Hands on with KIWI

Build Images/Appliances/Integrated Systems.....

Robert Schweikert

Public Cloud Architect rjschwei@suse.com

We adapt. You succeed

Agenda

- Introduction
 - About me
 - About KIWI
- Prerequisites
 - Install your image
 - KIWI basic presentation 45 50 minutes
- Hands on work
 - Build an image with KIWI
- Related topics
 - SUSE Studio
 - OBS
 - Integrated Systems

Introduction

Introduction – About Me

- Work at SUSE ISV Engineering
 - Public Cloud Architect
 - IBM SWG liaison
 - Integrated Systems
- Contribute to KIWI
 - Code, tests, documentation, architecture
- \cdot Contribute to openSUSE
 - Maintain packages
 - Board member
- Passionate about
 - Motorcycling
 - Soccer

Introduction – About KIWI

- It's a Fruit
- It's a Bird
- Someone from New Zealand
- It's a Linux image build system
 - KIWI is an open source project hosted on github https://github.com/openSUSE/kiwi
 - Licensed under GPL v2
 - Mostly written in Perl
 - Sponsored by SUSE
 - Backend of SUSE Studio (http://www.susestudio.com)

Prerequisites

Prereq – Install Your Image

- \cdot Everyone should have a USB stick
 - Power down the machine
 - Plug in the USB stick
 - Power back on and boot from USB
 - Watch the magic happen
- \cdot This will run while I talk

Prereq – Install Your Image

- What is being installed?
 - SUSE Linux Enterprise Server 11 SP3 (base OS)
 - KIWI build environment
 - Contains the SP3 iso which you will use as repository
- \cdot The image being installed
 - Image setup for fully automatic install
 - installboot="install", <oem-unattended>true</>, <oem-shutdown>true</></></></>
 - OEM image configured for install from USB

- installstick="true"

Interlude – At Home

- \cdot 2 versions you might consider
 - Version released with your distribution
 - Weekly releases
- Distribution version
 - SLE you will find KIWI in the SDK
 - openSUSE KIWI is part of the standard distribution
- \cdot Weekly release
 - openSUSE Build Service (OBS)

- Virtualization:Appliances

In YaST or via zypper search for kiwi, install packages

Prereq – The Very Basics

- \cdot kiwi is a command line tool
 - SUSE Studio (Online or Onsite) is web app provides GUI
- Most kiwi commands require root privileges
 - Need access to package management
 - Need access to user management
 - Need to create system configuration
- · Be cautious with kiwi commands you are root
 - Dedicated build system or VM

Prereq – Docs and Other Help

- · KIWI User's Manual a.k.a Cookbook
 - http://doc.opensuse.org/projects/kiwi/doc/
 - /usr/share/doc/packages/kiwi/kiwi.pdf (kiwi-doc package)
- KIWI Examples
 - http://en.opensuse.org/Portal:KIWI
- Configuration file schema
 - http://doc.opensuse.org/projects/kiwi/schema-doc/
- Mailing list
 - http://groups.google.com/group/kiwi-images
- IRC (irc.freenode.net)
 - #opensuse-kiwi

Prereq – High Level Overview

- \cdot Two step process
 - Prepare step
 - Output is the unpacked image tree (directory)
 - Create step
 - Output is the desired image

Prereq – Configuration Tree

- Configuration is a directory structure (tree)
 - config.xml \rightarrow required
 - config.sh \rightarrow optional
 - images.sh \rightarrow optional
 - archives \rightarrow optional
 - root \rightarrow optional

Prereq - Configuration Details

- config.xml required
 - Configuration file for image attributes, type, users, packages
- config.sh optional
 - Shell script executed at root level of unpacked tree at the end of prepare. Customize set up, fiddle with files
- images.sh optional
 - Shell script executed at root level of unpacked tree at the beginning of the create step. Remove drivers, modify based on image type

Prereq - Configuration Details

- archives optional
 - One or more archives in known format, tar, tar.gz, tar.bz2 etc.
 - Name specified in config.xml with <archive>
 - Extracted at root level of unpacked image tree prior to execution of config.sh
- root optional directory
 - Root file system representation. This directory is referred to as overlay tree, all files and directories copied to unpacked image tree in the location found in this directory.

Prereq - config.xml

- \cdot Contains the image description
 - XML validated against schema
 - Checked for consistency of data
 - When we update the schema we provide XSLT based upgrade functionality
 - Upgrade is automatic

Prereq - config.xml – The Guts

<?xml version="1.0" encoding="utf-8"?> <image schemaversion="" name=""> <description type="system"> <author></author> <contact></contact> <specification></specification> </description> <preferences> <type image="" primary="true" filesystem="" boot="" format=""/> <version>1.0.0</version> <packagemanager>zypper</packagemanager> <rpm-check-signatures>false</rpm-check-signatures> <rpm-force>true</rpm-force> <locale>en US</locale> <keytable>us.map.gz</keytable> </preferences>

Prereq - config.xml – The Guts

<users group="root"> <user pwd="" home="/root" name="root"/> </users> <repository type="yast2"> <source path=""/> </repository> <packages type="image"> <package name=""/> </packages> <packages type="bootstrap"> <package name="filesystem"/> <package name="glibc-locale"/> </packages> </image>

Prereq - XML Schema

- Implemented in RELAX NG (relaxing) compact notation
 - http://www.relaxng.org
 - http://www.relaxng.org/tutorial-20011203.html
 - http://en.wikipedia.org/wiki/RELAX_NG
- Schema located in
 - /usr/share/kiwi/modules/KIWISchema.rnc
 - Installed as part of the kiwi package
- Parser messages are not always the most useful
 - Jing is helpful in getting better error messages

