

	
	

	

	
	
	
	
	
	
	
	

Elastix Development
Guidance Manual

	
	

	

VERSIONS

Version Elastix
Version

Date Created by Details

1 2.3.0 01/16/12 Alberto Santos Initial documentation

	

	
	

	

Introduction

The present manual will serve as a guide for developers that wish to use the Elastix
Framework to create new modules.

In this manual we'll explain how to create a new Elastix module, Basics of the Elastix
Framework, and how to convert our new module into an Elastix Addon.

1. Creation of a new Elastix module

To create a new module on Elastix we must use “Developer” and addon
included on the Elastix Market Place.

1.1 Installation of the Developer addon

To proceed with the installation, we have to go to Elastix GUI → Addons. We must
be logged in as administrators.

Image 1. - Identifying the addon “Developer”.

	
	

	

§ Once we've identified the addon, we click on its respective “Install” button

§ After this the addon installation process begins, and we must wait a few minutes

for the installation to end.

	
	

Image 2. - End of the installation of the “Developer” addon.

§ After this we must exit the GUI and login again as administrator. We should see

a new menu tab with the name “Developer”.

We will refer to this addon as “Elastix Developer”

1.2 Using the Elastix Developer

Elastix Developer allows us to transparently create the initial skeleton for the code
necessary to create an Elastix module, which can help save hours of work in many
cases.

The Elastix Developer has three submenus, but the one we are interested is named
“Build Module” and is the first submenu.

The function of the Build module is to generate the code skeleton of our new module,
so we can continue with the development by extending this initial code.

	
	

	

As we create the module from here, we will generate the following process:

§ The menu (or menus) within the Elastix Web interface. That is, we won’t have to
modify the database menu.db manually.

§ The code skeleton, which will be placed in a folder with the same name as the
module's ID. This folder will, itself, be located inside the folder
/var/www/html/modules which is where all the Elastix modules are found.
That is, we won’t have to create this folder manually.

§ Prototype screens. There are three types of screens: form, report, and frame.

Let's see how the module looks.

Image 3.-	 The module builder included in the addon Developer

As we can observe, the Build module is divided into three parts:

§ General information.
§ Location.
§ Module Description.

General Information

This section allows us to define the name and unique identifier of the module, as well
as the information of the person creating the module so that they'll appear in the

	
	

	

header comments of every PHP program file. It also allows us to configure the level
of accessibility that the module will have through the parameter “Group permission”.

Image 4.- General information section within the module builder

Location

In this section we must setup the location, within the general menu, where we will
place the new module. By default, this section starts at level 2.

Image 5.- Section where the module's location is configured

If we select level 3, then new fields will appear automatically for level 1 and level 2
identifiers.

Image 6.- New fields appear if it says that the module will be level 3

To clarify the meaning of the fields shown in this section, let's look at the following
table:

Field Name Description
Module Level Here we define the hierarchy level of the module
Level 1 Parent Exists Here we define whether we place a new menu

under an existing parent menu of level 1, or if we
create a new one. To locate the new module
under an existing menu we pick “Yes” and it will
automatically display a list with the existing

	
	

	

modules of level 1.
If we pick “No”, we will create a new level 1 menu,
then two new fields will appear to specify the
name and the identifier.

Level 1 Parent Name Here we define the name of the parent module.
The first letter should be capital.

Level 1 Parent Id Here we define the identifier of the parent
module. All in lower case and with no spaces.

Level 2 Parent Exists This option will appear if we choose level 3 in the
field “Module level.”
Similarly to what happens in: “Level 1 Parent
Exists”, if we choose “No”, then two more fields
will appear.

Level 2 Parent Name Here we define the name of the level 2-parent
module. The first letter should be capitalized.

Level 2 Parent Id Here we define the identifier of the level 2-parent
module. All in lower case and with no spaces.

Module description

This last section is the most interesting since it is where the actual content of the
module is created.

Below we'll explain the three types of modules that can be created.

§ Form: Is used to gather data from the user. The Build module counts with

support for the most common types of HTML fields such as: text, selection,
date, text area, check box, radio, password, hidden, and file.

§ Grid: It shows data organized in the form of a table, where some useful

controls, such as navigation buttons, are included automatically. After
generating the necessary code with the Build module, it is easier to link the Grid
with a database in order to show useful information.

§ Framed: Embeds an arbitrary URL in the screen. Very useful when we want to

integrate external applications in the Elastix Web Interface. An example of this
is the integration of vtigerCRM.

Image 7.- Creation of a Form type screen

	
	

	

Buttons ">>", "<<" help us to add or remove fields from our form.
	
As we save the information established for the new module the following directory
tree will be created in documentRoot/modules where “documentRoot” is
/var/www/html for Elastix. There´s and exception for “framed” modules, where
the module is simply a link to an existing URL.

As you will note, a module has the same general architecture of the
framework, MVC2 web architecture. Therefore we define this as a
MVC2 within another MVC2, a recursive definition of grade 2.

This allows us to make a similarity between the folders that have
the following relations:

• themes is the view layer.
• index.php is the control layer.
• libs is the model layer.

1.3 Brief description of every folder created inside the module

configs

This folder is created by default with a file named “default.conf.php”, this file must
contain the basic configuration for the module.

Below there are two DSNs used in Elastix:
§ Sqlite3: “sqlite3:///$arrConf[elastix_dbdir]/base.db”
§ Mysql: We can use the function “generarDSNSistema” (Generate DSN System),

which returns the connection string. This function can be found in
/var/www/html/libs/misc.lib.php

§ Below we'll see the function in more detail.
	
Note: The following information is only available in Spanish. We are providing a translation

This file storage configuration variable that will be used very often in the module,
e.g. DSN

	
	

	

for explanation purposes.

/**
 * Función para construir un DSN para conectarse a varias bases de datos
 * frecuentemente utilizadas en Elastix. Para cada base de datos reconocida, se
 * busca la clave en /etc/elastix.conf o en /etc/amportal.conf según corresponda.
 *
Translation: Function to build a DSN to connect to multiple databases frequently used in Elastix. The
key for each recognized database is looked up on one of the following files /etc/elastix.conf or
/etc/amportal.conf.

* @param string $sNombreUsuario User name to interrogate
* @param string $sNombreDB Database name for DSN
* @param string $ruta_base Base route for library inclusion
*
* @return mixed NULL if the user is not recognized, or the DSN with the correspondent
key.
*/
function generarDSNSistema($sNombreUsuario, $sNombreDB, $ruta_base='')

help

In this folder we can find a file named “id_modulo.hlp”. This is the file that is used to
show the help embedded in the module.

Below there is a simple example of the code in this file. This help will only show the
title of the module followed by a brief description and an image in the indicated path.

<html>
<header>
 <link rel="stylesheet" href="/themes/{$THEMENAME}/styles.css">
 <link rel="stylesheet" href="/themes/{$THEMENAME}/help.css">
</header>
<body>

It's recommended that once you have finished your whole module you create
an embedded help that is nothing more than a user's manual, indicating the
different options offered in the module. It's recommended that it is written in
English.

