

Version: 8.08

# **Table of Contents**

| 1.0        | - Introduction                                |     |
|------------|-----------------------------------------------|-----|
| 1.1        | The Product                                   | 3   |
| 1.2        | Safety Precautions                            | - 5 |
| 1.3        | Vehicle Service Information                   | - 8 |
| 1.4        | Introduction to On-Board Diagnostics (OBD) II | -10 |
| 1.5        | Diagnostic Link Connector (DLC)               | -11 |
| 2.0        | -The Scan Tool                                |     |
| 2.1        | Main Unit                                     | -12 |
| 2.2        | Keypad Functions                              | -13 |
| 2.3        | Getting Started                               | -13 |
| 2.4        | Brightness Control                            | -14 |
|            |                                               | ••• |
| 3.0        | -Vehicle Diagnosis                            |     |
| 3.1        | START SCANNING                                | -15 |
| 3.2        | READ DTC                                      | -18 |
| 3.3        | ERASE DTC                                     | -21 |
| 3.4        | LIVE DATA                                     | -22 |
| 3.4        | .1 OBD-II Generic Operational Data Items      | -24 |
| 3.5        | FREEZE FRAME DATA                             | -26 |
| 3.6        | MIL STATUS                                    | -27 |
| 3.7        | I/M [M&R Status]                              | -29 |
| 3.8        | O2 SENSOR TEST                                | -31 |
| 3.9        | VIN (Vehicle Information)                     | -34 |
| 4.0        |                                               | _   |
| 4.0<br>4 1 | Appendix A DID Definitions                    | -25 |
| 4.1        | Appendix R – FID Definitions                  | -35 |
| 4.2        | Appendix C Supported Vabiala Madala List      | -37 |
| 4.5        | Appendix D _ What is EORD EORD2 and ORD II    | -48 |
| 4.5        | Appendix D – what is EOBD, EOBD2 and OBD-II   | -30 |
| 5.0        | - Notice                                      |     |
| 5.1        | Disclaimer                                    | 62  |
| 6.0        | - Warranty Information                        |     |
| 6.1        | Limited Warranty                              | 62  |
| 6.2        | Limitations of Warranty                       | ·63 |

CAN OBDII SCANNER

### 1.0 - Introduction

### 1.1-The Product:

### CAN OBDII SCANNER

This Scan tool is designed for all OBDII / EOBD compliant cars. With over 12,000 DTCs (fault codes) found in its data base, it covers all generic OBDII / EOBD codes such as Powertrain (P0,P2 and P34xx), Body (B0), Chassis (C0) and Network (U0) as well as some Manufacturers specific codes (P1,P30xx and U1).

The car owner as well as technicians can use this tool to diagnose the engine problem when the 'Check Engine Light' illuminates on the dashboard meter. It retrieves the Error Codes (DTC) and Freeze Frame Data from the vehicle computer (PCM) and displays them on the LCD screen with DTC definitions.

The displayed 'LIVE DATA' readings are very useful for technicians as it saves time when diagnosing the problem. Besides Vehicle Information (VIN), IM Readiness Monitor status, MIL status, it also tests Oxygen Sensors.

Once you have the diagnostic information from the PCM, this is the first step in finding and fixing the problem.

Please take note of these important points:

- Diagnostic Trouble Code (DTC) warns us of a problem or symptom has occurred with a particular engine system, not a specific part.
- The vehicle computer can only report Diagnostic Trouble Code (DTC) based on what its sensors had relayed to it.
- There are some instances that sensors appeared to be bad when in actual fact, they are not.

The main causes were:

- Poor connections at the connector, broken wire or short circuit may prevent the sensor signal from reaching the vehicle computer.
- Failure of one system may affect the sensor in another system to give false results.
- It is recommended that use of the vehicle service manual to assist in the diagnosing process is important.

The next step in the diagnostic process is to test the systems and parts which were suspected to be defective.

CAN OBDII SCANNER

# Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

Once the faults had been identified and repaired, you can use the tool to CLEAR the fault codes (DTCs) from the PCM memory. This will turn off the Malfunction Indicator Lamp (MIL) or Check Engine Light.

### Product Features:

|                                                   | CAN OBDII SCANNER |  |  |
|---------------------------------------------------|-------------------|--|--|
| Displays the DTC definitions on screen            | Yes               |  |  |
| Supports CAN bus, J-1850 VPW, J-1850 PWM,         | Yes               |  |  |
| ISO-9141, KWP 2000 protocols                      |                   |  |  |
| Reads and Clears all Generic OBDII / EOBD and     | Yes               |  |  |
| some Manufacturers specific DTCs                  |                   |  |  |
| Resets 'Check Engine' light                       | Yes               |  |  |
| Views 'Freeze Frame' data                         | Yes               |  |  |
| Determines the Malfunction Indicator Lamp (MIL)   | Yes               |  |  |
| status                                            |                   |  |  |
| I/M Monitor and Readiness Status                  | Yes               |  |  |
| Retrieves the Vehicle Identification Number (VIN) | Yes               |  |  |
| Displays 'Live ' data streams                     | Yes               |  |  |
| Oxygen (O2) Sensor Test                           | Yes               |  |  |

# **Specifications:**

| LCD Display:           | Blue back light, 128 x 64 pixels (FSTN) with contrast adjustment.                                               |
|------------------------|-----------------------------------------------------------------------------------------------------------------|
| Operating temperature: | -20℃ ~ 50℃ (-4°F ~ 122°F)                                                                                       |
| Input Voltage:         | DC 9.0 ~ 15.0 V (through OBDII connector)                                                                       |
| Supported Protocols:   | (SAE) J-1850 PWM<br>(SAE) J-1850 VPW<br>ISO 9141-2<br>KWP 2000 (ISO-14230)<br>CAN bus (ISO-15765-4)<br>EOBD     |
| Vehicle coverage:      | All American vehicles from year 1996 onward to the current models. All makes that are OBDII and EOBD compliant. |

4

CAN OBDII SCANNER

### **1.2 - Safety Precautions**



For safety reasons, read this manual thoroughly before operating the Tool.

Always refer to and follow the safety instructions and testing procedures provided by the car or equipment manufacturer. The safety messages presented below and throughout this user's manual are reminders to the operator to exercise extreme care when using this test instrument.

#### **Read All Instructions**

Read, understand and follow all safety messages and instructions in this manual and on the test equipment. Safety messages in this section of the manual contain a signal word with a three-part message and, in some instances, an icon.

#### Safety Messages

Safety messages are provided to help prevent personal injury and equipment damage. All safety messages are introduced by a signal word. The signal word indicates the level of the hazard in a situation.

The types of safety messages are.

|           | Indicates a possible hazardous situation which, if not avoided, will result in death or serious injury to operator or bystanders.  |
|-----------|------------------------------------------------------------------------------------------------------------------------------------|
|           | Indicates a possible hazardous situation which, if not avoided, could result in death or serious injury to operator or bystanders. |
| ACAUTION  | Indicates a possible hazardous situation which, if not avoided, may result in moderate or minor injury to operator or bystanders.  |
| IMPORTANT | Indicates a condition which, if not avoided, may result in damage to test equipment or vehicle                                     |



CAN OBDII SCANNER

# **Safety Precautions**





#### A DANGER

When the engine is running, it produces carbon monoxide, a toxic and poisonous gas. Always operate the vehicle in a well ventilated area. Do not breathe exhaust gases – they are hazardous that can lead to death.



#### **A**CAUTION

To protect your eyes from propellant object such as caustic liquids, always wear safety eye protection.



#### A DANGER

Fuel and battery vapors are highly flammable. DO NOT SMOKE NEAR THE VEHICLE DURING TESTING.



#### **A**CAUTION

When engine is running, many parts (such as pulleys, coolant fan, belts, etc) turn at high speed. To avoid serious injury, always be alert and keep a safe distance from these parts.



#### AWARNING

Before starting the engine for testing or trouble shooting, always make sure the parking brakes is firmly engaged. Put the transmission in Park (automatic transmission) and Neutral (manual transmission).



#### AWARNING

Always block the drive wheels. Never leave vehicle unattended while testing.



#### 

Never lay tools on vehicle battery. You may short the terminals together causing harm to yourself, the tools or the battery.



CAN OBDII SCANNER

# Safety Precautions





#### AWARNING

Connecting or disconnecting the test equipment when the ignition is ON can cause damage to the vehicle electrical components. Always turn ignition OFF before connecting or disconnect the tool from the Diagnostic Link Connector.



#### 

Engine parts become very hot when engine is running. To prevent severe burns, avoid contact with hot engine parts.



#### AWARNING

Do not wear loose clothing or jewelry while working on engine. Loose clothing can get caught in fan, pulleys, belts, etc. Jewelry can conduct current and can cause severe burns if comes in contact between power source and ground.



#### ACAUTION

When the engine is running, be cautious when working around the ignition coil, distributor cap, ignition wires and spark plugs. They are HIGH VOLTAGE components that can cause electrical Shock.



#### IMPORTANT

Always keep a fire extinguisher readily available and easily accessible in the workshop.



Some vehicles are equipped with SRS (Airbags).Caution must be taken when working around the air bag components or wiring. Always refer to the vehicle service manuals on the CAUTION remarks. If the cautions are not followed, the air bag may open up unexpectedly resulting in personal injury.