- Specified by value of "image" attribute of <type> element in config.xml
- Amazon EC2 (ec2)
 - Support both S3 and EBS backed images
 - Need to also specify settings with <ec2config> element
 - Requires install of Amazon tools
 - For S3 result is an AMI that can be uploaded
 - For EBS result is a disk image that can be dumped onto a volume in EC2 via dd_rescue

- Linux Container (Ixc)
 - Image is a fully functional container with configuration file
 - Unpack the resulting tarball at the root level of the host machine
 - Start the container with Ixc start
 - The tarball (result of image build)
 - contains the container
 - Placed in /var/lib/lxc
 - Contains the container config
 - Placed in /etc/lxc

- Self installing pre-load (oem)
 - Image within an image
 - Inner image is the one configured
 - Outer image is a "live system" that automatically dumps image to target storage
 - Use <oemconfig> child to configure various aspects
 - Partitioning via LVM use <systemdisk> element
 - Create install media for USB stick or optical (CD/DVD)

- Network install (pxe)
 - Boot image and system image are separated
 - Use requires pxe infrastructure
 - DHCP server
 - atftp server
 - Client configuration via config.

- · Live image (ISO or USB)
 - Iso is separate type specified in config.xml
 - Result is a .iso file than can be burned to optical (CD/DVD)
 - USB
 - Special build, i.e. config.xml specified use "kiwi –bootstick" to deploy
 - Use regular disk image and dump to stick with "dd" command
 - Do not forget "bs=32k" on dd command or the stick will not boot

- Virtual images (vmx)
 - ec2 \rightarrow Amazon AMI
 - ovf \rightarrow Open Virtualization Format
 - ova \rightarrow Modified ovf
 - qcow2 \rightarrow Native qemu format
 - vmdk \rightarrow Native VMWare format also generate .vmx file
 - vhd \rightarrow Hyper-V format
 - vhd-fixed \rightarrow Specialized Hyper-V format
 - raw \rightarrow raw disk image
 - Kiwi always produces a raw disk image
 - No configuration needed

- · Xen (xen)
 - Build guest or host
 - Host
 - Set "bootprofile" attribute to "xen"
 - Set "bootkernel" attribute to "xenk"
 - Set "domain" attribute <xenconfig> to "dom0"
 - Need to install the kernel-xen and other xen packages
 - Generates .xenconfig file

Fingers On The Keyboard

Lab Prereq

- \cdot Login to your machine as root
- Password kiwiLab
- \cdot Use the repositories from the local SMT server
- \cdot Work in the /work directory

Lab Info

- Available editors
 - vi
 - emacs
 - gedit
 - gvim
- You may keep the USB stick you used to install the lab machine

Lab 1

- Lab_1 is incomplete config tree
 - Setup build as virtual machine in qcow2 format
 - Add SLES 11 SP3 repository from SMT server
 - Add a user tux \rightarrow password SUSECon \rightarrow group users
 - Find and fix the syntax error
 - Build the image
 - Test with
 - qemu-kvm PATH_TO_IMAGE_FILE

Lab 2

- Lab_2 is incomplete config tree
 - Add OEM image type build as installiso
 - Install the LAMP pattern for the OEM image only
 - The pattern does not specify a DB, thus you need to include one explicitly
 - Setup automatic install
 - All web services should start automatically
 - Hint: fiddle with config.sh
 - Remove the kernel infiniband drivers
 - Hint: Use images.sh
 - Setup eth0 to use a static address from given range
 - Hint: Use root overlay tree
 - Build the image

Lab 2

- Test your image
 - Create a virtual disk
 - qemu-img create webserv.qcow2 -f qcow2 20G
 - Install your webserver image
 - qemu-kvm webserv.qcow2 -net nic,vlan=1,macaddr=00:16:3e:7e:18:XX,model=rtl8139 -net tap,vlan=1,script=/usr/share/qemu-kvm/qemu-ifup -cdrom PATH_TO_YOUR_IMAGE -boot d
 - Log in and verify the services are running

Related Topics

Related Topics – SUSE Studio

SUSE Studio

- Hosted at http://www.susestudio.com
- Also available as product to run behind your firewall
- Web app to point an click your way to an image configuration
- Uses KIWI in the back end to build the image of choice
- Does not support all the features KIWI has

Related Topics - OBS

- · OBS Open Build Service
 - One instance at build.opensuse.org
 - Find needed packages that may not be in SLE repositories
 - There is an OBS presentation covering continuous integration with OBS
 - Build you own packages if you have open source
 - Run your own OBS instance behind your firewall if you have proprietary code
- · OBS can build kiwi images

Related Topics – Integrated Systems

- Integrated Systems
 - Scalable and highly customized OEM solutions
 - Image that incorporates OS and your application
 - Deliver to customer in various form factors
 - Plug and play of your application
 - Reduces setup time at end customer
 - You can pre-tune everything to get optimum performance
 - Partners and Customers include:

Summary

Summary

- \cdot Kiwi is a very flexible image build tool
- Command line driven
 - Easy to integrate into existing build processes
- Support many image formats
 - Can build multiple image formats from one configuration
- Open source licensed under GPL v2
- Mailing list: http://groups.google.com/group/kiwi-images
- IRC: #opensuse-kiwi on irc.freenode.net

More Questions....

- Darn this was great but we're out of time and I have so many more questions.....
 - I am happy to answer any questions, just find me at the technology show case or hanging out somewhere in the venue.
 - A longer lab is running during the openSUSE Summit over the weekend

Corporate Headquarters

Maxfeldstrasse 5 90409 Nuremberg Germany +49 911 740 53 0 (Worldwide) www.suse.com

Join us on: www.opensuse.org

Unpublished Work of SUSE. All Rights Reserved.

This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer

This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.