	
	

	

<h1>{$node_name}</h1>

<p align="Justify">This is the embedded help for my module.</p>

<div></div>
<div>Figure 1</div>

</body>
</html>

images

In this folder all the module's images will be saved, for example the icon, images
used in the embedded help, etc.

lang

As we know, the Elastix Framework supports language translation. This folder stores
the translations for our module. Each translation for each language is stored in a
different file according to the following chart:

File Language
bg.lang Bulgarian
br.lang Portuguese
ca.lang Catalan
cn.lang Simplified Chinese
da.lang Danish
de.lang German
en.lang English
el.lang Greek
es.lang Spanish
fa.lang Persian
fr.lang French
it.lang Italian

hu.lang Hungarian
hr.lang Croatian
pl.lang Polish
ro.lang Romanian
ru.lang Russian
sl.lang Slovenian
sv.lang Swedish
ko.lang Korean
ja.lang Japanese
sr.lang Serbian

	

	
	

	

Therefore, if we want to create the translation of our module to Spanish we need to
create a file in this folder named es.lang. This file is basically a single array in which
the key is the word to translate and the value is the translated key. For example:

<?php
global $arrLangModule;
$arrLangModule=array(
"Module" => "Módulo",
"This is a test module" => "Este es un módulo prueba”,
);
?>

libs

As was mentioned previously, this is our model layer. In this folder there will be a
library that will be in charge of making queries to databases, modifying files, etc.

Our apache service works using the user “asterisk” so we will only have access to
files and folders to which “asterisk” has access. You will not be able to read or write
to a file or folder that has, for example, only root permissions.

We recommend creating at least two translation files, one with the developer's
native language and one in English

It is recommended that the keys in our array of translations are in English

All the queries should have parameters, which will prevent arbitrary SQL code
injection to our base. We will explain how to do this later.

Do not use console commands that require “root” privileges. This can lead to our
script or library becoming a potential security hole.

	
	

	

But what happens if our script or library must use commands that require “root”
privileges? That is when the script elastix-helper comes into play.

1.4 Use of elastix-helper

elastix-helper is a script located in /usr/bin. This script allows the execution of
privileged scripts found in the following folder:
 “/usr/share/elastix/privileged”.

It’s here where we'll find the script that will carry out tasks that require “root”
privileges. This script must be owned by “root” and belong to the “root” group” as well
as having 755 permissions. To use it we must execute the following code in the
function we wish to use from our library:

exec("/usr/bin/elastix-helper script_privileged parameter", $output, $ret);

§ script_privileged.- is the name of the privileged script found on that path.
§ parameter.- is the parameter that will be given to the script “script_privileged”.

One, or more parameters can be given to it, simply separate them with spaces;
it is also possible not to give parameters.

§ If the value of $ret is 0, that means that there were no problems.

themes

This folder is the view layer. Inside this folder we will find another folder named
“default” which contains all the themes available for the module. For example, a
module may have a grid as main view, this means that it will need a theme (a tpl file)
containing filters for the grid (in case they exist, otherwise a tpl file would not be
needed), and it is also possible that a form is shown when we press a button, for
which we would need another tpl file with the form fields. Below we will show a typical
template for a tpl theme and another for a form.

[Continues in the next page]

	
	

	

Typical template for a module with a grid theme

<table width="99%" border="0" cellspacing="0" cellpadding="0" align="center">
 <tr class="letra12">
 <td width="12%" align="left"><input class="button" type="submit"

 name="new" value="{$New}"></td>
 <td width="10%" align="left"> </td>
 <td width="10%" align="right">
 {$filter_type.LABEL}: {$filter_type.INPUT}
 {$filter_txt.INPUT}
 <input class="button" type="submit" name="show" value="{$SHOW}" />
 </td>
 </tr>
</table>

As we can see, this theme has a “New” button with a filter.

Typical template for a module with a form theme

<table width="99%" border="0" cellspacing="0" cellpadding="4" align="center">
 <tr class="letra12">
 <td align="left"><input class="button" type="submit" name="save"
 value="{$SAVE}"></td>
 </tr>
</table>

<div class="tabForm" style="font-size: 16px; height: auto;" width="100%">
 <table style="font-size: 16px;" width="100%" cellspacing="0" cellpadding="8">
 <tr class="letra12">
 <td align="left" width="130px">{$manufacturer.LABEL}: </td>
 <td align="left">{$manufacturer.INPUT}</td>
 </tr>
 </table>
</div>

For this form it is enough to have a “Save” button with a field named “manufacturer.”

These are basic templates; in fact, we can make them as complex as we require.

If we want to include javascripts in our module, we only need to create a folder
named “js” inside themes/default, and place the javascripts we want (they must have
the extension .js). If we want to include css we need to create a folder named “css”
inside themes/default and place the css we want (they must have the extension .css).
The framework will take care of including these files automatically.

	
	

	

index.php

The file index.php of our module represents the control layer; the framework is
responsible of directing the petition to this file calling on the function
“_moduleContent”. This file is in charge of communicating with the view and model
layers.

If we used the Elastix Developer to create the module, we will see that this file is
already written with a default template. We can make all the modifications we need
over this template according to the requirement of our module.

2. Using the Elastix Framework

We have created our module with a basic configuration, but we still do not have a
clear knowledge of the different facilities and libraries offered to us by the Elastix
framework.

In the following sections we will detail some of these libraries and classes with their
most important functions. All of these libraries are found at /var/www/html/libs

2.1 Library misc.lib.php

In this library we will find several types of functions. It is not necessary to include it in
the module since the Elastix framework is in charge of this task. We will list the most
relevant functions and the ones we will use often.

§ function _tr($s)

This is the function required for text translation. It receives the text to translate as a
string parameter.

The function works in the following way:

The function looks for the string passed as a parameter in the keys of the language
array of the framework and module (.lang file inside lang folder on the module; it will
choose the corresponding folder to the language in which the Elastix server is
configured), in case it finds it, the function returns the value of the array for that key,
otherwise it will return the same string passed as parameter.

	
	

	

Example:

If we have selected Spanish as our language and we want a translation of “Hi this is
my first module” (which is previously defined in “es.lang”), we simply need to do the
following:

$translate = _tr(“Hi this is my first module”);

§ function getParameter($parameter)

This function is used when we want to obtain a parameter that has been sent by
POST or GET. First it searches for the parameter in the array $_POST and, if it
exists, it will return $_POST[$parameter]. If it doesn’t exist, it’ll look up in the array
$_GET, if it exists, it will return $_GET[$parameter], if it doesn’t exist in $_POST nor
$_GET the function returns NULL.

Example:

Let's assume that we have a module with a save button with the name “save” and we
want to know if that button was pressed,

We would have to do the following:

if(getParameter(“save”))

In this way it will enter “if”, if the save button was pressed.

§ function obtenerClaveCyrusAdmin($ruta_base='')

This function returns the “admin” password for Cyrus. The parameter $ruta_base
must be entered as “/var/www/html/” if we call this function outside of this path.
This function parses the file /etc/elastix.conf and searches for the keyword
cyrususerpwd, in case it finds it, it will return its value; otherwise it will return
“palosanto” which is the default password.

§ function obtenerClaveAMIAdmin($ruta_base='')

This function returns the AMI password (Asterisk Manager Interface) for the admin
user. The parameter $ruta_base must be passed as “/var/www/html/” if we call
this function outside of this path. This function searches for the password in the file

	
	

	

etc/elastix.conf, if the keyword “amiadminpwd” is found, it returns its value;
otherwise it will return “elastix456” which is the default AMI password in Elastix.

§ function generarDSNSistema($sNombreUsuario, $sNombreDB,

$ruta_base='')

We have seen this function before in this manual, now we will explain more about it.
As we said before, this function returns the DSN (Data Source Name) for a
connection with mysql.

The parameter $ruta_base must be passed as “/var/www/html/” if we call this
function outside of that path.

The parameter $sNombreUsuario is the user we use to connect to mysql; it can be
“root” or “asteriskuser”.

The parameter $sNombreDB is the name of the mysql database to which we will
connect.

