
The candidate confirms that the work submitted is their own and the appropriate credit has
been given where reference has been made to the work of others.

I understand that failure to attribute material which is obtained from another source may be
considered as plagiarism.

 (Signature of student)________________________

Operating Systems Resource Allocation
Simulator

Edward W Widdows
BSc. Computing

2001/2002

i

Project Summary

Students and researchers attempting to learn more about the low level functionalities of operating

systems often find that there are many complicated features which can be a challenge to visualise, and

are thus difficult to learn about. The purpose of this project was to create a piece of software that

could simulate the resource allocation and scheduling functions of operating systems and present

them in a friendly and graphical manner.

The program that was produced is called OSRAS, the Operating System Resource Allocation

Simulator, written with C++ and the GLOW library, allowing it to use the graphical functions of GL

in order to provide a clear and flexible display, combined with GLOW's own widget system to

provide a rich and easy to use GUI. The intended audience is university students on modules with at

least a basic introduction to the material that OSRAS deals with. It therefore contains quite a large

amount of specialist terminology and concepts, and is not designed to be a standalone way to learn.

ii

Acknowledgements

Thank you to Dr Nick Efford for his continued support and advice throughout this project, and to

Professor Graham Birtwistle for some useful hints.

Also thank you to all the random people who leaned over my shoulder while I was working on

OSRAS and made comments good, bad, and ugly.

iii

Contents
Project Summary ...i
Acknowledgements ..ii
Contents...iii
Chapter 1 – Project Overview .. 1

1.1 Introduction ..1
1.2 Evaluating the Software ... 1
1.3 Minimum Requirements... 1
1.4 Work Schedule ... 2

Chapter 2 – Planning and Research ..4
2.1 Introduction ..4
2.2 Existing Simulators .. 4

2.2.1 JOSS: Java Operating System Simulator [1] ...4
2.2.2 Medusa: an Operating Systems Simulator [5] ...5
2.2.3 MOSS: Modern Operating Systems Simulators [2] .. 5

2.2.3.1 MOSS CPU Scheduling Section... 5
2.2.3.2 MOSS Deadlocking Section... 6
2.2.3.3 MOSS Memory Management... 6
2.2.3.4 MOSS File System Simulator... 7
2.2.3.5 MOSS Summary...7

2.2.4 SPIM A MIPS R2000/R3000 Simulator [4].. 7
2.2.5 Conclusions Drawn From Existing Simulators ...7

2.3 Development Language.. 7
2.3.1 Java ..8
2.3.2 C++..8

2.3.2.1 GLUT, GLUI and GLOW .. 8
2.3.2.2 QT...9

2.3.3 Python..9
2.3.4 Summary of Languages ...10

2.4 Resource Allocation Functions...10
2.4.1 CPU Scheduling .. 10
2.4.2 Memory Allocation ... 11
2.4.3 Disk Scheduling... 13

2.5 Conclusions Based This Research.. 14
2.5.1 Which language? ... 14
2.5.2 Which scheduling function should be implemented first? .. 15

Chapter 3 – Interface Design.. 16
3.1 Introduction .. 16
3.2 Memory Paging Simulator ...16
3.3 CPU and Process Simulator.. 18

3.3.1 Simple CPU Mode... 18
3.3.2 Advanced CPU Mode.. 19

3.4 Disk Scheduling Simulator...20
Chapter 4 – Code Design.. 22

4.1 Introduction .. 22
4.2 Class Structure.. 22

4.2.1 Class: OsrasWindow ...22
4.2.2 Class OsrasModule.. 23
4.2.3 Class OsrasMemory... 23

4.2.3.1 Class OsrasMemoryPager... 23
4.2.3.2 Memory Pages .. 24
4.2.3.3 Implementation of FIFO Memory Paging ..25
4.2.3.4 Implementation of LRU Memory Paging...25

iv

4.2.3.5 Implementation of Optimal Memory Paging.. 25
4.2.3.6 Implementation of Second Chance Paging...26

4.2.4 Class OsrasCpu.. 26
4.2.4.1 Class OsrasCpuLogic ...27
4.2.4.2 Processes... 27
4.2.4.3 Implementation of FCFS CPU Scheduling...28
4.2.4.4 Implementation of Round Robin CPU Scheduling .. 28
4.2.4.5 Implementation of SJF CPU Scheduling..28
4.2.4.6 Implementation of SRTF CPU Scheduling ..28
4.2.4.7 Class OsrasLine .. 29

4.2.5 Class OsrasDisk... 29
4.2.5.1 Class OsrasDiskLogic...29
4.2.5.2 Implementation of FCFS Disk Scheduling...30
4.2.5.3 Implementation of SSTF Disk Scheduling ...30
4.2.5.4 Implementation of Scan Disk Scheduling ..30
4.2.5.5 Implementation of Circular Scan Disk Scheduling .. 31
4.2.5.6 Implementation of Look Disk Scheduling..31
4.2.5.7 Implementation of Circular Look Disk Scheduling.. 32

4.2.6 OSRAS' Graphics functions .. 32
4.2.6.1 OsrasColours .. 32

Chapter 5 – Implementation Issues ..33
5.1 7th February – Making a GLOW Library.. 33
5.2 16th February – Rebuilding GLOW controls on the fly .. 33
5.3 14th April – GLOW Menu Glitch?.. 34
5.4 16th April – Important Numbers ... 34

Chapter 6 – OSRAS Manual .. 36
6.1 OSRAS CPU Simulation.. 36

6.1.1 CPU Control Panel .. 38
6.1.2 Explanation of Algorithms ..38
6.1.3 Explanation of Process Details .. 39

6.2 OSRAS Memory Swapping ...39
6.2.1 Memory Control Panel .. 40
6.2.2 Explanation of Algorithms ..41

6.3 OSRAS Disk Simulation .. 41
6.3.1 Disk Control Panel .. 42
6.3.2 Explanation of Algorithms ..43

Chapter 7 – Evaluation ... 44
Chapter 8 – Overall Conclusions and Future Work ... 47

8.1 OSRAS as it is .. 47
8.2 OSRAS as it could be... 47

Bibliography...49
Appendix A – Personal Reflections..51

1

Chapter 1 – Project Overview

1.1 Introduction

When one is attempting to learn about how operating systems work, there is one conclusion that

frequently springs to mind: it is a very complicated subject area. There are many low level functions

that operating systems perform that are difficult to visualise, and therefore, difficult for

students/researchers to learn about.

This project aimed to create a piece of software that would assist learning about such functions in as

friendly and flexible a manner as possible.

1.2 Evaluating the Software

There will of course come a time when the software will need to be evaluated. A basic layout for such

can be summarised with the following questions:

• Does it work without errors and on any University of Leeds computer?

• Does it simulate at least one of the scheduling functions listed above?

• Is the choice of language appropriate?

• Does it use an appropriate user interface? Although it would be possible to complete a

simulation with text interface, a GUI is very highly desirable.

• Is the software easy to use, and is there documentation easily available?

• Do the simulated results match with what would be expected from general knowledge? If not,

it suggests something is wrong.

• Do people find that it helps them understand what is going on?

• Is the software written in such a way that it can be easily built upon in the future?

1.3 Minimum Requirements

The minimum requirements that were agreed for this project were:

1 The software should be created in such a way that it becomes a cross-platform solution for

use on any of the university's machines.

2 Research should be done into the various available languages for cross platform solutions in

order to decide the most appropriate.

2

3 The software should simulate at least one of: CPU, Memory or Disk allocation.

4 The software should be easy to use, and full instructions for its use should be available.

1.4 Work Schedule

In order to avoid a massive overload of work towards the end of the project, I attempted to create a

realistic schedule to work to. In general, I was pleased to find that I was able to hold to it, so that

while the time approaching the deadline was busy, it was not unrealistically difficult to complete the

work. In most cases, each section of scheduled work needed to be completed before the next section

could begin.

13.12.2001 Begin background research into cross platform programming languages and

scheduling functions that should be simulated.

 Complete the mid term report for this project. This will require a decision about

which language to use, and which scheduling system to implement first.

28.1.2002 Collection of mid-term report. It should be noted that after this, I adjusted the plan

for this project to include research about existing simulators. This needed to be

started immediately, since it could have a significant impact on other decisions.

7.2.2002 Begin a plan of the GUI layout for the initial simulation, based on the capabilities of

the chosen language. This is something similar to a user requirements specification,

and should detail what the software will do, without detailing how.

14.2.2002 Begin a plan of the major classes and functions that will be necessary to provide the

desired functionality.

21.2.2002 Begin coding the first simulation.

28.2.2002 Begin writing the draft chapter that will be due in two weeks. This is going to have to

happen at the same time as the coding for the first simulation.

14.3.2002 Hopefully the first simulation, memory, CPU, or disk, will be at least partially

complete by this point.

21.3.2002 This should be the completion of the first simulation module. If it has been done

well, then it should be sufficient to reach the minimum requirements.

7.4.2002 Given that a large portion of the work in the first simulation will have been creating

the GUI, if appropriate reuse can be made of the code, and with the knowledge

gained, it should be possible to have a second simulation module completed by this

point. The project report needs to be started.

3

21.4.2002 If the project report went swiftly, and is near completion, then try to have the third

simulation module completed.

4

Chapter 2 – Planning and Research

2.1 Introduction

The aim of this project is to create a piece of software to simulate and demonstrate the resource

allocation functions of operating systems. In order to do this, it is necessary to first have an

appropriate plan of action, based upon three major branches of research: existing similar software,

appropriate programming languages, and perhaps most importantly, detailed information about what

to actually simulate.

The information gathered here is not to be considered the be all and end all of what needs to be

known, rather, it is a starting point. Much of the research will no doubt need to be done during the

coding process.