Note that the air bag can still open up several minutes after the ignition key is off or even the vehicle battery is disconnected because of a special energy reserve module.

Always follow the vehicle manufacturer's warnings, cautions and service procedures.

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

# 1.3 - Vehicle Service Information

The following is a list of web sites and phone numbers where electronic engine control (EEC) diagnostic information is available.

✓ Some manuals may be available at your local dealer, auto parts stores or local public libraries.

| Domestic Vehicles                                                                                      | Web Site                                                                                                                                                                                       | Phone Number                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| General Motors                                                                                         |                                                                                                                                                                                                |                                                                                                                                                                                 |
| Chevrolet<br>Pontiac<br>Oldsmobile<br>Buick<br>Cadillac<br>Saturn                                      | www.chevrolet.com<br>www.pontiac.com<br>www.oldsmobile.com<br>www.buick.com<br>www.cadillac.com<br>www.saturn.com                                                                              | 1-800-551-4123<br>1-800-551-4123<br>1-800-551-4123<br>1-800-551-4123<br>1-800-333-4CAD<br>1-800-553-6000                                                                        |
| Ford                                                                                                   |                                                                                                                                                                                                | 2                                                                                                                                                                               |
| Ford<br>Lincoln<br>Mercury                                                                             | www.ford.com<br>www.lincoln.com<br>www.mercury.com                                                                                                                                             | 1-800-392-3673<br>1-800-392-3673<br>1-800-392-3673                                                                                                                              |
| Chrysler                                                                                               |                                                                                                                                                                                                |                                                                                                                                                                                 |
| Chrysler<br>Dodge<br>Plymouth<br>Eagle                                                                 | www.chrysler.com<br>www.dodge.com<br>Not Available<br>Not Available                                                                                                                            | 1-800-348-4696<br>1-800-348-4696<br>1-800-348-4696<br>1-800-348-4696                                                                                                            |
| European Vehicles                                                                                      |                                                                                                                                                                                                |                                                                                                                                                                                 |
| Audi<br>Volkswagen<br>BMW<br>MINI<br>Jaguar<br>Volvo<br>Mercedes-Benz<br>Land Rover<br>Porsche<br>Saab | www.audi.com<br>www.vw.com<br>www.bmw.com<br>www.mini.com<br>www.jaguar.com<br>www.volvo.com<br>www.volvo.com<br>www.mercedes-benz.com<br>www.landrover.com<br>www.porsche.com<br>www.saab.com | 1-800-544-8021<br>1-800-544-8021<br>1-201-307-4000<br>1-201-307-4000<br>1-800-4-JAGUAR<br>1-800-458-1552<br>1-800-367-6372<br>1-800-637-6837<br>1-800-PORSCHE<br>1-800-955-9007 |

CAN OBDII SCANNER

#### **Asian Vehicles**

| Acura                 | www.acura.com             | 1-800-999-1009  |
|-----------------------|---------------------------|-----------------|
| Honda                 | www.honda.com             | 1-800-999-1009  |
| Lexus                 | www.lexus.com             | 1-800-255-3987  |
| Scion                 | www.scion.com             | 1.866.70.SCION  |
| Toyota                | www.toyota.com            | 1-800-GO-TOYOTA |
| Hyundai               | www.hyundai.com           | 1-800-633-5151  |
| Infiniti              | www.infiniti.com          | 1-800-662-6200  |
| Nissan                | www.nissanusa.com         | 1-800-nissan1   |
| Kia                   | www.kia.com               | 1-800-333-4542  |
| Mazda                 | www.mazda.com             | 1-800-222-5500  |
| Daewoo                | www.daewoo.com            | 1-822-759-2114  |
| Subaru                | www.subaru.com            | 1-800-SUBARU3   |
| lsuzu                 | www.isuzu.com             | 1-800-255-6727  |
| Geo                   | Not Available             | Not Available   |
| Mitsubishi            | www.mitsubishi.com        | 1-888-MITSU2004 |
| Suzuki                | www.suzukiauto.com        | 1-800-934-0934  |
| Other Manuals         |                           | CO              |
| Chilton Book Company  | www.chiltonsonline.com    | 1-800-347-7707  |
| Havnes Publications   | www.havnes.com            | 1-800-242-4637  |
| Bentley Publishers    | www.bentlevpublishers.com | 1-800-423-4595  |
| · ···, · ········     |                           | 5               |
| Repair Information Pr | ograms                    |                 |
|                       |                           |                 |

Mitchell ALLDATA www.mitchell1.com www.alldata.com

1-888-724-6742 1-800-697-2533

### Suitable Manual Titles

Diagnostic Service Manuals Power Train Codes and Oxygen Sensors Automotive Emission Control Manual Fuel Injection Automotive Electrical Manual Automotive Electrics and Electronics Automotive Sensors Electronic Transmission Control Emission Control Technology Engine Management or other similar titles...



CAN OBDII SCANNER

# 1.4 - Introduction to On-Board Diagnostics (OBD) II

On-board diagnostics version II (OBD II) is a system that the Society of Automotive Engineers (SAE) developed to standardize automotive electronic diagnosis.

Beginning in 1996, most new vehicles sold in the United States were fully OBD II compliant and in year 2000, Europe started its own EOBD system.

- Technicians can now use the same tool to test any OBD II / EOBD compliant vehicles without special adapters. SAE established guidelines that provide:
  - A universal connector, called the Diagnostic Link Connector (DLC) with dedicated pin assignments.
  - A standard location for the DLC, visible under the dash on driver's side.
  - A standard list of diagnostic trouble codes (DTCs) used by all manufacturers.
  - A standard list of parameter identification (PID) data used by all manufacturers.
  - Ability for vehicle systems to record operating conditions when a fault occurs.
  - Expanded diagnostic capabilities that records a code whenever a condition occurs that affects vehicle emissions.
  - Ability to clear stored codes from the vehicle's memory with a Scan Tool.

#### **SAE Publications**

SAE has published hundreds of pages of text defining a standard communication protocol that establishes hardware, software, and circuit parameters of OBD II systems.

• SAE publishes recommendations, not laws, but the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) made many of SAE's recommendations legal requirements.



CAN OBDII SCANNER

# 1.5 - Diagnostic Link Connector (DLC)

The Data Link Connector (DLC) is used with scan tool to communicate with the vehicle's control module.



11

CAN OBDII SCANNER

| Location # | Description                                                                                 |  |  |  |
|------------|---------------------------------------------------------------------------------------------|--|--|--|
| 1          | Driver's side, underneath dashboard, in the area under the steering column, +/- 150mm       |  |  |  |
|            | (i.e., +/- 6 inches on either side of the steering column)                                  |  |  |  |
| 2          | Driver's side, underneath dashboard, between the driver-side door and steering column       |  |  |  |
|            | area.                                                                                       |  |  |  |
| 3          | Driver's side, underneath dashboard, between the steering column area and the center        |  |  |  |
| _          | console (also includes connectors on the driver side but connected to the center console)   |  |  |  |
| 4          | Driver's side, dashboard instrument / gauge area, between the steering column and the       |  |  |  |
|            | centre console.                                                                             |  |  |  |
| 5          | Driver's side, dashboard instrument / gauge area, between the driver-side door and          |  |  |  |
| _          | steering column.                                                                            |  |  |  |
| 6          | Center console, vertical surface (i.e., near radio and climate controls), left of vehicle   |  |  |  |
|            | centerline.                                                                                 |  |  |  |
| 6.7        | Center console, vertical surface (i.e., near radio and climate controls), on vehicle        |  |  |  |
|            | centerline.                                                                                 |  |  |  |
| 7          | Center console, vertical surface right of vehicle centerline or on passenger side of center |  |  |  |
| _          | console.                                                                                    |  |  |  |
| 8          | Center console, horizontal surface(i.e., armrest, handbrake area), in front passenger area  |  |  |  |
| 9          | Any location other than locations # 1~8 (i.e., rear passenger area, passenger side glove    |  |  |  |
|            | box, top of dashboard near windshield)                                                      |  |  |  |

#### Note:

- Locations # 1 ~ 3 represent preferable locations.
- Locations # 4 ~ 8 represents allowable locations under SAE J9162.
- Connectors in location #6, #6, 7 and #7 may be covered by ashtrays, covers, cup holders, coin holders, etc.

# 2.0 - The Scan Tool

### 2.1 - Main unit



Figure 1

CAN OBDII SCANNER

# 2.2 - Keypad Functions:



This [OK] key is to confirm the selected function.



Pressing this [ESC] key will exit the current function and back to the previous page.



This button permits two functions namely; to scroll [UP] to the next item and to adjust the screen contrast brighter.



This button permits two functions namely; to scroll [DOWN] to the next item and to adjust the screen contrast darker.

### 2.3 - Getting Started:

Before you use Scan Tool on the vehicle, please ensure that mechanical problems such as low oil level, damaged hoses, wiring or electrical connections are fixed FIRST. They may cause a fault code to set.

The following Areas need to be checked before starting any test:

- The levels of engine oil, power steering fluid, transmission fluid (if auto transmission), engine coolant and other fluids must be at proper level. Top up if necessary.
- Check the condition of air hoses and the air filter must be cleaned. Replace if necessary.
- > Make sure the timing belts are in good conditions and properly tensioned.