§ function writeLOG($logFILE, $log)

This function allows writing in a log. The parameter $logFILE is the name of the log
file, which will be located under /var/log/elastix.

The parameter $log is the text that will be written in the log. If the $logFILE file
doesn't exist, it creates it, if it already exists, it adds the text to the end of the $log file.

Once more, it’s important to remember that the httpd service used by Elastix has
“asterisk” as a user, meaning that it will only be able to write to files to which
“asterisk” has permissions. In case that $logFILE doesn't exist, there is no problem
since “asterisk” is owner of the /var/log/elastix folder, so that it will be able to
create files there without any problems.

Example:

If we want to write “You have entered the test module” in a log called “myModule.log”
we would have to do the following:

writeLOG(“myModule.log”,”	 You have entered the test module”);

	
	

	

In this way, the log “myModule.log” will be created (if it doesn't exist), containing the
following:

[Jan 19 14:48:11] You have entered the test module

The date to the left is the date of the server at the moment of writing the message in
the log.

2.2 paloSantoDB.class.php Class

This class is in charge of creating an object with the connection to a database. The
objective of this class is to encapsulate the database connection process so that the
developer will simply have to instance this class and carry out the queries he needs.
It’s not necessary to include this class in our module since the Elastix framework
already takes care of this.

To instance the class, we must pass the DSN of the database.

Example:

Let's suppose that we want to instance a paloDB class in our module to create a
connection to a mysql database named “myBase”, accessible just by the “root”. We
would have to do the following:

$dsn = generarDSNSistema(“root”,”myBase”);
$pDB = new paloDB($dsn);

Once this class is instanced, remember to pass it for reference to the other functions
required, this will be very important, especially when we work with transactions.

Below we've detailed some of its functions.

§ function genQuery($query, $param = NULL)

Is the procedure to execute a SQL sentence that does not return queues or results.
In case of an error it assigns to the variable class $this->errMsg. It is only used to
manipulate data of the database.

The parameter $query is the string that contains the query that will be executed.

	
	

	

The parameter $param is an array that is only passed on to this function when
parameterized queries are carried out, it is recommended that all queries are
parameterized, especially when there are variables entered into the server by the
client.

Example:

Let's suppose that we want to insert a new entry in the table “myTable”. The fields
are “field1” and “field2” with the values $value1 and $value2 respectively, and arrive
to the server by the client. We would have to do the following (let's suppose that we
have already instanced the class with the corresponding base's DSN in the $pDB
variable).

$query = “INSERT INTO myTable (field1,field2) VALUES (?,?)”;
$arrParam = array($value1, $value2);
$result = $pDB->genQuery($query,$arrParam);
if($result == FALSE)
 echo _tr(“Query Error”).” ”.$pDB->errMsg;
else
 echo _tr(“Query successfully executed”);

The order in which the array $arrParam is placed is very important since queries will
be assigned according to this order.

§ function fetchTable($query, $arr_colnames = FALSE, $param =

NULL)

Is the procedure that recovers all the rows resulting from an SQL petition that returns
one or more rows.

The parameters $query and $param have the same purpose as the ones described
in the previous function.

The parameter $arr_colnames will be FALSE if we want that each tuple has and
incremental number as an index, if it is TRUE each tuple will have the name of the
column as an index.

Example:

Let's suppose that we want to print, on the screen, the values of the column “field1”
from the table “myTable” when “field2” has as value $value2, and we assume that we
already have the object $pDB.

	
	

	

$query = “SELECT field1 FROM myTable WHERE field2=?”;
$arrParam = array($value2);
$result = $pDB->fetchTable($query,TRUE,$arrParam);
if($result === FALSE)
 echo _tr(“Query Error”).” ”.$pDB->errMsg;
else{
 if(count($result) > 0){
 foreach($result as $value){
 echo $value[“field1”].”
”;
 }
 }
 else
 echo _tr(“There is no data for the criteria search”);
}

§ function getFirstRowQuery($query, $arr_colnames = FALSE,

$param = NULL)

This function is the procedure to recover a single row from the query that returns one
or more rows. It returns a row with fields if the query returns at least one row,
otherwise it returns an empty array or FALSE in case of error.

The parameters $query, $arr_colnames and $param have the same purposes as the
ones described in the fetchTable function.

Example:

Let's suppose that we want to print, on the screen, the number of entries in the table
“myTable” whose “field1” has as value $value1

Whenever we use the functions fetchTable or getFirstRowQuery described
ahead, we need to compare the value returned by these functions with a triple
equality ===, remember that these functions can return empty arrays that are
also evaluated as FALSE, using === we do not only compare by value but by
data type as well.

	
	

	

$query = “SELECT COUNT(*) FROM myTable WHERE field1=?”;
$arrParam = array($value1);
$result = $pDB-> getFirstRowQuery($query,FALSE,$arrParam);

if($result === FALSE)
 echo _tr(“Query Error”).” ”.$pDB->errMsg;
else
 echo $result[0];

§ function beginTransaction()

This function is the procedure to initiate a transaction. Remember that a transaction
is used when we want the database to return to its previous state if an unwanted or
unexpected event occurs.

§ function rollBack()

This function is the rollBack procedure for a transaction.

§ function commit()

This function is the commit procedure for a transaction.

Example:

Let's suppose that we want to create a function that inserts $value1 and $value2 in
“field1” and “field2” on “myTable1”, respectively* (this table has “id” as an auto
incrementing id field). Later, on “myTable2”, we want to insert the id of the entry we
recently registered on “id_myTable1” of “myTable1”, and the actual date of the field
“date”.

*Note: There cannot be another entry with the exact same values both in “field1” and “field2”.

function insertRegister($value1, $value2, &$pDB, &$errMsg)
{
 $pDB->beginTransaction();
 $query1 = “INSERT INTO myTable1 (field1,field2) VALUES (?,?)”;
 $arrParam1 = array($value1, $value2);
 $result1 = $pDB->genQuery($query1,$arrParam1);
 if($result1 == FALSE){
 $pDB-> rollBack();
 $errMsg = $pDB->errMsg;
 return FALSE;
 }

	
	

	

 else{
 $query2 = “INSERT INTO myTable2 (id_myTable1,date)
 VALUES((SELECT id FROM myTable1 WHERE
 field1=? AND field2=?),?)”;

 $arrParam2 = array($value1,$value2,date('Y-m-d H:i:s'));
 $result2 = $pDB->genQuery($query2,$arrParam2);
 if($result2 == FALSE){
 $pDB->rollBack();
 $errMsg = $pDB->errMsg;
 return FALSE;

 }
 else{
 $pDB->commit();
 return TRUE;
 }
 }
}

As we can observe, the object $pDB was passed by reference to the function, which
is necessary so that the transaction has the desired behavior.

NOTE: Take into account that there are database engines that do not support transactions,
such as the MyISAM mySQL engine. In these cases we must assure that the table we want
to use has a compatible engine with transactions, such as InnoDB or BDB.

2.3 Class paloSantoACL.class.php

This class is in charge of administrating access control lists for the different kinds of
users. The Elastix framework includes it automatically.

To instance the class one must pass the DSN string for the connection to the
database “acl.db” or one can also pass it an object that is an instance of the class
paloDB that was passed the DSN for “acl.db”.

The variable $arrConf['elastix_dsn']['acl'] already contains the DSN for “acl.db”, this
variable is created by the framework. Therefore, if we want to instance this class in
our module, we would do the following:

global $arrConf;
$pACL = new paloACL($arrConf['elastix_dsn']['acl']);

	
	

	

This class is somewhat delicate and could compromise the system if used
incorrectly. It is recommended to only use the functions described below and to let
the Elastix default modules take care of other user administration tasks.