2.2 Existing Simulators

Perhaps the most fundamental question that must be asked when developing a piece of software is

"Has anyone done anything similar before, and if so, can I learn anything from it?" A large part of the

research for this project has focussed on other operating system simulation software. There are many

more pieces of software that could have been reviewed, but a lot of what is available on the Internet

appears to have some serious problems actually compiling/running and is thus unusable. Some of the

most notable pieces that were available are listed here.

2.2.1 JOSS: Java Operating System Simulator [1]

JOSS is "a simulation of a basic multi-tasking non-pre-emptive operating system written in Java". In

other words, it simulates FCFS CPU scheduling.

It appears to be a rather

simple applet, but it has the

rather nice feature of a

graphical display of the CPU

utilisation at the current point

in time, and in the recent

history. The simulated

processes in JOSS are rather

advanced, having several different states, including running, messaging other processes, and using

semaphores.

5

The major downside I can see to JOSS is that it is not particularly obvious exactly what it is doing,

and processes appear to run indefinitely, never actually reaching a point where they can be

terminated.

2.2.2 Medusa: an Operating Systems Simula tor [5]

It is rather a shame that there is no software available to download from this website, because the

design of this simulator looks to be fantastic (it is also regrettable that even if it was available, all the

text is in Greek). It also looks to be much along the lines of the software I am attempting to develop:

an educational tool for the

demonstration of the scheduling and

allocation functions of operating

systems.

The screenshot of the system shows

an extremely advanced GUI compared

to the other simulators I have

reviewed, while the documentation

says that it simulates a single CPU

machine with two input/output units.

It does not seem to go into great depth

about how the I/O is achieved, or about how the memory is managed, which is rather a shame.

2.2.3 MOSS: Modern Operating Systems Simulators [2]

Moss is less a single simulator than a collection of programs, each one designed to simulate a

different aspect of operating system functionality. The programs are designed to work with Modern

Operating Systems [3] so users without this text may be (and in my view will be) at something of a

disadvantage.

2.2.3.1 MOSS CPU Scheduling Section

The CPU scheduling section of moss is rather limited. There is no GUI, and all parameters are

specified by means of a configuration file. Output is to a text file, and the only CPU algorithm is

available is FCFS, with a suggestion that the user (presumed to be a student) try to implement others.

6

The MOSS default CPU configuration file.

Perhaps not immediately hostile, but not exactly

friendly either. The numbers do not have any

obvious purpose on first inspection.

A portion of the output from the MOSS CPU

scheduler. I don't think many people would class

this as user-friendly output.

2.2.3.2 MOSS Deadlocking Section

The section of MOSS that deals with

deadlocking has a GUI, although a rather

primitive one. The intent of this program is

to demonstrate how, when there are two or

more resources, it is possible for processes

to each hold one of them, and wait for the

other to become available before releasing, hence, deadlock. Again, the program requires

configuration files, requiring a large amount of user time for experimentation beyond the two

standard scenarios.

2.2.3.3 MOSS Memory Management

The third of the programs in MOSS deals with

memory management. As with deadlocking, this

has a GUI. As with the other sections however,

this program is not particularly user friendly,

requiring the user to set up a configuration file in

order to tell the program which memory pages to

request (or rather, to specify an address, which the

program will translate into a page request). The

// # of Process

numprocess 3

// mean deivation

meandev 1100

// standard deviation

standdev 510

// process # I/O blocking

process 100

process 500

process 30

// duration of the simulation in milliseconds

runtime 5000
Process: 0 registered... (998 100 0 0)

Process: 0 I/O blocked... (998 100 100 100)

Process: 1 registered... (966 500 0 0)

Process: 1 I/O blocked... (966 500 500 500)

Process: 0 registered... (998 100 100 100)

Process: 0 I/O blocked... (998 100 200 200)

Process: 1 registered... (966 500 500 500)

7

default file provides for 7 steps, and then stops, leaving the user to work out what happened. MOSS

apparently does not know how to actually deal with page faults…

2.2.3.4 MOSS File System Simulator

This section of MOSS is exactly what its title suggests: it is a simulator, and is rather reminiscent of a

small dos/unix style operating system built entirely with Java. While creating this program was no

doubt interesting and instructional, it is not obvious how such a thing is useful to a student, since most

students will find the hex dumps of the file system to be rather difficult to interpret.

2.2.3.5 MOSS Summary

Moss has a few interesting features, but it is designed more to be expanded upon by a student than it

is to be used as a learning aid about how the operating system works, as it encourages the student to

find out the information (presumably in Modern Operating Systems [3]) rather than actually

providing it.

2.2.4 SPIM A MIPS R2000/R3000 Simulator [4]

SPIM turns out to be a processor simulator, allowing execution of assembly code for MIPS R2000

and R3000 CPUs. Although it looks potentially relevant on first glance, there seems to be very little

to do with the way the system actually schedules tasks, and is probably not worth looking at for too

long.

2.2.5 Conclusions Drawn From Existing Simulators

There seems to be something of a shortage of programs similar to what this project was trying to

develop. Most "operating system simulators" that seem to be available (or at least, those that are

available free) seem to be either designed as true simulators, which literally duplicate operating

systems (like the MOSS file system simulator) or they lack an easily comprehensible interface (like

JOSS).

The primary lesson to learn be learned here was: program the software for what it is meant to do, i.e.

demonstrate the resource allocation functions of operating systems, it is not necessary to duplicate

them. The secondary lesson was to keep to simple functions, at least at the start, for the system is

designed to be a learning aid, not an exercise in realistic programming.

2.3 Development Language

One of the early questions that must always be asked when developing a piece of software is "what

language should it be written in?" In this case, it was necessary that the software be a cross-platform

solution. Although this does limit the choices slightly, it opens up some exciting chances to

investigate some of the more recent development tools.

8

2.3.1 Java

Let us start by looking at the most famously cross platform language of all: Java. Java is often cited as

a true cross-platform language, because it runs on a virtual machine rather than being compiled for a

specific architecture.

It is pointed out in Java Gently [6] that Java is especially designed for system-independent software,

and this independence is something worth stressing in Java's favour. Assuming that the machine the

software is to be run on is set up for Java, it will work as it did on the machine the program was

created on. There is however, the point that the machine must be set up for Java. Most operating

systems have by default some capability to run Java programs, but this is frequently restricted to

applets. In order to expand the functionality of the software beyond this rather basic level, it would be

necessary to make use of the libraries in the Java JDK, requiring some users to make a very large (30-

100 megabyte) download. This is not a particularly satisfactory way to distribute software.

Perhaps the greatest flaw of Java is its speed, as noted by Deitel and Deitel in [7]: because it is

necessary to run the program on a virtual machine, there is an extra layer of processing that must be

done. It seems unlikely that this would be a major problem, as I do not foresee any great need for

large amounts of processing, but it should be thought about when the issue of how to display the

simulation is questioned. It seems appropriate for a simulator to make it easier to understand the

processes that are actually occurring, and thus the display should be clear, informative, and if

possible, interesting. Although the graphical abilities of Java have been improving recently, for

anything other than relatively basic image display, Java may show its lower speed.

2.3.2 C++

C++ is not normally considered when one talks about cross-platform languages, as it needs to be

compiled for different platforms. But, compiling aside, there is really no reason that C++ cannot be

used for a cross platform program, especially when taking account of some of the new libraries that

allow the use of the OpenGL API for "write once, compile anywhere" programs.

2.3.2.1 GLUT, GLUI and GLOW

The GLUT library ([8]) was originally developed to be a cross platform library for use with OpenGL

and its (more or less) equivalent, MESA. It is generally good for graphics applications that require

little user interaction, so alone it is not very useful for software, which would require the greater

degree of control needed to act as a scheduling simulator.

One possible add-on to GLUT is GLUI, which could provide a GUI for the simulator:

"GLUI is a GLUT-based C++ user interface library which provides controls such as buttons,

checkboxes, radio buttons, and spinners to OpenGL applications. It is window-system independent,

9

relying on GLUT to handle all system-dependent issues, such as window and mouse management."

[9]

General opinion however, seems to be that GLOW, a slightly more recent library, is a more stable and

more complete windowing system for GLUT. GLOW includes a convenient "widget library"

specifically designed for GUIs. [10]

Using GLOW would provide the advantage of a range of built in GUI tools and widgets, whilst also

permitting the use of the underlying GL functions for all the graphical display, and maintaining the

cross-platform nature of the software. Worst case scenario would be the necessity to include a

makefile or visual C++ workspace to allow the user to compile it themselves.

2.3.2.2 QT

QT is a cross-platform development API built for C++. Like the GLUT library, it is built for "write

once, compile anywhere" development. It is, in fact, the code behind the KDE Linux desktop.

The developers of QT state "The Qt library encapsulates the different APIs of different operating

systems, providing the application programmer with a single, common API for all operating

systems." [13] Because QT incorporates the various windowing system APIs within itself, it does not

need any interpreter, and runs as fast as any other C++ based software.

QT is fully capable of generating graphical output and is very well developed in terms of its GUI

capabilities.

Unlike GLUT or Python, QT will take on the appearance of the desktop environment it is running in.

Although this might act to make the user of the program feel more comfortable with it, it may also

have the effect of making development harder because it will be necessary to continuously check it

across all platforms it is intended to run the software on in order to verify the layout of the various

GUI components.

Perhaps the major downside of QT is that unlike all the other options I have discussed, it is not free. It

is, of course, a part of most Linux distributions, and thus QT is free for that platform, but it is

necessary to purchase QT for Microsoft Windows-based platforms, with different licenses placing

restrictions of the use of the software. Although it is unlikely to cause any problems for the end user,

it would make the software particularly difficult to create.

2.3.3 Python

Python is a relatively recent, general purpose scripting language, which is gaining increasing

popularity. Python is often compared to Java, in that it runs on an interpreter, rather than being

compiled for specific architectures, and thus generated very cross-platform code. Like Java, Python

shares the performance hit that comes with interpreted languages, being slower than Java at some

points. It is however, possible to compile some modules in C, allowing performance increases.

