displays each step as it is executing. This is useful for
debugging but adds significant performance overhead to the execution
of your test programs. When you enable tracing, the following
additional options are available.

Speed—Specifies whether TestStand inserts a nominal delay
between trace events sent to the sequence editor or any operator
interface. This delay only applies when tracing is enabled. You
can use this to slow down the tracing so that you can visibly see
each step executing.

Allow Tracing Into Setup/Cleanup—Enables tracing of steps in
the Setup and Cleanup step groups of each sequence.

Allow Tracing Into Pre/Post Step Callbacks—Enables tracing of
steps in any of the Pre Step and Post Step Engine Callbacks.

Allow Tracing Into Post Action Callbacks—Enables tracing of
steps in Post Action callbacks.

Allow Tracing Into Sequence Calls Marked With Tracing
“Off"—Enables tracing into all subsequences when tracing is
enabled for the calling sequence.

In the Run Options tab of the Step Properties dialog box, you can
choose a setting that disables tracing when the step calls a
subsequence. If you enable the Allow Tracing Into Sequence Calls
Marked With Tracing “Off” option in the Station options dialog
box, TestStand ignores that Step Properties setting and does not
alter the tracing state when it calls the subsequence.

Allow Tracing While Terminating—Enables tracing of steps that
run while execution is terminating. Examples of steps that can run
when execution is terminating are steps in Cleanup step groups
that run when you terminate execution in the middle of a
sequence.

4-21 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

— Trace Into Separate Execution Callbacks—Enables tracing in
callbacks that run as executions separate from the top-level
sequence execution. Examples include front-end callbacks and
callbacks that you execute from theols menu.

— Trace Into Entry Points—Enables tracing of steps in process
model point sequences, such asTiss UUTsandSingle Pass
entry points.

¢ Interactive Mode—Use this section to set options that apply when
you run steps interactively

— Record Results in Interactive Mode—If this option is enabled,
TestStand records the results of steps that you run interactively. If
you run steps interactively from an Execution window when
suspended in a normal execution, TestStand appends the results to
the result list for the active sequence invocation. Thus, the results
appear in the test report for the normal execution.

If you run steps interactively from a Sequence File window,
TestStand accumulates the results in a result list for the interactive
execution. Interactive executions do not use process models and
thus do not generate test reports, but you can access an interactive
execution result list from an Engine post-interactive callback.

— Run Setup and Cleanup for Interactive Execution—Specifies
whether to run the Setup and Cleanup step groups for the sequence
that contains the selected steps. This option applies only when you
run the steps from a Sequence File window.

¢ Goto Cleanup On Sequence Failure-Causes execution to jump to
the Cleanup step group when the sequence status is set to Failure.

« Disable Result Recording for All Sequences-When you disable
result recording with this option, the process model does not generate
a result report for sequence executions.

TestStand User Manual 4-22 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Time Limits

The Time Limits tab allows you to specify time limits for executions. If you
specify a time limit, you choose an action to take when a time limit expires.
Figure 4-17 shows the Time Limits tab.

Station Options E
Uzer Manager | Language I Remote Execution
E wecution Time Limits | Frefersnces I b odel
Settings for;
IEHiling j

— Time Limit Settings

IWhen Executing j

¥ Set a Time Limit for This Operation

 Tirme: Lirmit
|1 a zeconds

—When Time Expires:

& Prompt for Action

" Teminate Execution

™ Abart Execution

€ Kill the Execution's Threads

WARNIMG - Killing threads maw leave TestStand in an
unreliable state.

Figure 4-17. Time Limits Options

The tab maintains different time limits for normal execution and for
executions that run while the engine is exiting. You can switch between the
different time limits by using the Settings selection ring.

The Time Limit Settings selection ring contains the following types of time
limits.
* When Executing—Applies to an execution from start to completion.

* When Terminating—Applies to executions from a termination
request to completion.

* When Aborting—Applies to executions from an abort request to
completion.

© MNational Instruments Corporation 4-23 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

You can enable the time linby enabling the Set@me Limit for this
Operation option.

You can select one of the folNing actions to take when the time limit

expires.

« Prompt for Actio n—Displays a dialog box with the option to
terminate, abort, or kill thexecution.

* Terminate Execution—Initiates a termination of a runnimgecution.

« Abort Execution—Initiates an abort of a running or terminating
execution.

« Kill the Execution’s Threads—Ends the thread for a running,
terminating, or abortingxecution.

When you terminate a runnimgecution,TestStandxecutes all the

Cleanup step groups in sequences on the call stack legémation stops.

A terminating sequence can time out when a step in one of the Cleanup step
groups hang or take a long time to complete. When you abort a running or
terminatingexecution,TestStand returns back up the call stack without
running ay Cleanup step groups. An abort operation also can time out
when the lasexecuted step hangs or takes a long time to complete. When
youkill a running, terminating, or abortiegecution,TestStand terminates

the thread running thexecution without ay cleanup of memgr This can

leave TestStand in an unreliable state.

4-24 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Preferences

The Preferences tab specifies general options for TestStand. Figure 4-18
shows the Preferences tab.

Station Options E
Uzer Manager I Language | Remaote Execution
Execution I Time Limits Preferences | Model

¥ Dizplay Wamming on Fiun Mode Changes in Execution Window
¥ Cloze Completed Execution Displays on Execution Start

v Prompt ta Find Files

™ Show Hidden Properties in Nest Session

[Allow Editing of Ml Installed Types

Save Before Running:
 Always

* Ak

' Mever

Figure 4-18. Preferences Options

The following options are available on the Preferences Tab.

© MNational Instruments Corporation

Display Warning on Run Mode Changes in Execution

Window —Displays a warning dialog box when you modify the run
mode for a step in an Execution window. When you modify the run
mode in a Sequence File window, the modification applies to all
subsequent executions, and TestStand writes the new run mode to disk
when you save the sequence file. When you modify the run mode in an
Execution window, the modification affects only that execution and
TestStand does not save the modification to disk.

Close Completed Execution Displays on Execution
Start—Automatically closes all completed Execution windows when
you start a new execution.

Prompt to Find Files—Displays a file dialog box when TestStand
cannot find necessary files in the current directory search path.

Show Hidden Properties in Next SessierEnables the displaying of
hidden properties. Most hidden properties are built-in step properties
that TestStand uses. A change to this option does not take effect until
the next time you restart the sequence editor.

4-25 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand User Manual

Allow Editing NI Installed Types—Allows users to modify the step

and data types that ship with TestStand. These include built-in step
types, standard data types, and some custom data types. If you attempt
to edit an Nl installed type, TestStand displays a dialog box stating that
you must enabled this option to edit the type.

Save Before Running—You can configure the sequence editor to
never save modified files, to always save modified files, or to ask
whether to save modified files before running.

Model

The Model tab specifies the model options for the station and for
sequences. Figure 4-19 shows the Model tab.

Station Dptions E
zer Manager I Language I Remote Execution |
ExecLiion I Time Limits I Preferences tadel

V¥ Use Station Model
™ &llow Otker models

Station bodel:
ITestStandModel.Seq Browse...

IZ:\T estexechComponentziMI\Models\T estStandiodel\ T estSta

Figure 4-19. Model Options

The following options are available on the Model tab.

Use Station Model—Enables the Station Model control, which
specifies the pathname of the station model sequence file. When this
option is disabled, no station model is in effect, and individual
sequence files have no process model unless they specify one
explicitly. Usually, sequence files do not specify process model files
explicitly.

Allow Other Models—Allows sequence files to specify a process
model file other than the current station model file. When this option
is disabled, you can load only sequence files that do not specify a
process model file and sequences that specify the current station model
file as their process model file.

Station Model—Specifies the pathname of the station model
sequence file.

4-26 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

User Manager

The User Manager tab specifies whether TestStand enforces user
privileges. It also specifies the location of the user manager configuration
file. Figure 4-20 shows the User Manager tab.

Station Options E
Execution | Tirne Limnitg I Preferences I M odel
Uzer Manager | Lanhguage I Remate Execution

— User Manager File

Current Lzer Manager File:
25T estexechCigiU zers.ini

— Configure
[Changes do not take effect until next sezzion.]

¥ Use Default

I Erowses |

I[Nn file specified)

v Check User Privieges
™ Automatically Login Windows Spstem User
™ Hide User Manager ‘Windaw

Figure 4-20. User Manager Options

The following options are available on the User Manager tab.

© MNational Instruments Corporation

Check User Privileges—Prevents users from accessing features for
which they do not have privileges. If this option is disabled, any user
can access any feature without regard to privileges. You must have
sufficient privileges to change this option or any other option that
affects privilege checking.

User Manager File—Displays the user manager file that is currently

in memory and allows you to select a new one. The default file is
TestStand\Cfg\Users.ini . Selecting a new user manager file

does not take effect until the next time you restart the sequence editor.

Hide User Manager Window—Disables theJser Managermenu
and toolbar items.

Automatically Login Windows System User—When enabled,
TestStand attempts to login the current Windows user name in the
TestStand user list. If the user name is found in the TestStand user list,

4-27 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

TestStand automatically logs in the user at the appropriate level
without prompting for a password. If the user name is not found,
TestStand prompts you to login. You must create a user entry in the
TestStand User Manager and enter the Windows login name for the
user as their TestStand login name for this option to function.

Note The TestStand User Manager is designed to help you implement policies and
procedures concerning the use of your test station. It is not a security system and
it does not inhibit or control the operating system or third-party applications. You
must use the system-level security features provided by your operating system to
secure your test station computer against malicious use.

Language

The Language tab specifies the station language. Figure 4-21 shows the
Language tab.

Station Dptions E
Execution I Time Linnitz | Preferences I todel I
|Jzer Manager Language | Fiemote Execution I

Select a Language:

English j

Figure 4-21. Language Options

Remote Execution

The Remote Execution tab specifies whether a remote machine can run a
sequence on this station.

TestStand User Manual 4-28 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Search Directories

The Search Directoriescommand lets you customize the search paths for
finding files. Figure 4-22 shows the Edit Search Directories dialog box.

[application directory [Z:4T estexechEin)
TestStand directary [£:5T estexec)
TestStand bin directory [Z:AT esterechBin)
[Initial working directory [Z:4T estexechBin)

Windows spstenn directary [T MM T WS pstem32) DLLEXE

Windows directon [C:3wINHT] DLL.E=E

] PATH erwironment variable

Adapter suppaort directory [Z:M\TestexechAdapterSuppart] Subdirs

Uzer components directory [Z:4T estexec\Componentsh. .. Subdirs

M1 compaonents directony [Z:5T estexec ComponentzhMI] Subdirs
e add.. | HEvelp |
[" Search Subdirectories Ferove | Mave Down |

Fil= Extenzion Restrictions

Edit 5earch Directories E
Search Directories:
Path Status Subdirs File Extenzsions
Current sequence file dirsctory

[Exclude

ar. Canicel |

Figure 4-22. Search Directories Dialog Box

The dialog box displays a list of paths, the higher paths taking precedence
over the lower paths. The list contains a default set of paths. A checkbox
appears to the left of each path in the list. When you place a checkmark next
to a path, TestStand includes the path in the overall search path. You can
reorder paths in the list by selecting a path and clicking oNltwe Up
andMove Downbuttons. You can add a custom directory search path with
the Add button.

You can use the File Extension Restrictions control to search only for files
with specific filename extensions. For example, to search for only DLLs
and executable files, enter the following:

DLL, EXE

© MNational Instruments Corporation 4-29 TestStand User Manual

Chapter 4

TestStand User Manual

Sequence Editor Menu Bar

To search for all files except for files with specific extensions, enable the
Exclude option. The dialog box prefixes the extension list with a tilde (~)
in the File Extensions column.

The Search Subdirectories option specifies whether to include all
subdirectories under the selected path in the overall search path.

External Viewers

TheExternal Viewers command displays a dialog box in which you can
specify the external viewer to use for a particular report format. You
specify both the external viewer, such as Microsoft Notepad and Microsoft
Internet Explorer, and the report format, suckbas and.html files.

Use theAdd button to add an entry to the viewer list. UseDRéetebutton

to remove an entry. If you do not specify an external viewer for a format,
TestStand uses the application that Windows associates with the file
extension for the format.

Adapters

TheAdapters command displays a dialog box in which you can select the
active module adapter for inserting steps, or configure a specific module
adapter. Refer to théonfiguring Adaptersection in Chapter 12/odule
Adapters for more information.

Report Options

TheReport Options command displays a dialog box in which you can
customize the generation of report files. The command calls an entry point
in the default TestStand process model file. The options you set apply to all
sequences you run on the station. Refer to Chaptéiddaging Reports

for more information on available report options.

4-30 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Tools Menu

This section explains how to use the commands i tieds menu, as
shown in Figure 4-23.

| File Edit Wiew Execute Debug Configure KRN “window Help ;lilﬂj
Sequence File Documentation #
Sequence File Converters 3
Import/E #part Limits....

Update Automation ldentifiers

Run Engine Installation Wizard...

LCustomize...

Figure 4-23. Tools Menu

Sequence File Documentation

Use theSequence File Documentatiosubmenu to generate ASCII text or
HTML documentation for a sequence file.

Sequence File Converters

Use theSequence File Convertersubmenu to convert a
LabWindows/CVI or LabVIEW Test Executive sequence file into a
TestStand sequence file. Refer to @@nverting From the LabVIEW Test
Executive to TestStarmhdConverting From the LabWindows/CVI Test
Executive to TestStammhline help documents for more information on
converting sequences.

Import/Export Limits

Thelmport/Export Limits command imports step limit values from an
external file or system clipboard into the steps of a sequence, or exports
step limit values from steps in a sequence to an external file or system
clipboard. Refer to themport/Export Limits Command in the Tools Menu
section in Chapter 1®uilt-In Step Typedor more information on
importing and exporting limits.

Update Automation ldentifiers

If you update the interface for an ActiveX Automation server and the object
and member identifiers for the server change, you must respecify any step
that uses the server before you configure the ActiveX Automation Adapter
to use early binding. You can use thedate Automation ldentifiers
command to update the identifiers in the active sequence file based on the
name of the object or member.

© MNational Instruments Corporation 4-31 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

For steps that create an object, the command updates the object identifiers,
CLSID andIID . For steps that call a method or property, the command
updates the member identifistEMBERIDRefer to thé\ctive X Automation
Adaptersection of Chapter 1®)odule Adaptersfor more information on
configuring the adapter to use early or late binding and on developing
ActiveX servers while you are developing sequences.

Run Engine Installation Wizard

Use theRun Engine Installation Wizard command to create a custom
TestStand engine installation. Refer to@reating a Run-Time TestStand
Engine Installatiorsection in Chapter 1®istributing TestStandor more
information on using the installation wizard.

Customize

Use theCustomizecommand to create your own entries inThelsmenu.
Figure 4-24 shows the Customize Tool Menu dialog box.

Tools Menu: Add..
Iter T ext | Type |
Sequence File Documentation Submenu Remove
Sequence File Converters Submenu
Irnport/E =port Linits, .. Sequence tove Up

Lomnmand

Move Do

Expatd

[Ealapse

Item Text Expression: I"Notepad" Browse...

Hidden E xpression: I Browse...

Enable E xpression; IEU”ENU serHasPrivilege[™") Browse...

Command: Inotepad Browse...

IC:'\WINNT\SystemSJ?\notepad.e:de

Arguments: I

| e

Initial Directory: I Browse...

(1] | Cancel

Figure 4-24. Customize Tool Menu Dialog Box

TestStand User Manual 4-32 © National Instruments Corporation

Chapter 4 Sequence Editor Menu Bar

Use theAdd button to insert a new menu item above the selected item in
the Tools Menu list. You can add the following types of menu items.

* Submenu—Contains additional menu items.
« Command—Invokes a Windows executable.
» Sequence—Initiates an execution on a sequence in a sequence file.

» Sequence File—Creates a submenu that lists all sequences in a
sequence file as menu items.

The Removebutton deletes the menu item from aols menu. Use the
Move Up andMove Down buttons to change the order of items within the
menu or submenus.

Use theExpand button to view the menu items in a submenu.Caéapse
to step out of a items in a submenu.

The Item Text Expression option specifies the literal text to display for the
menu item. You can specify an expression that evaluates to the literal text.

The Hidden Expression option allows you to specify an expression that
determines when the menu item is hidden. If empty, the expression is
assumed to bealse .

Note TestStand evaluates the Hidden Expression in @uastructToolMenus ~ method
of theEngine class. The sequence editor constructs Tlemls menu by calling this
method each time you click on it, but the operator interfaces construcifoas
menu only once during initialization.

The Enable Expression option appears for Command and Sequence item
types. It lets you specify an expression that determines when the menu item
is enabled. The expression must retfimue to enable the menu item and
False to dim the menu item.

The Command, Arguments, and Initial Directory options appear only for
the Command menu type. The Command option specifies the executable
path. The Arguments option specifies the command line arguments. The
Initial Directory option specifies the initial working directory for the
executable.

The Sequence File and Sequence options specify the target for the
Sequence File and Sequence menu item types.

© MNational Instruments Corporation 4-33 TestStand User Manual

Chapter 4 Sequence Editor Menu Bar

Window Menu

This section explains how to use the commands iimelow menu, as
shown in Figure 4-25.

1Y Help 18] |
Lazcade
Tile

| File Edit “iew Execute Debug Configure Tools RS

Close Completed E xecution Displays

v 1 computer.zeq
2 cpu.seq
3 Single Pass - computer. zeq [7] [Completed]

Figure 4-25. Window Menu

Cascade

Use theCascadecommand to arrange all open windows so that each title
bar is visible.

Tile
Use theTile command to arrange all open windows in smaller sizes to fit
next to each other.

Close Completed Execution Displays

Use theClose Completed Execution Displaysommand to close all
execution displays that are no longer executing.

Open Windows
A list of all open windows appears at the bottom ofWiedow menu.

TestStand User Manual 4-34 © National Instruments Corporation

Sequence Files

This chapter describes TestStand sequence files. Each sequence file
contains one or more sequences. Sequences, in turn, contain steps that
conduct tests, set up instruments, or perform other actions necessary to test
a UUT. In addition to sequences, sequence files can contain global
variables. You can access sequence file global variables from every
sequence in the file. Sequence files also contain the definitions for the data
types and step types that the sequences in the file use.

You can use the sequence editor to create and edit sedjlendéu can
execute sequences from the sequence editor or fngrotherTestStand
operator interface program.

There are multiple types of sequeffibes. Most sequendées youwork
with arenormal sequence filedlormal sequenciles contain sequences
that test UUTsModel sequence filesontain process model sequences.
Station Callback sequence filegntain the station callback sequences.
Front-End Callback sequence fileantain Front-End callback sequences.
Usually, your computer has only one Station Callback sequiglecand

one Front-End Callback sequeride.

In the sequence edito/ou use a Sequence File wimdto view and edit a
sequencéile. You can open aexisting sequencéle into a Sequence File
window by selectingFile»Open You can create aew Sequence File
Window by selecting~ile»New.

Sequence File Window Views

You use the View ring at the top right of the Sequence File window to select
the aspect of the file to display. You can use the View ring to view an
individual sequence, a list of all sequences in the file, the global variables
in the file, or the types that you use in the file.

© MNational Instruments Corporation 5-1 TestStand User Manual

Chapter 5

Sequence Files

Figure 5-1 shows the contents of the View ring for an example sequence

file.

Trarsmitter Tests

4 aitiS equence

Transmitter Tests
Receiver Tests
Firmware Tests

All Sequences

@ Sequence File Globals
T#& Sequence File Types

Figure 5-1. Sequence File View Ring

All Sequences View

Sequence files can contain multiple sequences. You can display a list of
the sequences in a file by selecting All Sequences from the View ring.

You can use this view to create new sequences and to cut, copy, and paste
sequences. You also can drag and drop sequences to the All Sequences

view in another Sequence File window.

Figure 5-2 shows the All Sequences view for an example file.

i3 Example_seq _ O] x|

All Sequences

[

[Z] MainSequence

i
Seguence | Comment
M ainS equence
Tranzmitter Tests

Receiver Tests
Fitrmware Tests

[E] Transmitter Tests
Receiver Tests
Firmware Tests

D Sequence File Globals

'EE Sequence File Types

Figure 5-2. All Sequences View in the Sequence File Window

TestStand User Manual

52

© National Instruments Corporation

Chapter 5 Sequence Files

Sequence View Context Menu

You can display a context menu by right-clicking on the view. The items in
the context menu vary depending on the whether you right-click on a
sequence or on the background area of the view. The context menu can
contain the following items.

Open Sequence

The Open Sequenceommand changes the sequence file view to display
the contents of the selected sequence.

Insert Sequence
Thelnsert Sequencecommand adds a new sequence to the sequence file.

Rename

The Renamecommand allows you to edit the name of the selected
sequence

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that

contains the names of variables, properties, and sequence parameters you
can access from expressions and step modules when the sequence is
running. This command also appears in\flhewv menu of the sequence

editor menu bar. Refer to theew Menusection in Chapter §equence

Editor Menu Bar for more information.

View Contents

The View Contentscommand changes the sequence file view to display
the contents of the selected sequence.

Sequence Properties

TheProperties command displays the Sequence Properties dialog box for
the selected sequence. You use the Sequence Properties dialog box to view
and edit the built-in properties of the selected sequence. Usually, the dialog
box has a single tab titled General. If the current sequence file is a process
model file, the dialog box has a second tab titled Model.

© MNational Instruments Corporation 5-3 TestStand User Manual

Chapter 5

Sequence Files

TestStand User Manual

Figure 5-3 shows the Sequence Properties dialog box.

Main5equence Sequence Properties E

General | Model |

[iGota Cleanup on Sequence Failure

™ Dizable Result Recording for Al Steps

Iv Optimize Mon-reentrant Calls ta This Sequence

(Do otk enable this option if your sequence depends on an initial step property
value that you change during the execution of pour sequence]

Comment:
Owernide this in the client fle with a zequence that performs tests an the JUT. ;l
=
Preconditions. ..

0K I Cancel

Figure 5-3. Sequence Properties Dialog Box

The General tab contains the following controls:

Goto Cleanup on Sequence Failure-TestStand maintains an

internal status value for each executing sequence. When the status
property of a step is set Failed and the Step Failure Causes
Sequence Failure option is enabled for the step, TestStand sets the
internal sequence status valuetdled . The Goto Cleanup on
Sequence Failure option controls the flow of execution when the
internal sequence status value is seétdited . Enable this option if
you want the execution to branch immediately to the Cleanup step
group. Disable this option if you want execution to continue normally
at the next step.

Disable Results for All Steps—This option prevents TestStand from
adding results for the steps in the sequence to the results list. Refer to
theResult Collectiorsection in Chapter (gequence Executipfor

more information on the results list.

5-4 © National Instruments Corporation

Chapter 5 Sequence Files

» Optimize Non-Reentrant Calls to this Sequence-This option
decreases the time it takes TestStand to call the sequence after the first
call to the sequence in an execution. If this option is disabled,
TestStand initializes a new copy of each custom step property in a
sequence each time it calls the sequence. TestStand does this so that the
sequence always begins executing with the initial property values that
the steps in the sequence specify. This initialization is necessary only
if a sequence relies on the initial value of a custom step property and
then modifies its value. Few sequences do this.

When you enable this option, TestStand initializes the values of
custom step properties in the sequence the first time it calls the
sequence in an execution. TestStand saves the values of the custom
step properties after the sequence completes and reuses the values
when it calls the sequence again. If the same sequence is called at the
same time in different threads or recursively within the same thread,
TestStand creates unique copies of the custom step properties.

e« Comment—You can use this control to place a comment for the
sequence in the All Sequences View. The sequence comment also
appears in the documentation that TestStand generates for the
sequence file.

» Preconditions—This button displays the Preconditions dialog box.
You can use the Preconditions dialog box to specify the conditions that
must be true for each step in the sequence to run. When you access this
dialog box from the Step Properties dialog box, it applies only to a
particular step. When you access the dialog box from the Sequence
Properties dialog box, you can view and edit the preconditions for each
step in the sequence. Refer to Breconditions Dialog Bogection
later in this chapter for more information.

If the sequence file is a process model file, the Sequence Properties dialog
box also has a Model tab. Refer to ChaptePk8cess Mode|for more
information on sequence properties that are unique to process model files.

© MNational Instruments Corporation 5-5 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

Sequence File Properties

The Sequence File Propertieeommand displays the Sequence File
Properties dialog box for the sequence file. Figure 5-4 shows the General
tab on the Sequence File Properties dialog box.

computer. zeq Properties E3

General | Advanced |

Full Path; |Z:'\TestStand\Examples\Demn\E‘\computer.seq

Saved: Wednesday, August 12, 1998 5:18:20 PM

Size: 24860 bytes

Load Option: Preload when opening sequence file

Unload Option: IUnIoad when sequence file iz clozed j

Comment: ;I
=

Ok I Cancel |

Figure 5-4. General Tab on the Sequence File Properties Dialog Box

The General tab contains the following controls:

« Full Path—This control displays the location of the sequence file on
disk.

e Saved—This control displays the time at which you last saved the
sequence file.

* Size—This control displays the size of the sequence file on your disk
drive.

5-6 © National Instruments Corporation

Chapter 5 Sequence Files

» Load Option—You can use this control to specify a load option
setting for every step in the sequence file. The choices are:

— Preload when opening sequence file
— Preload when execution begins

— Load dynamically

— Use step load option

The Use Step Load Option setting tells TestStand to load each
code module according to the load option for the particular step
that calls the code module. Refer to 8tep Properties Dialog
Boxsection, later in this chapter, for more information on the other
load option values.

* Unload Option—You can use this control to specify an Unload
Option setting for every step in the sequence file. The choices are:

— Unload when precondition fails

— Unload after step executes

— Unload after sequence executes

— Unload when sequence file is closed
— Use step unload option

The Use Step Unload Option setting tells TestStand to unload each
code module according to the unload option for the particular step
that call the code module. Refer to 8tep Properties Dialog Box
section, later in this chapter, for more information on the other
unload option values.

Note If you enable the sequence property, Optimize Non-Reentrant Calls to This
Sequence, TestStand does not unload the code modules for the sequence until after
the execution ends, regardless of the unload options for the sequence file or the
steps in the sequence.

« Comment—You can use this control to place a comment that appears
in the documentation that TestStand generates for the sequence file.

© MNational Instruments Corporation 5-7 TestStand User Manual

Chapter 5 Sequence Files

Figure 5-5 shows the Advanced tab on the Sequence File Properties dialog
box.

computer.seq Properties
General Advanced |
Type:
Mormal -

M odel Option:
IUse Station Maodel j

(1] I Cancel

Figure 5-5. Advanced Tab on the Sequence File Properties Dialog Box

The Advanced tab contains the following controls:

« Type—You can use the Type control to specify the type setting for the
sequence file. The possible settings are:

— Normal

— Model

— Front-End Callbacks
— Station Callbacks

— Reserved

If you use the sequence file as a process model, set the type to Model.
If you do not use the file as a process model, leave the type set to
Normal.

* Model Option—Use this option to select the process model file to use
for the sequence file. The possible settings are:

— Use Station Model—Select this value to use the process model
file that the Station Model option in the Station Options dialog box
specifies. This is the default setting for this option.

— No Model—Select this value to specify that the sequence file does
not use a process model.

TestStand User Manual 5-8 © National Instruments Corporation

Chapter 5 Sequence Files

— Require Specific Model—Select this value to specify a particular
process model file. If you select this value, the tab displays
additional controls that you can use to specify the location of a
process model file.

Refer to theProcess Modelsection in Chapter TestStand Architecture
Overview and to Chapter 1®rocess Mode|dor more information on
process models.

Sequence File Callbacks

TheSequence File Callbacksommand displays the Callbacks dialog box
for the sequence file. Figure 5-6 shows the Callbacks dialog box.

Example.seq Callbacks E
Add
SeguenceFilePostStep Engine Callback no
SequenceFilePrelnteractive Engine Callback. no [DEelete |
SequenceFileFostinteractive Engine Callback. no
SequenceFileload Engine Callback, no :
SequenceFilellnload Engine Callback, no Edit |
M ainSequence Model Callback (= —_
PrelUIT Model Callback ho
PostlUT Model Callback, o
PrellUT Loop Model Callback no
PosztlJUTLoop Model Callback no =
D e e bl b m, hdmdm] Tl mm e e
<
)4 I Canhicel

Figure 5-6. Callbacks Dialog Box

The Callbacks dialog box lists every callback that you can override in the
sequence file. The columns in the list display the name of the callback,
indicate whether the callback is an Engine or Model callback, and indicate
whether the sequence file overrides the callback. You uskdithdoutton

to override the selected callback by inserting a sequence with the same
name into the sequence file. You can uselt@ketebutton to delete the
sequence that overrides the selected callback. You can Useithmitton

to dismiss the dialog box and display the sequence that overrides the
selected callback. Refer to tReocess Modelsection in Chapter 1,
TestStand Architecture Overvigfer more information on model

callbacks. Refer to theéngine Callbacksection in Chapter &gequence
Execution for more information on engine callbacks.

© MNational Instruments Corporation 5-9 TestStand User Manual

Chapter 5 Sequence Files

The following restrictions apply to th&equenceFileLoad and
SequenceFileUnload callbacks.

e TestStand can deadlock when it execut8squenceFileLoad
callback that calls into another sequence file containing a
SequenceFileLoad callback which calls back into the original
sequence file. This can occur with any number of levels of sequence
files as long as the dependencies amon@#aeenceFileLoad
callbacks exist between sequence files.

e TestStand can enter an infinite loop when it executes a
SequenceFileUnload callback that calls into another sequence file
containing a&sequenceFileUnload callback which calls back into
the original sequence file. The infinite loop can be broken by selecting
theDebug»Terminate All Executionscommand.

¢ You must not define SequenceFileUnload callback in the
FrontEndCallback.seq or StationCallbacks.seq sequence
files. If you do this, TestStand hangs when you shut down the
TestStand engine.

Individual Sequence View

Each sequence can contain steps, parameters, and local variables. You can
view the contents of a specific sequence by selecting it from the View ring.
Figure 5-7 shows the contents of an example sequence.

i3 Example_zeq o)
[GET] I Setup I Cleariup | Parameters I Laocal: | Wiew: Transmitter Tests j
o Mains equence
St | Diezeription — ___
$ Tranzmitter Power Lewvel Test Call PowerLevel [TransmittersT ests.c) m“""n"”':
@ Transmitter Burst Timing Test Call BurstTiming [Transmitters Tests.c] BEEMED sats
@ Transmitter Adjacent Channel Power Test Call PowerLevel [TransmittersT ests.c) Firrnware Tests
Transmitter Automatic Gain Contral Test Gainwi Al Sequences
Sion S purious Emissions Test Call SpuriousE missions [Emissions.dl] | §8) Sequence File Globals
& Sequence File Types

Figure 5-7. Individual Sequence View for an Example Sequence

The Sequence view has five tabs: Main, Setup, Cleanup, Parameters, and
Locals. You select a tab to choose which part of the sequence to view.

TestStand User Manual 5-10 © National Instruments Corporation

Chapter 5 Sequence Files

Main, Setup, and Cleanup Tabs

The Main, Setup, and Cleanup tabs each show one of the step groups in the
sequence. In the Setup step group, insert steps that initialize or configure
your instruments, fixtures, and UUT. In the Main step group, insert steps
that test your UUT. In the Cleanup step group, insert steps that power down
or de-initialize your instruments, fixtures, and UUT. Refer to Chidjte
Sequence Executipfor more information on how TestStand uses the
different step groups.

Step Group List View and Tree View

Each step group tab normally displays a list of the steps in the group. This
list is called thestep group list viewYou can drag thetep group divider

bar away from the left edge of the window to reveal a tree-structured view
that allows you to browse the custom properties for each step. This
tree-structured view is called the step graee view The list view always
displays the contents of the item that you select in the tree view. Usually,
you only use the tree view when you design and debug a new step type. In
Figure 5-8, the tree view shows the custom properties of a Numeric Limit
Test step.

i8 Example_seq

Main |Setup I Eleanupl Parametersl Locals

I =] B3
I \."iew;l Transmitter Tests j

[*-

-

%

E|---p§ b &in
- Transmitter Power Lewvel Test Low Mumber 95
-4 Transmitter Burst Timing Test EE:High Mumber 105
[_]..

Transmitter Adjacent Channel Power Test

Fresult

-] Cornmert
[_]..

Lirnits
Low

[Comp
- Jig] InBuf
-{iEg] [ataSaurce

] CodeTemplate

--fi23] DizplapRadix

Tranzmitter Automatic Gain Contral Test
[+-*gm Spurious Emizzsions Test

Field | Type | Walue

4] | i

Figure 5-8. The Step Group Tree View (Left) and List View (Right)

© MNational Instruments Corporation 5-11 TestStand User Manual

Chapter 5 Sequence Files

Step

Group List View Columns

The columns in the list view for a step group vary according to whether the
list view is displaying steps or step properties. Figure 5-9 shows the list
view displaying steps.

1= Example.seq M=l E3
Main | Setup I Cleanup I Parameters I Locals I View: I Transmitter Tests j
Stey | Description | Ewecution Flow | Comment |

& Tranzmitter Power Level Test Call Powerlevel [TransmittersT ests.c) Fre, Loop
@ Tranzmitter Burst Timing T ezt Call BurgtTiming [Tranzmitters T ests.c) Fre
@ Transmitter Adjacent Channel Power Test GELE, Call PowerLevel [TranzmitterT ests.c) Force Pass Channelz 11 to 35
T i ic Gain Control Test Gainovi
c:m i Call SpuriouzE mizzions ([Emizzions. dil)

When

Figure 5-9. Step Group List View Columns for Steps

the list view displays steps, it contains the following columns:

e Step—This column displays the name of the step and its icon. You can

cli

ck to the left of the step icon to toggle the breakpoint for the step.

« Description—This column displays a description of the step that
varies according to the type of step and the adapter with which it was
created.

¢ Execution Flown—This column indicates whether the properties of the
step are set to control the flow of execution in the sequence. The values
that can appear in this column are:

Pre—Indicates that the step has a precondition.
Post—Indicates that the step has a post action.
Loop—Indicates that step has been configured to loop.

Skip—Indicates that the run mode of the step has been set to
SKIP.

Force Pass—Indicates that the run mode of the step has been set
to PASS

Force Fail—Indicates that the run mode of the step has been set to
FAIL .

e« Comment—This column displays the comment for the step that you
specify in the Step Properties dialog box.

TestStand User Manual

5-12 © National Instruments Corporation

Chapter 5 Sequence Files

Figure 5-10 shows the list view displaying step properties.

[P B

i8 Example.seq [_ (O] =]
Main |Selup I Eleanupl F'arametersl Lcu::alsl A= I Transmitter T ests j
EI---pf,% LET Figld | Type | Walue | Comment |
EI@ Transrmitter Power Level Test @ Code Murnber 0
E'" Result g Mg String
E‘ Ermor Elcc:uned Boolean Falze

['ataS ource
CodeTemplate
Trangmitter Burst Timing Test

Code
Mg
Oecurred
Status
PazsFail
FieportText
Cornmmar
Comment

Figure 5-10. Step Group List View Columns for Step Properties

When the list view displays step properties, it contains the following
columns:

Field—This column displays the names and icons for the
subproperties of the step property that is currently selected in the tree
view. If the property selected in the tree view contains a value or array
of values, the value names and icons also appear in this column.

Type—This column displays the data type of each subproperty or
value.

Value—This column displays the current value for each subproperty
or value element.

Comment—If a subproperty in the list view has a subproperty of its
own namedComment, the value of th€omment subproperty appears
in this column.

Note You can expand a column to the width of its largest entry by double-clicking on the
vertical separator at the right edge of the column heading. This is especially useful
when an item has a long comment.

© MNational Instruments Corporation

5-13 TestStand User Manual

Chapter 5 Sequence Files

Step Group Context Menu

You can display a context menu by right-clicking on the tree view or list
view. The items in the context menu vary depending on the whether you
right-click on a step, step property, the background area of the tree view,
or the background of the list view. The context menu can contain the
following items.

Insert Step

Thelnsert Stepmenu item has a submenu in which you select the type of
step you want to insert into the sequence. Figure 5-11 showsstre

Stepsubmenu.

=] Sequence Editor [Edit] - Example_seq

File Edit “iew Egecute Environment Tools ‘window Help

I [E3

Dl | ¢ =@ 22 B0 I s LK

LabWIEW Standard Prototype Adapter

=] O]

i3 Example_zeq H= e

Main |Setup I Eleanupl Parametersl Localsl

i I Transmitter Tests

[

Ste
& Trangmitter Power Level Test

@ Trangmitter Burst Timing Test

@ Trangmitter Adjacent Channel Power Test
in Contral Test

| Dezcription | E xecution Flow | Comment |
Call PowerLevel [Tranzsmitters T ests.c) Fre, Loop
Call BurgtTimirg [TransmittersT este.c) Fre
GELE, Call PowerLevel [Transmitter T ests. c) Force Pazs Channels 11 to 35

Gain.vi
Call SpuriousEmigzions [Emizzions.dll)

PazzdFail Test

Paste

Action

urneric Lirnit Test

Open Tree Wiew
Browse Yariables...

Go Up 1 Level [BkSpace]

Sting % alue Test

Sequence Cal
Statement
22 Message Popup

Ingerts a new step created from this bype o the bottom |User: uger

Exg| Call Executable

Limit Loader

GO Goto
% Lahel

[Ty

|Model Z:AT estE vechBintteststandmodel seq

TestStand User Manual

Figure 5-11. Insert Step Menu with LabVIEW Standard Prototype Adapter Selected

Many of the steps types in thesert Step submenu allow you to call code
modules. Of these step types, some can work with all module adapters,
while others require a specific module adapter. Each adapter allows you to
call a category of code modules, such as LabVIEW Vls, LabWindows/CVI
source or object modules, or DLLs. Some adapters also know how to
control the application development environments in which you build these
types of code modules.

5-14 © National Instruments Corporation

Chapter 5 Sequence Files

Before you insert a step that can call a code module using any adapter, you
must select the appropriate adapter for the type of code module you want
the step to call. You use the pull down ring in the sequence editor tool bar
to select a module adapter. The pull down ring shows an icon for each
adapter. The icon for the currently selected adapter appears next to all step
types in thensert Step submenu that can work with any adapter. After

you insert a step, the adapter icon also appears next to the step name.
After you create a step with a particular module adapter, you cannot change
its adapter.

Each step type that requires a particular module adapter appears in the
Insert Step submenu next to the icon for that adapter. After you insert a

step using one of these step types, the adapter icon appears next to the step
name.

When you insert a step that does not call a code module, such as a Goto or
Label step, the currently selected adapter has no effect. These step types
have their own icons. The icons appear next to these step typebisettie
Stepsubmenu and next to the steps that you create using these step types.

Edit

The menu item name of tiiglit command varies according to the type of

the selected step. For example, the menu item naBuditidessage

Settingsfor a Message Popup stéfgit Limits for a Numeric List Test

step, andedit Destination for a Goto step. For each step, the menu item
displays a dialog box that you use to edit the settings that are unique to the
type of the step. Some step types, such as the Label step and the Action
step, do not have step-type-specific settings. For these step types, this menu
item is disabled.

Specify Module

The Specify Modulecommand displays a Specify Module dialog box for
the selected step. The dialog box that appears depends on the module
adapter for the step. You use the Specify Module dialog box to specify the
code module that the step calls. You also can specify options that TestStand
uses when it calls the step. Refer to ChaptemMb2lule Adaptersfor more
information on the Specify Module dialog box for each adapter.

Edit Code

TheEdit Code command displays the source code for the code module that
the step calls. TestStand uses the module adapter for the step to determine
the appropriate application in which to display the source code.

© MNational Instruments Corporation 5-15 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

Toggle Breakpoint

TheToggle Breakpointcommand sets or clears the breakpoint state for the
selected steps.

Run Mode

TheRun Mode menu item displays a submenu from which you can set the
following run mode values for the selected steps.

« Force Pass—TestStand does not execute the step and does not
evaluate its preconditions. Instead, TestStand sets the status of the step
to Passed automatically.

« Force Fail—TestStand does not execute the step and does not evaluate
its preconditions. Instead, TestStand sets the status of the step to
Failed automatically.

e Skip—TestStand does not execute the step and does not evaluate its
preconditions. Instead, TestStand sets the status of the Stéypiexi
automatically.

« Normal—This value tells TestStand to execute the step normally. This
is the default value.

Run Selected Steps

TheRun Selected Stepsommand runs the selected steps in interactive
mode. Refer to thiteractively Executing Stegection in Chapter 6,
Sequence Executipfor more information on running steps in interactive
mode.

Loop Selected Steps

ThelLoop Selected Stepsommand loops on the selected steps in
interactive mode. Before running the steps, this command displays a dialog
box that you use to specify how many times to loop. Refer to the
Interactively Executing Steggction in Chapter Gequence Executipfor

more information on running steps in interactive mode.

Open Tree View

TheOpen Tree Viewcommand moves the step group divider bar away
from the left edge of the window so that the tree view is visible. You can
use the tree view to browse the custom properties contained in each step.

5-16 © National Instruments Corporation

Chapter 5 Sequence Files

Close Tree View

TheClose Tree Viewcommand hides the tree view by moving the step
group divider bar flush against the left edge of the window. The command
also causes the list view to display the steps in the step group.

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. If the tree view is currently closed, it opens to show
the selected node. You use this command on steps or properties to view
their subproperties.

Go Up One Level

The Go Up One Levelcommand selects the next higher level node in the
tree view. The list view displays the contents of the newly selected node.
If you invoke this command when the highest level node is selected in the
tree view, the Sequence File window displays the All Sequences view.

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that

contains the names of variables, sequence parameters, and step properties
you can access from expressions and step modules when the selected step
is running. This command also appears intlev menu of the sequence
editor menu bar. Refer to théew Menusection in Chapter 4equence

Editor Menu Bary for more information.

Sequence Properties

The Sequence Propertiegommand displays the Sequence Properties
dialog box. Refer to thBequence View Context Mesrction earlier in this
chapter for more information on the Sequence Properties dialog box.

Step Properties Dialog Box

The Properties command displays the Properties dialog box for the
selected step or property. If the selected item is a property, you can use the
Properties dialog box to edit the value of the property. If the selected item
is a step, the Step Properties dialog box appears.

© MNational Instruments Corporation 5-17 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

Figure 5-12 shows the General tab on the Step Properties dialog box.

& Transmitter Adjacent Channel Power Test Std C¥l Step Properties

General | Run Options | Post Actions | Loop Options | Expressions

@ Tranzmitter Adjacent Channel Power Test
Type: Std Cwl Step, Instance of Type MurmericLimitT est'
Adapter: C/CV| Standard Pratatype Adapter
Dezcription: GELE [x=<=]. Call Powerlewvel [Transmitter T ests.c]
Comment:
Channels 11 to 55 |=]
E dit Limits... Preconditions. .. |
Wiew Contents (1] Cancel

Figure 5-12. General Tab on the Step Properties Dialog Box

The General tab on the Step Properties dialog box contains the following
controls:

Comment—You can use this control to place a comment for the step
in the Step Group list view. The step comment also appears in the
documentation that TestStand generates for the sequence file.

Edit—Displays a dialog box you use to edit the settings that are
unigue to the type of the step. The button caption varies according to
the type of the step. For more information, refer to the discussion of the
Edit context menu item earlier in this section.

Specify Module—Displays the Specify Module dialog box for the
selected step. The dialog box that appears depends on the module
adapter for the step. You use the Specify Module dialog box to specify
the code module that the step calls. You also can specify options that
TestStand uses when it calls the step. Refer to Chaptitabiile

5-18 © National Instruments Corporation

Chapter 5 Sequence Files

Adapters for more information on the Specify Module dialog box for
each adapter.

» Preconditions—Displays the Preconditions dialog box. You can use
the Preconditions dialog box to specify the conditions that must be true
for the step to execute. Refer to theeconditions Dialog Bosection
later in this chapter for more information.

Figure 5-13 shows the Run Options tab on the Step Properties dialog box.

tw Transmitter Adjacent Channel Power Test S5td C¥l Step Properties

General FRun Options |Pu:|st Actions | Loop Options | Expressions

Load Option:

IF'reIc-ad when opening sequence file

Unload Optian:

|Un|oad when sequence file iz clozed Change |

Fiun Mode;

IanmaI j

¥ Record Fesults
[Breakpaint
¥ Step Failure Causes Sequence Failure

[lgnore Bundime Errors

Wigw Contents | 0K Cancel

Figure 5-13. Run Options Tab on the Step Properties Dialog Box

© MNational Instruments Corporation 5-19 TestStand User Manual

Chapter 5 Sequence Files

The Run Options tab on the Step Properties dialog box contains the
following controls:

Load Option—You can use this control to specify a load option
setting for the step. The choices are:

— Preload when opening sequence file—TestStand loads the step
module when TestStand loads into memory the sequence that
contains the step.

— Preload when execution begins—TestStand loads the step module
when any sequence in the sequence file that contains the step
begins executing. This value is the default setting.

— Load dynamically—TestStand does not load the step module until
the step is ready to call it.

Unload Option—You can use this control to specify an Unload
Option setting for the step. The choices are:

— Unload when precondition fails—TestStand unloads the step
module when the precondition for the step evaluat€alte .

— Unload after step executes—TestStand unloads the step module
after the step finishes executing.

— Unload after sequence executes—TestStand unloads the step
module after the sequence that contains it finishes executing.

— Unload when sequence file is closed—TestStand unloads the step
module when TestStand unloads the sequence file that contains
the step from memory. This value is the default setting.

Note If you enable the sequence property, Optimize Non-Reentrant Calls to This
Sequence, TestStand does not unload the code modules for the sequence until after
the execution ends, regardless of the unload options for the sequence file or the
steps in the sequence.

L]

TestStand User Manual

Run Mode—Use this ring to set the following run mode values for the
step.

— Force Pass
— Force Fail
— Skip

— Normal

Record Results—This option determines whether the contents of the
Result property for the step are added to the result list for the
sequence. Refer to tiesult Collectiorsection in Chapter 6,
Sequence Executipfor more information on result collection.

5-20 © National Instruments Corporation

Chapter 5 Sequence Files

Breakpoint—This option tells TestStand to break at this step before
executing it. You also can set the breakpoint state for a step by
selecting th& oggle Breakpointitem in the context menu or by
clicking to the left of the step icon.

Step Failure Causes Sequence FailureTestStand maintains an
internal status value for each executing sequence. When the status
property of a step is set Failed , and the Step Failure Causes
Sequence Failure option is enabled for the step, TestStand sets the
internal sequence status valud-tdled . If the internal status of the
sequence ifailed when the sequence returns, TestStand sets the
status of the calling step Failed . This affects steps that use the
Action or Sequence Call step types. Steps that use the Pass/Fail Test,
Numeric Limit Test, and String Value Test step types overwrite the step
status.

Ignore Run-time Errors —This option prevents the step from

reporting a run-time error to the sequence. When a step causes a
run-time error, the step stops executing, and TestStand sets the status
of the step tdrror . If this option is disabled, TestStand also sets the
internal status of the sequencé&tmr , and execution branches to the
Cleanup step group for the sequence. If this option is enabled,
TestStand does not set the internal status of the sequebeerto

Instead, TestStand resets Hisor.Occurred property of the step to
False and execution continues normally with the next step. The value
of theResult.Status property remains set &ror for the step.

If the step is a sequence call, the Run Options tab displays two addition
controls:

© MNational Instruments Corporation

Sequence Call Trace Setting-You can use this option to control
tracing when calling a subsequence. The possible values are:

— Use current trace setting—TestStand does change the current
tracing state when it calls the subsequence. This is the default
value. Usually, only process model files use other values for this
option.

— Enable tracing in sequence—TestStand enables tracing when it
calls the subsequence, and it restores the original tracing state
when the subsequence returns.

— Disable tracing in sequence—TestStand disables tracing when it
calls the subsequence, and it restores the original tracing state
when the subsequence returns. However, if you enable the Allow
Tracing into Sequence Calls Marked with Tracing Off option in
the Station Options dialog box, TestStand ignores this setting and
does not alter the tracing state when it calls the subsequence.

5-21 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

* Ignore Termination —This option controls what happens when a
subsequence that you call from this step causes execution to terminate.
If you enable this option, TestStand terminates the subsequence, sets
the status of the calling stepTerminated , but allows the calling
sequence to proceed normally from the next step. Usually, only process
model files use this option. This option has no effect when execution
aborts. Refer to th€erminating and Aborting Executiosgction in
Chapter 1TestStand Architecture Overvigior more information on
execution termination.

You can use the Post Actions tab on the Step Properties dialog box to
specify an action that occurs after the step executes. You can make the
action conditional on the Pass/Fail status of the step or on any custom
condition.

Figure 5-14 shows the Post Actions tab on the Step Properties dialog box.

ov1 Transmitter Adjacent Channel Power Test Std C¥I Step Properties

Generall Run Options ~ Post Actions |Lou:||:| Options | Expressions

On Pasz:
IGoto hest step j
On Fail: Destination:
IGDtD destination j j
: » Tranzmitter Power Level Test
1| Specify Custom Condition ——| Transmitter Burst Timing Test
» . Trangmitter ddjacent Channel Power Test
(Eustam Eondition Expression Tranzmitker Automatic Gain Contral T est

Spurious Emnizzions Test
<Cleanups
—1
i e e

IGnto nesxt step j

[y Eamditian Falze:

IGDtD next step j

Wiew Contents | (14 I Cancel

Figure 5-14. Post Actions Tab on the Step Properties Dialog Box

5-22 © National Instruments Corporation

Chapter 5 Sequence Files

The Post Actions tab on the Step Properties dialog box contains the
following controls:

© MNational Instruments Corporation

On Pass—You can use this control to specify an action that occurs
when the step completes and its statuPaised .

On Fail—You can use this control to specify an action that occurs
when the step completes and its statuiled

Destination—Specifies the destination step for the On Pass, On Fall,
On Condition True, and On Condition False controls.

Specify Custom Conditior—This option enables you to specify a
custom condition to control the post action for the step.

Custom Condition Expression—Use this control to specify the
custom Boolean expression that controls the post action for the step.

On Condition True —Use this control to specify the action that
occurs when the step completes and the custom condition expression
evaluates tdrue .

On Condition False—You can use this control to specify the action
that occurs when the step completes and the custom condition
expression evaluates False .

The On Pass, On Fail, On Condition True, and On Condition False
controls give you the following post actions to select from.

— Goto next step—Execution continues normally with the next step.
This is the default value.

— Goto destination—Execution branches to the destination you
select. You can branch to any step in the current step group, to the
end of the current step group, or to the Cleanup step group. If the
post action for a step specifies that execution branches to the
Cleanup step group and the current step is in the Cleanup step
group, execution proceeds normally with the next step in the
Cleanup group.

— Terminate execution—Execution terminates. Refer to the
Terminating and Aborting Executiosection in Chapter 1,
TestStand Architecture Overvigfer more information on
execution termination.

— Call sequence—TestStand calls a sequence before continuing to
the next step. You can select any sequence in the sequence file.
TestStand does not pass any arguments to the sequence. If the
sequence has parameters, TestStand uses their default values.

— Break—TestStand breakpoints before continuing to the next step.

5-23 TestStand User Manual

Chapter 5 Sequence Files

You can use the Loop Options tab on the Step Properties dialog box to
configure an individual step to run repeatedly in a loop when it executes. If
you want to loop on several steps at once, you can place the steps in a new
sequence, create a Sequence Call step that calls the sequence, and loop on
the Sequence Call step. Figure 5-15 shows the Loop Options tab on the
Step Properties dialog box.

2 Transmitter Automatic Gain Control Test 5td CVI Step Properties

Generall Run Dptionsl Post dctions Loop Options Expres&i-:-nsl

Loop Type: IFi:-ted rumber of loops j

¥ Record Fesult of Each lteration

Mumber of Loops: |'| a _|;

Loop result is Fail if |< =] |'| an =1 % of iterations Pass.

Loop Initialization Exprezsion:

IHunState.Loanndex =0 Browse.,

Loop Increment E xpression:
IHunSlate.Loanndex +=1 Brawsel,

Laop ‘while Espression:
FiunState. Looplndex < 10

Erawees

Loop Statuz Expression:

RunState LoopMumPassed / RunState Looplndex < 17 “Failed”: =)
"Pazzed"” -

Erawees

R

Wiew Contents

Canicel |

Figure 5-15. Loop Options Tab on the Step Properties Dialog Box

You can use the Loop Options tab on the Step Properties dialog box to
specify the following options:

« Loop Type—Use this control to specify the type of looping for the
step. The choices are as follows:

— None—TestStand does not loop on the step. This is the default
value.

— Fixed number of loops—TestStand loops on the step a specific
number of times and determines the final pass or fail status of the

TestStand User Manual 5-24 © National Instruments Corporation

Chapter 5 Sequence Files

step based on the percentage of loop iterations in which the step
status isPassed .

— Pass/Fail count—TestStand loops on the step until the step passes
or fails a specific number of times or until a maximum number of
loop iterations complete. TestStand determines the final status of
the step based on whether the specific number of passes or failures
occur or the number of loop iterations reaches the maximum.

— Custom—This value allows you to customize the looping
behavior for the step. You specify a Loop Initialization expression,
a Loop Increment expression, a Loop While expression, and a
final Loop Status expression. The following example code
illustrates the order in which TestStand uses the loop expressions.

Loop_Initialization_Expression;

while (Loop_While_Expression == True)
{
Execute_Step;
Loop_Increment_Expression;

}

Loop_Status_Expression;

* Record Result of Each Iteration—If you enable this option,
TestStand adds the step result to the sequence results list after each
loop iteration. TestStand also adds the final result that it computes for
the step loop as a whole if the Record Results property for the step is
enabled. Refer to tHeesult Collectiorsection in Chapter Gequence
Execution for more information on result collection.

Note You do not have to use the Loop Options tab to cause execution to iterate or a step
or series of steps. Instead, you can use a Goto step to create a loop inside your
sequence. You can use the preconditions for the Goto step in combination with any
number of variables to control the loop.

You can use the Expressions tab to specify optional expressions that
TestStand evaluates before or after it calls the step module.

© MNational Instruments Corporation 5-25 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

Figure 5-16 shows the Expressions tab on the Step Properties dialog box.

2 Transmitter Automatic Gain Control Test 5td CVI Step Properties

Gemeral | Bun Options | Post Action: | Loop Options EHDTESSiUﬂsl

;I Browse... |

Pre Expression:

Post Exprezsion;

Browse...

51 ¥

Statuz Expression:

;I Browse... |

=

Wiew Contents | (1] I Cancel

Figure 5-16. Expressions Tab on the Step Properties Dialog Box

The Expressions tab contains the following controls:

Pre Expression—You can use this control to specify an expression
that TestStand evaluates before it calls the step module. Usually, you
use this expression to set the value of a custom step property from the
values of other variables and properties.

Post Expressior—You can use this control to specify an expression
that TestStand evaluates after it calls the step module. Usually, you use
this expression to set the value of one of the subproperties in the
Result property of the step from the values of other variables and
properties.

Status Expressior—You can use this expression to set the status
property for the step. Because the status is a string property, this
expression must evaluate to a string.

5-26 © National Instruments Corporation

Chapter 5 Sequence Files

If an expression is left empty, TestStand does not evaluate it.

Note Certain types of steps such as Numeric Limit Tests, String Value Tests, Pass/Fail
Tests, and Statement steps reserve one or more of these expressions to perform
operations specific to the type of step. In these cases, you cannot use the
expressions that the step type reserves. The expressions appear dim in the tab.

Parameters Tab

Sequences can have steps that call other sequences. A sequence can have
parameters so that you can pass values to it and receive values from it. You
define the parameters for a sequence in the Parameters tab.

Figure 5-17 shows the Parameters tab for an example sequence.

i3 Example.seq M [=] B3

Main | Setup | Cleanup Parameters |Locals| i I Tranzmitter Tests j
-0 Paramneters Parameter | Type | Walue | How Pazsed
2] IritialChannel &= IritizlCharnel Mumber 0 by value

Channellncrement & Channelincrement Murnber 1 by value
B FirmwwareS elf T estResponse el % Sting m b reference

Figure 5-17. Parameters Tab

Parameters Tab Context Menu

You can display a context menu by right-clicking on the tree view or list
view in the Parameters tab. The items in the context menu vary depending
on the whether you right-click on a parameter, a parameter subproperty, or
on the background area of the tree view, or on the background of the list
view. The context menu can contain the following items.

© MNational Instruments Corporation 5-27 TestStand User Manual

Chapter 5 Sequence Files

Insert Parameter

Thelnsert Parameter menu item has a submenu in which you select the
data type for the parameter you want to insert. Figure 5-18 shoinséne
Parameter submenu.

1= Example.seq [_ O]

b ain I Setup I Cleanup Parameters |Locals| Vi I Transmiltter Tests j
=-{ Parameters Paraneter | Type | Yalue | How Pazzed | Comment |
InitislChanine| & InitislCharrel Hurrber 0 by walue
3 C.hannell ncrement Channellncrement Humber 1 by walue
{38 FimwrareSeliT estResponse [FimwareSelT estResponse | Sting " b reference
Mumber
Striry
Baste i~
Boolean
GolUp1 Level [BkSpace] Activer Reference
Browse Sequence Context.. .
Lontainer
Tvpes 3
String
Boolean

ActiveX Reference

LCaontainer
Tupes 3

TestStand User Manual

Figure 5-18. Insert Parameter Submenu

If you want to insert a parameter with a custom data type, you must create
a named data type. You can create a named data type in the Sequence File
Types view of the Sequence File window or in the Types Palette window.
Refer to Chapter S ypes for more information on types and type editing.
After you create the named data type, it appears imypes submenu of
thelnsert Parameter submenu.

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. If the tree view is currently closed, it opens to show
the selected node. You can use this command to view the subproperties of
sequence parameters.

5-28 © National Instruments Corporation

Chapter 5 Sequence Files

Go Up One Level

The Go Up One Levelcommand selects the next higher level node in the
tree view. The list view displays the contents of the newly selected node.
If you invoke this command when the highest-level node is selected in the
tree view, the Sequence File window displays the All Sequences View.

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that

contains the names of variables and sequence parameters you can access
from expressions and step modules when the sequence is running. This
command also appears in Mew menu of the sequence editor menu bar.
Refer to theView Menusection in Chapter equence Editor Menu Bar

for more information.

Rename

The Renamecommand allows you to edit the name of the selected
parameter or subproperty.

Pass By Reference

ThePass By Referenceommand tells TestStand that the parameter is a
reference to the argument that the calling sequence passes to the parameter.
Passing a parameter by reference allows the subsequence to change the
actual value of the argument in the calling sequence.

If you disable thé®ass By Referenceommand for a parameter, TestStand
copies the argument value that the calling sequence passes as the parameter.
This prevents the subsequence from changing the value of the argument in
the calling sequence. On the other hand, copying a large object or array that
you pass as a parameter can degrade performance.

You enable th&ass By Referenceommand if you want to return a value
from a subsequence to the calling sequence. You also can enable the option
to reduce the time it takes to pass a large object or array to a subsequence.
You disable the option if you want to guarantee that any changes that a
subsequence makes to a parameter does affect the argument in the calling
sequence.

© MNational Instruments Corporation 5-29 TestStand User Manual

Chapter 5 Sequence Files

Check Type

The Check Typeoption tells TestStand to verify that the data type of the
argument you pass as a parameter is compatible with the data type of the
parameter. For example, TestStand reports a run-time error if you set this
option for a String parameter and then pass a numeric value instead.

Although type checking is usually a fast operation, you can turn this option
off if you want to avoid any possible overhead. You also can turn this option
off if you want to pass arguments with different types in the same parameter
field for calls. Usually, you do this by specifyi@gntainer as the data

type for the parameter and disabling this option. You can use the
PropertyExists expression function to determine if the argument that a
calling sequence passes to your container parameter contains a particular
subproperty.

Parameter Properties

ThePropertiescommand displays a dialog box that you can use to change
the default value for a parameter or one of its subproperties. TestStand uses
the default values for all the parameters to a sequence when you run the
sequence directly. When you call the sequence from a step in another
sequence and the step passes fewer arguments than the sequence has,
TestStand uses the default values for the remaining sequence parameters.

Locals Tab
Sequences can have any number of local variables. You can use local
variables to hold values that you set or get in step modules. You also can
use local variables for maintaining counts, for holding intermediate values,
or for any other purpose. Refer to thising Data Typesection in
Chapter 9Types for more information on using local variables.
Figure 5-19 shows the Locals tab for an example sequence.
1= Example.zeq | _ (O] =]
Main | Setup | Cleanup | Parameters Locals | Wiew: I Transmitter Tests j
=@ Locals Laocal | Tupe | walue | Comment |
; " ResultList [T ResultList Array of Objects[0.empty] ..
&l Local iLocal Mumber 0
Figure 5-19. Locals Tab
TestStand User Manual 5-30 © National Instruments Corporation

Chapter 5 Sequence Files

Locals Tab Context Menu

You can display a context menu by right-clicking on the tree view or list
view in the Locals tab. The items in the context menu vary depending on
whether you right-click on a local variable, on a subproperty of a local
variable, on the background area of the tree view, or on the background of
the list view. The context menu can contain the following items.

Insert Local

Thelnsert Local menu item has a submenu in which you select the data
type for the local variable you want to insert. Figure 5-20 showsisieet
Local submenu.

i8 Example_seq

ILET I Setup I Eleanupl Parameters Locals

E-@F Locals
(0] ResultList

[(O] =]
| Wz I Transmitter Tests j
Local | Type | Walue | Comment |
@ ResultList Anray of Objectz[0. emphy] ..
Stri
Easte Sl
Boolean
GoUp1 Level [BkSpace] Activer Reference
Browse Sequence Contest.... Topes 5
Agray of 3

Figure 5-20. Insert Local Submenu

If you want to insert a local variable with a custom data type, you must
create a named data type. You can create a named data type in the Sequence
File Types view of the Sequence File window or in the Types Palette
window. Refer to Chapter Jypesfor more information on types and type
editing. After you create the named data type, it appears ifyhes

submenu of thénsert Local submenu.

If you create an array, an Array Bounds dialog box appears. Refer to the
Specifying Array Sizesection in Chapter Jypesfor more information on
the Array Bounds dialog box.

Notice that sequences always start with one local varigbbeytList

If you delete this local variable, TestStand cannot collect results for the
sequence. Refer to tiesult Collectiorsection in Chapter gequence
Execution for more information on the results list.

© MNational Instruments Corporation 5-31 TestStand User Manual

Chapter 5 Sequence Files

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. If the tree view is currently closed, it opens to show
the selected node. You can use this command to view the subproperties of
local variables.

Go Up One Level

The Go Up One Levelcommand selects the next higher level node in the
tree view. The list view displays the contents of the newly selected node. If
you invoke this command when the highest level node is selected in the tree
view, the Sequence File window displays the All Sequences View.

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that

contains the names of global variables, local variables, and sequence
parameters you can access from expressions and step modules when the
selected step is running. This command also appears Yigivemenu of

the sequence editor menu bar. Refer td/ieev Menuwsection in Chapter 4,
Sequence Editor Menu Bdor more information.

Rename

TheRenamecommand allows you to edit the name of the selected local
variable or subproperty.

Properties

TheProperties command displays a dialog box you can use to change the
default value for the selected local variable or subproperty. TestStand sets
the values of the local variables to their default values when the sequence
begins executing. If the local variable or subproperty is an array, you can
use the Bounds tab on the dialog box to change the array bounds.

Preconditions Dialog Box

TestStand User Manual

TestStand has several features that you can use to control the flow of
execution in a sequence. These include the post actions for a step, the
preconditions for a step, and the Goto step type. You can combine these
features in various ways. For example, you can use the preconditions on a
Goto step to specify when to loop back to an earlier statement. This section
discusses the Preconditions dialog box.

5-32 © National Instruments Corporation

Chapter 5 Sequence Files

You can display the Preconditions dialog box by clicking on the
Preconditionsbutton on the Sequence Properties dialog box or by clicking
on thePreconditions button on the Step Properties dialog box.

Figure 5-21 shows the Preconditions dialog box for a sequence.

Preconditionz - MainSequence B
Step Group: Step:
IMain j I@ Spurious Emiszions Test j Cut |
Preconditions far 'S punious Emissions Test': Eopy |
AIOF Paste |
PASS Transmitter Power Level Test ;
P&5S Transmitter Burst Timing Test Inzert Mew Expression |
Anp0Ff
EXECUTED Transmitter Adjacent Channel Power Test Insert Al |
¥ lage o
End Ayl Inzert AnylF |
End AIDE Ehanme o |
0} ejy it |
— Edit¥iew Expression —Inzert Step Status

Localz\oltage » 12.0 IMain j Insert Step Pass

@ Transrnitter Power Lewvel Test Inzert Step Fail |
@Transmitter Burst Tirming Test st Shen E

=24 Transmitter Adjacent Cha... —lnser e
@ Transmitter Autamatic: Gain... Ingert Step Executed |

@ Tranzmitter Autarmatic G ain...

Erowse. .. | [~ Megate

ag. Catcel

Figure 5-21. Preconditions Dialog Box for a Sequence

The Step Group and Step controls indicate the step to which the
preconditions apply. When you invoke the dialog box from the Sequence
Properties dialog box, you can use these controls to select any step group
and step in the sequence. When you invoke the dialog box from the Step
Properties dialog box, these controls are not operable.