§ function getUserExtension($username)

Procedure to obtain the extension of a user through the username. As can be
imagined, the $username parameter is the name of the user whose associated
extension we want to obtain.

Example:

Let us suppose that we want to obtain the extension associated with the user that is
logged on:

//The logged-in username is stored in the $_SESSION[“elastix_user”] session
variable
$username = $_SESSION[“elastix_user”];
$extension = $pACL->getUserExtension($username);

§ function isUserAdministratorGroup($username)

Procedure to find out if a user belongs to the “administrator” group or not. Here too,
the parameter $username is the name of the user about whom we want to learn
whether it belongs or doesn't belong to the “administrator” group.

Example:

If we want our module to carry out certain tasks if the logged user is in the
“administrator” group and others if he is not, we could do the following:

$username = $_SESSION[“elastix_user”];
if($pACL->isUserAdministratorGroup($username)){
 //Do some task for administrators
}
else{
 //Do some task for non administrators
}

	
	

	

2.4 Class paloSantoConfig.class.php

This class is very useful especially for parsing configuration files, allowing us to read
or write to them.

It is necessary to include this class in our module in case we require it.

include_once “libs/paloSantoConfig.class.php”;

This class has the following builder:

§ function paloConfig($directorio, $archivo, $separador="",

$separador_regexp="", $usuario_proceso=NULL)

Where $directorio (directory) is the path where the file is found, $archivo (file) is the
file to be parsed, $separador (separator) is the string that separates the keywords
with its value, $separador_regexp is a regular expression to be interpreted as a
separator, and $usuario_proceso (process user) is the user that initiates the process.
As can be observed, only $directorio and $archivo are required parameters, the rest
are optional and have default values.

Let's suppose that we have the configuration file /etc/myModule.conf which
contains the following:

user = user
password = 12345
email = user@domain.com
privileges = all

Now we will instance to the class paloConfig to parse this file.

$pConfig = new paloConfig(“/etc”,”myModule.conf”,” = ”,”\s*=\s*”);

In this way we will go to parse the file “/etc/myModule.conf” which has as separator
the “=” symbol and can be or not be accompanied with blank spaces to either side.

Now we will detail some of the main functions of the class paloConfig.

§ function leer_configuracion($bComentarios=true)

	
	

	

This procedure initiates the reading of a file by storing it in an associative array that is
returned as an answer. If the parameter $bComentarios is FALSE then only the
values that are not comments in the array will be found, and the return array will have
as indexes the keywords in the file, but if it is TRUE then in the returned array one
will find both comments and configuration values, and the indexes for this will be
numerical.

§ function escribir_configuracion($arr_reemplazos,

$overwrite=FALSE)

This procedure is used to write in the configuration file. The parameter
$arr_reemplazos is an array that contains the changes to be made, where the index
of the array represents the keyword to be modified in the file. If the keyword is found
in the file then it is modified and if it is not found then it adds it. If the parameter
$overwrite is FALSE then the changes contained in $arr_reemplazos will be made,
but the rest of the file will be kept intact, but if it is TRUE, then the file will be
overwritten by $arr_reemplazos

§ function privado_get_valor($lista, $clave)

Procedure that returns the value of a keyword in the file. The parameter $lista is the
array that contains the configuration file. The parameter $clave is the keyword to be
searched for in the file.

Example:

Let's suppose that we have the file /etc/myModule.conf with the same
information that was described above, and we want to do the following: if “password”
is equal to “12345” then we will change it to “new12345”.

include_once “libs/paloSantoConfig.class.php”;
$pConfig = new paloConfig(“/etc”,”myModule.conf”,” = ”,”\s*=\s*”);
$content = $pConfig->leer_configuracion(FALSE);
$password = $pConfig->privado_get_valor($content,”password”);
if($password == “12345”){
 $arrReplaces = array(“password” => “new12345”);
 $pConfig->escribir_configuracion($arrReplaces);
}

	
	

	

2.5 Class paloSantoForm.class.php

This class is used to easily manage the form-type modules. It is necessary to include
it in our module in case we wish to use it.

The builder for this class has the following form:

§ function paloForm(&$smarty, $arrFormElements)

Where $smarty is an instance of smarty, (which is passed to the function
_moduleContent in our module) and $arrFormElements is an array of arrays that
contains the elements of the form. In the main array, the indexes represent the id of
the element and in the secondary array, there must always exist an index named
“INPUT_TYPE” that indicates the type of element that is required. The value of
“INPUT_TYPE” can be one of the following: “TEXTAREA”, “TEXT”, “CHECKBOX”,
“PASSWORD”, “HIDDEN”, “FILE”, “RADIO”, “SELECT” or “DATE”. Where each of
these words represents the element desired. Below we show some examples of each
of these types of elements. After these examples, more about the other elements of
the array will be explained.

TEXTAREA

Example:
A textarea is wanted with the label “descripción” and 6 columns and 4 rows.

$arrFormElements = array(
 "description" => array("LABEL" => _tr("Description"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "TEXTAREA",
 "INPUT_EXTRA_PARAM" => array("style" => ”width:400px"),
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => "",
 "ROWS" => "4",
 "COLS" => "6"
),
);

	
	

	

TEXT

Example:
An input is wanted to enter the name of a client.

$arrFormElements = array(
 "name" => array("LABEL" => _tr("Name"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "TEXT",
 "INPUT_EXTRA_PARAM" => array("style" => ”width:200px"),
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

CHECKBOX

Example:
A checkbox is wanted that says “Enable”.

$arrFormElements = array(
 "enable" => array("LABEL" => _tr("Enable"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "CHECKBOX",
 "INPUT_EXTRA_PARAM" => " ",
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

NOTE: When creating elements of this type, the framework automatically creates two
elements, one is the actual checkbox and the other is a hidden element whose value
is “on” in case the checkbox is activated or “off” otherwise. Therefore, if in our module
we want to know if the checkbox was activated or not, we would have to do the
following:

$enable = getParameter(“enable”);
if($enable == “on”){
 //Do something
}
else{
 //Do something
}

	
	

	

PASSWORD

Example:
A field is wanted where the user enters a password.

$arrFormElements = array(
 "password" => array("LABEL" => _tr("Password"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "PASSWORD",
 "INPUT_EXTRA_PARAM" =>array("style" => ”width:200px"),
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

HIDDEN

Example:
A hidden field is wanted in order to store a user's id.

$arrFormElements = array(
 "id" => array("LABEL" => " ",
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "HIDDEN",
 "INPUT_EXTRA_PARAM" => " ",
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

FILE

Example:
A field is wanted in order to pass it the path of a file.

$arrFormElements = array(
 "file" => array("LABEL" => _tr("File"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "FILE",
 "INPUT_EXTRA_PARAM" => " ",
 "VALIDATION_TYPE" => "filename",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

	
	

	

RADIO
Example:
Two radio buttons are wanted in order to indicate the gender of a person.

$gender = array(“m” => _tr(“Male”), “f” => _tr(“Female”));
$arrFormElements = array(
 "gender" => array("LABEL" => _tr("Gender"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "RADIO",
 "INPUT_EXTRA_PARAM" => $gender,
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

SELECT
Example:
A combo is desired to select the payment method that a client will realize, with the
options “cash”, “credit card”, “check”, or “bank transfer.”