10

Like Java however, Python is designed to be window-system independent, and includes interfaces to

libraries from many of them, covering X11, Motif, Tk, Mac and MFC. [11] Python also allows the

easy use of standard GUI features and widgets.

Python is, in fact, GLUT compatible, although apparently not GLUI or GLOW. It is fairly obvious

however, that Python itself would be able to provide all the functionality of these libraries. The

Python OpenGL binding is such that it allows the developer to "concentrate on your OpenGL code

instead of the underlying GUI environment." [12] Which would be beneficial to any who know any

OpenGL to start with.

2.3.4 Summary of Languages

2.4 Resource Allocation Functions

So far, the simulation functions have simply been referred to by three categories. This section shall go

into a little more detail about each. Since it does not seem relevant to discuss the advantages and

disadvantages of each algorithm mentioned, it shall explain only how they operate, and avoid making

judgement. The point, after all, is to simulate and demonstrate all of these, and allow experimentation,

not to create the most efficient system possible. Most of this information is taken from [14] since the

students on that module are a large part of the target users of the software, and it is important that it

works in a way they are familiar with. Other information is from [15].

2.4.1 CPU Scheduling

To the user, all multi-tasking operating systems present the appearance of running programs

simultaneously. This is not, of course, the case. The programs, or rather, processes are being run in

sequence, with only one process occupying the CPU at any one time. There are variety of ways in

which this is implemented, some of which force processes on and off the CPU, some which just allow

each process to run to completion before changing to the next.

Algorithms

First Come First Served: This is the most basic of all CPU scheduling. The first process to arrive at

the CPU is allowed to execute until it has completed.

Attribute Java C++/GLOW C++/QT Python

Cross-platform execution Yes No No Yes

Cross-platform with separate compilation - Yes Yes -

Speed Low High High Low

Graphical capabilities Medium High Medium Medium

License Free Free Commercial Free

11

Shortest Job First: Similar to FCFS, this algorithm simply gives priority to the shortest process in the

ready queue.

The major problem with this algorithm is that is can lead to starvation of long processes. To counter

this, the processes must "age," that is, the longer the process has been in the queue, the higher its

priority must become, until eventually it is higher priority than the shortest of the processes it is

competing with. It would be nice to simulate aging, perhaps giving an option to run without it as well.

Shortest Remaining Time First: A development of SJF, when a new process arrives at the CPU, this

algorithm looks to see if the new process will take less time to execute than the one currently on the

CPU. If so, the longer job is moved off and the new process is executed.

Neither SJF or SRTF are actually possible to implement in hardware, because it is not possible to

know the true length of processes in the ready queue, but they are interesting to add to a simulator.

Round Robin: With this algorithm, each process is treated in turn, being given a specific time on the

CPU before being moved off so that another may be run. This brings with it the overhead cost of

context switching, but removes the problem of starvation and the need for aging.

There is of course, more than just these basic algorithms involved with CPU scheduling. It is, for

example, possible to prioritise certain processes so that they will be executed as fast as possible, even

when under a system such as Round Robin.

Possible Variables For User Control

There are some obvious choices for user-controlled variables when simulating CPU scheduling,

including: type of scheduling algorithm, number and length of processes (this could be a continuous

flow for as long as the user desires), overhead involved in context switching.

Potential Expansion

It may be interesting to have multiple levels of priorities, say in different queues. The simulator could

be built to allow experimentation with things such as foreground and background queues, one which

takes a larger percentage of the time than the other, perhaps even using different scheduling

algorithms for each queue.

2.4.2 Memory Allocation

Management of system memory is one of the most crucial tasks the operating system must provide.

There are several strategies that are commonly in use:

Partitioning

Memory can be divided up into partitions of varying size, which the OS must keep a track of, as well

as holding a list of the holes between them. Processes can be allocated a partition of an appropriate

12

size in which to run. Processes are prevented from being able to access memory outside their

partition. There are three main strategies for allocating memory space:

First Fit: Processes are allocated the first memory hole large enough for them. Searching for space is

a matter of running through the list of free spaces until a large enough one is found.

Best fit: Processes are allocated the smallest hole large enough for them. This requires searching the

entire list of free spaces.

Worst Fit: Processes are allocated to the largest hole in the hope that other processes can be allocated

to the large space remaining.

Paging

Paging is an alternative memory management strategy that avoids the need to partition the memory

space. Memory is divided into frames, something like small partitions. The memory requirements of a

process, its "logical address space," are broken up into pages of equal size to the frames. Each page is

allocated a memory frame. There is usually a little bit of space wasted, but because frames are usually

512-2048 bytes in size, this is not a lot.

The major challenge is in keeping track of where the pages of a process actually are, and where

within that page is the data that the process requires. This is normally done with a page table, which

stores the base address of every page in memory. The logical address received by the CPU is broken

down into an index number for the page table, and an offset to give the precise location of the data

within the page.

It is, on first glance, not immediately clear exactly how closely the paging system in the simulator

will need to be to the real system. Whether it is or no, there is a considerable amount of research that

will need to be done into the behaviours of paging before a simulation of paging memory

management can begin.

Swapping

Swapping to disk is another part of memory management, although it is becoming increasingly

redundant as the price of computer memory falls. While usually necessary on a machine with only 16

MB of RAM, the 128, 256, and even 512 MB machines of today are rarely in need of disk swapping.

Nevertheless, it needs to be considered when simulating memory management. Swapping occurs

when a process requests memory space that is not available. A page of memory that is not currently in

use will be written to disk, allowing that page to be used for the requesting process. There is a large

delay when this occurs, and, thankfully, this delay is all that the simulator should need to take account

of.

There are a number of algorithms in use for page replacement strategies [15, p313-320]:

13

First In First Out: this is a simple strategy: the page that is swapped to disk is the one that has been in

memory the longest.

Least Recently Used: this algorithm swaps the page of memory that has not been used for the longest

time.

Second Chance: this algorithm cycles through the pages, giving a page a second chance not to be

swapped out. Essentially, it tests if this page could be swapped, and whether it is on its second chance

already before making a decision.

Possible Variables For User Control

Amount of memory, memory used by each process, number of processes, sizes of memory

partitions/pages, speed of disk swapping.

Potential Expansion

There are other swapping algorithms available, and it might be interesting to research the so-called

optimal algorithm to see how accurately page access can be predicted.

2.4.3 Disk Scheduling

I suppose I should clarify what I mean by disk scheduling. When a disk drive is in use, it is receiving

a number of requests to move to various parts of the disk surface, and read the data that is there.

Compared with much of a computer's activity, this is relatively time consuming, and but it is possible

to use intelligent scheduling to improve the speed at which the disk retrieves data.

It is the movement between cylinders that takes up most of the time, physical movement being far

slower than electronic data transfer, and thus the intelligent scheduling of a disk rests upon the

appropriate direction of the read/write head.

The following algorithms can be found in [15, p437-440]

First Come First Served: Exactly the same as the CPU algorithm of the same name, requests are dealt

with in order of arrival.

Shortest Seek Time First: This algorithm moves the head to the request that is closest to the current

position.

Scan and C-Scan: In the Scan algorithm disk head moves from one end of the disk to the other, and

snaps back when it reaches the end. C-Scan is the same, but the head scans both ways, one after the

other.

Look and C-Look: As Scan and C-Scan but the head reverses direction when there are no more

requests that way, rather than at the end of the disk.

14

Possible Variables For User Control: Number of requests per second, spread of requests, type of

algorithm in use.

Potential expansion: There is a potential to expand this area of the simulator to allow the use of

specific file systems, with features such as forcing the disk head to read the index area of the disk,

and tracking a chain of non-contiguous disk blocks, rather than just single block reading.

2.5 Conclusions Based This Research

Having done background research into both the appropriate software development tools, and the

various scheduling algorithms to implement, there are two questions to be answered:

2.5.1 Which language?

After consideration of this question, I have decided that the use of C++ and the GLOW library is the

most promising line of approach. I have some amount of familiarity with the underlying GLUT

library already, and definitely with C++, which will assist me with the development. GLOW's other

main benefits are that it is free, and easily obtainable.

GLOW itself is a static library, meaning that the user does not need any special libraries on their

machine to run software which is built using GLOW, although the GL and GLUT libraries are needed

(but these are small and easy to obtain and install).

Arguments against the other options considered:

Java was a close second contender. In the end, it lost the battle for first choice partly on the grounds

of my familiarity with it, as in, I do not know it as well as I know C++. It is also undeniable that

Java's graphics capability is less that that of GLOW, although this was countered by the argument of

its cross-platform nature. Perhaps the final decider was the fact that in order for a user's computer to

run a Java program that goes beyond an applet level, it is necessary to have them install the entire

JDE.

QT would have to be purchased, and is a complete unknown as far as development goes. Although its

capabilities are undoubtedly powerful, the development of the software would be restricted in that I

would have to complete it entirely within the University computer labs. I am also unsure as to

whether the Windows machines actually have QT installed.

Python would require me to learn a whole new language. Although it is recommended as being easy

to learn, the thought occurs that spending even, say, fifty hours becoming familiar with it, would

waste a large portion of my project time. I believe I could take the software further if working in a

relatively familiar software environment.

15

2.5.2 Which scheduling function should be implemented first?

I originally planned to implement the Disk Scheduling simulation first, as this seemed to be the most

basic of the three components, but having learned that a second year module was moving into the

territory of memory management at about the same time the coding began, I decided that this would

be the best place to start. This will allow the prototype software to be made available to the students

on the module, and hopefully gain some feedback.

16

Chapter 3 – Interface Design

3.1 Introduction

This chapter details the initial plans for the software interface and display. Although different sections

of the software were developed at different times, and design of each section was not done

consecutively, this chapter will detail the design for all parts of the software.