© MNational Instruments Corporation 5-33 TestStand User Manual

Chapter 5 Sequence Files

TestStand User Manual

The Preconditions list box shows the preconditions of the step. The label
above the list box includes the name of the step. The following items can
appear in the Preconditions list box:

« Arbitrary expression—The list box marks lines that contain arbitrary
expressions by beginning them with thepr: tag.

e Step status expression-Step status expressions refer to the status of
other steps in the sequence. In the list box, step status expressions
begin withPASS NOTPASS FAIL , NOTFAIL , ERRORNOTERROR
EXECUTEDor NOTEXECUTEDfollowed by the name of the step.

e AlIOf block —An AIIOf block brackets multiple expressions and
evaluates tdrue only if all the expressions in the block evaluate to
True . Each AlIOf block consists of a line containiaof and
another line containingnd AlIOf .

¢ AnyOf block—An AnyOf block brackets multiple expression and
evaluates tdrue if one or more expressions in the block evaluate to
True . Each AnyOf block consists of a line containig/Of and
another line containingnd AnyOf .

You can nest one or more blocks within another block. A block treats a
nested block as just another expression.

The following buttons appear in the Preconditions dialog box:

e Cut or Copy—If you use these buttons on AifOf or AnyOf line in
the list box, it cuts or copies the entire block. Thea andCopy
buttons are dim when d@nd AlIOf or End AnyOf line is currently
selected.

« Insert New Expression—Use this button to insert an empty arbitrary
expression below the current line in the Preconditions list box.

« Insert AlIOf —Use this button to insert an empty AllOf block below
the current line in the Preconditions list box.

* Insert AnyOf—uUse this button to insert an empty AnyOf block below
the current line in the Preconditions list box.

To nest a block within an existing block, selectali®f or AnyOf line of
the existing block and click on ttiesert AnyOf or Insert AlIOf button.

To add a block at the same level as an existing block, seleatdelOf
or End AnyOf line of the existing block and click on thesert AnyOf or
Insert AIIOf button.

5-34 © National Instruments Corporation

Chapter 5 Sequence Files

When you select afllOf line, you can use thehange to AnyOfbutton
to change the block to an AnyOf block. When you seleghgof , you can
use theChange to AllOf button to change the block to an AllOf block.

When you select th&llOf line orAnyOf line of a block that contains only
one expression or that is nested within another block, you can use the
Ungroup button to remove the block but keep its contents.

You use the Edit/View Expression text box to view or modify an expression
line in the Preconditions list box. You can enter or modify the expression
manually in the text box. You also can useBhewse button to display an
expression browser dialog box in which you can interactively build an
expression from lists of available variables, properties, and expression
operators. Refer to ChapterSsquence Context and Expressjdosmore
information on expressions.

You use the Insert Step Status section of the dialog box to design a step
status expression. You use the ring control and list box to choose a step
group and step in the sequence. You can use the Negate checkbox to negate
the meaning of an expression. The following describes the command
buttons in this section:

* Insert Step Pass—Inserts an expression thatlisie if the status for
the most recent execution of the selected stepssed .

» Insert Step Fail—Inserts an expression thatfTisie if the status for
the most recent execution of the selected stEpilisd

* Insert Step Error—Inserts an expression thatligie if the status of
the most recent execution of the selected stepds , which
indicates that a run-time error occurred in the step.

» Insert Step Executed—Inserts an expression thaflisie if the status
for the most recent execution of the selected step is anything other than
an empty string.

If, for example, you select the ROM step, enable the Negate checkbox, and
click on thelnsert Step Pasdutton, TestStand inserts a line containing
NOTPASSROMN the list box.

© MNational Instruments Corporation 5-35 TestStand User Manual

Chapter 5 Sequence Files

Sequence File Globals View

Each sequence file can contain any number of global variables. Figure 5-22
shows the contents of the Sequence File Globals view for an example

sequence.
i3 Example_seq !EE
Wi @ Sequence File Globals j
= § FileGlobals Variahle T Tome [E] MainSequence —

[E] Transmitter Tests —
Receiver Tests
Firnuare Tests
All Sequences

JraF:

UE] BaseStationPowersdln [EaseStationPowereddn Bodlean
MumberQfTransmitters NumbeerTlansmitters MHumber

Sequence File Globals

T2 Sequence File Types

Figure 5-22. Sequence File Globals View for an Example Sequence

Lifetime and Scope of Sequence File Global Variables

Each time you begin a new execution or TestStand loads a sequence file
dynamically during execution, TestStand creates a separate run-time copy
of the global variables and initializes them to their default values. If
TestStand unloads the sequence file during execution, TestStand destroys
the global variables. If TestStand reloads the sequence file later during the
same execution, TestStand creates a new copy of the global variables and
initializes them to their default values.

Any sequence in the file can access the global variables for the file. A
subsequence can access the global variables in the sequence file that
contains the calling sequence. It also can access the global variables in the
process model file and the client sequence file explicitly. A subsequence
can do this in an expression or in a call to the TestStand ActiveX APl in a
code module. The sequence context contains references to the calling
sequence, the main sequence in the client sequence file, and the process
model entry point sequence. Refer to Chapt&egjuence Context and
Expressionsfor more information.

TestStand User Manual 5-36 © National Instruments Corporation

Chapter 5 Sequence Files

Sequence File Globals View Context Menu

You can display a context menu by right-clicking on the tree view or list
view in the Globals View. The items in the context menu vary depending
on the whether you right-click on a global variable on a subproperty of a
global variable, on the background area of the tree view, or on the
background of the list view. The context menu can contain the

following items.

Insert Global

Thelnsert Global menu item has a submenu in which you select the data
type for the sequence file global variable you want to insert. Figure 5-23
shows thdnsert Global submenu.

1= Example_zeq =] E3
Wisw: I@ Sequence File Globals j

= FieGiobal Variable [Twpe [value [Comment J
~{Tf] BaseStationPowereddn | |TE BaseStationPowereddn Boolean Falze

""" MurmberDfTransmitters MumnberO T ransmitters Murnber g

Inzert Global Mumber

Easte Boolean

(Eolp i Level [BkSpace] Activel Reference

Browse Sequence Context... Types 5
Array of »

Figure 5-23. Insert Global Submenu

If you want to insert a global variable with a custom data type, you must
create a named data type. You can create a named data type in the Sequence
File Types view of the Sequence File window or in the Types Palette
window. Refer to Chapter Jypes for more information on types and type
editing. After you create the named data type, it appears ifyfhes

submenu of thénsert Global submenu.

If you create an array, an Array Bounds dialog box appears. Refer to the
Specifying Array Sizesection in Chapter Qypesfor more information on
the Array Bounds dialog box.

© MNational Instruments Corporation 5-37 TestStand User Manual

Chapter 5

Sequence Files

TestStand User Manual

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. If the tree view is currently closed, it opens to show
the selected node. You can use this command to view the subproperties of
sequence file global variables.

Go Up One Level

The Go Up One Levelcommand selects the next higher level node in the
tree view. The list view displays the contents of the newly selected node.

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that

contains the names of the station global variables and sequence file global
variables you can access from expressions and step modules when
sequences in the file are running. This command also appearsviethe
menu of the sequence editor menu bar. Refer t¥ithe Menusection in
Chapter 4Sequence Editor Menu Bdor more information.

Rename

TheRenamecommand allows you to edit the name of the selected global
variable or subproperty.

Properties

TheProperties command displays a dialog box you can use to change the
default value for the selected global variable or subproperty. TestStand sets
the values of the global variables to their default values when the sequence
begins executing. If the globals variable or subproperty is an array, you can
use the Bounds tab on the dialog box to change the array bounds.

5-38 © National Instruments Corporation

Chapter 5 Sequence Files

Sequence File Types View

Sequence files contain the type definitions for every step, property, and
variable that the file contains. You can view the types that a sequence file
contains by selecting Sequence File Types from the sequence file

View ring.

Figure 5-24 shows the Sequence File Type view for an example
sequence file.

P'g Step Types | LEg Custom Data Typesl TE Standard Data T_l,lpesl Witzot IlEE Sequence File Types j
"'p% Step Type | Usage | Comment |
PazsFailT est Type Palette; Example. seq
Action Type Palette; teststandmaodel zeq; Example.zeq
SequenceCall Type Palette; teststandmodel. zeq; Example.seq
urmenicLimitT est Type Palette; Example. zeq
MessagePopup Type Palette; teststandmodel. zeq; Example.seq
ot Type Palette; teststandmodel. seq; Example.zeq
Label Type Palette; teststandmodel. zeq; Example.zeq

Figure 5-24. Step Types Tab in Sequence File Types View

Refer to Chapter 9 ypes for more information on the types and type
editing.

© MNational Instruments Corporation 5-39 TestStand User Manual

Sequence Execution

This chapter describes the execution of sequences in TestStand. It also
describes the Execution window in the TestStand sequence editor.

Sequence Editor and Run-Time Operator Interfaces

TestStand ships with a fully functional sequence editor and run-time
operator interfaces. Like the sequence editor, the run-time operator
interfaces allow you start multiple concurrent executions, set breakpoints,
and perform single-step debugging. However rtimetime operator
interfacesdo not display sequence variables, sequence parameters, and step
properties, or allow you to use watch expressions.

What is an Execution?

An executioris an object that TestStand creates to contain all the
information that TestStand uses to run your sequence and the subsequences
it calls. When an execution is active, you can start other executions by
running the same sequence again or by running different sequences.
TestStand does not limit the number of executions you can run
concurrently. Each execution runs in a different thread.

Wherever TestStand &ginsexecuting a sequence, it kes aun-time copy

of the sequence locahriables and the custom properties of the sequence
steps. If the sequence calls itself redtely, TestStand creates a separate
run-time copy of the localariables and custom step properties for each
acivation instance of the sequence. Maditions to thevalues of local
variables and custom step properties apply only to the run-time copy and
do not dfect the sequendée in memory or on disk.

For each adve execution,TestStand maintains axecution pointe that
points to the current step, a call stack, and a run-time copy of the local
variables and custom properties for all sequences and steps on the call
stack.

The Eecution tab on the Station Options dialog bavjates a number of
execution options that control tracing, breakpoints, and result collection.

© MNational Instruments Corporation 6-1 TestStand User Manual

Chapter 6 Sequence Execution

Refer to theStation Optionsection in Chapter equence Editor Menu
Bar, for more information on the station execution options.

Starting an Execution

You can initiate an execution by launching a sequence through a model
entry point, by launching a sequence directly, or by executing a group of
steps interactively.

Execution Entry Points

You can start execution through an entry point only if the active window is
for a sequence file that contains a sequence with themaimgequence .
A list of entry points appears in tli&xecutemenu of the sequence editor.

Each entry point in the menu represents a separate entry point sequence in
the process model that applies to the active sequence file. When you select
an entry point from th&xecutemenu, you are actually running an entry
point sequence in a process model file. The entry point sequence, in turn,
invokes the main sequence one or more times.

Execution entry points in a process model give the test station operator
different ways to invoke a main sequence. Entry points handle common
operations such as UUT identification and test report generation. For
example, the default TestStand process model provides two execution entry
points:Test UUTsandSingle Pass. TheTest UUTsentry point initiates

a loop that repeatedly identifies and tests UUTs.Sihgle Pass entry

point tests a single UUT without identifying it.

Refer to theProcess Modelsection in Chapter TestStand Architecture
Overview and to Chapter 1Brocess Mode|dor more information on
process models.

Executing a Sequence Directly

TestStand User Manual

To execute a sequence without using a process model, selBatrthe
Sequence Nam#em in theExecutemenu, wher&equence Name the

name of the sequence you are currently viewing. This command executes
the sequence directly, skipping the process model operations such as UUT
identification and test report generation. You can execute any sequence this
way, hot just main sequences. Usually, you execute a sequence in this way
to perform unit testing or debugging.

6-2 © National Instruments Corporation

Chapter 6 Sequence Execution

Interactively Executing Steps

You can execute selected steps in a sequence interactively by choosing
Run Selected StepsrLoop Selected Stepfrom the context menu in the
sequence editor or by clicking on tRen Testsor Loop Testsbuttons in

the run-time operator interfaces.

In interacive mode, only the selected steps in the sequexemrite,

regardless of my branching logic that the sequence contains. The selected
steps run in the order in whichghappear in the sequendestStand does
notevaluate step preconditions, $estStand runevery selected step.
However, TestStand does honor the Run Mode property for a selected step,
that is force fail, force pass or skip. In additidastStand does not perform
code module preloading for selected steps in inteaatode.

If you execute steps in a Sequence File wimngdyou initiate the interaite
execution as an independent tewdl execution, @ root interactive
executionWhen you do so, you create@wexecution.You can set station
options to control whether the Setup and Cleanup step groups of the
sequence run as part of the root intévaxxecution. Root interaite
executions do notwoke the process model.

If you execute steps in anxEcution windw when theexecution is
suspended, you initiate the inteligetexecution as aested interactive
executionwhich is arextension of the suspendexecution. When you do
this, the selected steps run within the esnof the normakxecution.

Sequence Editor Execution Window

Operator interfaces usually provide a separate Execution window or view
for each execution you start. For instance, the sequence editor displays each
execution in a separate window.

The Execution winadw is dvided into gveral areas. The top half of the
window contains the Steps tab, Cextttab, and Report bkaThe bottom
half of the winaw is dvided into the Call Stack pane and Watch
Expression pane. A status bar appears at the bottom edge of tloevwind

The Threads selection ring lists all the threads running iexgrition. In
the currentersion ofTestStand, eaatxecution can &ve only one thread.
There is no limit on the number of simultaneexscutions. Future
versions ofTestStand will atbw multiple threads in eaaixecution. Each
entry in the selection ring contains the name of thwexsequence in the
call stack for the thread. When you selectféedent thread from the

© MNational Instruments Corporation 6-3 TestStand User Manual

Chapter 6 Sequence Execution

selection ring, the contents of tharious tabs and panes in theeEution
window change to display the state of thevrthread.

Steps Tab
The Steps tab displays a list of the steps in the step group that is currently
executing. Figue6-1 shows the Execution window Steps tab.
Single Pass - computer.seq [2] [Pause] M=l E3
£% Steps | o Eontextl Heportl Threads: IMainSequence-Main [cpu.seq) [0x7]
Step | Dlescription | Status | Ewecution Flow
@Hegister Call ReqisterT est [computer. dil] FPazsed
@ Inztruction Set Call InstrSetT est [computer.dil) FPazsed
9@ Cache Call CacheT est [computer.dll)
@ FFU Call FPUT est [computer. dil]
END
4| |]
Call Stack | Watch Espression | Context | Walue
O Single Pass - Main [TestStandMode... | |&d" BunState PreviousStep. Result Status | curent execution co... "Passed"”
O MainSequence - Main [computer.seq)
-4} [®] MainSequence - Main [cpu.zeq)
| | i
@ | |Report Location: Z-4tsaZAE xamplesiDemchlt 2
Figure 6-1. Steps Tab in the Sequence Editor Execution Window
Whenexecution is suspended at a breakpoint, you cam tie steps ofray
of the sequences that areieeton the call stack. Use the Call Stack pane
to select the ante sequence to display in the Stefs ta
Tracing
If tracing is enabled, the sequence editor displays the progress of an
execution by placing a yellow arrow icon to the left of the icon for the
currently executing step in the Steps tab. The arrow icon is called the
execution pointeWhen execution suspends at a breakpoint, the Steps tab
displays the execution pointer next to the step that will run when execution
resumes. After each step completes, the Execution window updates the
contents of the Steps tab, the position of the execution pointer, and the
values of any watch expressions in the Watch panel.
TestStand User Manual 6-4 © National Instruments Corporation

Chapter 6 Sequence Execution

If tracing is disabled, the Execution window does not update until execution
suspends at a breakpoint. The Step tab might display no steps at all, or it
might contain the steps and execution pointer that it displayed at the most
recent breakpoint.

Usually, you disable tracing if you want to avoid using a lot of computer
time to display the progress of your execution. You can usgrtuing
Enabled item in theExecutemenu to enable or disable tracing. You also
can control tracing from the Execution tab in the Station Options dialog
box.

Debugging

The sequence editor and operator interfaces allow you to set breakpoints,
to step over or step into steps, to step out of sequences, and to set the next
step to execute. You also can terminate execution, abort execution, toggle
tracing, and run or loop on selected steps. In the sequence editor, these
commands are in tHexecutemenu and th®ebug menu. Refer to the

Execute MenandDebug Menusections, in Chapter &equence Editor

Menu Bar for more information on debugging commands.

Steps Tab Columns
As shown in Figure 6-1, the Steps tab contains the following columns:

» Step—Displays the name and icon of the step. You can click to the left
of the step icon to toggle the breakpoint for the step.

» Description—Displays a description of the step that varies according
to the type of step and the module adapter that is uses.

» Status—Displays the value of the status property for the step. If the
step has not yet executed, its status is an empty string. After the step
executes, its status reflects the result of its execution. Possible status
values can vary based on the type of step. Typical values include
Passed , Failed , Done, andError . Refer to theStep Statusection,
later in this chapter, for more information on step status values.

« Execution Flow—Indicates the properties that the step uses to control
the flow of execution in the sequence. The values that can appear in
this column and their meanings are as follows:

— Pre—Indicates that the step has a precondition.
— Post—Indicates that the step has a post action.
— Loop—Indicates that step is configured to loop.
— Skip—Indicates that the run mode of the step is Skip.

© National Instruments Corporation 6-5 TestStand User Manual

Chapter 6 Sequence Execution

TestStand User Manual

— Force Pass—Indicates that the run mode of the step is Force Pass.
— Force Fail—Indicates that the run mode of the step is Force Fail.

Steps Tab Context Menu

When execution is suspended at a breakpoint, you can display a context
menu for the Steps tab by right-clicking on the name or icon of a step. The
context menu can contain the following items.

Toggle Breakpoint

TheToggle Breakpointcommand sets or clears the breakpoint state for the
selected steps.

Run Mode

TheRun Mode menu item displays a submenu from which you can set the
run mode for the selected steps. The following run mode values are
possible.

* Force Pass—TestStand does not execute the step and does not
evaluate its preconditions. Instead, TestStand sets the status of the step
to Passed automatically.

* Force Fail—TestStand does not execute the step and does not evaluate
its preconditions. Instead, TestStand sets the status of the step to
Failed automatically.

e Skip—TestStand does not execute the step and does not evaluate its
preconditions. Instead, TestStand sets the status of the Steypti
automatically.

¢ Normal—TestStand executes the step normally. This is the default
value.

Set Next Step

TheSet Next Stepcommand tells TestStand to start from the selected step
when you resume execution.

Run Selected Steps

TheRun Selected Stepsommand runs the selected steps in interactive
mode.

6-6 © National Instruments Corporation

Chapter 6 Sequence Execution

Loop Selected Steps

TheLoop Selected Stepsommand loops on the selected steps in
interactive mode. Before running the steps, this command displays a dialog
box in which you specify the number of times to loop, and a stop condition
that TestStand evaluates after it executes each step.

Show Step in Context Tab

The Show Step in Context Tabcommand switches from the Steps tab to
the Context tab and positions the selection in the Context tab on the step
that has the focus in the Steps tab. Usually, you use this command to view
the values of the custom properties of a step after it executes.

Properties

The Properties command displays the Step Properties dialog box for the
selected step. Usually, most controls on the dialog box are disabled,
because you cannot edit most step properties during an execution.

Context Tab

The Context tab displays the sequence context for the sequence invocation
that is currently selected in the Call Stack pane. The sequence context
contains all the variables and properties that the steps in the selected
sequence invocation can access.

You use the Context tab to examine and modify the values of these variables
and properties. You can drag individual variables or properties from the
Context tab to the Watch Expression pane so that you can view changes in
their values while you single-step or trace through the sequence. When
execution completes, the Context tab becomes hidden. Refer to Chapter 8,
Sequence Context and Expressjdasmore information on sequence
contexts.

© National Instruments Corporation 6-7 TestStand User Manual

Chapter 6 Sequence Execution

Figure 6-2 shows the Context tab for an example sequence in which
execution is suspended.

2% Gteps @D Context | Heportl Threads: IMainSequence-Main [computer. zeq) [0x2] j

—

=-fEE] RunState

EE] Engine
FootContest
B ThisContest
EE] InitialS election
B Report
EEf] Execution
Thread
SequenceFile
EE] MextStep
EE] Sequence
PreviousStep
=-EF Result
LB Error
Status
PaszzFail
FeportT ext

T

Al

|

Mame

|_Tupe

| Yalue

| Comment |

Yalue

String

"Pazzed"

TestStand User Manual

Figure 6-2. The Context Tab in an Execution Window

The sequence context contains entries for each step in the sequence. You
can locate a particular step in the Context tab by selectirfghthve Step
in Context Tab item from the context menu on a step in the Steps tab.

Context Tah Context Menu

When execution is suspended, you can display a context menu for the
Context tab by right-clicking on a variable or property. The context menu
can contain the following items.

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. You use this command on variables or properties
to view their subproperties.

6-8 © National Instruments Corporation

Chapter 6 Sequence Execution

Refresh

When an execution suspends, other executions that are not suspended can
change the values of station global variables that appear in the Context tab
for the suspended execution. You can usértfeeshcommand to update

the Context tab so that it displays the current values of the station global
variables.

Object Properties

TheProperties command displays a dialog box you can use to change the
current value of the selected variable or property.

Report Tab

The Report tab displays the report for the current execution. Usually, the
Report tab is empty until execution completes.

By default, an execution generates a report only when you start the
execution through a model entry point sucifest UUTs or Single

Pass. You can set options that control report generation by selecting the
Report Options item in theConfigure menu. The default process model
can generate reports in either HTML or ASCII text formats.

The Report tab in the sequence editor can display reports in HTML, ASCII
text, or Rich Text Format (RTF). You also can use an external application
to view reports in these or other formats by selectind.thumch Report
Viewer command in th&¥iew menu when an Execution window is active.
You can use thExternal Viewers menu item in th&€onfigure menu to
specify the external application that TestStand launches to display a
particular report format.

The sequence editor uses the Internet Explorer component to display
HTML reports. If your sequence generates a very large number of results,
it can take a substantial amount of time for this component to load and
display the report. If the report does not appear in an acceptable amount of
time after the process model generates it, you can ugefimt Options

item in theConfigure menu to specify a filter expression that reduces the
number of results in the report. Another way to display a large report
quickly is to change the report format to ASCII text.

When you select the Report tab, TestStand hides the Call Stack and Watch
Expression panes so that it can use the entire Execution window to display
the report. Refer to Chapter 1Brocess Mode|gor more information on
report generation.

© National Instruments Corporation 6-9 TestStand User Manual

Chapter 6 Sequence Execution

Figure 6-3 shows an HTML report for an example sequence.

pg s Report | Threads: IMainSequence-Selup [auto. zeq) [0x3] j
«| s | @ 7
Back Farward Stop Refresh Home
UUT Report B
» Serial Number: abc123
* Date: Thursday, July 16, 1998

* Tune: 2:27:10 PM

+ Operator: user

* Execution Time: 10. 2116286 seconds
* Number of Results: 10

« UUT Result: Failed

Begin Sequence: MainSequence
(Z:testexec Examples'\Demo'Clauto seq)

i|Pne-test
I|Status ||Passed
i|M0dule Time: |l 225012
_
o P |
Ivleasurernent; 10.353

High Lirit: 125

Lo Lirait: 1123

|Compa.n'son Type: ”GELE |
[(odule Tire: |[p.000201

W

|Hep0rt Location: z:\hardy. html

Call Stack Pane

TestStand User Manual

Figure 6-3. HTML Report for an Example Sequence

Usually, when a step invokes a subsequence, the sequence that contains the
calling step waits for the subsequence to return. The subsequence
invocation is nested in the invocation of the calling sequence. The sequence
that is currently executing is tineostnested sequencé&he chain of active
sequences that are waiting for nested subsequences to complete is called
the call stack. The last item in the call stack is the most nested sequence
invocation.

6-10 © National Instruments Corporation

Chapter 6 Sequence Execution

The Call Stack pane displays the call stack for the execution thread that is
currently selected in the Thread selection ring. A yellow pointer icon
appears to the left of the most nested sequence invocation. The call stack in
Figure 6-4 shows that theest UUTs model entry is calling the main
sequence ikomputer.seq , which in turn is calling the main sequence in
theCPU.seq .

Call Stack |
O Test UUT: - Main [reststandmodel seq)
O MainSequence - Main [computer. seq)

=5 [m] [

ain [eq)

Figure 6-4. Call Stack Pane while Suspended in a Subsequence

When execution suspends, you can select a sequence invocation in the call
stack by clicking on its radio button. The Steps tab displays the steps for the
sequence invocation. The Watch Expression pane evaluates its watch
expressions using the sequence context for the selected sequence
invocation. In Figure 6-5, the main sequence fl@smputer.seq is

selected in the Call Stack pane.

2% Steps | @D Cortest I Rieport I Threads: IMainSequence - Main (cpu.seq) [0x8] ﬂ
Step | Description | Statug | Execution Flow |

@ Pawer On Call FowerOnT ezt [computer. dll) Pazzed
'=:> CPU Call Main5equence [cpu.seq) Running Fre

@ RO Call ROMT ezt [computer.dll] Fre

@ R Call RAMT est [computer.dll) Fre

@Viden Call VideaT est [computer.dll) Fre

@ Keyboard Call KeyboardT ezt [computer. dll] Fre

@ ROM Diagnostics Record Only, Call ROMDiagnostics ... Fre

@ Réb Diagnostics Record Only, Call RakDiagnostics ... Fre

@Video Diagnostics Recard Only, CallYideoDiagnostics. .. Fre

@ Keyboard Diagnostics Record Only, Call KeyboardDiagno... Fre

EMD

Call Stack | ‘watch Expression | Context | Walue

O Test UUTs - Main [teststandmodel. seq)

[®] MainSequence - Main [computer. seq)
-4) O MainSequence - Main [cpu.zeq)

1] | i

@ | |Report Lacatior: none 5

Figure 6-5. Steps Tab Displaying a Sequence Invocation in the Middle of the Call Stack

© MNational Instruments Corporation 6-11 TestStand User Manual

Chapter 6 Sequence Execution

When the steps view displays the steps for a call stack item that is not the
most nested item, a green pointer icon appears next to the sequence call step
that is waiting to complete.

Watch Expression Pane

TestStand User Manual

The Watch Expression pane displays the values of watch expressions that
you enter. TestStand updates the values in the Watch Expression pane
when execution suspends at a breakpoint. If tracing is enabled, TestStand
also updates the values after executing each step.

Usually, you enter watch expressions to monitor the values of variables and
properties as you trace or single-step through a sequence. You can drag
individual variables or properties from the Context tab to the Watch
Expression pane.

Figure 6-6 shows several example watch expressions in the Watch
Expression pane.

‘watch Expression | “alue | Type |
&d" Locals.ProcessorSpesd 400 MHumber

& Locals. MumSlats g Humber

&d” Locals. FreeDisk S pacelnGigs a4 MHurmber

&d" Locals. FreeDisk S pacelnGigs » 6.0 True Boolzan

&d" FunState. PreviousSteplndes 2 Hurnber

&d" RunState. PreviousStep. R esult Status "Pazsed" Sting

=k FunState PreviousStep Fesult PazzF ail SN Boolean

Figure 6-6. Watch Expression Pane

When execution is suspended, you can display a context menu by
right-clicking in the Watch Expression pane. The items in the context menu
vary depending on the whether you right-click on a watch expression or its
icon, or on the background of the pane. The context menu can contain the
following items.

Edit Expression

TheEdit Expressioncommand displays an expression browser dialog box
in which you can edit the selected watch expression.

6-12 © National Instruments Corporation

Chapter 6 Sequence Execution

Add Watch

TheAdd Watch command inserts an empty watch expression into the pane
and then displays an expression browser dialog box in which you can edit
the new expression.

Modify Value

The Modify Value command displays a dialog box in which you can edit
the value of the selected watch expression. TestStand dirvkotligy

Value command if the selected expression does not evaluate to a single
variable or property value. For example, you can modify the value of
Locals.X but not the value dfocals.X +5.

Refresh

When an execution suspends at a breakpoint, other executions that are not
suspended can change the values of station global variables that a watch
expression refers to. You can use Refreshcommand to update the

Watch Expression pane so that it displays the current values for watch
expressions that contain station global variables.

Status Bar
Figure 6-7 shows the status bar for an Execution window in the sequence
editor.

| < NN 00 Generating Report... |Report Location: Z:4T estE xechBirt T emph T empReport 00139 html él

Figure 6-7. Execution Window Status Bar

The status bar contains the following four elements arranged from left to
right.

« Execution Status LED—The LED is green while the execution runs,
red when the execution suspends, and dark gray when the execution
completes.

» Progress Indicator Bar—Through the TestStand ActiveX API, a step
module can request that an operator interface program display an
indication of the step’s progress toward completion. Usually, a step
module developer uses this feature if the step takes longer than a few
seconds to complete. The Execution window displays the degree of
progress in the Progress Indicator bar. The default process model also
uses the Progress Indicator bar to display progress while it generates
the test report.

© MNational Instruments Corporation 6-13 TestStand User Manual

Chapter 6

Result Collection

Sequence Execution

Status Messag—Through theTestStand AdveX API, step modules

can request that an operator interface program display a short message.
The Execution winaw displays these messages to the right of the
Progress Indicator ba

Report Location—Eachexecution has itewn test report. The
Execution winaw displays the location of the test report for the
execution in the rightmost box on the status kisuall, the process
modelfills in the Report Location with the pathname of fieto
which the model writes the report.

TestStand can automatically collect the results of each step. You can
configure this for each step in the Run Options tab of the Step Properties
dialog box. You can disable result collection for an entire sequence in the
Sequence Properties dialog box. You can completely disable result
collection on your computer in the Station Options dialog box.

Each sequence haRasultList localvariable that is initially an empty
array of container propertiefestStand appends awmcontainer property
to the end of th®esultList ~ array before a stegxecutes. This container
property is called thetep resultAfter the stegxecutes TestStand
automatically copies the contents of fesult subproperty for the step
into the step result.

Each step type can filee different contents forstResult subpropest
TestStand can append step results that qoRtult properties from
different step types to the saResultList arra. WhenTestStand copies
the Result property for a step to its step result, it also adds information
such as the name of the step and its position in the seq&enesstep that
calls a subsequenciestStand also addsetResultList arrayvariable
from the subsequence.

TestStand User Manual

6-14 © National Instruments Corporation

Chapter 6 Sequence Execution

Figure 6-8 shows the result of a Numeric Limit Test step in expanded form
on the Execution window Context tab.

2% Steps @ Contest | Heportl Threads: IMainSequence - Main (auto.seq) [0x5] j
E- D Sequence Contest Name | Tupe | walue | Comment |
=-EE Locals " alue Murnber 12

E@ Resultlist

=& [0]

Errar
{3 Code

-{gBY] Comp
FParameters
FileGlobals
-EE] StationGlobals
7-EE] ThisContest
-EE] RurState

Figure 6-8. A Result in a ResultList Array

Through the TestStand ActiveX API, a code module can request that
TestStand insert additional step properties in the step results for all steps
automatically. A code module also can use the API to insert additional step
result information for a particular step.

© MNational Instruments Corporation 6-15 TestStand User Manual

Chapter 6

Sequence Execution

Custom Result Properties

Because each step type can have a different set of subproperties under its
property, the step result varies according to the step type.
Table 6-1 lists the custom properties that the step result can contain for

Result

steps that use one of the built-in step types.

Table 6-1. Custom Properties in the Step Results for Steps That Use
the Built-In Step Types

Custom Step Property

Step Types that Use the Property

Error.Code All

Error.Msg All
Error.Occurred All

Status All

Common All

Numeric NumericLimitTest
PassFail PassFailTest
String StringLimitTest
ButtonHit MessagePopup
Response MessagePopup
ExitCode CallExecutable
NumLimitsinFile LimitLoader
NumRowslInFile LimitLoader
NumLimitsApplied LimitLoader
ReportText All

Limits.Low NumericLimitTest
Limits.High NumericLimitTest
Comp NumericLimitTest

TestStand User Manual

6-16

© National Instruments Corporation

Chapter 6 Sequence Execution

The Commorresult subproperty uses tBemmonResults custom data

type. TheCommonproperty is a subproperty of tResult property for
every built-in step type. Consequently, you can add a subproperty to the
result of every step type by adding a subproperty to the definition of the
CommonResults type.

TheLimits.Low , Limits.High , andCompproperties are not
subproperties of thResult property. Thus, TestStand does not include
them in the step results automatically. Depending on options you set, the
default process model uses the TestStand ActiveX API to include these
properties in the step results for steps that contain them.

Standard Result Properties

In addition to copying custom step properties, TestStand also adds a set of
standard properties to each step result. TestStand adds standard result
properties to the step result as subproperties of$sh@operty. Table 6-2

lists the standard result properties.

Table 6-2. Standard Step Result Properties

Standard Result Property Description

TS.StartTime Time at which the step began executing. The time is in terms gf the
number of seconds since the TestStand engine initialized.

TS.TotalTime Number of seconds the step took to execute. This time includgs the
time for all step options including preconditions, expressions, post
actions, module loading, and module execution.

TS.ModuleTime Number of seconds the step module took to execute.

TS.Index Zero-based position of the step in the step group.

TS.StepName Name of the step.

TS.StepGroup Step group that contains the step. The valuais , Setup ,
or Cleanup

TS.ld A number that TestStand assigns to the step result. The numper is
unique with respect to all other step results in the current TestStand
session.

© MNational Instruments Corporation 6-17 TestStand User Manual

Chapter 6 Sequence Execution

Table 6-2. Standard Step Result Properties (Continued)

Standard Result Property Description

TS.InteractiveExeNum A number that TestStand assigns to an interactive execution.|The
number is unique with respect to all other interactive executions in
the current TestStand session. TestStand adds this property only if

you run the step interactively.

TS.StepType Name of the step type.

Subsequence Results

If a step calls a subsequence or generates a call to a callback sequence,
TestStand creates a special step result subproperty to store the result of the
subsequence. Table 6-3 lists the name of the subproperty for each type of

subsequence call.

Table 6-3. Property Names for Subsequence Results

Result Subproperty Name

Type of Subsequence Call

TS.SequenceCall

Sequence Call

TS.PostAction

Post Action Callback

TS.SequenceFilePreStep

SequenceFilePreStep Callback

TS.SequenceFilePostStep

SequenceFilePostStep Callback

TS.ProcessModelPreStep

ProcessModelPreStep Callback

TS.ProcessModelPostStep

ProcessModelPostStep Callback

TS.StationPreStep

StationPreStep Callback

TS.StationPostStep

StationPostStep Callback

TS.SequenceFilePrelnteractive

SequenceFilePrelnteractive Callback

TS.SequenceFilePostinteractive

SequenceFilePostInteractive Callback

TS.ProcessModelPrelnteractive

ProcessModelPrelnteractive Callback

TS.ProcessModelPostinteractive

ProcessModelPostInteractive Callback

TS.StationPrelnteractive

StationPrelnteractive Callback

TS.StationPostInteractive

StationPostlInteractive Callback

TestStand User Manual

6-18 © National Instruments Corporation

Chapter 6 Sequence Execution

TestStand adds the following properties to the subproperty for each
subsequence.

* SequenceFile —Absolute path of the sequence file that contains the
subsequence.

» Sequence —Name of the subsequence that the step called.
* Status —Status of the subsequence that the step called.

* RestultList —Value ofLocals.ResultList for the subsequence
that the step called. This property contains the results for the steps in
the subsequence.

As an example, TestStand adds the following properties to the result of any
step that calls another sequence:

TS.SequenceCall.SequenceFile
TS.SequenceCall.Sequence
TS.SequenceCall.Status
TS.SequenceCall.ResultList

Loop Results

When you configure a step to loop, you can use the Record Result of Each
Iteration option on the Loop tab of the Step Properties dialog box to specify
that TestStand store a separate result for each loop iteration in the result list.
In the result list, the results for the loop iterations come immediately after
the result for the step as a whole.

TestStand adds®S.Loopindex numeric property to each loop iteration
result to record the value of the loop index for that iteration. TestStand also
adds the following special loop result properties to main result for the step.

* TS.EndingLoopindex ——Value of the loop index when looping
completes.

e TS.NumLoops —Number of times the step loops.

e TS.NumPassed —Number of loops for which the step status is
Passed orDone.

e TS.NumFailed —Number of loops for which the step status is
Failed

When you run a sequence using TestUUTs or SinglePass execution

entry points, the default process model generates the test report by
traversing the results for the main sequence in the client sequence file and
all of the subsequences it calls. Refer toRhecess Modelsection in

Chapter 1 TestStand Architecture Overvieand to Chapter 1®rocess
Models for more information on process models.

© MNational Instruments Corporation 6-19 TestStand User Manual

Chapter 6 Sequence Execution

Engine Callbacks

TestStand specifies a set of callback sequences that it invokes at specific
points during execution. These callbacks are da&leine callbacks
TestStand defines the name of each engine callback.

Engine callbacks arewaay for you to tellTestStand to call certain
sequences before and after éRecution of indvidual steps, before and
after interadve executions, after loading a sequeffite, and before
unloading a sequendite. Because th&estStand engine controls the
execution of steps and the loading and unloading of seqligese
TestStand dines the set of engine callbacks and their names.

The engine callbacks are in three general groups, basedfda thevhich
the callback sequence appeafsu can déne engine callback sequences
in normal sequendies, in process modéles, and in the
StationCallbacks.seq file.

TestStandrivokes engine callbacks in a normal sequéditeenly when
executing steps in the sequeride or loading or unloading the sequence
file. TestStandrivokes engine callbacks in process mdidet when
executing steps in the modie, steps in sequences that the model calls,
and steps inry nested calls to subsequendesstStandrivokes the engine
callbacks inStationCallbacks.seq wherever executing steps on the
test station.

Table 6-4 slows the diferent engine callbacks.

Table 6-4. Engine Callbacks

Where You Ddine When the Engine
Engine Callback the Callback Calls the Callback

SequenceFilePreStep Any sequencéile Before the enginexecutes
each step in the sequence
file

SequenceFilePostStep Any sequencéile After the enginexecutes
each step in the sequence
file

SequenceFilePrelnteractive Any sequencéile Before the enginedgins an
interactve execution of
steps in the sequentie

TestStand User Manual 6-20 © National Instruments Corporation

Table 6-4. Engine Callbacks (Continued)

Chapter 6 Sequence Execution

Engine Callback

Where You Define
the Callback

When the Engine
Calls the Callback

SequenceFilePostinteractive

Any sequence file

After the engine completeg
an interactive execution of
steps in the sequence file

SequenceFileLoad

Any sequence file

When the engine loads the
sequence file into memory

SequenceFileUnload

Any sequence file

When the engine unloads
the sequence file from
memory

ProcessModelPreStep

Process model file

Before the engine executes
each step in the process

model, each step in any

sequence that the process
model calls, and each step
any resulting subsequence
calls

>

ProcessModelPostStep

Process model file

After the engine executes
each step in the process
model, each step in any
sequence that the process
model calls, and each step
any resulting subsequence
calls

=)

ProcessModelPrelnteractive

Process model file

Before the engine begins
interactive execution of
steps in a client sequence
file

ProcessModelPostlInteractive

Process model file

After the engine begins
interactive execution of
steps in a client sequence
file

StationPreStep

StationCallbacks.seq

Before the engine executes
each step in any sequence
file

© MNational Instruments Corporation

6-21

TestStand User Manual

Chapter 6 Sequence Execution
Table 6-4. Engine Callbacks (Continued)
Where You Define When the Engine
Engine Callback the Callback Calls the Callback
StationPostStep StationCallbacks.seq After the engine executes
each step in any sequence
file
StationPrelnteractive StationCallbacks.seq Before the engine begins
any interactive execution
StationPostInteractive StationCallbacks.seq After the engine completes
any interactive execution
Note TestStand installs predefined station engine callbacks in the

Note

Note

StationCallbacks.seq file in the TestStand\Components\NI\

Callbacks\Station directory. You can add your own station engine callbacks
in the StationCallbacks.seq file in the TestStand\Components\User\
Callbacks\Station directory.

The following are examples of how you might use engine callbacks:

¢ You can use th8equenceFileLoad callback to make sure that the
configuration for external devices that the subsequence file uses occurs
only once during execution. Usually, you initialize the devices that a
sequence requires by creating steps in the Setup group for the
sequence. However, if you call the sequence repeatedly, you can move
the Setup steps intoSequenceFileLoad callback for the
subsequence file so that they run only when the sequence file loads.

¢ You can use thstationPreStep ~ andStationPostStep callbacks
to accumulate statistics on all steps that execute on the test station. You
can inspect the name and types of steps to accumulate data on specific
steps.

If you define aSequenceFilePreStep , SequenceFilePostStep
SequenceFilePrelnteractive , Or SequenceFilePostinteractive
callback in a model file, the callback applies only to the steps in the model file.

You must not define &equenceFileUnload callback in the
StationCallbacks.seq sequence file. When you do this, TestStand will hang
when you shut down the TestStand engine.

TestStand User Manual 6-22 © National Instruments Corporation

Step Execution

Chapter 6 Sequence Execution

Depending on options you set, a step performs a number of actions as it
executes. Table 6-5 lists the some of the more significant actions that the
step can take in the order that the step performs them.

Table 6-5. Order of Actions That a Step Performs

Action

Number Description Remarks
1 Allocate step result —
2 Check run mode —
3 Evaluate precondition —
4 Load module if not already loaded —
5 Evaluate Loop Initialization Expression Only if looping
6 Evaluate Loop While Expression, skip to action 18 Only if looping

if False
7 Allocate loop iteration result Only if looping
8 Call prestep engine callbacks —
9 Evaluate Pre Expression —
10 Call Pre Step substep for step type —
11 Call module —
12 Call Post Step substep for step type —
13 Evaluate Post Expression —
14 Evaluate Status Expression —
15 Call poststep engine callbacks —
16 Fill out loop iteration result Only if looping
17 Evaluate Loop Increment Expression, return to action § Only if looping
18 Evaluate Loop Status Expression Only if looping
19 Unload module if required —
© MNational Instruments Corporation 6-23 TestStand User Manual

Chapter 6 Sequence Execution

Table 6-5. Order of Actions That a Step Performs (Continued)

Action

Number Description Remarks
20 Execute post action —
21 Fill out step result —

Step Status

Usually, a step performs only a subset of these actions, depending on the
configuration of the step and the test station. When TestStand detects a
run-time error, it usually proceeds to action 21. If a run-time error occurs in
a loop iteration, TestStand performs action 16 before it performs action 21.

Every step in TestStand ha&esult.Status property. The status

property is a string that indicates the result of the step execution. Although
TestStand imposes no restrictions on the values to which the step or its code
module can set the status property, TestStand and the built-in step types use
and recognize the values that appear in Table 6-6.

Table 6-6. Standard Values for the Status Property

String Value Meaning Who Sets It
Passed Indicates that the step performed a test that pa] Step or code module
Failed Indicates that the step performed a test that fa| Step or code module
Error Indicates that a run-time error occurred. TestStand
Done Indicates that the step completed without setti TestStand
its status.

Terminated Indicates that the step called a subsequence i TestStand
which execution terminated. Occurs only for
sequence call steps for which the Ignore
Termination option is enabled.

Skipped Indicates that the step did not execute becausq TestStand
run mode for the step is Skip.

Running Indicates that the step is currently running. TestStand

Looping Indicates that the step is currently running in lo| TestStand
mode.

TestStand User Manual 6-24 © National Instruments Corporation

Chapter 6 Sequence Execution

Run-Time Errors

TestStand generates a run-time error if it encounters a condition that
prevents a sequence from executing. If, for example, a precondition refers
to the status of a step that does not exist, TestStand generates a run-time
error when it attempts to evaluate the precondition. TestStand also
generates a run-time error when a code module causes an access violation
or any other exception. A step or its code module can explicitly generate a
run-time error by setting the value of the

Step.Result.Error.Occurred property toTrue . Usually, the step or
code module also sets the values of3tep.Result.Error.Msg and
Step.Result.Error.Code properties to indicate the source of the error.

TestStand does not use run-time errors to indicate UUT test failures.
Instead, a run-time error indicates that there is a problem with the testing
process itself and that testing cannot continue. Usually, a code module
reports a run-time error if it detects an error in a hardware or software
resource that it utilizes to perform a test.

When a step causes a run-time error, the step stops executing, and TestStand
sets the status of the stepawor . TestStand also sets the internal status

of the sequence ®rror , and execution branches to the Cleanup step

group for the sequence. If the sequence is executing as a subsequence,
TestStand sets thesult.Error.Occurred property of the calling step

to True . TestStand also sets tResult.Error.Code and

Result.Error.Msg properties of the calling step to the values of these
properties in the subsequence step that generated the run-time error. In this
way, the run-time error in a subsequence becomes a run-time error in the
step that invokes it. The result is that TestStand executes the Cleanup steps
in all active sequences and then terminates execution.

However, if the Ignore Run-Time Errors step option is enabled for a step
that causes a run-time error, TestStand does not set the internal status of the
sequence that contains the stegtor . Instead, TestStand resets the
Error.Occurred property of the step tBalse and execution continues
normally with the next step in the sequence. Rémult.Status property

in the step that caused the run-time error retairns as its value.

© MNational Instruments Corporation 6-25 TestStand User Manual

Chapter 6

Sequence Execution

TestStand allows you to decide interactively how to handle a run-time error.
If a step causes a run-time error and the Show Dialog On Run-Time Error
option is enabled in the Execution tab of the Station Options dialog box,

TestStand displays the Run-Time Error dialog box, as shown in Figure 6-9.

Run-Time Error E

An ermor occurred in step 'Power Train CM' of sequence ;I
'MainSequence’ in sequence file

'E:testexech Examples\DemoiChauto.seq’,

Instruments Uninitialized

User defined emor code., Ermor Code: 0

[]

—Handle Current Error

" Ignare

= Abort Immediately [ho cleanup]

[Break

[Suppress this dialog for the remainder of this execution

Figure 6-9. Run-Time Error Dialog Box

The Run-Time Error dialog box gives you three possible ways to handle the
run-time error.

TestStand User Manual

Run Cleanup—The run-time error causes execution to proceed to the
Cleanup step group for the sequence. This is the default action when
the Show Dialog On Run-Time Error option is disabled.

Ignore—TestStand does not set the internal status of the sequence to
Error . Instead, TestStand resets Hueor.Occurred property of

the step téralse and execution continues normally with the next step
in the sequence. TiResult.Status property of the step remains set

to Error .

Abort Immediately —TestStand stops execution immediately,
without running any cleanup steps.

6-26 © National Instruments Corporation

Chapter 6 Sequence Execution

The dialog box also provides two further options:

© MNational Instruments Corporation

Break—If you choose th&un Cleanuporlgnore actions, TestStand
suspends execution at the step that caused the run-time error. This
option is dim if you choosAbort Immediately.

Suppress this dialog for the remainder of this execution-This

option prevents the Run-Time Error dialog box from appearing for any
run-time errors that occur later in the execution. Usually, you set this
option if you encounter a run-time error in a subsequence and you do
not want to see the dialog box again as the error propagates to the step
that called the subsequence.

6-27 TestStand User Manual

Station Global Variables

This chapter describes station global variables and the Station Globals
window.

In TestStand, you can define variables with various scopes. You can define
variables that are local to a sequence, global to a sequence file, and global
to the test station. You can access station global variables from any step,
expression, or code module. Unlike other variables, the values of global
variables are saved from one TestStand session to the next. Usually, you use
station global variables to maintain statistics or to represent the
configuration of your test station.

Station Globals Window

You view and edit global variables in the Station Globals window of the
sequence editor. You can use 8tation Globalsmenu item in the
sequence editdfiew menu to display the Station Globals window.
Figure 7-1 shows example variables in the Station Globals window.

W e I Globals & I

EI@ StationGlobals Field | Type | Yalug -
E-EE T3 [(0] Shing "Passed"”
BE] CumentUser [EED) [1] Sting "Paszed"”

LastUzerM ame R [2] Stiing "Pacsed" [
----- Mu&tchentUUTStatuses Stiing “Failed”
sNumFa!IuresToFlay (4] Sting "Passed”
Derenien e
[Debughade [EE (5] Sting "Passed"
& Global 6 [7] String "Paszed"
6] [5] String "Passed"
[EE] (9] Stiing "Passed"

[EE] [10] Sting " -

a I AV

Figure 7-1. Station Globals Window

© National Instruments Corporation 7-1 TestStand User Manual

Chapter 7 Station Global Variables

Station Globals View Ring

You can use View ring at the top right corner of the window to select which
aspect of the station globals to display in the window. You have the
following choices:

* Globals—Displays the station global variables and their values.

* Global Types—Displays the named data types that the station global
variables use. The view is empty if no station globals use hamed data
types. Refer to Chapter Bypes for more information on types and
type editing.

Globals View Context Menu

You can display a context menu by right-clicking on a global variable,
subproperty, or on the background area of the view. The context menu can
contain the following items.

Insert Global

Thelnsert Global menu item has a submenu in which you select the data
type for the global variable you want to insert. Figure 7-2 showsfeet
Global submenu.

ik Station Globals = =100
Wiew: |G|Dba|s 'I
E@ StationGlobals Stand Global | Type | Yalue | Carnm
=68 TS Object
" Currentllzer [0] MostRecentUlT Statuses Anay of Stings[0..50]
] LastlserMame [z MumF siluresT aday Mumber &
MDStH?CBHtUUTSlatUSES (2] MumF ailuresThistonth Number 161
— :um:zaf:uresx.d::- h NumFaiIuresThisYear Hurnber a70
um a!ures !S ont @Debugh’lode Boolean Falze
MHurnF ailures T hisvear st Glabal Nurnbs
M Debughode Jn=ert aloha
String
Easte
Boolean
Relnad Station Globals Activex Reference
G e Level [BREpace] Types »
Browse Sequence Contest... Aay of 5
1] | 2l

Figure 7-2. The Insert Global Submenu

TestStand User Manual 7-2 © National Instruments Corporation

Chapter 7 Station Global Variables

If you want to insert a global variable with a custom data type, you must
create a named data type first. You can create a named data type in the
Global Types view of the Station Globals window, in the Sequence File
Types view of a Sequence File window, or in the Type Palette window.
Refer to Chapter Jypes for more information on types and type editing.
After you create the named data type, it appears ifypes submenu of
thelnsert Globals submenu.

View Contents

TheView Contentscommand selects the tree view node that corresponds
to the currently selected item in the list view. The list view then displays
the contents of the item. If the tree view is currently closed, it opens to show
the selected node. You can use this command to view the subproperties of
global variables.

Go Up One Level

TheGo Up One Levelcommand selects the next higher level node in the
tree view. The list view displays the contents of the newly selected node.

Browse Sequence Context

TheBrowse Sequence Contextommand displays a tree view that
contains the names of global variables and run-time state properties you
can access from any expression or step module. This command also
appears in th¥iew menu of the sequence editor menu bar. Refer to the
View Menusection in Chapter §equence Editor Menu Bdor more
information.

Rename

The Renamecommand allows you to modify the name of the selected
global variable or subproperty.

Global Variable Properties

ThePropertiescommand displays a dialog box you can use the change the
value for a global variable or one of its subproperties.

© MNational Instruments Corporation 7-3 TestStand User Manual

Chapter 7 Station Global Variables

Persistence

Reload Station Globals

TheReload Station Globalscommand discards the current station globals
and reloads the station globals from disk. Usually, you use this command
to discard edits that you make to the station globals. If you do not reload the
station globals, your edits are saved when you exit the sequence editor. You
can select this command only when no executions are running.

TestStand User Manual

The values of station globals persist from one TestStand session to the next.
TestStand stores the station globals inQtagionGlobals.ini file in

theCfg subdirectory of your TestStand engine installation. TestStand loads
the station globals frortationGlobals.ini when the engine

initializes, and it saves the station global variables to

StationGlobals.ini when the engine shuts down. Usually, the engine
initializes when you start the sequence editor or an operator interface
program and the shuts down when you exit the sequence editor or operator
interface. When the engine saves the station globals, not only does it save
their most recent values, but it also saves any additions or deletions that you
made during the session to the list of station globals.

You can save the station globals manually in the sequence editor by
selecting the&Savecommand in th&ile menu when the Station Globals
window is the active window. You also can save the station globals to disk
in a code module by using t@®mmitGlobalsToDisk method in the

Engine class of the TestStand ActiveX API. When TestStand saves the
station globals, TestStand changes the disk d&&idnGlobals.ini

only if the station globals in memory differ from the station globals in

the file.

If you run multiple concurrent executions in the same TestStand session,
all executions share the same station globals.

If you run multiple, concurrent instances of the TestStand engine, each
instance maintains a separate copy of the station globals. When you start
each new instance of the sequence editor or operator interface, the engine
loads a copy of the station globals frémationGlobals.ini . If you or

the sequences you run make changes to the station globals, the engine saves
the current state of the station globalStationGlobals.ini when the
sequence editor or operator interface exits. If you make changes to the
station globals in two concurrent sequence editor or operator interface
instances, the instance that exits last might overwrite the changes that the
other instance saved $tationGlobals.ini . If, when an instance exits,

7-4 © National Instruments Corporation

Chapter 7 Station Global Variables

the engine detects that the another instance modified the file after the
current instance loaded it, the engine displays a prompt giving you the
choice of overwriting th&tationGlobals.ini or discarding your
changes.

Special TestStand Station Globals

TestStand provides a special-purpose station global variable n&@ned
TestStand uses tITs variable to contain special values that it adds as
subproperties. TestStand adds the following special variables:

© MNational Instruments Corporation

TS.LastUserName —A string property that holds the login name of
the last user to log in.

TS.CurrentUser —A property of typeJser that contains

information about the user that is currently logged in. You can use the
subproperties ofS.CurrentUser to determine if the current user has

a specific privilege. Refer to théerifying User Privilegesection in
Chapter 11User Managemenfor more information on verifying user
privileges. TestStand does not saveTBe&urrentUser property in
StationGlobals.ini

7-5 TestStand User Manual

Sequence Context and
Expressions

This chapter describes the properties in the TestStand sequence context and
how to use expressions in TestStand.

Sequence Context

Before executing the steps in a sequence, TestStand creates a run-time copy
of the sequence. This allows TestStand to maintain separate local variable
and step property values for each sequence invocation. TestStand also
maintains &equence conteftiat contains references to all global variables

and to all local variables and step properties in all active sequences. The
contents of the sequence context changes depending on the currently
executing sequence and step.

You can use the sequence exhto accessariables and step properties in
expressions and through calls to ffestStand AéveX API from step
modules. Refer to thExpressionsection later in this chapter for
information onexpressions. For more information on ffestStand
ActiveX API, refer to th@ estStand ActiveX API Refererardine help.

To refer to a subpropsgttyou use a period to separate the name of the
property from the name of the subprogelfor example, you refer to the
CurrentUser subproperty in the TS subproperty of the

StationGlobals property asStationGlobals.TS.CurrentUse r.

© MNational Instruments Corporation 8-1 TestStand User Manual

Chapter 8 Sequence Context and Expressions

Tables 8-1 through 8-6 list the properties in the sequence context and
describe their contents. Table 8-1 lists the first-level properties. The
subsequent tables list subproperties of these properties.

Table 8-1. First-Level Properties of the Sequence Context

Sequence Context Subproperty

Description

Step

Contains the properties of the currently executing ste
the current sequence invocation. Biep property
exists only while a step executes. It does not exist wh
the execution is between steps, for example, at a
breakpoint.

pin

en

Locals Contains the sequence local variables for the current
sequence invocation.

Parameters Contains the sequence parameters for the current
sequence invocation.

FileGlobals Contains the sequence file global variables for the cur

execution.

rent

StationGlobals

|
i

Contains the station global variables for the engine
invocation. TestStand maintains a single copy of the
station globals in memory. Refer to Table 8-2 for the
default contents of th@tationGlobals property.

ThisContext

Holds a reference to the current sequence context. V)
usually use this property to pass the entire sequence|
context as an argument to a subsequence or a stepm

pdule.

EE] RunState

Contains properties that describe the state of executig
the sequence invocation. Refer to Table 8-3 for the
contents of th®unState property.

nin

Some of the properties in the sequence context refer to objects that exist
before, and persist after, the current execution. Any modifications you
make to these objects affect all executions in the current TestStand session.
If you save the modifications to disk, they affect future TestStand sessions.
These properties include the following:

e Station.Globals

. RunState.InitialSelection

* RunState.SequenceFile

¢ RunState.ProcessModelClient

TestStand User Manual

8-2 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Sequence Context Subproperties

This section discusses sequence context subproperties.

StationGlobals

The StationGlobals property object contains the station global
variables for the engine invocation. Each TestStand session maintains a
single copy of the station global variables in memory. Any modifications
you make to a station global property affect all executions in the current
TestStand session and future TestStand sessions. Refer to Chapter 7,
Station Global Variablesfor more information on station global variables.

TestStand createsTs subproperty in the StationGlobals property to hold
the standard station global variables that TestStand defines. Table 8-2
shows the contents of th& subproperty.

Table 8-2. The StationGlobals TS Subproperty in the Sequence Context

Sequence Context Subproperty Description

Contains the TestStand-specific station globals.

LastUserName

Login name of the user that logged in most recently.

CurrentUser

User object for the user that is currently logged in. The
property does not exist if no user is logged in. Refer to
Chapter 11JUser Managemenfor more information on
theUser standard data type.

© National Instruments Corporation 8-3 TestStand User Manual

Chapter 8 Sequence Context and Expressions

RunState

TheRunState property object contains all the property objects that
describe the state of execution in the sequence invocation. Table 8-3 shows
the subproperties of ttRunState property object.

Table 8-3. The RunState Subproperty in the Sequence Context

Sequence Context Subproperty Description

= Engine Engine object in which the sequence invocation execytes.
Refer to thelestStand ActiveX API Referemdine help
for more information on the methods and properties ¢
this object.

=

Root Sequence context for the root sequence invocation. Iflyou
initiate an execution using a process model entry point,
the property is the sequence context for the process model
entry point. For example, if you use an entry point from
the default TestStand process modelRbeat property is
the sequence context of thest UUTs or theSingle

Pass sequence. If you initiate an execution on a sequence
without using a process model entry point, Roet
property object is the sequence context for the sequence
you run.

Main Sequence context for the least nested sequence that s not
in a process model. If you initiate an execution using the
TestStand default model entry point, than property is
the sequence contextibinSequence . If you initiate an
execution on a sequence without using a process maqdel
entry point, theMain property object is the sequence
context for whichever sequence you run.

ThisContext Reference to the current sequence context. You usually
use this property to pass the entire sequence context gs an
argument to another sequence or a step module.

Caller Sequence context for the sequence that called the current
sequence. This property does not exist in the root
sequence context.

TestStand User Manual 8-4 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Table 8-3. The RunState Subproperty in the Sequence Context (Continued)

Sequence Context Subproperty

Description

| InitialSelection

Contains references to the non-execution versions of the

steps, sequences, and sequence file that are selecte
active when you start the execution. You usually use

property in custonTools menu commands to operate on

d or
this

the selected objects in a sequence file. Refer to Table 8-6

for the contents of thiitialSelection property.

Note: Any changes you make to subproperty values i
Step, Sequence, or SequenceFile object that the
InitialSelection property contains modifies the
non-execution version of the object. TestStand saves
modifications when you save the selected sequence
Whenever you modify the selected file or objects it
contains from a code module, you must increment th
SelectedFile.ChangeCount subproperty of
InitialSelection

the
file.

1%

FE| Report

Report object for the execution. Refer to TrestStand
ActiveX API Referenaenline help for more information
on the methods and properties of Report objects.

| Execution

Execution object in which the sequence invocation runs.

Refer to thelestStand ActiveX API Referermdine help
for more information on the methods and properties ¢
Execution objects.

-

Thread

Thread object in which the sequence invocation executes.

Refer to th estStand ActiveX API Referemedine help
for more information on the methods and properties ¢
Thread objects.

-+

| SequenceFile

Run-time copy of the SequenceFile object for the
sequence invocation. Refer to thestStand ActiveX AP
Referencenline help for more information on the
methods and properties of SequenceFile objects. Ref]
Table 8-4 for the contents of tisequenceFile

property.

erto

Note: TestStand saves any changes you make to property

values of a SequenceFile object when you save the
sequence file.

© National Instruments Corporation

85 TestStand User Manual

Chapter 8 Sequence Context and Expressions

Table 8-3. The RunState Subproperty in the Sequence Context (Continued)

Sequence Context Subproperty

Description

Sequence

Run-time copy of the Sequence object for the sequence
invocation. The Sequence object contains the parameters,
local variables, and steps for the sequence. Any changes

you make to property values in this object modify onl
the execution version of the object. Refer to Table 8-5
the contents of thBequence property.

y
for

B PreviousStep

Run-time copy of the Step object for the previously

executed step in the sequence invocation. The property

exists only after the first step in a step group execute
Any changes to property values in this object modify o
the execution version of the object.

=

y

EF Step

Run-time copy of the Step object for the step that is
currently executing. This property does not exist when
execution is between steps, for example, at a breakp
Any changes to property values in this object modify o
the execution version of the object.

the
Dint.

nly

NextStep

i
i

Run-time copy of the Step object for the step that follgws

the currently executing step in the sequence. This

property does not exist during and after the execution of

the last step in a sequence step group. Any changes
property values in this object modify only the executi
version of the object.

to
N

IsProcessModel

Hl
[

Boolean that indicates whether the sequence invocati
a sequence in the process model.

N is

Tracing

Hl
[

Boolean that indicates whether tracing is active for th
sequence invocation.

D

SequenceFailed

=

Boolean that indicates whether the current status of {
sequence invocation igailed"

StepGroup

=]
=
Exl

String that contains the name of the step group that t
sequence invocation is executing. CariMain"
"Setup" , or"Cleanup"

CallStackDepth

=3
|
£

Zero-based index of the currently executing sequenc
the call stack. If, for example, the call stack contains th
sequence invocationSallStackDepth is 2. The
sequence call stack includes calls to process model
sequences, including calls to entry points.

TestStand User Manual

8-6 © National Instruments Corporation

he

e on
ree

Chapter 8 Sequence Context and Expressions

Table 8-3. The RunState Subproperty in the Sequence Context (Continued)

Sequence Context Subproperty

Description

PreviousSteplndex

Zero-based index of the previously executed step in the

step group. TestStand sets the property valte tefore
executing the first step in a sequence step group.

Steplndex

Zero-based index of the currently executing step in th
step group. TestStand sets the valud tavhen the
execution is between steps, such as at a breakpoint.

NextSteplndex

Zero-based index of the step that follows the currently

executing step in the step group. TestStand sets the

to-1 when executing the last step in a sequence step

group. By modifying the value of this property, you c3
specify the step that TestStand executes next.

Note: Changes that you make to this property do not
affect the value of thRunState.NextStep ~ property
object immediately.

Looplindex

=3
|
ere

The loop index for the active step in the sequence

invocation. By default, steps that you configure to loop

use this property to store the loop index. The value of

the

loop index depends on the looping construct you chopse

to use for the step.

73] LoopNumPassed

Number of iterations that a looping step completes wit
status ofPassed" or"Done" .

7] LoopNumFailed

Number of iterations that a looping step completes wit
status of'Failed"

| ProcessModelClient

The SequenceFile object for the client sequence of the
process model. This property exists only for executions

that you initiate through a process model entry point.
Refer to thél'estStand ActiveX API Referermr#ine help

for more information on the methods and properties ¢
this object.

Note: TestStand saves any changes you make to proq
values in the sequence file object when you save the
sequence file.

IsEditor

Boolean that indicates whether the current GUl is a
sequence editor.

© National Instruments Corporation

8-7 TestStand User Manual

=

erty

Chapter 8 Sequence Context and Expressions

RunState.SequenceFile and Other SequenceFile
Objects

Several sequence context subproperties are SequenceFile objects. The
subproperties are the following:

¢ RunState.SequenceFile

* RunState.ProcessModelClient

* RunState.InitialSelection.SelectedFile

Table 8-4 shows the subproperties of the SequenceFile objects. TestStand
saves any changes that you make to property values in a SequenceFile
object when you save the sequence file. Refer thaktStand ActiveX API
Referenc®nline help for more information on the methods and properties
of SequenceFile objects.

Table 8-4. The Subproperties of the SequenceFile Objects in the Sequence Context

Sequence Context Subproperty Description

ChangeCount The number of changes you have made to the sequgnce
file object. You must increment this property whenevg
you modify otheSequenceFile object properties from
a code module. This indicates to the sequence editor|that
you have changed the sequence file.

=

LastSavedChangeCount The value of th€hangeCount property when the
sequence editor last saved the sequence file

Data Contains the sequences and file globals in the
sequence file.

O Sed Subproperty obata . Contains an array of all Sequenge
objects in the sequence file.

FileGlobalDefaults Subproperty obata . Contains the sequence file globals
variables along with their default values.

Path The absolute pathname of the sequence file.

TestStand User Manual 8-8 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

RunState.Sequence and Other Sequence Objects

Each SequenceFile object in the sequence context contains an array of
Sequence objects in itmta.Seq subproperty. The
RunState.Sequence subproperty of the sequence context is the
Sequence object for the current sequence invocation.
RunState.Sequence is a run-time copy of the
RunState.SequenceFile.Data.Seq array element for the sequence
that is currently executing.

Table 8-5 shows the subproperties of the Sequence objects. Refer to the
TestStand ActiveX API Referermrdine help for more information on the
methods and properties of Sequence objects.

Table 8-5. The Subproperties of the Sequence Objects in the Sequence Context

Sequence Context Subproperty

Description

Locals

Contains the local variables of the sequence. In
RunState.Sequence , the local variables contain the
current values in the sequence invocation. In
nonexecution instances of Sequence objects, the loc
variables contain their default values.