$paymentMethod = array(“cash” => _tr(“Cash”), “credit_card” => _tr(“Credit
Card”), “check” => _tr(“Check”),“bank_transfer” => _tr(“Bank Transfer”));
$arrFormElements = array(
 "paymentMethod" => array("LABEL" => _tr("Payment Method"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "SELECT",
 "INPUT_EXTRA_PARAM" => $paymentMethod,
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
);

DATE
Example:
A field is wanted in order to enter the date in which a payment took place.

$arrFormElements = array(
 "paymentDate" => array("LABEL" => _tr("Payment Date"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "DATE",
 "INPUT_EXTRA_PARAM" => "",
 "VALIDATION_TYPE" => "ereg",
 "VALIDATION_EXTRA_PARAM" => "^[[:digit:]]{1,2}[[:space:]]+[[:alnum:]]
 {3}[[:space:]]+[[:digit:]]{4}$"
),
);

	
	

	

The format by default for the date is the day in two digits, then space followed by the
month in three letter format, then space, and the year in four digits. If one wants to
change this format, one would simply have to place in “INPUT_EXTRA_PARAM” the
new format and, if we want, we can also enter the time by using “TIME” => true.

For example, if we want the format to be yyyy-mm-dd h:m:s

"INPUT_EXTRA_PARAM"=>array(“TIME”=> true, “FORMAT” => “%Y-%m-%d %H:%M:%S”),

As could be seen in the previous examples, there are indexes where all coincided
and others that were simply specific to the type of element, like for example, the
index “COLS” in “TEXTAREA”. Now we will explain about obligatory and common
indexes.

LABEL: The value of this index, as its name suggests, will be the descriptive label
that is shown beside an element.

REQUIRED: The value of this index can be “yes” or “no”, if it is “yes” then this field is
obligatory in order to be able to save the form, otherwise this can be left blank.

INPUT_TYPE: Type of element, already described previously.

INPUT_EXTRA_PARAM: Additional input parameters, can be extra styles or
attributes. These must be passed as an array, otherwise it must be an empty string.

VALIDATION_TYPE: Indicates the type of validation that will be applied to the value
entered by the user. The values can be the following:

text – The user can enter anything.

ereg – A regular expression must be passed in
VALIDATION_EXTRA_PARAM and the user will only be allowed to enter
a text that matches the regular expression that was entered.

filename – Validates that what is entered into that field is the name of a
file.

domain – Validates that what is entered into that field is the name of a
domain.

filepath – Validates that what is entered into that field is a path to a file.

ip – Validates that what is entered into that field is an IP address.

mask – Validates that what is entered into that field is a network mask.

ip/mask – Validates that what is entered into that field is an IP address

	
	

	

followed by “/” and the network mask in decimal format.

numeric – Validates that what is entered into that field is a number.

float – Validates that what is entered into that field is a floating number
(decimal with a point as a separator).

numeric_array – Validates that what is entered into that field is an array
whose elements are numbers.

ereg_array – Validates that what is entered into that field is an array with
values that must match the regular expression passed in
VALIDATION_EXTRA_PARAM.

email – Validates that what is entered into that field is an email address.

VALIDATION_EXTRA_PARAM: An additional parameter is passed in case
VALIDATION_TYPE is required, as is the case with “ereg”.

Below are described the functions that this class offers.

§ function fetchForm($templateName, $title,

$arrPreFilledValues = array())

This function generates a chain that contains an HTML form. To do this, take a form
template (which is passed in the parameter $templateName) and insert into it the
elements of the form. The parameter $title is the title that the form will have and the
parameter $arrPreFilledValues is an array that contains the default values for the
form, where the index is the element's id and its value is the value that the field would
have by default.

§ function validateForm($arrCollectedVars)

This function returns TRUE in case that the data entered into the form was correct,
and otherwise FALSE. The parameter $arrCollectedVars contains the values entered
into the form.

Example:

Let's suppose that we want a form-type module that has the following fields: “Name”
which is a text box, “Last name” which is a text box, “Gender” which is a radio button
that can be either masculine or feminine, “Email” that is a text box, and “Marriage

	
	

	

status” that can either be single, widowed, married, divorced, or civil union. All of
these fields are required. There is also a “Save” button that, when pressed, validates
the data entered, in case of an error it maintains the persistence of the data and the
error is indicated, otherwise it shows a message showing the data entered.

File themes/default/form.tpl

<table width="100%" border="0" cellspacing="0" cellpadding="4"
align="center">
 <tr class="letra12">
 <td align="left">
 <input class="button" type="submit" name="save"
value="{$SAVE}">
 </td>
 <td align="right" nowrap><span
class="required">* {$REQUIRED_FIELD}</td>
 </tr>
</table>
<table class="tabForm" style="font-size: 16px;" width="100%" >
 <tr class="letra12">
 <td align="left" width="130px">{$name.LABEL}: <span
class="required">*</td>
 <td align="left">{$name.INPUT}</td>
 </tr>
 <tr class="letra12">
 <td align="left">{$last_name.LABEL}: <span
class="required">*</td>
 <td align="left">{$last_name.INPUT}</td>
 </tr>
 <tr class="letra12">
 <td align="left">{$gender.LABEL}: <span
class="required">*</td>
 <td align="left">{$gender.INPUT}</td>
 </tr>
 <tr class="letra12">

 <td align="left">{$email.LABEL}: <span
class="required">*</td>
 <td align="left">{$email.INPUT}</td>
 </tr>
 <tr class="letra12">
 <td align="left">{$marital_status.LABEL}: <span
class="required">*</td>
 <td align="left">{$marital_status.INPUT}</td>
 </tr>
</table>

	
	

	

File index.php

<?php

include_once "libs/paloSantoForm.class.php";

function _moduleContent(&$smarty, $module_name)
{
 //include module files
 include_once "modules/$module_name/configs/default.conf.php";

 //include file language agree to elastix configuration
 //if file language not exists, then include language by default (en)
 $lang=get_language();
 $base_dir=dirname($_SERVER['SCRIPT_FILENAME']);
 $lang_file="modules/$module_name/lang/$lang.lang";
 if (file_exists("$base_dir/$lang_file")) include_once "$lang_file";
 else include_once "modules/$module_name/lang/en.lang";
 //global variables
 global $arrConf;
 global $arrConfModule;
 global $arrLang;
 global $arrLangModule;
 $arrConf = array_merge($arrConf,$arrConfModule);
 $arrLang = array_merge($arrLang,$arrLangModule);

 //folder path for custom templates
 $templates_dir=(isset($arrConf['templates_dir']))?
$arrConf['templates_dir']:'themes';

$local_templates_dir="$base_dir/modules/$module_name/".$templates_dir.'/'.
$arrConf['theme'];

 //conexion resource
 //$pDB = new paloDB($arrConf['dsn_conn_database']);
 $pDB = ""; //In this case we do not use a database

 //actions
 $action = getAction();
 $content = "";

 switch($action){
 case "save":
 $content = saveTestModule($smarty, $module_name,
$local_templates_dir);
 break;
 default: // view_form
 $content = viewFormTestModule($smarty, $module_name,
$local_templates_dir);

	
	

	

 break;
 }
 return $content;
}

function viewFormTestModule($smarty, $module_name, $local_templates_dir)
{
 $arrFormTestModule = createFieldForm();
 $oForm = new paloForm($smarty,$arrFormTestModule);

 //begin, Form data persistence to errors and other events.
 $_DATA = $_POST;

 $smarty->assign("SAVE", _tr("Save"));
 $smarty->assign("REQUIRED_FIELD", _tr("Required field"));
 $smarty->assign("icon", "images/list.png");