Perhaps one overriding concept that occurs through all the parts of OSRAS is the idea of a cycle. The

simulations within OSRAS all take into account the passage of time. A cycle can be treated in many

ways depending on exactly which part of OSRAS is running, but it is worth considering that many

things will work best when there is a view of the recent history of the simulator as well as the present

time.

All sections of OSRAS have the ability to control the length of one cycle (between reasonable

bounds) so that the user can slow down/speed up the simulation. This was implemented using the

GlowSliderWidget class. The only small downside of this being that it was rather difficult to set

specific values such as 1000 ms, but since most people cannot tell the difference between 1000 ms

and 1023 ms, this didn't seem to be a great problem.

All of the GLOW classes listed in this section may be found in the GLOW reference manual [10]

3.2 Memory Paging Simulator

This was the first part of the software (henceforth referred to as OSRAS, since it is no longer an

abstract idea but a reality) to be created. Much of the code design (see 4.2.3) was done immediately

after this design was completed.

In order to demonstrate memory paging algorithms, it seemed wise to present them in a familiar

format. The format used in some of the course notes about memory paging use a grid something like

this:

Since this seems to be a rather nice way to demonstrate the way memory pages are chosen for

swapping, I decided to use this format in the program. The numbers can be animated as time steps

Page requests 2 3 1 5 4 2 6 5 3
 2 2 2 2 4 4 4 4 4

Memory pages 3 3 3 3 2 2 2 2

 1 1 1 1 6 6 6

 5 5 5 5 5 3

Faults f f f f f f f f

17

move onwards, by moving them in from the left side of the grid and off the right. In this way, an

unlimited number of page requests may be made, because OSRAS will display only a limited number

of time steps.

Something else that occurred was to allow two separate algorithms to be run using the same page

request string, so that algorithms could in effect be "raced" against each other.

There are some rather generic readouts that I decided to include in the memory paging display, such

as percentage bars, where comparisons between the number of faults and non-faults in an algorithm

and between the two algorithms can be compared graphically.

User Controls

Desirable controls for this part of OSRAS were:

- The ability to switch between memory algorithms on each side of the display. This was

implemented as a drop down list using the GlowLabeledPopupMenuWidget class.

- The number of memory pages, so that the user can expand/reduce the simulated memory space.

Again, this is best as a GlowSliderWidget. This also holds true for the total number of memory pages

Total Pages x

Memory pages x

Grid 1

Grid 2

Algorithm 1 Algorithm 2

1 2 5 3 9 10 4 7 5 3 8 0 9 4 11 0

Display of useful numbers

Type of algorithm

Display grid Faults vs non-faults

Future page requests (for the optimal algorithm) Faults of each algorithm compared

18

that can be requested, allowing the physical memory of the simulation to be a greater or lesser portion

of the total memory (including virtual) in the simulator.

- The variance in the probabilities of pages. This is better explained in 4.2.3.1.

- Some basic function such as Quit, Pause, Step, and Reset, which are easily implemented with the

GlowPushButtonWidget class.

3.3 CPU and Process Simulator

3.3.1 Simple CPU Mode

The initial design for the CPU simulation part of OSRAS is rather simple:

It is possible to click on and select any of the processes in the ready queue to gain more information

about it, such as process age, the length remaining and the length when the process was created. The

processes themselves are of different colours and labelled with the ID number that will be assigned to

them. They are divided along their length, split into squares, each one representing one CPU cycle

worth of work.

User Controls

Desirable controls for the CPU section of OSRAS were:

Ready queue

Completed jobs

Processes Completed x

Average Waiting Time x

Space for process

details

Some interesting numbers

A queue of processes waiting

to be run on the CPU

A brief history of completed

processes

Show some details about the

selected process Status information

Auto generate Aging

19

- A way to change the CPU scheduling algorithm. This would be best as a drop down list.

- A way to turn process aging on and off (this is important in SJF and SRTF scheduling algorithms

only). A simple button was sufficient for this.

- A way to decide whether the simulator should automatically generate processes or not. This was

combined with another control to allow the user to force a process to be added to the ready queue. In

both cases, a standard button was sufficient.

- Some basic function such as Quit, Pause, Step, and Reset, which were easily implemented as

common or garden buttons.

3.3.2 Advanced CPU Mode

Having implemented both the Memory Paging simulation, and the above Simple CPU simulation,

there still seemed to be a considerable amount that could be done with the CPU simulator, so I started

to look at what things other than pure calculation the processes on the CPU could do. More

information about exactly what I decided to research and add to OSRAS and why I did so is in

chapter 5. Suffice to say that this part of OSRAS shows processes requesting memory access.

The centre of the blocks in each process is colour coded in advanced mode, green for standard

calculation (the only option in simple mode) and blue for memory access.

These lines highlight according to

where the requested memory page is

found

Ready queue

Processes Completed x

Average Waiting Time x

Space for process

details

Auto generate Aging

I/O queue

TLB

Page table

Disk

Memory grid

A grid like that in the memory paging

simulator Processes are put on the I/O queue

when they request memory access.

Like the ready queue, they can be

selected by clicking.

20

3.4 Disk Scheduling Simulator

The disk simulator is possibly the simplest part of OSRAS (which came as something of a relief since

time was running short as it was being coded).

The graphical display of the disk simulator is very simple in design, in that its major feature is, well, a

disk. As with the memory simulation however, there will be a string of requests sent to the disk.

According to the scheduling algorithm selected, the disk head (and a highlighted ring) with move

back and forth over the disk surface, reading the appropriate cylinders. OSRAS does not at this time

have enough functionality to request anything more than a cylinder access, though this might make an

interesting future addition.

In addition to simply showing the drive head, and the cylinder it is currently reading, OSRAS shows

the future of the head movement, as far as the requests in its queue allow. It highlights the next track

that will be accessed in one colour, and uses a gentle gradient of colour over the other tracks in the

queue, so that consecutive tracks have little difference, but first and last on the list are totally different

colours.

The disk simulator also keeps a track of the total time it has taken to perform the various accesses it

has been asked to do, using the seek time between each access, the access time, and the rotational

delay of the disk. Assuming only one cluster of data is read/written per request, and a cluster size of

4KB, the simulator can provide an estimate of the data transfer rate. Although this does not tally with

real world drives, it does give a very nice way to benchmark the various algorithms available against

each other.

Useful info:

21

In all likelihood, the reason that the figure does not match real life performance is because OSRAS is

in effect simulating a very fragmented drive. In most systems, access requests would not be received

from all over the disk surface with equal occurrence, since certain files tend to get accessed far more

often than others. Assuming such files were not fragmented across the disk surface, then most

requests would appear in a narrow band, greatly reducing the seek time.

User Controls

- A drop down list is used to allow the user to change the scheduling algorithm

- Sliders are used to control the average seek time, the rpm, and the access time of the disk. Although

not strictly necessary, this is an interesting and simple addition.

22

Chapter 4 – Code Design

4.1 Introduction

This chapter gives an overview of the main structure of the OSRAS code, including its major classes

and functions.

4.2 Class Structure

OSRAS operates on a layered structure, using a single interface, and 3 separate control classes that it

interfaces with. Because of the nature of GLOW, it is also necessary to produce a small piece of code

that does not fit in with these classes, which simply initialises a GLOW environment, and creates an

object of class OsrasWindow. Once this is completed, control is passed to this class.

4.2.1 Class: OsrasWindow

The OsrasWindow class provides the main interface for the program. This is where all the menus,

buttons, sliders and other widgets are created, and messages from them are captured. Because GLOW

uses inheritance to implement its message passing system, this class inherits from a considerable

number of GLOW classes, including:

GlowWindow, GlowIdleReceiver, GlowPushButtonReceiver, GlowSliderReceiver, and

GlowPopupMenuReceiver.

OsrasWindow

OsrasMemory OsrasCpu OsrasDisk

OsrasMemoryPager OsrasCpuLogic OsrasDiskLogic

OsrasModule

23

The class itself contains no functionality to do with the simulation functionality of OSRAS, instead it

takes input from the various widgets and passes them to whichever simulation is currently running. It

contains pointers to a class for each simulation type, and a class of type OsrasModule, which can be

used to ensure that messages are passed to the simulation that is running.

4.2.2 Class OsrasModule

The OsrasModule class forms a base class for OsrasMemory, OsrasCpu and OsrasDisk. It provides a

small number of common functions, allowing the OsrasWindow class to maintain a pointer to a class

of this type, rather than constantly keep track of which simulation is running at any given time. These

functions are:

void TakeMessage(int type, void* message)

By maintaining a header file with integer definitions for the various message types, it was possible to

have a single function take any arguments desired (in the form of the void pointer) and deal with them

according to their type.

void Draw(int w, int h)

This provides the graphical display for a module, taking as arguments the width and height of the

current window.

void Tick()

All modules in OSRAS share the concept of a tick. A tick can be considered to be a single unit of

calculation, such as a singe page being swapped into memory, or a single unit of process execution

time being executed.

void Reset()

Resets the active simulation to its default settings.

4.2.3 Class OsrasMemory

The OsrasMemory class was the first of the simulations to be implemented, and as such was the

longest and most difficult to code. In order to provide a simulation where two memory paging

algorithms may be "raced" against each other, much of the processing was put into the

OsrasMemoryPager class. In doing so, the OsrasMemory class can simply hold two instances of the

memory pager, deal with them separately, and draw them next to each other.

4.2.3.1 Class OsrasMemoryPager

This class generates memory page requests, and deals with them according to an internal algorithm

and its simulated memory contents. It is also capable of drawing a grid to show the memory contents,

allowing multiple classes of this type to be used in a single part of OSRAS.

24

Perhaps the most interesting function that this class performs is the generation of page requests.