=

@ ResultList

In RunState.Sequence , theResultList local
variable contains an array of step results for the sequ
invocation. In nonexecution instances of Sequence
objectsResultList is empty.

Main

Contains an array of all Step objects in the Main step
group.

Setup

Contains an array of all Step objects in the Setup ste
group.

B B &

Cleanup

Contains an array of all Step objects in the Cleanup 3
group.

Parameters

|
HH

Contains the parameters of the sequence. In
RunState.Sequence , the parameters contain the valu
that the calling sequence passes. In nonexecution
instances of Sequence objects, the parameters contd

ence

step

es

AN

their default values.

© National Instruments Corporation

8-9 TestStand User Manual

Chapter 8

Sequence Context and Expressions

RunState.Step and Other Step Objects

Each Sequence object in the sequence context contains an array of Step
objects for each step group. TiRenState.Step subproperty of the
sequence context is a Step object inRhaState.Sequence Sequence
object. It represents the step that is currently executing.

All Step objects include custom properties and the starRizalt
subproperty, which contains tEeror , Status , andCommon

subproperties. Refer to Chapter Bjlt-In Step Typedor more

information on the step properties for each of the built-in step types. Refer
to theTestStand ActiveX API Refereraadine help for more information

on the methods and properties of Step objects.

The properties of the Step objectRitnmState.Sequence contain the

values for the current sequence invocation. The properties of the Step
objects in the other Sequence objects in the sequence context contain their
default values.

RunState.InitialSelection

TheRunState.InitialSelection subproperty specifies the steps,
sequences, and sequence file that are selected or active when you start an
execution. You usually use this property in sequences that cstol

menu commands or process model entry points call. Table 8-6 lists the
subproperties of thimitialSelection

Table 8-6. The InitialSelection Subproperty in the Sequence Context

Sequence Context Subproperty Description

b SelectedSteps

Contains an array of step objects that were selected when
the execution started. The array is empty for non-root
sequence contexts.

b SelectedSequences

Contains an array of sequence objects that were selected
when the execution started. The array is empty for
non-root sequence contexts.

SelectedFile

Specifies the sequence file object for the active sequence
file when the execution started. This property only exists
in the root sequence context.

TestStand User Manual

8-10 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Any change you make to subproperty values in a Step, Sequence, or
SequenceFile object that tRanState.InitialSelection property
contains modifies the nonexecution version of the object. TestStand saves
the modifications when you save the selected sequence file. Whenever you
modify the selected file or objects it contains from a code module, you must
increment the&ChangeCount property of theSelectedFile subproperty.

Using the Sequence Context

In expressions, you access the value of a variable or property by specifying
a path from the sequence context to the particular variable or property. For
example, you can set the status of a step using the following expression:

Step.Result.Status = "Passed"

Refer to theExpressionsection later in this chapter for more information
on using expressions.

During an execution, you can view and modify the values of the properties
in the sequence context from the Context tab of the Execution window. The
Context tab displays the sequence context for the sequence invocation that
is currently selected in the Call Stack pane. You also can monitor individual
variables or properties from the Watch Expression pane. Refer to the
Sequence Editor Execution Windsection in Chapter gequence
Execution for more information on using the Context tab and Watch
Expression pane of the Execution window.

You can pass a reference to sequence context object to a step module. In
step modules, you access the value of a variable or property by using
PropertyObiject methods in the TestStand ActiveX API on the sequence
context. As with expressions, you must specify a path from the sequence
context to the particular property or variable. Refer to Chapteévidé@ule
Adapters for more information on how to pass the sequence context to a
code module for each adapter. Refer toTthstStand ActiveX API
Referencenline help for more information on accessing the properties in
the sequence context from code modules.

You can use thBrowse Sequence Contextommand in th&iew menu

of the sequence editor menu bar to display a tree view containing the names
of variables, properties, and sequence parameters that you can access from
expressions and step modules. Refer t&/ther Menuwsection in Chapter 4,
Sequence Editor Menu B&or more information.

© MNational Instruments Corporation 8-11 TestStand User Manual

Chapter 8 Sequence Context and Expressions

Expressions
In TestStand, you can use an expression to calculate a new value from the
values of multiple variables or properties. In general, you can use an
expression anywhere you can use a simple variable or property value. The
Statement built-in step type evaluates an expression as a step in sequence.
For most steps, you can specify a Pre Expression, a Post Expression, and a
Status Expression in the Expressions tab of the Step Properties dialog box.
TestStand executes the pre expression before executing the step module,
and it executes that post expression and status expression after executing
the step module.
In expressions, you can access all variables and properties in the sequence
context that is active when TestStand evaluates the expression. The
following is an example of an expression:
Locals.MidBandFrequency = (Step.HighFrequency +
Step.LowFrequency) / 2
TestStand supports all applicable expression operators and syntax that you
use in C, C++, Java, and Visual Basic. If you are not familiar with
expressions in these standard languages, TestStand also provides an
Expression Browser dialog box that you can access by clicking on the
Browse button that appears next to controls that accept expressions.
TestStand User Manual 8-12 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Figure 8-1 shows the Expression Browser dialog box.

Expression Browser E

Wariables/Properties | Operators/Functians |

[#- Step

= Loeals

L Resultlist [&rray of Result{0.. empty])
MidBandFrequency [Mumber]

- Parameters

- FileGilobals

- StationGlobals

- ThizContest

- RunState

Y ariable:

Locals MidB andFrequency

Replace Inzert

E xpressian:

ILDcaIs.MidBandFrequency = [Step HighFrequency + Step LowFrequency] / 2

Check Syntax 0K Cancel

Figure 8-1. Variables/Properties Tab of the Expression Browser

The Expression Browser dialog box allows you to interactively build an
expression by selecting from lists of available variables, properties, and
operators. You select variables and properties from the Variables/Properties
tab, and you select operators from the Operators/Functions tab. The
Operators/Functions tab contains a Description text box that shows help
text for the currently selected operator. Usingltisert andReplace

buttons, you can copy a variable, property, or operator to the cursor location
in the Expression control. Using tlideck Syntaxbutton, you can verify

the syntax in the Expression control.

© MNational Instruments Corporation 8-13 TestStand User Manual

Chapter 8 Sequence Context and Expressions

Figure 8-2 shows the Operators/Functions tab of the Expression Browser
dialog box.

Expresszion Browser E

Yariables/Properties DperatnrsfFunctinnsl

Operatars Simbol | DEeration |
A;signment N Wi
Egbn\’lllszrisnn M ultiplication
b / Division
Logical rOD M odulus [Basic]
Other % Modulus [C/C++]
Functions + Increment
Array - Decrement
Mumeric
Property =l
Description;
Binary addition and unary pluz. If one operand iz a string and the other iz a ;I
rumeric: walue, the operatar first converts the sting to a numenic value. 1F Both
arguments are strings, the operator creates a new sting that concatenates the
contents of the bwo strings, LI
Heplace Inzert |
Expression:

ILUcals.MidBandFlequency = [Step.HighFrequency + Step. LowFrequency] / 2

Check Spntax | Cancel |

Figure 8-2. Operators/Functions Tab of the Expression Browser

TestStand User Manual 8-14 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Table 8-7 lists the operators and constant formats you can use in
expressions.

Table 8-7. Expression Operators

Operator Class

Operators in Symbol Form

Arithmetic The arithmetic symbols include:
+1'|*1/1MOD%++, and".
Assignment The assignment symbols include:
=, +=,-=,%*=, /=, %5 "=, &=, andl: .
Comparison The comparison symbols include:
==, 1=, <>, >, >, <, and<=.
Logical The logical symbols include:
&& || ,and!.
Bitwise The bitwise symbols include:
AND OR NOTXOR &, |, ~,* ,>>, and<<.
Constants The formats for the different types of constants include:

1.23e-4 Floating Point

1234 Integer

0x1234efa9 Hexadecimal Integer

True Boolean

“1234wxyz" String

Nothing Empty ActiveX Reference

Miscellaneous

Miscellaneous additional operators include:

0 Parenthesis—Alter evaluation order

. Dot—Property field separator

1} Brackets—Array subscript

, Comma—Expression separator

?. Conditional—Given a Boolean value, chooses one of two other
expressions to evaluate.
Usage:booleanValue ? exprl : expr2

The operand for an array subscript must evaluate to a numeric value, unless
the array contains step or sequence elements. For arrays of step or sequence
elements, the subscript can evaluate to a string value which contains the
name of a step or sequence element in the array. For example,
RunState.Sequence.Main[*"MyGoto"]

© MNational Instruments Corporation 8-15 TestStand User Manual

Chapter 8 Sequence Context and Expressions

Table 8-8 lists the functions you can call from an expression. Optional
function parameters appear within angle brackets. For descriptions of each
individual parameter, refer to the online help in the Expression Browser

dialog box.

Table 8-8. Function Expression Operators

Function

Description

Array

GetArrayBounds(array, lower, upper)

Retrieves the upper and lower bounds ¢
an array.

=

GetNumElements(array)

Returns the number elements in an arra

Y.

InsertElements(array,index,
numElements)

Inserts new elements into a
one-dimensional array.

RemoveElements(array, index,
numElements)

Removes elements from a
one-dimensional array.

SetArrayBounds(array, lower, upper)

Changes the bounds of an array.

SetNumElements(array, numElements)

Sets the number of elements in a
one-dimensional array.

Numeric

Random(low, high)

Returns a random number betwémm
andhigh .

Round(number, <option>)

Rounds a number to an integer.

Val(string, <isValid>)

Converts a string to number.

Property

CommentOf(object)

Returns the comment for an object.

NameOf(object)

Returns the name of an object.

PropertyExists("propertyName")

ReturnsTrue if the property exist$alse
otherwise.

TypeOf(object, <typeDisplayName>)

Returns the type of an object.

String

Find(string, stringToSearchFor,
<indexToSearchFrom>, <ignoreCase>,
<searchinReverse>)

Searches a string for a substring.

TestStand User Manual

8-16

© National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Table 8-8. Function Expression Operators (Continued)

Function

Description

FindAndReplace(string, searchString,
replacementString, <startindex>,
<ignoreCase>, <maxReplacements>,
<searchinReverse>)

Finds and replaces one of more substrin
with a replacement string.

Left(string, numChars)

Retrieves a substring from the left side
a string.

Len(string)

Returns the number of characters in a
string.

Mid(string, startindex,<numChars>)

Retrieves a substring from the middle of
string.

Replace(string, startindex,
numCharsToReplace, replacementString)

Replaces the given number of character:
the specified index with a replacement
string.

ResStr (category, tag,
<defaultString>, <found>) or
GetResourceString(...)

Retrieves a string from the string resour
files. An alternative name for this functio
is GetResourceString

Right(string, numChars)

Retrieves a substring from the right side
a string.

Str(value)

Converts a number or Boolean to a strir

StrComp("StringA", "StringB",
<compareOption>, <maxChars>)

Compares two strings.

Time

Date(<longFormat>, <year>, <month>,
<monthDay>, <weekDay>)

Retrieves the current date.

Time(<24Hr>, <h>, <m>, <s>, <mMs>)

Retrieves the current time.

gs

Of

a

5 at

ce

1g.

Seconds()

Returns the number of seconds since tf
application started.

e

Other

AllOf(boolean, ...)

Returns the logicand of any number of
parameters.

AnyOf(boolean, ...)

Returns the logicabr of any number of
parameters.

© MNational Instruments Corporation

TestStand User Manual

Chapter 8 Sequence Context and Expressions

Table 8-8. Function Expression Operators (Continued)

Function Description

CurrentUserHasPrivilege(string) ReturnsTrue if the current user has the
privilege you specify. You can specify a
property path in addition to a simple
property name. For example, if there is ja
privilege called
"Develop.SequenceFiles.Save "
then the following privileges are
equivalent:
Develop.SaveSequenceFiles
SaveSequenceFiles

Evaluate(string) Returns the value of an expression that you
specify in a string.

FindFile(file, <useCurSeqFileDir>, Attempts to locate the file you specify ir

<PathToFile>, <promptFlag>, the search directories.

<searchFlag>, <canceled>)

TestStand User Manual 8-18 © National Instruments Corporation

Chapter 8 Sequence Context and Expressions

Table 8-9 summarizes the levels of precedence in expressions.

Table 8-9. Levels of Precedence in Expressions

Expression Type Operator Example
primary Literal Identifier 3.14 or "1234"
(expression) Locals.String

(Seconds() / 1000)

postfix property[index] Locals.Array[25]
function Len(Locals.String)

unary ++, --, +, -, ~, INOT ++Locals.Number or -3.14
multiplicative * [, %, MOD 10 * Locals.Number
additive +, - 5 - Locals.Number
shift <<, >> Locals.Number >> 2
relational <, >, <=, >= Locals.Number <= 0.1
equality ==, <>, 1= Locals.Number == 2.0
bitwise AND &, AND Locals.Number & OxFFFF
bitwise exclusive OR | *, XOR Locals.Number » OxFFFF
bitwise inclusive OR [, OR Locals.Number | 0x0008
logical AND && Locals.Bool &&

Step.Result.PassFail
logical OR Il Locals.Bool ||

Step.Result.PassFail
conditional ?: Step.Result.PassFail ? 5.0 : 6.0
assignment =, 4=, =, *=, =, %=, locals.number += 2.0

=, =, I:, <<=, >>=

comma Locals.Numberl = 5.0,

Locals.Number2 = 6.0

© MNational Instruments Corporation

8-19

TestStand User Manual

Types

This chapter discusses how you create, modify, and use step types, custom
named data types, and standard named data types in TestStand. This
chapter also describes the Type Palette window.

For an overview of the different categories of types, refer tStie Types
andStandard and Custom Named Data Typestions in Chapter 1,
TestStand Architecture Overview

Windows and Views that Display Types

The TestStand sequence editor contains four windows and views in which
you can create, modify, or examine data types and step types. Each window
or view displays the types that a corresponding file contains. The following
list describes each window or view, its contents, and its corresponding file:

© National Instruments Corporation

Sequence File Types View-The Sequence File Types view in the
Sequence File window contains tabs for the step types, custom data
types, and standard data types that the variables and steps in the
sequence file use. When you save the contents of the Sequence File
window, TestStand writes the definitions of the types to the sequence
file. Refer to Chapter S5equence Filegor more information on the
Sequence File window.

Station Globals Types View—The Global Types view in the Station
Globals window contains tabs for the custom data types and standard
data types that the station global variables use. When you save the
contents of the Station Globals window, TestStand writes the
definitions of the types to th&tationGlobals.ini file in the
TestStand\cfg directory. Refer to Chapter 3tation Global

Variables for more information on the Station Globals window.

User Types View—The Types view in the User Manager window
contains tabs for the custom data types and standard data types that the
User objects use. All Users and User Profiles use/¢be standard

data type. You can customize the User standard data type by adding
subproperties to it in the Standard Data Types tab. If any of these
subproperties use custom data types, the custom data types appear in
the Custom Data Types tab. When you save the contents of the User

9-1 TestStand User Manual

Chapter 9

Types

Manager window, TestStand writes the definitions toutbes.ini
file in theTestStand\cfg directory. Refer to Chapter 1Wser
Managementfor more information on the User Manager window.

¢ Type Palette Window—The Type Palette window contains tabs for

the step types, custom data types, and standard data types that you want
to have available in the sequence editor at all times. By dragging a type
into the Type Palette window, you can ensure that the type is always
available even when it is not in the Types views of the User Manager
window, the Station Globals window, or any of the open Sequence File
windows. When you save the contents of the Types Palette window,
TestStand writes the definitions of the types torghpePalette.ini

file in theTestStand\cfg directory. Refer to th&ype Palette
Windowsection later in this chapter for more information.

Storage of Types in Files and Memory

TestStand User Manual

For each type that a file uses, TestStand stores the definition of the type in
the file. You also can specify that a file always saves the definition for a
type, even if it does not currently use the type. Because many files can use
the same type, many files can contain definitions for the same type. All
your sequence files, for example, might contain the definitions for the
Pass/Fail Test step type and Gw@nmonResults standard data type.

In memory, TestStand allows only one definition for each type. Although
the type can appear in multiple views, only one underlying definition of the
type exists in memory. If you modify the type in one view, it updates in all
views. TheFind Type command in the sequence ed\éew menu

displays a dialog box containing a list of all types that are currently in
memory. It identifies the files and sequences that use the type. For more
information, refer to th¥iew Menusection in Chapter 4equence Editor
Menu Bar

If you load a file that contains a type definition and another type definition
of the same name already exists in memory, TestStand verifies that the two
type definitions are identical. If they are not identical, TestStand informs
you of the conflict through the Type Conflict In File dialog box.

9-2 © National Instruments Corporation

Chapter 9 Types

Figure 9-1 shows the Type Conflict In File dialog box.

Type Conilict In File E

Type 'PazsFailTest' in Samplel . zeq -
[Z:MT estexech T utarialsS alutionsS amplel.seq) is different from
the currently loaded type 'PassFailT est’

Currently Loaded Type
Lazt modified: 10/22/38 17:43:40 Ak [Mewer)
Location(z]: Type Palette LI

— Dptiots:

& {lse Currently Loaded Type

€ |Uze Type From Samplel.zeq

" Rename Currently Loaded Type

" Bename Type [n Samplel.zeq

[Apply ta Allin Sequence File

ak. Cancel

Figure 9-1. Type Conflict In File Dialog Box

You can select one of the definitions to replace the other, or you can rename
one of them so that they can coexist in memory. If you enable the Apply to
All in Sequence File checkbox, TestStand applies the selected option to all
conflicts in the sequence file.

Using Data Types

You use data types when you insert variables, parameters, or step
properties. Each view in which you can insert a variable, parameter or
property has a context menu withlagert item. You can use the following
context menu items in the indicated views.

» Insert Global—Use this menu item in the Sequence File Globals view
of the Sequence File window to create sequence file global variables.

* Insert Parameter—Use this menu item in the Parameters tab of
individual sequence file views in the Sequence File window to create
sequence parameters.

© MNational Instruments Corporation 9-3 TestStand User Manual

Chapter 9 Types

TestStand User Manual

Insert Local—Use this menu item in the Locals tab of individual
sequence file views in the Sequence File window to create sequence
local variables.

Insert Global—Use this menu item in the Globals view of the Station
Globals window to create station global variables.

Insert User—Use this menu item in the Users views of the User
Manager window to create new objects withtlser data type.

Insert Field—Use this menu item in the Type Palette window and the
Types views in the Sequence File, Station Globals, or User Manager
windows to create a new element in an existing data type.

Except for thénsert User item, all the preceding context menu items give
you a submenu from which you can choose a data type. The submenu
includes the following categories of types:

One of the simple data types that TestStand defines. This includes the
Number, Boolean, String, and ActiveX reference data types.

A named data type. This submenu includes all the custom named data
types that are currently in the Type Palette window or in the Types view
of the window you are currently editing. The submenu also includes
the three standard named data types that come with TestStaind;

Path , andCommonResults . Refer to théJsing the Standard Named
Data Typessection later in this chapter for more information.

An array of elements that all have the same data type.

In the submenu fdnsert Parameter, you also can select the Container

type. You cannot add fields to parameters you create with the Container
type. Creating a parameter with the Container type is useful only if you
want to pass an object of any type to the sequence. If so, you must also turn
off type checking for the parameter. If you want to create a parameter with
a complex data type, you must first create the data type in the Sequence File
Types view or the Type Palette window. You can then select the data type
from theTypessubmenu in thénsert Parameter submenu.

9-4 © National Instruments Corporation

Chapter 9 Types

Figure 9-2 shows thimsert Local submenu. The submenu includes three
custom data types as examplisture , Subassembly and

YieldStatistics
nzert Local Nurmnber
Faste String
Boolean
Go Up 1 Level [BkSpace] Activex Reference

Browze Sequence Contegt...

Fisture

Subaszembly
VieldStatistic:

Agray of 3

Errar
Path
CommonF esults

Figure 9-2. Insert Local Submenu

If the submenu does not contain the data type you require, you must create
the data type in the Type Palette window or one of the type views. If the data
type already exists in another window, you can drag or copy the data type
from the other window to the window you are editing or to the Type Palette
window.

Specifying Array Sizes
When you choose an item from tAeray of submenu in ainsert

submenu, the Array Bounds dialog box appears. Figure 9-3 shows the
initial state of the Array Bounds dialog box.

Amray Bounds E

Dimenszionz String: I[D..S]

Mumber of Dimensions: |1 _:l [Initially Empty
Lower Bounds:; o =i

Lpper Bounds: 3 =i

Cancel

Figure 9-3. Initial State of Array Bounds Dialog Box

© MNational Instruments Corporation 9-5 TestStand User Manual

Chapter 9 Types

TestStand User Manual

The Dimensions String indicator shows a string expression that describes
the array dimensions. You use the Num Dimensions numeric control to set
the number of dimensions in the array. The maximum number of
dimensions is 16. The number of controls that appear next to the Lower
Bounds and Upper Bounds labels depends on the setting of the Num
Dimensions control.

You use the Lower Bounds and Upper Bounds controls to set the minimum
and maximum index for each dimension. For example, you can make one
dimension zero-based and another dimension one-based. The Upper
Bounds setting must be greater than or equal to the Lower Bounds setting
for the same dimension. You can calculate the number of elements in each
dimension according to the following formula:

Upper Bounds — Lower Bounds + 1

Figure 9-4 shows the Array Bounds dialog box with settings for a
three-dimensional array.

Dimensionz Sting: I[U..4]['I J107A1.1]

Mum Dimensions: m [Initial Empty
Lower Bounds: IU ﬂ I'I ﬁ I"I ﬁ
Upper Bounds: I‘1r j I1 0 ﬁ I1 j

OF. I Cancel

Figure 9-4. Array Bounds Dialog Box with Settings for a Three-Dimensional Array

The first and outermost dimension has 5 elements, with 0 as the minimum
index and 4 as the maximum index. The second dimension has 10 elements,
with 1 as the minimum index and 10 as the maximum index. The third and
innermost dimension has 3 elements, with —1 as the minimum index and 1
as the maximum index.

After you create a variable, parameter, or property as an array, you can
modify the array bounds by selecting th®perties item in the context
menu for the variable, parameter, or property in the list view. Select the
Bounds tab that now appears in the Properties dialog box to modify the
array bounds.

9-6 © National Instruments Corporation

Chapter 9 Types

Dynamic Array Sizing
In TestStand, you can resize an array during execution.

In an expression, you can use GeNumElements and

SetNumElements functions to obtain and modify the upper and lower
bounds for a one-dimensional array. For multi-dimensional arrays or to
change the number of dimensions in the array, you must use the
GetArrayBounds andSetArrayBounds — expression functions. You can
find the documentation for these functions on the Operators tab of the
Expression Browser dialog box. Refer to Chapt&e®juence Context and
Expressionsfor more information on expressions.

In a code module, you can use GwDimensions andSetDimensions
methods of the PropertyObiject class to obtain or set the upper and lower
bounds of an array or to change the number of dimensions. Refer to the
TestStand ActiveX APl Referermdine help for more information.

Empty Arrays

If you want the array to have no elements when you start execution, enable
the Initial Empty checkbox. When the Initial Empty checkbox is enabled,
the Upper Bounds control for each dimension is dim. Defining an array as
initially empty is useful if you do not know the maximum array size the
sequence requires during execution or if you want to save memory during
the periods of execution when the sequence does not use the array.

Figure 9-5 shows the Array Bounds dialog box with settings for a
three-dimensional array that is initially empty.

Amay Bounds B

Dimensions Sting: I[IJ__empty][[l..empty][[l..empty]

Mumn Dimensions: m Iw Initial E mpty
Lower Baunds: ID ﬁ IIJ j IEI ﬁ
Upper Bounds: I'I ﬁ I'I ﬁ I-I ﬁ

ak. I Canhicel

Figure 9-5. Array Bounds Dialog Box with an Initially Empty Array

© MNational Instruments Corporation 9-7 TestStand User Manual

Chapter 9 Types

Display of Data Types

The data type of each variable or property you create appears in the Type
column next to the variable or property name. If the data type is an array,
the wordsarray of appear in the Type column, followed by the data type

of the array elements and the range of each dimension. If the data type is a
named data type, the underlying type appears in the Type column, followed
by the wordsnstance of Type and the data type name.

Figure 9-6 shows the variables with different data types in the Locals tab of
a sequence file view.

ia Types Sequencel_seq M=) 5=
b ain I Setup I Cleanup I Parameters Locals | WView: IMalnSequence j
=M Locals Local | Type | Walue
-{fz8] Count Caunt Humber a
- HEL Hame Mame String "
- =0k IsQk Boolean Falze
e MaH.\-"olts Mumber, Instance of Type "olts' i]
""" @ ::)ewcc:leEnabled @ DeviceEnabled Ayray of Booleans(1..8]
""" r!'npe ANGES @ Impedances Array of Humbers, Instance of Type 'ImpedanceT able1..4][1..20]
[-EE] Fistured, . . - \
[]___@ Paramelist EE] FirtureA Container, Instance of Type Fisture
= @ ParamsList Array of Type TestParams', Instance of Type 'TestParameList[0..4]
- {] TestClass — i
TestClazs Active Reference 0x0
q | -

Figure 9-6. Local Variables with Various Data Types

The following describes the data type of each local variable in Figure 9-6:

e Count hasthe Number data type, which is one of the simple data types
that TestStand predefines.

« Namehas the String data type, which is one of the simple data types
that TestStand predefines.

e IsOk has the Boolean data type, which is one of the simple data types
that TestStand predefines.

e MaxVolts has thevolts data type, which is a custom data type. In
this example, th&olts data type is simply an alias for the Number
data type.

e DeviceEnabled is a one-dimensional array of Booleans, with
indexes from 1 to 8.

TestStand User Manual 9-8 © National Instruments Corporation

Chapter 9 Types

* Impedances hasthempedanceTable data type, which represents a
two dimensional array of numbers.

* FixtureA has theFixture data type, which represents a container
that contains multiple fields with different data types.

e ParamsList has theTestParamList data type, which represents a
one-dimensional array of elements with TlestParams data type.
TheTestParams data type represents a container that contains
multiple fields with different data types.

* TestClass has the ActiveX reference data type which is one of the
simple data types that TestStand predefines.

Note You can expand a column to the width of its largest entry by double-clicking on the
vertical separator at the right edge of the column heading. This is especially useful
when a variable or property has a long data type description or a long comment.

Modifying Data Types and Values

Except for the resizing of arrays, you cannot change the internal structure
of a variable, parameter, or property after you create it. You cannot change
its data type setting, nor can you deviate from the data type. You can,
however, change the contents of the data type itself. Changing the contents
of a data type affects all variables, parameters, and properties that use the
data type. Refer to thereating and Modifying Data Typagction later in

this chapter for more information.

You can modify the value of a variable, parameter, or property in the list
view in which you create it. For variables and properties, this value is the
initial value when you start execution or call the sequence. For parameters,
this value is the default value if you do not pass an argument value
explicitly. If the data type is a single-valued data type, such as Number or
Boolean, the value appears in the Value column of the list view. In

Figure 9-6, the values of the first four local variables appear in the Value
column.

Single Values

You modify the value of any single-valued data type, except an ActiveX
reference, by selecting tfoperties item in the context menu for the
variable, parameter, or property in the list view. The Properties dialog box

© MNational Instruments Corporation 9-9 TestStand User Manual

Chapter 9 Types

TestStand User Manual

appears. Figure 9-7 shows the Properties dialog box fondké&/olts
local variable from Figure 9-6.

Max¥oltz Humber Properties E
General |
m i astfalts
Type: MHumber
Walue:
il
Comment:
Wiew Contents | Cancel |

Figure 9-7. Properties Dialog Box for a Number Local Variable

If the variable, parameter, or property is an ActiveX reference, you can
modify the value only from within an expression, a step code module using
the TestStand ActiveX API, or by calling the TestStand ActiveX API

directly using the ActiveX Automation Adapter. TestStand stores the
ActiveX reference as abispatch pointer orlUnknown pointer. The

value you assign to the ActiveX reference must be a valid ActiveX pointer.
Whenever you assign an ActiveX reference a non-zero value, TestStand
adds a reference to the object for as long as the variable, parameter, or
property contains that value. You can release the reference to the object by
assigning the variable, parameter, or property a new value or the constant
Nothing . In addition, TestStand automatically releases the reference to the
object when the variable, parameter, or property losses its scope. For
example, if a sequence local variable contains a reference to an object,
TestStand releases the reference when the call to the sequence completes.

9-10 © National Instruments Corporation

Chapter 9 Types

Arrays

If the variable, parameter, or property is an array that contains values, you
can display the elements of the array in the list view by sele¢tag
Contentsfrom the context menu. Figure 9-8 shows the contents of the
Impedances array local variable from Figure 9-6.

i3 Types Sequencel_seq [_ O] x|
Main I Setup | Cleanupl Parameters Locals | Wigw: IMamSequence j
=8 Lacals Field | Tupe | value | Comment |~
{83 Count =] Mumber 0
[MNarne =[] Mumber o
- Is0k e Mumber 0 |
i Marvolts B [41] Number 0
----- [0 DeviceE nabled B[1]2) Number 0
""" Impedances &E[2]2) Mumber 0
-z Fistured,
-] ParamsList & Humber "
_____ @ Local =] [4]12] Mumber 0
_____ @ Local2 B3] Murnber 0
- & ([2]3)] Murnber 0
= [3]3] Humber 0
=] [4]13] Mumber 0
[1114] Mumber 0
=] [2]14] MNurnber 0
(2] Murnber 0 =]
Figure 9-8. Contents of Array Local Variable in List View
The array indexes appear in the Field column of the list view. You can use
theProperties item in the context menu for each array element to modify
the initial value.
Containers
If the variable, parameter, or property is a container that contains one or
more fields, you can sele¢tew Contentsfrom the context menu to
display the fields in the list view. For fields that have values in the Value
column, you can use th&ropertiesitem in the context menu to examine
or modify the value. For a field that is an array or container, you can select
View Contentsagain to view its elements or fields.
Note If you want to modify an Nl-installed type, you must first enable the Allow Editing

NI Installed Types option in the Preferences tab of the Station Options dialog box.

© MNational Instruments Corporation 9-11 TestStand User Manual

Chapter 9 Types

Using the Standard Named Data Types

TestStand defines three standard named data tygp#s; Error , and
CommonResults . You can add subproperties to the standard data types,
but you cannot delete any of their built-in subproperties.

The Standard Data Types tab in the Type Palette window shows all three
standard data types. The Standard Data Types tab in the Station Globals or
Sequence File window shows only the standard data types that the
variables, parameters, or properties in the window use.

Figure 9-9 shows the Standard Data Types tab of the Type Palette window.

_ Type Palette

o Step T_l,lpesl T& Custom Data Types T2 Standard Data Types |

=-T& Standard Data Types
=-E& Emor
Code

M=g

*-fIF] Decurred

--T& Path

“'f& CommonResults

=]
Standard D ata Type | Type | Yalue | Uzage |
LEQ Ermor Container, Type Definition .. Tepe Palette; Sequence Filel; ..
LEQ Fath String. Type Definition Type Palette; Sequence Filel: ...

LEQ CommonResults Container, Tepe Definition .. Type Palette: Sequence Filel: ..

< | i

TestStand User Manual

Figure 9-9. Standard Data Types Tab of the Type Palette Window

Path

You use thePath standard data type to store a pathname PEite data
type stores the pathname as a string.

The variables, parameters, and properties you define usifrgthedata

type appear in the Edit Paths dialog box thaRaths command in the

View menu displays. You can use the Edit Paths dialog box to view the
pathnames in sequence files and station configuration files and to modify
the directory portion of pathnames you select. This can be useful after you
copy a sequence file or configuration file from one computer to another.
The Edit Paths dialog box shows all variables, parameters, and properties
that have th@ath data type. Refer to théew Menuwsection in Chapter 4,
Sequence Editor Menu Bdor more information.

9-12 © National Instruments Corporation

Chapter 9 Types

Error and Common Results

TestStand insertsResults property in every step you create, regardless
of whether you use a built-in step type or a custom step typ&ésaks
property has three subpropertiegior , Status , andCommonResults .

TheError subproperty uses tiror standard data type. TestStand steps
use theerror subproperty to indicate run-time errors. Emer standard

data type is a container that contains three built-in subproperties. When a
run-time error occurs in a step, the step set®tiearred subproperty to

True , theCode subproperty to a value that indicates that source of the
error, and th&/sg subproperty to a string that describes the error. You can
add additional subproperties to theor standard data type. In this way,
your steps can record extra run-time error information in a standard way.

TheCommonResults standard data type is an object that is initially empty.
By adding subproperties to it, you can store extra result information for
each step in a standard way.

If you choose to add additional subpropertieEror or
CommonResults , newer versions of TestStand will retain them for you.

Creating and Modifying Data Types

You can create and modify data types in the Sequence File Types view of
a Sequence File window, the Global Types view of the Station Globals
window, and the Type Palette window. You use the Custom Data Types tab
to create and modify custom data types. You use the Standard Data Types
tab to add subproperties to the standard data types. The two tabs are very
similar. For the sake of brevity, this section discusses creating and
modifying custom data types in the Custom Data Types tab. The same
information applies to the Standard Data Types tab.

Custom Data Types Tab Tree and List Views

The Custom Data Types tab contains a tree view and a list view. When you
select the root node of the tree view, the custom data types appear in the list
view.

© MNational Instruments Corporation 9-13 TestStand User Manual

Chapter 9 Types

Figure 9-10 shows the Custom Data Types tab for an example sequence
file, with the root node selected.

=2 Types_Sequencel _seq M=] E3
£% StepTypes T8 Custom Data Types | T8 Stondard Data Types | Wiew ISBCIUB“CB File Types j
=-F § Custom Data Types Cuztom Data Type | Type | Walue | Uzage | Comnent
& Volts Hurmber, Type Definition a Types_Sequencel.seq
lEﬁ ImpedanceTable Aray of Mumbers, Type Definition[1..4][1... ... Types_Sequencel.seq
lEg TestParams Object, Type Diefinition Station Globals; Tpes_Se...
lEﬁ TestParamsList Array of Type TestParams', Tepe Definiti.. .. Types_Sequencel.seq
‘E§ Fisture Object, Type Definition Tupe Palette; Types_Sequ...
; Stringl
[T Boolean
1] | i

TestStand User Manual

Figure 9-10. Custom Data Types Tab with Root Node Selected

The Custom Data Type column of the list view shows the name of each
custom data type. The Type column shows the underlying data type. For
information on the contents of the Type column, refer tdXisplay of

Data Typessection earlier in this chapter. If the underlying data type is a
single-value type, such as Number or Boolean, the Value column shows the
initial or default value that TestStand applies to all variables, parameters,
and properties you create using the custom data type. The Usage column
shows the files that use the data type. The Comment column shows a
descriptive comment that you can create for the data type.

You can open the nodes in the tree view to show all the subproperties of
each custom data type that is a container or an array of containers. You can
expand a node by clicking on the plus (+) sign that appears to the left of it.
When the node is open, a minus (-) sign appears to the left of the node. You
can collapse the node by clicking on the minus sign.

In Figure 9-10, the tree view is partially open and shows the fields of the
TestParams andFixture containers and the elements of the
TestPararmsList ~ array. Notice that a plus sign appears to the left of
each element of theestParamsList ~ array because each element is a
TestParams container. You can expand an array element node to show its
fields by clicking on the plus sign.

9-14 © National Instruments Corporation

Chapter 9 Types

You can update the list view to display the contents of the node by selecting
the node in the tree view. From the list view, you can display the contents
of an item by selectingiew Contentsitem from the context menu for the
item. To display the contents of the next highest level, press <Backspace>
in either the tree view or the list view, or select@mweUp 1 Levelitem from

the context menu in the list view background.

Figure 9-11 shows the Custom Data Types tab with the list view showing
the contents of thEixture container data type.

[0

Stingl
[T Boolean

& Types Sequencel._seq =1
2% Step Types T& Custom Data Types | T® Standard Data Types | View: ISequence File Types j
=-T& Custom Data Types Field I Type I Walue I Carnment |
T8 Wolts T Mum1 Murnber]
-F& ImpedanceT able & Mumz MHurmber 1}
T8 TestParams B String1 Skring "
3| Mumy'all Bocleani Boolean False
3] Murival2
=-T& TestParamsList

Figure 9-11. Custom Data Types Tab Showing the Contents of a Container

When you view the contents of an array, the list view displays all the array
elements.

© MNational Instruments Corporation 9-15 TestStand User Manual

Chapter 9 Types

Value Field

The list view displays a value in the Value column for any item that has a
single-valued type or single-valued underlying type. When you select the
View Contentscommand on such an item, its Value field appears in the list
view. Although you can add other fields to a single-valued data type, you
usually do not. Figure 9-12 shows the Custom Data Types tab with the list
view showing the Value field for theolts custom data type, which uses
Number as its underlying data type.

i3 Types Sequencel_zeq =]

&% Step Types T2 Custom Data Types | T8 Standard Data Types I View: ISequence File Types j
=-T8 Custom Data Types Field | Type | Value | Comrment |
""" & Wolts Value Mumber, Tepe Definition i]

----- T8 ImpedanceT able
=18 TestParams
: Murnivall

Figure 9-12. Custom Data Types Tab Showing the Value Field for a Number

If you double-click or press <Enter> on the Value field in the list view or
select thévlodify Value item from the context menu for the Value field, the
Modify Value dialog box appears.

TestStand User Manual 9-16 © National Instruments Corporation

Chapter 9 Types

Figure 9-13 shows the Modify Numeric Value dialog box for\this
data type.

Modify Numeric ¥alue

Murnesic Walue:
|0

[Apply Walue to All Loaded Instances of the Type

QK. Caticel

Figure 9-13. Modify Numeric Value Dialog Box

The value you specify in the dialog box is the initial or default value that all
variables, parameters, or properties you create with the data type use. If any
other variables, parameters, or properties already have the data type, you
can change their initial or default values by enabling the Apply Value to All
Loaded Instances of the Type checkbox.

Creating a New Custom Data Type

To create a new custom data type, select the root node in the tree view so
that the existing custom data types appear in the list view. Right-click on
the background of the list view, and selectliteert Custom Data Type

item from the context menu. A submenu appears.

Figure 9-14 shows thasert Custom Data Typesubmenu.

Ingert Custom Data Type v IEEITE
Stri
Easte SIE
Boolean
Gl Level [BRSpace] Activel Reference

LCortairer

Agray of 3

Figure 9-14. Insert Custom Data Type Submenu

The submenu gives you a set of data types from which to choose an
underlying type. You can select an array of any type, a container, or any of
the simple data types that TestStand defines.

© MNational Instruments Corporation 9-17 TestStand User Manual

Chapter 9

Types

If you select an array type from the submenu, the Array Bounds dialog box
appears. You use the dialog box to specify the array bounds that TestStand
applies initially to each variable, parameter, or property that you create with
the data type. After you create the variable, parameter, or property, you can
change its array bounds in the Bounds tab of the Properties dialog box.
Select thd°ropertiesitem in the context menu for the variable, parameter,

or property. Refer to thBpecifying Array Sizesection earlier in this

chapter for more information on setting the size of an array.

If you select the Container type from the submenu, TestStand creates the
data type without any fields.

Adding Fields to Data Types

Note

TestStand User Manual

To add fields to a new or existing data type, right-click on the icon for the
data type in the list view, and select Wiew Contentsitem from the

context menu. For a new data type, the list view becomes empty. For an
existing data type, the list view displays the fields currently in the data type.
Right-click on the background of the list view, and sellesert Fields

item from the context menu. A submenu appears.

Figure 9-15 shows thiasert Fields submenu.

e il

Sthring
Boolean
GolUp 1 Level (BkSpace) Activer Reference

Easte

LContainer
Tuopes 3

Array of »

Figure 9-15. Insert Fields Submenu

The submenu gives you a set of data types to choose from. You can select
any of the simple data types that TestStand defines, an array of any type, a
container, or a custom or standard named data type.

You can cut, copy, paste, or rename fields using the context menu that
appears when you right-click on the icon for the field in the list view.

If you want to modify a NI installed data type, you must first enable the Allow
Editing NI Installed Types option in the Preferences tab of the Station Options.

9-18 © National Instruments Corporation

Chapter 9 Types

Properties Dialog Box for Custom Data Types

You can examine and modify the properties of an existing custom data type
by displaying the Properties dialog box for the type. Right-click on the icon
for the data type in the list view, and select®neperties item from the
context menu. The contents of the Properties dialog box vary depending on
the underlying data type.

Figure 9-16 shows the Properties dialog box fornMbies data type.

Volts Number, Type Definition Properties [<]
General |
m P H
Type: Mumber, Type Definition
W alue:

|0
™ &pply Yalue to All Loaded Instances of the Type

Abtach to File [If not attached, the tope will not be saved with the file unless there
¥ p . .
are ingtances of the twpe in the file]

Comment;

I

Cancel |

Wiew Contents

Figure 9-16. Properties Dialog Box for a Numeric Data Type

The Properties dialog box for a single-valued data type has a Value control.
In the Value control, you specify the value that TestStand assigns to all
variables, parameters, and properties when you create them with the data
type. For variables and properties, this value is the initial value when you
start execution or call the sequence. For parameters, this value is the default
value if you do not pass an argument value explicitly. You can change the
value in each individual variable, parameter, or property after you create it.
You can assign the value you specify in the Properties dialog box for the
data type to all existing instances of the data type by enabling the Apply
Value to All Loaded Instances of the Type option.

© MNational Instruments Corporation 9-19 TestStand User Manual

Chapter 9 Types

TestStand User Manual

The Properties dialog box for all data types have an Attach to File option.
If you enable this checkbox, TestStand saves the data type in the file
regardless of whether any variables, parameters, or properties in the file
currently refer to it. This is useful when you design a data type and save the
file before you create the variable, parameter, or property that uses the data
type. When you create a new data type in the Custom Data Types tab or you
copy an existing data type from another window into the tab, TestStand
automatically enables the Attach to File option for you.

If you the disable the Attach to File checkbox, TestStand does not save the
data type unless a variable, parameter, or property in the file refers to it.
This is useful when, instead of creating or copying the data type explicitly,
you copy a variable, parameter, or property that refers to the type from
another window and the current file does not already contain the type. In
this case, TestStand automatically disables the Attach to File option for
you. If you later delete the variable, parameter, or property, TestStand also
deletes the data type for you.

The Properties dialog box for an array data type contains a Bounds tab. You
can change the array bounds for the data type by using the Bounds tab.
Refer to theSpecifying Array Sizesection earlier in this chapter for more
information on setting the size of an array. If you have already created
variables, parameters, or properties with the data type, you can change their
array bounds by enabling the Apply Bounds to All Loaded Instances of the
Type checkbox.

Property Dialog Box for Data Type Fields

You can examine and modify the properties for a field of a custom data type
by displaying the Properties dialog box for the field. To display the fields,
select theView Contentsitem from the context menu. Select the
Propertiesitem from the context menu for one of the fields. The Properties
dialog box for a data type field is the same as the Properties dialog box for
a custom data type, except that it does not contain the Attach to File
checkbox.

A Properties dialog box does not exist for the Value field of a data type.
Instead, you can display the Modify Value dialog box. Refer t&/tiae
Field section earlier in this chapter for more information on the Modify
Value dialog box.

9-20 © National Instruments Corporation

Chapter 9 Types

Using Step Types

You use step types when you insert steps in the Main, Setup, and Cleanup
tabs of an individual sequence view in the Sequence File window. The
Insert Stepitem in the context menu displays a submenu that shows all the
step types that are in the Type Palette window or the current sequence file.
This includes step types that come with TestStand and custom step types
you create.

Figure 9-17 shows the submenu for theert Stepitem. The submenu
includes one custom step tyj@istom Transmitter Test

Inzert Step

PazzFail Test
Baste Actian B Murneric Limit Test

Sting Value Test

Gollp 1 Level [BkSpace) Sequence Call

Dpen Tree Yiew Statement Cuztom Transmitter Test
Browse Yariables...] Message Popup
Sequence Properties... Eie| Call Erecutable

Limit Loader

G0 Goto

% Lahel

Figure 9-17. Insert Step Submenu

An icon appears to the left of each step type in the submenu. When you
select a step type, TestStand displays the same icon next to the name of the
new step in the list view. Many step types, such as the Pass/Fail Test and
Action step types, can work with any module adapter. For these step types,
the icon that appears in the submenu is the same as the icon for the module
adapter that you select in the ring control on the tool bar. In Figure 9-17, the
LabVIEW Standard Prototype Adapter is the current adapter, and its icon
appears next to several step types, including Pass/Fail Test and Action. If
you select one of these step types, TestStand uses the LabVIEW Standard
Prototype Adapter for the new step.

Some step types require a particular module adapter and always use the
icon for that adapter. For example, the Sequence Call step type always uses
the Sequence Adapter icon. Other step types, such as Statement and Goto,
do not use module adapters and have their own icons.

When you select an entry in the submenu, TestStand creates a step using the
step type and module adapter that the submenu entry indicates. After you
insert the step, use tispecify Moduleitem in the context menu for the

step to specify the code module or sequence, if any, that the step calls. The

© MNational Instruments Corporation 9-21 TestStand User Manual

Chapter 9 Types

Specify Modulecommand displays a dialog box that i€etfient for each
adapte Generical, the dialog box is called the Specify Module dialog
box. Refer to Chaptel2, Module Adaptersfor information on the Specify
Module dialog box for each adapt&able 9-1 slows the dialog bxes for
each adapte

Table 9-1. Adapter Dialog Box Names

Adapter Dialog BoxTitle

DLL Flexible Prototype Adapter Edit DLL Call

LabVIEW Standard Prototype Adapteny Edit LabVIEW VI Call

C/CVI Standard Prototype Adapter Edit C/CVI Module Call

Sequence Adapter Edit Sequence Call

ActiveX Automation Adapter Edit Automation Call

For each step type, another item can appear in thexteonénu abve
Specify Module Forexample, theedit Limits item appears in the caxt
menu for Numeric LimifTest steps, and é¢tEdit Pass/Fail Sourceitem
appears in the comt menu forPassFail Test steps. The menu item
displays a dialog box in which you modify step properties that arefigpeci
to the step type. This dialog box is called skep-type-specific dialog box
Refer to Chaptel0, Built-In Step Typg for information on the menu item
for each of théouilt-in step types.

To modify step properties that are common to all step types, use the
Properties command in the coett menu, double-click on the step, or
press <Enter> with the step selected. The Step Properties dialog box
contains commaniuttons to open the Specify Module dialog box and the
step-type-spetic dialog box. Refer to Chapt8, Sequence File$or more
information on the Step Properties dialog box.

Creating and Modifying Custom Step Types

TestStand User Manual

If you want to change or enhance a TestStand built-in step type, do not edit
the built-in step type or any of its supporting source code modules. Instead,
copy and rename a built-in step type and its supporting modules, and make
the changes to the new files. This ensures that your customizations are not
lost when you install future versions of TestStand. It also makes it easier
for you to distribute your customizations to other users.

9-22 © National Instruments Corporation

Chapter 9 Types

The Step Types tab in the Type Palette window shows all the built-in step
types. The Step Types tab in the Sequence File Types view of the Sequence
File window shows only the step types that the steps in the sequence

file use.

Figure 9-18 shows the Step Types tab of the Type Palette window.

_ Type Palette [_ (O] =]

Pf’ Step Types | lEE Custom D ata T_l,lpesl TE Standard Data Typesl

- {g] Comment
- {aEg InBuf

CodeTemplate
MumericLimitT est
String alueT est
Actiah
Sequencelal
Statement
MezzagePopup
CalE zecutable
LimitLoaderStep
Goto

B Label

Step Type

| sage

| Comment |

PaszsFailT est
MumericLimitT est
EE Stringy alueT est
Action
SequenceCal

LimitLoaderStep
Goto
Label

Type Palette
Type Falette
Type Palstte
Type Palette; TestStandModel Seq
Type Palette; TestStandModel Seq
Type Palette; TestStandModel. Seq
Type Palette; TestStandtodel. Seq
Type Palete
Type Palette
Type Palette; TestStandkodel Seq
Type Palette; TestStandtodel. Seq

Figure 9-18. Step Types Tab of the Type Palette Window

You can insert a new step type by right-clicking on the background of the
list view and selectintnsert Step Typeitem from the context menu. You
can copy an existing step type by selecting@bpy andPasteitems from

the context menu of the step type.

Custom Step Type Properties

You can define any number of custom properties in a step type. Each step
you create with the step type has the custom properties you define.

You can open the nodes in the tree view of the Step Types tab to show all
step types and their custom properties. You can display the custom
properties of a step type in the list view by selecting the node for the step
type in the tree view. You can display the subproperties of a custom

© MNational Instruments Corporation

9-23

TestStand User Manual

Chapter 9

Types

property in the list \aw by selecting the node for the custom property in the
tree vew. From the list \véw, you can display the contents of a step type or
propertyby selecting th&/iew Contentsitem from the corext menu for

the step type or propgrfTo display the contents of thext highest ével,
press <Backspace> in either the tremwbr the list vew, or select ta Go

Up 1 Levelitem from the coraxt menu in the list \éw background.

Figure 9-19 slows the custom properties for the Numeric Limits step.

_ Type Palette =] 3
Pf’ Step Types | IE Custom Data T_I,Jpesl IE Standard Diata T_l,lpesl
- PazsFailT est ;I Field | Tupe | walue | Comment |
- N umenicLimit Test Fesult Dbject
Comment String
EE Limits Object
g Comp String "GELE"
InBuf String
DataSoulce Sting "Step. Result. Mumernic”
CUdeTempIate String "
DigplayR adix MHurmber i}
123
Comp
BEE] 1mE uf
D ataSource |
CodeTemplate
[..
[..
=-FF SequenceCal
. FA Chataraamt LI

Figure 9-19. Custom Properties of a Step Type

You can add custom properties to a step type in the same way yioeldsld
to a data type. Refer todthdding Fields to Data Typesection earlier in
this chapter for more information.

Built-In Step Type Properties

TestStand User Manual

TestStand defines many properties that are common to all step types.
Thes are called the built-in step type properties. 8dmilt-in step type
propertiesexist only in the step type itself. These are callads step type
properties TestStand uses the class properties to define how the step type
works for all step instances. Step instances do not contain their own copies
of the class properties.

9-24 © National Instruments Corporation

Chapter 9 Types

Otherbuilt-in step type propertiesxist in each step instance. These are
calledinstance step type propersi€cach step you create with the step type
has itsown copy of the instance propertidestStand uses thvalue you
specify for an instance property in the step type as the indtiaé of the
property in eachew step you create.

Normally, after you create a step, you can changeahees of its instance
properties. lvertheless, when you create a custom step type, you can
prevent users from changing tiialues of speéic instance properties in the
steps tky createFor example, you might use the Edit substep of a step type
to set the Status Expression for the step. In that case, you damahe

user to change the Status Express@ne.TestStand uses this capability

in some of théouilt-in step types, such as Numeric Lirigst and String
Limit Test.

You canexamine and modify thealues of théouilt-in propertiesby
selecting thé’roperties item from the corxt menu for a step type in the
list view. The Steplype Properties dialog box contains thedwihg tabs:

 General
e Menu
e Substeps

» Default Run Options

» Default Post Actions

e Default Loop Options
» Default Expressions

» Disable Properties

e CodeTemplates

The Default Run Options, Default Post Actionsf> Loop Options, and
Default Expressions tabs display instance properties. These fouatabs h

the same appearance as the Run Options, Post Actions, Loop Options, and
Expressions tabs of the Step Properties dialog box for a step instance. Refer
to theStep Group Context Mersection of Chaptes, Sequence Filegor

more information on the Step Properties dialog box.

Most of the properties in the othiéve tabs are class properties. This
section discusses each of thége tabs in detail.

© MNational Instruments Corporation 9-25 TestStand User Manual

Chapter 9 Types

General Tab

You use the General tab to specify a name, description, and comment for
the step type. You also can specify an icon and a module adapter.

Figure 9-20 shows the General tab of the Step Type Properties dialog box
for the Action step type.

Action Step Type Properties
Default Loop Options I Default Expressions I Dizable Properties I Code Templates
General | renu I Substeps I Default Run Options I Default Post Actiong
LB |
R T Action
wwd

" Designate an lcan:
Default Step Mame E=pression:
IGetHesnurceString["Nl_STEF'TYF'ES", "ACTION_DEF_STEP Browse. ..

Step Description Expression:

I"Zadapter" Browsze. ..

[Designate an Adapter:

| i

r Attach to File [IF nat attached, the type will not be saved with the file unless there are
ingtances of the type it the file]

Comment:

Wigw Contents

Figure 9-20. Step Type Properties Dialog Box—General Tab

TestStand User Manual 9-26 © National Instruments Corporation

Chapter 9 Types

The General tab of the Step Type properties dialog box contains the
following controls:

© MNational Instruments Corporation

Designate an Icor—Use this control to specify an icon for the step
type. If you enable the checkbox, you can select from a list of icons that
are in theTestStand\Components\NI\lcons and
TestStand\Components\User\icons directories. TestStand

displays the icon next to the step names for all steps that use the step
type. If you disable the checkbox, TestStand displays the icon of the
module adapter for each step. If you can use any module adapter with
the step type, it is best to disable the checkbox.

Default Step Name Expression-Use this control to specify a string
expression that TestStand evaluates when you create a new step with
the step type. TestStand uses the value of the expression as the name
of the new step. If a step with the same name already exists in the
sequence, TestStand appendspy n to the name to make it unique.

If you want to store the name in a string resource file, you can use the
GetResourceString expression function to retrieve the name from
the file. Storing the name in a string resource file is useful if you want
to display the name in different languages. Refer t€tkating String
Resource Filesection in Chapter onfiguring and

Customizing TestStantbr more information.

Step Description Expressior-Use this control to specify a string
expression that TestStand evaluates whenever it displays the
Description field for a step. TestStand uses the value of the expression
as the contents of the Description field for the step. If you include the
%adapter macro in a string that you surround with double quotes,
TestStand replaces theadapter macro with text that the module
adapter provides to describe the code module that the step uses.

Designate an Adapter—Use this control to specify a single module
adapter for the step type. If you enable the checkbox, all steps you
create with the step type use the module adapter you designate,
regardless of the module adapter you select in the sequence editor
toolbar.

You can choose from a list of all the TestStand module adapters. If the
step type does not require a module adapter, selecke> from the
adapter list. When you designate a module adapB8peeaify Module
button appears. Click on ti8pecify Module button if you want to
specify the module call for all steps that you create with the step type.

If you want to prevent the sequence developer from modifying the call,
enable the Specify Module checkbox in the Disable Properties tab.
Refer to Chapter 1Module Adaptersfor information on the Specify
Module dialog box for each module adapter.

9-27 TestStand User Manual

Chapter 9

TestStand User Manual

Types

Attach to File—Use this control if you want TestStand to save the step
type in the file regardless of whether the file contains any steps that use
the step type. When you create a new step type or copy an existing step
type from another window, TestStand automatically enables the Attach
to File option for you.

Disable the Attach to File checkbox if you want TestStand to save the
step type only if the file contains a step that uses it. When you copy a
step that uses the step type into the sequence file and the sequence
file does not already contain the step type, TestStand automatically
disables the Attach to File option for you. If you later delete the step,
TestStand also deletes the step type for you.

Comment—Use this textbox to specify text that appears in the
Comment field for the step type in the list view. TestStand copies the
comment into each step you create with the step type. You can change
the comment for each step after you create it.

Menu Tab

You use the Menu tab to specify how the step type appearslimstre
Stepsubmenu. Thénsert Step submenu is in the context menu of
individual sequence views in the Sequence File window. You can specify
that the step type appears at the top-level ofitbert Step submenu or in

a submenu you nest within thesert Step submenu.

Figure 9-21 shows the Menu tab of the Step Type Properties dialog box for
the Action step type.

Action Step Type Properties
Default Loop Options | Default Expressions I Dizable Froperties I Code Templates
General henu | Substeps I Default Bun Dptions I Diefault Post Actions

Itern Mame Expression:
IGetHesnurceStling["NI_STEF’TYF‘ES", "ACTION_MEMNU_ITE Browse...

[Separatar Esfore ltem Name

Submenu Name Expression:

IGetHesnurceStling["NI_STEF’TYF‘ES", "ACTION_MEMNU_ITE Browse. .. |

™ Separator Before Submenu Mame

Singular Item Marme Expression [replaces submenu if only one item]:
IGelHesnurceString["NI_STEF'TYF'ES","ACTIDN_MENU_ITE Browse... |

Figure 9-21. Step Type Properties Dialog Box—Menu Tab

9-28 © National Instruments Corporation

Chapter 9 Types

The General tab of the Step Type properties dialog box contains the
following controls:

* Item Name Expression—Use this control to specify an expression for
the step type name that appears initisert Step submenu or in a
nested submenu. If you want a separator to appear in the submenu
before the name, enable the Separator Before Item Name checkbox.

e Submenu Name Expression-Use this control if you want to nest the
step type in a submenu within thesert Step submenu. If you leave
this control empty or specify an empty string, the step type name
appears at the top level of thesert Step submenu. If you enter a
nonempty expression for the submenu name, the submenu name
appears at the top level of thesert Step submenu, and the step type
name appears in the nested submenu.

If you want a separator to appear above the submenu name, enable the
Separator Before Submenu Name checkbox. TestStand inserts a
separator above the submenu name if you enable the option for at least
one step type that uses the submenu name. When you change the value
of the Separator Before Submenu Name checkbox, TestStand makes
the same change in all step types that are currently in memory and use
the same submenu name expression.

» Singular ltem Name Expressior—Use this control if you want the
step type to appear at the top level of the Insert Step submenu when it
is the only step type that has the submenu name you specify. Specify
the step type name that you want to appear in the top level. For
example, you might haveTaelecom Testssubmenu that contairiit
Error Rate Test, Transmitter Test, andAmplifier Test items. If the
Amplifier Test is the only step type that is currently in memory, you
could specify that th&elecom Amplifier Testitem appears in the
top level of thensert Step submenu.

Remember that if you specify a literal string in one of the Expression
controls, you must enclose it in double quotes. If want to store a name in a
string resource file, you can use thetResourceString expression

function to retrieve the name from the file. Refer to@heating String
Resource Filesection in Chapter onfiguring and

Customizing TestStantbr more information.

© MNational Instruments Corporation 9-29 TestStand User Manual

Chapter 9 Types

TestStand User Manual

Substeps Tab

You can use the Substeps tab to specify substeps for the step type. You use
substeps to define standard actions, other than calling the step module,
tha TestStand performs for each step instance. You implement a substep
through a call to a code module. The code modules you call from substeps
are calledsubstep module3hesequence developeannot customize the
substeps for a particular step. For each step that uses the step type,
TestStand calls the same substep modules with the same arguments. You
can specify three substeps for a step type.

TestStand calls there Step substdpefore calling the step modubléou

might implement a Pre Step substep to ee¢riand store measurement
corfiguration parameters into custom step properties that the step module
can access.

TestStand calls thieost Step substegiter calling the step moduléou
might implement a Post Step substep might to companeathes that the
step module stores in custom step properties againsvhinigs that the
edit substep stores in other custom step properties.

The sequencesadeloper cannvoke the Edit substefby selecting a menu
item that appears atbe the Specify Moduleitem in the corext menu

for the step. Usuall the Edit substep displays a dialog box in which the
sequencealeloper edits thealues of custom step propertiBsr example,
an Edit substep might display a dialog box in which the sequexekmder
specfies the high andiv limits for a test. The Edit substep might then
store the high- anav-limit values as step properties.

9-30 © National Instruments Corporation

Chapter 9 Types

Figure 9-22 shows the Substeps tab of the Step Type Properties dialog box
for the Numeric Limit Test step type.

MumericLimitT est Step Type Properties E

Default Loop Options I Default Exprezsions I Dizable Properties I Code Templates
General I Menu Substeps | Default Bun Options I Default Post Actiohs

—Pre Step

— Post Step

Create... |

— Edit Step

Dezcription: Specify Module... |
ICaII EditNurnerich easurement3tep [CommaonS ubsteps. di) Dielete |

Menu Item Hame Expression:

|GetF|esnurceString["NI_STEF’TYF‘ES", "MUM_EDIT_ST Browse. .. |

Figure 9-22. Step Type Properties Dialog Box—Substeps Tab

The Substeps tab contains a separate section for each substep. If a substep
currently has no code module, its section contains o8rkeate button. If

you click on theCreate button, A dialog box appears in which you select

the module adapter you want to use for the substep. You do not have to use
the same module adapter that you use for the step module.

After you select the module adapter, a Description string indicator, a
Specify Modulebutton, and ®eletebutton appear. You use tBpecify
Module button to specify the code module to call and the parameter values
to pass. Refer to Chapter NM2odule Adaptersfor more information on the
Specify Module dialog box for each module adapter.

The Description string indicator displays information about the code
module for the substep. You use Deletebutton to disassociate the code
module from the substep.

The section for an Edit substep also contains a Menu Item Name
Expression control. You use the control to specify an expression for the

© MNational Instruments Corporation 9-31 TestStand User Manual

Chapter 9 Types

TestStand User Manual

item name that appears above3pecify Moduleitem in the context menu

for steps you create with the step type. The name also appears on a button
on the Step Properties dialog box. If you specify a literal string for the menu
item name, you must enclose it in double quotes. If you want to store the
name in a string resource file, you can useRisStr or

GetResourceString expression functions to retrieve the name from the
file. Refer to theCreating String Resource Filegction in Chapter 3,
Configuring and Customizing TestStaffor more information.

C or C++ source code is available for each of the substep modules that the
built-in step types use. You can find the source code project files in the

TestStand\Components\NI\StepTypes subdirectory. If you want to
use these as starting points for your own step types, copy the files into the
TestStand\Components\User\StepTypes subdirectory. It is best to

use different filenames for the copies.

Disable Properties Tab

You can use the Disable Properties tab to prevent the sequence developer
from modifying the settings of built-in instance properties in individual
steps. In this way, you can make the settings you specify in the Step Type
Properties dialog box permanent for all step instances.

The tab contains a list of checkboxes. Each checkbox represents one
built-in instance property or a group of built-in instance properties. When
you enable the checkbox, you prevent the sequence developer from
modifying the value of the corresponding property or group of properties.

9-32 © National Instruments Corporation

Chapter 9 Types

Figure 9-23 shows the Disable Properties tab of the Step Type Properties
dialog box for the Numeric Limit Test step type.

MumericLimitT est Step Type Properties E

General I Menu I Substeps I Default Bun Options | Default Post Actions
Default Loop Options I Diefault Expressions Dizable Properties | Code Templates

Select Properties Ta Dizable from the Fallowing List:

Specify Module

[Edit Module Pratotype

[Load Option

[Unload Option

] Run Mode

[J Record Results

[[] Step Failure Causes Sequence Failure
[Ignore Run-Time Enors

[Pass &ction

[] Target For Pass Action

[Fail Action

] Target For Fail &ction

[Custom Condition For Post &ction

[Action On Custom Condition True ;I

Figure 9-23. Step Type Properties Dialog Box—Disable Properties Tab

Most of the checkboxes in the Disable Properties tab apply to a specific
control in the Step Properties dialog box. The two exceptions are the
Specify Module checkbox and the Preconditions checkbox.

© MNational Instruments Corporation

Specify Module—If you check this checkbox, the sequence developer
cannot display the Specify Module dialog box on any steps that use the
step type. Check the Specify Module checkbox for step types that
always make the same module call. Refer tdzareral Talsection

earlier in this chapter for information on how to specify a module call

for a step type. For example, the checkbox is unchecked for the
Statement step type because Statement steps do not call code modules.

If you uncheck the Specify Module checkbox but check the Edit
Module Prototype checkbox, the sequence developer can display the
Specify Module dialog box but cannot modify any of the parameter
information in it.

Precondition—If you check this checkbox, the sequence developer
cannot create preconditions for steps that use the step type. Refer to
the Preconditions Dialog Bogection in Chapter ljequence Files

for more information on step preconditions.

9-33 TestStand User Manual

Chapter 9 Types

TestStand User Manual

Code Templates Tab

You use the Code Template tab to associate one or more code templates
with the step type. A code template is a set of source files that contain
skeleton code. The skeleton code serves as a starting point for the
development of code modules for steps that use the step type. TestStand
uses the code template when the sequence developer clicksGredbte
Codebutton on the Source Code tab in the Specify Module dialog box for
a step.

TestStand comes with a default code template that you can use for any step
type. You can customize code templates for individual step types. For the
Numeric Limit Test step type, for instance, you might want to include
example code to access the high- and low-limit properties in the step.

Templates Files for Different Adapters

Because different module adapters require different types of code modules,
a code template normally consists of one or more source files for each
module adapter. For the default code template, for example, TestStand
comes with onec file for the DLL Flexible Prototype Adapter, one file

for the C/CVI Standard Prototype Adapter, and eight files for the
LabVIEW Standard Prototype Adapter. The multiple files correspond

to the different combinations of parameter options that the sequence
developer can choose in the Edit LabVIEW VI Call dialog box.

TestStand uses the code template name as the name of a subdirectory in the
TestStand\CodeTemplates\NI or TestStand\CodeTemplates\

User directory. TestStand stores the source files for the different module
adapters in the subdirectory. TestStand also staieis afile in each
subdirectory. Theini file contains a description string that TestStand
displays for the code template. The subdirectory nhame for the default code
template iDefault_Template

Code templates for the C/CVI Standard Prototype Adapter always specify
two parameters: a pointertfestData structure and a pointer to a
tTestError structure. When TestStand uses a C/CVI template module to
create skeleton code, it validates the function prototype in the template
module against this requirement. TestStand reports an error if the prototype
is incorrect.