 $htmlForm = $oForm->fetchForm("$local_templates_dir/form.tpl",_tr("Test
Module"), $_DATA);
 $content = "<form method='POST' style='margin-bottom:0;'
action='?menu=$module_name'>".$htmlForm."</form>";

 return $content;
}

function saveTestModule($smarty, $module_name, $local_templates_dir)
{
 $arrFormTestModule = createFieldForm();
 $oForm = new paloForm($smarty,$arrFormTestModule);
 if(!$oForm->validateForm($_POST)){

 // Validation basic, not empty and VALIDATION_TYPE
 $smarty->assign("mb_title", _tr("Validation Error"));
 $arrErrores = $oForm->arrErroresValidacion;
 $strErrorMsg = ""._tr("The following fields contain
errors").":
";
 if(is_array($arrErrores) && count($arrErrores) > 0){
 foreach($arrErrores as $k=>$v)
 $strErrorMsg .= "$k, ";
 }
 $smarty->assign("mb_message", $strErrorMsg);
 return viewFormTestModule($smarty, $module_name,
$local_templates_dir);
 }
 else{
 //Here are extra validations
 $name = getParameter("name");
 $last_name = getParameter("last_name");
 $gender = getParameter("gender");

	
	

	

 $email = getParameter("email");
 $marital_status = getParameter("marital_status");
 if(!in_array($gender,array("male","female"))){
 $smarty->assign("mb_title", _tr("Validation Error"));
 $smarty->assign("mb_message", _tr("The gender can only be
\"male\" or \"female\""));
 return viewFormTestModule($smarty, $module_name,
$local_templates_dir);
 }
 elseif(!in_array($marital_status,array("single","widowed","marr
ied","divorced","cohabiting"))){
 $smarty->assign("mb_title", _tr("Validation Error"));
 $smarty->assign("mb_message", _tr("The marital status can
only be \"single\", \"widowed\", \"married\", \"divorced\" or
\"cohabiting\""));
 return viewFormTestModule($smarty, $module_name,
$local_templates_dir);
 }
 else{
 $smarty->assign("mb_title", _tr("Message"));
 $message = _tr("The following data was entered").":
";
 $message .= ""._tr("Name").":
".htmlentities($name)."
"._tr("Last Name").":
".htmlentities($last_name)."
"._tr("Gender").":
".htmlentities($gender)."
"._tr("Email").":
".htmlentities($email)."
"._tr("Marital Status").":
".htmlentities($marital_status);
 $smarty->assign("mb_message",$message);
 }

 }
 return viewFormTestModule($smarty, $module_name, $local_templates_dir);
}

function createFieldForm()
{
 $gender = array("male" => _tr("Male"), "female" => _tr("Female"));
 $marital_status = array("single" => _tr("Single"), "widowed" =>
_tr("Widowed"), "married" => _tr("Married"), "divorced" => _tr("Divorced"),
"cohabiting" => _tr("Cohabiting"));

 $arrFields = array(
 "name" => array("LABEL" => _tr("Name"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "TEXT",
 "INPUT_EXTRA_PARAM" => "",
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),

	
	

	

 "last_name" => array("LABEL" => _tr("Last Name"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "TEXT",
 "INPUT_EXTRA_PARAM" => "",
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
 "gender" => array("LABEL" => _tr("Gender"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "RADIO",
 "INPUT_EXTRA_PARAM" => $gender,
 "VALIDATION_TYPE" => "text",
 "VALIDATION_EXTRA_PARAM" => ""
),
 "email" => array("LABEL" => _tr("Email"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "TEXT",
 "INPUT_EXTRA_PARAM" => "",
 "VALIDATION_TYPE" => "email",
 "VALIDATION_EXTRA_PARAM" => ""
),
 "marital_status" => array("LABEL" => _tr("Marital Status"),
 "REQUIRED" => "yes",
 "INPUT_TYPE" => "SELECT",
 "INPUT_EXTRA_PARAM" => $marital_status,
 "VALIDATION_TYPE" => "text",

 "VALIDATION_EXTRA_PARAM" => ""
),
);
 return $arrFields;
}

function getAction()
{
 if(getParameter("save"))
 return "save";
 else
 return "report";
}
?>

Image 8.- View of the form-type module according to the code described previously

	
	

	

2.6 Class paloSantoGrid.class.php

This class allows us to easily manage grid type modules. It is necessary to include it
in our module in case we wish to use it.

The builder for this class has the following form:

§ function paloSantoGrid($smarty)

Where $smarty is an instance of smarty (which is passed to the function
_moduleContent of our module.)

This class has the following functions:

§ function addNew($task="add", $alt="New Row", $asLink=false)

This function allows adding an element to the grid whose functionality is of adding a
new piece of data to be shown in the grill. The parameter $task will be the “name”
attribute for the element, the parameter $alt is the label that will be shown for the
element, and the parameter $asLink is TRUE if the element will be the link, otherwise
it will be a submit-type input.

§ function customAction($task="task", $alt="Custom Action",

$img="", $asLink=false)

This function allows adding an element to the grid. The parameter $task will be the
“name” attribute of the element, the parameter $alt is the label that will be shown for
the element, and the parameter $asLink is TRUE if the element is a link, otherwise it
will be a submit-type input and the parameter $img is the path to an image that will
be the representative icon of the element.

§ function deleteList($msg="", $task="remove", $alt="Delete

Selected", $asLink=false)

This function allows adding an element to the grid whose functionality is to eliminate
one or more entries shown in the grid. The element $msg will be the confirmation
message that will appear, the parameter $task will be the element's “name” attribute,
the $alt paramenter is the label that will be shown for the element, and the parameter
$asLink is TRUE if the element will be a link, otherwise it will be a submit-type input.

	
	

	

§ function addLinkAction($href="action=add", $alt="New Row",
$icon=null, $onclick=null)

This function allows adding a link-type element to the grid. The parameter $href is
where the link goes, the parameter $alt is the label that will be shown for the element,
the parameter $icon is the path to an image that will be the elements representative
icon, and the parameter $onclick is the element that will be linked when that link is
clicked (optional).

§ function addSubmitAction($task="add", $alt="New Row",

$icon=null, $onclick=null)

This function allows adding a submit-type element to the grid. The parameter $task is
the element's “name” attribute, the parameter $alt is the label that will be shown for
the element, the parameter $icon is the path to an image that will be the element's
representative icon, and the parameter $onclick is the event that will be linked to
when clicking on that element (optional.)

§ function addButtonAction($name="add", $alt="New Row",

$icon=null, $onclick="javascript:click()")

This function allows adding a button-type element to the grid. The parameter $name
is the element's “name” attribute, the parameter $alt is the label that will be shown for
the element, the parameter $icon is the path to an image that will be the element's
representative icon, and the parameter $onclick is the event that will be linked when
clicking on that element (optional.)

§ function addInputTextAction($name_input="add", $label="New

Row", $value_input="", $task="add", $onkeypress_text=null)

This element allows adding an element to the grid with the type “input text”. The
parameter $name_input is the element's “name” attribute, the parameter $label is the
label that will be shown for the element, the parameter $value_input is the input's
default value, the parameter $task is the action that is sent to the server when the
“button” associated to the text box is pressed and the $onkeypress_text parameter is
the event that will be associated with the textbox each time a key is pressed.

	
	

	

§ function addComboAction($name_select="cmb", $label="New
Row", $data=array(), $selected=null, $task="add",
$onchange_select=null)

This function allows adding an element to the grid with the type “combo box”. The
parameter $name_select is the element's “name” attribute, the parameter $label is
the label that will be shown for the element, and the parameter $data is an array with
the combo's data, the parameter $selected is the element selected by default, the
parameter $task is the action that is sent to the server when the “button” associated
to the combo is pressed and the parameter $onchange_select is the event that will
be associated to the combo each time the combo's value is changed.