Rather than just generate a random page number from the range of potentials, the

InitRandomGenerator function allows weighting of the request probabilities in order to provide a

more realistic simulation of how processes access memory. Essentially it assigns each page number a

random percentage, then raises that percentage to the power of a user-controllable variance, finally

normalising the final results so that the probabilities assigned to each page sum to one. The

GenerateNewRequest function uses this list of probabilities to choose which page to next add to the

list of page requests. The upshot is that with a higher variance, there will be some pages that get

requested far more often than others.

 4.2.3.2 Memory Pages

In order to implement the various memory paging algorithms, it was necessary to have an array of

requests that would appear in the future (for use with the optimal algorithm) and an array of frames

that are currently in the memory. Each frame needed some associated information, such as the

number of the page in it, the time that page has been in memory, a flag to indicate whether this page

is on its first or last chance in memory, and a status flag (this is used purely to colour code the

display, not for functionality). This is better shown with the following pseudo code:

By using structs of this nature, an entire memory system can be simulated by simply having an array

(or in this case, and STL vector) of these. In order to give a view of the recent past of the memory

states, an array of arrays was used.

There now follows a pseudo code listing of each memory algorithm implemented.

The page number currently at this point in memory

The age of the page

Used by the optimal algorithm when looking for the page

that will not be used for the longest time.

Status can be not paged, just paged, or requested and

found in the memory.

The chance flag shows if the page is on its first or second

chance (second chance algorithm)

struct MemoryPage {

int value

int age

int time_until_next_use

status

chance

}

25

4.2.3.3 Implementation of FIFO Memory Paging

4.2.3.4 Implementation of LRU Memory Paging

4.2.3.5 Implementation of Optimal Memory Paging

Increment the age of all pages in memory

If the new request is not found in memory (page fault)

Look for a page not used yet

If one is found, load the page in at this point, with age zero

Else if there are no free pages

Find the oldest page in memory

 Replace it, and set its age to zero

 Set the page's status to just paged

Increment the age of all the pages in memory

If the new request is not found in memory (page fault)

 Look for a page not used yet

If one is found, load the page in at this point, with age zero

Else find the page with the highest age

Replace it, setting the age to zero

Else if the new page is found at a memory location (no page fault)

 Set the age of that page of memory to zero

If the new request is not found in memory (page fault)

Replace the page that will not be used for the longest time

26

4.2.3.6 Implementation of Second Chance Paging

Note that the second chance algorithm requires the used of a counter, an integer that cycles around the

memory locations in a circular pattern.

4.2.4 Class OsrasCpu

While it was possible to provide two simulations for memory paging, it was not possible to do so with

CPU scheduling, for the differing algorithms could cause the process queue's of each to become badly

mismatched, which would mean that giving them the same input would become difficult, and making

racing the algorithms and unfair test, since one could potentially have to hold back for the other to

catch up. Instead, the OsrasCpu class focuses on giving two levels of simulation with the clearest

possible visualisation

As with OsrasMemory, this class places most of the processing into another class (OsrasCpuLogic),

and is used mostly for display. The OsrasCpu class does however, add a layer of sophistication to the

simulation by using the results from OsrasCpuLogic and from OsrasMemoryPager to combine CPU

and memory paging simulation.

In its advanced mode, OsrasCpu simulates a single CPU system with a small amount (just four pages)

of main memory, and an equal amount of virtual memory. Processes may request access to a page

from memory. There are three options as to where the address of the memory page may be found:

• In the translation lookaside buffer (TLB). For reasons of simplicity, OsrasCpu does not

actually simulate a TLB at all. Instead, it assumes that there is a certain chance that a page

address will be found here. If it is decided that the process' memory request is found in the

TLB, OsrasCpu will choose a page that it already knows to be in memory to request. This

will incur the shortest time delay.

If the new request is not found in memory (page fault)

 While the page the counter points at is not on its second chance

 Set that page to its second chance

 Increment the counter

 Replace the page at the counter location with the new request

 Set it to its first chance

 Increment the counter

Else if the new page is found at a memory location (no page fault)

 Set that page of memory to be on its first chance

27

• In main memory, the OsrasMemoryPager class. If OsrasCpu decides that the page is not to

be found in the TLB, it will request a random page from the page table. Whether the page

table says that the page is found in main memory or not depends entirely on the algorithm

being used for memory swapping. If it is in main memory, a medium time delay is incurred.

• On disk. Should the page that is requested not be found to be in main memory, then

OsrasCpu will simulate loading it from disk. This will incur the longest time delay.

OsrasCpu understands the concept of interrupts. For every tick, it will check if the process at the top

of the IO queue has waited for the appropriate length of time. If it has, then it triggers the

IOInterrupt() function of the OsrasCpuLogic class. When this happens, the process at the top of the

IO queue is immediately put at the top of the ready queue, displacing any process that is already on it.

4.2.4.1 Class OsrasCpuLogic

The OsrasCpuLogic class deals with the generation and processing of processes. It is capable of

drawing queue of processes that are waiting for CPU time and for memory access, as well as a brief

view of the processes that have recently been dealt with.

4.2.4.2 Processes

Similar to OsrasMemoryPager, this class uses a vector of processes (a process queue, indeed) to do

its work. The pseudo code below describes the information that is stored for each process:

The ready queue of the simulated processor is composed of a vector of such structs, which in many

ways are the equivalent of Process Control Blocks [15, p89]. Each tick of the simulator causes the

CPU to look at the current task on the topmost process in the ready queue. If the task is calculation,

then the process length is shortened by one unit, and a single unit of that process is placed upon the

out queue. If the task is memory access, then the process is moved immediately to the IO queue,

The initial length of the process, and the length at this

point in time

The amount of time that this process has spent on the

CPU, and not on the CPU

The time (in CPU cycles) that this process was created

The total age of this process

As in a real system, OSRAS assigns each process a

unique ID to identify it

For each unit of its length, a process may have different

tasks, such as calculation, or I/O

struct CpuProcess {

int initial length

int length

int cputime

int waittime

int arrivaltime

int age

int id

vector < CpuTask > tasks

}

28

where it will wait until it receives an instruction to say that the memory page has been located, and is

in main memory.

The OsrasCpuLogic class does not know how to remove processes from its IO queue, it must be

instructed to by another class, in this case, OsrasCpu. Because OsrasCpu holds an

OsrasMemoryPager, it can use this to tell OsrasCpuLogic when the memory page has been found.

Below follows a listing of pseudo code for each scheduling algorithm

4.2.4.3 Implementation of FCFS CPU Scheduling

4.2.4.4 Implementation of Round Robin CPU Scheduling

Round Robin scheduling requires the simulator to keep a counter to indicate how long the process has

been executing on the CPU. When this counter reaches the limit (the quantum) the process is moved

to the back of the queue.

4.2.4.5 Implementation of SJF CPU Scheduling

4.2.4.6 Implementation of SRTF CPU Scheduling

Process one unit from the process at the top of the ready queue

While Counter < Quantum

Process one unit from the process at the top of the ready queue

Increment Counter

Move the process at the top of the ready queue to the bottom

Bubble sort the ready queue except the top process

to place the shortest process in second place

Process one unit from the process at the top of the ready queue

Bubble sort the ready queue including the top process

to place the shortest process in second place

Process one unit from the process at the top of the ready queue

29

4.2.4.7 Class OsrasLine

OsrasLine is a small but very useful class which is repeatedly used in drawing for OsrasCpu. It

contains a vector of points, with c and y coordinates, and allows a line of any level of complexity to

be drawn with a single function call.

4.2.5 Class OsrasDisk

Unlike OsrasMemory, there did not seem to be any great advantage in displaying two separate disk

scheduling algorithms side by side. The only comparison that can easily be made between the

behaviour of different algorithms would be the effective access rate of the disk, which, it must be

confessed, is not particularly accurate. Rather that deceive the user with figures that are rather hard to

verify, it seemed wisest to concentrate instead on helping the user to understand the way in which the

algorithm worked.

As with the other simulations in OSRAS, this class puts most of its calculation into a second class, in

order that a simulation of a disk may easily be transferred into another part of the program.

4.2.5.1 Class OsrasDiskLogic

The OsrasDiskLogic class performs various disk scheduling algorithms upon a queue of access

requests. It is not sophisticated enough to deal with requests for specific blocks on parts of the disk,

instead using a request queue of cylinder numbers to work with. When seeking between cylinders it

takes account of the user-adjustable seek time of the disk by scaling this to fit the number of tracks

that the disk head has moved across in order to perform access on the requested cylinder. The further

the disk head is required to move, the greater the time this class will calculate. OsrasDiskLogic

assumes motion of constant velocity between tracks, rather than the acceleration that is seen in real

disk drives.

Unlike the CPU or memory simulations, the access request queue is simply a vector of integers, with

no special data structures needed.

This class translates the values for rotational delay and average seek time into something more

meaningful. Rotational delay is simply halved, assuming that on average the disk with have to rotate

half way around to find the appropriate sector. The average seek time is divided by half the number of

clusters (this simulation uses sixty four, since anything greater crowds the display too much to be

usable) to get a seek time per track. This can then be used to give a reasonably accurate seek time to

any track, giving a shorter value of time for closer tracks.

Since there is a great similarity in the Scan, CScan, Look and CLook algorithms, they were all

implemented within the same function, using a pair of Boolean arguments to turn circular and looking

on and off.

30

The following pseudo code describes the implementation of the various disk scheduling algorithms.

Note that in most cases, the greatest part of the code lies in sorting the request queue into the order of

future access. This is done to aid the visualisation, but would otherwise be almost completely

unnecessary. To demonstrate this face, the code for moving the disk head and the code for sorting the

queue will be shown separately.

4.2.5.2 Implementation of FCFS Disk Scheduling

Pseudo code for disk head movement:

No queue sorting is necessary.

4.2.5.3 Implementation of SSTF Disk Scheduling

Pseudo code for disk head movement:

Pseudo code for queue sorting:

4.2.5.4 Implementation of Scan Disk Scheduling

In simple scan scheduling, the disk head is only ever moving outwards.