9-34 © National Instruments Corporation

Chapter 9 Types

Code templates for the LabVIEW Standard Prototype Adapter always
specifyTest Data anderror out clusters as parameters. The eight
different.vi files for each LabVIEW Standard Prototype Adapter code
template specify various combinations of the Input buffer, Invocation
Information, and Sequence Context parameters. When TestStand uses a
LabVIEW template VI to create skeleton code, it choose the coviect

file to use based on the current settings in the Optional Parameters section
of the Edit LabVIEW VI Call dialog box.

Code templates for the DLL Flexible Prototype Adapter can have any
number of parameters that are compatible with the data types you can
specify in the Module tab of the Edit DLL Call dialog box.

When TestStand uses a DLL code template source file to create skeleton
code, it compares the parameter list in the source file against the parameter
information in the Module tab. If they do not agree, TestStand prompts the
sequence developer to select which prototype to use for the skeleton code.
If the sequence developer chooses to use the prototype from the template
source file, the developer also can request that TestStand update the Module
tab to match the source file. The template source file does not contain
sufficient information for TestStand to update the Value controls for the
parameters in the Module tab.

You can specify entries for TestStand to put in the Value controls. TestStand
stores this information in thai file in the template subdirectory.

Creating and Customizing Template Files

You can create a new code template in the Code Templates tab. TestStand
prompts you to specify a subdirectory name and an existing code template
as a starting point. TestStand copies the files for the existing template into
the new subdirectory under thiestStand\CodeTemplates\User

directory and changes the names. You must then modify the template files
to customize them. If you do not intend to use a particular adapter, you can
delete the template files for it.

© MNational Instruments Corporation 9-35 TestStand User Manual

Chapter 9 Types

TestStand User Manual

You can customize the template files to include example code that helps the
test developer learn how to access the important custom properties of the
step. The method you use to customize the source files for a code template
can vary based on the module adapter. For example, to show how to obtain
the high- and low-limit properties in a LabVIEW or CVI template for a
Numeric Limit Test step, you might include example calls to the
GetValNumber method of the Property Class in the TestStand ActiveX
API. Although you can use tigetvalNumber method in the template for

the DLL Flexible Prototype Adapter too, you might customize the
prototype for the code module by specifying the high and low limits as
value parameters.

As another example, you might want to show how to return a measurement
value from a code module. In a LabVIEW template, you might show how
to refer to theNumeric Measurement element of th@est Data cluster.

In a CVI code module, you might show how to refer tontleasurement

field in thetTestData structure. For the DLL Flexible Prototype Adapter,
you might customize the prototype in the template by specifying the
measurement as a reference parameter.

Multiple Templates Per Step Type

You can specify more than one code template for a step type. For example,
you might want to have code templates that contain example code for
conducting the same type of tests with different types of instruments or data
acquisition boards. If a step type has multiple code templates and the
sequence developer clicks on theeate Codebutton in the Specify

Module dialog box, TestStand prompts the sequence developer to choose
from a list of templates.

9-36 © National Instruments Corporation

Chapter 9 Types

Using the Code Templates Tab

Figure 9-24 shows the Code Templates tab of the Step Type Properties
dialog box for the Numeric Limit Test step type.

MumericLimitT est Step Type Properties E

General I Menu I Substeps I Default Run Optiong I Default Post Actions |
Default Loop Options I Diefault Expressions I Disable Properties Code Templates

MHurnericLimit_Template
MurnericLimittdFC_Termplate

Create...
Add

Remaove
Edit...

I iee U

Mawe Down

L[k

Description;

TestStand default template o]

I

Figure 9-24. Step Type Properties Dialog Box—Code Templates Tab

The list box shows the code templates that are currently associated with the
step type. The Description indicator displays the description string for the
currently selected code template. The following command buttons appear
to the right of the list box.

» Create—Use this button to create a new code template. When you
click on theCreate button, the Create Code Templates dialog box
appears.

© MNational Instruments Corporation 9-37 TestStand User Manual

Chapter 9 Types

TestStand User Manual

Figure 9-25 shows the Create Code Templates dialog box.

Create Code Templates E
Mew Code Template Mame:

I Cancel

Mew Code Template Description:

Baze the New Template On:

Default_Template
MumericLimit_T emplate
MumericLimitDLL_Template

Figure 9-25. Create Code Templates Dialog Box

Specify the subdirectory name for the code template in the New Code
Template Name control. Specify a brief description for the code
template in the New Code Template Description control. Use the Base
the New Template On list box to choose an existing code template for
TestStand to copy.

Add—Use this button to associate an existing code template with the
step type. When you click on tield button, a dialog box appears in
which you can select from a list of code templates. TestStand generates
the list from the set of subdirectories in FestStand\

CodeTemplates\NI andTestStand\Code Templates\User

directories. If you specify a code template that is not in the list, the
code template subdirectory must be in the TestStand search directory
paths. You can customize the TestStand search directory paths with the
Search Directoriescommand in th€onfigure menu of the sequence
editor menu bar.

Remove—Use this button to disassociate the currently selected code
template from the step type.

Edit—Use this button to modify properties of the currently selected
code template. When you click on tBesate button, the Create Code
Template dialog box appears.

9-38 © National Instruments Corporation

Chapter 9 Types

* Move Up andMove Down—Use these buttons to reorder the code
template list. The order of the code templates in the list box is the order
that TestStand uses when displaying the code templates in the Choose

Code Template dialog box.

Figure 9-26 shows the Edit Code Template dialog box.

Parameter Name: IB"DICDde

Walue Expression: IStep.HesuIt.Enor.Code Browse... |

Rezult Action: I Mo Action j

[T Set Emor.Code toalue

Edit Code Template
Usze this dialog to edit the code template properties. TestStand uses the code template description to help the sequence developer decide which
template to uze when generating code. TestStand uses the mappings to automatically fill in value information for the sequence developer when
generating code from this template.

_ TestStand numeric limit template
Description:
W Pass Sequence Contest [CACY] Standard Prototype ddapter only)
—Parameter Mame//alue Mapping
Parameter Mame Value Expression Rezult Action Set Error.Code Add
Step.Result Error.]
Step. Result Erorksg Bl |
error] courred Step. Result Error. Occuned
rieasurement Step.Resul Mureric
seqContestCy| ThisCaontext

Figure 9-26. Edit Code Template Dialog Box

The Edit Code Template dialog box contains the following controls:
« Description—Use this control to modify the description string.

» Pass Sequence ContextUse this control to specify a default
for the Pass Sequence Context checkbox in the Module tab

value
of the

Specify Module box for the C/CVI Standard Prototype Adapter.

TestStand applies this default value when the sequence dev

eloper

clicks on theCreate Codebutton. Refer to th&pecifying a C/CVI

Standard Prototype Adapter Modidection in Chapter 12/odu
Adapters for more information.

le

© MNational Instruments Corporation 9-39 TestStand User Manual

Chapter 9 Types

e Parameter Name/Value Mappings—Use this section to specify
default parameter values to use in the Module tab of the Specify
Module dialog box for the DLL Flexible Prototype Adapter. TestStand
applies the default parameter values when the sequence developer
clicks on theCreate Codebutton on the Source Code tab.

In a template code module for the DLL Flexible Prototype Adapter,
you can access step properties and sequence variables through the
TestStand ActiveX API or as parameters to the code module. If you
access them as parameters, the sequence developer must specify the
parameter values in the Module tab. The values that the sequence
developer must specify are usually the same for most step instances.
You can specify default parameter values that TestStand inserts in the
Module tab automatically when the sequence developer clicks on the
Create Codebutton.

The following controls are available in the Parameter Name/Value
Mappings section:

— Add—This button inserts an empty entry at the end of the list box.

— Delete—This button deletes the currently selected entry in the list
box.

— Parameter Name—Enter the name of a parameter exactly as it
appears in the parameter list in the template code module. To
specify the return value, useReturnvalue .

— Value Expression—Enter the expression you want TestStand to
insert into the Value control for the parameter in the Module tab
of the Specify Module dialog box.

— Result Action—Select the value you want to appear in the Result
Action ring control of the Module tab. The sequence developer
uses the ring on the Module tab to cause TestStand to set the
Error.Occurred step property tdrue automatically when the
return value or parameter value after the call is greater than zero,
less than zero, equal to zero, or not equal to zero.

— Set Error.Code to Value—Enable this checkbox if you want
TestStand to enable the &#tor.Code to Value checkbox for
the parameter on the Module tab of the Specify Module dialog
box. This checkbox appears on the Module tab for return values
and reference parameters. The sequence developer can use the
checkbox on the Module tab to cause TestStand to assign the
return value or output value to tBeror.Code step property
automatically.

TestStand User Manual 9-40 © National Instruments Corporation

Chapter 9 Types

View Contents Button

You can use th&iew Contentsbutton on the Step Type Properties dialog
box to dismiss the dialog box and show the custom properties of the step
type in the list view. If you have made changes in the Step Type Properties
dialog box, another dialog box appears giving you the chance to save the
changes.

Type Palette Window

You use the Type Palette window to store the data types and step types that
you want to be available to you in the sequence editor at all times. When
you create a new type in the Sequence File Types view of a Sequence File
window, the type does not appear in khgert Local, Insert Global,

Insert Parameter, Insert Field, andinsert Step submenus in other

Sequence File windows.

To use the type in other sequence files, you can manually copy or drag the
new type from one Sequence File window to another. A better approach is
to copy or drag the new type to the Type Palette window or to create it there
in the first place. Each type in the Type Palette window appears in the
appropriatdnsert submenus in all windows.

When you save the contents of the Types Palette window, TestStand writes
the definitions of the types to tigpePalette.ini file in the
TestStand\cfg directory.

The Type Palette window contains tabs for step types, custom data types,
and standard data types. After you install TestStand, the Step Types tab has
all the built-in step types, the Custom Data Types tab is empty, and the
Standard Data Types tab has the three standard data types.

© MNational Instruments Corporation 9-41 TestStand User Manual

Built-In Step Types

This chapter describes the predefined step types that TestStand includes.
The built-in step types fall into three categories: step types that can call
code modules using any module adapter, step types that work with a
specific module adapter, and step types that do not use module adapters
at all.

Overview

Common Custom Properties

Each step type defines its own set of custom properties. All steps that use
the same step type have the same set of custom properties.

Thebuilt-in step types share some common custom properties eMiQuk
shows the common custom step properties.

=-fEE] Result

] ReportT ext
- [EH Common

Figure 10-1. Properties That All Steps Contain

The common custom step properties are thevidatg:

e Step.Result.Error.Occurred is a Boolean flag that indicates
whether a run-time error occurred in the step. This document refers to
this property as #herror occurred flag

e Step.Result.Error.Code is a code that describes the error that
occurred.
e Step.Result.Error.Msg is a message string that describes the

error that occurred.

© MNational Instruments Corporation 10-1 TestStand User Manual

Chapter 10 Built-In Step Types

e Step.Result.Status specfies the status of the lastecution of the
step, such aBone, Passed , Failed , Skipped , orErro r. This
document refers to this property as shep status

e Step.Result.Common is a placeholder container that you can
customizeYou customize iby modifying theCommonResults
standard data type. Refer tethsing Data Typesection in Chapte9,
Types for more information on standaféstStand data types.

e Step.Result.ReportText contains a message string thestStand
includes in the repor¥ou can set thealue of the message string
directly in the code module. The C/CVI and LabVIEW module
adapters ativ code modules to set this propétymodifying the
corresponding member of the test data structure or cliRgéer to
Chapte 12, Module Adaptersfor more information on the property
assignments that the module adapters automatically perform to and
from step properties.

Step Status, Error Occurred Flag, and Run-Time Errors

A code module can report a run-time error condition by setting the error
occurred flag tarue . If an exception occurs in the code module or at any
other time during step execution, the TestStand engine sets the error
occurred flagad True .

If the error occurred flag irue when a stefinishesexecuting,TestStand
does noevaluate the post and stategpressions for the step. Instead
TestStand sets the step statugrto r. If the Ignore Run-time Errors step
property isFalse , theTestStand engine reports the run-time error to the
sequence. If the Ignore Run-time Errors step propsftyue , execution
continues normally after the step.

Before TestStandxecutes a step, it sets the step stat@utming or

Looping . If, after the stegxecutes, the error occurred flagFalse , and

the step status is stilooping or Running , TestStand changes the step
status 6 Done. The step status igassed orFailed only after a code

module, a module adapt®r a step typexplicitly sets the step status to

one of thesewo values. Refer to Chapt&2, Module Adaptersfor more
information on the assignments that module adapters make to and from step
properties.

Customizing Built-In Step Types

If you want to change or enhance a TestStand built-in step type, do not edit
the built-in step type or any of its supporting source code modules. Instead,
make your own copies of the built-in step type and any supporting modules,

TestStand User Manual 10-2 © National Instruments Corporation

Chapter 10 Built-In Step Types

and make the changes to these copies. This ensures that you do not lose
your changes when you install future versions of TestStand.

Source code is available for the code modules that the built-in step types use
as substeps. You can find the source code project files in the
TestStand\Components\NI\StepTypes subdirectory. Make your own
copies of these files in thestStand\Components\Usen\StepTypes

subdirectory and rename them.

Step Types That You Can Use with Any Module Adapter

Action

TestStand comes with four built-in step types that you can use with any
module adapter: Action, Pass/Fail Test, Numeric Limit Test, and String
Value Test. When you insert a step in a sequence, TestStand binds the step
to the adapter that is currently selected in the ring on the sequence editor
toolbar. The icon for the adapter appears as the icon for the step. The icons
for the different adapters are as follows:

C/CVI Standard Prototype Adapter
LabVIEW Standard Prototype Adapter
DLL Flexible Prototype Adapter
Sequence Adapter

ActiveX Automation Adapter

<None>

B & M B &

If you choose <None> for adapter, the step does not call a code module.

You specify the code module that the step calls by selectirgpibefy
Module item from the step context menu or Bgecify Modulebutton on

the Step Properties dialog box. Each module adapter displays a different
Specify Module dialog box. Refer to Chapter ¥dule Adaptersfor

more information on the Specify Module dialog box for each module
adapter.

You usually use Action steps to call code modules that do not perform tests
but rather perform actions necessary for testing, such as initializing an
instrument. By default, Action steps do not pass or fail. The step type does
not modify the step status. Thus, the status for an Action sbemésor

© MNational Instruments Corporation 10-3 TestStand User Manual

Chapter 10 Built-In Step Types

Error unless you specifically set the status in the code module for the step
or the step calls a subsequence that fails. When an action uses the Sequence
Adapter to call a subsequence and the subsequence fails, the sequence
adapter sets the status of the stefpaited

The Action step type does not define any additional step properties other
than the custom properties that all steps contain.

Pass/Fail Test

You usually use a Pass/Fail Test step to call a code module that makes its
own pass/fail determination.

After the code module executes, the Pass/Fail Test step type evaluates the
Step.Result.PassFail property. IfStep.Result.PassFail is

True , the step type sets the step statiatsed . Otherwise, it sets the step
status tdrailed

The following are the different ways that a code module can set the value
of Step.Result.PassFail

¢ You can set the value 6tep.Result.PassFail directly in a code
module by using the TestStand ActiveX API.

* You can pasStep.Result.PassFail as a reference parameter to a
subsequence or code module if you use the Sequence Adapter, the
DLL Flexible Prototype Adapter, or the ActiveX Automation Adapter.

¢« The C/CVI and LabVIEW module adapters update the value of

Step.Result.PassFail automatically after calling the code
module. The C/CVI module adapter updates the value of
Step.Result.PassFail based on the value of thesult field of

thetTestData parameter that it passes to the C function. The
LabVIEW module adapter updates the value of
Step.Result.PassFail based on the value Bass/Fail Flag in
theTestData cluster that it passes to the VI. Refer to Chapter 12,
Module Adaptersfor more information on the assignments that
module adapters make to and from step properties.

By default, the step type uses the value of3te.Result.PassFail

Boolean property to determine whether the step passes or fails. You can
customize the Boolean expression the step type uses by selecting the
Edit Pass/Fail Sourceitem in the context menu for the step or Hubt
Pass/Fail Sourcébutton on the Step Properties dialog box.

TestStand User Manual 10-4 © National Instruments Corporation

Chapter 10 Built-In Step Types

Figure 10-2 shows the Edit Pass/Fail Source dialog box.

Edit Pass/Fail Source

Data Source Expression:

Set to Default

E3
Browse. . |

Statuz Expression:

Step Fesult PazsFail ? "Passed" : "Failed"

ak. Canicel

Figure 10-2. Edit Pass/Fail Source Dialog Box

Figure 10-3 shows the step properties for the Pass/Fail Test step type.

Result

Status
PassF ail
FieportT ext
Camman
-fagg InBuf

.[mE] DataSource

Figure 10-3. Pass/Fail Test Step Properties

The Pass/Fail Test step type defines the following step properties in
addition to the common custom properties.

© MNational Instruments Corporation

Step.Result.PassFail specifies the Boolean pass/fail flag. Pass is
True , Fail isFalse . Usually, you set this value in the step module.

Step.InBuf specifies an arbitrary string that the C/CVI and

LabVIEW module adapters pass to the test inTteetData Sstructure

or TestData cluster automatically. This property exists to maintain
compatibility with previous test executives. Usually, code modules you
develop for TestStand receive data as input parameters or access data
as properties using the TestStand ActiveX API.

Step.DataSource specifies the Boolean expression that the step
uses to set the value 8fep.Result.PassFail . The default value

of the expression IStep.Result.PassFail" , which has the effect

of using the value that the code module sets. You can customize this

10-5 TestStand User Manual

Chapter 10 Built-In Step Types

Numeric Limit Test

TestStand User Manual

expression if you do not want to set the value of
Step.Result.PassFail in the code module. For example, you can
set the data source expression to refer to multiple variables and
properties, such aRunState.PreviousStep.Result.Numeric

* Locals.Attenuation > 12

You usually use a Numeric Limit Test step to call a code module that
returns a single measurement value. After the code module executes, the
Numeric Limit Test step type compares the measurement value to
predefined limits. If the measurement value is within the bounds of the
limits, the step type sets the step statuRaksed . Otherwise, it sets the

step status tbailed

You can customize the type of comparison and limits that TestStand uses
to set the step status. To do so, selecEttieLimits item from the step
context menu or click on tHedit Limits button on the Step Properties
dialog box.

Figure 10-4 shows the Limits tab on the Edit Numeric Limit Test dialog
box.

Edit Humeric Limit Test [<]

Limits | Data Soulcel

Comparison Type: IGELE [3=¢=) j
teasurement must be »= ID Decimal j
&nd
<= |1u

T Cancel

Figure 10-4. Limits Tab on Edit Numeric Limit Test Dialog Box

10-6 © National Instruments Corporation

Chapter 10 Built-In Step Types

The Comparison Type selection ring on the Limits tab specifies the type of
comparison the step type performs, if any, to determine the step status.
Table 10-1 lists the available comparison types.

Table 10-1. Numeric Limit Test Comparison Types

Type Description
EQ Numeric Measurement = Low Limit
NE Numeric Measurement != Low Limit
GT Numeric Measurement > Low Limit
LT Numeric Measurement < Low Limit
GE Numeric Measurement >= Low Limit
LE Numeric Measurement <= Low Limit
GTLT Numeric Measurement > Low Limit and < High Limit
GELE Numeric Measurement >= Low Limit and <= High Limit
GELT Numeric Measurement >= Low Limit and < High Limit
GTLE Numeric Measurement > Low Limit and <= High Limit

No Comparison

TestStand makes no Pass/Fail determination, and sets the status {o

Passed automatically.

Depending on the setting of the Comparison Type selection ring, the dialog
box display additional controls in which you enter high and low limits. You
can choose to display the limit values in decimal, hexadecimal, octal, or
binary formats.

A Numeric Limit Test step always uses ttep.Result.Numeric

property to store the measurement value. A code module can set the value

of Step.Result.Numeric in the following ways:

* You can set the value Step.Result.Numeric directly in a code
module by using the TestStand ActiveX API.

* You can pasStep.Result.Numeric as a reference parameter to a
subsequence if you use the Sequence Adapter, the DLL Flexible
Prototype Adapter, or the ActiveX Automation Adapter.

e The C/CVI and LabVIEW module adapters update the value of

Step.Result.Numeric automatically after calling the code
module. The C/CVI module adapter updates the value of
Step.Result.Numeric based on the value of theeasurement

© MNational Instruments Corporation 10-7 TestStand User Manual

Chapter 10 Built-In Step Types

field of thetTestData parameter that it passes to the C function.

The LabVIEW module adapter updates the value of
Step.Result.Numeric based on the value Nfimeric

Measurement in theTestData cluster that it passes to the VI. Refer

to Chapter 12Module Adaptersfor more information on the
assignments that the module adapters automatically makes to and from
step properties.

By default, the step type uses the value of3te@.Result.Numeric

property as the numeric measurement to compare the limits against. You
can customize the numeric expression by selecting the Data Source tab of
the Edit Numeric Limit Test dialog box, as shown in Figure 10-5.

Edit Humeric Limit Test B
Limits ~ Data Source |

Data Source Expression:

Step.Rezult. Numeric Browse. ..

Set to Default

i

Statuz Expression:

[Step. Result Mumeric »= Step. Limits. Low && Step. Fesult Mumeric <= Step_Limitz. High] ?
"Pazzed" : "Failed"

Cancel |

Figure 10-5. Data Source Tab on Edit Numeric Limit Test Dialog Box

Figure 10-6 shows the step properties for the Numeric Limit Test step type.

=-EE] Result

Error
Status
Murmeric

] [vataSource
{8 DisplayR adix

Figure 10-6. Numeric Limit Test Step Properties

TestStand User Manual 10-8 © National Instruments Corporation

Chapter 10 Built-In Step Types

The Numeric Limit Test step type defines the following step properties in
addition to the common custom properties.

* Step.Result.Numeric specifies the numeric measurement value.
Usually, you set this value in the step module.

e Step.Limits.High andStep.Limits.Low specify the limits for
the comparison expression.

* Step.Comp specifies the type of comparison, for exampl,

* Step.InBuf specifies an arbitrary string that the C/CVI and
LabVIEW module adapters pass to the test inTtbstData structure
or TestData cluster automatically. This property exists to maintain
compatibility with previous test executives. Usually, code modules that
you develop for TestStand receive data as input parameters or access
data as properties using the TestStand ActiveX API.

» Step.DataSource specifies a numeric expression that the step type
uses to set value 6tep.Result.Numeric . The default value of the
expression i8Step.Result.Numeric" , which has the effect of
using the value that the code module sets. You can customize this
expression if you do not want to set the value of
Step.Result.Numeric in the code module.

» Step.DisplayRadix specifies the display format for limit values.

You can use a Numeric Limit Test without a code module. This is useful if
you want to limit-check a value that you already have. To do this, select
<None> as the module adapter before inserting the step in the sequence,
and configurestep.DataSource to specify the value that you

already have.

String Value Test

You usually use a String Value Test step to call a code module that returns
a string value. After the code module executes, the String Value Test step
type compares the string that the step obtains to the string that the step
expects to receive. If the string that the step obtains matches the string that
it expects, the step type sets the step stakRessted . Otherwise, it sets the

step status tBailed

You can customize the type of comparison that TestStand uses to set the
step status. You can also specify the string that the step expects to receive.
To do so, select thedit Expected Stringitem in the context menu for the

step or théedit Expected String button in the Step Properties dialog box.

© MNational Instruments Corporation 10-9 TestStand User Manual

Chapter 10 Built-In Step Types

TestStand User Manual

Figure 10-7 shows the Limits tab on the Edit String Value Test dialog box.

Edit String Value Test E

Lirnits | Data Sourcel

Comparizan Type: IIgnnle Caze j

Expected String Yalue: I

Cancel

Figure 10-7. Limits Tab on the Edit String Value Test Dialog Box

On the Limits tab, you can specify the expected string and whether the
string comparison is case-sensitive.

A String Value Test step always uses $itep.Result. String property
to store the string value. A code module can directly set the value of
Step.Result.String in the following ways:

* You can set the value &fep.Result.String directly in a code
module by using the TestStand ActiveX API.

* You can pasStep.Result.String as a reference parameter to a
subsequence or code module if you use the Sequence Adapter, the
DLL Flexible Prototype Adapter, or the ActiveX Automation Adapter.

¢ A code module can directly modify the valstep.Result.String
using the TestStand ActiveX API. The C/CVI and LabVIEW module
adapters update the valueSap.Result.String automatically
after calling the code module. The C/CVI module adapter updates the
value ofStep.Result.String based on the value of the
stringMeasurement field of thetTestData parameter that it
passes to the C function. The LabVIEW module adapter updates the
value ofStep.Result.String based on the value 6fring
Measurement in theTestData cluster that it passes to the VI.
Refer to Chapter 12/lodule Adaptersfor more information on the
assignments that the module adapters automatically make to and from
step properties.

10-10 © National Instruments Corporation

Chapter 10 Built-In Step Types

By default, the step type uses the value oftep.Result.String

property as the string value to compare the limits against. You can
customize the string expression by selecting the Data Source tab of the Edit
String Value Test dialog box, as shown in Figure 10-8.

Edit Stiing ¥alue Test E

Limit; Data Source |

Data Source Expression:

Step.FResult. Sting Browse... |

Set to Default

Statuz Expression:
Step.Result. Sting == Step.Limits.String ? "Pazsed” ; "Failed"

Catcel

Figure 10-8. Data Source Tab on Edit String Value Test Dialog Box

The Data Source tab specifies a data source expression that TestStand
evaluates to obtain the string it compares against the expected string.

Figure 10-9 shows the step properties for the String Limit Test step type.

=-[EF] Resul
Emar
Status
ReportT ext
Sting
Comman
=-EE Limits
L JRBE] Shring

- fig DataSource

Figure 10-9. String Limit Test Step Properties

© National Instruments Corporation 10-11 TestStand User Manual

Chapter 10 Built-In Step Types

The String Value Test step type defines the following step properties in
addition to the common custom properties.

e Step.Result.String specifies the string value. Usually, you set
this value in the step module.

e Step.Limits.String specifies the expected string for the string
comparison.

e Step.Comp specifies the type of comparison, suchgasre Case

e Step.InBuf specifies an arbitrary string that the C/CVI and
LabVIEW module adapters automatically pass to the test in the
tTestData structure offestData cluster. This property exists to
maintain compatibility with previous test executives. Usually, code
modules that you develop for TestStand receive data as input
parameters or access data as properties using the TestStand
ActiveX API.

e Step.DataSource specifies a string expression that the step type
uses to set the value 8fep.Result.String . The default value of
the expression iStep.Result.String , which has the effect of
using the value that the code module sets. You can customize this
expression if you do not want to set the value of
Step.Result.String in the code module.

You can use a String Value Test step without a code module. This is useful
if you want to test a string that you already have. To do this, select <None>
as the module adapter before you insert the step in the sequence, and
configureStep.DataSource to specify the string you already have.

Step Types That Work With a Specific Module Adapter

Sequence Call

TestStand User Manual

This section describes step types that work with a specific module adapter.

You use a Sequence Call step to call another sequence in the current
sequence file or in another sequence file. A Sequence Call step always uses
the Sequence Adapter.

You can use the Sequence Adapter with other step types such as Pass/Fail
Test or Numeric Limit Test. Using a Sequence Call step is the same as using
an Action step with the Sequence Adapter, except that the step type sets the
step status tPassed rather thamone when the subsequence succeeds. If
the sequence fails, TestStand sets the step stdaitetb . A subsequence

10-12 © National Instruments Corporation

Chapter 10 Built-In Step Types

fails when the status for a step in the subsequerrzlésl and the Step
Failure Causes Sequence Failure option for the step is enabled.

You specify the subsequence that the Sequence Call step executes by
selecting the&Specify Moduleitem in the context menu for the step or
clicking on theSpecify Modulebutton on the Step Properties dialog box.

Figure 10-10 shows the Specify Module dialog box for a Sequence Call
step.

Edit Sequence Call E

Edit Sequence Call | Femate Execution |

[™ Specify Expressions for Pathiname and Sequence [Use Cument File

File Pathnarne: ICDmputerEF‘U.seq Browsze. .. |

IZ:'\TestS tandE xampleshComputerCPU zeg

Sequence: IMainSequence j
— Parameters:
¥ Usze Pratotype of Selected Sequence |load Frototupe..
) MNum
CFPUF anilyM arne Sting "Pentium Clazs" by reference
FloatingPointProcessor - Boolean True by reference
Returni/oltage Murnber <Usze Default> by reference
© Use Default

& Enter Expression 12 Browsze... |

kK I Cancel | Appli |

Figure 10-10. Specify Module Dialog Box for Sequence Call Step

You can specify the sequence and the sequence file using literal strings or
expressions that TestStand evaluates at run-time.

Using the Parameters section of the dialog box, you can specify the values
or expressions to pass for each parameter in the sequence call. For each

© National Instruments Corporation 10-13 TestStand User Manual

Chapter 10 Built-In Step Types

parameter, you can choose to use the default value for the parameter rather
than specifying an explicit value. You can pass parameters to the sequence
by value or by reference.

Refer to theSequence Adapteection in Chapter 12/odule Adapters
for more information on using the Specify Module dialog box.

After the sequence call executes, the Sequence Adapter can set the step
status. If the subsequence fails, the adapter sets the step sEailesito.

If a run-time error occurs in the subsequence, the adapter sets the step status
to Error . If the subsequence succeeds, the adapter does not set the step
status. Instead, the Sequence Call step sets the step stduseib.

The Sequence Call step type does not define any additional step properties
other than the custom properties that are common to all steps.

Step Types That Do Not Use Module Adapters

Statement

TestStand User Manual

This section describes step types that do not use module adapters. When
you create an instance of one of these step types, you configure the step
using a dialog box only. You do not write a code module.

You use Statement steps to execute expressions. For example, you can use
a Statement step to increment the value of a local variable in the sequence
file.

You can specify the expression for a Statement step by selectiBdithe
Expressionitem in the context menu for the step or clicking onBb#
Expressionbutton in the Step Properties dialog box.

10-14 © National Instruments Corporation

Chapter 10 Built-In Step Types

Figure 10-11 shows the Edit Statement Step dialog box.

Edit Statement Step

Type an expression into the box below:

Example: localz. s = localzy + 5
Catcel

[Mote: separate multiple expressions with commas]

Expression

Locals Volts = Locals Defaultsyolts + 1] ;I Browse...

Checl Syntax

i gl

[

Figure 10-11. Edit Statement Step Dialog Box

By default, Statement steps do not pass or fail. If the step cannot evaluate
the expression or if the expression $stp.Result.Error.Occurred

to True, TestStand sets the step stati@rto . Otherwise, it sets the step
status to Done.

The Statement step type does not define any additional step properties other
than the custom properties that are common to all steps.

Message Popup

= You use Message Popup steps to display messages to the operator and to
receive response strings from the operator. For example, you can use a
Message Popup step to warn the operator when a calibration routine fails.

You can specify the expression for the Message Popup step by selecting the
Edit Message Settingstem in the step context menu for the step or

clicking on theEdit Message Settingdutton in the Step Properties dialog
box.

© National Instruments Corporation 10-15 TestStand User Manual

Chapter 10 Built-In Step Types

Figure 10-12 shows the Configure Message Box Step dialog box.

.f Configure Meszage Box Step E
Title Expression: "/ atning” Browse... |

Meszage Expression: "The calibration rautine ** + Locals. CalibrationT estnameString + failed, do vou want to =] BramEe.
continue "
=
— Button Label Expressions [unlabeled buttons are hidden)]————————— Button Options
Button 1: ["res" Browsze... Diefault Buttar: f‘ Buittan 1

Button 2: "N Browse. . Cancel Button: fl Button 2

|
|
Button 3 |'"' Browse... Active Control: e‘ Button 1 |
|

Button 4: [Browsze. . Buttan Arratgerment: ﬁ B otham

i

I~ -Enable Responze Text Box

Max Rezponze String Lenagth: 4096

Initial Responze Sting: |

LCancel I

Figure 10-12. Configure Message Box Step Dialog Box

The Title Expression and Message Expression controls specify the text that
the step displays in the message popup. In these two controls, you can
specify literal strings or string expressions that TestStand evaluates at
run-time. You can also customize expressions for each button label, and the
arrangement of the buttons. If you do not specify a label for a button, the
button does not appear on the popup. The Default Button selection ring
control selects which button, if any, has <Enter> as its shortcut key. The
Cancel Button selection ring control selects which button, if any, has <Esc>
as its shortcut key. The Active Control selection ring control selects one of
the four buttons or the input string as the initially active control.

You can also prompt the operator for a response by enabling the Enable
Response Text Box option. You can specify the maximum response string
length and an initial response string. If you do not want to specify a
maximum response string length, speeifyin the Max Response String
Length control.

After the operator closes the message popup, the step sets the
Step.Result.ButtonHit step property to the number of the button that

TestStand User Manual 10-16 © National Instruments Corporation

Chapter 10 Built-In Step Types

the operator selects. The step copies the response string to
Step.Result.Response

By default, Message Popup steps do not pass or fail. After a step executes,
TestStand sets the step statuBdoe or Error .

Figure 10-13 shows the step properties for the Message Popup step type.

=-{EE] Fesult
Errar

Status
fEt] ReportText
Carmmor
[Z3] ButtonHit
Response
- Jakt] TitleE wpr
MeszageE =pr
ButtornlLabel
ButtonzLabel
- Jit] Button3Label
- fi] Buttondlabel
ShowRezponze
M axFResponzelength
- [hgt] DefaultFesponze
- {12] ButtonLocation
-] ActiveCll
DefaultButton
{1 CancelButtan

=

=
=

Figure 10-13. Message Popup Step Properties

The Message Popup step type defines the following step properties in
addition to the common custom properties.

e Step.Result.ButtonHit contains the number of the button that the
operator selects.

e Step.Result.Response contains the response text that the operator
enters.

e Step.TitleExpr contains the expression for the string that appears
as the title of the message popup.

e Step.MessageExpr contains the expression for the string that
appears as the text message on the message popup.

e Step.ButtonllLabel , Button2Label , Button3Label , and
Button4Label specify the expression for the label text for each
button.

* Step.ShowResponse enables the response text box control on the
message popup.

© National Instruments Corporation 10-17 TestStand User Manual

Chapter 10 Built-In Step Types

Call Executable

Step.MaxResponseLength specifies the maximum number of
characters that the operator can enter in the response text box.

Step.DefaultResponse contains the initial text string that the step
displays in the response text box.

Step.ButtonLocation specifies whether to display the buttons on
the bottom or side of the message popup.

Step.ActiveCtrl chooses one of the four buttons or the input string
as the active control.

Step.DefaultButton specifies which button, if any, has <Enter> as
its shortcut key.

Step.CancelButton specifies which button, if any, has <Esc> as its
shortcut key.

EXE You use Call Executable steps to launch an application or run a system
command. For example, you can use a Call Executable step to call a system
command to copy files to a network drive.

You can specify the executable path, arguments, and options for the Call
Executable step by selecting t@enfigure Call Executableitem in the
context menu for the step or tGenfigure Call Executablebutton on the
Step Properties dialog box.

TestStand User Manual

10-18 © National Instruments Corporation

Chapter 10 Built-In Step Types

Figure 10-14 shows the Configure Call Executable dialog box.

Executabla Path:

Argument E =pression:

Time To ' ait [sec]:

Initial "WWindow State:

[T Temminate Executable If Step |s Teminated Or Aborted

Exit Code Status Action; $| Mo Action |

Configure Call Executable [x|

|notepad.exe Erowse [
IE:'\WINNT\System32\notepad.eHe

|"report.t>:t" Browsge |

2 \walt For Specified Time

ﬂ'ID.DD

fi Show Marmally, Activated |

ar. Caticel I

Figure 10-14. Configure Call Executable Dialog Box

The Configure Call Executable dialog box contains the following controls:

© National Instruments Corporation

Executable Path—Use this control to specify an absolute or relative
pathname for the executable.

Argument Expression—Use this control to specify an argument to
pass to the executable. You can specify the argument as a literal string
or as an expression that TestStand evaluates at run-time.

Wait Condition—Use this control to specify whether the step waits
for the executable to exit. The possible valueNar#vait , Wait for

Exit , andwait for Specified Time. If you choosewait for

Specified Time and the executable process does not exit before the
time limit you specify expires, the step type sets the
Step.Result.Error.Occurred to indicate a run-time error.

Time to Wait—Use this control to specify the time you want the step
to wait for the executable to exit before it indicates a run-time error.

Terminate Executable If Step Is Terminated Or Aborted—Use

this control if you do not want the executable process to continue
running when the operator terminates or aborts the execution in
TestStand. This option applies only when the wait condition is Wait
For Exit or Wait For Specified Time.

10-19 TestStand User Manual

Chapter 10 Built-In Step Types

TestStand User Manual

< Initial Window State —Use this control to specify whether the step
launches the executable as a hidden, normal, minimized, or maximized
application, and whether the application is active initially.

« Exit Code Status Action—Use this control to specify whether the
step type sets the step status based on the exit code that the executable
returns. You can choose to set the step stattsled if the exit code
is less than zero, greater than zero, equal to zero, or not equal to zero.

The final status of a Call Executable step depends on whether the step waits
for the executable to exit. If the step does not wait for the executable to exit,
the step type always sets the step statoste. If a timeout occurs while

the step is waiting for the executable to exit, the step type sets the status to
Error . If the step waits for the executable to exit and a timeout does not
occur, the step type sets the step statmte, Passed , or Failed

depending on the status action you specify in the Exit Code Status Action
ring control. If you set the Exit Code Status Action control to the No Action
option, the step type always sets the step statusim Otherwise, you can
choose to set the step statuBdssed orFailed based on whether the exit
code is equal to zero, not equal to zero, greater than zero, or less that zero.

Figure 10-15 shows the step properties for the Call Executable step type.

=-EE Result

+-] Erar

] Status

7] ExitCode

] ReportT ext
Carnmon
-{ib] Executable
Arguments

- W ait Comdition
- TimeTow ait
[InitiahafindawState
{3 ProcessHandle
Teminate0nabort
-{ige] ExitCodeStatuztction

Figure 10-15. Message Popup Step Properties

The Message Popup step type defines the following step properties in
addition to the common custom properties.

e Step.Result.ExitCode contains the exit code that the executable
call returns.

e Step.Executable specifies the pathname of the executable to

launch.

10-20 © National Instruments Corporation

Chapter 10 Built-In Step Types

» Step.Arguments specifies the expression for the argument string
that the step passes to the executable.

* Step.WaitCondition specifies whether the step waits for the
executable to exit before completing.

e Step.TimeToWait specifies the number of seconds to wait for the
executable to exit.

* Step.ProcessHandle contains the Windows process handle for the
executable.

* Step.InitialWindowState specifies whether the executable is
initially active, not active, hidden, normal, minimized, or maximized.

e Step.TerminateOnAbort specifies whether to terminate the
executable process when the execution terminates or aborts.

* Step.ExitCodeStatusAction specifies whether to set the step
status using the exit code that the executable returns.

Limit Loader

You can use a Limit Loader step to update the limit properties of one or
more steps in a sequence dynamically. For example, you might want to
develop a common sequence that can test two different models of a cellular
phone, where each model requires unique limit values for each step. If you
use step properties to hold the limit values, you can include a Limit Loader
step in the sequence to load the correct limit values into the step properties.

You usually insert the Limit Loader step in the Setup step group of a
sequence. In this way, the Limit Loader step initializes the limit values
before the steps in the Main step group execute.

The source of the limit values can be a tab-delimited texttite (), a
comma-delimited text file¢sv), or an Excel file.&ls). The limit data is

in a table format where the row names are step names and the column
headings are the names of step properties that begihiwits . Starting

and ending data markers designate the bounds of the table. A limit file can
contain more than one block of data. The following is an example of a
tab-delimited limits file with one data block.

Start Marker

Limits.Low Limits.High Limits.String
Voltage at Pin A 9.000000 11.000000
Voltage at Pin B 8.500000 9.5000000
Self Test Output "SYSTEM OK"
End Marker

© National Instruments Corporation 10-21 TestStand User Manual

Chapter 10 Built-In Step Types

Figure 10-16 shows an example sequence file that might use the limits file.

i3 LimitsExample_ seq [_ (O]

Wiew: I MainSequence

Main |Setu|:| I Eleanupl Parametersl Localsl

Ste | Comment |
ﬂé Other Steps

@Voltage at Pin Mumeric Limit Test that returns the voltage at Pin &
@\-"oltage at Pin B Murmeric Limit Test that returns the voltage at Pin B
@ Self Test Qutput String Limit Test that returnz a self test output sting
Qm Otker Steps

Figure 10-16. Example Sequence File with Limit Steps

You can specify the pathname and layout of the limits file in a Limit Loader
step by selecting th®gelect Limits Fileitem in the context menu for the
step or clicking on th&elect Limits File button on the Step Properties
dialog box.

Figure 10-17 shows the Limits File tab of the Edit Limit Loader Step dialog

box.
[Edit Limit Loader Step [=]

Limits File | Layout |

—{® -Select Specific File

Lirnits: File: |Z:\Test8tand\EHamples\LimitsmeFile\EHampIeLimits.t:-tt Browsze... I
lZ:\TestStand\EHamples\LimitsFromFile\EHampIeLimits.t:-tt
e File... '

" -Use Expression Ta 5pecify File

File Mame E xpressiaon:; |HunState.SequenceFile.Data.ValiabIes.MyFile Browse... '

File Farmat: Tab Delimited Test [kxt) 7|

(1] I LCancel I

Figure 10-17. Limits File Tab on Edit Limit Loader Step Dialog Box

TestStand User Manual 10-22 © National Instruments Corporation

Chapter 10 Built-In Step Types

On the Limits File tab, you can select a specific limits file, or you can
specify a string expression that TestStand evaluates at run-time for the
limits file pathname. You must also select a file format for the limits file.
Valid formats are tab-delimited text¢), comma-delimited textdsv),
and Excel file kIs).

The Layout tab specifies the organization of the data in the limits file.
Figure 10-18 shows the Layout tab of the Edit Limit Loader Step dialog

box.
[E=] Edit Limit Loader Step B
Limits File Lavout |
Sting Expression That Marks Start of Data: |"Start Marker" Browze... |
Sting Expression That Marks End of Data: |"End tarker Browsze. .. '
Skip Riows That Begin Wwith: |
[First Row of D ata Specifies Step Property for Each Column
Specify Columt ta Step Property Mapping: T
[Separate property names with commas]
=
oK I LCancel I

Figure 10-18. Layout Tab on Edit Limit Loader Step Dialog Box

The String Expression that Marks Start of Data control specifies the string
that designates the beginning of a block of limit data. The String Expression
that Marks End of Data control specifies the string that designates the end
of a block of limit data. You can specify literal strings for the beginning
and ending markers, or you can specify string expressions that TestStand
evaluates at run-time. The marker strings must appeatr in the first column
of the file. If you specify an empty expression ("") for the start and end
markers, the step type assumes that the file contains a single block of limit
data.

A Limit Loader step ignores all rows that begin with the string you specify
in the Skip Rows that Begin With control. This feature is useful if the limits
file includes comment lines.

© National Instruments Corporation 10-23 TestStand User Manual

Chapter 10 Built-In Step Types

TestStand User Manual

Disable the First Row of Data Specifies Step Property for Each Column
option if you do not want to include the step property names for each
column as the first row of each data block in the limits file. If you disable
this option, you must use the Specify Column to Step Property Mapping
text box to specify the list of property names. Separate the property names
with commas, as in the following example.

Limits.Low, Limits.High, Limits.String

Figure 10-19 shows the step properties for the Limit Loader step type.

=-EE] Result

EE Error

[iEE] Status
MurnLirnitzlnFile
MumB owszlnFile
MurnLimitzdpplied
ReportT ext
Common

File

[T UseExpr

~fie] FileE zpr

-fiEt] Format

Starthd ark erE wpr

~fig] EndMarkerE <pr

Skip

t apColumnsU singFirstR ow
figt] Colurntd apping

Figure 10-19. Limit Loader Step Properties

The Limit Loader step type defines the following step properties in addition
to the common custom properties.

e Step.Result.NumLimitsInFile indicates the total number of
limit values in the data block that the step loaded from the file.

e Step.Result.NumRowsInFile indicates the number of limit value
rows in the data block that the step loaded from the file.

e Step.Result.NumLimitsApplied contains the total number of
limit values that the step assigned to limit properties in the sequence.
If this number is less thagtep.Result. NumLimitsinFile , the
step was unable to find steps or properties in the sequence for all the
step names and properties names in the file.

10-24 © National Instruments Corporation

© National Instruments Corporation

Chapter 10 Built-In Step Types

Step.File specifies a literal pathname for the limit file.

Step.FileExpr specifies a pathname expression that TestStand
evaluates at run-time.

Step.UseExpr specifies whether to ustep.File or
Step.FileExpr for the pathname of the limits file.

Step.Format specifies the layout of the file. The possible values are
Tab, Commaor Excel .

Step.StartMarkerExpr specifies the expression for the starting
marker.

Step.EndMarkerExpr specifies the expression for the ending
marker.

Step.Skip specifies the string that, when it appears at the beginning
of a row, causes the Limit Loader step type to ignore the row.

Step.MapColumnsUsingFirstRow specifies whether the first row
of each data block in the limit file contains the names of the step
properties into which the Limit Loader step loads the limit values.

Step.ColumnMapping specifies the names of the properties into
which the Limit Loader step loads the limit values if
Step.MapColumnsUsingFirstRow is False .

10-25 TestStand User Manual

Chapter 10 Built-In Step Types

Import/Export Limits Command in the Tools Menu

When you edit a sequence file, you can usértiport/Export Limits
command in th& ools menu to import limit values into a sequence from a
limits file or export limits from a sequence to a limits file.

Thelmport/Export Limits command displays the Import/Exports
Sequence Limits dialog box, as shown in Figure 10-20.

E=] Import/Export Sequence Limits

Sequence File: IZ:\TestStand\E:4amples‘\LimitsFromFiIe\IimitsfromfiIe.seq
Sequence: t ainSequence "|
Format: Tab Delimited Test [tat] "|
Start of Data Marker: |StartLimitElock 1
End of Data Marker: |EndLimitBlock
— Source/Destination

¢ Cliphoard

& File |E nampleLimits bt Browse... I

lZ:'\TestStand'\E wampleshLimitzFromFileE xampleLimits. bt

iew File |

— Import Options:

Skip Fiows That Begin With: [

™ First Fiow of Data Specifies Step Property far Each Column

Specify Column to Step Property Mapping: o
[Separate property names with commag]
o
Impart '
Export [Append to End of File Help I Dane I

Figure 10-20. Import/Exports Sequence Limits Dialog Box

The Import/Export Sequence Limits dialog box contains the following

options:

¢ Sequence File—This indicator displays the name of the sequence file
that the current invocation of theport/Export Limits command
applies to.

* Sequence—Use this control to select the sequence into which to
import limit values or from which to export limit values.

TestStand User Manual 10-26 © National Instruments Corporation

Chapter 10 Built-In Step Types

Format—Use this control to specify the file format for the limits file.

The file format can be tab-delimited texk(), comma-delimited

text (csv), and Excel file &ls). The limit data is in table format

where the row names are step hames and the column headings are the
names of step properties that begin withit . The following is an
example tab-delimited limits file with one data block.

StartLimitBlock

Limits.Low Limits.High Limits.String

Voltage at Pin A 9.000000 11.000000

Voltage at Pin B 8.500000 9.5000000

Self Test Output "SYSTEM OK"
EndLimitBlock

© National Instruments Corporation

Start of Data Marker—Use this control to specify a string that
designates the beginning of a block of limit data. (The marker string
must appear at the beginning of a row.)

End of Data Marker —This marker specifies the string that
designates the end of a block of limit data. (The marker string must
appear at the beginning of a row.)

Source/Destination—This section of the dialog box specifies the
external location from which you import, or into which you export, the
limit values in the sequence. You can specify the system clipboard or
a specific file.

Skip Rows That Begin With—This option ignores all rows that begin
with the string that you specify in the Skip Rows that Begin With
control. This feature is useful if the limits file includes comment lines.

First Row of Data Specifies Step Property for Each

Column—Disable this option if you do not want to include the step
property names for each column as the first row of each data block in
the limits file. If you disable this option, you must use the Specify
Column to Step Property Mapping text box to specify the list of
property names. Separate the property names with commas, as in the
following.

Limits.Low, Limits.High, Limits.String

Import —Click on this button to import limit values from a file or the
system clipboard into a sequence. The source must contain a block of
limit values starting and ending with the data markers you specify. The
Import command displays the number of limit values it successfully
imports, and lists any steps or step property names that it cannot find
in the destination sequence.

10-27 TestStand User Manual

Chapter 10 Built-In Step Types

Goto
GO

TestStand User Manual

e Export—Click on this button to export limit values from a sequence

to a file or the system clipboard. If the destination is a file that already
exists and the Append to End of File option is disabled, a dialog box
appears prompting you to overwrite the file. Ehgoort command
writes a block of limit data with the starting and ending markers you
specify to the file or clipboard.

« Append to End of File—Disable this option if you want to overwrite
the file when you export a block of limit data. Enable this option if you
want to append a block of data to a file that already exists.

You use Goto steps to set the next step that the TestStand engine executes.
You usually use a Label Step as the target of a Goto step. This allows you
to rearrange or delete other steps in a sequence without having to change
the specification of targets in Goto steps.

You can specify the Goto step target by selectingthieDestination item
from the step context menu or clicking on Hugit Destination button on
the Step Properties dialog box. Figure 10-21 shows the Edit Goto Step
dialog box.

EditGotoStep H|
[~ o |

Catcel

Drestination:

Figure 10-21. Edit Goto Step Dialog Box

The Destination control contains a list of all steps in the step group. The
Destination control lists two additional targets: <Cleanup> allows you to
jump to the Cleanup step group, and <End> allows you to jump directly to
the end of the current step group.

By default, Goto steps do not pass or fail. After a Goto step executes,
TestStand sets the step statubdoe or Error .

The Goto step type does not define any additional step properties other than
the custom properties common to all steps.

10-28 © National Instruments Corporation

Chapter 10 Built-In Step Types

Label

You usually use a Label Step as the target for a Goto step. This allows you
to rearrange or delete other steps in a sequence without having to change
the specification of targets in Goto steps.

EL

Label steps do not pass or fail. After a Label step executes, the TestStand
engine sets the step statuPtme or Error .

The Label step type does not define any additional step properties other
than the custom properties common to all steps.

© National Instruments Corporation 10-29 TestStand User Manual

User Management

This chapter describes TestStand user management, the User Manager
window, and how you can add users and manage user privileges.

TheTestStand engine maintains a list of users, their login names and
passvords, and their jwileges. This capability of théestStand engine is
called theuser manage The sequence editor and operator interfaces limit
their available functionality depending on the\plege settings that the

user manager stores for the user that is currently logged in.

When you launch the sequence editorryr @perator interfaces that come
with TestStand, thy each display the Login dialog bby calling the
LoginLogout front-end callback sequence. Th®inLogout sequence
calls theDisplayLoginDialog method of thé&ngine class, which
displays the actual dialog box.

The User Manager tab of the Station Options dialog box fsgeeihether
TestStand enforces usenyreges and spefies the location of the user
manager cdiigurationfile. Refer to theConfigure Mentsection in
Chapte 4, Sequence Editor Menu Bdor more information on these
options.

Note The TestStand User Manager is designed to help you implement policies and
procedures concerning the use of your test station. It is not a security system and
it does not inhibit or control the operating system or third-party applicatioyisu
must use the systemyel security features pvided by your operating system to
secure your test station computer against malicious use.

User Manager Window

In the TestStand sequence editor, you use the User Manager window to
view and edit the user list and the privileges of each user. You can open the
User Manager window by selectiMiew»User Manager You use the

View ring at the top right of the User Manager window to choose whether
to display the list of users or the list of types that TestStand uses to store
user privileges.

© MNational Instruments Corporation 11-1 TestStand User Manual

Chapter 11 User Management

Users View

You can display the list of users by selecting Users from the View ring. You
can use this view to add new users or to modify the privileges and other
properties of existing users. Figurl-1 shows the Users view in the User
Manager window.

WiEw IUsers 'I
ger | Comment
¢ adminiztrator ﬁ‘ adminigtrator
P Johin Smith ® John Smith Technician
{ Debbie Jones % Debbis Jores Developer
--{if] Loginiame
- {i] Passwaornd
—{it] FullName
=-TF] Privieges
Fl Operate
Debug
F] Develop
-] Configure
—{it] Comment
= 4| | i

Figure 11-1. Users View in the User Manager Window

The Users vaw has wo tabs: User List and Fiites. The User List tab
contains a list of current users. Each entry contains properties timg de
the login name, the login password, andTiéstStand pvil eges.TestStand
stores these properties in User containers, whagh the User standard

data type.

The Prdiles tab contains a list of diites that you can apply when you
create mw users. A prtile defines a set ofalues for the properties in the
User data type. When you create ewnuse, you can initialize th@alues
for a rew user from a pridle. If you m&ke changes to thealues in a priile,
your changes do noffact the pivileges for users already in the user list.
TestStand dénes four default prfiles: operata, technician develope,
andadministrata.

TestStand User Manual 11-2 © National Instruments Corporation

Chapter 11 User Management

User List Tab

The User List tab contains two panes. The left pane is a tree view that
allows you to browse the custom properties for each user. The right pane is
a list view that displays the contents of the node you select in the tree view.

The columns in the list view vary according to whether the list view is
displaying users or user properties. When the list view displays users, the
columns appear as in Figure 11-1.

Figure 11-2 shows the columns that appear when the list view displays user
properties.

“User Manager * =] E3

FR User List | i Prafies | Wignr IUsers vi

E’i‘i‘ I zer List Field | Tupe | value | comment |
'ji‘ adriniztratar Lagint amne String "Drebbie Jones"
- R John Smith Password String "
= Eahhie Jones FullM arne String "Debhie Jones"
LoginHame Privileges Boolean Falze
Ejllsrj:;f Comment String "Developer
EI@ Privileges

-{TF] Operate
{TH Debug

Canfigure
{8 Commert

Figure 11-2. User List Tab for Users View

User List Context Menu

You can display a context menu by right-clicking on the tree view or list
view. The items in the context menu vary depending on the whether you
right-click on a step, a step property, the background area of the tree view,
or the background area of the list view. The User List tab context menu
contains the common editing and navigation commands, and the following
additional commands.

© MNational Instruments Corporation 11-3 TestStand User Manual

Chapter 11 User Management

Insert User

You can use thinsert User command to add a new user to the user list.
Figure 11-3 shows the New User dialog box.

Logir Mame; IDeI:-I:-ie Jones

Full M ame: IDebbie A Jones
Camrmett: ITestStand Developer
Passwond: I""“"""

Confirm Pagsword:

Ixxxxxxx

Idzer Profile: Developer j

Operatar
Technician

Adminiztrator

Ok I Cancel |

Figure 11-3. Insert New User Dialog Box

The Login Name and the Password controls specify a case-sensitive login
name and password. You can use the Full Name and Comment controls to
add additional information about the user. The User Profile ring control
selects a profile, which defines an initial set of privilege settings to give the
new user.

TestStand User Manual 11-4 © National Instruments Corporation

Chapter 11 User Management

Edit

You can use thEdit command to edit an existing user in the user list.
Figure 11-4 shows the Edit User dialog box.

Edit User E3
Login Mame: IDebbie Jones
Full M arne: IDebbie Jores
Comment: IDeveloper
Pazzword: I

Confirm Pazzword: I

(1] I Cancel

Figure 11-4. Edit User Dialog Box

Edit User Type

TheEdit User Type command switches from the Users view to the Types
view in the User Manager window and displaystiser standard
data type.

Profiles Tab

The Profiles tab contains two panes. The left pane is a tree view that allows
you to browse the custom property values for each profile. The right pane
is a list view that displays the contents of the item you select in the tree
view. The columns in the list view vary according to whether the list view
is currently displaying profiles or profile properties.

© MNational Instruments Corporation 11-5 TestStand User Manual

Chapter 11

User Management

Figure 11-5 shows the Profiles tab in the Users view.

mrilzer Manager

i UserList T Profiles |

[(O]]
Wiew: IUsers vl

Laginh arne
Password
Full ame
Privileges
=-{F Operate

BE]r o] Frofile | Comment |
- Operator % Operator
Techhician ﬁ‘l Technician
: Developer ﬁ Developer
- Administrator ® Adrministrator

Execute
T ermiriate
i [Abart
&-{F] Debug
-7 Develop
&-F] Configure

TestStand User Manual

Figure 11-5. Profile Tab in the Users View

The tree view in Figure 11-5 shows the set of privileges that the each of the
profiles define values for. The User standard data type defines this set of
privileges. The privileges are grouped in categories such as Operate and
Debug. Each profile defines values for each of the privilege settings. Each
user also has these privilege properties. When you create a new user,
TestStand copies the privilege setting values from the profile you choose to
the new user.

Profiles Tab Context Menu

You can display a context menu by right-clicking on the tree view or list
view. The items in the context menu vary depending on whether you
right-click on a step, a step property, the background area of the tree view,
or the background area of the list view. The Profiles tab context menu
contains the common editing and navigation commands, and the following
additional commands.

11-6 © National Instruments Corporation

Chapter 11 User Management

Insert Profile

You can use thinsert Profile command to add a new profile to the
profile list.

Edit User Type

TheEdit User Type command switches from the Types view to the Users
view in the User Manager window and displaysuker standard data

type.

Types View

You can display a list of the types that the User Manager uses by selecting
Types from the View ring. You can use this view to add new properties to
theUser data type, or create your own custom data types to add to the
User data type. Figure 11-6 shows the Types view for the User Manager
Window. The Types view has two tabs, Standard Data Types and Custom
Data Types.

5 User Manager [_ (O] x|

T8 Custom Data Types F8 Standard Data Types | i ITPDES =]

IE|‘E‘§I Standard Data Types Standard D ata Typel Type | " alue | Usage | Comment |
E|‘E§ User TE User Container, Type Definition ... |Jger Manager
! LogirM ame

Passwaord

: FullM ame
-0 Privileges
Dperate
Debug
Develop
- Configure

Figure 11-6. Types View in the User Manager Window

© MNational Instruments Corporation 11-7 TestStand User Manual

Chapter 11 User Management

User Standard Data Types

The Standard Data Types tab contains the standard data types that the User
Manager uses. TestStand stores the properties for each user in a User
container, which has théser standard data type.

Figure 11-7 shows the tree view of theer standard data type.

El'[g Standard Data Types
- T8 User

LaginM arne

Pazzwond

FullM ame:

B[Privileges

Figure 11-7. User Standard Data Type

Table 11-1 lists the properties in thser data type and the privileges that
TestStand grants a user when the property valteiés. Subproperties
appear in the table indented under the properties they belong to. For
example, you reference tBgecute subproperty as
User.Privileges.Operate.Execute

Table 11-1. Description of Subproperties in User Data Type

Subproperty Description
LoginName User login name.
Password User login password.
FullName Descriptive user name.
Privileges User has all TestStand privileges. Wheuae ,

TestStand ignores all specific privilege settings
all property groups.

>

fF] Operate User can perform atbperate privileges. When
True , TestStand ignores all specific privilege
settings in this property group.

Execute User can initiate an execution.
Terminate User can terminate an execution.

TestStand User Manual 11-8 © National Instruments Corporation

Chapter 11 User Management

Table 11-1. Description of Subproperties in User Data Type (Continued)

Subproperty Description
Abort User can abort an execution.
Debug User can perform altbebug privileges. When

True , TestStand ignores all privilege settings in tf
property group.

i

S

[T/l ControlExecFlow

(=]
l

User can control the flow of execution by setting
breakpoints, single-stepping, and using Sie¢
Next StepandRun Mode commands.

pint.

SinglePass User can use the Single Pass execution entry p

RunAnySequence User can run individual sequence without using
execution entry points.

RunSelectedTests User can run selected tests from a sequence ug

theRun Selected Stepsommand.

ing

LoopSelectedTests

Hl
[

User can run selected tests from a sequence in
loop using thd.oop on Selected Stepsommand.

EditStationGlobals

Hl
[

User can create and modify globals in the Statig
Globals Window.

7] Develop

User can perform atbevelop privileges. When
True , TestStand ignores all privilege settings in tf

property group.

i

S

EditSequenceFiles

User can edit sequence files, sequences, and s

teps.

SaveSequenceFiles

User can save sequence files.

fF] Configure

User can perform attonfigure privileges. When
True , TestStand ignores all privilege settings in th

property group.

nis

EditTypes

User can create and modify standard data types
custom data types, and step types.

Py

© MNational Instruments Corporation

11-9 TestStand User Manual

Chapter 11 User Management

Table 11-1. Description of Subproperties in User Data Type (Continued)

Subproperty

Description

ConfigEngine

User can configure the engine, which includes:
e Customizing théfools menu.

* Modifying engine files in the Edit Paths dialpg

box.

* Modifying settings on the Search Directories

dialog box.
» Modifying settings on all tabs of the Station

Options dialog box except Preferences and User

Manager tabs.

* Modifying the Prompt to Find Files option on

the Preferences tab of the Station Options d
box.

ConfigAdapter

User can configure adapters in the Adapter
Configuration dialog box.

ConfigApp

User can modify the settings on the Preferenceg
of the Station Options dialog box, except for the
Prompt to Find Files option.

ConfigReport

User can modify the settings in the Report Optiqg
dialog box.

] ConfigDatabase

User can modify the settings in the Database
Options dialog box.

EditUsers

alog

tab

User can add and modify users in the User Manager
Window and the options on the User Manager tab of

the Station Options dialog box.

Notice that each privilege group has a Boolean value. When the Boolean
value for a privilege group i&ue , it overrides the values of each privilege

in the group. When the Boolean value for a grougaise , the value of
each privilege in the group applies.

Adding New Properties and Privileges to the User Data Type

You can add new subproperties to theer data type. For example, you
might want to add an ID string property for each user, or you might want to
add aConfigHardware =~ Boolean property in the

TestStand User Manual

11-10 © National Instruments Corporation

Chapter 11 User Management

User.Privilege.Configure group to specify whether a user has the
privilege to configure special hardware on the station.

You can use the Custom Data Types tab to define your own data types,
which you can then add to thiser standard data type. Refer to theing
Data Typesection in Chapter 9ypesfor more information on data types
and editing data types.

Verifying User Privileges

This section discusses how you can verify that a user has a specific
privilege.

Accessing Privilege Settings for the Current User

If you want to verify in an expression that the current user has a specific
privilege, you can call th€urrentUserHasPrivilege expression
function. If you want to verify it in a code module, you can call the
CurrentUserHasPrivilege method of the Engine class in the
TestStand ActiveX API.

When you call th€urrentUserHasPrivilege expression function, you
must specify the property name of the privilege as a string argument. The
current user has a privilege if the propertyrge or if any parent Boolean
property isTrue . For example, a user has the privilege to terminate an
execution if either the value of the

User.Privileges.Configure.Terminate property isTrue or the
value of theUser.Privileges.Configure group isTrue . The
CurrentUserHasPrivilege function returngrue if the current user

has the privilege or privilege checking is disabled.

You can pass any subset of the property name tree structure to the
CurrentUserHasPrivilege function. For example, you can use either

of the following two expressions to determine whether the current user has
the privilege to terminate an execution.

CurrentUserHasPrivilege("Terminate")
CurrentUserHasPrivilege("Configure.Terminate")

You can pas$" as the string argument@urrentUserHasPrivilege

to determine if a user is currently logged in. Refer to Chaptee&uence
Context and Expressionfor more information on using expressions.

© National Instruments Corporation 11-11 TestStand User Manual

Chapter 11 User Management

The CurrentUserHasPrivilege method behaves identically to the
expression function, except that it takes additional parameters. Refer to the
TestStand ActiveX API Referermdine help for more information.

Accessing Privilege Settings for Any User

The TestStand ActiveX API has methods you can use to access the
privileges of any user. You can use tetUser method of thé&ngine
class to return Biser object. You can then use tHasPrivilege

method in theuser class to inspect the value of a specific privilege.
TheHasPriviege method behaves identically to the
CurrentUserHasPrivilege expression function. Refer to thestStand
ActiveX API Referenaanline help for more information.

TestStand User Manual 11-12 © National Instruments Corporation

Module Adapters

This chapter describes the module adapters that TestStand includes.

Overview

The TestStand engine uses a module adapter to invoke the code in a step
module. Each module adapter supports one or more specific types of code
modules. The different types of code modules include TestStand
sequences, LabVIEW ViIs, ActiveX Automation Objects, C functions in
DLLs, and C functions in source, object, or library modules that you create
in LabWindows/CVI or other compilers. A module adapter knows how to
load and call a code module, how to pass parameters to a code module,
and how to return values and status from a code module.

When you edit a step that uses a module adapter, TestStand relies on the
adapter to display a dialog box in which you can specify the code module
for the step along with any parameters to pass when invoking the code
module. This dialog box is called the Specify Module dialog box. The
actual title of the dialog box is different for the different adapters. TestStand
stores the name and location of the code module, the parameter list, and any
additional options as properties of the step. TestStand hides most of these
adapter-specific step properties.

You can display the Specify Module dialog box for a step that calls a
code module by selecting tiSpecify Modulecommand from the

step context menu or clicking on tB@ecify Module button in the Step
Properties dialog box.

If the module adapter is specific to an ADE, the adapter knows how to open
the ADE, how to create source code for a new code module in the ADE, and
how to display the source for an existing code module in the ADE. If source
code is available for the code module, the adapter also supports stepping
into the code in the ADE when you execute the step from the TestStand
sequence editor.