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

- Make sure the spark plugs are cleaned and in good condition. Check for loose, damaged, disconnected or missing plug cables.
- Make sure that all mechanical linkages to the engine sensors (throttle, gearshift position, transmission, etc) are secure and properly connected. Refer to Service Manuals for locations.
- Check all electrical wirings and harnesses for proper connections and condition of its insulation.
- Check all rubber hoses (radiator) and steel hoses (vacuum and fuel) for leaks, cracks, blockage or other damages.
- Make sure the engine is mechanically sound. Do a compression check, engine vacuum check, timing check, etc.
- Always refer to the manufacturer's Service Manual if you are not sure of the repair procedures.

# 2.4 – Brightness Control

- Once the Scan Tool is powered up through the DLC connection, the LCD screen lights up. Pressing and hold key will increase the LCD brightness.
- 2. Likewise, pressing and hold key will decrease the brightness.

| OBD2 DTC READER                  |
|----------------------------------|
| OBD2/E0BD/CAN<br>DIAGNOSTIC TOOL |
| BEKOH TECH LTD                   |





CAN OBDII SCANNER

# 3.0 - Vehicle Diagnosis

# <u>3.1 - START SCANNING</u>

When everything had been confirmed and checked as mentioned in **Getting Started**, the testing operation can be carried out.

1. Locate the vehicle Diagnostic Link Connector (DLC) and make sure that the ignition switch is in OFF position. (Figure 3)

2. Connect the scan tool diagnostic connector to the vehicle DLC.

If problem of inserting, rotate it to 180° and try again



 When the connection has been established, the LCD screen wakes up displaying as shown:





15

CAN OBDII SCANNER





Figure 6



16

CAN OBDII SCANNER

 If the Scan tool fails to link up with the vehicle's computer, it will show a message as displayed on the LCD screen: (Figure 10)

| No data link!    |
|------------------|
| Ign. Key ON?     |
| Check for OBDII  |
| compliant label! |
| [ESC] to exit    |

Figure 10

#### Possible causes:

- 1. The Diagnostic connector is not connected properly.
- 2. Ignition Key is not turned ON.
- 3. The vehicle is not OBDII compliant.

#### Note:

To check whether the vehicle being tested is OBDII compliant, always refer to the Vehicle Emission Control Information (VECI) decal located under the hood or by the radiator of most vehicles. See (Figure 11).

| VEHICLE EI                                              | MISSION CONTRO                                                     | OL INFORM                                         | IATION                               |   |           |
|---------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|--------------------------------------|---|-----------|
|                                                         | ENGINE FAMILY EI<br>DISPLACEMENT                                   | FN2.6YBT2BA<br>2.6L                               | OBD II<br>CERTIFIED                  |   |           |
| VEHICLE<br>MANUFACTURER                                 | THIS VEHICLE CONFOR<br>OF CALIFORNIA REGUL<br>1999 MODEL YEAR NEW  | MIS TO U.S. EP/<br>ATIONS APPLIC<br>V TLEV PASSEN | A AND STATE<br>ABLE TO<br>IGER CARS. | ो | OBD II    |
| REFER TO SERVICE<br>TUNE-UP CONDITIO<br>ACCESSORIES OFF | MANUAL FOR ADDITION<br>INS: NORMAL OPERATIN<br>COOLING FAN OFF, TR | NAL INFORMATION<br>IG ENGINE TEM<br>ANSMISSION IN | ON<br>IPERATURE,<br>NEUTRAL          | L | CERTIFIED |
| EXHAUST EMISS<br>CERTIFICATION                          | SIONS STANDARDS                                                    | STANDARD CAT<br>TLEV<br>TLEV INTERMED             |                                      |   |           |
| SPARK PLUG<br>TYPE NGK BPRE-11<br>GAP: 1.1MM            | CATALYST                                                           |                                                   |                                      |   |           |

Figure 11

17

CAN OBDII SCANNER

| 9. | Once the scan tool has established |
|----|------------------------------------|
|    | communication with the engine ECU, |
|    | it will display the protocol type. |
|    | (Figure 12)                        |

| In Progress   |
|---------------|
| Found         |
| [ISO 9141-2]  |
| Press[OK] key |
| to proceed.   |



| <ol> <li>As instructed, press or to continue</li></ol> | Sel.Operation          |
|--------------------------------------------------------|------------------------|
| and it will enter into the main menu                   | READ DTC               |
| (Figure 13).                                           | FREEZE FRAME           |
| Here you can select the operation                      | ERASE DTC<br>LIVE DATA |

🔵 or [ 🦲

you wish by pressing key.

| Fia | ure | 1 | 3 |
|-----|-----|---|---|

# 3.2 – READ DTC

- ✓ Selecting this function allows the Scan Tool to read the DTCs from the vehicle's control modules. DTCs are used to help determine the cause of a problem or problems within a vehicle. These codes cause the control module to illuminate the malfunction indicator lamp (MIL) when emission-related or drivability fault occurs. MIL is also known as service engine soon or check engine lamp (See figure ).
- ✓ **READ DTCs** can be done with the Key On Engine Off (KOEO) or with the Key On Engine Running (KOER).

| On the 'Read DTC' highlighted row                                                  | Sel.Operation           |
|------------------------------------------------------------------------------------|-------------------------|
| (Figure 13), pressing ok key will proceed to the selection choice.<br>(Figure 14). | FAULT CODE PENDING CODE |
|                                                                                    | Figure 14               |

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### **Diagnostic Trouble Codes (DTC) or Fault Codes**

Under OBDII / EOBD systems, all manufacturers must use a universal 5 digits code system.

These universal 5 digits codes are made up of:

- The 1<sup>st</sup> character in the DTC indicates a letter which identifies the "main system" where the fault occurred (Power train, Body, Chassis or Network)
- The **2**<sup>nd</sup> character is a numerical digit which identifies "Generic or Manufacturer Specific"
- The **3**<sup>rd</sup> character is also a numerical digit which identifies the specific systems or sub-systems where the problem is located.
- The 4<sup>th</sup> and 5<sup>th</sup> characters are also numerical digits which identifies the section of the system that is malfunctioning.

#### **DTC Structure:**

Example: **P0321** – Ignition/Distributor Engine Speed Input Circuit Range/Performance



CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

### Types of DTC:

There are two types of DTCs namely: One trip DTC and two trips DTC.

One trip DTC is a condition that requires immediate attention such as a catalyst damaging misfire.

Two trips DTC is one that a condition must be found during 2 consecutive trips such as an EGR fault.

'A Trip' is define as a Key-ON, Key-OFF event in which the powertrain control module (PCM) or ECU detects the following:

- Engine coolant temperature should change more than 20°C after starting the engine.
- Engine coolant temperature should exceed 70°C.
- Engine speed should go over 400 RPM.

An OBD TRIP is a journey during which all OBD tests have been completed or ready.

One trip monitor means that if a fault is detected, the engine computer will illuminate the MIL and a DTC will be placed as a stored **Fault Code**.

Two trips monitor means that if a fault is detected on the first trip, the engine computer will temporarily save this fault in its memory as a **Pending Code** (the MIL will be off). If the fault is detected again on a second consecutive trip, the engine computer will illuminate the MIL and a DTC will be placed as a stored **Fault Code**.

| Depending on the choice of selection,<br>once "Fault Code" or "Pending Code"<br>had been selected, press key<br>to confirm. The display screen will<br>show the DTCs it had retrieved from<br>the ECU memory (Figure 15) | •P0100 P0200<br>P0300                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
|                                                                                                                                                                                                                          | Figure 15                                              |
| Press or key will display code definitions. (Figure 16)                                                                                                                                                                  | Code: P0100<br>Mass or Volume<br>Air Flow Circu-<br>it |
| will continue to scroll endlessly.                                                                                                                                                                                       | Figure 16                                              |

CAN OBDII SCANNER

20

If there is no DTC present in the ECU memory, then the display will show as follows: (Figure 17)

| Diagnosis result |
|------------------|
| No trouble code  |
| present in ECU   |
| memory.          |
| [Esc] to exit    |



# 3.3 - ERASE DTCs

Selecting this function erases the *DTCs* from vehicle's control module(s) memory. Perform this function with KOEO. **Do not start the engine.** 

- ✓ The ERASE DTCs function may also erase Freeze Frame Data.....
- ✓ The ERASE DTCs function resets all the I/M Readiness Monitor Status to a NOT READY condition. To set all of the Monitors to a READY status, an OBDII Drive Cycle must be performed. Please refer to the vehicle service manual for information on how to perform an OBDII Drive Cycle for the vehicle under test.

Note:

If the tested vehicle has DTC present in its memory and need to be sent to the workshop for repair. Do not use this function to erase it. These DTC will help the technicians to troubleshoot the engine problem encountered.

Perform ERASE DTCs function only when the vehicle had been repaired.

To start this function, go back to the previous menu (Figure 13) and select "Erase DTC" as shown (Figure 18) by

pressing the velocity key.



Figure 18



The *LIVE DATA* function allows real time viewing of the vehicles computer module's PID data. As the computer monitors the vehicle, information is simultaneously transmitted to scan tool.