When sorting the queue for the scan algorithm, it must be ordered so that the request in front of the

head is first in the list, and the request that is closest behind the head position is the last. Pseudo code

for queue sorting:

Move the head to the next requested cylinder in the queue

Service the closest request

Move the disk head outwards to the next request above it and service it

If the disk head is at the edge of the disk

 Reset the disk head to the track zero

Bubble sort the request queue according to the distance of the requested

cylinder from the disk head

Service request at the beginning of the queue

Split the access queue into two parts, one above the disk head, one below

Sort the lists according to distance from the disk head

 In descending order above the disk head

 In ascending order below it

Place the list from above the disk head back into the request queue

Place the list from below the disk head back into the request queue

31

4.2.5.5 Implementation of Circular Scan Disk Scheduling

For circular scan it is necessary to keep track of the direction in which the disk head is moving, i.e.

inwards, or outwards. It must not move in the wrong direction.

When sorting the list for circular scan, the requests in front of the disk head must come first, in order

of nearness, and the requests behind the head come after them, also in order of nearness to the disk

head. Whether above or below the disk head can be classed as in front of or behind depends entirely

upon its direction of movement.

4.2.5.6 Implementation of Look Disk Scheduling

There is not a lot of difference between the Look and the Scan algorithms as far as disk head

movement is concerned:

There is no difference at all in the queue sorting code.

If the disk head is moving outwards

Move the disk head outwards to the next request and service it

If the disk head is at the edge of the disk

 Start the disk head moving inwards

Else if the disk head is moving inwards

Move the disk head inwards to the next request and service it

If the disk head is at the centre of the disk

 Start the disk head moving outwards

Split the access queue into two parts, one in front of the disk head, one

behind

Sort the lists according to distance from the disk head

 In descending order

Place the list from in front of the disk head back into the request queue

Place the list from behind the disk head back into the request queue

Move the disk head outwards to the next request above it and service it

If the disk head is beyond the highest number request

 Reset the disk head to the track zero

32

4.2.5.7 Implementation of Circular Look Disk Scheduling

As with the Look algorithm, the Circular Look is very little different to the Circular Scan algorithm.

And once again there is no difference in the code to sort the queue.

4.2.6 OSRAS' Graphics functions

OsrasGraphics is not a class, more a group of functions. While they are undeniably small and simple,

they have been indispensable in creating the displays of OSRAS. Almost all the classes make use of

these functions at some point. Functions included are to:

• Print an integer value to the screen

• Print a string to the screen

• Draw a "slider chart," using specified colours for each side, taking two integer arguments and

drawing each side as the appropriate proportion for that value. This is used to provide the

charts on the memory page replacement display.

• Drawing a background when given a pointer to a TGAFile class. This class is contained in

the file tga.h and features functions for loading a GL texture from a Targa image file. I

adapted this into a C++ class from the C code in OpenGL Game Programming [16, p222-

225].

• Drawing a rectangle by specifying only two corners of it

• Drawing a rectangle with a shaded border, two sides in shadow, two sides in highlight

4.2.6.1 OsrasColours

To go alongside the OsrasGraphics functions are the colours defined in the OsrasColours collection.

This is a collection of floating point arrays, ready for use with the glColor3f function.

If the disk head is moving outwards

Move the disk head outwards to the next request and service it

If the disk head is beyond the highest value request

 Start the disk head moving inwards

Else if the disk head is moving inwards

Move the disk head inwards to the next request and service it

If the disk head is within the lowest value request

 Start the disk head moving outwards

33

Chapter 5 – Implementation Issues

As with all software development, this program has been prone to pauses where programming issues,

and lack of knowledge arose during the development. This chapter details some of the major issues

that needed to be dealt with, in chronological order.

5.1 7th February – Making a GLOW Library

This is something I did not originally foresee being necessary. However, on the realisation that

compiling the GLOW source code was taking somewhere around four minutes to compile, even with

the very simplest programs using it, it became evident that something had to be done. Creating a

static library seemed the best option, as it would ensure that the appropriate code was compiled into

the executable. Although this did increase the file size, it also minimised the number of files needed

to distribute the program.

Building the library for Linux turned out to be particularly easy. All that was necessary was a pair of

commands to the GCC compiler:

 g++ -g –c *.cpp

 ar rcv libGlow.a *.o

Surprisingly, this worked immediately that the resulting library was placed in an appropriate

directory. The windows compiler that I have been using however, MinGW [17] seems to have a

problem with this. It will build the library, but is unable to link to it. Sadly, this is an issue I was

unable to resolve, and OSRAS has historically been compiled by linking to every .o file that is

created in a GLOW compilation. Although not ideal, this did seem to work, although it is an issue

that needs to be resolved if OSRAS is ever desired to be compiled without a static library.

5.2 16th February – Rebuilding GLOW controls on the fly

It took some time to figure out how to rebuild the GLOW control panel without causing the program

to segmentation fault. When creating a control panel for GLOW, it is essentially a matter of creating

"panels" to place the widgets onto, and then adding the widgets in the order desired, before issuing a

final Pack() command which will actually create the control panel (a control panel is of type

GlowQuickPaletteWindow). There is a second type, which allows fine control of the layout of the

widgets, but for the purposes of OSRAS, the simpler (and faster) option was used.

When programming multiple control panels, it is important that there never be two, otherwise one of

them will hang around in the background, but not accept any input (apart from the close window

command, which will terminate the program). At the same time, GLOW has a serious problem if the

control panel that is currently in use is deleted before another set of controls is made. This made for a

34

rather tricky set of functions that would build a requested control panel, and immediately delete the

previous, whichever it happened to have been.

5.3 14th April – GLOW Menu Glitch?

There is a glitch in the program which as far as I can tell is associated with the

GlowLabelledPopupMenu class. The error first manifested itself as a seemingly random tendency to

segmentation fault when using the menus to switch between simulation modes. It did not at the time

matter which simulation was currently active, nor which was being switched to.

I finally tracked this problem down by means of printf, triggering a console message every time a

control panel was built. What I found was that occasionally a control panel would be rebuilt twice.

For whatever reason, and I do not know whether it is something to do with my code, or a small bug in

GLOW itself, it would seem that a message from a popup menu can sometimes appear twice.

Now, for most things this just isn't a problem, but the functions I had created to switch between

control panels were never designed to cope with being asked to build a panel of their own type, while

one already existed. It is important that each control panel type have only a single instance in the

program. They could delete control panels for other simulations, but there seemed to be no way to

allow it to delete a control panel of its own type. In the end, it was simply a matter of checking

whether that particular control panel existed already before calling the function in the first place.

5.4 16th April – Important Numbers

During the coding of the modules in OSRAS, I frequently used variables for the time taken to

perform actions such as disk head seeks, or TLB hits/misses. Having completed the coding, it seems

wise to now get hold of some real values to set as the ranges/defaults for such things.

Disk Simulator:

Several things spring to mind that need to be checked for the disk simulator. Thankfully, hard drives

being a piece of technology that people actually buy, a number of online computer shops give details

about seek times, rotational speeds, and transfer rates. One such place is Dabs [18]. From a trip

around their hard drives section, it is possible to find that:

Transfer rates range from 66MB/s to 133 MB/s. This would translate into an access time of:

1 / (66 * 1024) = 0.0147 ms to read one kilobyte

1 / (133 * 1024) = 0.0073 ms to read one kilobyte

Common knowledge is that before the ATA66 drives, there were ATA33, so the simulator will

provide a range of access times from:

30 microseconds (an ATA33 drive) to 7 microseconds (an ATA133 drive)

35

The hard drives listed typically have rotational speeds of 5400 or 7200 rpm for IDE, and up to 15000

rpm for SCSI. Laptop hard drives generally have a lower speed, typically 4200 rpm. 4200 and 15000

would thus make sensible limits for the rotational speed of the simulated drive.

Seek times appear to typically range from 8 to 9 ms, leaving me to wonder whether it is worth

allowing the user to control this at all. Still, on the assumption that older drives had slower seek

times, I have provided a range from 8 to 12.

Advanced CPU Simulator

The advanced CPU simulation uses a waiting time in CPU cycles for each TLB hit/TLB miss/disk

access that is needed for the processes in the I/O queue.

On the assumption that a TLB hit costs 120 ns, and a TLB miss cost 220 ns [15, p275], if we assume

a 100MHz processor (i.e. one cycle every ten nanoseconds), then we would get a 12 cycle pause for a

TLB hit, and a 22 cycle pause for a TLB miss.

There is no hard and fast rule for a disk access, but given that seek times average 8ms, and rotational

delays average 5ms, we can assume at least 13ms for a disk access, or 1300 CPU cycles! This frankly

would cause the simulator to jam up should this value actually be used, since the I/O queue will fill

beyond its ability to show, while the ready queue will seem to be empty and unchanging (OSRAS

will not generate a new process if the I/O queue is too full).

In order to avoid choking the simulation (or rather, causing it to start thrashing) I have kept the times

down to 2 cycles for a TLB hit, 4 cycles for a TLB miss, and 8 cycles for a disk access. I believe that

this is enough to allow the user to visualise the delays without causing the simulator major struggles.

36

Chapter 6 – OSRAS Manual

This chapter contains an approximation of the website created to be the OSRAS manual, edited

slightly for paper. The actual website can be found at http://www.ewiddows.freeserve.co.uk/osras/

6.1 OSRAS CPU Simulation

OSRAS features two levels of CPU simulation. The first, and most basic shows a CPU with a queue

of processes in a queue. The user can select which algorithm the CPU will use to process this queue,

and watch as processes are dealt with. Each process will be assigned a unique identity number and a

colour. More information about each process can be seen by clicking on it.

Each block in each process signifies one CPU cycle worth of work. The green indicates that this work

is calculation. For simple mode, this is the only colour you will see.

The display for the advanced mode is considerably more complex. Let me explain...