© MNational Instruments Corporation 12-1 TestStand User Manual

Chapter 12 Module Adapters

TestStand currently provides the following module adapters:

DLL Flexible Prototype Adapter—Allows you to call C functions in
a DLL with a variety of parameter types.

LabVIEW Standard Prototype Adapter—Allows you to call any
LabVIEW VI that has the TestStand standard G parameter list.

C/CVI Standard Prototype Adapter—Allows you to call any C

function that has the TestStand standard C parameter list. The function
can be in an object file, library file, or DLL. It also can be in a source
file when you are using the LabWindows/CVI development
environment and the source file is in the LabWindows/CVI project.

Sequence Adapter—Allows you to call subsequences with
parameters.

ActiveX Automation Adapter—Allows you to call methods and
access the properties of an ActiveX object.

Configuring Adapters

TestStand User Manual

Some of the module adapters are configurable. You can configure a module
adapter by selecting tihelapters command in th€onfigure menu on the
TestStand main menu.

Figure 12-1 shows the Adapter Configuration dialog box.

Adapter Configuration E
Selected Adapter: |f§$ DLL Flexible Prototype Adapter j

— Configurable Adapters

Autornation Adapter Configure... |
C/CW Standard Prototype Adapter

DLL Flexible Prototype Adapter
Lab\WIEW Standard Prototype &dapter

Figure 12-1. Adapter Configuration Dialog Box

12-2 © National Instruments Corporation

Chapter 12 Module Adapters

The Selected Adapter ring control specifies the module adapter that a new
step you create uses. The selected adapter applies only to step types that can
use any module adapter, such as the Action, Numeric Limit Test, String
Limit Test, and Pass/Fail Test step types. Refer to the discussion on the
Insert Stepcommand in th&tep Group Context Mersgction of

Chapter 5Sequence Filegor more information on how TestStand uses the
selected adapter when you insert a step.

To configure an adapter, select an adapter from the Configurable Adapters
list and click on th€€onfigure button. TheConfigure button displays an
adapter-specific dialog box for configuring the adapter. Refer to the
adapter-specific sections in this chapter for information on the specific
configuration options for each adapter.

Source Code Templates

With some module adapters, you can use a source code template to generate
the source code shell for a step module. The template files are different for
each step type and each module adapter. Multiple source code templates
can be available for a particular adapter/step type combination. Currently,
only the LabVIEW, the DLL Flexible Prototype, and the C/CVI Standard
Prototype Adapters support source code templates.

For each module adapter that supports source code templates, the Specify
Module dialog box displays a command button for creating source code for
the step from a template. If more than one template is available for the
adapter/step type combination you use to create the step, the adapter
prompts you to select from a list of the templates as shown in Figure 12-2.

© MNational Instruments Corporation 12-3 TestStand User Manual

Chapter 12

Module Adapters

If only one template is available, the adapter uses that template
automatically.

Yalve preszure limit template
Terminal woltage limit tenplate

There iz mare than ohe code template configured for thiz step type. You must choose which code
template to use to generate code for thiz step.

Choose Code Template
Description | I arme | ak.
TestStand default termplate Default_Template

Pressurelimit_T emplate Cancel

WaoltageLimit_T emplate

Figure 12-2. Choose Code Template Dialog Box

TestStand ships with default templates for each of the built-in step types.
You can create additional templates for built-in step types. When you create
a new step type, you can create one or more source code templates for it.
Refer to theJsing Step Typesection in Chapter 9,ypes for more
information on creating source templates for step types.

DLL Flexible Prototype Adapter

The DLL Flexible Prototype Adapter allows you to call C functions in a
DLL with a variety of parameter types. You can create the DLL code
module with LabWindows/CVI or any other ADE that creates a C DLL.

Configuring the DLL Adapter

TestStand User Manual

The DLL Adapter Configuration dialog box contain a single option,
Show Function Parameters in Function Description. When enabled, the
description for a step lists the function and its parameters. When disabled,

the description lists the function and the DLL name.

12-4 © National Instruments Corporation

Chapter 12 Module Adapters

Specifying a DLL Adapter Module

The Specify Module dialog box for the DLL Flexible Prototype Adapter

is called the Edit DLL Call dialog box. The Edit DLL Call dialog box
contains a Module tab and a Source Code tab. The Module tab specifies
the code module that the adapter executes for the step and parameter
information for the module. The Source Code tab contains additional
information that TestStand requires if you want to create and edit a code
module in another application program.

Module Tab

Figure 12-3 shows the Module tab of the Edit DLL Call dialog box.

Edit DLL Call E

Module | Source Eodel

DLL Pathnarme: dlifuncs.dil Browsze. .. |
Z: AT estStand'E xamplzz\Benchmarkzhdlfuncs. dll

Function; IStartBeep j 7 | Reload Protatype |

Calling Caonventian: IStandard Call [ztdcall] j

— Parameter: 4|tone j

Hew... |
Cat j N i hd |
ateqory I umeric J Delete.

Data Type: ISlgned 32-bit Inkeger j Move Up |
Paszz IF‘-:-inter ta Yalue j Mave DEwn |
Walue: Ianals. Frequency Browsze. .. |
Fesult Action: IND Action j [~ SetEmor.Code to Yalue

Function Call I Function Pratatype |
StartBeepltLocals. Frequency]:

K11

ak. I Cancel

Figure 12-3. Specify Module Dialog Box for DLL Flexible Prototype
Adapter—Module Tab

© MNational Instruments Corporation 12-5 TestStand User Manual

Chapter 12

Module Adapters

TestStand User Manual

DLL Pathname—Specifies the DLL file that contains the function the
step calls. You can specify an absolute or relative pathname for the
DLL file. Relative pathnames are relative to the TestStand search
directory paths.

You can customize the TestStand search directory paths with the
Search Directoriescommand in th€onfigure menu of the sequence
editor menu bar.

Function—Selects the function in the DLL that the step calls. If the
DLL file contains a type library, the adapter automatically populates
the function ring with all the function names in the type library.
Otherwise, the adapter reads the DLL file and finds the names of all
functions that the DLL exports. If a DLL type library contains links to
a help file for a function, you can click on tAdutton to display the
help.

Calling Convention—Use this control to specify the calling
convention of the function.

Parameter—Use this section of the dialog box to specify the data type
of the return value and of each parameter.

For each parameter you also specify the value or expression to pass. If
a DLL file contains a type library, the adapter queries the type library
for the parameter list information and displays it in the parameter
section automatically when you select a new function in the Function
ring control. At any time, you can request the adapter to query the type
library for the currently selected function by clicking on Redoad
Prototype button. If the DLL does not have type library information,
you can enter parameter information manually.

The Parameter ring control lists a symbolic name for each parameter
and a special entry for the return value. When you select a parameter
in the ring control, the type of controls in the Parameter section change.
You can insert and remove parameters by clicking oiN#gweand
Deletebuttons. To rearrange the parameter order, select the parameter
you want to move and select thve Up or Move Down button.

Category—Use this control to specify a group of data types to list in
the DataType control. The categories include Numeric, String, Array,
and Object. The Data Type control specifies the data type of the
function parameter.

12-6 © National Instruments Corporation

Chapter 12 Module Adapters

Numeric Parameters

Table 12-1 shows the Numeric category data types.

Table 12-1. TestStand Numeric Data Types

Numeric Data Type Setting Equivalent C Data Type

Unsigned 8-bit Integer unsigned char

Signed 16-bit Integer short

Unsigned 16-bit Integer unsigned short

Signed 32-bit Integer long

Unsigned 32-bit Integer unsigned long

32-bit Real Number float

64-bit Real Number double

When you select the Numeric category for a parameter, the adapter displays
the Pass control. This control specifies whether TestStand passes the value
of the argument you specify in the Value control, or passes a pointer to the
argument.

If you choose to pass a pointer, the argument you specify in the Value
control must be the name of a station global variable, sequence file global
variable, sequence parameter, sequence local variable, or step property.
When you select the Numeric category for the return value, you can leave
the Value control empty or specify the name of a station global variable,
sequence file global variable, sequence parameter, sequence local variable,
or step property.

The adapter displays the Result Action ring control and the Set

Error.Code to Value checkbox for return values and parameters you pass
by pointer. Depending on the settings of these controls, TestStand can set
theError.Occurred andError.Code properties of the step

automatically based on the value in the numeric argument when the
function returns.

You can use the Result Action control to configure TestStand to set the
Error.Occurred property toTrue when the return value or parameter
value after the call is greater than zero, less than zero, equal to zero, or not
equal to zero. You can use the Bebr.Code to Value checkbox to

request TestStand to assign the output value of the argument to the
Error.Code property.

© MNational Instruments Corporation 12-7 TestStand User Manual

Chapter 12

Module Adapters

TestStand User Manual

String Parameters

In general, when using string parameters, use one of the buffer types if you
want the DLL function to be able to change the contents of the argument in
TestStand. Use the C String or Unicode String type if the DLL function
does not modify the argument.

Table 12-2 shows the String category data types.

Table 12-2. TestStand String Data Types

String Data
Type Setting Equivalent C Data Type
C String const char *
C String Buffer charf]
Unicode String const wchar_t* or const unsigned
short *
Unicode String Buffer | wchar_t[] or unsigned shortf]

You can pass a string literal, a TestStand string property, or an expression
that evaluates to a string as the value of a string parameter.

If you specify one of the string buffer types, the adapter copies the contents
of the string argument and a trailing zero element into a temporary buffer
before calling the DLL function. You specify the minimum size of the
temporary buffer in the Number of Elements control. If the string value is
longer than the buffer size you specify, the adapter sizes the temporary
buffer so that it is large enough to hold contents of the string argument and
the trailing zero element. After the DLL function returns, TestStand resets
the value of the string argument from the contents of the temporary buffer.

If you specify the C String or Unicode String type, the adapter passes the
address of the actual string directly to the function without copying it to a
buffer. The code module must not change the contents of the string.

12-8 © National Instruments Corporation

Chapter 12 Module Adapters

Array Parameters

The Array category contains the same data types as the numeric category.
You can specify an array that contains elements of any numeric type.
TestStand reformats the contents of the numeric array argument into a
temporary array containing elements that have the data type you select.

You use the Number of Elements control to specify the number of elements
in the temporary array. If the array argument has fewer elements than the
temporary array, the adapter fills out the remaining elements in the
temporary array with zeroes. If the array argument has more elements than
the temporary array, TestStand reformats as many elements as can fit into
the temporary array.

If you want the number of elements in the temporary array to always match
the number of elements in the array argument, specify a negative value in
the Number of Elements control. This is equivalent to the following
expression:

GetNumElements (arrayArgument)

If you specify a zero value in the Number of Elements control, TestStand
passes the address of a temporary array with no elements to the DLL
function.

When the DLL function returns, TestStand reformats the contents of the
temporary array into the array argument. If the array argument has fewer
elements than the temporary array, TestStand reformats as many elements
as can fit into the array argument. If the array argument has more elements
than the temporary array, TestStand reformats all the elements of the
temporary array into the array argument and leaves the remaining elements
of the array argument alone.

Object Parameters

The Object category includes the ActiveX AutomatiDispatch

Pointer, ActiveX AutomatiomUnknown Pointer, and LabWindows/CVI
ActiveX Automation Handle data types. You can use these types to pass a
reference to a built-in or custom TestStand object to the DLL function, or
pass the value of an ActiveX reference property to the DLL function.

If you specify an ActiveX reference property as the value of an object
parameter, TestStand passes the value of the property. Otherwise, TestStand
passes a reference for the property object. The DLL function can use the
property object reference in conjunction with the TestStand ActiveX API to
get and set the values of properties in the object, to add properties to the

© MNational Instruments Corporation 12-9 TestStand User Manual

Chapter 12 Module Adapters

object, and so on. Refer to thestStand ActiveX API Overviéwthe
TestStand ActiveX ABhline help for more information on using object
references in code modules.

Source Code Tab
Figure 12-4 shows the Source Code tab of the Edit DLL Call dialog box.

Edit DLL Call

Module Source Code |

To enable you to edit the source code for this step from the Sequence Editar, TestStand needs the fallowing
information. [F pou do not want to edit the source code from the Sequence Editar, you can leave this entry emphy.

Pathname of Source File Containing Function:

IZ:\TestStand\Examples\Eenchmalks\dllfuncs.d Browsze... |

IZ:‘\TestStand'\EHamples'\Eenchmarks\dllfuncs.c

Create Code... Edit Code... | Werify Protatype. . |

TestStand User Manual

Figure 12-4. Specify Module Dialog Box for DLL Flexible Prototype Adapter—
Source Code Tab

You can use the Source Code tab to generate the source code for the DLL
function, to edit the source code, or to resolve differences between the
parameter list in the source code and the parameter information in the
Module tab. You do not have to use the Source code tab for TestStand to
call the step code module.

Enter the pathname of the source file in the Pathname of Source File
Containing Function control. If you want to create a new source file, you
must enter an absolute pathname. If you are using an existing source file,
you can enter an absolute or relative pathname. Relative pathnames are
relative to the TestStand search directory paths. You can customize the
TestStand search directory paths withSkearch Directoriescommand in

the Configure menu of the sequence editor menu bar.

To create the source code shell for the function, click o€thate Code
button. If the file does not already exist, the adapter creates it. If the file
already exists, the adapter appends the function to the end of the file. If the
function already exists in the file, a dialog box appears that gives you the
choice of replacing the current function or adding the new function shell
above the current function.

12-10 © National Instruments Corporation

Chapter 12 Module Adapters

If template source code exists for the step type you are using for the step,
the adapter uses the parameter list in the template source code in the new
function shell. It also uses the template parameter list to fill in the parameter
information on the Module tab. If the Module tab already contains
parameter information that disagrees with the parameter list in the
template, the adapter displays a dialog box in which you can resolve the
conflict.

If the step type has no template or uses the default template, which has an
empty parameter list, the adapter uses the parameter information on the
Module tab to fill in the parameter list for the new function shell.

After the adapter creates the code, it starts the application that is currently
registered on your system for the type of the file, such aand displays
the file in the application.

If you already have the source code for the function and you want to edit it,
click on theEdit Code button.

If the parameter list of the function in the source code does not agree with
the parameter information on the module tab, the adapter displays a dialog
box in which you can resolve the conflict. You can check for any conflicts
between the source code and the parameter information on the Module tab
by clicking on theVerify Prototype button.

When the adapter parses the parameter list in the source code, it has to
interpret the parameter declarations. The return value and each parameter
must have one of the numeric, array, or object types discussed earlier in this
section. Some C parameter declarations can be ambiguous. For instance,
char * andchar [| can each represent either a null-terminated string or a
fixed-size character array.

© National Instruments Corporation 12-11 TestStand User Manual

Chapter 12 Module Adapters

Debugging DLLs

TestStand User Manual

Table 12-3 indicates how the adapter interprets ambiguous declarations.

Table 12-3. Adapter Interpretation of Ambiguous Declarations

C Data Type in

Parameter Declaration Parameter Information
in Source Code in Module Tab
char * Type: C String
char [] Type: C String Buffer. Number of
Elements: -1
char [nnn], wherennn Type: C String Buffer. Number of
is a numeric literal Elementsnnn.
wchar_t * Type: Unicode String
wchar_t] Type: Unicode String Buffer. Number of

Elements: -1

wchar_t [nnn], where Type: Unicode String Buffer. Number of]
nnn is a numeric literal Elementsnnn.

int * Type: Signed 32-bit integer.
Pass: Pointer to value.

int] Type: Array. Data Type: Signed 32-bit
integer.

Number of Elements: -1

int [nnn], wherennn Type: Array. Data Type: Signed 32-bit
is a numeric literal integer.

Number of Elementsinn

The adapter handles the other numeric types in the same way it handles the
signed 32-bit integers.

You can debug a DLL that you call using the DLL Flexible Prototype
Adapter if you create the DLL for debugging in LabWindows/CVI or
another ADE. To do so, you must launch the sequence editor or run-time
operator interface from LabWindows/CVI or the other ADE. In
LabWindows/CVI, you use thgelect External Processommand in the

Run menu of the Project window to specify the executable for the sequence

12-12 © National Instruments Corporation

Chapter 12 Module Adapters

editor or run-time operator interface. You then ugRiin command to
start the executable.

If you select theStep Into command iriTestStand wheaxecution is
currently suspended on a step that calls into &\liaows/CVI DLL you
are dbugging, Lamindows/CVI breaks at théirst statement in the DLL
function.

To step out of a Laiindows/CVI DLL function that you are teigging,
select the LaW/indows/CVI Finish Function commandYou also can step
out of the functiorby selecting the Lalyindows/CVI Step Into or Step
Over command on the laskecutable statement of the function. After you
step out of the DLL functioestStand suspendsecution on the ext step

in the sequence. If you select thentinue command in Laindows/CVI,
TestStand does not suspesxeécution when the function call returns.

Refer to the LaW/indows/CVI product manuals for more information on
debugging DLLs in arexternal process.

Using MFC in a DLL

Microsoft Foundation Class Library (MF@)Jaces several requirements on
DLLs that use the DLL version of the MFC run-time library. If you call
functions in a DLL that use the DLL version of the MFC run-time library,
make sure that the DLL meets these requirements. Also, if the DLL uses
resources such as dialog boxes, make sure that each function you call has
the AFX_MANAGE_STATHacro at the beginning of its function body.

Refer to your MFC documentation for more information.

LabVIEW Standard Prototype Adapter

The LabVIEW Standard Prototype Adapter allows you to call any
LabVIEW VI that has the specific structure the adapter requires. The
LabVIEW Standard Prototype Adapter runs VI code modules using a
LabVIEW ActiveX server. The server can be the LabVIEW development
environment or a LabVIEW-built application that has the LabVIEW
ActiveX server enabled.

LabVIEW Standard Prototype Adapter Module Structure

Code modules for the LabVIEW Standard Prototype Adapter are VIs that
contain a specific set of controls and indicators that you assign to a
connector pane terminal. The controls and indicators must have names and
data types that match the LabVIEW Standard Prototype Adapter parameter

© MNational Instruments Corporation 12-13 TestStand User Manual

Chapter 12

Module Adapters

TestStand User Manual

list. TestStand does not require a particular connector pane pattern or that
the controls and indicators be assigned to specific terminals. It only
requires that you assign them to some terminal in the connector pane of
the VI.

You usually create new VIs from the Specify Module dialog box for a step
that uses the LabVIEW Standard Prototype Adapter. In this case, TestStand
creates the required controls and automatically assigns them to connector
pane terminals for you.

Before calling a VI, the adapter assigns values from TestStand to the
controls that you wire to the connector pane. After calling the VI, the
adapter copies values from the indicators to properties of the TestStand
step. The adapter copies each value into its corresponding property when
the property exists and the VI does not change the value of the property
directly through the TestStand ActiveX API.

A VI must contain &est Data cluster and asrror out cluster that is
wired to the connector pane. A VI also can contain optional controls,
which includelnput Buffer , Invocation Info , andSequence

Context . The following sections discuss each of the required and optional
VI controls.

Test Data Cluster

The LabVIEW Standard Prototype Adapter useStise Data cluster for
returning result data from the VI to TestStand. TestStand can use the data
to make a PASS/FAIL determination.

Figure 12-5 shows the Test Data cluster.

Test Data

PASS/FAIL Flag

MHumeric Meazurement

0.00
Sting Meazurement
|

Repart Text

I

Figure 12-5. Test Data Cluster

12-14 © National Instruments Corporation

Chapter 12 Module Adapters

Table 12-4 lists the elements of thest Data cluster, their types, and
descriptions of how the adapter uses them.

Table 12-4. Test Data Cluster Elements

Name Type Description
PASS/FAIL Flag The test VI sets this to indicate

whether the test passed. Valid
values ar@rue(PASS) or
False(FAIL) . The adapter
copies its value into the
Step.Result.PassFail

property if the property exists.

2S

Numeric |:| Numeric measurement that the
Measurement test Vlreturns. The adapter copig
this value into the
Step.Result.Numeric
property if the property exists.
String String value that the test functio
Measurement returns. The adapter copies the
string into the
Step.Result.String
property, if the property exists.
Report Text Output message to display in th

report. The adapter copies the
message value into the
Step.Result.ReportText
property, if the property exists.

D

The LabVIEW Standard Prototype Adapter also supports an older version
of theTest Data cluster from the LabVIEW Test Executive product. The
Test Data cluster in the LabVIEW Test Executive does not contain a
Report Text element. Instead, the cluster contains two string elements,
User Output andComment

© National Instruments Corporation

12-15

TestStand User Manual

Chapter 12 Module Adapters

Table 12-5 lists these elements of the okt Data cluster, their types,
and description of how the adapter uses them.

Table 12-5. 0ld Test Data Cluster Elements from LabVIEW Test Executive

Name Type Description

[¢)

Comment Output message to display in th
report. The adapter copies the
message value into the
Step.Result.ReportText

property if the property exists.

=

User Output String value that the test functio
returns. The adapter dynamicall
creates the step property
Step.Result.UserOutput ,

and copies the string value to the
step property.

<

Error Qut Cluster

TestStand uses the contents ofdéher out cluster to determine if a
run-time error has occurred and takes appropriate action if necessary.
When you create a VI, use the standard LabVI&kr out cluster as
shown in Figure 12-6.

erar aut

shatusz code
40

s0Urce

N

Figure 12-6. Error Out Cluster

TestStand User Manual 12-16 © National Instruments Corporation

Chapter 12 Module Adapters

Table 12-6 lists the elements of #veor out cluster, their types, and
descriptions of how the adapter uses them.

Table 12-6. Error Out Cluster Elements

Name Type Description
status The test VI must set this ®ue if

an error occurs. The adapter copies
the output value into the
Step.Result.Error.Occurred
property, if the property exists.

code The test VI can set this to a non-zero
value if an error occurs.

source The test VI can set this to a
descriptive string if an error occurs.

Input Buffer

You can use thimput buffer string control to pass input data directly to
the VI. The LabVIEW Standard Prototype Adapter automatically copies
the contents of theétep.InBuf ~ property to theénput buffer control if
the property exists.

Invocation Information

You can use thewocation Information cluster control to pass
additional information to the VI. Figure 12-7 shows binecation
Information control.

Irreocation info
Test Mame loop #
[| f—
Sequence Path
% |
JUT Infa LuT #
F{—

Figure 12-7. Invocation Information Cluster

© National Instruments Corporation 12-17 TestStand User Manual

Chapter 12 Module Adapters

Table 12-7 lists the elements of tineocation Information cluster,
their types, and descriptions of how the adapter assigns a value to each
cluster element.

Table 12-7. Error Out Cluster Elements

Name Type Description

Test Name Contains the name of the step that
invokes the VI.

loop # Contains the loop count if the step
that invokes the VI is looping on
the step.

Sequence Path Contains the name and absolute
path of the sequence file that is
running the VI.

UUTInfo Contains the value of the
RunState.Root.Locals.
UUT.SerialNumber property, if
the property exists.

UuT# Contains the value of the

RunState.Root.Locals.
UUT.UUTLoopIndex property, if
the property exists.

Sequence Context

You can use th8equence Context control to obtain a reference to the
TestStand sequence context object. You can use the sequence context to
access all the objects, variables, and properties in the execution.

Figure 12-8 shows th&equence Context control. Refer to th&estStand
ActiveX API Referenaenline help for more information on using the
sequence context from a VI.

Sequence Context
=

Figure 12-8. Sequence Context Gontrol

TestStand User Manual 12-18 © National Instruments Corporation

Chapter 12 Module Adapters

Configuring the LabVIEW Standard Prototype Adapter
Figure 12-9 shows the LabVIEW Adapter Configuration dialog box.

Lab¥IEW Adapter Configuration E

— Select Which Lab/IEW Auctivel Server to Use
[LabIEW R

~ UUT Information Source for Invocation Info Parameter

Exprezsion for UUT Iteration Number:

IF'n:upe[tyEHists["HunState.Hnot. Localz. JUT.UUT Looplindex] ¥ RunState. Root. Locals. Browse. . |

Exprezsion for UUT Serial Number String:
IF'rnpert_l,JE:-:ists["HunState.Hnot.Locals.UUT.SEliaINumber"] 7 RurState Root. Localz.U Browsze... |

Caticel |

Figure 12-9. LabVIEW Adapter Configuration Dialog Box

The LabVIEW Standard Prototype Adapter runs VIs using a LabVIEW
ActiveX server. The server can be the LabVIEW development environment
or a LabVIEW-built application that includes the LabVIEW ActiveX
server. You specify which server the adapter uses in the Select Which
LabVIEW ActiveX Server to Use ring control.

TestStand installs a prebuilt executable with source files for a LabVIEW
run-time server in th€estStand\Components\NI\RuntimeServers\

LabVIEW directory tree. TestStand registers this ActiveX server under the
TestStandLVRTS ProgID. Refer to th€ustomizing and Distributing a
LabVIEW Run-Time Servsection in Chapter 1®istributing TestStand

for more information.

The UUT Information Source section contains two controls. The
Expression for UUT Iteration Number control specifies the expression that
the adapter evaluates at run-time to generate a value to pass/torthe
element of thénvocation Information cluster. The Expression for

UUT Serial Number String control specifies the expression that the adapter
evaluates at run-time to generate a value to pass tdfhafo element

of thelnvocation Information cluster.

© National Instruments Corporation 12-19 TestStand User Manual

Chapter 12 Module Adapters

Specifying a LabVIEW Standard Prototype Adapter Module

TestStand User Manual

The Specify Module dialog box for the LabVIEW Standard Prototype
Adapter is called the Edit LabVIEW VI Call dialog box. Figure 12-10
shows the Edit LabVIEW VI Call dialog box.

Edit Lab¥IEW VI Call E

Wl Module Pathname:
IZ: T estStand\EnampleshBenchmark shtest3 v

IZ: 4T estStand\ExampleshBenchmarkshtest3 v

— Optional Parameters
[mut Burfer [Sequence Context Active Pointer

™ Invocation Info

™ Show Yl Front Panel when Called

— Editing

Create Vi, Editvl... |

ak. Cancel |

Figure 12-10. Specify Module Dialog Box for LabVIEW Standard Prototype Adapter

The VI Module Pathname control specifies the path and name of the VI that
the step calls. If you want the step to call a VI in a LabVIBW file, you

cannot browse into #b file. Instead, you must select thie file and
manually append the name of the VI to the pathname, for example,
C:\MyVIs\MyTest.lIb\MyTestVl.vi . You can specify an absolute or
relative pathname for the file. Relative pathnames are relative to the
TestStand search directory paths. You can customize the TestStand search
directory paths with th€onfigure»Search Directoriescommand in the
sequence editor menu bar.

The Optional Parameters section contains a checkbox for each of the
optional parameters that you can wire to the connector pane of the VI. The
checkbox controls are Input Buffer, Invocation Info, and Sequence Context
ActiveX Pointer. The Input Buffer control is dim if tisgep.InBuf

property does not exist for the step you are editing. For example, the Input
Buffer control is dim for an Action step.

Normally, when the adapter executes a step that calls a LabVIEW VI, the
adapter does not activate the front panel of the VI. If you want the adapter

12-20 © National Instruments Corporation

Chapter 12 Module Adapters

to activate the front panel of the VI, enable the Show VI Front Panel When
Called control. The adapter returns the state of the front panel to its original
visibility state after the VI finishes executing.

To create a code shell for the VI, click on @reate Codebutton. If the VI

file that you specify does not already exist, the adapter creates it. If the file
already exists, the adapter prompts you to replace the file. If a VI code
template file exists for the step type you are using for the step, the adapter
uses the template to create the new VI.

If the VI already exists and you want to edit it, click on Eukit Code
button.

Debugging a LabVIEW Standard Prototype Adapter Module

To debug a VI while executing the VI from TestStand, you must configure
the adapter to use the LabVIEW development environment as the
LabVIEW server. There are two ways you can suspend the execution of a
VI in LabVIEW.
[m] « Before executing the VI, you can load the VI into LabVIEW and place
it in a pause state by clicking on tRauseicon button.

* You can select th8tep Into command in TestStand when execution is
currently suspended on a step that calls into a LabVIEW VI.

© National Instruments Corporation 12-21 TestStand User Manual

Chapter 12 Module Adapters

= @] B

TestStand User Manual

When LabVIEW suspends a VI, LabVIEW displays the front panel for the
VI as shown in Figure 12-11.

s temp_vi

File Edit Dperate Project Windows Help E
»[=][@[n] |

Test Data e out d

shatus code

PASS/FAIL Flag F —
FAlL s0Urce

s

Mumeric Measurement

0.00 |
String Meazurement
=

Report Text

I

Sequence Context

=+ JLE " ariant

B I o

Figure 12-11. Stepping into a LabVIEW VI

A suspended front panel has four main icon buttons:

* Run

¢ Return to Caller
e Abort Execution
 Pause

From a suspended front panel, you can run the VI multiple times before
returning to the calling TestStand step. You can debug the VI by opening
the VI diagram and using the standard LabVIEW debug tools. After you are
done debugging the VI, you must click on feturn to Caller button to

return to the calling step and suspend the execution on the next step. If you
click on theAbort Execution button, the adapter returns a run-time error

to the calling step. When you abort the VI execution, the adapter sets the
step propertystep.Result.Error.Occurred to True . It also sets the
Step.Result.Error.Code andStep.Result.Error.Msg properties

equal to the ActiveX Automation error that the LabVIEW server returns.

12-22 © National Instruments Corporation

Chapter 12 Module Adapters

C/CVI Standard Prototype Adapter

The C/CVI Standard Prototype Adapter allows you to call any C function
that has the TestStand standard C parameter list. The function can be in an
object file, library file, or DLL. It also can be in a source file that is in the
project that you are currently using in the LabWindows/CVI development
environment.

C/CVI Standard Adapter Module Prototypes

The C/CVI Standard Prototype Adapter supports two prototypes, a
standard and extended prototype. TestStand provides the extended
prototype for backward compatibility with the LabWindows/CVI Test
Executive Version 2.0 and earlier. The extended prototype has an
additional string parameter. National Instruments recommends that you use
the standard prototype unless you have a good reason not to do so.

The standard prototype is

void TX_TEST StandardFunc(tTestData *data,
tTestError *error)

The extended prototype is

int TX_TEST ExtendedFunc(char *params, tTestData *data,
tTestError *error)

These prototypes contain two structure parameters, which the adapter uses
to pass values into and out of the code module. Table 12-8 lists the fields in
thetTestData structure.

Table 12-8. tTestData Structure Member Fields

Field Name

In/
Data Type Out Description

result

int Out | Set by test function to indicates whether the
test passed. Valid values @aSSor FAIL .
The adapter copies its value into the
Step.Result.PassFail property if the
property exists.

measurement

double Out | Numeric measurement that the test functipn
returns. The adapter copies this value into
theStep.Result.Numeric property if the
property exists.

© National Instruments Corporation 12-23 TestStand User Manual

Chapter 12 Module Adapters

Table 12-8. tTestData Structure Member Fields (Continued)

Field Name

Data Type

In/
Out

Description

inBuffer

char *

In

For passing a string parameter to a test
function. The adapter copies the
Step.InBuf property value into this field if
the property exists.

outBuffer

char *

Out

Output message to display in the report. T|
adapter copies the message value into th
Step.Result.ReportText property, if
the property exists.

O =
0]

modPath

char * const

Directory path of module that contains the

test function. The adapter sets this value
before executing the code module.

modFile

char * const

Filename of module that contains the test

function. The adapter sets this value befare

executing the code module.

hook

void *

Reserved (no longer used).

hookSize

int

Reserved (no longer used).

mallocFuncPtr

tMallocPtr
const

Contains a function pointer toalloc ,

which a code module must use to allocate
memory for any buffer that it assigns to the

inBuffer , outBuffer , and

errorMessage fields.

freeFuncPtr

tFreePtr

Contains a function pointer fie@e , which a
code module must use to free any bufferg
that theinBuffer , outBuffer , and
errorMessage fields point to.

seqContextDisp

struct
Idispatch *

Dispatch pointer to the sequence context
NULL if you choose not to pass the
sequence context.

seqContextCVI

CAObjHandle

LabWindows/CVI ActiveX Automation
handle for the sequence contexif you
choose not to pass the sequence context

TestStand User Manual

12-24

© National Instruments Corporation

Chapter 12 Module Adapters

Table 12-8. tTestData Structure Member Fields (Continued)

Field Name

Data Type

In/
Out

Description

stringMeasurement

char *

Out

String value that the test function returns.
The adapter copies the string into the
Step.Result.String property, if the
property exists.

replaceStringFunc
Ptr

tReplaceStri
ngPtr const

Contains a function pointer to
ReplaceString , which a code module can
use to reassign a value to thBuffer
outBuffer , anderrorMessage fields.
TheReplaceString prototype is as
follows:
int ReplaceString(
char **destString,
char *srcString)

The function return value is non-zero if
successful.

structVersion

int

Structure version number. A test module can

use this to detect new versions of the
structure.

Note You can use the sequence context to access all the objects, variables, and
properties in the execution. Refer to tiestStand ActiveX AP| Refererardine
help for more information on using the sequence context from a C/CVI code
module.

© National Instruments Corporation

12-25

TestStand User Manual

Chapter 12 Module Adapters

Table 12-9 lists the fields in th&estError structure.

Table 12-9. tTestError Structure Member Fields

In/
Field Name Data Type Out Description
errorFlag Boolean (int) Out | The test function must set thisTaue if an
error occurs. The adapter copies the outgut
value into the
Step.Result.Error.Occurred property
if the property exists.
errorLocation tErrLoc (int) Out | Reserved (No longer used).
errorCode int Out | The test function can set this to a non-zero
value if an error occurs.
errorMessage char * Out | The test function can set this to a descript|ve
string if an error occurs.
Before calling a code module, the adapter assigns values from TestStand to
input fields of theTestData structure.
After calling the code module, the adapter copies the values of the output
fields of the structures to properties of the step. The adapter copies a value
into a property when the property exists and the code module does not
change the value of the property directly through the TestStand ActiveX
API. In some cases, the adapter translates the value of a structure field to a
different value in the corresponding property.
TestStand User Manual 12-26 © National Instruments Corporation

Chapter 12

Module Adapters

Table 12-10 lists all the properties that the adapter updates and the value
translation, if any, that it makes.

Table 12-10. Step Properties Updated by G/CVI Standard Prototype Adapter

Valid Values that Step.Result Step Property

Structure Member Tests Can Return Property Value
result PASSor FAIL PassFail True /False
outBuffer string value ReportText string value
measurement floating-point Numeric numeric value

value

stringMeasurement string value String string value
errorFlag True orFalse Error.Occurred True /False
errorCode integer value Error.Code numeric value
errorMessage string value Error.Msg string value

Example C/CVI Standard Prototype Code Module

/I Simple test example
#include "stdtst.h"

tTestData

When you create a code module for the C/CVI Standard Prototype Adapter,
you must add theTestStand>\Bin\stdtst.h
source file. Thetdtst.h
andtTestError

header file to your
file includes the type definitions for the

structures. The following is an example

void __stdcall __declspec(dllexport) FunctionName (tTestData *testData,

tTestError *testError)

{

int error = 0;

/Il REPLACE THE FOLLOWING WITH YOUR SPECIFIC TEST CODE

/I double measurement = 5.0;
/I char *lastUserName = NULL;

/l testData->measurement = measurement;

© National Instruments Corporation

12-27

code module that uses the C/CVI standard prototype.

TestStand User Manual

Chapter 12 Module Adapters

/I The following code shows how to accesses the step properties via

/l the ActiveX Automation API

I if ((error = TS_PropertyGetValString(testData->seqContextCVI, NULL,
I "StationGlobals.TE.LastUserName", 0, lastUserName)) < 0)

I goto Error;

Error:
/| FREE RESOURCES
/I if (lastUserName !'= NULL)
i CA_FreeMemory(lastUserName);

/I If an error occurred, set the error flag to cause a run-time error
I/l in TestStand.
if (error < 0)

{

testError->errorFlag = TRUE;

/I OPTIONALLY SET THE ERROR CODE AND STRING

/I testError->errorCode = error;

/I testData->replaceStringFuncPtr(&testError->errorMessage,
Il "A run-time error occurred.");

}

return;

Specifying a C/CVI Standard Prototype Adapter Module

The Specify Module dialog box for the C/CVI Standard Prototype Adapter

is called the Edit C/CVI Module Call dialog box. The Edit C/CVI Module

Call dialog box contains a Module tab and a Source Code tab. The Module
tab specifies the code module that the adapter executes for the step, and the
Source Code tab contains additional information that TestStand requires if
you want to create and edit a code module in LabWindows/CVI.

TestStand User Manual 12-28 © National Instruments Corporation

Chapter 12 Module Adapters

Figure 12-12 shows the Module tab on the Edit C/CVI Module Call
dialog box.

Module | Source Codel

Module Type: [Dbject File [%obj), Source File [%.c). Dynamic Link Libramy [=.dl), or Static Libramy (=]

Edit C/CY] Module Call E

| Dynamic Link Library [*.di] 4|

Module Pathnarne:

Idllfuncs. di

Browse... |

IZ: tzaZsEmamplesiBenchmarkzh\dllfuncs. dll

Function Mame:

IDurationBeep j
[Pass Sequence Context

% Standard Prototype Paramns strifg:
~ Extended Prototype

T Cancel

Figure 12-12. Specify Module Dialog Box for G/CVI Standard Prototype Adapter—

© National Instruments Corporation

Module Tab

Module Type—Selects the type of code module the step calls. The
adapter supports calling functions in C source files, object files,
dynamic link library files, and static library files.

Module Pathname—Specifies the pathname of the code module file
that contains the function the step calls. You can specify an absolute or
relative pathname for the module file. Relative pathnames are relative
to the TestStand search directory paths. You can customize the
TestStand search directory paths using3barch Directories

command in th&€onfigure menu of the sequence editor menu bar.

Function Name—Selects the function in the code module that the step
calls. If the code module is a DLL file, and the DLL file contains a type
library, the adapter automatically populates the function ring with all
the function names in the type library. Otherwise, the adapter attempts
to read the code module file and finds the names of all functions.

Standard Prototype andExtended Prototype—Select the function
prototype for the function. Use the Params String control to specify the
value of the extra parameter for the extended prototype.

12-29 TestStand User Manual

Chapter 12 Module Adapters

TestStand User Manual

e Pass Sequence ContextSpecifies whether the adapter passes a
sequence context to the code module. The adapter passes the sequence
context in two forms in th@estData structure. It passes itas an CVI
ActiveX Automation handle in theeqContextCVvI field and as an
ActiveX Automation dispatch pointer in tlseqContextDisp field.

Enable the checkbox if you want to call the TestStand ActiveX APl in
the code module or if the code module must pass the sequence context
as a dispatch pointer to another function.

Figure 12-13 shows the Source Code tab for the Edit C/CVI Module Call
dialog box.

Edit C¥l Module Call

Module Source Code |
To enable you to edit the source code for this step fram the Sequence Editor, TestStand

needs the following information. 1f you da not want to edit the source code from the
Sequence Editar, you can leave these entries emphy.

Pathrame of Source File Containing Function;

Idllfuncs.c Browse... |

IZ: T estStand Examples\Benchmarks\dllfuncs.c

Fathname of Cvl Project File to Open:

Idllfuncs.pri

IZ: T estStandhE xamples\Benchmarkshdllfuncs. pri

Create Code... Edit Code... |

)4 | Catcel

Figure 12-13. Specify Module Dialog Box for G/CVI Standard Prototype Adapter—
Source Code Tab

You can use the Source Code tab to generate or edit the source code for the
function. You do not have to use the Source code tab for TestStand to call
the step code module.

Enter the pathname of the source file in the Pathname of Source File
Containing Function control. If you want to create a new source file, you
must enter an absolute pathname. If you are using an existing source file,
you can enter an absolute or relative pathname. Relative pathnames are
relative to the TestStand search directories. You can customize the

12-30 © National Instruments Corporation

Chapter 12 Module Adapters

TestStand search directory paths withS$kearch Directoriescommand in
the Configure menu of the sequence editor menu ba

If the code module is a DLL or static libyayou must enter the name of
the Lalwindows/CVI project that you used to create the DLL or static
library file. If the code module is an object module, you can specify a
project if you want to.

To create the source code shell for the function, click etkate Code
button. If the sourcéile you specify does not alreadyist, the adapter
creates it. If thdile alreadyexists, the adapter appends the function to the
end of thefile. If a source code templdite exists for the step type you are
using for the step, the adapter uses the template to create the shell of the
new function. If the projectile you specify does not alreadyist, the

adapter creates it and adds the sofitedo it.

If you already lve the source code for the function, and you want to edit
it, click on theEdit Code button.

When you use #nCreate Codeor Edit Code button, the adapter starts a
copy of LalWindows/CVI and opens the sourfike. If you specify a
projectfile in the Source Code tab, the adapter also opens the project in
LabWindows/CVI. When you use thereate Codebutton and the function
alreadyexists in thefile, a dialog box appearsving you the choice of
replacing the current function or adding tlevrfunction shell abve the
current function.

Note You cannot use th€reate Cocke button when you select the Extended Prototype.

The adapter can launch twdfdrent copies of Lalvindows/CVI. The
adapter uses onemoto execute test modules and to let you edit source
files. The adapterahys opens th&estStand\Bin\tecvirun.prj

project in this cpy of LabWindows/CVI. The adapter uses the other copy
of LabWindows/CVI to let you edit the projects you use to create DLLs,
static libraries, and objetites.

Configuring the C/CVI Standard Prototype Adapter

You can specify whether the C/CVI Standard Prototype Adapter executes
testsin-processor out-of-processWhen the adapter runs tests in-process,

it executes them in the same process as the sequence editor or operator
interface you are running. When the adapter runs tests out-of-process, it
executes them in an external instance of the LabWindows/CVI
development environment. You specify this option by using\ttepters
command in th&€onfigure menu.

© MNational Instruments Corporation 12-31 TestStand User Manual

Chapter 12 Module Adapters

Figure 12-14 shows the configuration dialog box for the C/CVI Standard
Prototype Adapter.

C/CVYI Standard Adapter Configuration E

— Test Execution

(¢ Execute Steps in an External Instance of Tl [Fequires Tl 5.0 or Greater]
*Y'ou must uze this mode if pou want to debug .c files. DLLs can be debugged from either mode.

Pathname of the CWl project containing the execution server:

Itscvirun.pri Brnwse...l Create |

IZ:\Testexeck&dapterS upporth Ol hkscvirun. pri

(~ Execute Steps In-Process [CY] is MOT Required for This Mods]

Thiz iz the faztest mode for running tests, but pou cannot debug ¢ files in this mode. For .o files TegtStand
makes sure that there iz a corresponding .obj file and uses it in place of the . file. You can debug DLL: in
thiz mode if you launch thiz application from pour DLL development environment. For additional information,
refer to the dizcuzzion of the Run menw Select External Process command in Chapter 3 of the Tyl User's

b arial.

Caonfigure Auta-loading of Suppart Libraries Meeded for Linking .objz and .libs

Ok Cancel

Figure 12-14. C/CVI Standard Adapter Configuration Dialog Box

Executing Code Modules In-Process

When executing code modules in the same process as the sequence editor
or operator interface, the adapter loads and runs code modules directly
without using the LabWindows/CVI development environment.

Object and Library Code Modules

When the adapter loads an object or static library file, the
LabWindows/CVI Run-time Engine resolves all external references in the
file. When running tests in-process, the adapter must load the support
libraries that the object file or static library file depends on before it loads
the file. You can configure a list of support libraries for the adapter to load
by copying them manually to thHestStand\AdapterSupport\CVI\

AutoLoadLibs directory, or by clicking on th€onfigure Auto-loading

of Support Libraries Needed for Linking .objs and .libsbutton on the
C/CVI Standard Adapter Configuration dialog box. When you click on the
Configure Auto-Loading button, the Auto-Load Library Configuration
dialog box appears as shown in Figure 12-15. Before you can configure the

TestStand User Manual 12-32 © National Instruments Corporation

Chapter 12 Module Adapters

auto-load libraries, you must unload all code modules. The adapter prompts
you to do this.

Auto-Load Library Configuration E3

The Test Executive loads the libraries and object modules in the

Iz:'\TestS tand adapterS upporth Oyl autoL oadlibs'

directory before it loads any other module. This allows the modules in your Tl
steps to link back to them.

The following list box shows the curment contents of the directory. You can add or
delete any file ta the directony.

advapiaZ b = Add Defaul LV Libraries |
analysziz.lib

ol Add Other Librares... |
cviauto.lib

cwiztart lib .
dataace b Delete Selected Files |
eazyio. lib

gdi32.lib

glu32.lib

gpib.lib

ivilib

kermel32 lib

hivsi lib

ole32 ik

oleaut32 lib

opengl32.lib o
tzapicyi. b 1
uzerd2 lib LI | : Done |

Figure 12-15. Auto-Load Library Configuration Dialog Box

TheAdd Default CVI Libraries button searches for an installation of the
LabWindows/CVI development environment and copies the
LabWindows/CVI static library files to the auto-load library directory.

You can select thBrowsebutton to search for files to copy to the auto-load
library directory.

TheDelete Selected Filebutton removes the selected files from the
auto-load library directory.

Source Code Modules

When executing tests in-process, the adapter cannot directly execute code
modules that are in C source files. Instead, the adapter attempts to find an
object file by the same name. If the adapter finds the object file, the adapter
executes the code in the object file. If the adapter cannot find the object file,
the adapter prompts you to create the object file in an external version of

© National Instruments Corporation 12-33 TestStand User Manual

Chapter 12 Module Adapters

TestStand User Manual

LabWindows/CVI. If you decline to create the object module, the adapter
reports a run-time error.

Debugging a DLL Code Module

When executing code modules in-process, the only code modules you
can debug are code modules in DLLs that you create for debugging in
LabWindows/CVI or another ADE. To do so, you must launch the
sequence editor or run-time operator interface from LabWindows/CVI or
the other ADE. In LabWindows/CVI, you use tBelect External Process
command in th&un menu of the Project window to specify the executable
for the sequence editor or run-time operator interface. You then use the
Run command to start the executable.

If you select theStep Into command in TestStand when execution is
currently suspended on a step that calls into a LabWindows DLL you are
debugging, LabWindows/CVI breaks at the first statement in the DLL
function.

To step out of a LabWindows/CVI DLL function that you are debugging,
select the LabWindows/C\Rinish Function command. Also, you can

step out of the function by selecting the LabWindows/G¥p Into or
StepOver command on the last executable statement of the function. After
you step out of the DLL function, TestStand suspends execution on the next
step in the sequence. If you select@mntinue command in
LabWindows/CVI, TestStand does not suspend execution when the
function call returns.

Refer to the LabWindows/CVI product manuals for more information on
debugging DLLs in an external process.

Executing Code Modules in an External Instance
of LabWindows/CVI

To execute tests in an external instance of LabWindows/CVI, the adapter
launches a copy of LabWindows/CVI and loads an execution server project
in LabWindows/CVI. You can specify the execution server project to load
in the C/CVI Standard Adapter Configuration dialog box. The default
project isTestStand\bin\tecvirun.prj

When a TestStand step calls a function in an object, static library, or DLL
file, the execution server project automatically loads the file and executes
the function in the external instance of LabWindows/CVI.

12-34 © National Instruments Corporation

Chapter 12 Module Adapters

If you want a TestStand step to call a function in a C source file, you must
include the C source file in the execution server project before you run the
project. Also, you must include all support libraries other than
LabWindows/CVI libraries in the project.

Debugging C Source and DLL Code Modules

When the adapter executes tests in an external instance of
LabWindows/CVI, you can debug C source and DLL code modules. To
debug DLL code modules, you must create the DLL in LabWindows/CVI
with the DLL Debugging option enabled. LabWindows/CVI honors all
breakpoints you set in the source files for the DLL project.

If you select theStep Into command in TestStand when execution is
currently suspended on a step that calls into the DLL, LabWindows/CVI
breaks at the first statement in the DLL function.

To step out of a LabWindows/CVI DLL function that you are debugging,
select the LabWindows/C\Hinish Function command. You also can step

out of the function by selecting the LabWindows/C3tép Into or Step

Over command on the last executable statement of the function. After you
step out of the DLL function, TestStand suspends execution on the next step
in the sequence. If you select tBentinue command in LabWindows/CVI,
TestStand does not suspend execution when the function call returns.

Sequence Adapter

The Sequence Adapter allows you to call subsequences with parameters.
You can call a subsequence in the current sequence file or in another
sequence file, and you can make recursive sequence calls. For subsequence
parameters, you can specify a literal value, pass a variable or property by
reference, or use the default value that the subsequence defines for the
parameter.

Usually, you use the Sequence Call built-in step type to call sequences, but
you can use the Sequence Adapter from any step type that can use module
adapters, such as Pass/Fail Test or Numeric Limit Test. Using a Sequence
Call step is the same as using an Action step with the Sequence Adapter.

After the sequence call step executes, the Sequence Adapter can set the step
status. If the sequence that the step calls fails, the adapter sets the step status
to Failed . If a run-time error occurs in the sequence, the adapter sets the
step status t&rror and sets thBesult.Error.Occurred property to

True . The adapter also sets tResult.Error.Code and

© National Instruments Corporation 12-35 TestStand User Manual

Chapter 12

Module Adapters

Result.Error.Msg properties to the values of the same properties in
subsequence step that generated the run-time error. If the sequence call is
successful, the adapter does not set the step status. Depending on the type
of step, the resulting statusbsne or Passed .

You can define the parameters for a sequence on the Parameters tab of the
Sequence File window. Figure 12-16 shows the Parameters tab.

= Example.seq H=]
tdain I Setup I Cleanup Parameters | Localsl I Transmitter Tests j
=-{& Parameters Pararneter | Type | Walue | How Paszzed
InitialChannel [InitialChannel Number il by walue
H C_hannellncrement [Channelncrement Mumber 1 b value
“- 4] FimwareSelTestResponse | | FET{SINEMENITUNNSINRMS <ting " by reference
Rl |]

Figure 12-16. Example Sequence Parameters

The Parameters tab defines each parameter name, its TestStand data type,
its default value, and whether you pass the argument by value or by
reference. For more information on sequence file parameters, refer to the
Parameters Talsection in Chapter Jjequence Files

Specifying a Sequence Adapter Module

TestStand User Manual

The Specify Module dialog box for the Sequence Adapter is called the Edit
Sequence Call dialog box. This section describes the contents of the Edit
Sequence Call tab and the Remote Execution tab.

12-36 © National Instruments Corporation

Edit Sequence Call Tab

Chapter 12 Module Adapters

Figure 12-17 shows the Edit Sequence Call dialog box.

Edit Sequence Call

Edit Sequence Call | Femate Execution |

[™ Specify Expressions for Pathname and Sequence [Use Cumrent File

File: Pathnarne: ICUmputelEF’U.seq

Browse... |

IZ:\TestS tand4ExampleshComputerCPLU . seg

Sequence; IMainSequence

— Parameters:

=

V¥ Use Prototype of Selected Sequence

|lmad Pratatype..

Pertivm Clags'
FloatingPaointProcessar - Boolean True
Returmioltage Mumber <Usze Defaultx

 Use Default

Hows Pazzed

by reference
by reference
b reference

¥ Enter Expression 12

Browse... |

kK I Cancel | Spply

Figure 12-17. Specify Module Dialog Box for the Sequence Adapter—Edit

Sequence Call Tab

The Specify Module Dialog Box for the Sequence Adapter contains the

following controls:

» Specify Expressions for Pathname and SequeneeSelects whether
you specify the sequence name and the sequence file pathname
through literal strings or through expressions that TestStand evaluates

at run-time. When you use literal strings, you enter the actual
pathname of the sequence file in the File Pathname control.

» Sequence-Contains the names of the sequences in the sequence file
you specify. When you use expressions, the File Path Expression and
Sequence Expression controls appear in place of the File Pathname and

© National Instruments Corporation 12-37

TestStand User Manual

Chapter 12 Module Adapters

TestStand User Manual

Sequence controls. You use these controls to specify the expressions
for the sequence file pathname and the sequence name.

* Use Current File—Enable this checkbox if you want to call a
sequence in the sequence file that you are currently editing. The File
Pathname or File Path Expression control dims when you enable the
Use Current File checkbox.

e List Box in the Parameters Sectiop-Displays the parameters that
the step passes to the sequence. For each parameter, the list box shows
the name of the parameter, its TestStand data type, the value the step
passes to the sequence, and whether the step passes the argument by
value or by reference.

The contents of the list box must be consistent with the parameter
definitions in the sequence that the step calls. You must extract the
parameter definitions from the sequence or from another sequence that
has the same parameter list.

If you disable the Specify Expressions for Pathname and Sequence
checkbox, you can extract the parameter list directly from the sequence that
you select in the Sequence ring. To do so, enable the Use Prototype of
Selected Sequence option. If you enable Use Prototype of Selected
Sequence, the contents of the parameter list box updates whenever you
select a different sequence from the Sequence ring.

To specify the value that the step passes for a parameter, select a parameter
and enter the value in the Enter Expression control. You can specify an
expression that TestStand evaluates at run-time. If you want to use the
default value that the sequence defines for the parameter, enable the Use
Default control. The parameter definition in the sequence determines
whether the step passes the argument by value or by reference.

If you enable the Specify Expressions for Pathname and Sequence option,
you must use theoad Prototype button to load a prototype from a

sequence that has the same parameter list definition as the sequences that
the step might call.

For a parameter that the step passes by value, the expression in the Enter
Expression control must evaluate to a value that is compatible with the data
type of the parameter. For a parameter that the step passes by reference, you
also can enter an expression that evaluates to a value. If so, the adapter
passes a reference to a copy of the value, and it discards the value that the
sequence returns in the copy. If you want to receive the value that the
sequence returns, you must specify the name of a station global variable,
sequence file global variable, sequence parameter, or step property.

12-38 © National Instruments Corporation

Chapter 12 Module Adapters

Although the parameter list that the step uses must be consistent with the
parameter list that the sequence defines, the step can specify fewer
parameters than the sequence specifies. The data types for the parameters
in the step must be compatible with the corresponding parameters in the
sequence. The adapter uses the default values for the parameters that the
step does not pass explicitly.

Note When calling a sequence on a remote host, you can pass single-valued properties
or arrays of number, Boolean, and string properties. You can pass these properties
by value or by reference. You also can pass container properties or ActiveX
reference properties to a remote sequence if the receiving parameter type is an
ActiveX reference property.

Remote Execution Tab

You can configure a step that uses the Sequence Adapter to invoke a
sequence in a TestStand engine that runs on a remote host as a server.
Figure 12-18 shows the Remote Execution tab for the Edit Sequence Call
dialog box.

Edit Sequence Call E

Edit Sequence Call Remate Execution |

[T Specify host by expression

Remate Host: Browse... |

Far remaote sequence calls, the sequence file pathnames are relative to the remate host.

Figure 12-18. Specify Module Dialog Box for the Sequence
Adapter—Remote Execution Tab

© National Instruments Corporation 12-39 TestStand User Manual

Chapter 12

Module Adapters

The Remote Execution tab contains the following options:

* Remote Execution—Selects whether TestStand executes the
sequence call on a remote host.

e Specify host by expressior-Selects whether you specify the remote
host name through literal strings or through expressions that TestStand
evaluates at run-time. When disabled, you can usBrhse button
to select a remote host name on the network. When enabled, you can
use theBrowse button to build an expression.

¢ Remote Host—Contains the name of remote host.
When you specify a sequence file pathname on the Edit Sequence Call tab

and you enable the step for remote execution, TestStand locates the
sequence file according to the type of path, as shown in Table 12-11.

Table 12-11. Path Resolution of Sequence Pathnames for'Remoter Executed Steps

Where Found Where Found
Type of Path When Editing When Running Example
Relative In the TestStand In the TestStand Transmit.seq
search paths you | search paths you
configure on the configure on the serve
client (local) (remote) machine.
machine.
Absolute On the client On the server (remote| C:\Projects\Transmit.seq
(local) machine. machine.
Network On the machine On the machine \\Remote\Transmit.seq
specified in the specified in the
network path network path
When you edit a step in a sequence file on a client and you specify an
absolute or relative path for the sequence file the step calls, TestStand
resolves the path for the sequence file on the client system. When you run
the step on the client, TestStand resolves the path for the sequence file on
the server system.
You have three ways of managing your remote sequence files for remote
execution.
1. You can add a common pathname to the search paths for the client and
the server so that each resolves to the same relative pathname.
2. You can duplicate the files on your client and server system so that the
client edits an identical file to the file that the server runs.
TestStand User Manual 12-40 © National Instruments Corporation

Chapter 12 Module Adapters

3. You can use absolute paths that specify a mapped network drive or full
network path so that the file the client edits and the file the server runs
is the same sequence file.

When you execute a remote sequence, you cannot single-step or set
breakpoints in the remote sequence. If tracing is enabled, TestStand
updates the status bar with tracing information for the remote sequence.

When a remote sequence executes on a server, the sequence context and
call stack includes only the sequences that run on the remote system. If you
want to access properties from the client sequence context, you must pass
the property objects or their values as parameters to the remote sequence.
You can use the ActiveX API to access properties within a property object.

Setting up TestStand as a Server for Remote Execution

If you want TestStand to invoke a sequence on a remote TestStand server
host, you must properly configure the server on the remote system. You
must enable the TestStand server to accept remote execution requests, the
server must be registered with the operating system, and you must
configure the Windows system security to allow users to access and launch
the server remotely.

You can enable the remote server to accept remote execution requests from
a client machine by enabling the Enable Remote Execution option on the
Remote Execution tab of the Station Options dialog box.

A TestStand server is active when the TestStand application
TestStand\bin\rengine.exe is running on a remote system. Each
TestStand client communicates with a dedicated version of the remote
engine application. In Windows NT, the remote server launches
automatically each time a TestStand client uses the server. In Windows 95
and 98, you must launch the remote server manually, and only one client is
able to use the server at a time. You can automatically launch the server by
placing a shortcut to the application in the startup folder on the server
system.

TestStand automatically registers the server during installation. If you want
to manually register or unregister the server, you can invoke the executable
with the/RegServer and/UnregServer command-line arguments
respectively.

Before a client can communicate with a server, you must configure the
security permissions for the server on the Windows system of the server.

© National Instruments Corporation 12-41 TestStand User Manual

Chapter 12 Module Adapters

For Windows NT, you must complete the following steps to configure the
security permissions for the server.

1. Login using a userid that has administrator privileges.

2. Rundcomenfg from the command line, which displays the
Distributed COM Configuration Properties application window.

3. On the Default Properties tab, make sure that the Enable Distributed
COM on this computer option is checked.

4. On the Applications tab, select TestStand Remote Engine and then
click theProperties button. On the Identity tab of the TestStand
Remote Engine Properties dialog box, make sure that the Interactive
User option is selected.

5. You must give permission to the appropriate users so that they can
access the remote server. You should give everyone access permissions
and appropriate users launch permission. Only users who have launch
permission will be able to access the server. You can do this by one of
two ways.

— You can specify the default security on the Default Security tab of
the Distributed COM Configuration Properties application
window.

— You can give individual users access to the server. On the
Applications tab, select TestStand Remote Engine and then click
theProperties button. Use the Security tab of the TestStand
Remote Engine Properties dialog box to configure the permissions
for a specific server.

For Windows 95 or Windows 98, you must complete the following steps to
configure the security permissions for the server.

1. You must configure your Windows network options in the system
control panel to use User-level access control to use distributed COM.

2. Rundcomcnfg from the command line, which displays the
Distributed COM Configuration Properties application window.

3. On the Default Properties tab, make sure that the Enable Distributed
COM on this Computer option is checked.

4. On the Default Security tab, make sure that the Enable Remote
Connection option is checked.

5. You must give permission to the appropriate users so that they can
access the remote server. You can do this by one of two ways:

— You can specify the default security on the Default Security tab of
the Distributed COM Configuration Properties application
window.

TestStand User Manual 12-42 © National Instruments Corporation

Chapter 12 Module Adapters

— You can give individual users access to the server. You can do this
by selecting the server name, TestStand Remote Engine, on the
Applications tab and then clicking on tReoperties button. On
the Security tab of the TestStand Remote Engine Properties dialog
box, you can add users to a list for access to the server.

ActiveX Automation Adapter

The ActiveX Automation Adapter allows you to create ActiveX

Automation class objects and call methods and access properties of
ActiveX automation objects. When you create an object, you can assign the
object reference to a variable or property for later use in other ActiveX
Automation Adapter steps. When you call methods and access properties,
you can specify an expression for each input and output parameter.

Configuring the ActiveX Automation Adapter

When you specify the module for an Automation step, TestStand stores the
IDs and names of the object and member that the step calls. During
execution, the Automation Adapter must invoke the ActiveX Automation
server and specify which object to create and which member to call. You
can configure the adapter to use either the IDs (early binding) or names
(late binding) to specify to the server what operations to perform on what
object. The Automation Adapter Configuration dialog box contains a single
checkbox option, Use Late Binding. When you enable this option, the
adapter uses late binding during execution. Otherwise it uses early binding.

Early binding is more efficient, but requires that the IDs for objects and
methods exposed by automation servers do not change. If you are
developing an automation server in an ADE that does not provide direct
control over IDs, it is recommended that you use late binding during
development so that inadvertent changes to IDs do not unnecessarily
invalidate the module information for the step. When you finish developing
your automation server, uncheck this option and update the IDs in the client
sequences. You can update the IDs in the client sequences by either editing
each step's module information or by runningThels»Update

Automation Identifiers command on each sequence file containing
Automation steps that reference your server.

If you are using a third-party or release version of an automation server,
or you are developing a server in an ADE that allows you to control your
server’s IDs, it is recommended that you uncheck the Use Late Binding
option.

© National Instruments Corporation 12-43 TestStand User Manual

Chapter 12 Module Adapters

Specifying an ActiveX Automation Adapter Module

When you configure the adapter to use late binding, the Automation
Adapter uses the stored names to determine the proper IDs to use at
run-time. The Automation Adapter looks in the most recent version of the
server’s type information. Servers also can specify type information in
different languages (locales). If the Automation Adapter can not find a
version of the type information that uses the system default language 1D,
it attempts to find type information that uses the English or Neutral
language IDs, in that order.

The Specify Module dialog box for the ActiveX Automation Adapter is
called the Edit Automation Call dialog box. Figure 12-19 shows the Edit
Automation Call dialog box.

Edit Automation Call

Browse. .. |

j Browse. .. | Reload |

—Iv Create Object

Activer Reference: ILocals..-’-‘n.c:tiveXT estClazz0bject
Automation Server: I\-"E Test DLL
Object Class: I_T est

| ol

I Create Mew j Remote kachine [optional]: I
—Iv Call Method or Access Property
Action: I Call Method j Method: I TransmitT est j 7 |
Parameters:
Mame | Tupe | Direction | Value - Edit,,. |
<Feturn Yalueyr [optional) Hurnber alt Step.Result Error Occurred
<shatuzy Hurnber indout Step. Result Status -
<measurement: Humber infout Step. Result Eror. Mumeric
<inBuffers String in Step. InBuf
<outBuffer> String indout Step. Result. ReportT ext =
LI T Eirin i
JJ |
(].4 Cancel |
Figure 12-19. Specify Module Dialog Box for ActiveX Automation Adapter
TestStand User Manual 12-44 © National Instruments Corporation

Chapter 12 Module Adapters

The Edit Automation Call dialog box contains the following controls.

» ActiveX Reference—This control specifies a variable or property of
type ActiveX Reference. When a step creates an object, the adapter
assigns the object reference to the variable or property, if specified.
Otherwise, the adapter automatically releases the object reference after
executing the step. If the step does not create an object, but instead
calls a method or accesses a property, the ActiveX Reference control
must contain the value of a valid ActiveX reference, usually from a
previously executed ActiveX Automation Adapter step. You can use
the Browse button to display the Expression Browser dialog box.

e Automation Server—This ring control specifies the name of the
server that the step uses. The adapter populates the ring control with a
list of the ActiveX automation servers registered with Windows. You
can select a server from the list by clicking on the ring control, or you
can use th8rowse button to load a type library file from disk for a
specific server. TestStand registers the type library with Windows. If
you want the adapter to refresh the list of registered servers and their
type library information, you can click on tReloadbutton. You also
can refresh server type library information when you select
File»Unload All Modules.

» Object Class—This ring control specifies the name of the server class
that the step uses when creating, or invoking an object of that class.
When you select a server, the adapter populates the Object Class
control with a list of objects defined for that server. The ring control
separates the list of objects into two groups separated by a line. The
upper group includes all top-level objects that the adapter can create.
The lower group includes all other objects that must be created by the
server as a result of an invocation of a method or get property call. If a
server type library contains help strings or links to a help file for a
class, you can click on tfebutton to display the help.

* Create Object—You can enable this section of the dialog box to
specify whether the step creates a new instance of the object class
when the adapter executes the step. When the step creates an object
and you specify a property name in the ActiveX Reference control,
the adapter assigns the value of the object handle to the property.
Otherwise, the adapter automatically releases the object reference
after executing the step.

© National Instruments Corporation 12-45 TestStand User Manual

Chapter 12 Module Adapters

TestStand User Manual

When you create an object you can select one of the following options:

— Create New—Use this option to create a new object and obtain a
reference to the object. If the server application is already running,
this option may or may not start another copy of the application.
This is determined by the server application.

— Attach to Active—Use this option to get a reference to an active
Application object.

— Create From File—Use this option to load an existing object
from a file, and obtain a reference to the object. If the server
application is already running, this option may or may not start
another copy of the application. This is determined by the server
application. When you make this selection, the dialog box
displays a file selection control an@eowse button. Use these
controls to specify the path of the file.

Use the Remote Machine control to optionally specify the remote
system to create the object on. The control is dim when you select
Attach to Active.