To start this function, go back to the previous Menu (Figure 13) and select 'Live Data' row as shown (Figure 21).

| Sel.Operation |
|---------------|
| READ DTC      |
| FREEZE FRAME  |
| ERASE DTC     |
| LIVE DATA     |
|               |

Figure 21

22

CAN OBDII SCANNER



### 3.4.1 - OBD-II Generic Operational Data Items

| Mass Air Flow (MAF)        | Range: | 0 to 105 gm/sec |
|----------------------------|--------|-----------------|
| High Performance Vehicles: |        | 0 to 255 gm/sec |

Mass air flow sensor input is used by the PCM (vehicle computer) to calculate fuel delivery. As the air flow increases, the fuel delivery must also increase. The unit is displayed in grams per second.

**Calculated Load Value Range: 0% to 100%** An indication of the current airflow divided by peak airflow, where peak airflow is corrected for altitude, if available. This value is not engine specific. It gives the service technician an indication of the percentage of engine capacity being used (with a full load as 100%).

#### **Commanded Secondary Air Status**

Commanded Secondary Air provided to the exhaust system.

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

**Engine Coolant Temperature (ECT)** Range: - 40 °C to 215 °C The temperature of the vehicle coolant is used to determine when to transition into closed loop and to calculate spark advance during cold starts. The PCM converts the voltage from the sensor to a temperature.

Engine RPM - Engine Speed reading displayed in revolutions per minute.

Fuel Pressure (Gauge)Range:0 to 765 kPa GFuel pressure of the fuel delivery system.

Fuel System Status - Information describing the operation of the fuel control.

- **Open Loop** Operating condition during engine warm up/idle in which the fuel mixture is not being corrected to compensate for a rich/lean condition.
- **Closed Loop** Operating condition in which the fuel mixture is being corrected for a rich/lean condition.
- **OL Drive -** Vehicle in Open Loop due to driving conditions (power enrichment, deceleration).
- **OL Fault -** Vehicle in Open Loop due to a detected system fault.
- **CL O2 Fault -** Vehicle in Closed Loop, but a fault with at least one oxygen sensor may be using simple oxygen sensor for fuel control.

Ignition Timing Advance Range: - 64° to 63.5° The relationship between ignition timing and top dead center, displayed in crankshaft degrees.

Intake Air Temperature (IAT) Range: - 40 °C to 215 °C Temperature of the air drawn through a cleaner and distributed to each cylinder for use in combustion.

Intake Manifold Pressure (MAP) Range: 10 to 105 kPa, or 0 to 5 Volts The manifold absolute pressure displayed in kilopascals or volts. A low reading will indicate that the pressure is low (vacuum is high) and a high reading will indicate that the pressure is high (vacuum is low).

#### Long Term Fuel Trim [Bank 1 / Bank 2] (L.T. Fuel Trim - B1/B2)

Long Term adjustments to the Bank 1 fuel calibration schedule which compensate for vehicle differences and gradual changes that occur over time.

Range: -100.00% to 99.92% (-100% indicates a maximum lean condition, 99.92% indicates a maximum rich condition, and 0% indicates no adjustment). 24

CAN OBDII SCANNER

#### **OBD-II** Require

Requirement level for the On Board Diagnostics designed for the vehicle.

- **OBD-II (CARB) -** Vehicle designed with OBD requirements for California Air Resource Board OBDII.
- **OBD (Fed EPA) -** Vehicle designed with OBD requirements for Federal EPA OBD.
- **OBD and OBD-II -** Vehicle designed with OBD requirements for OBD and OBDII.

**OBD-I** - Vehicle designed with OBD requirements for OBD-I.

Not Intended - Vehicle not intended to meet any OBD requirements.

#### Oxygen Sensor

The detection of Oxygen  $(O_2)$  content in the exhaust gases. The sensor readings are used by the PCM to help calculate the air-fuel mixture to maintain proper vehicle performance.

#### Short Term Fuel Trim [Bank 1/2] (S.T. Fuel Trim B1/B2)

MMM.

Dynamic or instantaneous adjustments to the Bank 1 base fuel schedule. **Range: -100.00% to 99.92% (-100%** indicates a maximum lean condition, **99.92%** indicates a maximum rich condition, and **0%** indicates no adjustment).

Vehicle Speed (MPH) - Sensor reading displayed in miles per hour.

25

CAN OBDII SCANNER

# <u>3.5 - FREEZE FRAME</u>

When an emission-related fault has occurs, certain vehicle conditions are recorded by the on-board computer. This information is referred to as Freeze Frame data. It is a snapshot of the operating conditions at the time of an emission-related fault had occurred.

- ✓ **FREEZE FRAME** can be overwritten by faults with a higher priority.
- ✓ If DTCs were erased, it may not be stored in vehicle memory.



CAN OBDII SCANNER

26

# <u> 3.6 - MIL STATUS</u>

When the vehicle on board computer detects a problem in the emission related systems or components, its diagnostic program will assign a fault code (DTC) and store it in its memory. It also records a "Freeze Frame" of the conditions present when the fault was found and set the Malfunction Indicator Lamp (MIL) alight. Some faults require detection for two trips in a row before the MIL is turned on.

Three typical examples of MIL are shown below:



Figure 27

### **Definition of Trip**

'A Trip' is define as a Key-ON, Key-OFF event in which the powertrain control module (PCM) detects the following:

- Engine coolant temperature should exceed  $70^{\circ}C$
- Engine coolant temperature should change more than 20°C after starting the engine.
- Engine speed should go over 400 RPM.

When the powertain control module (PCM) detects a fault during the 1<sup>st</sup> trip, the DTC and the corresponding 'Freeze Frame' data are stored in the PCM's memory.

The MIL will not light up until the fault is again detected during the 2<sup>nd</sup> trip. Certain DTCs are capable of turning the Malfunction Indicator Light (MIL) 'ON' or 'blinking' during the first trip.

27

CAN OBDII SCANNER

| To access to this function, go back to<br>the previous Menu (Figure 13) and<br>select "MIL" (Figure 28) | Sel.Operation<br>02 SENSOR TEST<br>MIL<br>I/M [M&R Status]<br>VIN<br>Figure 28 |
|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| Press key, the screen will display as shown (Figure 29).                                                | MIL STATUS<br>MIL: ON<br>[ESC] to exit<br>Figure 29                            |
| If there is no fault in the system, then<br>the screen will display as shown<br>(Figure 30).            | MIL STATUS<br>MIL: OFF<br>[ESC] to exit<br>Figure 30                           |
| To Exit this function, press Esc key will return to screen. (Figure 13)                                 | back to the main menu                                                          |

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

### 3.7 - I/M [M&R Status]

The **I/M** (Inspection / Maintenance) **[M&R Status]** (Monitors and Readiness Status) function is used to view a *snapshot* of the operations on the emission system on OBD II vehicles.

- ✓ I/M [M&R Status] is a very useful function. To guarantee no faults exist and to make sure all monitors are <u>okay or not present</u> and no DTCs exist.
- ✓ Always refer to the vehicles service manual for the Drive Cycle operation.

✓ During normal driving conditions, the vehicle's computer scans the Emission system. After a specific amount of drive time (each monitor has specific driving conditions and time required), the computer's monitors decide if the vehicles emission system is working correctly or not as well as detecting out of range values. When the monitor's status is:

#### READY OR N.A

The vehicle was driven enough to complete the monitor and it is ready or completed. N.A means Not Available. (See "SUPPORTED" and "NO SUPPORT" for clarification).

#### • NOT READY

The vehicle was not driven enough to complete the monitor or when the scan tool had just performed "ERASE DTC" procedure on the ECU (See Figure 37).

#### SUPPORTED

The vehicle supports this monitor and when it reports "READY OR N.A.", it means that it is ready. (See Figure 32 & 33)

#### NO SUPPORT

The vehicle does not support this monitor and when it reports "READY OR N.A", it means that it is not available (See Figure 35 & 37).

- ✓ Depending on the vehicle, disconnecting or a discharged battery may erase DTCs and clear monitor status.
- ✓ Monitors may be cleared by:
  - Erasing DTCs
  - Vehicle control modules losing power

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

✓ *I/M Readiness* Monitor Status can be done with the KOER or KOEO.



CAN OBDII SCANNER

30

# 3.8- O2 (OXYGEN) SENSOR TEST

Oxygen or O2 sensors are used to provide information to the ECU the amount of unconsumed Oxygen in the exhaust gas exiting from the tailpipe. With this information, the ECU can determine the amount of Fuel / Air injection delivery and try to reach the best Stoichometric ratio of 14.7 parts of fuel to 1 part of air (14.7:1) for best burning effect without polluting the environments. This proportion is known as **Lambda**.

A defective sensor can greatly affect the vehicle's fuel consumption because it allows the vehicle to use more fuel than what it should. Hence faulty sensors need to be diagnosed and replaced promptly.

But determining if the O2 sensor is really defective will need accurate diagnosis. Equipments like this OBD2 code reader can be used for this purpose.

The emission testing done by OBDII is more comprehensive than the tailpipe test because unlike the traditional tailpipe test, which provides the emission results of only a specific moment (only during testing), the OBD2 code reader can monitor the vehicle emission at various moments when the vehicle is in operation.

The first generation of OBD, called as OBDI provided a simplistic test to determine the health of the oxygen sensor. Oxygen sensor testing using OBD1 involved determining if the sensor was stuck lean or rich for 30 seconds or more. The OBDI systems didn't have any way to determine the response time of the oxygen sensors.