§ function addHTMLAction($html)

This function allows adding a new html-type element to the grid. The parameter $html
is the html code to be added.

§ function addFilterControl($msg, &$arrData, $arrFilter =

array(), $always_activated=false)

This function allows adding a filter controller to the grid (purple-colored messages
show up when the filter is applied.) The parameter $msg is the message that will
appear when the filer is applied, the parameter $arrData is the array with the data
that lets us know if the filter is being applied or not, the parameter $arrFilter is an
array that lets us associated two or more filters as a single one, where the array's key
is the name of the filter's element and the value is the default value it will have. The
parameter $always_activated will be true if we want it to always show the filter
controller, otherwise it is left on false.

	
	

	

2.7 Class paloSantoJSON.class.php

This class is used to code in JSON format. It can be of great help when an AJAX
petition is made to the server, in order to send the answer to the client in JSON
format. It codes a three-element array, whose indexes are “error”, where errors are
stored in case there are any; “statusResponse”, which stores the response's status,
which is set to OK by default; and “message”, which stores the wanted response.

We must include this class in our module in case we want to use it.

The builder is the following:

§ function PaloSantoJSON()

It has the following functions:

§ function createJSON()
	
Codes the response in JSON with the format mentioned previously.

§ function set_error($error)
	
Sets the value of the “error” index with what is contained in the parameter $error.

§ function set_status($status)
	
Sets the value of the index “statusResponse” with what is contained in the parameter

$status.

§ function set_message($message)
	
Sets the value for the index “message” with what is contained in the parameter
$message.

	
	

	

3. AJAX in Elastix

The Elastix Framework also counts with a JavaScript function to carry out AJAX
petitions! This function is the following:

§ function request(url,arrParams, recursive, callback)

The parameter “url” is the address to which the petition is made (it will usually be
“index.php”). The parameter “arrParams” is an array that contains the parameters
that the server will receive. The parameter “recursive” is a boolean, this will be TRUE
if we want the same AJAX petition to be carried out again once the server answers
and if we want to stop it at any moment, the function “callback” must return TRUE.
Finally, the parameter “callback” is a function that will be invoked each time the
server responds.

Example:

If you wish to create a JavaScript function that carries out an AJAX petition to the
module “testModule”, this function must receive as parameter a text that will be sent
to the server. The server must answer the text translated to the language selected on
the Elastix server in case we have that translation, otherwise it will return the same
text. In the client an alert with the text returned by the server must be shown.

File testModule/themes/default/js/javascript.js

function getTextTranslate(text)
{
 var arrAction = new Array();
 arrAction["menu"] = "testModule";
 arrAction["action"] = "translate";
 arrAction["text"] = text;
 arrAction["rawmode"] = "yes"; //Remember, this is necessary
because in this way the server will only response the content of the module
that will be a JSON.

 request("index.php",arrAction,false,
 function(arrData,statusResponse,error)
 {
 //The variable statusResponse contains the value assigned to
statusResponse in the JSON response.
 //The variable error contains tha value assigned to error in the
JSON response.
 //The variable arrData contains the value assigned to message in

	
	

	

the JSON response.
 alert(arrData);
 }
);
}

Archivo testModule/index.php

<?php

include_once "libs/paloSantoForm.class.php";
include_once "libs/paloSantoJSON.class.php";

function _moduleContent(&$smarty, $module_name)
{
 /* Typical headers of the module like the last example.

 */

 $action = getAction();
 $content = "";

 switch($action){
 case "save":

 $content = saveTestModule($smarty, $module_name,
$local_templates_dir);
 break;
 case "translate":
 $content = translateText();
 break;
 default: // view_form
 $content = viewFormTestModule($smarty, $module_name,
$local_templates_dir);
 break;
 }
 return $content;
}

/* Here goes the functions saveTestModule and viewFormTestModule like the
last example
....
....
....
*/

function translateText()

	
	

	

{
 $jsonObject = new PaloSantoJSON();
 $text = getParameter("text");
 $translated = _tr($text);
 $jsonObject->set_message($translated);
 return $jsonObject->createJSON();
}

function getAction()
{
 if(getParameter("save"))
 return "save";
 elseif(getParameter("action") == "translate")
 return "translate";
 else
 return "report";
}

4. Convert a module into an addon

It is common to get confused and to think that a module and an addon are the same
thing. In the end, the two generally end up becoming a new menu in Elastix.
However, an addon is something much more complex than a module.

An addon is a software package certified by PaloSanto Solutions and that is available
in RPM format through the official repository. An addon can contain a module, but
can also contain other software components, written in any language supported by
Elastix. The installation of an addon is carried out simply and intuitively through the
“Addons” menu from the Elastix Web Interface.

That said, it is important to clear up that an Elastix module can be converted into an
addon. To do this, it is necessary to package the module in RPM format and to start
the interoperable software certification with Elastix.

4.1 Source skeleton for packaging

Usually the source will contain an XML file and two main folders. The file and the
folders are respectively: “menu.xml”, “modules” and “setup”.

§ The file menu.xml is an XML that contains the modules that will be integrated

into Elastix, including location, name, type, permissions, etc.

	
	

	

Example:

We want to create the file menu.xml, for a parent module named “Parent Module”
with id “parent_module” located under the PBX module in position 6. There will also
be two other modules. The first will be “Test Module” with id “test_module” located
inside “parent_module” in the first position and the module “Link Module” with id
“link_module” which is the link-type module to access the server through the 8080
port. By default, only users with the administrator group can gain access to these
modules.

<?xml version="1.0" encoding="UTF-8"?>
<module>
 <menulist>
 <menuitem menuid="parent_module" desc="Parent Module"
parent="pbxconfig" module="no" link="" order="6">
 <permissions>
 <group id="1" name="administrator" desc="total access"></group>
 </permissions>
 </menuitem>
 <menuitem menuid="test_module" desc="Test Module"
parent="parent_module" module="yes" link="" order="61">
 <permissions>
 <group id="1" name="administrator" desc="total access"></group>
 </permissions>
 </menuitem>
 <menuitem menuid="link_module" desc="Link Module"
parent="parent_module" module="no" link="http://{NAME_SERVER}:8080"
order="62">
 <permissions>
 <group id="1" name="administrator" desc="total access"></group>
 </permissions>
 </menuitem>
 </menulist>
</module>

As can be seen, inside the label “menulist” are all the modules and each module is
described with the label “menuitem” where the attribute “menuid” is the id of the
module, the attribute “desc” is the label that will be shown in the web interface, the
attribute “parent” is the id of the module that will contain it, the attribute “module” can
be “yes” if it is an actual module or “no” if it is a parent module or if it is a link-type
module, the attribute “link” is the link to which the module will lead and the module
“order” is the order that the module will occupy.

In the label “permission” are detailed the user groups that will have access to the
module by default.

	
	

	

Now the only thing to be done is to use the script elastix-menumerge giving it the
XML file so that the Elastix integration is carried out. Also, if we want to remove a
menu, the script elastix-menuremove is executed, giving it the menu's id. This must
be carried out in the spec file.

§ The folder “modules” contains all the modules included in the addon.

§ The folder “setup” contains configuration files or necessary scripts for the

correct functioning of a module. Also, in case of a local database being used it
will count with a folder named “db.” Inside this folder there will have to be a file
named “db.info” and three folders: “install”, “update” and “delete”.