Call Method or Access Property—You can enable this section of the
dialog box to specify the class method that the step invokes or the class
property that the step accesses. The Type control lists the types of
access that the server defines for the selected object class. The options
include Call Method, Set Property, and Get Property. For example, if
an object class does not have any methods, the control does not list the
Call Method option.

Once you select the type of access, the adapter populates the Member
control with the method or property names that the class defines for the
access type. If a server type library contains help strings or links to a
help file for a method or property, you can selecthetton to display

the help.

Parameters—This control contains the input and output parameters
for the selected method or property. If the selected access type is Get
Property, the control usually contains a single output parameter. If the
access type is Set Property, the control usually contains a single input
parameter. When invoking a method, the control contains any number
of input and output parameters. The Value field is automatically
populated for parameters that have default values.

You can specify an expression for each parameter by double-clicking
on the parameter or by clicking on the parameter and selectikdithe
button. When you make this selection, TestStand displays the Edit
Parameter Value dialog box.

12-46 © National Instruments Corporation

Chapter 12 Module Adapters

Figure 12-20 shows the Edit Parameter Value dialog box.

Edit <exportOption> Value
Type: Direction:
Ienum CVIDIE #port0ptions [Munber] Iin
W alue:
ILocaIs.ExportDptior{ Erowse... |
Enumeratian Canstants: Wse Weraul |
Cvl_DLLEXPORT_SYMBOLS_AS_MARKED j Inzert |

ak. Cancel |

Figure 12-20. Edit Parameter Value Dialog Box

In the Edit Parameter Value dialog box, the Type and Direction controls
indicate the ActiveX data type for the parameter and whether the parameter
is input, output, or both. In the Value control you specify the parameter
argument. For input parameters, you must specify a value for its argument.
If an input parameter has a default value, you can seletista®efault

button to instruct the adapter to use the default value specified by the server.
For optional parameters, you can leave the Value control empty or specify
the name of a variable, parameter, or property. If the type library defines
enumeration constants for input parameters, you can select a constant from
the Enumeration Constants control and click onrisert button to copy

the constant name to the expression in the Value control. The server
indicates which input parameters are optional. TestStand marks all method
output parameters as optional.

© National Instruments Corporation 12-47 TestStand User Manual

Chapter 12 Module Adapters
The ActiveX Automation Adapter supports the Variant data types shown in
Table 12-12.

Table 12-12. Variant Data Types Supported by the ActiveX
Automation Adapter

Variant Type Variant Description
VT_EMPTY nothing
VT_NULL SQL style Null
VT_I2 2 byte signed int
VT_l4 4 byte signed int
VT_R4 4 byte real
VT_RS8 8 byte real
VT_CY currency
VT_DATE date
VT_BSTR OLE Automation string
VT_DISPATCH Idispatch FAR*
VT_ERROR SCODE
VT_BOOL True=1, False®
VT_VARIANT VARIANT FAR*
VT_UNKNOWN IlUnknown FAR*
VT_Ull unsigned char
VT_ARRAY SAFEARRAY*
Note TestStand does not support variant structures which are available with DCOM for

Windows 95, Windows 98, and Windows NT 4.0 SP4. You can assign a value only
from a variant of typevT_DISPATCHand VT_UNKNOWI® a TestStand ActiveX
Reference data type. TestStand usesVhaantChangeType OLE function to
convert data types between OLE variants and TestStand variables and properties.

The TestStand ActiveX Automation Adapter does not support handling
events generated by an ActiveX automation server.

TestStand User Manual 12-48 © National Instruments Corporation

Chapter 12 Module Adapters

Running and Debugging ActiveX Automation Servers

To debug an out-of-process executable server, you must launch the
automation server in the ADE that you created it in and independently
launch the sequence editor or run-time operator interface. If you want to
debug an in-process DLL server, you usually launch the sequence editor or
run-time operator interface from the ADE. When using Visual Basic, you
can use the Run with Full Compile option to debug a DLL in-process
server. Refer to your ADE documentation for more information on
debugging ActiveX Automation servers.

Using ActiveX Servers with TestStand

This section discusses using ActiveX servers with TestStand.

Registering a Server

You can register an ActiveX Automation server DLL by calling the
Windows executableegsvr32.exe with the DLL pathname as the
command-line argument. You can unregister the DLL server by calling
regsvr32.exe with/u and the DLL pathname as the command-line
argument.

You usually can register an ActiveX Automation server executable by
running the server executable with fRegServer command-line

argument. To unregister an executable server, call the executable with the
/UnregServer command-line argument.

Visual Basic does not automatically register a server when you build the
server DLL or executable. You must manually register the server as
outlined above. Visual Basic does temporarily register a server when you
run the server project inside the Visual Basic ADE. When the debugging
session completes, Visual Basic unregisters the server.

Compatibility Issues with Visual Basic

If you are developing an automation server in an ADE that does not provide
direct control over IDs, you must ensure that the adapter can find the server
identifiers or names defined in a TestStand step. When you rebuild an
ActiveX Automation server in Visual Basic, you can select one of three
compatibility options. Depending on the level of compatibility, and the
changes made to a project, Visual Basic compiles an appropriate new

© National Instruments Corporation 12-49 TestStand User Manual

Chapter 12 Module Adapters

TestStand User Manual

server, which can contain new identifiers. Visual Basic has the following
compatibility options.

No compatibility—When you rebuild a server with this option, the
new server maintains no compatibility with a previously compiled
server. Visual Basic generates new unique identifiers for the server,
which prevents any previously compiled client application that uses
early binding from working properly with the server. When you rebuild
a server with this option set, Visual Basic changes the ID used to
uniquely identify the server’s type information. TestStand therefore
cannot properly update an Automation Adapter step regardless of
whether the adapter is configured for early or late binding. This setting
is not recommended for use with TestStand.

Project compatibility —You usually use this option when working

with multiple projects under development within Visual Basic. It is not
meant to assure compatibility with non-Visual Basic compiled client
applications that use early binding. You can use the project
compatibility option only after you build the server DLL or executable
once. When you rebuild a server with this option set, Visual Basic does
not change the ID used to uniquely identify the server’s type
information. TestStand therefore is able to use the type information to
determine the IDs associated with the names stored in the step. Itis
recommended that you configure the Automation Adapter to use late
binding when creating a server using this option.

Binary compatibility —When you use this option Visual Basic
attempts to maintain compatibility with compiled client application
that use early binding. If you remove a member from the server, Visual
Basic can no longer maintain binary compatibility. You can use the
binary compatibility option only after you build the server DLL or
executable once. When you rebuild a server with this option, Visual
Basic maintains the IDs used to identify objects and methods.
TestStand therefore is able to use the IDs stored in the step without
accessing the type information at run time. It is recommended that you
configure the Automation Adapter to use early binding when creating
a server that uses this option.

National Instruments recommends that when you are developing and
debugging a Visual Basic ActiveX Automation server in conjunction with
developing sequences within TestStand, you should use the Project
Compatibility option in Visual Basic and configure the ActiveX
Automation Adapter to use late binding. This ensures that the ActiveX
Automation adapter can properly find and invoke the server after you
recompile the server. Once you define the interface for the server, you
should recompile the project using only binary compatibility. You can then

12-50 © National Instruments Corporation

Chapter 12 Module Adapters

use theTools»Update Automation Identifierscommand to respecify
steps to use the final server identifiers. Once you properly update the
automation identifiers in your steps, you can enable the ActiveX
Automation Adapter to use early binding.

For more information on creating and debugging Visual Basic ActiveX
automation servers, refer to your Visual Basic documentation and the
article, “Building, Versioning, and Maintaining Visual Basic Components,”
by Ivo SalmreMicrosoft Developer Networlicrosoft Corporation,
February 1998.

© National Instruments Corporation 12-51 TestStand User Manual

Process Models

This chapter discusses the default process model that TestStand includes. It
also describes the directory structure that TestStand uses for process model
files and the special capabilities that the TestStand sequence editor has for
editing process model sequence files.

You can best understand the contents of this chapter if you have already
read theProcess Modelsection in Chapter TestStand Architecture
Overview which discusses the purpose of process models, model
callbacks, and entry points, and the relationship between a process model
and a client sequence file. This chapter does not repeat that information.

Directory Structure for Process Model Files

The TestStand installer places the files for the default process model files
under the following directory.

TestStand\Components\NI\Models\TestStandModel

The default process model consists of a process model sequence file and
several supporting sequence files. The name of the process model sequence
file is TestStandModel.seq

If you want to modify the default process model, copy the process model
sequence file and its supporting files to a different subdirectory, and rename
the process model sequence file. It is best to copy the files to a subdirectory
under theTestStand\Components\User\Models directory. The
subdirectories ofestStand\Components\NI contain various TestStand

files that you might want to modify or replace. If you modify these files
directly, the installers for newer versions of TestStand might overwrite your
customizations. Consequently, it is best to keep the files that you create or
modify separate from the files that TestStand installs. For this purpose,
TestStand includes the subdirectories urm@stStand\Components\

User in its list of search paths. The TestStand installer creates a
subdirectory tree und@estStand\Components\User for you. Not

only do you use the subdirectories to protect your customized components,
you also use them as the staging area for the components that you include
in your own run-time distribution of TestStand.

© MNational Instruments Corporation 13-1 TestStand User Manual

Chapter 13

Process Models

National Instruments recommends that you place each process model under
its own subdirectory undéestStand\Components\User\Models

If you customize the default process model and want to name it MyProcess,
copy the default process model filesTestStand\Components\User\
Models\MyProcess , and rename the process model sequence file
MyProcess.seq . You must also establish your custom process model as
the process model for the station using the Model tab of the Station Options
dialog box.

Special Editing Capabilities for Process Model
Sequence Files

TestStand User Manual

The TestStand sequence editor has specific features for creating or
modifying process model sequence files.

If you want TestStand to treat a sequence file as a process model, you must
mark it as a process model file. To do so, s&decfuence File Properties

from theEdit menu. In the Sequence File Properties dialog box, select the
Advanced tab. In the Advanced tab, selectMioeel entry in the Type ring
control.

Figure 13-1 shows the settings for a process model file in the Advanced tab
of the Sequence File Properties dialog box.

MyProcess_seq Properties

General Advanced |

Type:

{Model =l
kodel Option:

| Mo Mode! =l

T Cancel

Figure 13-1. Process Model Settings in the Advanced Tab of the Sequence
File Dialog Box

13-2 © National Instruments Corporation

Chapter 13 Process Models

Although you edit a process model sequence file in a regular Sequence File
window, the file has special contents. In particular, some of the sequences
in the files are model entry points, and some are model callbacks. TestStand
maintains special properties for the entry point and callback sequences.
You can specify the values of these properties when you edit the sequences
in a process model file. When you display the Sequence Properties dialog
box for any sequence in a model file, the dialog box contains a Model tab.

Sequence Properties Model Tab

You access the Sequence Properties dialog box by selectiigghence
Properties item from the context menu in a step list of an individual
sequence view or by selecting fRmperties item from the context menu

for a sequence in the All Sequences view. If the sequence file is a process
model file, the dialog box contains a Model tab. The first control on the
Model tab is the Type ring control.

Figure 13-2 shows the pull-down menu for the Type ring control.

Execution Entry Paint j

Farmal
Callback

E wecyution Enty Paint
Canfiguration Entry Paint

Figure 13-2. Type Ring Control in the Sequence Properties Model Tab

The Type ring control lists the different types of sequences that a process
model file can contain. The following sections describe the different types
of sequences.

Normal Sequences

A normalsequence is any sequemtkerthan a callback or entry point. In
a process model file, you use normal sequences as utility subsequences that
the entry points or callbacks call.

When you select thidormal entry in the Types ring, nothing else appears
on the Model tab

© MNational Instruments Corporation 13-3 TestStand User Manual

Chapter 13 Process Models

TestStand User Manual

Callback Sequences

Model callbacks are sequences that entry point sequences call and that the
client sequence file can override. By marking sequences in a process model
file as callbacks, you specify the set of process model operations a sequence
developer can customize. When editing the client file, the sequence
developer can override the callback by seledidg»Sequence File

Callbacks. Refer to th&Sequence View Context Mesrction in Chaptes,
Sequence Filegor more information on using the Sequence File Callbacks
dialog box.

Some model callbacksabe full implementationg-or example, the

TestReport callback in the d@ult process model is 8icient to handle

most types of test results. Other model callbacks are merely placeholders
that youoverride with sequences in the clidii¢. For example, the
MainSequence callback in the moddille is a placeholder for the
MainSequence callback in the cliertile.

When you select the Callback entry in Tyge ring, the Copy Steps and
Locals when Creating anv@rriding Sequence checkbox appears. This
checkbox determines whagstStand does when you click on #uid
button in the Sequence File Callbacks dialog box to creatgeariding
sequence in the cliefite. If you enable the checkbokestStand copies all
the steps and locahriables in the callback sequence in the méitketo
the callback sequence you create in the cfimniTestStand always copies
the sequence parameteegardless of the checkbox setting.

Entry Point Sequences

Entry point sequences are sequences you can invoke from the menus in the
TestStand sequence editor or from an operator interface program. You can
specify two different types of entry points:

« Execution entry pointsdse this entry point to run test programs.
Execution entry points call #MainSequence callback in the client
file. The default process model contaiws execution entry points:
Test UUTsandSingle Pass. By default,execution entry points
appear in ta Executemenu. Kecution entry points appear in the
menu only when the dee window contains a sequentiée that has a
MainSequence callback.

« Configuration entry points-dse this entry point to chigure a feature
of the process model. Cliguration entry points usuallyage the
corfiguration information ira.ini ~ file in theTestStand\cfg
director. By default, cofiguration entry points appear in the
Configure menu. Foexample, the default process model contains the

13-4 © National Instruments Corporation

Chapter 13 Process Models

configuration entry poinConfig Report Options . TheConfig
Report Options entry point appears &eport Optionsin the
Configure menu.

When you select Execution Entry Point or Configuration Entry Point from
the Type ring, numerous controls appear on the Model tab. The contents of
the Model tab are the same for all types of entry points.

Figure 13-3 shows the contents of the Model tab fofftlse UUTs
execution entry point.

Test UUTs Sequence Properties E

General Model |

Type:

IEHecution Entry Point j

Entry Point M ame Expression:

ResSt["MODEL", "TEST_UUTS") ;I Browse... |
Entry Point Enabled Expression:

True ;I Browse... |
tdenu Hint:

[" Entry Point Ignores Client File

[™ Hide Entry Paint Execution

¥ Save Modified Sequence Files Before Execution

¥ Load 5tale Sequence Files Before Execution

™ Show Enty Point Only in E ditar

™ Show Entry Paint for &1 windows

¥ Show Entry Point ‘When Client File ‘Window |5 Active
™ Show Entry Paint When Execution ‘Window |3 Active

Cancel |

Figure 13-3. Model Tab for an Execution Entry Point Sequence

© MNational Instruments Corporation 13-5 TestStand User Manual

Chapter 13 Process Models

The Model tab for an Execution Entry Point Sequence contains the
following controls:

TestStand User Manual

Entry Point Name Expressior—Use this control to specify a string
expression for the menu item name of the entry point. If you specify a
literal string for the menu item name, you must enclose it in double
quotes. If you want to store the name in a string resource file, you can
use theGetResourceString expression function to retrieve the

name from the file. Refer to thexpressionsection in Chapter 8,
Sequence Context and Expressjdasmore information.

Entry Point Enabled Expression—Use this control to specify a
Boolean expression that TestStand evaluates to determine whether to
enable the menu item for the entry point. If the expression evaluates to
False , TestStand dims the entry point in the menu. If the expression
is empty, the entry point is enabled in the menu.

Menu Hint—Use this control to specify a menu for the entry point. If
you leave the Menu Hint control empty, TestStand uses the default
menu for the entry point type. Click on the arrow at the right edge of
the control to pull down a menu that contains the following entries:
File, Edit, View, Execute, Debug, Configure, Window, and Help.

You can enter one or more names directly in the control. If you specify
multiple names, you must separate them with commas. TestStand uses
the first menu name in the list that it can find in the operator interface.
This is useful if you use multiple operator interfaces that have different
menu names. If TestStand cannot find any menus in the operator
interface with the names that you list in the control, it uses the default
menu for the entry point type.

Entry Point Ignores Client File—Enable this option if the sequence
does not call the client file and you want the sequence to run without
preloading the client file. This option prevents TestStand from
preloading the client sequence file when you run the entry point even
if the client sequence file is set to preload when execution begins.

When you run the entry point, TestStand uses the callback
implementations in the model file regardless of whether the client file
overrides them. Th€onfig Report Options entry point uses this
option so that you can selggonfigure»Report Options even when
TestStand is unable to preload the modules in the active sequence file.

13-6 © National Instruments Corporation

Chapter 13 Process Models

» Hide Entry Point Execution—Enable this option if you do not want
TestStand to display an Execution window for the execution of the
entry point. If you enable this option, you do not see a window for the
execution unless a run-time error or breakpoint occurs.

» Save Modified Sequence Files Before ExecutierEnable this
option if you want TestStand to save the contents of windows to disk
when you invoke the entry point. If this option is enabled when you run
the entry point, TestStand checks all windows that have pathnames.
If one or more windows have changes that you have not yet saved,
TestStand prompts you to save your changes. If you clickesn
TestStand saves the files.

» Load Stale Sequence Files Before ExecutierEnable this option if
you want TestStand to check the disk dates of files that are in memory
when you invoke the entry point. If the current disk date of a file differs
from the disk date of when you last loaded or saved it, TestStand gives
you the option to reload the file.

* Show Entry Point Only in Editor—Enable this option if you want
the entry point to appear only in the TestStand sequence editor and not
in the run-time operator interfaces.

e Show Entry Point for All Windows—Enable this option if you want
the entry point to appear in the menu regardless of the type of window,
if any, that is currently active. For example, Gmnfigure Report
Options entry point configures the report options for the model and
has no client-specific effects. Thus, you might want to access it from
any window or even if no window is active. If you enable this option,
TestStand dims the remaining two checkboxes.

e Show Entry Point When Client File Window is Active—Enable this
option if you want the entry point to appear in the menu when a
Sequence File window is the active window. For example, the
execution entry points are in tegecutemenu only when a sequence
file is active.

* Show Entry Point When Execution Window is Active—Enable this
option if you want the entry point to appear in the menu when an
Execution window is the active window.

© MNational Instruments Corporation 13-7 TestStand User Manual

Chapter 13 Process Models

Contents of the Default Process Model

Figure 13-4 shows a list of all the sequences in the default TestStand
process model. The first three sequences are entry points. The last sequence
is a utility subsequence that the execution entry points call. The other
sequences are model callbacks that you can override in a client

sequence file.

i I All Sequences j
Sequence | Cornment |
TestUUTs If you inzert a new step in thiz sequence, disable the Record Results aption for the. ..
Single Pass If you inzert a new step in this sequence, disable the Fecord Fesults aption for the. ..
Canfigure Report Options Appears as Repart Options in the Configure menu.
Configure Databaze Options Appears as Database Options in the Configure menu,
MainSequence Owerride thiz in the client file with a sequence that performs tegts on the UUT,
PrelIUT Dizplays a dialog box in which the operatar enters the UUT gerial number. Owverride. .
PostJUT Dizplays a pass, fail, erar, or terminated banner. Override thiz in client file to chang..
PrelUT Loop Test UUT 2 callz this before looping on UUT 2. |z emphy in model fle. Qveride this ..
PoztlJUTLoop Test UUT 2 callz this after looping on UUTs. 1s empty in model file. Override this in...
Report0ptions GetReportOptions calls thiz after reading the report options from digk. Qverride it to ...
DatabazeOptions GetDatabazeQptions calls thiz after reading the report aptions from disk. Override i..
TestReport Generates the contents of the test repart for one UUT. Overide in client file to ch...
td odifyR epartH eader TestRepart calls thiz. Owermide it to modify the header that TestReport generates.
t odifyR epartE ntry TestRepart calls thiz for each result in result list. Owverride it ta modify the repart ge...
M odifyR eportF ooter TestReport calls thie. Owemide it to modify the footer test that TestReport generates,
LogT oD atabase Execution entry points call thiz after writing a test report to disk. Oweride to log res....
Get Fepart Options Fizads test station report options fron dizsk and call: ReportOptions callback.
Get Database Options Reads: test station databaze options from disk and callz D atabase0ptions callback.

Figure 13-4. List of All Sequences in the Default TestStand Process Model File

The default TestStand process model file contains the following sequences:

« Test UUTs —This sequence is an execution entry point that initiates
a loop that repeatedly identifies and tests UUTs. When a window for a
client sequence file is active, thiest UUTsitem appears in the
Executemenu. Refer to th€est UUTs Entry Poirgection later in this
chapter for more information.

e SinglePass —This sequence is an execution entry point that tests a
single UUT without identifying it. In essence, thiagle Pass entry
point performs a single iteration of the loop thatThst UUTsentry
point performs. When a window for a client sequence file is active,
the Single Passtem appears in thExecutemenu.

TestStand User Manual 13-8 © National Instruments Corporation

© MNational Instruments Corporation

Chapter 13 Process Models

Config Report Options —This sequence is a configuration entry
point that displays a dialog box in which you can specify the contents,
format, and pathname of the test report. The settings you make in the
dialog box apply to the test station as a whole. The entry point saves
the station report options to disk. The entry point appedRepsrt
Options in theConfigure menu. Refer to Chapter 1Mlanaging

Reports for more information on the report options.

Configure Database Options —This sequence is a configuration
entry point that displays a dialog box in which you can specify the
database logging options. This entry point is a placeholder for database
functionality.

MainSequence —This sequence is a model callback that the Test
UUTSs entry point calls for each UUT. TainSequence callback is
empty in the process model file. The client file must contain a
MainSequence callback that performs the tests on a UUT.

PreUUT—This sequence is a model callback that displays a dialog box
in which the operator enters the UUT serial number.THse UUTs

entry point calls thereUUT callback at the beginning of each iteration
of the UUT loop. If the operator indicates through the dialog box that
no more UUTSs are available for testing, the UUT loop terminates.

PostUUT —This sequence is a model callback that displays a banner
indicating the result of the test that MainSequence callback in the
client file performs on the UUT. ThHeest UUTsentry point calls the
PostUUT callback at the end of each iteration of the UUT loop.

PreUUTLoop —This sequence is a model callback thaffids UUTs
entry point calls before the UUT loop begins. FneUUTLoop
callback in the default process model file is empty.

PostUUTLoop —This sequence is a model callback thatTisst
UUTsentry point calls after the UUT loop terminates. The
PostUUTLoop callback in the default process model file is empty.

ReportOptions —This sequence is a model callback that the
execution entry points call through tBetReportOptions

subsequence. After reading the test station report options from disk,
GetReportOptions calls theReportOptions callback to give the
client sequence file a chance to modify the report options. For
example, you might want to force the report format to be ASCII text
for a particular client sequence file. TReportOptions callback in

the default process model file is empty.

DatabaseOptions —This sequence is a model callback that the
execution entry points call throug@etDatabaseOptions
subsequence. After reading the test station database options from disk,

13-9 TestStand User Manual

Chapter 13 Process Models

TestStand User Manual

GetDatabaseOptions calls theDatabaseOptions callback to give

the client sequence file a chance to modify the database options. The
DatabaseOptions callback in the default process model file is

empty. TheDatabaseOptions callback is a placeholder for future
database functionality.

TestReport —This sequence is a model callback that the execution
entry points call to generate the contents of the test report for one UUT.
You can override th&estReport callback in the client file if you

want to change its behavior entirely. The default process model defines
a test report for a single UUT as consisting of a header, an entry for
each step result, and a footer. If you do not overrid@dhtReport
callback, you can override tivodifyReportHeader

ModifyReportEntry , andModifyReportFooter model callbacks

to customize the test report.

TheTestReport callback makes the determination as to whether the
report body is built with sequences or a DLL based on a setting in the
Configure Report Options dialog box. If you select the sequence report
generation optionTestReport calls theAddReportBody sequence

in eitherReportGen_txt.seq or ReportGen_html.seq to build

the report body. The sequence report generator uses a series of
sequences with steps that recursively process the result list for the
execution. If you select the DLL report generation option, TestReport
calls a single function imodelsupport.dll to build the entire

report body before returning. The project and source code for the
LabWindows/CVI built DLL is available. If you select the DLL option,
TestStand generates reports faster, but TestStand does not call
ModifyReportEntry callbacks.

ModifyReportHeader = —This sequence is a model callback that the
TestReport model callback calls so that the client sequence file can
modify the report headeviodifyReportHeader receives the

following parameters: the UUT, the tentative report header text, and
the report options. ThetodifyReportHeader callback in the default
process model file is empty.

ModifyReportEntry ~ —This sequence is a model callback that the
TestReport model callback calls so that the client sequence file can
modify the entry for each step result. Through subsequences,
TestReport callsModifyReportEntry for each result in the result

list for the UUT.ModifyReportEntry receives the following
parameters: an entry from the result list, the UUT, the tentative report
entry text, the report options, and a level number that indicates the call
stack depth at the time the step executed.MduifyReportEntry

callback in the default process model file is empty.

13-10 © National Instruments Corporation

Chapter 13 Process Models

Note The Report Options dialog box allows you to select between producing the report
body using sequences or a DLL. If you select the DLL option, TestStand generates
reports faster, but TestStand does not ddtidifyReportEntry callbacks.

© MNational Instruments Corporation

ModifyReportFooter —This sequence is a model callback that the
TestReport model callback calls so that the client sequence file can
modify the report footeModifyReportFooter receives the

following parameters: the UUT, the tentative report footer text, and the
report options. Th#&lodifyReportFooter callback in the default
process model file is empty.

LogToDatabase —This sequence is a model callback that the
execution entry points call after they write the test report for a UUT to
disk. You can use this callback to log the result information for a UUT
to a databaséogToDatabase receives the following parameters: the
UUT, the result list for the UUT, the report options, and the report text.
TheLogToDatabase callback in the default process model file is
empty.

Get Report Options —This sequence is a utility sequence that

the execution entry points call at the beginning of execution.
GetReportOptions reads the report options and then calls the
ReportOptions callback to give you a chance to modify the report
options in the client file.

Get Database Options —This sequence is a utility sequence
that the execution entry points call at the beginning of execution.
GetDatabaseOptions reads the database options and then calls
the DatabaseOptions callback to give you a chance to modify the
database options in the client file.

13-11 TestStand User Manual

Chapter 13

Process Models

Test UUTs Entry Point

Table 13-1 lists the more significant steps inThst UUTsexecution

entry point.

Table 13-1. Order of Actions in the Test UUTs Entry Point

Action
Number Description Remarks
1 Call PreuUTLoop model callback. Callback in model file is empty.
2 Call GetReportOptions utility Reads station options from disk. Calls
sequence. ReportOptions model callback to allow

client to modify options.

3 Call GetDatabaseOptions utility Reads station options from disk. Calls

sequence. DatabaseOptions model callback to

allow client to modify options.

4 Increment the UUT index. —

5 Call PreuuT model callback. Gets the UUT serial number from the
operator.

6 If no more UUTSs, go to action 14. —

7 Determine the report file pathname. —

8 Clear results list. —

9 Call MainSequence model callback MainSequence callback in client performs
the tests on the UUT.

10 Call PostUUT model callback. Displays a pass, fail, error, or terminate
banner.

11 Call TestReport model callback. Generates test report for the UUT.

12 Write the UUT report to disk. Can append to an existing file or create 4
new file.

13 Call LogToDatabase model callback. | Log test results to database for the UUT.

14 Loop back to action 3 —

TestStand User Manual 13-12 © National Instruments Corporation

Chapter 13 Process Models

Table 13-1. Order of Actions in the Test UUTs Entry Point (Continued)

Action
Number Description Remarks
15 Call PostUUTLoop model callback. Callback in model file is empty.
16 Read test report into memory. Ensures that the entire test report is in

memory so that the sequence editor or
operator interface can display it. If you ug
separate files for each UUT, this action
reads only the test report for the last UUT.

Single Pass Entry Point

Table 13-2 lists the more significant steps in$h®le Pass execution

entry point.

Table 13-2. Order of Actions in the Single Pass Entry Point

Action
Number Description Remarks
1 Call GetReportOptions utility Reads station options from disk. Calls
sequence. ReportOptions ~ model callback to allow
client to modify options.
2 Call GetDatabaseOptions utility Reads station options from disk. Calls
sequence. DatabaseOptions ~ model callback to
allow client to modify options.
3 Determine the report file pathname. —
4 Clear results list for UUT. —
5 Call MainSequence model callback MainSequence callback in client performs
the tests on the UUT.
6 Call TestReport model callback. Generates test report for the UUT.
7 Write the UUT report to disk. Can append to an existing file or create g
new file.
8 Call LogToDatabase model callback. | Log test results to database for the UUT.

© MNational Instruments Corporation

13-13

TestStand User Manual

Chapter 13 Process Models

Support Files for the Default Process Model

Many sequences in the default process model file call functions in DLLs
and subsequences in other sequence files. TestStand installs these
supporting files and the DLL source files in the same directory that it
installs the process model sequence file.

Table 13-3 lists the files that TestStand installs for the default process
model in theTestStand\NI\Models\TestStandModels directory.

Table 13-3. Default Process Model Files

File Name

Description

TestStandModel.seq

Entry point and model callback sequences for the default process
model.

reportgen_html.seq

Subsequences that add the header, result entries, and footer for a
UUT into an HTML test report.

reportgen_txt.seq

Subsequences that add the header, result entries, and footer for a
UUT into an ASCII text test report.

modelsupport.dll

DLL containing C functions that the process model sequences
call. Includes functions that display the Report Options dialag
box, read and write the report options from disk, determine the
report file pathname, obtain the UUT serial number from the
operator, and display status banners.

modelsupport.prj

LabWindows/CVI project that buildsodelsupport.dll

modelsupport.fp

LabWindows/CVI function panels for the functions in
modelsupport.dll

modelsupport.h

C header file that contains declarations for the functions in
modelsupport.dll

modelsupport.lib

Import library in Visual C/C++ format fanodelsupport.dll

modelpanels.uir

LabWindows/CVI user interface resource file containing panels
that the functions imodelsupport.dll use.

modelpanels.h

C header file containing declarations for the panels in
modelpanels.uir

main.c C source for utility functions.
banners.c C source for functions that display status banners.
TestStand User Manual 13-14 © National Instruments Corporation

Chapter 13 Process Models

Table 13-3. Default Process Model Files (Continued)

File Name Description

report.c C source for functions that display the Report Options dialog
box, read and write the report options from disk, and determine
the reporfile pathname.

uutdlg.c C source for function that obtains the UUT serial number frgm
the operato

c_report.c C source for generating HTML and ASCII reports for the DLL
option on the Report Options dialog box.

You can véw the contents of threportgen_html.seq and
reportgen_txt.seq sequencéiles in the sequence editdotice that
each is anodel sequence filnd contains an emptjodifyReportEntry
callback. Eacliile has aPutOneResultinReport sequence that calls
ModifyReportEntr y. The client sequendée canoverride the
ModifyReportEntry callback.TestStand requires that all sequefiles
that contain direct calls to model callbacks must also contalifiratide of
the callback sequence and must be mébs.

TestStandModel.seq also contains an emp®odifyReportEntry
callback,even though no sequencesTisstStandModel.seq call
ModifyReportEntry directly. TestStandModel.seq contains a
ModifyReportEntry callback so thatlodifyReportEntry appears in
the Sequence File Callbacks dialog box for the client seqdigace

© MNational Instruments Corporation 13-15 TestStand User Manual

Managing Reports

This chapter describes how you manage and use test reports in TestStand.

Implementation of the Test Report Capability

Most of the test report capabilities that this chapter describes are not native
to the TestStand engine or sequence editor. Instead, the default process
model that comes with TestStand implements them. This allows you to
customize all aspects of test reports. Refer tChatents of the Default
Process Modesection in Chapter 1®rocess Mode|for more

information.

If you do not modify or replace the test report implementation in the
process model, you can still customize the contents of test reports using the
Report Options dialog box that the default process model provides. Refer
to theReport Options Dialog Bogection later in this chapter for more
information.

The default process model relies on the automatic result collection
capability of the TestStand engine to accumulate the raw data for the test
report for each UUT. The TestStand engine can automatically collect the
result of each step into a result list for an entire sequence. The result list for
a sequence contains the result of each step it runs and the result list of each
subsequence call it makes. The default process model calls the main
sequence in the client sequence file to test a UUT. Thus, the result list that
the TestStand engine accumulates for the main sequence contains the raw
data for the test report for the UUT. Refer to Result Collectiorsection

in Chapter 6Sequence Executipfor information on automatic result
collection.

© MNational Instruments Corporation 14-1 TestStand User Manual

Chapter 14 Managing Reports

Using Test Reports

TestStand User Manual

TheTest UUTsandSingle Pass entry points in the default process

model generate UUT test reports. Tieat UUTs entry point generates a

test report and writes it to disk after each pass through the UUT loop. In the
Report Options dialog box, you can choose whether to create a separate file
for each UUT test report or to aggregate the test reports for all the UUTs
that you test during one execution into one file. You can choose whether to
generate unique pathnames or reuse the same report file pathnames from
one execution to another. You can specify the directory in which to write
the test report files, and you can specify whether to include the date and
time in the filenames. You can display the Report Options dialog box by
selectingConfigure»Report Options.

In the TestStand sequence editor, the Report tab of the Execution window
displays the report for the current execution. Usually, the Report tab is
empty until execution completes. The default process model can generate
reports in either HTML or ASCII text formats.

The Report tab can display reports in HTML, ASCII text, or Rich Text
Format (RTF). You also can use an external application to view reports in
these or other formats by selecting Yiew»Launch Report Viewer
command when an Execution window is active. You can usexteznal
Viewers menu item in th€onfigure menu to specify the external
application that TestStand launches to display a particular report format.

14-2 © National Instruments Corporation

Chapter 14 Managing Reports

Figure 14-1 shows a test report in HTML text format on the Report tab of
an Execution window.

Single Pass - auto_seq [10] [Completed] [_ O}

&% Steps Report | Threads: IMainSequence - Cleanup [auto. seq) (048] j
=1 = @ A
Eaeh Farand Stop Refresh Home

UUT Report L

+ Serial Number: HONE

+ Date: Thursday, August 06, 1998
« Time:5:32:49 PM

+ Operator: administrator

+ Execution Time: 31 . 8884686 seconds
+« Number of Resulis: 11

« UUT Resuli: Failed

Begin Sequence: MainSequence
(D:\TestStand\Examples'Demo'Clauto.seq)

|Pre-test |
|Status: ||D otle |
[B10dute Time: |l 982622 |

|Status: ||Passed |
|Measurement.: ”12 |
[fodute Time: |Io 000467 |

|Status: |
[Module Time: ||p.0o0452

=l

& | |Feport Location: D:\TestStand\Examp

Figure 14-1. HTML Test Report in the Report Tab

© MNational Instruments Corporation 14-3 TestStand User Manual

Chapter 14 Managing Reports

Figure 14-2 shows a test report in ASCII format on the Report tab of an
Execution window.

Single Pass - auto_seq [13] [Completed] M=l E

pg S Report | Threads: IMainSequence-Main [auto.zeq) [0=E] j
|1r1ra-a-wwtwwa-wwa-wwwwwwwwwwwﬁwwﬁﬁwwﬁwwﬁwn-ﬁwn- ;
UUT Report

Jerial MNuber: MONE

Date: Thursday, Alugust 06, 1995

Time: 5:37:38 FPM

Operator: administrator

Execution Time: 4.6669404 seconds

HNundier of Results: 11

UUT Result: Failed

ol o o o o o o o o i o o o o ol o o ol o

Begin Sequence: MainSeguence
(D:Y Test3tand' Examp leat Demo’, Chauto. seq)

Fre-test: Done
HModule Time: 4.4587144
Battery Voltage Test: Passed
Heasurement: 12
HModule Time: 0.000457
Charging System: Failed
Module Time: 0.000439 1.
Ignition 3ystem: Failed - The engine would not start.
Module Time: 0.0004235
Aetion: Skipped
Fuel Injection: Pazsed
Module Time: 0.000411
Power Train CH: Passed
Module Time: 0.000411
Engine CM: Passed - Module type 1 tested
Module Time: 0.000469 =]
| B | | Report Location: D:ATestStand'ExampleshDs

Figure 14-2. ASCII Text Test Report in the Report Tab

Report Options Dialog Box

You can access the Report Options dialog box by selecting
Configure»Report Options.

In the Report Options dialog box, you can customize the generation of
report files. The settings you choose in the Report Options dialog box apply
to all sequences that you run on the station usingebeUUTsandSingle
Passitems in theExecutemenu.

TestStand User Manual 14-4 © National Instruments Corporation

Chapter 14 Managing Reports

When you select thReport Options command, TestStand calls the
Config Report Options entry point in the default process model. Thus,
while the dialog box is active in the sequence editor, the Running tag
appears on left side of the status bar.

The Report Options dialog box contains two tabs: the Contents tab and the
Report File Pathname tab.

Contents Tab
Figure 14-3 shows the Contents tab of the Report Options dialog box.

+’ Report Options
Contents [Report File Pathnarme]

[Dizable Report Generation
¥ Include E zecution Times
¥ Include Step Results

I Include Dutput Y alues

[Include Test Limits

™ &ppend if File Already Exists

Repart Format: “web Page v

Result Filkering Expression: True hd Browse... [
Repart Colars. ..

Select a Report Generator for producing the report body:

% iSequence [Easier to modify, and callz ModifiReportE ntry callbacks):

" DLL [Faster, but does not call ModifpReportE ntry callbacks)

ok | | Cancel

Figure 14-3. Report Options Dialog Box—Contents Tab
The Contents tab of the Report Options dialog box contains the
following options:

« Disable Report Generatior—Enable this option if you do not want to
generate a test report.

* Include Execution Times—Enable this option if you want to log the
time that each step module takes to the report. This includes the time

© National Instruments Corporation 14-5 TestStand User Manual

Chapter 14 Managing Reports

TestStand User Manual

that the subsequence, LabVIEW VI, or C function takes to execute. It
does not include the time that the TestStand engine takes to evaluate
preconditions, load the step module, and so on.

Include Step Results—Enable this option if you want to display the
results of each step. Disable this checkbox if you want to include only
a header for each UUT. The header indicates if the UUT passed or
failed.

Include Output Values—Enable this option if you want to log the
values that steps acquire to the report. The default process model
recognizes specific step properties as containing values to log. These
properties includ®esult.Numeric , Result.String , and
Result.ButtonHit . For the Numeric Limit Test built-in step type,
Result.Numeric ~ contains the numeric measurement that the step
acquires. For the String Value Test built-in step tReaplt.String

contains the measurement value that the step returns in string form. For
the Message Popup step typesult.ButtonHit contains the

number of the button the operator pressed to dismiss the message
popup.

Include Test Limits—Enable this option if you want to log values that
step types use as test limits to the report. The default process model
recognizes specific step properties as containing test limits. These
properties includeimit.L.ow , Limit.High , Limit.String , and

Comp The Numeric Limit Test compares the measurement value it
acquires againgimit.Low , Limit.High , or both, and it useSomp

to indicate the type of comparison to make. The String Value Test
compares the string it acquires agalristit. String , and it uses
Compto indicate whether to ignore case in the comparison.

Append if File Already Exists—Enable this option if you want to
append the report to the target file, if the target file already exists. If
you disable this option, the report overwrites the target file. If you
create a separate report for each UUT and you disable this option, the
report for each UUT overwrites the target file, if it already exists.

Report Format—Use this control to specify the output format of the
report file. You can use the menu ring to the right of the control to
select either a Web Page formatrgl) or an ASCII Text format

(txt).

Result Filtering Expression—Use this control to select steps to
appear in the report. You do so by specifying an expression that the
report generator evaluates for each step result. The report generator
includes the step in the report if the expression evaluatesda

14-6 © National Instruments Corporation

© MNational Instruments Corporation

Chapter 14 Managing Reports

You can use any subproperty in fesult property of the step, but

you must you us&Result in place ofStep.Result . For example, if

you want to include only failing steps in the report, set the expression
to %Result.Status ~ =="Failed" . You can use the menu ring to the
right of the control to select predefined expressions for all steps, only
failing steps, or only passing steps.

Report Colors—Use this control to specify the colors of the report.
This option is only available when you select the Web Page format.

Select a Report Generator for Producing the Report Body-Use

this option to select between producing the body of the report using
sequences or a DLL. The report body is the section of the report
between the header and footer that contains individual results for each
sequence and step that TestStand called. In the default TestStand
process model, theestReport callback makes the determination as

to whether the report is built with a sequence or a DLL call.

If you select the sequence report generation optigsiReport calls
theAddReportBody sequence in eith&@eportGen_txt.seq or
ReportGen_html.seq to build the report body. The sequence report
generator uses a series of sequences with steps that recursively process
the result list for the execution.

If you select the DLL report generation optidestReport calls a
function in themodelsupport.dil to build the report body. The

DLL report generator is a single call into a C DLL that processes the
entire result list for the execution before returning. The project and
source code for the LabWindows/CVI-built DLL is available. If you
select the DLL option, TestStand generates reports faster, but
TestStand does not calbdifyReportEntry callbacks.

14-7 TestStand User Manual

Chapter 14 Managing Reports

Report File Pathname Tab

Figure 14-4 shows the Report File Pathname tab of the Report Options
dialog box.

Report Dptions E

Conterts Feport File Pathname |

—(® -Generate Feport Fils Path:
™ Use Temparary File

Client Sequence File Directory vl
| Browse. .. '

Baze Mame: |Report

Iv Fiefix Sequence Fils Mame ta Feport File Name
" &dd Time and Date ta File Mame

[Force File Name ta be Unigue

I Mew File tar Each UUT

Estenzion: [

[Use Report Format Tag

—(" -Specify Fixed Report Fils Path:

Report File Path: | Browse... '

Ok I | LCancel I

Figure 14-4. Report Options Dialog Box—Report File Pathname Tab

You can specify a fixed pathname to use for all report files, or you can
specify options that the report generator uses to generate report file
pathnames. The Report File Pathname tab of the Report Options dialog box
contains the following controls:

« Generate Report File Path—Select this radio button if you want the
report generator to create pathnames automatically. When you select
Generate Report File Path, you can use the controls in the Generate
Report File Path section of the tab.

e Use Temporary File—Enable this option if you want to write the
report to a temporary file. The report generator deletes the file when
you close the Execution window. Enable this option if you do not want
to save your test report after you close the Execution window.

TestStand User Manual 14-8 © National Instruments Corporation

© MNational Instruments Corporation

Chapter 14 Managing Reports

Directory—Use these controls to specify the directory in which the
report generator writes the report file. In the ring control, you can
choose one of the following options.

— Client Sequence File Directory—The directory that contains the
client sequence file. For example if you choose the Test UUTs
item from the Execute menu when the

d:\Tests\MySeqgs\Seq2.seq sequence file is active, the report
generator writes the report file in tHaTests\MySeqs
directory.

— <TestStand Directory>\reports\—Titeport subdirectory under
the TestStand directory.

— Specific Directory—A directory you specify in the string control
under the ring control. You must enter an absolute path in the
string control under the ring control.

Base Name—Use this control to specify the base name for the report
filename. Depending on your settings for other options, the report
generator might add text to the base hame. Do not include a file
extension in this control.

Prefix Sequence File Name to Report File NameEnable this

option if you want to add the base name of the client sequence file in
front of the name you specify in the Base Name control. For example,
if you specifyreport in the Base Name control, the client file name
isauto.seq , and the reportisin HTML format, the report filename is
auto_report.html

Add Time and Date to File Name—Enable this option if you want to
append a string containing the current time and date in localized format
to base name of the report file. For examalao_report.html

might becomeuto_report[12 47 54 PM][6 24 98].html

Force File Name to be Unique—Enable this option if you want to
append a unigue numeric value to the report file name if the file already
exists. For exampleuto_report.html might become
auto_report_00002.html

New File for Each UUT—Enable this option if you want to append
the UUT serial number to the report file name. For example,
auto_report.html might become

auto_reportfABC12345].html . This causes the report generator
to create a separate file for each UUT.

14-9 TestStand User Manual

Chapter 14 Managing Reports

TestStand User Manual

Use Report Format Tag—Enable this option if you want to use the
standard file extension for the report format that you specify in the
Contents tab. Otherwise, specify a file extension, excluding the dot, in
the Extension control.

Specify Fixed Report File Path—Select this radio button if you want

to define a specific pathname to use for all report files. You must
specify an absolute pathname. Each report file that the report generator
creates overwrites the previous report file, unless you enable the
Append if File Already Exists option in the Contents tab.

14-10 © National Instruments Corporation

Run-Time Operator Interfaces

Overview

This chapter gives you an overview of how to create or customize an
operator interface application. It also describes the various operator
interface applications that TestStand includes.

TestStand includes three run-time operator interfaces in both source and
executable form, so they are fully customizable. Each run-time operator
interface is a separate application program that uses the TestStand ActiveX
API. The operator interfaces differ primarily based on the language and
ADE in which each is developed. TestStand includes run-time operator
interfaces developed in LabVIEW, LabWindows/CVI, and Visual Basic.
Like the sequence editor, the run-time operator interfaces allow you to start
multiple concurrent executions, set breakpoints, and single-step. Unlike the
sequence editor, however, the run-time operator interfaces do not allow you
to modify sequences, and they do not display sequence variables, sequence
parameters, step properties, and so on.

If you are not an experienced programmer, you might find the source code
for each run-time operator interface somewhat complex. Before you start
attempting to customize the source code for a run-time operator interface,
you should first familiarize yourself with the TestStand ActiveX API. To

do this, complete the following steps:

1. Thoroughly read th@estStand ActiveX API Overvieection in the
TestStand ActiveX API Referermrdine help. This section contains an
overview of the TestStand ActiveX Server functionality and discusses
how to call the ActiveX API from different programming languages.
Also familiarize yourself with the available methods and properties of
each object class in the ActiveX API.

2. Review the example projects and source code located in the
TestStand\Examples\Operatorinterfaces directory. These
examples illustrate the basic programming requirements for creating a
simple operator interface application that uses the TestStand
ActiveX API.

© MNational Instruments Corporation 15-1 TestStand User Manual

Chapter 15

Run-Time Operator Interfaces

The first decision you need to make is whether you should customize one
of the run-time operator interfaces that TestStand includes, or create your
own application from the ground up. For example, you might want a simple
operator interface application on your production floor that does not allow
you to debug an execution or display the details of an execution the
TestStand engine is running. Attempting to customize and remove
functionality from a fully functional run-time operator interface application
might be more work than is necessary. Instead, you can customize one of
the examples in theestStand\Examples\Operatorinterfaces

directory or create your own application from the ground up.

TestStand Run-Time Operator Interfaces

TestStand installs the executable, project, and source files for each fully
functional run-time operator interface in thestStand\

Operatorinterfaces\NI directory tree. If you want to customize one of
these run-time operator interfaces, copy the operator interface project and
source files from thall subdirectory to th&estStand\

Operatorinterfaces\User subdirectory before customizing them.

This ensures that you do not lose your customizations when you install
newer versions of TestStand. In addition, National Instruments
recommends that you track the changes you make to the operator interface
source so that you can add any future enhancements from newer versions
of the TestStand run-time operator interfaces.

The LabWindows/CVI Run-Time Operator Interface

TestStand installs the executable, project, and source files for the
LabWindows/CVI run-time operator interface in thestStand\

Operatorinterfaces\NI\CVI directory. Table 15-1 lists the files
included in theestexec.prj project file and describes the purpose of
each file.

Table 15-1. Files in the LabWindows/CVI Run-Time Operator Interface Project File

File Description
cfgfile.c Contains code to save and restore settings, and the most-recentlytused
files list to a file in the same directory as the executable or project,
cvibmp.c Contains code to translate icon bitmaps from the Windows bitmap

format into the LabWindows/CVI bitmap format.

TestStand User Manual

15-2 © National Instruments Corporation

Chapter 15 Run-Time Operator Interfaces

Table 15-1. Files in the LabWindows/CVI Run-Time Operator Interface Project File (Continued)

File

Description

data.c

Contains global settings and data that other source modules access

Contains lists of data about loaded sequence files, executions, icons, and

adapters. It also contains an API to access the lists of data.

engine.c

Contains all the code that accesses the TestStand ActiveX automation
server. Also creates and destroys the records of data for sequence files,

executions, sequences, steps, and so on.

exedisp.c

Contains all the code for updating execution displays. Each execution

display has its own data record for its panel. Many of the functiong

in

this module access that data record to update settings, data, and display

information.

filelist.c

Contains code to maintain, save, and restore the most-recently-usg
list at the bottom of th&ile menu.

main.c

Contains thenainprocedure for the program, and consequently callg
initialization and cleanup routines for the application. It also contai

the highest-level code for processing the command line arguments

maingui.c

Contains all the graphical user interface code that is not specific tg
execution display or sequence display. This includes code to hand
single window (tab-dialog) setting of the application as well as

initialization and cleanup of the different display components such
theToolsmenu. Also, all user interface callbacks, which are commag
both sequence displays and execution displays, are located in thig
For example, menu item callbacks that are common to both sequs
and execution displays.

seqdisp.c

ed file

the
ns

D.

the
e the

as

nto
file.

nce

Contains code for updating the sequence display, where you can launch

executions and load and display sequences. The application uses
one sequence display at a time.

teerror.c
teerror.h

only

Contains code to report and display error messages. The header fijle

provides several useful error-checking macros.

rnstchng.c

Contains run-state change callbacks used to control the flow of
UlMessages from the TestStand engine when suspended at a brea
in the source code for the Operator Interface. Also contains code t
cleanup properly when terminating the operator interface prematu
from within LabWindows/CVI.

kpoint
0
rely

tsapicvi.fp

The TestStand ActiveX API wrapper functions.

© MNational Instruments Corporation 15-3

TestStand User Manual

Chapter 15 Run-Time Operator Interfaces

Refer to the fileTestStand\Operatorinterfaces\NI\
CVIreadme.doc , for any additional information about the
LabWindows/CVI run-time operator interface project.

The LabVIEW Run-Time Operator Interface

TestStand installs the executable and source files for the LabVIEW
operator interface in theestStand\Operatorinterfaces\NI\LV

directory. Table 15-2 shows the three top-level Vls in the LabVIEW
Run-Time Operator Interface.

Table 15-2. Top-Level Files in the LabVIEW Run-Time Operator Interface

File Description
TestStand - This VI launches the operator interface by creating a reference to the
Runtime Operator TestStand ActiveX automation server and dynamically loads and dalls
Interface.vi TestStand - Sequence Display.vi
TestStand - This VI displays the Sequence Display window of the operator interface.
Sequence Whenever a new execution starts, the hierarchy of the Sequence Djsplay
Display.vi creates a new instanceTdstStand - Execution Display.vi
TestStand - This VI is the master VI for the Execution Display window of the
EXECU“OO operator interface. For every new execution started, with the exception
Display.vi of executions started during the shutdown procedur@gtistand -
Sequence Display.vi hierarchy makes a temporary copy of this VI
and runs it. Depending on whether the execution starts hidden or not,
this VI also opens its own panel.
Refer to the fileTestStand\Operatorinterfaces\NI\
LV\readme.doc , for any additional information about the LabVIEW
run-time operator interface Vls.
Building a Standalone Executable
Use the following steps to make an executable version of the LabVIEW
run-time operator interface.
Note You must have the LabVIEW Application Builder to perform these steps.
1. OpenTestStand - Runtime Operator Interface.vi in
LabVIEW.
2. Enable the Run When Opened option under the Execution Options
section of the VI Setup dialog box.
TestStand User Manual 15-4 © National Instruments Corporation

Chapter 15 Run-Time Operator Interfaces

3. Save the VI using th®ave with Optionscommand in th&ile menu
and select the Application Distribution option. Save the VI into a new
VI library with the namemaingui.llb in some directory of your
choosing.

4. Click onFile»Edit Library to make this VI the top-level VI in
maingui.llb

5. Click onProject»Build Application to build the operator interface
application. Embed th@aingui.llb library file in the application.

6. Enable the ActiveX server option and enter a unique name in the
ProgID Prefix control, such &estStandLVGUI

7. Name the resulting executalkdstexec.exe

Note If you enable the ActiveX server, you can configure the TestStand engine to use
the LabVIEW run-time embedded in the executable as the LabVIEW server that
runs VI tests. Refer to th€onfiguring the LabVIEW Standard Prototype Adapter
section in Chapter 12Module Adaptersfor more information.

8. Open the VIrestStand\Sequence Display\TestStand -
Sequence Display.vi and save the VI with the Application
Distribution option into a new library filegstexec.llb ,inthe same
directory agestexec.exe

9. OpernTestStand\Execution Display\TestStand -
Execution Display.vi and save the VI with the Application
Distribution option into a new library filggstexec.llb ,inthe same
directory agestexec.exe

10. OperrestStand\Common Vis\TestStand - Busy
Indicator.vi and save the VI with the Application Distribution
option into a new library filagstexec.llb , inthe same directory as
testexec.exe

You can now run the operator interface by launclhésgxec.exe

© MNational Instruments Corporation 15-5 TestStand User Manual

Chapter 15 Run-Time Operator Interfaces

The Visual Basic Run-Time Operator Interface

TestStand installs the executable, project, and source files for the Visual
Basic operator interface in thestStand\Operatorinterfaces\

NI\VB directory. Table 15-3 shows the three top-level Vis in the Visual
Basic run-time operator interface.

Table 15-3. Top-Level Files in the Visual Basic Run-Time Operator Interface

Files

Description

Forms

AdapterCfg.frm

An implementation of an adapter configuration dialog box that
calls the internal adapter configuration dialog box of the
adapter that the user selects.

DoNothing.frm

A dialog that immediately unloads itself. Use this dialog box to
make Visual Basic remove any menus that are displayed when
the menus need to be dynamically updated because of a change
in the execution state of a sequence that TestStand is runping.

ExeDisplay.frm

The code that implements the execution displays. All the
callbacks and source code which relate to maintaining and
updating an execution display are contained within this file.

OkBox.frm

A simple text message dialog box that contains a scrollable text
control. Use this dialog box to report error messages.

SeqDisplay.frm

The code that creates the sequence display window. This file
contains all the callbacks and source code that relate to
maintaining and updating the sequence display, as well as|code
to start executions.

Splash.frm

The about dialog box.

TermAbortCancel.frm

A dialog box that gives the user the choice of terminating,
aborting, or canceling an execution. This dialog box appears
when a user attempts to close an execution display of an
execution that has not finished running.

TestStand User Manual

15-6 © National Instruments Corporation

Chapter 15 Run-Time Operator Interfaces

Table 15-3. Top-Level Files in the Visual Basic Run-Time Operator Interface (Continued)

Files

Description

Modules

Data.bas

Contains global settings and data that other source modul
access. This module is also responsible for initialization a
cleanup of the.oadedSegFileList.bas module and the
ExelListbas module.

es
nd

ErrorHandler.bas

Contains code for displaying the current error information
contained in the Visual Basggobal Err object.

Exelist.bas

Contains code for maintaining a list of execution displays
their corresponding executions. Also, provides methods a
properties to perform different operations on them and get
information about them.

and
nd

LoadedSeqFileList.bas

Maintains the list of the sequence files that are loaded for
sequence display. TiseqgDisplay.frm calls functions in this
module to load and unload sequence files and get informa
about the list.

the

tion

MiscGUIl.bas

Contains utility functions used by basleqDisplay.frm and
ExeDisplay.frm . Also, contains code to start the
login/logout callback and to maintain tleols menu items
and entry point menu items for the displays.

Class Modules

EntryPointMenu.cls

Contains code for maintaining and updating the menus cre
for the entry points of a model sequence file. Instances of
class are created for every menu that can contain entry pg

ated
this
ints.

WaitCursor.cls

Contains code for displaying a wait cursor for the life of an
object created as an instance of this class. When the obje
terminated, it resets the cursor back to its previous state.

ct is

Refer to the fileTestStand\Operatorinterfaces\
NI\VB\readme.doc , for more information about the Visual Basic
run-time operator interface project.

© MNational Instruments Corporation

15-7 TestStand User Manual

Chapter 15 Run-Time Operator Interfaces

Distributing a Run-Time Operator Interface

Refer to Chapter 1@®istributing TestStandor more information about
distributing the TestStand engine with your customized run-time operator
interface application.

TestStand User Manual 15-8 © National Instruments Corporation

Distributing TestStand

This chapter describes how to create an installer for a customized
TestStand engine, how to distribute the TestStand engine with a run-time
operator interface, and how to distribute each type of code module that
TestStand supports. This chapter also describes how to customize and
distribute a LabVIEW run-time server.

Creating a Run-Time TestStand Engine Installation

If you want to distribute a run-time version of the TestStand engine with
your operator interface application, you must create a separate installer for
the TestStand engine. When you distribute your operator interface
application, you can either install the TestStand engine separately or
customize the operator interface installer to call the installer for your
TestStand engine.

TestStand includes a wizard for creating a custom TestStand engine
installation. Complete the following steps to create a custom TestStand
engine installation.

1. Selectnstallation Wizard for the TestStand Enginefrom the
TestStand program group to launch the wizard.

Figure 16-1 shows the opening dialog box for the wizard.

Installation Wizard for the TestStand Engine

‘Wwelcame ta the Installation wizard for the TestStand Engine.

This pragram will create a simple custom TestStand Engine zetup with your
oWk enging companents included.

Begln Cancel

Figure 16-1. Opening Dialog Box for the TestStand Engine Installation Wizard

© MNational Instruments Corporation 16-1 TestStand User Manual

Chapter 16 Distributing TestStand

TestStand User Manual

Click on theBegin button.

The wizard displays the dialog box as shown in Figure 16-2. This
dialog box lists the additional files the wizard includes in the
installation for the TestStand engine. By default, the wizard includes
the TestStand\Components\User directory in the custom

installer, which ensures that the installer contains any custom
engine components you create. In addition, the wizard adds the
ToolMenu.ini file from your TestStand station. Refer to Chapter 3,
Configuring and Customizing TestStafar more information about
the TestStand components you can customize.

Installation Wizard for the TestStand Engine

In addition to the TeztStand Engine setup files, the following
directory contents and files will be included in the setup:

2\ T estEvechComponentshl ser.#
2\ T estErechCighT oolMenu.ini

Custonize

il

Cancel

Figure 16-2. Default Components to Include in the Installation

16-2 © National Instruments Corporation

Chapter 16 Distributing TestStand

Click on theCustomizebutton to select which additional files the
wizard includes in the installation. When you make this selection, the
wizard displays the Customize Files to Include in Installation dialog

box, as shown in Figure 16-3.

Customize Files to Include in Installation E

Directonies/Files to inchude:

Z:MT estEvec\Componentsil zerh”
Z:MTestEwec\Chgh T ool enuini

Ingert Edit Delete |

Catcel |

Figure 16-3. Customize Files to Include in Installation Dialog Box

© MNational Instruments Corporation 16-3 TestStand User Manual

Chapter 16 Distributing TestStand

TestStand User Manual

4. Click on thensert button to insert new entries in the file list or click
on theEdit andDeletebuttons to edit and delete existing entries. When
you insert or edit an entry, the wizard displays the Select Files to
Include dialog box, as shown in Figure 16-4.

Select Files to Include E
Source Directory: " finclude the following fllesd
=] Testexec =] T tsapicyi.ob
=0 Adapterfupport ™ tsutilobj

- I3 Cvi
F-E5 AutoloadLibs
@0 LabvIEW
- Api

B0 At

&3 Bin

-] Cfg

E-Z1 CodeTemplates
D Components
B3 Dac

{21 Examples

-3 Lib _| Use wildsard search:

LT Omarstadetafzmes
Ix)

¥ Flecurse subidiectones

Fielative Path for Destination:

AdapterSupporth CWlhautoLoadLibs®,

ak. I Cancel |

Figure 16-4. Select Files to Include Dialog Box

5. Include individual files or include all files that match a filename
containing wildcard characters. When you specify files using wildcard
characters, you can recurse subdirectories, and the resulting
installation maintains the directory structure when distributing these
files to a target system. You use the Relative Path for Destination
control to specify the destination subdirectory where the installation
installs the specified files under the distributed TestStand engine.

6. After you define the list of additional files to include in the installation,
the wizard prompts you for the directory you want the wizard to create
the installation files in. Upon completing the build process, the wizard
creates the following installation files:

e TSEngine.cab —Compressed file that contains the TestStand
engine files.

e SetupTSEngine.exe —Setup executable thatuncompresses and
installs the TestStand engine.

16-4 © National Instruments Corporation

Chapter 16 Distributing TestStand

Using a Custom TestStand Engine Installation

You can invoke the custom TestStand engine installation by running the
setup executable file separately or by calling it from another installation.
The setup executable supports the following command-line options:

X Delete theTSEngine.cab file after installing the
TestStand engine, and register with the operating
system to delete th&etupTSEngine.exe file
after rebooting the target system.

-noprompt Do not prompt.
<path> Install at specified location, default is
C:\TestStand.

Table 16-1 lists the actions the installer takes depending on whether the
TestStand engine is already installed on a target system and which
command-line options you pass to the setup executable.

Table 16-1. Custom TestStand Engine Installer Actions

Engine
Already -noprompt <path>
Installed? Specified? Specified? Installer Actions
No No No Prompt to specify install directory. Installer
usesc:\TestStand ~ as default.
No No Yes Prompt to specify install directory. Installer
uses command-line specified path as defgult.
No Yes No No prompt for installation directory. Installgr
usesc:\TestStand as the install directory.
No Yes Yes No prompt for installation directory. Installgr
uses command-line specified path as defgult.
Yes No Yes/No Prompt to confirm installation. Installer uses
previously installed location.
Yes Yes Yes/No No prompt. Installer uses previously
installed location.

Refer to theDistributing your Operator Interfaceection later in this
chapter for recommendations on how to bundle a custom engine installation
with a distribution of your operator interface application.

© MNational Instruments Corporation 16-5 TestStand User Manual

Chapter 16 Distributing TestStand

Distributing your Operator Interface

Installing the Customized Engine

The following sections explain how to bundle a custom TestStand engine
installation with your distribution kit for LabVIEW, LabWindows/CVI,
and Visual Basic.

LabVIEW

You can use the Create Distribution Kit feature in the LabVIEW
development environment to create an installation for your operator
interface. If you want to bundle a custom TestStand engine installation in
your LabVIEW distribution kit you must complete the following steps:

1. Add theSetupTSEngine.exe andTSEngine.cab files to your
distribution kit. You can install the file in the base installation directory
of your application.

2. Inthe Advanced section of the Create Distribution Kit dialog box,
select thesetupTSEngine.exe file in the Executable to Run After
Setup section. Specify the command-line option to delete the
engine installation files after the executable runs.

3. If you want to alter the default message at the end of the installation of
your application to indicate that the TestStand engine will install next,
you can use a custom template file as the installation script. TestStand
includes a custom script fil&estStand\Operatorinterfaces\
LV\TestStandLVTemplate.inf , which is based on the default
LabVIEW 5.0.1 template fileabVIEW\APPLIBS\distkit\
template.inf . The custom script contains an alteEzdSuccess
procedure.

Refer to the LabVIEW documentation for more information on using the
advanced options of the Create Distribution Kit feature in LabVIEW.

LabWindows/CVI

You can use the Create Distribution Kit feature in the LabWindows/CVI
development environment to create an installation for your operator
interface. If you want to bundle a custom TestStand engine installation in
your LabWindows/CVI distribution kit you must complete the following
steps:

1. Add theSetupTSEngine.exe andTSEngine.cab files to your
distribution kit. You can install the file in the base installation directory
of your application.

TestStand User Manual 16-6 © National Instruments Corporation

Chapter 16 Distributing TestStand

2. On the Advanced Distribution Kit Options dialog box, select the
SetupTSEngine.exe file in the Executable to Run After Setup
section. Specify thex command-line option to delete the engine
installation files after the executable runs.

3. If you want to alter the default message at the end of the installation of
your application to indicate that the TestStand engine will install next,
you can use a custom template file as the installation script. TestStand
includes a custom script fil&estStand\Operatorinterfaces\
CVI\TestStandCVITemplate.inf , which is based on the default
LabWindows/CVI 5.0.1 template fileVi\bin\template.inf . The
custom script contains an altefexitSuccess procedure.

Refer to the LabWindows/CVI documentation for more information on
using the Advanced Distribution Kit dialog box of the Create Distribution
Kit feature in LabWindows/CVI.

Visual Basic

You can use the Application Setup Wizard feature in Visual Basic to create
an installation for your operator interface. If you want to bundle a custom
TestStand engine installation in your Visual Basic 5.0 application
installation, you must complete the following steps:

1. Update the&visualBasic\SetupKit\Setup1\Setupl.vpb
project to automatically launctetupTSEngine.exe after
successfully installing your operator interface application. You can do
this by inserting code into thrm_Load subroutine in the
Setupl.frm module. You might want to review existing code in the
Setupl.vpb project that calls thaXDIST.EXE andWINT351.EXE
installers dynamically when you include the files in the application
installation.

You cannot use thesyncShell function to launch the TestStand
engine installer. ThEsyncShell function prevents the TestStand
engine installer from running properly. If you want to wait for the
TestStand installer to complete its installation before completing the
application installation, you can use tigellAndWait function in

the ShellAndWait module that TestStand includes in the
TestStand\Operatorinterfaces\VB directory.

If you want to automatically delete the engine installation files after the
executable runs, you can specify thecommand-line option when
calling the TestStand engine installer.

2. Add theSetupTSEngine.exe andTSEngine.cab files to your
installation. You can install the file in the installation directory of your
application.