Oxygen sensor testing using OBD2 does look at the response time as well. A good upstream oxygen sensor produces an oscillating waveform that toggles between 0.1V to 0.9V. The sensor indicates 0.1V for lean mixture and 0.9V for rich air to fuel mixture. So the new OBD2 equipments can test how fast or slow the oxygen sensor transitions between lean and rich mixture levels and hence determines the response time of the oxygen sensor with known "good" values.

The response time of oxygen sensor may vary from 0.3 sec to 0.125 sec (depending on the oxygen sensor specification). Slower response time could be an indication of deposition of carbon or fuel on the sensor. Faster switching of the oxygen sensor output can cause misfiring. Emission problems related to engine misfire will make the OBDII lamp to flash. A P0300 code will be set in the event of an engine misfire. Further diagnosis is needed to determine why the cylinder is misfiring.

Another diagnosis that can be done using OBD2 system is determining the efficiency of catalytic converter. The output of downstream oxygen sensor, located after the catalyst is compared with the upstream oxygen sensor

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

located before the catalytic converter. In an efficiently working catalytic converter, the upstream oxygen sensor will switch between lean and rich voltages, but the downstream oxygen sensor will have much fewer voltage switching. If the converter efficiency is poor (due to contamination), the downstream O2 sensor output will look like the upstream O2 sensor output; that is the post cat oxygen sensor will switch more frequently between lean and rich voltage levels just like the pre cat oxygen sensor.

To help to understand the terms used during the test, please refer to the pre-catalytic voltage sample waveform below: (Figure 39)





CAN OBDII SCANNER



CAN OBDII SCANNER

Figure 48

Figure 49

Figure 50

Note:

There are car models that do not support this function; therefore the display will show as below (Figure 51).

| 02 Sensor Test |  |
|----------------|--|
| This item is   |  |
| not supported  |  |
| [ESC] to exit  |  |
|                |  |
| Figure 51      |  |

# 3.9 – Vehicle Information (VIN)

This **Vehicle Information (VIN)** function allows the Scan Tool to request the vehicle's VIN number, calibration ID(s) which identifies software version in vehicle control module(s).

- Vehicle Information (VIN) function applies to model year 2000 and newer OBD II compliant vehicles.
- The Scan Tool cannot verify if data is incorrect for the scanned vehicles.

To access to this function, go back to the main Menu (Figure 13), press



key until "VIN" is found. (Figure 52)

| Sel.Operation    |
|------------------|
| O2 SENSOR TEST   |
| MIL              |
| I/M [M&R Status] |
| VIN              |
|                  |

Figure 52

34

CAN OBDII SCANNER





# 4.0 - Appendix

Figure 53

# <u> 4.1 - Appendix A – PID Definitions</u>

#### **Global PID Definitions**

All global parameter identification data (PID) listed was verified on actual vehicles to guarantee accuracy. PID definitions were obtained from reliable sources and are accurate at time of printing. It is possible that some newer vehicles may contain data different from what is listed. Always refer to vehicle service manual for manufacturer specific PIDs.

Remember; always refer the applicable service manual for detailed diagnostic procedures when troubleshooting PID values.

#### **Types of Data Parameters**

| INPUT:               | These data parameters are obtained from sensor circuit outputs. Sensor circuit outputs are inputs to the vehicles PCM. For example, if oxygen sensor circuit was generating a 400mV signal, then the code reader would read $O_2S$ (v).40. |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| OUTPUT:              | These data parameters are outputs or commands that come directly from control module(s). For example, the ignition spark advance is controlled by PCM, on most vehicles, monitoring this PID shows spark output from PCM.                  |
| CALCULATED<br>VALUE: | These data parameters are calculated after analyzing various inputs to the vehicles control module(s). For example, the engine load. The PCM calculates this from sensor inputs and displays in a percentage.                              |
| PCM VALUE:           | Information that is stored in the control module(s) memory and determined to be useful to service technician. An example of this is TROUBLE CODE values (DTC) that caused Freeze Frame to be captured.                                     |
| NOTE:                | Several different causes can have the same parameter indication.<br>For information on diagnostics, please consult applicable Service<br>Manuals. The Scan Tool <b>only</b> displays the PID's the vehicle<br>supports.                    |
|                      |                                                                                                                                                                                                                                            |

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### PID Definitions

Global Data Parameter List: ABS FRP Absolute Fuel Rail Pressure ABS LOAD Absolute Load Value ABSLT TPS Absolute Throttle Position ACC POS x Accelerator Position x BARO PRS Barometric Pressure CALC LOAD Calculated Engine Load CAT TEMP xy Cataltic Converter Temperature Bank x, Sensor y CLR DST Distance Since Codes Cleared CLR TIM Time Since Clear Code CMD EQ RAT Commanded Equivalence Ratio COOLANT Engine Coolant EGR CMD Commanded Exhaust Gas Recirculation EGR ERR Exhaust Gas Recirculation Error ENG RUN Engine Run Time ENGINE Engine Speed EQ RAT Oxygen Sensor Equivalence Ratio EVAP REQ Commanded Evaporative Emission System Purge (0-100%) EVAP VP Evaporative Emission System Vapor Pressure FUEL LVL Fuel Level

FUEL PRES Fuel System Pressure FUEL SYS x Fuel System x Loop Status IAT Intake Air Temperature IGN ADV Ignition Advance LT FTRM x Bank x Long Term Air To Fuel Ratio Correction Factor MAF Mass Air Flow Sensor MAP Manifold Absolute Pressure MIL DIST Distance Since Malfunction Indicator Lamp Came On MIL STATUS Malfunction Indicator Lamp Light Status MIL TIM Distance Travelled Or Time Since Malfunction Indicator Lamp Was Activated **02S** O2 Sensor Output OBD2 STAT On Board Diagnostics 2 System Type OUTSID AIR Outside Air Temperature PTO STATUS Power Take Off Status REL FRP Relative Fuel Rail Pressure or Vacuum REL TPS Relative Or Learned Throttle Position SECOND AIR Secondary Air Pump Status ST FTRM Short Term Fuel Trim

36

CAN OBDII SCANNER

ST FTRM x Short Term Fuel Trim Bank x THR POS x Throttle Position x THROT CMD Throttle Actuator Commanded TRIPS SNC CLR Warmups Since Erase Codes

#### TROUB CODE

Diagnostic Trouble Code That Set Freeze Frame VEH SPEED Vehicle Speed VPWR Vehicle Power

### 4.2 - Appendix B – Glossary

#### A/C:

Air Conditioner

#### A/D:

Analog to Digital

#### A/F:

Air/Fuel ratio. The proportion of air and fuel delivered to the cylinder for combustion. For example, an A/F ratio of 14:1 denotes 14 times as much air as fuel in the mixture. Ideally the A/F ratio is 14.7:1.

#### ABS:

Anti-lock Brake System

#### A/C Clutch Relay:

The PCM uses this relay to energize the A/C clutch, turning the A/C compressor ON or OFF.

#### A/C Pressure Sensor:

Measures air conditioning refrigerant pressure and sends a voltage signal to the PCM.

#### A/C Pressure Switch:

A mechanical switch connected to the A/C refrigerant line. The switch is activated (sending a signal to the PCM) when the A/C refrigerant pressure becomes too low or high.

#### Actuator:

Actuators such as relays, solenoids, and motors allow the PCM to control the operation of vehicle systems.

#### Air Injection Reaction (AIR) System:

An emission control system operated by the PCM. During cold starts, an air pump injects outside air into the exhaust manifold to help burn hot exhaust gases. This reduces pollution and speeds warm-up of oxygen sensors and catalytic converters. After the engine is warm, the air will either be dumped back to the atmosphere (or into the air cleaner assembly) or sent to the catalytic converter.

37

CAN OBDII SCANNER

#### APP:

Acceleration Pedal Position (Sensor)

#### ASR:

Acceleration Slip Regulation

#### AFC:

Air Flow Control

#### ALDL:

Assembly Line Diagnostic Link. Former name for GM's (only) Data Link Connector, the connector socket into which the scan tool plug is inserted; sometimes used to refer to any pre-OBD II computer signals

#### Bank x:

The standard way of referring to the bank of cylinders containing cylinder #x. In-line engines have only one bank of cylinders. Most commonly used to identify the location of oxygen sensors. See **O<sub>2</sub>S**, **Sensor x**, **Sensor x**.

#### BARO:

Barometric Pressure Sensor. See MAP Sensor.

#### BBV:

Brake Boost Vacuum Sensor

#### BCM:

**Body Control Module** 

#### **Boost Control Solenoid:**

A solenoid that is energized by the PCM, in order to control turbo/supercharger boost pressure.

#### Brake Switch Signal:

An input signal to the PCM indicating that the brake pedal is being pressed. This signal is typically used to disengage Cruise Control systems and Torque Converter Clutch (TCC) solenoids. See also **TCC**.

#### CAM:

Camshaft Position Sensor. Sends a frequency signal to the PCM in order to synchronize fuel injector and spark plug firing.

#### Catalytic Converter:

Designed to reduce exhaust emissions.

#### CAN:

Controller Area Network

#### CARB:

California Air Resources Board. Governing body for emissions control in California.