The file db.info contains necessary information about the database. It has a header
indicating the name of the database, then the keyword “ignore_backup” that will be
“yes” in case you do not wish to make a backup of an existing database with that
name, otherwise it will be “no.” It also has the keyword “engine” that indicates the
engine used by the database (in Elastix we use “sqlite3” or “mysql”), then the
keyword “path” that indicates the path where the database is located (for sqlite3 it's
“/var/www/db” and for mysql it is “/var/lib/mysql”) and finally the keyword deletable
which will be “yes” if one wishes to be able to eliminate the database when the
package is uninstalled, otherwise it will be “no” (having this field in “yes” doesn't
mean that the database will be eliminated automatically when the package is
uninstalled, it simply opens that possibility, what you will need to do is place a
database elimination script in the “delete” folder.)

Example:

Build a db.info file for an addon that will have a sqlite3 database named “myDBSqlite”
which must have a backup in case it exists and it must not be deletable, and a mysql
database named “myDBMysql” with the same characteristics.

[myDBSqlite]
ignore_backup = no
engine = sqlite3
path = /var/www/db
deletable = no

[myDBMysql]
ignore_backup = no
engine = mysql
path = /var/lib/mysql
deletable = no

	
	

	

In the folder “install” there will be a folder for each database with the same name as
the database. Inside this folder will be sql scripts that will only be executed when
the package is installed (and will be applied to the database corresponding to the
name of the folder). These scripts will have the names “1_schema.sql”,
“2_schema.sql”, “3_schema.sql”, etc (usually you will only need one), the prefix
number is important because it indicates the execution order. For “sqlite3”
databases, tables are created and entries are added by default (in case they're
necessary) but for mysql databases it is also necessary to create the database
(CREATE DATABASE dbname;) followed by a USE dbname; so that, from there, one
can continue creating tables and the rest.

In the folder “update” there will be a folder for each database with the same name
as the database. Inside each of these folders will be another folder named
“version_sql” that will contain the update sql scripts. The name of these scripts is
very important, they must have the following structure:

#number_#lastVersion_#newVersion.sql
Where:

#number is the order of execution for the script
#lastVersion is the last existing version.
#newVersion is the new version to be launched
This script will only be executed in versions lower than #newVersion.

Example:
What will be the name for update sql script for:

1. An update script that must be the first to be executed and in its moment the last

launched version was 2.2.0-2, only versions lower than 2.2.0-3 must be
executed.

2. Another update script that is the second to be executed and in its moment the
last launched version was 2.2.0-6, only versions lower than 2.2.0-7 must be
executed.

For the first script it would be: 1_2.2.0-2_2.2.0-3.sql
For the second script it would be: 2_2.2.0-6_2.2.0-7.sql

Note that it will always be #lastVersion < #newVersion, also, the execution order for
the scripts goes hand in hand with the versions, that is the higher the order-number
the higher the versions.

	
	

	

In an installation, apart from executing the scripts from the “install” folder, all the
scripts in the “update” folder are executed.

The “delete” folder also contains folders with the same name as the database, which
will contain sql scripts for the uninstallation of the database with the names
“1_dbname.sql”, “2_dbname.sql”, “3_dbname.sql”, etc.

The script in charge of reading and executing these files is “elastix-dbprocess” that
must be invoked in the spec file.

4.2 Spec file

Once the source is built, it is a question of creating the spec file, to finish with the
RPM building or packaging process.

Below we show a small example from a spec file without going into more details,
since it is assumed that the developer has clear knowledge in regards to the building
of RPM packages.

%define modname example

Summary: Elastix Module Example
Name: elastix-%{modname}
Version: 2.2.0
Release: 1
License: GPL
Group: Applications/System
Source0: %{modname}_%{version}-%{release}.tgz
BuildRoot: %{_tmppath}/%{name}-%{version}-root
BuildArch: noarch
Prereq: elastix-framework >= 2.2.0-25

%description
Elastix Module Example

%prep
%setup -n %{modname}

It is recommended no to delete the databases when uninstalling the package.

	
	

	

%install
rm -rf $RPM_BUILD_ROOT

Files provided by all Elastix modules
mkdir -p $RPM_BUILD_ROOT/var/www/html/
mv modules/ $RPM_BUILD_ROOT/var/www/html/

The following folder should contain all the data that is required by the
installer,
that cannot be handled by RPM.
mkdir -p $RPM_BUILD_ROOT/usr/share/elastix/module_installer/%{name}-
%{version}-%{release}/
mv setup/ $RPM_BUILD_ROOT/usr/share/elastix/module_installer/%{name}-
%{version}-%{release}/
mv menu.xml $RPM_BUILD_ROOT/usr/share/elastix/module_installer/%{name}-
%{version}-%{release}/

%pre
mkdir -p /usr/share/elastix/module_installer/%{name}-%{version}-%{release}/
touch /usr/share/elastix/module_installer/%{name}-%{version}-
%{release}/preversion_%{modname}.info
if [$1 -eq 2]; then
 rpm -q --queryformat='%{VERSION}-%{RELEASE}' %{name} >
/usr/share/elastix/module_installer/%{name}-%{version}-
%{release}/preversion_%{modname}.info
fi

%post
pathModule="/usr/share/elastix/module_installer/%{name}-%{version}-
%{release}"

Run installer script to fix up ACLs and add module to Elastix menus.
elastix-menumerge $pathModule/menu.xml

pathSQLiteDB="/var/www/db"
mkdir -p $pathSQLiteDB

preversion=`cat $pathModule/preversion_%{modname}.info`

if [$1 -eq 1]; then #install
 # The installer database
 elastix-dbprocess "install" "$pathModule/setup/db"
elif [$1 -eq 2]; then #update
 elastix-dbprocess "update" "$pathModule/setup/db" "$preversion"
fi

%clean

	
	

	

rm -rf $RPM_BUILD_ROOT

%preun
if [$1 -eq 0] ; then # Validation for desinstall this rpm
 echo "Delete example menus"
 elastix-menuremove "%{modname}"

 # Here you should call to elastix-dbprocess for deleting, the same way
that it was for install, just that instead of word “install” goes word
“delete”. But this is not often used due to the databases usually are not
deleted
fi

%files
%defattr(-, asterisk, asterisk)
%{_localstatedir}/www/html/*
/usr/share/elastix/module_installer/*

%changelog
* Mon Jan 30 2012 Alberto Santos <asantos@palosanto.com> 2.2.0-1

− Initial version.

4.3 Finalization of the certification process.

Once the RPM is created, one proceeds with signing the Elastix Software
Certification agreement and sending the rpm package to PaloSanto Solutions to the
email address addons@palosanto.com with a copy to asantos@palosanto.com,
along with a users manual in order to continue with its certification revisions. Once
this is approved, it will go on to become a part of the Elastix repositories and will be
turned into an Elastix Addon.

If you have any doubts about the certification process or any other aspect of the
Elastix Framework, you can send an email to any of the addresses mentioned
previously or visit our web page at http://addons.elastix.org	

	Introduction
	1. Creation of a new Elastix module
	1.1 Installation of the Developer addon
	1.2 Using the Elastix Developer
	1.3 Brief description of every folder created inside the module
	1.4 Use of elastix-helper

	2. Using the Elastix Framework
	2.1 Library misc.lib.php
	2.2 paloSantoDB.class.php Class
	2.3 Class paloSantoACL.class.php
	2.4 Class paloSantoConfig.class.php
	2.5 Class paloSantoForm.class.php
	2.6 Class paloSantoGrid.class.php
	2.7 Class paloSantoJSON.class.php

	3. AJAX in Elastix
	4. Convert a module into an addon
	4.1 Source skeleton for packaging
	4.2 Spec file
	4.3 Finalization of the certification process.