© MNational Instruments Corporation 16-7 TestStand User Manual

Chapter 16 Distributing TestStand

Refer to the Visual Basic documentation for more information on using the
Application Setup Wizard feature in Visual Basic.

Distributing Sequences and Code Modules

This section explains how to distribute sequence files, DLL code modules,
object code modules, static library code modules, LabVIEW test Vs, and
ActiveX automation code modules.

Distributing Sequence Files

For each step in a sequence that calls a code module, TestStand stores the
module name and path as properties of the step. The path can be an absolute
path or a path that is relative to a directory in the TestStand search
directories. When you distribute a sequence file, you also must distribute
the appropriate step modules and their support files onto the target system.
Also, you must ensure that sequence files can locate their step module files
using the TestStand search paths list.

If you distribute a sequence file that contains absolute paths, TestStand
will not find its code modules unless the target system contains a similar
directory structure. National Instruments recommends that you use relative
paths whenever possible. You can modify the precedence of the directory
paths that TestStand searches withGbafigure»Search Directories
command.

Distributing DLL Code Modules

A DLL file can require that other support DLL files be installed on a system
so TestStand can properly load the DLL into memory. You must ensure
that you install the appropriate support DLL files on a target system before
running the DLL tests within TestStand.

Distributing Object and Static Library Code Modules

When the C/CVI Standard Prototype Adapter loads an object or static

library file, the LabWindows/CVI Run-time Engine resolves all external
references in the file. When you distribute object or static library code

modules, you must distribute the appropriate support files to the target
system.

When running object or static library code module tests in-process, the
adapter must load the support libraries that the code module depends on
before it loads the code module file. The adapter automatically loads all
support libraries from the

TestStand User Manual 16-8 © National Instruments Corporation

Chapter 16 Distributing TestStand

TestStand\AdapterSupport\CVI\AutoLoadLibs directory. You

must ensure that you copy the appropriate support files to the parallel
directory on a target system. One option is for you to include the contents
of theAutoLoadLibs directory on your development system in the
distribution of the custom TestStand engine.

If you want a TestStand step to call a code module out-of-process in

an external instance of LabWindows/CVI, you must include all support
libraries other than LabWindows/CVI libraries in the project on the target
system.

Refer to theConfiguring the C/CVI Standard Prototype Adaggection in
Chapter 12Module Adaptersfor more information about using different
code modules with the C/CVI Standard Prototype Adapter.

Distributing LabVIEW Test Vls

The LabVIEW Standard Prototype Adapter loads and runs VIs using a
LabVIEW ActiveX server. The LabVIEW server can be the LabVIEW
development environment or a LabVIEW-built run-time application that
includes the LabVIEW ActiveX server. When you distribute a TestStand
test VI, you must ensure that the LabVIEW server can locate all subVis.
The method you use to guarantee that the LabVIEW server can locate
subVIs depends on how you want to distribute your source VIs.

When you develop your test VI in LabVIEW, you usually save the VI
without its hierarchy. For each subVI reference in a VI, LabVIEW saves the
location of the subVI within the VI. When TestStand requests a LabVIEW
server to load a VI, the server attempts to locate all subViIs in the VI
hierarchy. If the LabVIEW server cannot find the subVI in the expected
location that is stored in the VI, the LabVIEW server searches the VI search
path list as defined in the preferences for the server.

A LabVIEW server reads its search path list froinia file with the same
base name as the server application, thatls/IEW.ini or
TestStandLVRTS.ini . By default, the search path preferences for a
LabVIEW server are as follows:

1. The directory that contains the top-level VI being opened.

2. The list of directories that the LabVIEW server builds each time a VI
is loaded.

Thevilib subdirectory in the Library directory for the LabVIEW
server.

w

© MNational Instruments Corporation 16-9 TestStand User Manual

Chapter 16 Distributing TestStand

TestStand User Manual

4. Theuserlib subdirectory in the Library directory for the LabVIEW
server

5. Theinstr.lib subdirectory in the Library directory for the
LabVIEW server.

Refer to theSearch Pathsopic in theLabVIEW Online Referender more
information about the VI Search Path preference.

The rest of this section describes three options for distributing your VIs.
You might want to use one of these options or a combination of these
options.

Packaging ViIs and SubVIs for a Sequence File

TestStand includes®ools menu utility that can help you save the entire
test VI hierarchy for a specific sequence file. For all steps in a sequence file
that use the LabVIEW Standard Prototype Adapter, the utility can save test
VIs to a single directory and all subVIs, run-time menu files, and external
subroutines to a separate VI library. You can remove the diagrams from all
the VIs. You can run this utility by clicking ofools»Assemble Test Vs

for Run-Time Distribution while a sequence file window is active.

When you create a run-time distribution kit you must install the VIs and
support VI library that the utility creates on your target system. Also, you
must ensure that sequence files that call the VI tests can locate the files
using the TestStand search paths list.

If your tests call any subVIs dynamically, the packaging utility does not
save the subVIs in the support VI library. You must distribute these
dynamically-called VIs separately.

Distributing VIs by Saving Them without Full
Hierarchy

If you want to maintain your test VIs on a target system as independent
files, and you do not want to resave your VI libraries with their full
hierarchy, you must distribute all required subVIs and support files to the
target system. Support files include external subroutines, run-time menus,
and DLLs. This includes distributing VIs and VI libraries from the
LabVIEW library subdirectories, that ig,lib , userlib , and

instr.lib , and any other files from additional directories in your search
path preferences. In addition, if you want to maintain multiple LabVIEW
servers on your target system, you must ensure that each LabVIEW server
can find any required subViIs.

16-10 © National Instruments Corporation

Chapter 16 Distributing TestStand

For example, if your development system contained a directory structure of
sequences and Vs, you could distribute your Vls as follows:

1. Duplicate the entire directory structure of sequences and VIs on your
target system. If you do not install the files in the same absolute path,
you must make sure the sequences and VIs contain relative paths for
references to other files within this directory structure.

2. Copy the required subVIs and VI libraries from the library
subdirectories of the LabVIEW development system to the appropriate
library subdirectories of each LabVIEW server. If the target system
already contains a copy of the LabVIEW development environment,
you need only copy additional files that the target system does not
have. If the target system contains only a LabVIEW run-time server,
you can copy the entire library subdirectories from the development
system to the target system. If the target system contains multiple
LabVIEW servers, you can maintain a single LabVIEW server library
directory by customizing the preferences for each server to reference
to this single library.

If you upgrade the version of LabVIEW on your systems, you must rebuild
all LabVIEW run-time servers with the new version of LabVIEW, mass
compile your test Vis and subVIs, and update your library subdirectories
where appropriate.

Distributing VIs by Saving Them with Full Hierarchy

LabVIEW allows you to save your Vls with their full hierarchy into a
directory or a VI library. This includes saving all subVIs, controls, and
external subroutines, including the onesiillb . You can remove the
diagrams from all of the Vis.

Using this LabVIEW feature, you can resave your test Vs with their full
hierarchy to a new, separate directory image that you can distribute to a
target system. If your sequence refers to test VIs from within VI libraries,
you must save the VI under the same VI library name so that the pathname
for the VI module in the sequence is correct. If your sequence refers to test
VIs directly from disk, you cannot save the VI hierarchy within a VI library.

To save the full hierarchy for a VI, sel&gle»Savewith Options»Custom
Savewith the following options selected.

« To new location - single prompt.

e Save entire hierarchy.

* Includevilib files (This selection is necessary only if the target
LabVIEW server is not the LabVIEW development environment.)

© National Instruments Corporation 16-11 TestStand User Manual

Chapter 16 Distributing TestStand

¢ Include external subroutines.
¢ Include run-time menus.
« Remove diagrams (This selection is optional.).

To streamline the saving process, you can create a VI that contains all test
VIs on its diagram. Then save this VI and its VI hierarchy. When you do
this, you do not have to save VIs individually for every VI used with a
sequence. Instead, you perform the saving procedure only once.

If your tests call any subVIs dynamically, you must distribute these
dynamically-called VIs separately.

Distributing ActiveX Automation Code Modules

When the ActiveX Automation Adapter attempts to load an ActiveX
Automation server, the server must be registered with the operating system.
When distributing TestStand, you must ensure that you properly install and
register ActiveX Automation server code modules on a target system
before using the server from within TestStand.

Customizing and Distributing a LabVIEW Run-Time

Server

TestStand User Manual

The LabVIEW Standard Prototype Adapter runs VIs using a LabVIEW
ActiveX server. The server can be the LabVIEW development environment
or a LabVIEW-built run-time application that includes the LabVIEW
ActiveX server. TestStand requires a LabVIEW run-time system when you
do not install LabVIEW on the system and you run sequences that contain
steps calling LabVIEW Vis.

The TestStand installation includes a prebuilt LabVIEW run-time system
with source in th@estStand\Components\NI\RuntimeServers\

LabVIEW directory tree. The executable nam@&astStandLVRTS.exe

and the ActiveX server nameTsstStandLVRTS . If you want to

customize the server, copy all source files fromNhsubdirectory to the
TestStand\Components\User\RuntimeServers\LabVIEW

subdirectory before customizing them. This ensures that you do not lose
your customizations when you install newer versions of TestStand.

16-12 © National Instruments Corporation

Chapter 16 Distributing TestStand

Refer to theConfiguring the LabVIEW Standard Prototype Adagtstion
in Chapter 12Module Adaptersfor more information about configuring
which LabVIEW server TestStand uses.

Note When running the application version of the LabVIEW run-time operator
interface, you can use the ActiveX server from the operator interface application
instead of the server from the LabVIEW development environment or the prebuilt
LabVIEW run-time system.

Rebuilding the TestStand LabVIEW Run-Time Server

The prebuilt LabVIEW run-time server is built with a specific version of
LabVIEW. Refer to theeadme.txt file in the same directory as the
executable for the specific version. Whenever you save your VIs with a
newer version of LabVIEW, you must rebuild any LabVIEW run-time
servers that TestStand uses to execute the newer VIs. To rebuild or
customize the TestStand LabVIEW run-time server, you must complete
the following steps:

1. Copy all source files, with the exceptionTektStandLVRTS.exe
from theTestStand\Components\NI\RuntimeServers\
LabVIEW subdirectory to th&estStand\Components\
User\RuntimeServers\LabVIEW subdirectory.

2. Operserver.lib\TestStand - LabVIEW Runtime Server.vi
in LabVIEW.

3. SelecWI Setup»Execution Optionsand enable the Run When
Opened option.

4. Selectrile»Save with Optionsand save the VI for Application
Distribution to a new VI libraryTestStandLVRTS.llb in the
TestStand\Components\User\RuntimeServers\LabVIEW

directory.
5. Selectrile»Edit VI Library and maké&estStand - LabVIEW
Runtime Server.vi the top-level VI inTestStandLVRTS.lIb

6. SelectProject»Build Application to build an executable with the
following settings:

— Embedded Library-FestStandLVRTS.lIb
— ActiveX server—Enabled

— ProgID Prefix—FestStandLVRTS

— Application Name—FestStandLVRTS.exe

— Application Directory—FestStand\Components\User\
RuntimeServers\LabVIEW

© National Instruments Corporation 16-13 TestStand User Manual

Chapter 16 Distributing TestStand

Distributing the TestStand LabVIEW Run-Time Server

TestStand User Manual

The TestStand Engine Installation Wizard automatically includes the
default NI LabVIEW run-time server with any engine installation. If you
include theTestStand\Components\User directory in the custom
engine installation, any customized version of the LabVIEW run-time
server is also included in the custom engine installation. The resulting
engine installation automatically registers theLabVIEW run-time
server first and then théser LabVIEW run-time server. If theser
version uses the same ProglID, its registration replaces the previously
registeredNl server.

To manually distribute the LabVIEW run-time server, you must include
the following files:

e TestStandLVRTS.exe
¢ TestStandLVRTS.tlb
o LVWULI32.dII

If you want to manually register the ActiveX server in a LabVIEW run-time
application, you can launch the executable with/Register keyword

on the command-line. When you do this, the executable registers itself and
terminates. You can also register the server by simply launching the
executable.

You also must distribute any required files to load and run a test VI
dynamically. If your application uses serial port or data acquisition
functionality, you must include theerpdrv ordaqdrv files from the
LabVIEW development system in the same directory as the executable file.
If your application uses a GPIB or data acquisition board, you must install
the hardware drivers that come with the board.

If you choose to distribute your test VIs to a target system as independent
files, and you do not want to resave your VI libraries with their full
hierarchy, you must also distribute any files required by the test VIs, that is,
files from thevilib ,userlib , andinstr.lib directories. Refer to
theDistributing VIs by Saving Them without Full Hierarcdsction in this
chapter for more information.

Refer to thdeabVIEW Application Builder Release Notexzumentation
for more information about creating a LabVIEW application that includes
the LabVIEW ActiveX server.

16-14 © National Instruments Corporation

Customer Communication

For your convenience, this appendix contains forms to help you gather the information necessary
to help us solve your technical problems and a form you can use to comment on the product
documentation. When you contact us, we need the information on the Technical Support Form and
the configuration form, if your manual contains one, about your system configuration to answer your
guestions as quickly as possible.

National Instruments has technical assistance through electronic, fax, and telephone systems to quickly
provide the information you need. Our electronic services include a bulletin board service, an FTP site,
a fax-on-demand system, and e-mail support. If you have a hardware or software problem, first try the
electronic support systems. If the information available on these systems does not answer your
guestions, we offer fax and telephone support through our technical support centers, which are staffed
by applications engineers.

Electronic Services

Bulletin Board Support

National Instruments has BBS and FTP sites dedicated for 24-hour support with a collection of files
and documents to answer most common customer questions. From these sites, you can also downloac
the latest instrument drivers, updates, and example programs. For recorded instructions on how to use
the bulletin board and FTP services and for BBS automated information, call 512 795 6990. You can
access these services at:

United States: 512 794 5422
Up to 14,400 baud, 8 data bits, 1 stop bit, no parity

United Kingdom: 01635 551422
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

France: 01 48 65 15 59
Up to 9,600 baud, 8 data bits, 1 stop bit, no parity

FTP Support

To access our FTP site, log on to our Internet Hipstatinst.com , asanonymous and use
your Internet address, suchjassmith@anywhere.com , as your password. The support files and
documents are located in thapport directories.

© National Instruments Corporation A-1 TestStand User Manual

Fax-on-Demand Support

Fax-on-Demand is a 24-hour information retrieval system containing a library of documents on a wide
range of technical information. You can access Fax-on-Demand from a touch-tone telephone at
512 418 1111.

E-Mail Support (Currently USA Only)

You can submit technical support questions to the applications engineering team through e-mail at the
Internet address listed below. Remember to include your name, address, and phone number so we can
contact you with solutions and suggestions.

support@natinst.com

Telephone and Fax Support

National Instruments has branch offices all over the world. Use the list below to find the technical
support number for your country. If there is no National Instruments office in your country, contact

the source from which you purchased your software to obtain support.

Country Telephone Fax

Australia 03 9879 5166 039879 6277
Austria 0662 4579900 0662 45 7990 19
Belgium 02 757 00 20 02 757 03 11
Brazil 011 288 3336 011 288 8528
Canada (Ontario) 905 785 0085 905 785 0086
CanadaQuébeg 514 694 8521 514 694 4399
Denmark 45 76 26 00 45 76 26 02
Finland 09 72572511 09 725 725 55
France 0148142424 0148142414
Germany 089 741 31 30 089 714 60 35
Hong Kong 2645 3186 2686 8505
Israel 03 6120092 03 6120095
Italy 02 413091 02 41309215
Japan 03 5472 2970 03 5472 2977
Korea 02 596 7456 02 596 7455
Mexico 5520 2635 5520 3282
Netherlands 0348 433466 0348 430673
Norway 3284 84 00 3284 86 00
Singapore 2265886 2265887
Spain 91 640 0085 91 640 0533
Sweden 08 73049 70 08 7304370
Switzerland 056 200 51 51 056 200 51 55
Taiwan 02 377 1200 02 737 4644

United Kingdom
United States

TestStand User Manual

01635 523545
512 795 8248

A2

01635 523154
512 794 5678

© National Instruments Corporation

Technical Support Form

Photocopy this form and update it each time you make changes to your software or hardware, and use
the completed copy of this form as a reference for your current configuration. Completing this form
accurately before contacting National Instruments for technical support helps our applications
engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products related to this problem,
include the configuration forms from their user manuals. Include additional pages if necessary.

Name

Company

Address

Fax(__) Phone (__)

Computer brand Model Processor
Operating system (include version nhumber)

Clock speed MHz RAM__ MB Display adapter

Mouse __yes _ no Other adapters installed

Hard disk capacity MB Brand

Instruments used

National Instruments hardware product model Revision
Configuration

National Instruments software product Version
Configuration

The problem is:

List any error messages:

The following steps reproduce the problem:

TestStand Hardware and Software Configuration Form

Record the settings and revisions of your hardware and software on the line to the right of each item.
Complete a new copy of this form each time you revise your software or hardware configuration, and
use this form as a reference for your current configuration. Completing this form accurately before
contacting National Instruments for technical support helps our applications engineers answer your
questions more efficiently.

National Instruments Products

Hardware revision

Interrupt level of hardware

DMA channels of hardware

Base I/O address of hardware

Programming choice

National Instruments software

Other boards in system

Base I/0O address of other boards

DMA channels of other boards

Interrupt level of other boards

Other Products

Computer make and model

Microprocessor

Clock frequency or speed

Type of video board installed

Operating system version

Operating system mode

Programming language

Programming language version

Other boards in system

Base I/0O address of other boards

DMA channels of other boards

Interrupt level of other boards

Documentation Comment Form

National Instruments encourages you to comment on the documentation supplied with our products.
This information helps us gvide quality products to meet your needs.

Title: TestStand User Manual
Edition Date: December 1998
Part Number: 322016A-01

Please comment on the completeness, glanitd eganization of the manual.

If you find errors in the manual, please record the page numbers and describe the errors.

Thank you for your help.
Name
Title
Compaly
Address

E-Mail Addres
Phone (__) Fax }

Mail to: Technical Publications Faxto: Technical Publications
National Instruments Corporation National Instruments Corporation
6504 Bridge PoinParkway 5127945678
Austin, Texas 78730-5039

Glossary

Prefix Meaning Value
p- pico 1012
n- nano- 10°
- micro- 1066
m- milli- 10-3
k- kilo- 103
M- mega- 10
G- giga- 10

t- tera- 102

abort

active window

ActiveX reference
property

ActiveX server

Adapter

administrator

© National Instruments Corporation G-1

To stop an execution without running any of the Cleanup step groups in the
sequences on the call stack run. When you abort an execution, no report

generation Occurs.

The window that user input affects at a given moment. The title of an active
window is highlighted.

A container of information that maintains a reference to an ActiveX object.
TestStand maintains the value of the property dbigpatch or
[Unknown pointer.

Any executable code that makes itself available to other applications
according to the ActiveX standard. ActiveX implies a client/server
relationship in which the client requests objects from the server and asks

the server to perform actions on the objects.

A service of the TestStand engine that steps use to invoke code in another
sequence or in a code module. The adapter knows the type of the code
module, how to call it, and how to pass parameters to it.

A user profile that usually contains all privileges for a test station.

TestStand User Manual

Glossary

Application
Development

Environment (ADE)

Application

Programming Interface

(API)

array property

ASCII

block diagram

breakpoint

built-in property

built-in step type
property

button

C

checkbox

cluster

TestStand User Manual

A programming environment such as LabVIEW, LabWindows/CVI, or
Microsoft Visual C, in which you can create test modules and run-time
execution operator interfaces.

A set of classes, methods, and properties that you use to control a specific
service, such as the TestStand engine.

A property that contains an array of single-valued properties of the same

type.

American Standard Code for Information Interchange.

Pictorial description or representation of a program or algorithm. In
LabVIEW, the block diagram which consists of executable icons called
nodes and wires that carry data between the nodes, is the source code for
the VI. The block diagram resides in the Diagram window of the VI.

An interruption in the execution of a program.

A property that all steps or sequences contain. An example is the step run
mode property. TestStand normally hides these properties in the sequence
editor, although it lets you modify some of them through dialog boxes.

A property that is common to all steps of the same type. A built-in step type
property is either a class step type property or an instance step type

property.

A dialog box item that, when selected, executes a command associated with
the dialog box.

A dialog box input that allows you to toggle between two possible options.

A set of ordered, unindexed data elements in LabVIEW of any data type
including numeric, Boolean, string, array, or cluster. The elements must be
all controls or all indicators.

G-2 © National Instruments Corporation

class

Glossary

Defines a list of methods and properties that you can use with respect to the
objects that you create as instances of that class. A class is like a data type
definition except that it applies to objects rather than variables.

class step type property A built-in step property that exists only in the step type itself. TestStand

client sequence file

clipboard

code module

code template

configuration
entry point

connector

container property

context menu

uses these properties to define how the step type works for all step
instances. Step instances do not contain their own copies of class
properties.

A sequence file that contains the main sequence a process model invokes to
test a UUT. Each client sequence file contains a sequence called
MainSequence . The process model defines what is constant about your
testing process, whereas the client sequence file defines the steps that are
unique to the different types of tests you run.

A temporary storage area the operating system uses to hold text that is cut,
copied, or deleted from a work area.

A program module, such as a Windows Dynamic Link Libx#iry § or
LabVIEW VI (.vi), that contains one or more functions that perform a
specific test or other action.

A source file that contains skeleton code. The skeleton code serves as a
starting point for the development of code modules for steps that use the
step type.

A sequence in the process model file that configures a feature of the process
model. Configuration entry points usually save configuration information

in a.ini file in theTestStand\cfg directory. By default, configuration

entry points appear in the Configure menu. For example, the default
process model contains the configuration entry p@iotfig Report

Options . TheConfig Report Options entry point appears &eport
Options in theConfigure menu.

Part of a LabVIEW VI or function node that contains its input and output
terminals, through which data passes to and from the node.

A property that contains no values, and typically contain multiple
subproperties. Container properties are analogous to structures in C/C++
and to clusters in LabVIEW.

Menus accessed by clicking on an object. Menu options pertain to that
object specifically.

© National Instruments Corporation G-3 TestStand User Manual

Glossary

control
control flow
custom named

data type

custom property

D

dialog box

developer

DLL

E

Edit substep

engine

TestStand User Manual

An input and output device for entering data that appears on a panel or
window.

The sequential order of instructions that determines execution order.

A data type that you define and name. For example, you might create a
Transmitter ~ data type that contains subproperties sutluaghannels
andPowerLevel

A property that you define in a step type. Each step you create with the step
type has its own copy of the custom property. TestStand uses the value that
you specify for the custom property in the step type as the initial value of
the property in each new step you create. Normally, after you create a step,
you can change the value of the property in the step.

A prompt mechanism in which you specify additional information needed
to complete a command.

A user profile that usually contains all privileges associated with operating,
debugging, and developing sequences and sequence files, but cannot
configure user privileges, report options, or database options.

dynamic link library

A substep that the engine calls when editing the step. You invoke the
substep with the menu item that appears in the context menuSbesiéy
Module. The Edit substep displays a dialog box in which the sequence
developer edits the values of custom step properties. For example, the Edit
Limits item appears in the context menu for Numeric Limit test steps, and
the Edit Pass/Fail Source item appears in the context menu for Pass/Fail test
steps.

SeeTest Executive Engine

G-4 © National Instruments Corporation

engine callback

entry points

error occurred flag

execution

execution entry point

Execution window

expression

F

front-end callback

Glossary

A sequence that TestStand invokes at specific points during execution. You
use engine callbacks to tell TestStand to call certain sequences before and
after the execution of individual steps, before and after interactive
executions, after loading a sequence file, and before unloading a sequence
file.

A sequence in the process model file that TestStand displays as a menu
item, such aSest UUTs , Single Pass , andReport Options

A Boolean flagtep.Result.Error.Occurred , that indicates whether
a run-time error occurred in the step.

An object that contains all the information TestStand needs to run a
sequence, its steps, and any subsequences it calls. Typically, the TestStand
sequence editor creates a new window for each execution.

A sequence in a process model that runs tests against a UUT. Execution
entry points call thmainSequence callback in the client sequence file.
The default process model contains two execution entry poasiUTs
andSingle Pass . By default, execution entry points appear in the
Execute menu. Execution entry points appear in the menu only when the
active window contains a sequence file that hdaiaSequence callback.

A window in the sequence editor that displays the steps an execution runs.
When execution is suspended, the execution window displays the next step
to execute and provides single-stepping options. You also can view
variables and properties in any active sequence context in the call stack.

A formula that calculates a new value from the values of multiple variable
or properties. In expressions, you can access all variables and properties in
the sequence context that is active when TestStand evaluates the expression.
The following is an example of an expression:

Locals.MidBandFrequency = (Step.HighFrequency +
Step.LowFrequency) / 2

A common sequence that the sequence editor and run-time operator
interfaces call. Front-end callbacks allow multiple applications to share the
same implementation for a specific operation. TestStand installs the
sequence fil&rontEndCallback.seq , which contains the front-end
callback sequencépginLogout

© National Instruments Corporation G-5 TestStand User Manual

Glossary

front-end callback
sequence file

front panel

G

global variable

GUI

H

hex

highlight

in-process

instance step type
property

interactive mode

TestStand User Manual

A sequence file that contains front-end callbacks. TestStand installs the
sequence fil&rontEndCallback.seq , Which contains the front-end
callback sequencéepginLogout

The interactive user interface of a LabVIEW VI. Modeled from the front
panel of physical instruments, it is composed of switches, slides, meters,
graphs, charts, gauges, LEDs, and other controls and indicators.

TestStand defines two types of globals: sequence file globals and station
globals. Sequence file globals are accessible by any sequence or step in the
sequence file. Station globals are accessible by any sequence file loaded on
the station. The values of station global variables are persistent across
different executions and even across different invocations of TestStand.

SeeRun-Time Operator Interface.

hexadecimal

The way in which input focus is displayed on a TestStand screen; to move
the input focus onto an item.

When executable code runs in the same process space as the client, i.e. an
ActiveX server in a dynamic-link library(DLL).

A built-in step property that exists in each step instance. Each step that you
create with the step type has its own copy of the property. TestStand uses
the value you specify for an instance property in the step type as the initial
value of the property in each new step that you create. Normally, after you
create a step, you can change the values of its instance properties.

When you run steps by selecting one or more steps in a sequence and
choosing th&Run Selected Stepsr Loop Selected Stepgems in the
context menu or menu bar. The selected steps in the sequence execute,
regardless of any branching logic that the sequence contains. The selected
steps run in the order in which they appear in the sequence.

G-6 © National Instruments Corporation

kill

L

LabVIEW

list box

local variable

main sequence

MB
menu bar
method
MFC

model callback

model sequence file

© National Instruments Corporation G-7

Glossary

To stop a running, terminating, or aborting execution by terminating the
thread of the execution without any cleanup of memory. This can leave
TestStand in an unreliable state.

Laboratory Virtual Instrument Engineering Workbench. A program
development application based on the programming language G and used
commonly for test and measurement purposes

A dialog box item that displays a list of possible choices.

A property of a sequence that holds a value or additional subproperties.
Only a step within the sequence can directly access the property value.

The sequence that initiates the tests on a UUT. The process model invokes
the main sequence as part of the overall testing process. The process model
defines what is constant about your testing process, whereas main
sequences define the steps that are unique to the different types of tests you
run.

megabytes of memory

Horizontal bar that contains names of main menus.
Performs an operation or function on an object.
Microsoft Foundation Class Library

A mechanism which allows a sequence file to customize the default
behavior of a sequence in the process model.

A special type of sequence file that contains process model sequences. The
sequences within the sequence file direct the high-level sequence flow of
an execution when testing a UUT.

TestStand User Manual

Glossary

module adapter

named data type

nested interactive
execution

normal execution

normal sequence file

numeric property

0

object

operator

out-of-process

P

pop-up menus

TestStand User Manual

A component that the TestStand engine uses to invoke code in another
sequence or in a code module, such as LabVIEW. When invoking code in
a code module, the adapter knows how to call it, and how to pass parameters
to it.

A type of variable or property that you give a unique name. The data type
usually contains multiple subproperties thus creating an arbitrarily complex
data structure. All variables or properties that use the data type have the
same data structure, but the values they contain can differ.

When you run steps interactively from an execution window for a normal
execution that is suspended at a breakpoint. You can run steps only in the
sequence and step group in which execution is suspended. The selected
steps run within the context of the normal execution.

When you start an execution in the sequence editor by seled®ng the
Sequence Nam#em or one of the process model entry points from the
Execute menu.

Any sequence file containing sequences that test UUTs.

A 64-bit floating-point value in the IEEE 754 format.

A service that an ActiveX server makes available to clients.

A user profile that usually contains all privileges associated with operating
a test station, but cannot debug sequence executions, edit sequence files, or
configure user privileges, station options, report options, and database
options.

When executable code does not run in the same process space as the client,
such as an ActiveX server in an executable.

Seecontext menu

G-8 © National Instruments Corporation

post actions

Post Step substep

Pre Step substep

preconditions

process model

property

property-array property

R

reference count

reference property

resource string

Glossary

Actions that TestStand takes depending on the pass/fail status of the step or
a custom condition the engine evaluates after executing a step. Post actions
allow you to execute callbacks or jump to other steps after executing the
step.

A substep that the engine invokes after calling a step module. A Post Step
substep might call a code module that compares the values the step module
stored in step properties against limit values that the Edit substep stored in
other step properties.

A substep that the engine invokes before calling the step module. For
example, a Pre Step substep might call a code module that retrieves
measurement configuration parameters and stores them into step properties
for use by the step module.

A set of conditions for a step that must be true for TestStand to execute the
step during the normal flow of execution in a sequence.

A series of operations before and after a test executive executes the
sequence that performs the tests. Common operations include identifying
the UUT, notifying the operator of pass/fail status, generating a test report,
and logging results.

A container of information, which stores and maintains a setting or attribute
of an object. A property can contain a single value, an array of values of the
same type, or no value at all. A property can also contain any number of
subproperties. Each property has a name.

A property containing a value that is an array of subproperties of a single
type. In addition to the array of subproperties, property-array properties can
contain any number of subproperties of other types.

Each ActiveX object keeps track of the number of things that reference it.
This allows the object to decide when to free the resources it uses.

SeeActiveX reference property.

Text strings stored in an external file so you can alter the strings without
directly altering the application.

© National Instruments Corporation G-9 TestStand User Manual

Glossary

root interactive When you run selected steps from a Sequence File window in an

execution independent execution. Root interactive executions do not invoke process
models.

run mode The mode in which you execute a step, such as normal, skip, force pass,
force fail.

run-time error An error condition that forces an execution to terminate. When the error

occurs while running a sequence, TestStand jumps to the Cleanup step
group, and the error propagates to any calling sequence up through to the
top-level sequence.

run-time operator A program that provides a graphical user interface for executing sequences
interface at a production station. Sometimes the sequence editor and run-time
operator interfaces are different aspects of the same program.

RTF rich text format

S seconds

sequence A series of steps that you specify for execution in a particular order.
Whether and when a step is executed can depend on the results of previous
steps.

sequence context A TestStand object that contains references to all global variables and all

local variables and step properties in active sequences. The contents of the
sequence context changes depending on the currently executing sequence
and step.

sequence editor A program that provides a graphical user interface for creating, editing, and
debugging sequences.

sequence file A file that contains the definition of one or more sequences.

single-valued property A property that contains a single value. TestStand has four types of these
properties: Number properties, String properties, Boolean properties, and
ActiveX reference properties.

source code template A set of source files that contain skeleton code, which serves as a starting
point for the development of code modules for steps. TestStand uses the
code template when the sequence developer clicks @r#ate Code
button on the Source Code tab in the Specify Module dialog box for a step.

TestStand User Manual G-10 © National Instruments Corporation

standard named
data type

station callback

sequence file

station globals

station model

step

step group

step module
step property

step result

step status

Glossary

A data type that TestStand defines and names. You can add subproperties
to the standard data types, but you cannot delete any of their built-in
subproperties. The standard named data typeasire Error , and
CommonResults .

A sequence file that contains the station callback sequences. Station
callbacks run before and after the engine executes each step in any normal
or interactive execution.

Variables that are persistent across different executions and even across
different invocations of the sequence editor or run-time operator interfaces.
The TestStand engine maintains the value of station global variables in a
file on the run-time computer.

A process model that you select to use for all sequence files for a station.
The TestStand installation program establigieassStandModel.seq as
the default station model file. You can use the Station Options dialog box
to select a different station model.

Any action, such calling a test module to perform a specific test, that you
can include within a sequence of other actions.

A set of steps in a sequence. A sequence contains the following groups of
steps: Setup, Main, and Cleanup. When TestStand executes a sequence, the
steps in the Setup group execute first, the steps in the Main group execute
next, and the steps in the Cleanup group last.

The code module that a step calls.
A property of a step.

A container property that contains a copy of the subproperties from the
Result property of a step and additional execution information such as the
name of the step and its position in the sequence. TestStand automatically
creates a step result as each step executes and places the step result into a
result list which TestStand uses to generate its reports.

A string value that indicates the status of a step in an execution. Every step
in TestStand hasResult.Status property. Although TestStand imposes
no restrictions on the values to which the step or its code module can set the
status property, TestStand and the built-in step types use and recognize a
predefined set of values.

© National Instruments Corporation G-11 TestStand User Manual

Glossary

step type

step-type-specific
dialog box

subsequence

substep

substep module

T

technician

template
terminal

terminate

test executive engine

test module

TestStand User Manual

A component that defines a set of custom step properties and standard
behavior for each step of that type. All steps of the same type have the same
properties, but the values of the properties can differ. Step types define their
standard behaviors using substeps.

A dialog box that step types display when their Edit substep is invoked. The
dialog box lets you modify step properties that are specific to the step type.
You invoke the dialog box with the menu item that appears in the context
menu abové&pecify Module For example, the Edit Limits item appears in
the context menu for Numeric Limit test steps, and the Edit Pass/Fail
Source item appears in the context menu for Pass/Fail test steps.

A sequence that another sequence calls. You specify a subsequence call as
a step in the calling sequence.

Actions that a step type performs for a step besides calling the step module.
You define a substep by selecting an adapter and specifying a module call.
TestStand defines three different types of substeps: Edit substep, Pre Step
substep, and Post Step substep.

The code module that a Edit, Pre Step, or Post Step substep calls.

A user profile that usually contains all privileges associated with operating,
and debugging sequences and sequences files, but cannot edit sequence
files or configure user privileges, station options, report options, or
database options.

Seecode template.
Object or region on a LabVIEW VI node through which data passes.

To stop an execution by halting the normal execution flow, and running all
the Cleanup step groups in the sequences on the call stack.

A module or set of modules that provide an API for creating, editing,
executing, and debugging sequences. A sequence editor or run-time
execution operator interface uses the services of a test executive engine.

A code module that performs a test.

G-12 © National Instruments Corporation

Glossary

u

Unit Under Test (UUT) The device or component that you are testing.

user manager The component of the TestStand engine that maintains a list of users, their
login names and passwords, and their privileges. You can access the user
manager from the User Manager window in the sequence editor.

V

variables Properties that you can freely create in certain contexts. You can have
variables that are global to a sequence file or local to a particular sequence.
You can also have station global variables.

variables window A window that shows the values of all the currently active variables or
properties.

VI Virtual instrument.

VI library Special file of typeLLB that contains a collection of related Vls for a
specific use.

|}

watch window A window that shows the values of user-selectable variables and
expressions that are currently active.

window A working area that supports specific tasks related to developing and
executing programs.

wire Tool used to define data paths between source and sink terminals.

© National Instruments Corporation G-13 TestStand User Manual

Index

A Rename command, 5-3

Abort (no cleanup) command, Debug menu, Sequence File Callbacks command,
4-18 5-9 to 5-10

Abort All (no cleanup) command, Debug menu, Sequence File Properties command,
4-18 5-6 to 5-9

Abort Immediately option, Run-Time Error Sequence Properties command, 5-3t0 5-5
dialog box, 6-26 View Contents command, 5-3

Allow Editing NI Installed Types option,
Preferences tab, 4-26
Application Development Environment
(ADE), 1-2
architecture of TestStan8eeTestStand
architecture overview.
Argument Expression control, Configure Call
Executable dialog box, 10-19
arithmetic operators (table), 8-15
Array Bounds dialog box
array sizing, 9-5
empty arrays, 9-6
array function operators (table), 8-16
Array of submenu, 9-5
Array parameters, specifying for DLL Flexible
Prototype Adapter, 12-9
array property, 1-10
arrays

aborting execution, 1-26
Action steps, 10-3 to 10-4
ActiveX Automation Adapter, 12-43 to 12-51
configuring, 12-43 to 12-44
running and debugging servers, 12-49
specifying in Edit Automation Call dialog
box, 12-44 to 12-48
ActiveX Reference control, 12-45
Automation Server control, 12-45
Call Method or Access Property
section, 12-46
Create Obiject control, 12-45 to 12-46
Object Class control, 12-45
Parameters control, 12-46 to 12-47
using with TestStand, 12-49 to 12-51
compatibility issues with Visual
Basic, 12-49 to 12-51
registering servers, 12-49 . .
variant data types supported (table), 12-48 dynamic array sizing, 9-7
ActiveX Automation code modules, empty arrays, 9-7
distributing, 16-12 modifying values, 9-11
specifying array sizes, 9-5to 9-6
assignment operators (table), 8-15
Attach to File control, General tab (Step Type
Properties dialog box), 9-28
Auto-Load Library Configuration dialog
box, 12-33
automatic result collectioibeeresult collection.
Automatically Login Windows System User
option, User Manager tab, 4-27 to 4-28

Adapter Configuration dialog box, 12-2
adaptersSeemodule adapters.
Adapters command, Configure menu, 3-2, 4-30
Add Watch command, Watch Expression
pane, 6-13
All Sequences view context menu, 5-3to 5-10
Browse Sequence Context command, 5-3
Insert Sequence command, 5-3
Open Sequence command, 5-3

© MNational Instruments Corporation /-1 TestStand User Manual

Index

bitwise operators (table), 8-15
Break command, Debug menu, 4-18
Break All command, Debug menu, 4-18
Break on First Step command, Execute
menu, 4-16
Break option
Post Actions tab, 2-14, 5-23
Run-Time Error dialog box, 6-27
Breakpoint option, Run Options tab, 5-21
breakpoints
enabling/disabling, 4-20 to 4-21
toggling, 5-16
Browse Sequence Context command
All Sequences view context menu, 5-3
Globals View context menu, 7-3
Locals tab context menu, 5-32
Parameters tab context menu, 5-29
Sequence File Globals view context
menu, 5-38
Step Group context menu, 5-17
View menu, 4-12 to 4-13
built-in properties
definition, 1-11
sequence properties, 1-16
step properties, 1-11 to 1-13ee also
Step Properties dialog box.
step type properties, 9-24 to 9-25
built-in step types, 10-1 to 10-28ee also
Step Type Properties dialog box; step types.
any module adapter, 10-3 to 10-12
Action steps, 10-3 to 10-4
Numeric Limit Test, 10-6 to 10-9
Pass/Fail Test, 10-4 to 10-6
String Value Test, 10-9 to 10-12
common custom properties, 10-1 to 10-2
customizing, 10-2 to 10-3
defining properties, 9-24 to 9-25ee also
Step Type Properties dialog box.
error occurred flag, 10-2

TestStand User Manual -2

module adapter not used, 10-14 to 10-29
Call Executable, 10-18 to 10-21
Goto, 10-28
Label, 10-29
Limit Loader, 10-21 to 10-28
Message Popup, 10-15 to 10-18
Statement, 10-14 to 10-15

run-time errors, 10-2

specific module adapters, 10-12 to 10-14
Sequence Call, 10-12 to 10-14

step status, 10-2

bulletin board support, A-1

C

Call Executable steps, 10-18 to 10-21
Configure Call Executable dialog box,
10-19to 10-20
properties (figure), 10-20
step properties defined, 10-20 to 10-21
Call sequence option, Post Actions
tab, 2-14, 5-23
Call Stack pane, Execution window,
6-10 to 6-12
callback sequences, 1-23to 1-24
callback types (table), 1-23
displaying
in Callbacks dialog box, 5-9
with Sequence File Callbacks
command, 4-6 to 4-7
engine callbacks, 1-23 to 1-24
front-end callbacks
customizing, 3-9 to 3-10
overview, 1-24
model callbacks
customizing, 3-10
defining, 1-18
overview, 1-18 to 1-19
purpose and use, 13-4
restrictions on SequenceFileLoad and
SequenceFileUnload callbacks, 5-10

© National Instruments Corporation

Callbacks dialog box, 5-9 to 5-10
Cascade command, Window menu, 4-34
Category control, Module tab, 12-6 to 12-10
C/CVI Standard Prototype Adapter,
12-23t0 12-35
Configuration dialog box (figure), 12-32
configuring, 12-31 to 12-35
example code module, 12-27 to 12-28

executing code modules in external
instance, 12-34 to 12-35
debugging C source and DLL code
modules, 12-35
executing code modules in-process,
12-32t0 12-34

debugging DLL code module,
12-33to0 12-34

object and library code modules,
12-32t0 12-33
source code modules, 12-33 to 12-34
prototypes, 12-23 to 12-27
step properties updated (table), 12-27
tTestData structure member fields
(table), 12-23 to 12-25
tTestError structure member fields
(table), 12-26
specifying in Edit C/CVI Module Call
dialog box, 12-28 to 12-31
Module tab, 12-29 to 12-30
Source Code tab, 12-30 to 12-31
Check Type option, Parameters tab context
menu, 5-30
Check User Privileges option, User Manager
tab, 4-27
Choose Code Template dialog box, 12-4
class step type properties, 9-24
Cleanup tab, step groups, 5-11
client sequence file, 1-18
Close command, File menu, 4-2
Close Completed Execution Displays
command, Window menu, 4-34

© National Instruments Corporation -3

Index

Close Completed Execution Displays on
Execution option, Preferences tab, 4-25
Close Tree View command, Step Group
context menu, 5-17
code modules
definition, 1-1
executing in external instance,
12-34t0 12-35
debugging C source and DLL code
modules, 12-35
executing in-process, 12-32 to 12-34
debugging DLL code module,
12-33t0 12-34
object and library code modules,
12-32t0 12-33
source code modules, 12-33 to 12-34
code templates
creating, 3-11, 9-35to 9-36
customizing, 9-35 to 9-36
multiple templates per step type, 9-36
source code templates
for module adapters, 12-3to 12-4
for step types, 1-14
template files for different adapters,
9-34t0 9-35
Code Templates tab, Step Type Properties
dialog box, 9-34 to 9-40
Add button, 9-38
Create button, 9-37
Create Code Templates dialog box, 9-38
Edit button, 9-38

Edit Code Template dialog box,
9-39 to 9-40

illustration, 9-37

Move Down button, 9-39

Move Up button, 9-39

overview, 9-34

Remove button, 9-38

Comment control

General tab, Step Properties dialog
box, 5-18

TestStand User Manual

Index

General tab, Step Type Properties dialog

box, 9-28

Sequence File Properties dialog box, 5-7

Sequence Properties dialog box, 5-5
CommonResults standard data type, 9-13
comparison operators (table), 8-15
Components directory, 3-4 to 3-6

customizing, 3-4 to 3-5

subdirectories (table), 3-5 to 3-6
configuration.See als@ustomizing

TestStand.

ActiveX Automation Adapter,
12-43to0 12-44

C/CVI Standard Prototype Adapter,
12-31t0 12-35
DLL Flexible Prototype Adapter, 12-5
LabVIEW Standard Prototype Adapter,
12-19
TestStand, 3-1to 3-2
Configure menu, 3-1to 3-2

sequence editor startup options, 3-1

configuration entry points, 13-4 to 13-5
Configure Call Executable dialog box,
10-19 to 10-20
Argument Expression control, 10-19
Executable Path control, 10-19
Exit Code Status Action control, 10-20
Initial Window State control, 10-20
Terminate Executable If Step Is
Terminated Or Aborted control, 10-19
Time to Wait control, 10-19
Wait Condition control, 10-19
Configure menu, 3-1 to 3-2, 4-19 to 4-30
Adapters command, 3-2, 4-30
External Viewers command, 3-2, 4-30
Report Options command, 3-2, 4-30
Search Directories command, 3-2,
4-29 10 4-30

Station Options command, 3-2,
4-19 to 4-29

TestStand User Manual

-4

Configure Message Box Step dialog
box, 10-16
configuring module adapters, 12-2 to 12-3
constants operators (table), 8-15
containers
container properties, 1-10
modifying values, 9-11
context menus
All Sequences view context menu,
5-3to 5-10
Context tab context menu, 6-8 to 6-9
Globals View context menu, 7-2to 7-4
Locals tab context menu, 5-31 to 5-32

Parameters tab context menu,
5-27 t0 5-30
Profiles tab context menu, 11-6 to 11-7
purpose and use, 2-4
Sequence File Globals view context
menu, 5-37 to 5-38
Step Group context menu, 5-14 to 5-27
Steps tab context menu, 6-6 to 6-7
User List context menu, 11-3to 11-5
Context tab, Execution window, 6-7 to 6-9
Context tab context menu, 6-8 to 6-9
Properties command, 6-9
Refresh command, 6-9
View Contents command, 6-8
controlling sequences floBeesequence flow,
controlling.
copy, cut, and paste capabilities, sequence
editor screen, 2-5
Copy command, Edit menu, 4-4
Create Code Templates dialog box, 9-38
Custom Condition Expression control, Post
Actions tab, 5-23
custom data types, Properties dialog box for,
9-19t0 9-20
Apply Value to All Loaded Instances of
the Type option, 9-19
Attach to File option, 9-20

© National Instruments Corporation

changing single data type value,
9-9to 9-10
illustration, 9-19
Value control, 9-19
Custom Data Types tab tree and list views,
9-13to 9-17
creating and modifying custom data
types, 9-16 to 9-17
list view, 9-15to 9-16
tree view, 9-14 to 9-15
Value field, 9-16
custom named data types, 1-10
custom properties, 1-11
customer communicationxv, A-1 to A-2
Customize command, Tools menu,
4-32 to 4-33
Customize Tool Menu dialog box,
4-32 to 4-33
customizing TestStand, 3-3 to 3-11
code templates, 3-11
creating string resource files, 3-6 to 3-8
data types, 3-8
directory structure, 3-3 to 3-6
engine and front-end callbacks,
3-9to 3-10
process model, 3-10
process model callbacks, 3-10
run-time operator interfaces, 3-11
step types, 3-8
Tools menu, 3-9
users and user privileges, 3-11
cut and paste capabilities, sequence editor
screen, 2-5
Cut command, Edit menu, 4-4

D

Data Source tab
Edit Numeric Limit Test dialog box, 10-8
Edit String Value Test dialog box, 10-11

© National Instruments Corporation -5

Index

data types, 9-3 to 9-2Gee alsdypes.
arrays
dynamic array sizing, 9-7
empty arrays, 9-7
specifying array sizes, 9-5 to 9-6
context menu items for using, 9-3 to 9-5
Insert Field, 9-4
Insert Global, 9-3, 9-4
Insert Local, 9-4
Insert Local submenu, 9-5
Insert Parameter, 9-3
Insert User, 9-4
submenus, 9-4 to 9-5
creating and modifying, 9-13 to 9-20
adding fields, 9-18
displaying and changing Value field,
9-16 to 9-17
Insert Custom Data Type submenu,
9-17 to 9-18
Insert Fields submenu, 9-18
new custom data type, 9-17 to 9-18
using Custom Data Types tab tree and
list views, 9-13to 9-17
using Properties dialog boxes,
9-19 to 9-20
custom named data types, 1-10
customizing, 3-8
displaying, 4-11, 9-8 to 9-9
modifying types and values, 9-9 to 9-11
arrays, 9-11
containers, 9-11
single values, 9-9 to 9-10
Numeric category data types (table), 12-7
Properties dialog box
custom data types, 9-19 to 9-20
data type fields, 9-20
standard named data types, 9-12 to 9-13
CommonResults, 9-13
Error, 9-13
Path, 9-12
purpose and use, 1-10

TestStand User Manual

Index

String category data types (table), 12-8
variant data types supported by ActiveX
Automation Adapter (table), 12-48
Debug menu, 4-17 to 4-18
Abort (no cleanup) command, 4-18
Abort All (no cleanup) command, 4-18
Break command, 4-18
Break All command, 4-18
Resume command, 4-17
Resume All command, 4-18
Step Into command, 4-17
Step Out command, 4-17
Step Over command, 4-17
Terminate command, 4-18
Terminate All command, 4-18
debugging
ActiveX Automation servers, 12-49
C source and DLL code modules, 12-35
DLL code module, 12-34
DLLs, 12-12t0 12-13
LabVIEW Standard Prototype Adapter,
12-21to0 12-22
sequences execution, 2-17 to 2-18
Default Step Name Expression control,
General tab (Step Type Properties dialog
box), 9-27
Delete command, Edit menu, 4-4
Designate an Adapter control, General tab
(Step Type Properties dialog box), 9-27
Designate an Icon control, General tab (Step
Type Properties dialog box), 9-27
Destination control, Post Actions tab, 5-23
directory search paths, setting, 4-29 to 4-30
directory structure
process models, 13-1t0 13-2
TestStand, 3-3 to 3-6
Components directory, 3-4 to 3-6
NI and User subdirectories, 3-4
subdirectories (table), 3-3
Disable Properties tab, Step Type Properties
dialog box, 9-32 to 9-33

TestStand User Manual -6

illustration, 9-33
Precondition checkbox, 9-33
Specify Module checkbox, 9-33
Disable Result Recording for All Sequence
option, Execution tab, 4-22
Disable Results for All Steps option, Sequence
Properties dialog box, 5-4
Display Warning on Run Mode Changes in
Execution Window option, Preferences
tab, 4-25
distributing TestStand, 16-1 to 16-14
ActiveX Automation code modules,
16-12
creating installer for run-time engine,
16-1to 16-5
DLL code modules, 16-8
installing customized engine,
16-6 to 16-8
LabVIEW, 16-6
LabWindows/CVI, 16-6 to 16-7
Visual Basic, 16-7 to 16-8
invoking custom engine installation, 16-5
LabVIEW run-time server,
16-12 to 16-14
distributing, 16-14
rebuilding, 16-13
LabVIEW test Vls, 16-9 to 16-12
packaging VIs and subViIs for
sequence file, 16-10
saving VIs with full hierarchy,
16-11to 16-12
saving VIs without full hierarchy,
16-10to 16-11
object and static library code modules,
16-8 to 16-9
sequence files, 16-8
DLL code modules, distributing, 16-8
DLL Flexible Prototype Adapter,
12-4t0 12-13
configuring, 12-5
debugging DLLs, 12-12 to 12-13

© National Instruments Corporation

Module tab of Edit DLL Call dialog box,
12-5t0 12-10
Array parameters, 12-9
Calling Convention control, 12-6
Category control, 12-6 to 12-10
DLL Pathname field, 12-6
Function control, 12-6
illustration, 12-5
Numeric parameters, 12-7
Object parameters, 12-9 to 12-10
Parameter section, 12-6
String parameters, 12-8
Source Code tab of Edit DLL Call dialog
box, 12-10to 12-12
adapter interpretation of ambiguous
declarations (table), 12-12
Create Code button, 12-10
Edit Code button, 12-11
Pathname of Source file Containing
Function control, 12-10
Verify Prototype button, 12-11
using MFC run-time library, 12-13
documentation
conventions used in manuakiv-xxv
organization of manuakxiii-xxiv
related documentatiomxv
drag and drop capabilities, sequence editor
screen, 2-5

dynamic array sizing, 9-7

E

Edit Automation Call dialog box,
12-44 t0 12-48
ActiveX Reference control, 12-45
Automation Server control, 12-45
Call Method or Access Property
section, 12-46

Create Object control, 12-45 to 12-46
illustration, 12-44
Object Class control, 12-45

© MNational Instruments Corporation

-7

Index

Parameters control, 12-46 to 12-47
Edit C/CVI Module Call dialog box,
12-28t0 12-31
Module tab, 12-29 to 12-30
Extended Prototype, 12-29
Function Name, 12-29
illustration, 12-29
Module Pathname, 12-29
Module Type, 12-29
Pass Sequence Context, 12-30
Standard Prototype, 12-29
Source Code tab, 12-30 to 12-31
Create Code button, 12-31
Edit Code button, 12-31
illustration, 12-30
Pathname of Source File Containing
Function control, 12-30
Edit Code command, Step Group context
menu, 5-15
Edit Code Template dialog box, 9-39 to 9-40
Description control, 9-39
illustration, 9-39
Parameter Name/Value Mappings
section, 9-40
Pass Sequence Context control, 9-39
Edit command
Step Group context menu, 5-15
User List context menu, 11-5
Edit DLL Call dialog box
Module tab, 12-5 to 12-10
Array parameters, 12-9
Calling Convention control, 12-6
Category control, 12-6 to 12-10
DLL Pathname field, 12-6
Function control, 12-6
illustration, 12-5
Numeric parameters, 12-7
Object parameters, 12-9 to 12-10
Parameter section, 12-6
String parameters, 12-8

TestStand User Manual

Index

Source Code tab, 12-10 to 12-12
adapter interpretation of ambiguous
declarations (table), 12-12
Create Code button, 12-10
Edit Code button, 12-11

Pathname of Source file Containing
Function control, 12-10
Verify Prototype button, 12-11
Edit Expression command, Watch Expression
pane, 6-12
Edit LabVIEW VI Call dialog box,
12-20to 12-21
Create Code button, 12-21
Edit Code button, 12-21
illustration, 12-20
Optional Parameters section, 12-20
VI Module Pathname control, 12-20
Edit Limit Loader Step dialog box
Layout tab, 10-23
Limits File tab, 10-22
Edit menu, 4-3 to 4-7
Copy command, 4-4
Cut command, 4-4
Delete command, 4-4
Paste command, 4-4
Select All command, 4-4
Sequence File Callbacks command,
4-6 to 4-7
Sequence File Properties command,
4-510 4-6
Sequence Properties command, 4-5
Edit Numeric Limit Test dialog box
Data Source tab, 10-8
Limits tab, 10-6
Edit Parameter Value dialog box, 12-47
Edit Pass/Fail Source dialog box, 10-5
Edit Paths dialog box (figure), 4-9
Edit Paths in Files dialog box (figure), 4-8
Edit Sequence Call dialog box
Edit Sequence Call tab, 12-37 to 12-39
illustration, 12-37

TestStand User Manual -8

List Box in the Parameters Section,
12-38
Sequence control, 12-37 to 12-38
Specify Expressions for Pathname
and Sequence, 12-37
Use Current File option, 12-38
Remote Execution tab, 12-39 to 12-41
illustration, 12-39
Remote Execution option, 12-40
Remote Host option, 12-40
Specify host by expression option,
12-40
Edit Statement Step dialog box, 10-15
Edit String Value Test dialog box
Data Source tab, 10-11
Limits tab, 10-10
Edit substep
overview, 1-13
Substeps tab, 9-30
Edit User dialog box, 11-5
Edit User Type command
Profiles tab context menu, 11-7
User List context menu, 11-5
electronic support services, A-1 to A-2
e-mail support, A-2
empty arrays, 9-7
Enable Breakpoints option, Execution tab,
4-20t0 4-21

Enable Tracing option, Execution tab,
4-21to 4-22

engine callbacks, 6-20 to 6-22

available engine callbacks (table),
6-20 to 6-22

customizing, 3-9 to 3-10
definition, 6-20
examples of using, 6-22
overview, 1-23 to 1-24

entry points, 1-19 to 1-22
configuration entry points, 13-4 to 13-5
defining multiple entry points, 1-19
definition, 1-19

© National Instruments Corporation

Execution Entry Point Sequence Model
tab, 13-5to 13-7
Entry Point Enabled Expression
control, 13-6
Entry Point Ignores Client File
control, 13-6
Entry Point Name Expression
control, 13-6
Hide Entry Point Execution
option, 13-7
illustration, 13-5
Load Stale Sequence Files Before
Execution option, 13-7
Menu Hint control, 13-6
Save Modified Sequence Files Before
Execution option, 13-7
Show Entry Point for All Windows
option, 13-7
Show Entry Point Only in Editor
option, 13-7
Show Entry Point When Client File
Window is Active option, 13-7
Show Entry Point When Execution
Window is Active option, 13-7
execution entry points
definition, 1-19
process models, 13-4
purpose and use, 6-2
flowchart of TestUUTs sequence in
default process model (figure), 1-20
list of all sequences (figure), 1-22
set of steps for TestUUTs entry point
(figure), 1-21
Error Out cluster, LabVIEW Standard
Prototype Adapter, 12-16 to 12-17
element types and descriptions, 12-17
illustration, 12-16
Error standard data type, 9-13
escape codes for unprintable characters
(table), 3-7
Executable Path control, Configure Call
Executable dialog box, 10-19

© National Instruments Corporation -9

Index

Execute menu, 4-14 to 4-16
Break on First Step command, 4-16
Execution Entry Point List
command, 4-14
Loop on Selected Steps command,
4-15to0 4-16
Restart command, 4-14
Run Active Sequence command, 4-14
Run Selected Steps command, 4-15
Tracing Enabled command, 4-16
execution, 1-24 to 1-26, 6-1 to 6-See also
Execution window.
definition, 6-1
direct execution without process
model, 6-2
engine callbacks, 6-20 to 6-22
interactive execution, 1-25, 6-3
normal execution, 1-25
overview, 1-24 to 1-25, 6-1
Preconditions dialog box, 5-32 to 5-35
run-time errors, 6-25 to 6-27
starting, 6-2 to 6-3
step execution (table), 6-23 to 6-24
step status property, 6-24
terminating and aborting executions, 1-26
Execution Entry Point dialog box, Model tab,
13-5t0 13-7
Entry Point Enabled Expression
control, 13-6
Entry Point Ignores Client File
control, 13-6
Entry Point Name Expression
control, 13-6
Hide Entry Point Execution option, 13-7
illustration, 13-5
Load Stale Sequence Files Before
Execution option, 13-7
Menu Hint control, 13-6
Save Modified Sequence Files Before
Execution option, 13-7

TestStand User Manual

Index

Show Entry Point for All Windows
option, 13-7
Show Entry Point Only in Editor
option, 13-7
Show Entry Point When Client File
Window is Active option, 13-7
Show Entry Point When Execution
Window is Active option, 13-7
Execution Entry Point List command, 4-14
execution entry points
definition, 1-19
process models, 13-4
purpose and use, 6-2
execution pointer, 6-1
Execution tab, Station Options dialog box,
4-20 to 4-23
Disable Result Recording for All
Sequence option, 4-22
Enable Breakpoints option, 4-20 to 4-21
Enable Tracing option, 4-21 to 4-22
Goto Cleanup On Sequence Failure
option, 4-22
illustration, 4-20
Interactive Mode option, 4-22
Execution window, 6-3 to 6-14
areas in, 6-3
Call Stack pane, 6-10 to 6-12
Context tab, 6-7 to 6-9
context menu, 6-8 to 6-9
illustration, 6-8
definition, 1-25
example (figure), 2-7
overview, 2-6
Report tab, 6-9 to 6-10
result collection, 6-14 to 6-19

custom result properties,
6-16 to 6-17

loop results, 6-19
ResultList array (figure), 6-15

TestStand User Manual

I-10

standard result properties,
6-17 to 6-18
subsequence results, 6-18 to 6-19
status bar, 6-12 to 6-13
Steps tab, 6-4 to 6-7
columns, 6-5 to 6-6
context menu, 6-6 to 6-7
debugging, 6-5
illustration, 6-4
tracing, 6-4 to 6-5
Threads selection ring, 6-3
Watch Expression pane, 6-12 to 6-13
Add Watch command, 6-13
Edit Expression command, 6-12
illustration, 6-12
Modify Value command, 6-13
Refresh command, 6-13
Exit Code Status Action control, Configure
Call Executable dialog box, 10-20
Exit command, File menu, 4-3
exporting limit valuesSeelmport/Export
Sequence Limits dialog box.