CFI:

Central Fuel Injection (a.k.a. Throttle Body Fuel Injection TBI)

38

CAN OBDII SCANNER

#### CFI:

Continuous Fuel Injection

#### **CKP REF:**

Crankshaft Position Reference.

#### CKP:

Crankshaft Position. See CPS.

#### CKT:

Circuit

#### Closed Loop (CL):

A feedback system that uses the  $O_2$  Sensor(s) to monitor the results of combustion. Based on the signal(s) from the  $O_2$  sensor(s), the PCM modifies the air/fuel mixture to maintain optimum performance with lowest emissions. In closed loop mode, the PCM can fine tune control of a system to achieve an exact result.

#### CMP:

Camshaft Position Sensor

#### CO:

Carbon Monoxide; an odorless gas produced by incomplete combustion.

#### **Code Scanner:**

A device that interfaces with and communicates information via a data link.

#### Continuous Memory Codes: See Pending Codes.

#### CPS:

Crankshaft Position Sensor. Sends a frequency signal to the PCM. It is used to as reference for fuel injector operation and synchronizes spark plug firing on distributorless ignition systems (DIS).

#### CTS:

Coolant Temperature Sensor. A resistance sensor that sends a voltage signal to the PCM indicating the temperature of the coolant. This signal tells the PCM whether the engine is cold or warm.

#### CVRTD:

Continuous Variable Real Time Damping

#### D/R:

Drive/Reverse

#### Data Link Connector (DLC):

Connector providing access and/or control of the vehicle information, operating conditions, and diagnostic information. Vehicles with OBD II use a 16-pin connector located in the passenger compartment.

#### Data Stream:

The actual (live) data communications sent from the vehicle's PCM to the data connector (DLC).

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### DEPS:

Digital Engine Position Sensor.

#### Detonation: See Knock.

#### DI/DIS:

Direct Ignition/Distributorless Ignition System. A system that produces the ignition spark without the use of a distributor.

#### DPFE:

Differential Pressure Feedback – Exhaust Gas Recirculation Sensor

**Driving Cycle** - A specific sequence of start-up, warm-up and driving tasks that tests all OBD II functions

#### DTC:

Diagnostic Trouble Code. An alphanumeric identifier for a fault condition identified by the On Board Diagnostic System.

#### **Duty Cycle:**

A term applied to signals that switch between ON and OFF. Duty cycle is the percentage of time the signal is ON. For example, if the signal is ON only one fourth of the time, then the duty cycle is 25%. The PCM uses duty cycle type signals to maintain precise control of an actuator.

#### EBCM:

Electronic Brake Control Module

#### EBTCM:

Electronic Brake/Traction Control Module

#### ECM

Engine Control Module or Electronic Control Module

#### ECT:

Engine Coolant Temperature sensor. See CTS.

#### EEPROM or E<sup>2</sup>PROM

Electrically Erasable Programmable Read Only Memory

#### EFE:

Early Fuel Evaporation

#### EFI:

Electronic Fuel Injection. Any system where a computer controls fuel delivery to the engine by using fuel injectors.

#### EGR:

Exhaust Gas Recirculation. The PCM uses the EGR system to re-circulate exhaust gases back into the intake manifold to reduce emissions. EGR is used only during warm engine cruise conditions.

40

CAN OBDII SCANNER

#### EMR:

Electronic Module Retard

#### EOP:

Engine Oil Pressure (Switch)

#### EOT

Engine Oil Temperature (Sensor)

#### EPA:

Environmental Protection Agency.

#### ESC:

Electronic Spark Control. An ignition system function that warns the PCM when knock is detected. The PCM then retards spark timing to eliminate the knocking condition.

#### EST:

Electronic Spark Timing. An ignition system that allows the PCM to control spark advance timing. The PCM determines optimum spark timing from sensors information — engine speed, throttle position, coolant temperature, engine load, vehicle speed, Park/Neutral switch position, and knock sensor condition.

#### EVAP:

Evaporative Emissions System.

#### FC:

Fan Control

#### Freeze Frame:

A block of memory containing DTCs of the vehicle operating conditions for a specific time.

#### FTP:

Federal Test Procedure. Strict test of vehicle's emissions.

#### Fuel Trim:

Engine computer function that keeps the air/fuel mixture as close to the ideal 14.7:1 stoichiometric ratio as possible.

#### Ground (GND):

An electrical conductor used as a common return for an electric circuit(s) and with a relative zero potential (voltage).

#### Hall Effect Sensor:

Any of a type of sensor utilizing a permanent magnet and a transistorized Hall Effect switch. Hall Effect type sensors may be used to measure speed and position of the crankshaft or camshaft — for spark timing and fuel injector control.

HC: Hydrocarbons

CAN OBDII SCANNER

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### HEI:

High Energy Ignition

#### HO<sub>2</sub>S:

Heated Oxygen Sensor. See **O<sub>2</sub>S**.

#### HVAC:

Heating, Ventilation & Air Conditioning (System)

#### I/M:

Inspection and Maintenance. An emission control program.

#### IAC:

Idle Air Control. A device mounted on the throttle body which adjusts the amount of air bypassing a closed throttle so that the PCM can control idle speed.

31.0

#### IAT:

Intake Air Temperature (Sensor)

#### ICM:

Ignition Control Module.

#### IMRC:

Intake Manifold Runner Control

#### IPC:

Instrument Panel Cluster

#### ISC:

Idle Speed Control. A small electric motor mounted on the throttle body and controlled by the PCM. The PCM can control idle speed by commanding the ISC to adjust its position.

#### ISO:

International Organization of Standardization also known as International Standards Organization.

#### ISO 9141:

International Standards Organization OBDII communication protocol, used by Chrysler and most foreign cars. One of three hardware layers defined by OBD II

#### J1850 PWM:

(Pulse Width Modulation) SAE-established OBD II communication protocol used by Ford domestic cars and light trucks. One of three hardware layers defined by OBD II

#### J1850 VPW:

(Variable Pulse Width Modulation) SAE-established OBD II communication protocol used by GM cars and light trucks. One of three hardware layers defined by OBD II

#### 42

#### J1962 – SAE:

Established standard for the connector plug layout used for all OBD II scan tools

CAN OBDII SCANNER

#### J1978 – SAE:

Established standard for OBD II scan tools

#### J1979 – SAE:

Established standard for diagnostic test modes

#### J2012 – SAE:

Established standard accepted by EPA as the standard test report language for emission tests

#### KAM:

Keep Alive Memory

#### Knock Sensor (KS):

Used to detect engine detonation or knock. The sensor contains a piezoelectric element and is threaded into the engine block. Special construction makes the element sensitive only to engine vibrations associated with detonation.

#### Knock:

Uncontrolled ignition of the air/fuel mixture in the cylinder. Also referred to as detonation or ping. Knock indicates extreme cylinder pressures or "hotspots" which are causing the air/fuel mixture to detonate prematurely.

#### KOEO:

Key On Engine Off. Turn the ignition key to on, but do not start engine.

#### KOER:

Key On Engine Running. Start engine and keep it running.

#### LCD:

Liquid Crystal Display

#### LTFT:

Long Term Fuel Trim

#### M/T:

Manual transmission or manual transaxle.

#### MAF:

Mass Air Flow (sensor). Measures the amount and density of air entering the engine and sends a frequency or voltage signal to the PCM. The PCM uses this signal in its fuel delivery calculations.

#### MAP:

Manifold Absolute Pressure (sensor). Measures intake manifold vacuum or pressure and sends a frequency or voltage signal (depending on sensor type) to the PCM. This gives the PCM information on engine load for control of fuel delivery, spark advance, and EGR flow.

#### MAT:

Manifold Air Temperature (sensor). A resistance sensor in the intake manifold that sends a voltage signal to the PCM indicating the temperature of the incoming air. The PCM uses this signal for fuel delivery calculations.

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### MIL:

Malfunction Indicator Lamp. The MIL is most commonly known as the Check Engine or Service Engine Soon light. A required on-board indicator to alert the driver of an emission-related malfunction.

#### Misfire:

Caused by the air/fuel ratio being incorrect.

#### Monitor:

A test performed by the on-board computer to verify proper operation of emission-related systems or components.

#### MPFI or MFI:

Multi-Port Fuel Injection. MPFI is a fuel injection system using one (or more) injector(s) for each cylinder. The injectors are mounted in the intake manifold, and fired in groups rather than individually.

#### NOx:

Oxides of Nitrogen. The system EGR and Camshafts injects exhaust gases into the intake manifold to reduce these gases at the tailpipe.

#### O<sub>2</sub>S:

Oxygen Sensor. Generates a voltage of 0.6 to 1.1 volts when the exhaust gas is rich (low oxygen content). The voltage changes to 0.4 volts or less when the exhaust gas is lean (high oxygen content). This sensor only operates after it reaches a temperature of approximately  $349^{\circ}$ C ( $660^{\circ}$ F). O<sub>2</sub> sensors are usually found both upstream and downstream of the catalytic converter. The PCM uses these sensors to fine tune the air-fuel ratio and to monitor the efficiency of the catalytic converter. See **Bank 1**, **Bank 2**, **Sensor 1**, **Sensor 2**.