What the advanced mode shows is a single CPU system with a small amount of physical memory and

virtual memory on disk. Processes may request access to a page in memory (this is signified by a blue

centre on a block). When the CPU comes to processing this block, it will move the process onto the

I/O queue. At this time there are three things that might happen:

• The process requests a page that is found in the Translation Lookaside Buffer. (OSRAS does not

actually contain a TLB, it simply says there is a certain chance that a memory page's address will

be found in it. In this case, completion of memory access takes only a couple of CPU cycles.

37

• The process requests a page that is not found in the TLB, but which the Page Table shows to be in

memory. When this happens, memory access takes a little longer, and the I/O queue is held up for

a greater time.

• The process requests a page that is not found in the TLB, and which the page table says is on

disk. In this case memory access takes a considerable length of time.

In each case, the route through the system is shown by highlighting the blue connection lines in red.

When a memory access request is completed, it triggers an interrupt on the CPU. At this point, the

process that just finished on the I/O queue is placed at the front of the ready queue, regardless of what

the CPU is doing at this time.

38

6.1.1 CPU Control Panel

Cycle time: sets the delay between page requests.

Simulation Mode: selects simple or advanced mode.

CPU Algorithm: selects which scheduling algorithm

the CPU is using.

Process Aging: Turns process aging on and off.

When this option is on (the readout at the bottom is

green) then SJF and SRTF will subtract a portion of

the age of the process from the length of a process

before ordering them in the ready queue. In this way,

the CPU avoids starvation of the longer processes.

Process Auto Generation: with this option on

(words in green at the bottom of the screen) OSRAS

will automatically keep the ready queue full (more or

less) by adding random processes.

Add Process: forces OSRAS to add a new process if the ready queue is not already over a certain

size (this limit is for the convenience of the simulator, and should not be taken as present for real

systems).

Memory Paging: the memory system of the simulator is as functional as the memory simulation

mode. This option allows the user to choose which algorithm they would like to use for memory

paging.

Reset: Restart the simulation from a blank memory.

Quit: Erm, quit?

Run/Pause: Pauses if running, runs from where it was paused if paused.

Step: When paused, move forward one step in time. Allows you to proceed at your own pace.

6.1.2 Explanation of Algorithms

FCFS: First Come First Served, this algorithm causes the CPU to deal with each process in turn. In

OSRAS this algorithm may be interrupted by an I/O interrupt.

39

SJF: Shortest Job First, whenever a new job arrives, all processes not executing are ordered by length

so that the shortest job is dealt with first. When the aging function is not used, this can cause long

processes to starve at the back of the ready queue.

SRTF: Shortest Remaining Time First, whenever a new job arrives, all processes, including that on

the CPU, are ordered by length so that the shortest job is dealt with first. When the aging function is

not used, this can cause long processes to starve at the back of the ready queue.

RR: Round Robin, this algorithm deals with processes in turns, giving each process a maximum of a

quantum on the CPU (in OSRAS, the quantum is 3 CPU cycles) before moving it to the back of the

ready queue.

6.1.3 Explanation of Process Details

Process ID: each process is given a unique ID number so that the system can identify it.

CPU Time: the number of cycles this process has spent on the CPU.

Wait Time: the number of cycles this process has spent not on the CPU since it was created.

Arrival Time: the time (in CPU cycles) that this process arrived.

Age: the number of CPU cycles that have passed since this process arrived.

Length: The number of CPU "blocks" left in the process.

Initial Length: The number of CPU "blocks" in the process when it was first created.

6.2 OSRAS Memory Swapping

40

OSRAS displays two grids of memory pages. The column on the left side of each grid shows the

memory page numbers currently held in memory. As time progresses, this column will shift right,

allowing a view of the recent history of pages stored.

The page numbers are coloured according to this key:

Light blue: nothing happened in this time slot. No memory pages swapped. (When using second

chance algorithm, this also indicates that this page still has its second chance)

Dark blue: this page is on its second chance and may be swapped out (Second Chance algorithm

only)

Green: this page was requested and found in the memory. No pages were swapped.

Red: this page was swapped in from disk and the previous contents removed: a page fault occured.

Orange: there was a page fault at this time, but not this page.

6.2.1 Memory Control Panel

Simulation mode: switches between memory simulation

(this) and CPU simulation.

Left and right algorithm: choose the memory swapping

algorithms that are used for the left and right grid. Note

that both left and right grids receive the same set of page

requests (as shown in the new request queue).

Cycle time: sets the delay between page requests.

Memory pages: sets the number of physical memory

pages to simulate.

Total pages: sets the total number of pages that may be

requested from memory.

Page probability variance: sets a measure of the

difference in the likelihoods of each page being

requested. A value of 1 means that each page is equally

likely to be requested. Higher values mean that some

pages are randomly chosen to be more important than

others, providing a more realistic simulation of memory

access.

Reset: Restart the simulation from a blank memory.

41

Quit: Erm, quit?

Run/Pause: Pauses if running, runs from where it was paused if paused.

Step: When paused, move forward one step in time. Allows you to proceed at your own pace.

6.2.2 Explanation of Algorithms

FIFO: First In First Out, replaces memory pages in linear order. The most basic kind of swapping

algorithm, and not very good.

Optimal: Relies on the future knowledge of what will be requested. Swaps out the page that will not

be used for the longest period of time. Cannot actually be implemented in a system, but is useful in

simulation for comparing the other algorithms to.

LRU: Least Recently Used: replaces the page that has not been used for the longest period of time.

Second chance: Uses a circular counter, and a page replacement bit. When a page is requested that

causes a fault, it replaces the page the counter is on only if that page is on its second chance. If the

page is on its first chance, it is set to its second chance and the counter moves on. This continues until

a page is found that can be replaced, even if it means going right through all the pages.

6.3 OSRAS Disk Simulation

OSRAS' Disk Simulator comprises a graphical display of some of the scheduling algorithms for disk

access.

42

OSRAS is not (yet) capable of simulating access to different blocks of a disk. Instead, it will simulate

requests as if they arrive per cylinder of the disk, adding an average rotational delay to each access

time. OSRAS keeps track of the simulated time that the disk takes to access each request. Simulated

time does not in any way match with real time, and is based entirely upon the figures that are

provided by the control panel.

The highlighted cylinders show where the requests have appeared on the disk surface. The shading

from yellow to red denotes how long it will be before the disk head reaches it; the more yellow, the

longer it will be, the redder it is, the sooner the disk head will access that cylinder.

OSRAS provides easy benchmarking of the various algorithms in the KBytes/s readout. This is an

approximation of how many kilobytes per second the virtual disk is transferring. Note that this figure

does not reflect the performance that you may expect from a hard disk of today's standards. This

appears to be because OSRAS does not understand the concept of disk fragmentation, or that requests

tend to come in clusters of many kilobytes spread over a few neighbouring cylinders, rather than

across the entire disk. If you leave your Windows drive for about a year without defragmenting, you

may get something like the OSRAS simulation ;o)

6.3.1 Disk Control Panel

Cycle time: sets the delay between movements of the

disk head.

Rotation: sets the rotation speed (rpm) of the virtual

disk.

Seek time: the simulated time taken to move the disk

head half way across the disk. OSRAS will perform a bit

of magic to use this figure to generate longer times for

further travel.

Access time: sets the time take for the disk head to

actually read what it has been sent to. The maximum

value on this scale is approximately equal to an ATA133

disk drive.

Access size: the number of kilobytes per access.

Cylinders: the number of cylinders on the disk. A real

disk would have much more than the maximum OSRAS

can provide, but this makes it impossible to see the

cylinders on the display.

43

Reset: Restart the simulation and randomise the requests again.

Quit: Erm, quit?

Run/Pause: Pauses if running, runs from where it was paused if paused.

Step: When paused, move forward one step in time. Allows you to proceed at your own pace.

6.3.2 Explanation of Algorithms

FCFS: First Come First Served, the disk head deals with the requests in the order they arrive.

SSTF: Shortest Seek Time First, the disk head deals with the closest request to the one it just

serviced.

Scan: the disk head scans from the centre of the disk to the outside, servicing requests on the way,

then snaps back to the centre.

CScan: Circular Scan, as above but the disk head reverses direction when it reaches the edge of the

disk.

Look: as Scan, but the disk head returns to the centre when there are no more requests outside it.

CLook: As CScan, but the disk head reverses direction when there are no more requests to service in

the direction it is moving.

44

Chapter 7 – Evaluation

Following the evaluation framework in section 1.2, I have evaluated my final software thusly:

Does it work without errors and on any University of Leeds computer?

As far as I can tell, yes. The Windows version works on Windows, the Linux version works on…

well, Linux. OSRAS tends to be a little bit slow on some of the lower spec machines, but from

experience, anything with Pentium 3 400MHz and above, especially with an OpenGL graphics card,

will run very nicely.

Does it simulate at least one of the scheduling functions listed above?

This is also a yes. In fact, it simulates all three of the scheduling functions, covering CPU, memory,

and disk allocation. It could, I confess, be pointed out that none of the simulations that OSRAS covers

is complete according to the research/possible expansions listed. The question should then be asked,

why not? The simple answer is because the subject area is so huge. As deep as I may have gone into

any or all of the three simulations, it would almost always be possible to find more depth that the

simulator could go into. In the end, I decided to draw the line and call the software complete when it

covered the major features of each simulation. I must confess, there was also a time factor involved,

since despite the best work I can produce, and putting in all my hours, this was all that I had time for.

Is the choice of language appropriate?

As far as I can tell, yes it is. There is actually more processor work involved in OSRAS than I at first

anticipated, so my choice of C++ as a development language seems justified, since I am unsure that

slower languages such as Python or Java would be able to handle the workload at full speed.