Expression Browser dialog box, 8-13 to 8-14
illustration, 1-9, 8-13
Operators/Functions tab, 8-14
purpose and use, 8-13

expressions, 8-12 to 8-19
function operators (table), 8-16 to 8-18
levels of precedence (table), 8-19
operators (table), 8-15
purpose and use, 8-12
using values of variables and properties,

1-8to 1-9
Expressions tab, Step Properties dialog box,
5-26 to 5-27
Post Expression control, 5-26
Pre Expression control, 5-26
Status Expression control, 5-26
External Viewers command, Configure
menu, 3-2, 4-30

© National Instruments Corporation

F

fax and telephone support numbers, A-2
Fax-on-Demand support, A-2
File menu, 4-1 to 4-3

Close command, 4-2

Exit command, 4-3

Login command, 4-2

Logout command, 4-2

most recently opened files list, 4-3

New command, 4-2

Open command, 4-2

Save command, 4-2

Save All command, 4-3

Save As command, 4-2

Unload All Modules command, 4-3
Find Type command, View menu, 4-11
front-end callbacks

customizing, 3-9 to 3-10

overview, 1-24
FTP support, A-1
function operators for expressions (table),

8-16 to 8-18

G
General tab
Sequence File Properties dialog box,
5-6 to 5-8

Step Properties dialog box, 5-18 to 5-19

Comment control, 5-18

Edit button, 5-18

illustration, 5-18

Preconditions button, 5-19

Specify Module button, 5-18 to 5-19
Step Type Properties dialog box,

9-26 to 9-28

Attach to File control, 9-28

Comment control, 9-28

Default Step Name Expression

control, 9-27

© MNational Instruments Corporation

I1-11

Index

Designate an Adapter control, 9-27
Designate an Icon control, 9-27
illustration, 9-26
Step Description Expression
control, 9-27
global variables
definition, 1-7
lifetime and scope of sequence file global
variables, 5-36
station global variables
persistence, 7-4 to 7-5
special station globals, 7-5
Globals View context menu, 7-2 to 7-4
Browse Sequence Context command, 7-3
Go Up One Level command, 7-3
Insert Global submenu, 7-2 to 7-3
Properties command, 7-3
Reload Station Globals command, 7-4
Rename command, 7-3
View Constants command, 7-3
Go Up One Level command
Globals View context menu, 7-3
Parameters tab context menu, 5-29
Step Group context menu, 5-17
Go Up One level command
Locals tab context menu, 5-32
Sequence File Globals view context
menu, 5-38
Goto built-in step type, 2-16
Goto Cleanup On Sequence Failure option
Execution tab, 4-22
Sequence Properties dialog box, 5-4
Goto destination option, Post Actions
tab, 2-14, 5-23
Goto next step option, Post Actions tab, 2-14,
5-23
Goto steps, 10-28

TestStand User Manual

Index

H

Hide Entry Point Execution option, Execution
Entry Point Sequence Model tab, 13-7

Hide User Manager Window option, User
Manager tab, 4-27

Ignore option, Run-Time Error dialog box,
6-26
Ignore Run-time Errors option
effect on execution, 6-25
Run Options tab, Step Properties dialog
box, 5-21
Ignore Termination option, Run Options
tab, 5-22
Import/Export Limits command, Tools
menu, 4-31, 10-26
Import/Export Sequence Limits dialog
box, 10-26 to 10-28
Append to End of file option, 10-28
End of Data Marker control, 10-27
Export button, 10-28
First Row of Data Specifies Step Property
for Each option, 10-27
Format control, 10-27
illustration, 10-26
Import button, 10-27
Sequence control, 10-26
Sequence File indicator, 10-26
Skip Rows That Begin With option, 10-27
Source/Destination section, 10-27
Start of Data Marker control, 10-27
Initial Window State control, Configure Call
Executable dialog box, 10-20
Input buffer string control, LabVIEW
Standard Prototype Adapter, 12-17
Insert Custom Data Type submenu,
9-17t0 9-18
Insert Field command, 9-4
Insert Fields submenu, 9-18

TestStand User Manual I-12

Insert Global submenu
Globals View context menu, 7-2 to 7-3
Sequence File Globals view context
menu, 5-37
using data types, 9-3
Insert Local command
Locals tab context menu, 5-31
using data types, 9-4
Insert Local submenu
Array of submenu, 9-5
using data types, 9-5
Insert New User dialog box, 11-4
Insert Parameter submenu
Parameters tab context menu, 5-28
using data types, 9-3, 9-4
Insert Profile command, Profiles tab context
menu, 11-7
Insert Sequence command, All Sequences
view context menu, 5-3
Insert Step submenu
creating sequences, 2-10
displaying and selecting step types, 9-21
Step Group context menu, 5-14 to 5-15
Insert User command
User List context menu, 11-4
using data types, 9-3
Installation Wizard for TestStand Engine,
4-32, 16-1to 16-4
instance step type properties, 9-25
interactive execution, 1-25, 6-3
Interactive Mode option, Execution tab, 4-22
Invocation Information cluster control,
LabVIEW Standard Prototype Adapter,
12-17 to 12-18
Item Name Expression control, Menu
tab, 9-29

K

keyboard actions for navigating lists and tree
views (table), 2-3 to 2-4

© National Instruments Corporation

L

Label step, 10-29
LabVIEW run-time operator interface,
15-4to0 15-5

building standalone executable,
15-4 to 15-5
distributing, 16-6
top-level files (table), 15-4
LabVIEW run-time server, 16-12 to 16-14
distributing, 16-14
rebuilding, 16-13
LabVIEW Standard Prototype Adapter,
12-13t0 12-22
configuring, 12-19
debugging, 12-21 to 12-22
specifying in Edit LabVIEW VI Call
dialog box, 12-20 to 12-21
structure, 12-13 to 12-18
Error Out cluster, 12-16 to 12-17
Input buffer string control, 12-17
Invocation Information cluster
control, 12-17 to 12-18
Sequence Context control, 12-18
Test Data cluster, 12-14 to 12-16
LabVIEW test VIs, distributing, 16-9 to 16-12
packaging VIs and subVIs for sequence
file, 16-10
saving VIs with full hierarchy,
16-11to 16-12

saving VIs without full hierarchy,
16-10to 16-11
LabWindows/CVI prototype adapts&ee
C/CVI Standard Prototype Adapter.
LabWindows/CVI run-time operator interface
distributing, 16-6 to 16-7
files in project file (table), 15-2 to 15-4
Language tab, Station Options dialog
box, 4-28
Launch Report Viewer command, View
menu, 4-13

© National Instruments Corporation 1-13

Index

Layout tab, Edit Limit Loader Step dialog
box, 10-23
Limit Loader step, 10-21 to 10-28
Edit Limit Loader Step dialog box
Layout tab, 10-23
Limits File tab, 10-22
example sequence file (figure), 10-22
Import/Export Sequence Limits dialog
box, 10-26 to 10-28
step properties (figure), 10-24
step properties defined, 10-24 to 10-25
Limits File tab, Edit Limit Loader Step dialog
box, 10-22
Limits tab
Edit Numeric Limit Test dialog box, 10-6
Edit String Value Test dialog box, 10-10
Load Option
Run Options tab, Step Properties dialog
box, 5-20
Sequence File Properties dialog box, 5-7
local variables
definition, 1-7
lifetime of local variables, 1-15 to 1-16
sequence local variables, 1-15
Locals tab (figure), 5-30
Locals tab context menu, 5-31 to 5-32
Browse Sequence Context command,
5-32
Go Up One level command, 5-32
Insert Local command, 5-31
Properties command, 5-32
Rename command, 5-32
View Contents command, 5-32
logical operators (table), 8-15
Login command, File menu, 4-2
Logout command, File menu, 4-2
Loop on Selected Steps command, Execute
menu, 4-15 to 4-16
Loop on Selected Steps dialog box
Loop Count tab, 4-15
Stop Expression tab, 4-16

TestStand User Manual

Index

Loop Options tab, Step Properties dialog box,
5-24 to 5-25
illustration, 5-24
Loop Type control, 5-24 to 5-25
Record Result of Each Iteration option,
5-25
Loop Selected Steps command
Step Group context menu, 5-16
Steps tab context menu, 6-7
Loop Type control, Loop Options tab,
5-24 to 5-25

main sequence, 1-18
Main tab, step groups, 5-11
manual.Seedocumentation.
menu bar, sequence editbeesequence editor
menu bar.
Menu Item Name Expression control,
Substeps tab, 9-31 to 9-32
Menu tab, Step Type Properties dialog box,
9-28 t0 9-29
illustration, 9-28
Item Name Expression control, 9-29
Singular Item Name Expression
control, 9-29
Submenu Name Expression control, 9-29
Message Popup steps, 10-15 to 10-18
Configure Message Box Step dialog
box, 10-16
properties (figure), 10-17
step properties defined, 10-17 to 10-18
MFC (Microsoft Foundation Class) run-time
library, using with DLLs, 12-13
model callbacks
customizing, 3-10
defining, 1-18
overview, 1-18 to 1-19
purpose and use, 13-4

TestStand User Manual 1-14

Model Option, Sequence File Properties
dialog box, 5-8 to 5-9

Model tab
Sequence Properties dialog box,
13-5t0 13-7

Entry Point Enabled Expression
control, 13-6

Entry Point Ignores Client File
control, 13-6

Entry Point Name Expression
control, 13-6

Hide Entry Point Execution option,
13-7

illustration, 13-5
Load Stale Sequence Files Before
Execution option, 13-7
Menu Hint control, 13-6
Save Modified Sequence Files Before
Execution option, 13-7
Show Entry Point for All Windows
option, 13-7
Show Entry Point Only in Editor
option, 13-7
Show Entry Point When Client File
Window is Active option, 13-7
Show Entry Point When Execution
Window is Active option, 13-7
Station Options dialog box
Allow Other Models option, 4-26
illustration, 4-26
Station Model field, 4-26
Use Station Model option, 4-26
Modify Numeric Value dialog box, 9-17
Modify Value command, Watch Expression
pane, 6-13
module adapters, 12-1 to 12-51
ActiveX Automation Adapter,
12-43t0 12-51
available module adapters, 1-6, 12-2
C/CVI Standard Prototype Adapter,
12-23t0 12-35
configuring, 12-2 to 12-3

© National Instruments Corporation

DLL Flexible Prototype Adapter,
12-4to0 12-13
LabVIEW Standard Prototype Adapter,
12-13t0 12-22
overview, 1-6 to 1-7, 12-1 to 12-2
Sequence Adapter, 12-35 to 12-43
source code templates, 12-3to 12-4
Module tab
Edit C/CVI Module Call dialog box,
12-29 t0 12-30
Extended Prototype, 12-29
Function Name, 12-29
illustration, 12-29
Module Pathname, 12-29
Module Type, 12-29
Pass Sequence Context, 12-30
Standard Prototype, 12-29
Edit DLL Call dialog box, 12-5to 12-10
Array parameters, 12-9
Calling Convention control, 12-6
Category control, 12-6 to 12-10
DLL Pathname field, 12-6
Function control, 12-6
illustration, 12-5
Numeric parameters, 12-7
Object parameters, 12-9to 12-10
Parameter section, 12-6
String parameters, 12-8
mouse and keyboard actions for navigating
lists and tree views (table), 2-3 to 2-4

named data types, 1-10

nested interactive execution, 1-25, 6-3

New command, File menu, 4-2

NI subdirectory, 3-4

Numeric category data types (table), 12-7

numeric function operators (table), 8-16

Numeric Limit Test step, 10-6 to 10-9
comparison types (table), 10-7

© National Instruments Corporation I-15

Index

Edit Numeric Limit Test dialog box
Data Source tab, 10-8
Limits tab, 10-6

properties (figure), 10-8

setting value of Step.Result.Numeric,

10-7 to 10-8
step properties defined, 10-9
Numeric parameters, specifying for DLL
Flexible Prototype Adapter, 12-7

0

object and static library code modules,
distributing, 16-8 to 16-9

Object parameters, specifying for DLL
Flexible Prototype Adapter, 12-9 to 12-10

On Condition False control, Post Actions
tab, 5-23

On Condition True control, Post Actions
tab, 5-23

On Fail control, Post Actions tab, 5-23

On Pass control, Post Actions tab, 5-23

Open command, File menu, 4-2

Open Sequence command, All Sequences
view context menu, 5-3

Open Tree View command, Step Group
context menu, 5-16

operator interfacesseerun-time operator
interfaces.

operators in expressiorfSeeexpressions.

Operators/Functions tab, Expression Browser
dialog box, 8-14

Optimize Non-Reentrant Calls to this
Sequence option, Sequence Properties
dialog box, 5-5

P

Parameter section, Module tab, 12-6
Parameters tab (figure), 5-27

TestStand User Manual

Index

Parameters tab context menu, 5-27 to 5-30
Browse Sequence Context command,
5-29
Check Type option, 5-30
Go Up One Level command, 5-29
Insert Parameter submenu, 5-28
Pass By Reference command, 5-29
Properties command, 5-30
Rename command, 5-29
View Contents command, 5-28
Pass By Reference command, Parameters tab
context menu, 5-29
Pass/Fail Test step, 10-4 to 10-6
Edit Pass/Fail Source dialog box, 10-5
properties (figure), 10-5
setting value of Step.Result.PassFail, 10-4
step properties defined, 10-5to 10-6
paste capabilities, sequence editor screen, 2-5
Paste command, Edit menu, 4-4
Path standard data type, 9-12
Paths command, View menu, 4-8 to 4-10
Post Actions tab, Step Properties dialog box,
2-14, 5-22 to 5-23
Break option, 2-14, 5-23
Call sequence option, 2-14, 5-23
On Condition False control, 5-23
On Condition True control, 5-23
Custom Condition Expression control,
5-23
Destination control, 5-23
On Fail control, 5-23
Goto destination option, 2-14, 5-23
Goto next step option, 2-14, 5-23
illustration, 5-22
On Pass control, 5-23
Specify Custom Condition control, 5-23
Terminate execution option, 2-14, 5-23
Post Expression control, Expressions tab, 5-26
Post Step substep
definition, 1-13
Substeps tab, 9-30

TestStand User Manual I-16

Pre Expression control, Expressions tab, 5-26
Pre Step substep
definition, 1-13
Substeps tab, 9-30
Precondition option, Disable Properties
tab, 9-33
Preconditions button
General tab, Step Properties dialog
box, 5-19
Sequence Properties dialog box, 5-5, 5-33
Step Properties dialog box, 5-33
Preconditions dialog box, 2-14 to 2-15,
5-32t0 5-35
controlling sequence flow, 2-15
Copy button, 5-34
Cut button, 5-34
illustration, 2-15, 5-33
Insert AlIOf button, 5-34
Insert AnyOf button, 5-34
Insert New Expression button, 5-34
Insert Step Status section
Insert Step Error, 5-35
Insert Step Executed, 5-35
Insert Step Fail, 5-35
Insert Step Pass, 5-35
list box items
AllOf block, 5-34
AnyOf block, 5-34
Arbitrary expression, 5-34
Step status expression, 5-34
Preferences tab, Station Options dialog box,
4-2510 4-26
Allow Editing NI Installed Types, 4-26
Close Completed Execution Displays on
Execution, 4-25
Display Warning on Run Mode Changes
in Execution Window option, 4-25
illustration, 4-25
Prompt to Find Files option, 4-25
Save Before Running options, 4-26

© National Instruments Corporation

Show Hidden Properties in Next Session
option, 4-25
privileges for users, verifying, 11-11 to 11-12
process models, 1-17 to 1-22, 13-1 to 13-15.
See alsanodel callbacks.
client sequence file, 1-18
contents of default process model,
13-8t0 13-15
default sequences, 13-8t0 13-11
order of actions in Test UUTs entry
point (table), 13-12 to 13-13
single pass entry point (table), 13-13
support files (table), 13-14 to 13-15
Test UUTs entry point (table),
13-12t013-13
customizing, 3-10
definition, 1-17
directory structure, 13-1 to 13-2
entry points, 1-19 to 1-22
flowchart of Test UUTs sequence in
default process model (figure),
1-20
list of all sequences (figure), 1-22
set of steps for Test UUTs entry point
(figure), 1-21
Execution Entry Point Sequence Model
tab, 13-5t0 13-7
Entry Point Enabled Expression
control, 13-6
Entry Point Ignores Client File
control, 13-6
Entry Point Name Expression
control, 13-6
Hide Entry Point Execution
option, 13-7
illustration, 13-5
Load Stale Sequence Files Before
Execution option, 13-7
Menu Hint control, 13-6
Save Modified Sequence Files Before
Execution option, 13-7

© National Instruments Corporation 1-17

Index

Show Entry Point for All Windows
option, 13-7
Show Entry Point Only in Editor
option, 13-7
Show Entry Point When Client File
Window is Active option, 13-7
Show Entry Point When Execution
Window is Active option, 13-7
main sequence, 1-18
overview, 1-17
special editing capabilities for sequence
files, 13-2 to 13-7
callback sequences, 13-4
entry point sequences, 13-4 to 13-7
marking sequence file in Sequence
File Properties dialog box, 13-2
normal sequences, 13-3
station model, 1-17 to 1-18
Profiles tab, Users view, 11-5to 11-7
Profiles tab context menu, 11-6 to 11-7
Edit User Type command, 11-7
Insert Profile command, 11-7
Prompt to Find Files option, Preferences
tab, 4-25
propertiesSee alsoariables.
array property, 1-10
built-in properties
definition, 1-11
sequence properties, 1-16
step properties, 1-11to 1-12
step type properties, 9-24 to 9-25
categories, 1-9to 1-10
class step type properties, 9-24
container property, 1-10
custom properties, 1-11
custom step type properties, 9-23 to 9-24
definition, 1-7
displaying with Browse Sequence
Context command, 4-12 to 4-13
instance step type properties, 9-25
property-array property, 1-10

TestStand User Manual

Index

single-valued property, 1-10
standard and custom named data
types, 1-10
step properties, 1-7
using in expressions, 1-8 to 1-9
Properties command
Context tab context menu, 6-9
Globals View context menu, 7-3
Locals tab context menu, 5-32
Parameters tab context menu, 5-30
Sequence File Globals view context
menu, 5-38
Step Group context menu, 2-11, 5-17
Steps tab context menu, 6-7
properties dialog boxes
custom data types, 9-19 to 9-20
data type fields, 9-20
Sequence File Properties dialog box,
5-6 to 5-9
Sequence Properties dialog box,
5-4 to 5-5
Step Properties dialog box, 2-12,
5-17 to 5-27
Step Type Properties dialog box,
9-25to 9-40
property function operators (table), 8-16
property-array property, definition, 1-10
prototype adapter§eeC/CVI Standard
Prototype Adapter.

R

Record Result of Each Iteration option, Loop
Options tab, 5-25
Record Results option, Run Options tab, 5-20
Refresh command
Context tab context menu, 6-9
Watch Expression pane, Execution
window, 6-13
Reload Station Globals command, Globals
View context menu, 7-4

TestStand User Manual 1-18

Remote Execution takee als@&Gequence
Adapter.
Edit Sequence Call dialog box,
12-39to0 12-41
illustration, 12-39
Remote Execution option, 12-40
Remote Host option, 12-40
Specify host by expression option,
12-40
Station Options dialog box, 4-28
Rename command
All Sequences view context menu, 5-3
Globals View context menu, 7-3
Locals tab context menu, 5-32
Parameters tab context menu, 5-29
Sequence File Globals view context
menu, 5-38
Report Options command, Configure
menu, 3-2, 4-30
Report Options dialog box, 14-4 to 14-10
Contents tab, 14-5 to 14-7
Append if File Already Exists option,
14-6
Disable Report Generation option,
14-5
illustration, 14-5
Include Execution Times option,
14-51t0 14-6
Include Output Values option, 14-6
Include Step Results option, 14-6
Include Test Limits option, 14-6
Report Colors control, 14-7
Report Format control, 14-6
Result Filtering Expression control,
14-6 to 14-7
Select a Report Generator for
Producing the Report Body
option, 14-7
overview, 14-4 to 14-5

© National Instruments Corporation

Report File Pathname tab, 14-8 to 14-10

Add Time and Date to File Name
option, 14-9

Base Name control, 14-9

Directory controls, 14-9

Force File Name to be Unigue option,
14-9

Generate Report File Path button,
14-8

illustration, 14-8

New File for Each UUT option, 14-9

Prefix Sequence File Name to Report
File Name option, 14-9

Specify Fixed Report File Path
button, 14-10

Use Report Format Tag option, 14-10

Use Temporary File option, 14-8

Report tab, Execution window, 6-9 to 6-10
reports

ASCII format test report (figure), 14-4

generating test reports, 2-18 to 2-19

HTML test report (figure), 2-19, 14-3

implementation of test report
capability, 14-1

Launch Report Viewer command, 4-13

using test reports, 14-2

Index

root interactive execution, 1-25, 6-3
Run Active Sequence command, Execute
menu, 4-14
Run Cleanup option, Run-Time Error dialog
box, 6-26
Run Engine Installation Wizard, 16-1 to 16-4
Run Engine Installation Wizard command,
Tools menu, 4-32
Run Mode ring, Run Options tab, 5-20
Run Mode submenu
Step Group context menu, 5-16
Force Fail, 5-16
Force Pass, 5-16
Normal, 5-16
Skip, 5-16
Steps tab context menu, 6-6
Run Options tab, Step Properties dialog
box, 5-19 to 5-22
Breakpoint option, 5-21
Ignore Run-time Errors option, 5-21
Ignore Termination option, 5-22
illustration, 5-19
Load Option, 5-20
Record Results option, 5-20
Run Mode ring, 5-20
Sequence Call Trace Setting option, 5-21

resource string filesSeestring resource files.
Restart command, Execute menu, 4-14
result collection

Step Failure Causes Sequence Failure
option, 5-21
Unload Option, 5-20

automatic result collection,
overview, 1-22
Execution window, 6-14 to 6-19
custom result properties,
6-16 to 6-17
loop results, 6-19
ResultList array (figure), 6-15
standard result properties,
6-17 to 6-18

subsequence results, 6-18 to 6-19

Run Selected Steps command
Execute menu, 4-15
Step Group context menu, 5-16
Steps tab context menu, 6-6
running sequences, 2-16 to 2-17
RunState subproperty, 8-4 to 8-7
RunState.InitialSelection subproperty,
8-10to 8-11

RunState.Sequence subproperty and other
Sequence objects, 8-9

Resume command, Debug menu, 4-17
Resume All command, Debug menu, 4-18

RunState.Step subproperty and other Step
objects, 8-10

© MNational Instruments Corporation 1-19 TestStand User Manual

Index

run-time copy, created during execution, 6-1
Run-Time Error dialog box, 6-26 to 6-27
Abort Immediately option, 6-26
Break option, 6-27
Ignore option, 6-26
illustration, 6-26
Run Cleanup option, 6-26
Suppress this dialog for the remainder of
this execution option, 6-27
run-time errors, 6-25 to 6-27
built-in step type, 10-2
description, 6-25
handling interactively, 6-26
Ignore Run-Time Errors option
enabled, 6-25
overview, 2-16
run-time operator interfaces, 15-1 to 15-7
advantages, 2-20
compared with sequence editor, 6-1
considerations for customizing,
15-1to 15-2
customizing, 3-11
definition, 1-2
distributing.Seedistributing TestStand.
LabVIEW interface, 15-4 to 15-5
LabWindows/CVI interface, 15-2 to 15-4
overview, 1-5
Visual Basic interface, 15-6 to 15-7

S

Save command, File menu, 4-2

Save All command, File menu, 4-3

Save As command, File menu, 4-2

Save Before Running options, Preferences
tab, 4-26

Search Directories command, Configure
menu, 3-2, 4-29 to 4-30

Select All command, Edit menu, 4-4

Sequence Adapter, 12-35to 12-43

example parameters (table), 12-36

TestStand User Manual 1-20

path resolution of sequence pathnames
(table), 12-40
setting up TestStand as server for remote
execution, 12-41 to 12-43
specifying in Edit Sequence Call dialog
box, 12-36 to 12-41
Edit Sequence Call tab,
12-37t0 12-39
Remote Execution tab,
12-39t0 12-41
Sequence Call step, 10-12 to 10-14
Sequence Call Trace Setting option, Run
Options tab, 5-21
sequence context, 8-1to 8-11
definition, 1-7
first-level properties (table), 8-2
overview, 8-1
properties referring to objects that exist
before and after current execution, 8-2
purpose and use, 8-11
subproperties, 8-3 to 8-11
RunState, 8-4 to 8-7
RunState.InitialSelection,
8-10to 8-11
RunState.Sequence and other
Sequence objects, 8-9
RunState.Step and other Step
objects, 8-10
StationGlobals, 8-3
Sequence Context control, LabVIEW
Standard Prototype Adapter, 12-18
sequence editor
compared with run-time operator
interfaces, 6-1
configuring startup options, 3-1
context menus, 2-4
controlling sequence flow, 2-13 to 2-16
copy, cut, and paste capabilities, 2-5
creating sequences, 2-9 to 2-13
definition, 1-2
drag and drop capabilities, 2-5

© National Instruments Corporation

Execution windowSeeExecution
window.
lists and trees, 2-3 to 2-4
menu barSeesequence editor menu bar.
mouse and keyboard actions for
navigating lists and tree views
(table), 2-3to 2-4
overview, 1-5
screens, 2-1to 2-5
Sequence File window, 2-6
Station Globals window, 2-8 to 2-9
status bar, 2-5
tabs, 2-3
toolbars, 2-5
Type Palette window, 2-7 to 2-8
Users window, 2-9
views, 2-2 to 2-3
windows, 2-2 to 2-5
sequence editor Execution winddBee
Execution window.
sequence editor menu bar, 4-1 to 4-34
Configure menu, 3-1 to 3-2, 4-19 to 4-30
Debug menu, 4-17 to 4-18
Edit menu, 4-3 to 4-7
Execute menu, 4-14 to 4-16
File menu, 4-1 to 4-3
overview, 2-5
Tools menu, 4-31 to 4-33
View menu, 4-7 to 4-13
Window menu, 4-34
sequence executioBeeexecution.
Sequence File Callbacks command
All Sequences view context menu,
5-9 to 5-10
Edit menu, 4-6 to 4-7
Sequence File Converters submenu, Tools
menu, 4-31
Sequence File Documentation submenu, Tools
menu, 4-31
Sequence File Globals view, 5-36 to 5-38
context menu, 5-37 to 5-38

© National Instruments Corporation 1-21

Index

illustration, 5-36
lifetime and scope of sequence file global
variables, 5-36
Sequence File Globals view context menu,
5-37 to 5-38
Browse Sequence Context command,
5-38
Go Up One level command, 5-38
Insert Global submenu, 5-37
Properties command, 5-38
Rename command, 5-38
View Contents command, 5-38
Sequence File Properties command
All Sequences view context menu,
5-6 to 5-9
Edit menu, 4-5 to 4-6
Sequence File Properties dialog box,
5-6 to 5-9
Advanced tab, 5-8 to 5-9, 13-2
Comment control, 5-7
Full Path control, 5-6
General tab, 5-6 to 5-8
illustration, 5-6
Load Option, 5-7
Model Option, 5-8 to 5-9
Saved control, 5-6
Size control, 5-6
Type control, 5-8
Unload Option, 5-7
sequence file views, 5-1 to 5-39
All Sequences view, 5-2 to 5-10
All Sequences view context menu,
5-31t0 5-10
Browse Sequence Context command,
5-3
Insert Sequence command, 5-3
Open Sequence command, 5-3
Rename command, 5-3
Sequence File Callbacks command,
5-9to 5-10

TestStand User Manual

Index

Sequence File Properties command,
5-6 to 5-9
Sequence Properties command,
5-3t0 5-5
View Contents command, 5-3
individual Sequence view, 5-10 to 5-32
Locals tab, 5-30

Locals tab context menu,
5-31to0 5-32

Main, Setup, and Cleanup tabs,
5-11to 5-27

Parameters tab, 5-27

Parameters tab context menu,
5-27 t0 5-30

Step Group context menu,
5-14 to 5-27
step group list view and tree view,
5-11
step group list view columns,
5-12 to 5-13
Sequence File Globals view, 5-36 to 5-38
context menu, 5-37 to 5-38
lifetime and scope of sequence file
global variables, 5-36
Sequence File Types view, 5-39, 9-1
Sequence File window views, 5-1 to 5-2
Sequence File window
All Sequences view, 5-2 to 5-10
creating new sequence file, 2-9 to 2-10
example (figure), 2-6
individual Sequence view, 5-10 to 5-32
purpose and use, 2-6
Sequence File Globals view, 5-36 to 5-38
Sequence File Types view, 5-39
using View ring, 5-1
View ring contents (figure), 5-2
sequence files
client sequence file, 1-18
definition, 1-2
distributing, 16-8
overview, 1-16

TestStand User Manual 1-22

storage of types in files, 1-17
types of files, 5-1
sequence flow, controlling, 2-13 to 2-16
Post Actions tab, 2-14
preconditions, 2-14 to 2-16, 5-32 to 5-35
status property values after execution
completion (table), 2-13
sequence local variables, 1-7, 1-15
sequence parameters, 1-8ge also
Parameters tab context menu.
Sequence Properties command
All Sequences view context menu,
5-3t0 5-5
Edit menu, 4-5
Step Group context menu, 5-17
Sequence Properties dialog box, 5-4 to 5-5
Comment control, 5-5
Disable Results for All Steps option, 5-4
Goto Cleanup on Sequence Failure
control, 5-4
illustration, 5-4
Optimize Non-Reentrant Calls to this
Sequence option, 5-5
Preconditions button, 5-5
sequence viewseesequence file views.
SequenceFileLoad callbacks, restrictions on,
5-10
SequenceFileUnload callbacks, restrictions
on, 5-10
sequences, 1-15t0 1-16
built-in sequence properties, 1-16
callback sequences, 1-23to 1-24
components, 1-15
creating, 2-9to 2-13
debugging, 2-17 to 2-18
default sequences of process model,
13-8t0 13-11
definition, 1-2
lifetime of local variables, parameters,
and custom step properties,
1-15t0 1-16

© National Instruments Corporation

running, 2-16 to 2-17
sequence parameters, 1-15
step groups, 1-16
serversSeeActiveX Automation Adapter.
Set Next Step command, Steps tab context
menu, 6-6
Setup tab, step groups, 5-11
Show Hidden Properties in Next Session
option, Preferences tab, 4-25
Show Step in Context Tab command, Steps tab
context menu, 6-7
single-valued property, 1-10
Singular Item Name Expression control, Menu
tab, 9-29
software components of TestStand, 1-4 to 1-7
module adapters, 1-6 to 1-7
relationship between elements
(figure), 1-4
run-time operator interfaces, 1-5
sequence editor, 1-5
test executive engine, 1-6
Source Code tab
Edit C/CVI Module Call dialog box,
12-30t0 12-31
Create Code button, 12-31
Edit Code button, 12-31
illustration, 12-30
Pathname of Source File Containing
Function control, 12-30
Edit DLL Call dialog box, 12-10 to 12-12
adapter interpretation of ambiguous
declarations (table), 12-12
Create Code button, 12-10
Edit Code button, 12-11
Pathname of Source file Containing
Function control, 12-10
Verify Prototype button, 12-11
source code templates
for module adapters, 12-3 to 12-4
for step types, 1-14
special station global variables, 7-5

© National Instruments Corporation 1-23

Index

Specify Custom Condition control, Post
Actions tab, 5-23
Specify Module button
General tab, Step Properties dialog box,
5-18 to 5-19
Substeps tab, Step Type Properties dialog
box, 9-31
Specify Module command
dialog boxes for adapters (table), 9-22
Step Group context menu, 2-11, 5-15
Specify Module dialog box, Sequence Call
step, 10-13
Specify Module option, Disable Properties
tab, 9-33
standard named data types, 9-12 to 9-13
CommonResults, 9-13
Error, 9-13
Path, 9-12
purpose and use, 1-10
Statement steps, 10-14 to 10-15
station global variables
persistence, 7-4 to 7-5
special station globals, 7-5
Station Globals command, View menu, 4-8
Station Globals Types view, 9-1
Station Globals window, 7-1to 7-4
Globals View context menu, 7-2 to 7-4
illustration, 7-1
overview, 2-8 to 2-9
View ring, 7-2
station model, 1-17 to 1-18
Station Options command, Configure
menu, 4-19
Station Options dialog box, 4-19 to 4-29
Execution tab, 4-20 to 4-23
Disable Result Recording for Al
Sequence option, 4-22
Enable Breakpoints option,
4-20to 4-21
Enable Tracing option, 4-21 to 4-22

TestStand User Manual

Index

Goto Cleanup On Sequence Failure
option, 4-22
illustration, 4-20
Interactive Mode option, 4-22
Language tab, 4-28
Model tab
Allow Other Models option, 4-26
illustration, 4-26
Station Model field, 4-26
Use Station Model option, 4-26
overview, 3-2
Preferences tab, 4-25 to 4-26
Allow Editing NI Installed Types
option, 4-26
Close Completed Execution Displays
on Execution option, 4-25
Display Warning on Run Mode
Changes in Execution Window
option, 4-25
illustration, 4-25
Prompt to Find Files option, 4-25
Save Before Running options, 4-26
Show Hidden Properties in Next
Session option, 4-25
Remote Execution tab, 4-28
Time Limits tab, 4-23 to 4-24
illustration, 4-23
Time Limits Setting ring, 4-23
When Time Expires options, 4-24
User Manager tab, 4-27 to 4-28
Automatically Login Windows
System User option, 4-27 to 4-28
Check User Privileges option, 4-27
Hide User Manager Window option,
4-27
illustration, 4-27
User Manager File display, 4-27
StationGlobals subproperty, 8-3
status bar
Execution window, 6-12 to 6-13
sequence editor screen, 2-5

TestStand User Manual 1-24

Status Bar command, View menu, 4-13
Status Expression control, Expressions
tab, 5-26
status property of steps, 6-24
Step Description Expression control, General
tab (Step Type Properties dialog box), 9-27
step execution (table), 6-23 to 6-24
Step Failure Causes Sequence Failure option,
Run Options tab, 5-21
Step Group context menu, 5-14 to 5-27
Browse Sequence Context command,
5-17
Close Tree View command, 5-17
Edit Code command, 5-15
Edit command, 5-15
Go Up One Level command, 5-17
Insert Step submenu, 5-14 to 5-15
Loop Selected Steps command, 5-16
Open Tree View command, 5-16
Properties command, 5-17
Run Mode submenu, 5-16
Run Selected Steps command, 5-16
Sequence Properties command, 5-17
Specify Module command, 5-15
Step Properties dialog box, 5-17 to 5-27
Toggle breakpoint command, 5-16
View Contents command, 5-17
step groups
list view and tree view, 5-11
list view columns, 5-12 to 5-13
Main, Setup, and Cleanup tabs,
5-11 to 5-27
overview, 1-16
Step Into command, Debug menu, 4-17
step module, 1-1
Step Out command, Debug menu, 4-17
Step Over command, Debug menu, 4-17
Step Properties dialog box, 5-17 to 5-27
Expressions tab, 5-26 to 5-27
Post Expression control, 5-26
Pre Expression control, 5-26

© National Instruments Corporation

Status Expression control, 5-26
General tab, 5-18 to 5-19
Comment control, 5-18
Edit button, 5-18
illustration, 5-18
Preconditions button, 5-19
Specify Module button, 5-18 to 5-19
illustration, 2-12
Loop Options tab, 5-24 to 5-25
illustration, 5-24
Loop Type control, 5-24 to 5-25
Record Result of Each Iteration
option, 5-25
overview, 2-12
Post Actions tab, 2-14, 5-22 to 5-23
Break option, 2-14, 5-23
Call sequence option, 2-14, 5-23
On Condition False control, 5-23
On Condition True control, 5-23
Custom Condition Expression
control, 5-23
Destination control, 5-23
On Fail control, 5-23
Goto destination option, 2-14, 5-23
Goto next step option, 2-14, 5-23
illustration, 5-22
On Pass control, 5-23
Specify Custom Condition control,
5-23
Terminate execution option, 2-14,
5-23
Run Options tab, 5-19 to 5-22
Breakpoint option, 5-21
Ignore Run-time Errors option, 5-21
Ignore Termination option, 5-22
illustration, 5-19
Load Option, 5-20
Record Results option, 5-20
Run Mode ring, 5-20
Sequence Call Trace Setting
option, 5-21

© National Instruments Corporation 1-25

Index

Step Failure Causes Sequence Failure
option, 5-21
Unload Option, 5-20

step status property, 6-24
Step Type Properties dialog box, 9-25 to 9-40

Code Templates tab, 9-34 to 9-40
Add button, 9-38
Create button, 9-37
Create Code Templates dialog box,
9-38
creating and customizing template
files, 9-35 to 9-36
Edit button, 9-38
Edit Code Template dialog box,
9-39 to 9-40
illustration, 9-37
Move Down button, 9-39
Move Up button, 9-39
multiple templates per step type, 9-36
overview, 9-34
Remove button, 9-38
template files for different adapters,
9-34t0 9-35
Disable Properties tab, 9-32 to 9-33
illustration, 9-33
Precondition checkbox, 9-33
Specify Module checkbox, 9-33
General tab, 9-26 to 9-28
Attach to File control, 9-28
Comment control, 9-28
Default Step Name Expression
control, 9-27
Designate an Adapter control, 9-27
Designate an Icon control, 9-27
illustration, 9-26
Step Description Expression control,
9-27
Menu tab, 9-28 to 9-29
illustration, 9-28
Item Name Expression control, 9-29

TestStand User Manual

TestStand User Manual

Index

Singular Item Name Expression
control, 9-29
Submenu Name Expression control,
9-29
overview, 9-25
Substeps tab, 9-30 to 9-32
Create button, 9-31
Delete button, 9-31
Description string indicator, 9-31
Edit substep, 9-30
illustration, 9-31
Menu Item Name Expression control,
9-31t0 9-32
Post Step substep, 9-30
Pre Step substep, 9-30
Specify Module button, 9-31
View Contents button, 9-41

step types, 1-12 to 1-14, 9-21 to 9-&ke also

built-in step types; types.
creating and modifying custom step types,
9-22t0 9-41
built-in step type properties,
9-24 to 9-40
copying and renaming built-in step
types, 9-22
custom step type properties,
9-23t09-24
displaying built-in step types in Type
Palette window (figure), 9-23
displaying custom properties with
View Contents button, 9-41
overview, 3-8
definition, 1-12
displaying with Find Type command,
4-11
Insert Step submenu, 9-21
overview, 1-12 to 1-13
predefined step types, 1-14
source code templates, 1-14
storing in Type Palette window, 9-41

1-26

substeps, 1-13
using, 9-21 to 9-22

steps
built-in step properties, 1-11 to 1-12
definition, 1-1
overview, 1-11
properties, 1-7

Steps tab, Execution window, 6-4 to 6-7
columns, 6-5 to 6-6
debugging, 6-5
illustration, 6-4
tracing, 6-4 to 6-5

Steps tab context menu, 6-6 to 6-7
Loop Selected Steps command, 6-7
Properties command, 6-7
Run Mode submenu, 6-6
Run Selected Steps command, 6-6
Set Next Step command, 6-6

Show Step in Context Tab command, 6-7

Toggle Breakpoint command, 6-6
String category data types (table), 12-8
string function operators (table), 8-16 to 8-17
String parameters, specifying for DLL

Flexible Prototype Adapter, 12-8
string resource files, 3-6 to 3-8

default resource string files, 3-6

escape codes (table), 3-7

format, 3-7 to 3-8

search order for directories, 3-6
String Value Test step, 10-9 to 10-12

Edit String Value Test dialog box

Data Source tab, 10-11
Limits tab, 10-10
properties (figure), 10-11
setting value of Step.Result.String,
10-10to 10-11

step properties defined, 10-12
subdirectories for TestStand (table), 3-3
Submenu Name Expression control, Menu

tab, 9-29

© National Instruments Corporation

Index

subproperties of sequence context, 8-3to 8-11 illustration, 12-14
RunState, 8-4 to 8-7 older elements (table), 12-16
RunState.InitialSelection, 8-10 to 8-11 test executive engine, 1-2, 1-6
RunState.Sequence and other Sequence test module, 1-1
objects, 8-9 test reportsSeereports.
RunState.Step and other Step objects, TestStand
8-10 configuring, 3-1 to 3-2
StationGlobals, 8-3 customizing, 3-3 to 3-11
subsequence, 1-2 directory structure, 3-3 to 3-6
substeps, 1-13 TestStand architecture overview, 1-1 to 1-26
Substeps tab, Step Type Properties dialog box, building blocks, 1-7 to 1-26
9-30t0 9-32 automatic result collection, 1-22
Create button, 9-31 callback sequences, 1-23 to 1-24
Delete button, 9-31 process models, 1-17 to 1-22
Description string indicator, 9-31 sequence executions, 1-24 to 1-26
Edit substep, 9-30 sequence files, 1-16 to 1-17
illustration, 9-31 sequences, 1-15 to 1-16
Menu Item Name Expression control, steps, 1-11 to 1-14
9-311t0 9-32

variables and properties, 1-7 to 1-11
capabilities and concepts, 1-2 to 1-3
general test executive concepts, 1-1 to 1-2
software components, 1-4 to 1-7

module adapters, 1-6 to 1-7
T relationship between elements

(figure), 1-4
run-time operator interfaces, 1-5
sequence editor, 1-5
test executive engine, 1-6
Threads selection ring, Execution window, 6-3
Tile command, Window menu, 4-34
time function operators (table), 8-17
Time Limits tab, Station Options dialog box,

Post Step substep, 9-30
Pre Step substep, 9-30
Specify Module button, 9-31

technical support, A-1 to A-2

telephone and fax support numbers, A-2

templatesSeecode templates; Code
Templates tab.

Terminate command, Debug menu, 4-18

Terminate All command, Debug menu, 4-18

Terminate Executable If Step Is Terminated Or
Aborted control, Configure Call Executable
dialog box, 10-19 ° 4-23104-24

Terminate execution option, Post Actions tab, |Illustrat.|or-1, 4-23. .
2.14. 5-23 Time Limits Setting ring, 4-23

When Time Expires options, 4-24

terminating executions, 1-26]) i
Time to Wait control, Configure Call

Test Data cluster, LabVIEW Standard .
Prototype Adapter, 12-14 to 12-16 Executable dialog box, 10-19

element types and descriptions (table), Toggle Breakpoint command
12-15 Step Group context menu, 5-16

Steps tab context menu, 6-6

© MNational Instruments Corporation 1-27 TestStand User Manual

Index

toolbars, sequence editor screen, 2-5
Toolbars command, View menu, 4-13
Tools menu, 4-31 to 4-33
Customize command, 4-32 to 4-33
customizing, 3-9
Import/Export Limits command, 4-31
Run Engine Installation Wizard
command, 4-32
Sequence File Converters submenu, 4-31
Sequence File Documentation submenu,
4-31
Update Automation Identifiers command,
4-31to 4-32
tracing, enabling/disabling, 4-21 to 4-22
Tracing Enabled command, Execute menu,
4-16
TS.CurrentUser station global variable, 7-5
TS.LastUserName station global variable, 7-5
Type Conflict in File dialog box, 9-3
Type control, Sequence File Properties dialog
box, 5-8
Type Palette command, View menu, 4-8
Type Palette window
displaying built-in step types (figure),
9-23
illustration, 2-8
overview, 2-7
purpose and use, 9-2
storing custom step types, 9-41
types.See alsalata types; step types.
storage in files and memory, 9-2
windows and views that display types
Sequence File Types view, 9-1
Station Globals Types view, 9-1
Type Palette window, 9-2
User Types view, 9-1 to 9-2
Types viewSeeUser Manager window.

TestStand User Manual 1-28

u

unit under test (UUT), 1-2
Unload All Modules command, File menu, 4-3
Unload Option
Run Options tab, Step Properties dialog
box, 5-20
Sequence File Properties dialog box, 5-7
unprintable characters, escape codes for
(table), 3-7
Update Automation Identifiers command,
Tools menu, 4-31 to 4-32
User List context menu, 11-3to 11-5
Edit command, 11-5
Edit User Type command, 11-5
Insert User command, 11-4
User Manager command, View menu, 4-8
User Manager tab, Station Options dialog box,
4-27 10 4-28
Automatically Login Windows System
User option, 4-27 to 4-28
Check User Privileges option, 4-27
Hide User Manager Window option, 4-27
illustration, 4-27
User Manager File display, 4-27
User Manager Types view, 11-7 to 11-11
adding new properties and privileges,
11-10to 11-12
illustration, 11-7
overview, 9-1to 9-2
Standard Data Types tab, 11-8 to 11-9
User Manager Users view, 11-2 to 11-7
illustration, 11-2
Profiles tab, 11-5to 11-7
illustration, 11-6

Profiles tab context menu,
11-6to 11-7
User List tab, 11-3to 11-5
Edit User dialog box, 11-5
illustration, 11-3
Insert New User dialog box, 11-4
User List context menu, 11-3to 11-5

© National Instruments Corporation

User Manager window, 11-1to 11-12
overview, 11-1
sequence editor Users window, 2-9
verifying user privileges, 11-11 to 11-12
any user, 11-12
current user, 11-11to 11-12
User subdirectory, 3-4

v

Value field
custom data types, 9-16
Modify Numeric Value dialog box, 9-17
variables See alsgroperties.
definition, 1-7
displaying with Browse Sequence
Context command, 4-12 to 4-13
global
definition, 1-7
lifetime and scope of sequence file
global variables, 5-36
local
definition, 1-7
lifetime of local variables, 1-15
sequence local variables, 1-15
sequence context of, 1-7
standard and custom named data types,
1-10
station global variables
persistence, 7-4 to 7-5
special station globals, 7-5
using in expressions, 1-8 to 1-9
View Constants command, Globals View
context menu, 7-3
View Contents button, Step Type Properties
dialog box, 9-41
View Contents command
All Sequences view context menu, 5-3
Context tab context menu, 6-8
Locals tab context menu, 5-32
Parameters tab context menu, 5-28

© National Instruments Corporation 1-29

Index

Sequence File Globals view context
menu, 5-38

Step Group context menu, 5-17
View menu, 4-7 to 4-13

Browse Sequence Context command,

4-12 to 4-13

Find Type command, 4-11

Launch Report Viewer command, 4-13

Paths command, 4-8 to 4-10

Station Globals command, 4-8

Status Bar command, 4-13

Toolbars command, 4-13

Type Palette command, 4-8

User Manager command, 4-8
views.See alssequence file views.
sequence editor screen, 2-2 to 2-3
Visual Basic compatibility issues,

12-4910 12-51

Visual Basic run-time operator interface

distributing, 16-7 to 16-8

top-level files (table), 15-6 to 15-7

W

Wait Condition control, Configure Call
Executable dialog box, 10-19
Watch Expression pane, Execution window,
6-12 to 6-13
Add Watch command, 6-13
Edit Expression command, 6-12
illustration, 6-12
Modify Value command, 6-13
Refresh command, 6-13
Window menu
Cascade command, 4-34
Close Completed Execution Displays
command, 4-34

open windows list, 4-34
Tile command, 4-34

TestStand User Manual

	TestStand User Manual
	Support
	Internet Support
	Bulletin Board Support
	Fax-on-Demand Support
	Telephone Support (USA)
	International Offices
	National Instruments Corporate Headquarters

	Important Information
	Warranty
	Copyright
	Trademarks
	WARNING REGARDING MEDICAL AND CLINICAL USE OF NATIONAL INSTRUMENTS PRODUCTS

	Contents
	About This Manual
	Organization of This Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 TestStand Architecture Overview
	General Test Executive Concepts
	TestStand Capabilities and Concepts
	Major Software Components of TestStand
	TestStand Sequence Editor
	TestStand Run-Time Operator Interfaces
	TestStand Test Executive Engine
	Module Adapters

	TestStand Building Blocks
	Variables and Properties
	Expressions
	Categories of Properties

	Steps
	Built-In Step Properties
	Step Types

	Sequences
	Sequence Parameters
	Sequence Local Variables
	Lifetime of Locals Variables, Parameters, and Custom Step Properties
	Step Groups
	Built-in Sequence Properties

	Sequence Files
	Storage of Types in Files

	Process Models
	Station Model
	Main Sequence and Client Sequence File
	Model Callbacks
	Entry Points

	Automatic Result Collection
	Callback Sequences
	Engine Callbacks
	Front-End Callbacks

	Sequence Executions
	Normal and Interactive Executions
	Terminating and Aborting Executions

	Chapter 2 Sequence Editor Concepts
	Sequence Editor Screen
	Windows
	Views
	Tabs
	Lists and Trees
	Context Menus
	Copy, Cut, and Paste
	Drag and Drop

	Menu Bar
	Toolbars
	Status Bar

	Sequence Editor Windows
	Sequence File Window
	Execution Window
	Type Palette Window
	Station Globals Window
	Users Window

	Basics of Using TestStand
	Creating a Sequence
	Controlling Sequence Flow
	Post Action
	Preconditions
	Goto Built-In Step Type
	Run-Time Errors

	Running a Sequence
	Debugging a Sequence
	Generating Test Reports
	Using an Operator Interface

	Chapter 3 Configuring and Customizing TestStand
	Configuring TestStand
	Sequence Editor Startup Options
	Configure Menu

	Customizing TestStand
	TestStand Directory Structure
	NI and User Subdirectories
	The Components Directory

	Creating String Resource Files
	Resource String File Format

	Using Data Types
	Creating Step Types
	Using the Tools Menu
	Customizing the Engine and Front-End Callbacks
	Modifying the Process Model
	Using Process Model Callbacks
	Creating Code Templates
	Modifying Run-Time Operator Interfaces
	Adding Users and Managing User Privileges

	Chapter 4 Sequence Editor Menu Bar
	Menus
	File Menu
	Login
	Logout
	New
	Open
	Close
	Save
	Save As
	Save All
	Unload All Modules
	Most Recently Opened Files
	Exit

	Edit Menu
	Cut and Copy
	Paste
	Delete
	Select All
	Sequence Properties
	Sequence File Properties
	Sequence File Callbacks

	View Menu
	Station Globals
	Type Palette
	User Manager
	Paths
	Find Type
	Browse Sequence Context
	Toolbars
	Status Bar
	Launch Report Viewer

	Execute Menu
	Execution Entry Point List
	Run Active Sequence
	Restart
	Run Selected Steps
	Loop on Selected Steps
	Break On First Step
	Tracing Enabled

	Debug Menu
	Resume
	Step Over
	Step Into
	Step Out
	Break
	Terminate
	Abort (no cleanup)
	Break All
	Terminate All
	Abort All (no cleanup)
	Resume All

	Configure Menu
	Station Options
	Search Directories
	External Viewers
	Adapters
	Report Options

	Tools Menu
	Sequence File Documentation
	Sequence File Converters
	Import/Export Limits
	Update Automation Identifiers
	Run Engine Installation Wizard
	Customize

	Window Menu
	Cascade
	Tile
	Close Completed Execution Displays
	Open Windows

	Chapter 5 Sequence Files
	Sequence File Window Views
	All Sequences View
	Sequence View Context Menu
	Open Sequence
	Insert Sequence
	Rename
	Browse Sequence Context
	View Contents
	Sequence Properties
	Sequence File Properties
	Sequence File Callbacks

	Individual Sequence View
	Main, Setup, and Cleanup Tabs
	Step Group List View and Tree View
	Step Group List View Columns
	Step Group Context Menu

	Parameters Tab
	Parameters Tab Context Menu

	Locals Tab
	Locals Tab Context Menu

	Preconditions Dialog Box
	Sequence File Globals View
	Lifetime and Scope of Sequence File Global Variables
	Sequence File Globals View Context Menu
	Insert Global
	View Contents
	Go Up One Level
	Browse Sequence Context
	Rename
	Properties

	Sequence File Types View

	Chapter 6 Sequence Execution
	Sequence Editor and Run-Time Operator Interfaces
	What is an Execution?
	Starting an Execution
	Execution Entry Points
	Executing a Sequence Directly
	Interactively Executing Steps

	Sequence Editor Execution Window
	Steps Tab
	Tracing
	Debugging
	Steps Tab Columns
	Steps Tab Context Menu

	Context Tab
	Context Tab Context Menu

	Report Tab
	Call Stack Pane
	Watch Expression Pane
	Edit Expression
	Add Watch
	Modify Value
	Refresh

	Status Bar

	Result Collection
	Custom Result Properties
	Standard Result Properties
	Subsequence Results
	Loop Results

	Engine Callbacks
	Step Execution
	Step Status
	Run-Time Errors

	Chapter 7 Station Global Variables
	Station Globals Window
	Station Globals View Ring
	Globals View Context Menu
	Insert Global
	View Contents
	Go Up One Level
	Browse Sequence Context
	Rename
	Global Variable Properties
	Reload Station Globals

	Persistence
	Special TestStand Station Globals

	Chapter 8 Sequence Context and Expressions
	Sequence Context
	Sequence Context Subproperties
	StationGlobals
	RunState
	RunState.SequenceFile and Other SequenceFile Objects
	RunState.Sequence and Other Sequence Objects
	RunState.Step and Other Step Objects
	RunState.InitialSelection

	Using the Sequence Context

	Expressions

	Chapter 9 Types
	Windows and Views that Display Types
	Storage of Types in Files and Memory

	Using Data Types
	Specifying Array Sizes
	Dynamic Array Sizing
	Empty Arrays

	Display of Data Types
	Modifying Data Types and Values
	Single Values
	Arrays
	Containers

	Using the Standard Named Data Types
	Path
	Error and Common Results

	Creating and Modifying Data Types
	Custom Data Types Tab Tree and List Views
	Value Field

	Creating a New Custom Data Type
	Adding Fields to Data Types
	Properties Dialog Box for Custom Data Types
	Property Dialog Box for Data Type Fields

	Using Step Types
	Creating and Modifying Custom Step Types
	Custom Step Type Properties
	Built-In Step Type Properties
	General Tab
	Menu Tab
	Substeps Tab
	Disable Properties Tab
	Code Templates Tab
	View Contents Button

	Type Palette Window

	Chapter 10 Built-In Step Types
	Overview
	Common Custom Properties
	Step Status, Error Occurred Flag, and Run-Time Errors
	Customizing Built-In Step Types

	Step Types That You Can Use with Any Module Adapter
	Action
	Pass/Fail Test
	Numeric Limit Test
	String Value Test

	Step Types That Work With a Specific Module Adapter
	Sequence Call

	Step Types That Do Not Use Module Adapters
	Statement
	Message Popup
	Call Executable
	Limit Loader
	Import/Export Limits Command in the Tools�Menu

	Goto
	Label

	Chapter 11 User Management
	User Manager Window
	Users View
	User List Tab
	User List Context Menu

	Profiles Tab
	Profiles Tab Context Menu

	Types View
	User Standard Data Types
	Adding New Properties and Privileges to the User Data Type

	Verifying User Privileges
	Accessing Privilege Settings for the Current User
	Accessing Privilege Settings for Any User

	Chapter 12 Module Adapters
	Overview
	Configuring Adapters
	Source Code Templates
	DLL Flexible Prototype Adapter
	Configuring the DLL Adapter
	Specifying a DLL Adapter Module
	Module Tab
	Source Code Tab

	Debugging DLLs
	Using MFC in a DLL

	LabVIEW Standard Prototype Adapter
	LabVIEW Standard Prototype Adapter Module Structure
	Test Data Cluster
	Error Out Cluster
	Input Buffer
	Invocation Information
	Sequence Context

	Configuring the LabVIEW Standard Prototype Adapter
	Specifying a LabVIEW Standard Prototype Adapter Module
	Debugging a LabVIEW Standard Prototype Adapter Module

	C/CVI Standard Prototype Adapter
	C/CVI Standard Adapter Module Prototypes
	Example C/CVI Standard Prototype Code Module
	Specifying a C/CVI Standard Prototype Adapter Module
	Configuring the C/CVI Standard Prototype Adapter
	Executing Code Modules In-Process
	Executing Code Modules in an External Instance of�LabWindows/CVI

	Sequence Adapter
	Specifying a Sequence Adapter Module
	Edit Sequence Call Tab
	Remote Execution Tab

	Setting up TestStand as a Server for Remote Execution

	ActiveX Automation Adapter
	Configuring the ActiveX Automation Adapter
	Specifying an ActiveX Automation Adapter Module
	Running and Debugging ActiveX Automation Servers
	Using ActiveX Servers with TestStand
	Registering a Server
	Compatibility Issues with Visual Basic

	Chapter 13 Process Models
	Directory Structure for Process Model Files
	Special Editing Capabilities for Process Model Sequence Files
	Sequence Properties Model Tab
	Normal Sequences
	Callback Sequences
	Entry Point Sequences

	Contents of the Default Process Model
	Test UUTs Entry Point
	Single Pass Entry Point
	Support Files for the Default Process Model

	Chapter 14 Managing Reports
	Implementation of the Test Report Capability
	Using Test Reports
	Report Options Dialog Box
	Contents Tab
	Report File Pathname Tab

	Chapter 15 Run-Time Operator Interfaces
	Overview
	TestStand Run-Time Operator Interfaces
	The LabWindows/CVI Run-Time Operator Interface
	The LabVIEW Run-Time Operator Interface
	Building a Standalone Executable

	The Visual Basic Run-Time Operator Interface

	Distributing a Run-Time Operator Interface

	Chapter 16 Distributing TestStand
	Creating a Run-Time TestStand Engine Installation
	Using a Custom TestStand Engine Installation

	Distributing your Operator Interface
	Installing the Customized Engine
	LabVIEW
	LabWindows/CVI
	Visual Basic

	Distributing Sequences and Code Modules
	Distributing Sequence Files
	Distributing DLL Code Modules
	Distributing Object and Static Library Code Modules
	Distributing LabVIEW Test VIs
	Packaging VIs and SubVIs for a Sequence File
	Distributing VIs by Saving Them without Full Hierarchy
	Distributing VIs by Saving Them with Full Hierarchy

	Distributing ActiveX Automation Code Modules

	Customizing and Distributing a LabVIEW Run-Time Server
	Rebuilding the TestStand LabVIEW Run-Time Server
	Distributing the TestStand LabVIEW Run-Time Server

	Appendix A Customer Communication
	Electronic Services
	Telephone and Fax Support
	Technical Support Form
	TestStand Hardware and Software Configuration�Form
	Documentation Comment Form

	Glossary
	A
	B-C
	D-E
	F
	G-I
	K-M
	N-P
	R
	S
	T
	U-W

	Index
	A
	B-C
	D
	E
	F-G
	H-K
	L
	M
	N-P
	R
	S
	T
	U
	V-W

	Figures
	Figure 1�1. TestStand System Architecture
	Figure 1�2. The Expression Browser Dialog Box
	Figure 1�3. Flowchart of TestUUTs Sequence in the Default Process Model
	Figure 1�4. Test UUTs Entry Point Sequence in the Default TestStand Process Model
	Figure 1�5. List of All Sequences in TestStand Process Model
	Figure 2�1. Example Sequence Editor Screen
	Figure 2�2. Example Sequence File Window
	Figure 2�3. Example Execution Window
	Figure 2�4. Example Type Palette Window
	Figure 2�5. Example Station Globals Window
	Figure 2�6. Example Users Window
	Figure 2�7. Main Step Group in an Example Sequence
	Figure 2�8. Insert Step Submenu
	Figure 2�9. Step Properties Dialog Box
	Figure 2�10. Preconditions Dialog Box
	Figure 2�11. HTML Report for an Example Sequence.
	Figure 4�1. File Menu
	Figure 4�2. Edit Menu
	Figure 4�3. Sequence Properties Dialog Box
	Figure 4�4. Sequence File Properties Dialog Box
	Figure 4�5. Sequence File Callbacks Dialog Box
	Figure 4�6. View Menu
	Figure 4�7. Edit Paths in Files Dialog Box
	Figure 4�8. Edit Paths Dialog Box
	Figure 4�9. Find Type Dialog Box
	Figure 4�10. Browse Variables and Properties in Sequence Context Dialog Box
	Figure 4�11. Execute Menu
	Figure 4�12. Loop on Selected Steps Dialog Box—Loop Count Tab
	Figure 4�13. Loop on Selected Steps Dialog Box—Stop Expression Tab
	Figure 4�14. Debug Menu
	Figure 4�15. Configure Menu
	Figure 4�16. Execution Options
	Figure 4�17. Time Limits Options
	Figure 4�18. Preferences Options
	Figure 4�19. Model Options
	Figure 4�20. User Manager Options
	Figure 4�21. Language Options
	Figure 4�22. Search Directories Dialog Box
	Figure 4�23. Tools Menu
	Figure 4�24. Customize Tool Menu Dialog Box
	Figure 4�25. Window Menu
	Figure 5�1. Sequence File View Ring
	Figure 5�2. All Sequences View in the Sequence File Window
	Figure 5�3. Sequence Properties Dialog Box
	Figure 5�4. General Tab on the Sequence File Properties Dialog Box
	Figure 5�5. Advanced Tab on the Sequence File Properties Dialog Box
	Figure 5�6. Callbacks Dialog Box
	Figure 5�7. Individual Sequence View for an Example Sequence
	Figure 5�8. The Step Group Tree View (Left) and List View (Right)
	Figure 5�9. Step Group List View Columns for Steps
	Figure 5�10. Step Group List View Columns for Step Properties
	Figure 5�11. Insert Step Menu with LabVIEW Standard Prototype Adapter Selected
	Figure 5�12. General Tab on the Step Properties Dialog Box
	Figure 5�13. Run Options Tab on the Step Properties Dialog Box
	Figure 5�14. Post Actions Tab on the Step Properties Dialog Box
	Figure 5�15. Loop Options Tab on the Step Properties Dialog Box
	Figure 5�16. Expressions Tab on the Step Properties Dialog Box
	Figure 5�17. Parameters Tab
	Figure 5�18. Insert Parameter Submenu
	Figure 5�19. Locals Tab
	Figure 5�20. Insert Local Submenu
	Figure 5�21. Preconditions Dialog Box for a Sequence
	Figure 5�22. Sequence File Globals View for an Example Sequence
	Figure 5�23. Insert Global Submenu
	Figure 5�24. Step Types Tab in Sequence File Types View
	Figure 6�1. Steps Tab in the Sequence Editor Execution Window
	Figure 6�2. The Context Tab in an Execution Window
	Figure 6�3. HTML Report for an Example Sequence
	Figure 6�4. Call Stack Pane while Suspended in a Subsequence
	Figure 6�5. Steps Tab Displaying a Sequence Invocation in the Middle of the Call Stack
	Figure 6�6. Watch Expression Pane
	Figure 6�7. Execution Window Status Bar
	Figure 6�8. A Result in a ResultList Array
	Figure 6�9. Run-Time Error Dialog Box
	Figure 7�1. Station Globals Window
	Figure 7�2. The Insert Global Submenu
	Figure 8�1. Variables/Properties Tab of the Expression Browser
	Figure 8�2. Operators/Functions Tab of the Expression Browser
	Figure 9�1. Type Conflict In File Dialog Box
	Figure 9�2. Insert Local Submenu
	Figure 9�3. Initial State of Array Bounds Dialog Box
	Figure 9�4. Array Bounds Dialog Box with Settings for a Three-Dimensional Array
	Figure 9�5. Array Bounds Dialog Box with an Initially Empty Array
	Figure 9�6. Local Variables with Various Data Types
	Figure 9�7. Properties Dialog Box for a Number Local Variable
	Figure 9�8. Contents of Array Local Variable in List View
	Figure 9�9. Standard Data Types Tab of the Type Palette Window
	Figure 9�10. Custom Data Types Tab with Root Node Selected
	Figure 9�11. Custom Data Types Tab Showing the Contents of a Container
	Figure 9�12. Custom Data Types Tab Showing the Value Field for a Number
	Figure 9�13. Modify Numeric Value Dialog Box
	Figure 9�14. Insert Custom Data Type Submenu
	Figure 9�15. Insert Fields Submenu
	Figure 9�16. Properties Dialog Box for a Numeric Data Type
	Figure 9�17. Insert Step Submenu
	Figure 9�18. Step Types Tab of the Type Palette Window
	Figure 9�19. Custom Properties of a Step Type
	Figure 9�20. Step Type Properties Dialog Box—General Tab
	Figure 9�21. Step Type Properties Dialog Box—Menu Tab
	Figure 9�22. Step Type Properties Dialog Box—Substeps Tab
	Figure 9�23. Step Type Properties Dialog Box—Disable Properties Tab
	Figure 9�24. Step Type Properties Dialog Box—Code Templates Tab
	Figure 9�25. Create Code Templates Dialog Box
	Figure 9�26. Edit Code Template Dialog Box
	Figure 10�1. Properties That All Steps Contain
	Figure 10�2. Edit Pass/Fail Source Dialog Box
	Figure 10�3. Pass/Fail Test Step Properties
	Figure 10�4. Limits Tab on Edit Numeric Limit Test Dialog Box
	Figure 10�5. Data Source Tab on Edit Numeric Limit Test Dialog Box
	Figure 10�6. Numeric Limit Test Step Properties
	Figure 10�7. Limits Tab on the Edit String Value Test Dialog Box
	Figure 10�8. Data Source Tab on Edit String Value Test Dialog Box
	Figure 10�9. String Limit Test Step Properties
	Figure 10�10. Specify Module Dialog Box for Sequence Call Step
	Figure 10�11. Edit Statement Step Dialog Box
	Figure 10�12. Configure Message Box Step Dialog Box
	Figure 10�13. Message Popup Step Properties
	Figure 10�14. Configure Call Executable Dialog Box
	Figure 10�15. Message Popup Step Properties
	Figure 10�16. Example Sequence File with Limit Steps
	Figure 10�17. Limits File Tab on Edit Limit Loader Step Dialog Box
	Figure 10�18. Layout Tab on Edit Limit Loader Step Dialog Box
	Figure 10�19. Limit Loader Step Properties
	Figure 10�20. Import/Exports Sequence Limits Dialog Box
	Figure 10�21. Edit Goto Step Dialog Box
	Figure 11�1. Users View in the User Manager Window
	Figure 11�2. User List Tab for Users View
	Figure 11�3. Insert New User Dialog Box
	Figure 11�4. Edit User Dialog Box
	Figure 11�5. Profile Tab in the Users View
	Figure 11�6. Types View in the User Manager Window
	Figure 11�7. User Standard Data Type
	Figure 12�1. Adapter Configuration Dialog Box
	Figure 12�2. Choose Code Template Dialog Box
	Figure 12�3. Specify Module Dialog Box for DLL Flexible Prototype Adapter—Module�Tab
	Figure 12�4. Specify Module Dialog Box for DLL Flexible Prototype Adapter— Source Code Tab
	Figure 12�5. Test Data Cluster
	Figure 12�6. Error Out Cluster
	Figure 12�7. Invocation Information Cluster
	Figure 12�8. Sequence Context Control
	Figure 12�9. LabVIEW Adapter Configuration Dialog Box
	Figure 12�10. Specify Module Dialog Box for LabVIEW Standard Prototype Adapter
	Figure 12�11. Stepping into a LabVIEW VI
	Figure 12�12. Specify Module Dialog Box for C/CVI Standard Prototype Adapter— Module Tab
	Figure 12�13. Specify Module Dialog Box for C/CVI Standard Prototype Adapter— Source Code Tab
	Figure 12�14. C/CVI Standard Adapter Configuration Dialog Box
	Figure 12�15. Auto-Load Library Configuration Dialog Box
	Figure 12�16. Example Sequence Parameters
	Figure 12�17. Specify Module Dialog Box for the Sequence Adapter—Edit Sequence�Call Tab
	Figure 12�18. Specify Module Dialog Box for the Sequence Adapter—Remote�Execution Tab
	Figure 12�19. Specify Module Dialog Box for ActiveX Automation Adapter
	Figure 12�20. Edit Parameter Value Dialog Box
	Figure 13�1. Process Model Settings in the Advanced Tab of the Sequence File�Dialog�Box
	Figure 13�2. Type Ring Control in the Sequence Properties Model Tab
	Figure 13�3. Model Tab for an Execution Entry Point Sequence
	Figure 13�4. List of All Sequences in the Default TestStand Process Model File
	Figure 14�1. HTML Test Report in the Report Tab
	Figure 14�2. ASCII Text Test Report in the Report Tab
	Figure 14�3. Report Options Dialog Box—Contents Tab
	Figure 14�4. Report Options Dialog Box—Report File Pathname Tab
	Figure 16�1. Opening Dialog Box for the TestStand Engine Installation Wizard
	Figure 16�2. Default Components to Include in the Installation
	Figure 16�3. Customize Files to Include in Installation Dialog Box
	Figure 16�4. Select Files to Include Dialog Box

	Tables
	Table 1�1. Callback Types
	Table 2 1. Mouse and Keyboard Actions for Navigating List and Tree Views
	Table 2�2. Standard Values for the Status Property after Execution Completes
	Table 3�1. Sequence Editor Startup Options
	Table 3�2. TestStand Subdirectories
	Table 3 3. TestStand Component Subdirectories
	Table 3�4. Resource String File Escape Codes
	Table 6�1. Custom Properties in the Step Results for Steps That Use the�Built-In�Step�Types�
	Table 6 2. Standard Step Result Properties
	Table 6�3. Property Names for Subsequence Results�
	Table 6 4. Engine Callbacks
	Table 6 5. Order of Actions That a Step Performs
	Table 6�6. Standard Values for the Status Property�
	Table 8�1. First-Level Properties of the Sequence Context
	Table 8�2. The StationGlobals TS Subproperty in the Sequence Context
	Table 8 3. The RunState Subproperty in the Sequence Context
	Table 8�4. The Subproperties of the SequenceFile Objects in the Sequence Context
	Table 8�5. The Subproperties of the Sequence Objects in the Sequence Context
	Table 8�6. The InitialSelection Subproperty in the Sequence Context
	Table 8�7. Expression Operators�
	Table 8 8. Function Expression Operators
	Table 8�9. Levels of Precedence in Expressions
	Table 9�1. Adapter Dialog Box Names
	Table 10�1. Numeric Limit Test Comparison Types
	Table 11 1. Description of Subproperties in User Data Type
	Table 12�1. TestStand Numeric Data Types�
	Table 12�2. TestStand String Data Types�
	Table 12�3. Adapter Interpretation of Ambiguous Declarations�
	Table 12�4. Test Data Cluster Elements�
	Table 12�5. Old Test Data Cluster Elements from LabVIEW Test Executive
	Table 12�6. Error Out Cluster Elements
	Table 12�7. Error Out Cluster Elements
	Table 12 8. tTestData Structure Member Fields
	Table 12�9. tTestError Structure Member Fields�
	Table 12�10. Step Properties Updated by C/CVI Standard Prototype Adapter�
	Table 12�11. Path Resolution of Sequence Pathnames for Remotely Executed Steps
	Table 12�12. Variant Data Types Supported by the ActiveX Automation�Adapter
	Table 13 1. Order of Actions in the Test UUTs Entry Point
	Table 13�2. Order of Actions in the Single Pass Entry Point
	Table 13 3. Default Process Model Files
	Table 15�1. Files in the LabWindows/CVI Run-Time Operator Interface Project File (Continued)
	Table 15�2. Top-Level Files in the LabVIEW Run-Time Operator Interface
	Table 15�3. Top-Level Files in the Visual Basic Run-Time Operator Interface (Continued)
	Table 16�1. Custom TestStand Engine Installer Actions