#### OBD II:

On-Board Diagnostics, Second Generation. OBD II is a U.S. Government mandated standard requiring all cars and light trucks to have a common data connector, connector location, communication protocol, DTCs and code definitions. OBD II first appeared on vehicles in late 1994, and is required to be present on all cars sold in the US after January 1, 1996.

#### ODM:

Output Device Monitor.

#### Open Loop (OL):

A control system mode that does not monitor the output to verify if the desired results were achieved. A fuel delivery system usually operates in open loop mode during cold engine warm-up because the oxygen sensors are not yet ready to send a signal. Without the oxygen sensor signal, the computer cannot check the actual results of combustion.

#### PCM:

Powertrain Control Module. The brains of the engine and transmission control systems housed in a metal box with a number of sensors and actuators connected via a wiring harness. Its job is to control fuel delivery, idle speed, spark advance timing, and emission systems. The PCM receives information from sensors, then energizes various actuators to control the engine. The PCM is also known as the ECM (Engine Control Module).

44

CAN OBDII SCANNER

#### PCV:

Positive Crankcase Ventilation

#### Pending Codes:

Also referred to as Continuous Memory codes and Maturing Diagnostic Trouble Codes. Pending Codes may be set by emission related powertrain components and systems. If the fault does not occur after a certain number of drive cycles, the code is erased from memory.

#### PID:

Parameter Identification. Identifies an address in memory which contains vehicle operating information.

#### PNP:

Park/Neutral Position. A switch that tells the PCM when the gear shift lever is in the Park or Neutral position. When in Park or Neutral, the PCM operates the engine in an idle mode.

#### PROM:

Programmable Read-Only Memory. The PROM contains programming information the PCM needs to operate a specific vehicle model/engine combination.

#### **Proprietary Readings:**

Parameters shown by on-board computers which are not required by OBD II, but included by manufacturer to assist in trouble-shooting specific vehicles.

#### **PSPS**:

Power Steering Pressure Switch

#### Purge Solenoid:

Controls the flow of fuel vapors from the carbon canister to the intake manifold. The canister collects vapors evaporating from the fuel tank, preventing them from escaping to the atmosphere and causing pollution. During warm engine cruise conditions, the PCM energizes the Purge Solenoid so the trapped vapors are drawn into the engine and burned.

#### PTC:

Pending Trouble Code

#### PWM:

Pulse Width Modulation

#### PZM:

Platform Zone Module

#### QDM:

**Quad Driver Module** 

#### RAM:

Random Access Memory

#### Relay:

An electromechanical device in which connections in one circuit are switched.

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

#### **Reluctance Sensor:**

A type of sensor typically used to measure crankshaft or camshaft speed and/or position, driveshaft speed, and wheel speed.

#### ROM:

Read-Only Memory. Permanent programming information stored inside the PCM, containing the information the PCM needs to operate a specific vehicle model/engine combination.

#### RPM:

**Revolutions Per Minute** 

#### SAE:

Society of Automotive Engineers.

#### Scan Tool:

A device that interfaces with and communicates information on a data link.

#### SDM:

Sensing and Diagnostic Module

#### Sensor x:

A standard term used to identify the location of oxygen sensors. Sensor 1 is located upstream of the catalytic converter. See  $O_2S$ , Bank 1, Bank 2.

#### Sensor:

Any device that reports information to the PCM. The job of the sensor is to convert a parameter such as engine temperature into an electrical signal that the PCM can understand.

#### SES:

Service Engine Soon dash light, now referred to as MIL

#### SFI or SEFI:

Sequential Fuel Injection or Sequential Electronic Fuel Injection. A fuel injection system that uses one or more injectors for each cylinder. The injectors are mounted in the intake manifold and are fired individually.

#### Solenoid:

A device consisting of an electrical coil which when energized, produces a magnetic field in a plunger, which is pulled to a central position. A solenoid may be used as an actuator in a valve or switch.

#### STFT:

Short Term Fuel Trim.

#### STS:

Service Throttle Soon

#### TAC:

**Throttle Actuator Control** 

46

CAN OBDII SCANNER

#### TBI:

Throttle Body Injection. A fuel injection system having one or more injectors mounted in a centrally located throttle body, as opposed to positioning the injectors close to an intake valve port. TBI is also called Central Fuel Injection (CFI) in some vehicles.

#### TCC:

Torque Converter Clutch

#### TCM:

Transmission Control Module

#### TCS:

Traction Control System for PCM and brakes

#### TDC:

Top Dead Center. When a piston is at its uppermost position in the cylinder.

#### TFP:

Transmission Fluid Pressure

#### TFT:

Transmission Fluid Temperature (Sensor)

#### Throttle Body:

A device which performs the same function as a carburetor in a fuel injection system. On a throttle body injection (TBI) system, the throttle body is both the air door and the location of the fuel injectors. On port fuel injection systems (PFI, MPFI, SFI, etc.), the throttle body is simply an air door. Fuel is not added until the injectors at each intake port are activated. In each case, the throttle body is attached to the accelerator pedal.

#### TPS:

Throttle Position Sensor. Potentiometer-type sensor connected to the throttle shaft. Its voltage signal output increases as the throttle is opened. The PCM uses this signal to control many systems such as idle speed, spark advance, fuel delivery, etc

#### Traction Assist:

Assist in traction with brakes only.

#### Trip:

Vehicle operation for a period of time so the systems can be monitored.

#### TTS:

VECI:

Transmission Temperature Sensor. A resistance sensor mounted in the transmission housing in contact with the transmission fluid. It sends a voltage signal to the PCM indicating the temperature of the transmission.

#### 47

Vehicle Emission Control Information. A decal located in the engine compartment containing information about the emission control systems found on the vehicle. The VECI is the authoritative source for determining whether a vehicle is OBD II compliant.

#### VIN:

Vehicle Identification Number. This is the factory-assigned vehicle serial number. This number is stamped on a number of locations throughout the vehicle, but the most prominent location is on top of the dashboard on the driver's side, visible from outside the car. The VIN includes information about the car, including where it was built, body and engine codes, options, and a sequential build number.

#### VSS:

Vehicle Speed Sensor. Sends a frequency signal to the PCM. The frequency increases as the vehicle moves faster to give the PCM vehicle speed information used to determine shift points, engine load, and cruise control functions.

#### VTD:

Vehicle Theft Deterrent

#### Warm-up Cycle:

Warm-up cycle is when the engine coolant temperature rises at least 40 degrees above that at engine start up.

#### WOT:

Wide-Open Throttle. The vehicle operating condition brought about when the throttle is completely (or nearly) open. The PCM typically delivers extra fuel to the engine and de-energizes the A/C compressor at this time for acceleration purposes. The PCM uses a switch or the TPS to identify the WOT condition.

### 4.3 - Appendix C – Support Vehicle Models List (part)

*Note:* Specific parameters supported are dependent on; year and make, engine, transmission, options, etc.

### Α

| Acura 2.3CL   |                |
|---------------|----------------|
| Acura 2.5TL   | Audi A3        |
| Acura 3.0CL   | Audi A4        |
| Acura 3.2CL   | Audi A6        |
| Acura 3.2TL   | Audi A8        |
| Acura 3.5RL   | Audi A8L       |
| Acura Integra | Audi All road  |
| Acura MDX     | Audi Cabriolet |
| Acura NSX     | Audi S4        |
| Acura RSX     | Audi S6        |
| Acura SLX     | Audi S8        |
| Acura TSX     | Audi TT        |
|               |                |

48

CAN OBDII SCANNER

### В

BMW 320i BMW 320iA BMW 323i BMW 323Ti BMW 325Ci BMW 325i BMW 330Ci BMW 330i BMW 530i BMW 545i BMW 745i BMW 745Li BMW 760Li

### С

Cadillac Catera Cadillac CTS Cadillac DeVille Cadillac DHS Cadillac DTS Cadillac Seville Cadillac STS Cadillac XLR

Chevrolet Astro, AWD **Chevrolet Avalanche** Chevrolet Aveo Chevrolet B7-Chassis Chevrolet Blazer, 2WD, 4WD Chevrolet C-Series Chevrolet C1500, 2WD Chevrolet C2500 2WD, 08600 Chevrolet C3500, 2WD Chevrolet Camaro Chevrolet Cavalier Chevrolet Prizm Chevrolet S-10 2WD Chevrolet S10 Chevrolet Silv O8600 GVW Chevrolet Silv. 2500 HD Chevrolet Silv. 3500 2WD Chevrolet Silverado **Chevrolet SSR** Chevrolet Suburban **Chevrolet Tahoe** 

BMW M3 BMW X3 BMW X5 BMW Z3 BMW Z4

Buick Allure Buick LaCrosse Buick LeSabre Buick Park Avenue Buick Rainier Buick Rendezvous 3.6 Buick Terraza

Chevrolet Cobalt 2.0L, 2.2L Chevrolet Colorado Chevrolet Corvette Chevrolet Equinox Chevrolet Express, Acces Chevrolet G2500 Van **Chevrolet Impala** Chevrolet K1500 Chevrolet K2500 O8600 Chevrolet K3500 Chevrolet Lumina **Chevrolet Malibu** Chevrolet MD B7-Chassis **Chevrolet MD C-Series** Chevrolet MD T-Series Chevrolet MD W4 Series Chevrolet MD WT5500 Chevrolet Medium Duty Chevrolet Metro **Chevrolet Monte Carlo** 