This said, it can be pointed out that one reason for OSRAS' high processor requirements are the

OpenGL graphics. On a machine with an OpenGL accelerated graphics card (almost everything under

two years old), this is not a problem. It does however cause something of a slowdown effect on some

of the older machines in the University of Leeds. However, to counter this, I would point out that if

the machine does not have hardware graphics acceleration, then it is very likely to have a low end

processor as well, which might actually have caused more problems if using a slower language.

Does it use an appropriate user interface?

From what people have said as they leaned over my shoulder from time to time, and from those I

persuaded to fill in the form I included on the OSRAS website, yes, I believe so. User interface is via

a GUI of sliders, menus, and push buttons, with the CPU simulation also being able to catch and

interpret mouse clicks on the simulation display. General opinion is that these controls are

comfortable and familiar.

45

Is the software easy to use, and is there documentation easily available?

Full documentation (and program/source code downloads) for OSRAS are available at the website

http://www.ewiddows.freeserve.co.uk/osras This is my own site that I have put together to form the

user manual for OSRAS. An approximation of this web page is included in chapter 6.

Opinions of the ease of use of OSRAS have been rather hard to generate. The software is specifically

aimed at second year computing/computer science students, but despite requests for feedback, I have

only had one contact, with the comment of "Cool project". This being the case, I have had to fall back

on asking people I can trap in a confined space with no escape routes. General opinion here seems to

be that yes, the interface is friendly, although the advanced CPU simulation is a little confusing until

people have read the manual. Some people are of the opinion that I have offered too many options,

leaving them wondering what it is they are supposed to be changing. I can only guess that a student

who was actually learning the subject, rather than one who was just testing the software, would make

it their business to understand…

Do the simulated results match with what would be expected from general knowledge?

In general, yes.

The memory simulator has least page faults when using the optimal algorithm, LRU and second

chance both outperform FIFO, etc.

The CPU simulator… does what it is supposed to. There is no real way to benchmark the CPU

simulator, because there is no real right or wrong way to deal with processes. All that can be said is

that the algorithms behave as would be expected, both with and without process aging.

The disk simulation is a little confusing, especially when looking at the access rate (which is,

admittedly, a contrived value). However, it is noticeable that this value is lowest on FCFS scheduling,

which is as expected, because the disk head will be travelling considerably further between requests

than it ideally would.

Do people find that it helps them understand what is going on?

I am rather sad to say that I am not sure. The lack of feedback from the intended audience has caused

me something of a problem. From the comments I have gathered from those willing to give feedback,

yes, but it should be taken into account that these are people who have already sat, and mostly passed,

the exams for the subject area that OSRAS is designed to assist with.

46

Is the software written in such a way that it can be easily built upon in the future?

Throughout the project, I have designed OSRAS to be as expandable as I know how. As long as a

module is descended from class OsrasModule it requires only two files to be edited (those containing

the OsrasWindow class) in order to include it with the existing modules.

The common functions in OsrasGraphics provide a quick and easy starting point to add graphical

displays to any new modules with the minimum of fuss.

47

Chapter 8 – Overall Conclusions and Future Work

8.1 OSRAS as it is

As it stands, I believe that OSRAS is not a bad simulator as far as it goes. It fully covers CPU, and

disk scheduling algorithms, and memory swapping algorithms, presenting each on an easy to follow

graphical display, which, in my opinion, provides a superior visualisation to any of the other

simulators I have encountered.

General opinion of OSRAS has been pleasing, with the greatest issue being that there are if anything,

too many options for the simulations. I personally don't consider this to be too much of a problem,

since all the simulations are fully documented on the OSRAS website, and anyone with sense can

simply ignore any controls they still do not understand. All options default to a standard value, so

little can go wrong if they are ignored.

8.2 OSRAS as it could be

There is quite a wide scope for future work on OSRAS, ranging from small additions to existing

modules that I simply didn't find time to include, right up to whole new modules. Things which I

would have liked to do but couldn't are:

• Allowing the user to set a reference string for memory page replacement, either by direct

input, or by specifying a file.

• Include the enhancements to the second chance memory page replacement algorithm [15,

p320] which uses a modify bit as well as a reference bit to determine if the most recent access

of the page was a read or a write operation. For this to make any difference to the simulation,

it would be necessary to actually have read and write requests, and also include a counter to

keep track of the time taken by the algorithm, since if the page has been modified, it will need

to be written to disk before being replaced.

• Expand each algorithm in the page swapping to include a buffer of free frames. When

combined with a timer, this would show how pages can now be swapped immediately, rather

than having to wait for them to be swapped out to disk [15, p321].

• Allowing the user to vary the times it takes for a TLB hit/miss/disk access in the advanced

CPU simulation.

• Actually have a TLB in advanced CPU mode rather than simply faking the effect of one.

• Allow processes to request direct disk access, rather than just memory access in the advanced

CPU simulation.

48

• Include a foreground and background queue system in the CPU simulator, each of which may

have a difference proportion of time on the CPU, and a different scheduling algorithm.

• Include acceleration of the disk head in the disk simulator to give a more realistic movement

pattern.

• A new simulation to show the translation of logical addresses to physical addresses in the

page table. Perhaps this could be combined with the advanced CPU simulation.

• Try to fix that small but annoying problem in the Windows version of OSRAS where the

control panel tends to relocate itself when rebuilt (changing between simulations).

• Inspired by MOSS [2], new modules for deadlocking and file systems could be added.

This list is by no means definitive. There are no doubt many more additions that could be made to

OSRAS, probably several final year projects worth of work could be put into its development before

it could be considered "complete".

49

Bibliography

[1] Operating System Simulator In Java

URL:http://www.geocities.com/Tokyo/Flats/3313/Joss.html [9th April 2002]

[2] Ontko, Ray, & Reeder, Alexander, (2001), Modern Operating Systems Simulators

 URL: http://www.ontko.com/moss/ [9th March 2002]

[3] Tanenbaum, Andrew S, (2001), Modern Operating System, Second Edition, Prentice-Hall

[4] Larus, James, (2002), SPIM A MIPS R2000/R3000 Simulator

URL: http://www.cs.wisc.edu/~larus/spim.html

Free with Hennessy & Patterson, Computer Organization and Design: The

Hardware/Software Interface

[5] Kerenidis, I & Markakis, E & Potika, K & Siaterlis, C, Medusa: an Operating Systems

Simulator

URL: http://www.vstu.vinnica.ua/ies2000/doclad/b/152.htm [10th March 2002]

[6] Bishop, Judy, (1998) Java Gently, Addison-Wesley 2nd Ed.

[7] Deitel & Deitel, (1999), Java How To Program, Prentice Hall, 3rd Ed.

[8] SGI, URL: http://www-europe.sgi.com/software/opengl/glut.html [10th April 2002]

[9] Rademacher, Paul, GLUI User Interface Library,

 URL: http://www.cs.unc.edu/~rademach/glui [10th March 2002]

[10] Azuma, Daniel, (2000), The GLOW Toolkit,

URL: http://www.ugcs.caltech.edu/~dazuma/glow/ [10th March 2002]

[11] Python, URL: http://www.python.org/ [10th March 2002]

[12] PyOpenGL the Python OpenGL Binding,

URL: http://pyopengl.sourceforge.net/ [10th March 2002]

[13] QT, URL: http://www.trolltech.com/products/qt/index.html [10th March 2002]

[14] Efford, Nick, (2000-2001) Si21 Lecture Notes

[15] Silberschatz, Abraham, Galvin, Peter and Gagne, Greg, (2000), Applied Operating Systems

Concepts, First edition, Wiley

50

[16] Hawkins, Kevin, and Astle, Dave, (2001), OpenGL Game Programming, Fist edition, Prima

Publishing

[17] MinGW, URL: http://www.mingw.org [16th April 2002]

[18] Dabs, URL: http://www.dabs.com [16th April 2002]

51

Appendix A – Personal Reflections

With regards to my personal experiences during this project, I would have to say they were unique.

This is undeniably the largest software engineering task I have ever undertaken, as well as one of the

largest research tasks I have ever attempted.

Looking back on managing the project, I feel I did so reasonably well. I seem to have been able to

judge the workloads of each section of the project to a fairly high accuracy, and have managed to stay

within one week of my schedule at all times. I found it to be a nice change to be allowed to guide

myself through the tasks, rather than answering directly to someone else's decision as to how the

project should be managed.

With regards to actual programming, I feel I have learned a lot. I feel much more confident in my

ability to code software from the word go, and I have learned some important lessons about being

certain I know what I want to code before I actually sit down and do it. I have also learned that I do

have something of a tendency to rush into the coding phase of my work, in this case the best example

was the original design of the OsrasMemory class. In the beginning, this class contained all the code

necessary to produce the memory simulation, and did not put any of the calculation into another class.

When the idea of using two memory simulations side by side occurred, I was then forced to adapt this

class so that it used numerous arrays of size two. When it came to the design of the advanced CPU

simulation, and I found I wanted to move a part of the memory simulation into it, I had to rewrite the

OsrasMemory class once again, placing most of its calculation into a secondary class. Although the

work involved in this was not great (most of it was cutting and pasting code) it has made me very

aware of my tendency to rush towards the programming, and I hope I can now be on guard for this in

the future.

With regards to the final result of the project, I am fairly pleased. There was a brief point of doubt

about half way through when I seriously wondered if it was going to be possible to include modules

for all three of the scheduling areas that I wanted to, because it looked as though the code was going

to take considerably longer to generate than I had anticipated. Thankfully, through some hard work

and a couple of late nights, I was able to get a firm enough grasp on how I needed to do things, and

was able to focus more on what I wanted to do.

I am a little disappointed that OSRAS does not go into greater detail than it does. I would have liked

to include a module for memory address translation, but sadly there is just not time to do so.

My overall conclusion would be that the project has turned out as well as it could, given the

knowledge I had when I began. If I had to do it again from scratch, I feel certain I could have pushed

it further, which I actually class as a good thing, since it tells me that I have actually learned

something.