Chevrolet Tracker Chevrolet Trailblazer Chevrolet Uplander Chevrolet Venture Chevrolet W4 Series Chevrolet WT5500

Chrysler 300 Tour. AWD Chrysler 300 Touring Chrysler 300M

CAN OBDII

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

Chrysler Cirrus Chrysler Concorde Chrysler Crossfire Chrysler Intrepid Chrysler LHS

### D

Daewoo Lanos Daewoo Leganza Daewoo Nubira

Dodge Avenger Dodge Caravan Dodge Colt Dodge Dakota 4X2, 4X4 Dodge Durango 4X2, 4X4 Dodge Grand Caravan Dodge Intrepid Dodge Magnum,

### Е

Eagle Summit

### F

Ford Aspire Ford Club Wagon Ford Contour Ford Crown Victoria Ford E-Super Duty Ford Econoline, E150, E250 Ford Econoline E350, E450 Ford Escape Ford Escort Ford Excursion Ford Exp Sport Trac Ford Expedition Ford Explorer, Sport, Postal Ford F-150, Heritage, Reg. Cab Ford F-150 Super Cab Ford F-250, Reg. Cab, Ford F-250 Super Cab

Chrysler Neon Chrysler Pacifica, AWD Chrysler Sebring Convertible, Coupe, Sedan Chrysler Town & Country Chrysler Voyager

Dodge Neon, AWD Dodge Ram 1500 4X2, 4X4 Dodge Ram 2500 4X2, 4X4 Dodge Ram 3500 4X2, 4X4 Dodge Ram SRT-10 Dodge Ram Van 1500, 2500, 3500 Dodge Ram Wagon 1500, 2500, 3500 Dodge Sprinter Dodge SRT-4 Dodge Stealth Dodge Stratus, Coupe, Sedan Dodge Viper

Eagle Talon

Ford Five Hundred Ford Focus Ford GT Ford Freestar Ford Freestyle Ford Motorhome Ford Mustang Ford Ranger Ford Super Club Ford Super Van Ford Super Duty Ford Super Duty Ford Taurus Ford Thunderbird Ford Windstar Ford ZX2

50

CAN OBDII SCANNER

# G

Geo Metro Geo Prizm Geo Tracker

GM of Canada Firefly GMC C-Series GMC C1500 GMC C2500 O8600 GMC C3500 GMC Canyon GMC Envoy, XL, XUV GMC Jimmy, 2WD, 4WD GMC Jimmy 4X2, 4x4 GMC K1500, 4WD GMC K2500 O8600 GMC K2500 U8600 GMC K3500, 4WD GMC MD B7-Chassis GMC MD C-Series GMC MD T-Series GMC MD W4 Series **GMC MD WT5500** GMC Medium Duty

### Η

Honda Accord Honda Civic Honda CR-V Honda Element Honda Insight Honda Odyssey Honda Passport 2WD Honda Passport 4WD Honda Pilot Honda Prelude Honda S2000

# I

Infiniti FX35 Infiniti FX45 Infiniti G20 Infiniti G20t Infiniti G35 Infiniti I30 Infiniti I30t GMC P35 Comm GMC Safari, AWD, RWD **GMC** Savanna GMC Sierra GMC Sierra 2500 HD, 2WD GMC Sierra 3500 HD, 4WD GMC Sierra C3 AWD GMC Sierra Denali GMC Sierra PHT GMC Sonoma, 3WD, 4WD GMC Suburban 2WD, 4WD GMC Suburban O8600 GMC Suburban U8600 GMC T-Series **GMC W4 Series GMC WT5500** GMC Yukon, 2WD, 4WD GMC Yukon Denali GMC Yukon XL GMC Yukon XL 2WD GMC Yukon XL 4WD GMC Yukon XL Denali

#### Hummer H2

Hyundai Accent Hyundai Elantra Hyundai Elantra Wagon Hyundai Santa Fe Hyundai Sonata Hyundai Tiburon Hyundai Tuscon Hyundai XG300 Hyundai XG350

Infiniti I35 Infiniti M45 Infiniti Q45 Infiniti Q45t Infiniti QX4 Infiniti QX56

CAN OBDII

Email: sales02@careucar.com MSN: careucar@hotmail.com Skype: careucar Yahoo: careucar@ymail.com

Isuzu Amigo Isuzu Ascender Isuzu Axiom

### J

Jaguar S-Type Jaguar X-Type Jaguar XJ Jaguar XK

### K

Kia Amanti Kia Optima Kia Rio Kia Rio Cinco Kia Sedona

### L

Land Rover Discovery Land Rover Freelander Land Rover Range Rover 75

2.

Lexus ES 300 Lexus ES 330 Lexus ES300 Lexus GS 300 Lexus GS 430 Lexus GS300 Lexus GS400 Lexus GX 470 Lexus GX 470 Lexus IS 300 Lexus LS 430

### Μ

Mazda 626 Mazda B-2300 Mazda B-2500 Mazda B-3000 Mazda B-4000 Mazda Mazda3 Mazda Mazda6 Mazda Miata Mazda Miata Isuzu Hombre Isuzu Oasis

Jeep Cherokee Jeep Grand Cherokee Jeep Liberty Jeep Liberty 4x2, 4X4 Jeep Wrangler

Kia Sephia Kia Sorento Kia Spectra Kia Sportage

Lexus LS400 Lexus LX 470 Lexus LX450 Lexus LX470 Lexus RX 300 Lexus SC 430 Lexus SC300 Lexus SC400

Lincoln Aviator Lincoln Blackwood Lincoln Continental Lincoln LS Lincoln Navigator Lincoln Town Car

Mazda Spd Mazda Miata MX-5 Mazda Millenia Mazda MPV Mazda Protege Mazda Tribute

Mercedes Benz C200 K Mercedes Benz C200 KT 52

CAN OBDII SCANNER

Mercedes Benz C240 (203) Mercedes Benz C32 AMG (203) Mercedes Benz C320 (203) Mercedes Benz C43 AMG (202) Mercedes Benz C55 AMG Mercedes Benz CL200 K Mercedes Benz CL230 K Mercedes Benz CL500 (140) Mercedes Benz CL500 (215) Mercedes Benz CL55 AMG (215) Mercedes Benz CL600 (140) Mercedes Benz CL600 (215) Mercedes Benz CL600 (215) Mercedes Benz CLK320 (208) Mercedes Benz CLK430 (208) Mercedes Benz CLK500 (208) Mercedes Benz CLK55AMG (208) Mercedes Benz E320 (210) Mercedes Benz E430 (210) Mercedes Benz E500 (210) Mercedes Benz E55 AMG (210) Mercedes Benz G500 (463) Mercedes Benz G55 AMG (463) Mercedes Benz ML320 (163) Mercedes Benz ML350 (163) Mercedes Benz ML430 (163) Mercedes Benz ML500 (163) Mercedes Benz ML55 AMG (163) Mercedes Benz S430 (220) Mercedes Benz S500 (220) Mercedes Benz S500L Mercedes Benz S55 AMG (220) Mercedes Benz S600 (220) Mercedes Benz S600L

### Ν

Nissan 350Z Nissan Altima Nissan Frontier Nissan Maxima Nissan Murano Nissan Armada Mercedes Benz SL350 Mercedes Benz SL500 (129) Mercedes Benz SL55 AMG (129) Mercedes Benz SL600 (129) Mercedes Benz SLK200K Mercedes Benz SLK230 (170) Mercedes Benz SLK320 (170) Mercedes Benz SLK32AMG Mercedes Benz SLK350

Mercury Cougar Mercury Grand Marquis Mercury Marauder Mercury Mariner Mercury Montego Mercury Monterey Mercury Mountaineer Mercury Mystique Mercury Sable Mercury Villager

Mitsubishi 3000GT Mitsubishi 3000GT Spyder Mitsubishi Diamante Mitsubishi Eclipse Mitsubishi Eclipse Spyder Mitsubishi Endeavor Mitsubishi Gallant Mitsubishi Gallant Mitsubishi Mirage Mitsubishi Montero Mitsubishi Montero Mitsubishi Montero Sport Mitsubishi Outlander

Nissan Pathfinder Nissan Quest Nissan Sentra Nissan Titan Nissan Xterra

53

CAN OBDII

# 0

Oldsmobile Alero Oldsmobile Aurora Oldsmobile Bravada

### Ρ

Pontiac Aztek Pontiac Bonneville Pontiac Firebird Pontiac G6 Pontiac Grand Am Pontiac Grand Prix Pontiac GTO Pontiac Montana Pontiac Montana SV6 Pontiac Pursuit Pontiac Sunfire Pontiac Vibe Pontiac Vibe 1.8L LV6

### S

Saab 9-3 Saab 9-5

Saturn Ion, 2.0L, 2.2L Saturn LS, LW Saturn Relay Saturn SC1, SC2 Saturn SL, SC, SW Saturn SL1, SL2 Saturn SW1, SW2 Saturn VUE

Scion TC Scion XA Scion XB

Subaru Baja

### Т

Toyota 4-Runner Toyota Avalon Toyota Camry Toyota Camry Solara Toyota Celica Oldsmobile Cutlass Oldsmobile Eighty Eight Oldsmobile Intrigue Oldsmobile LSS

Porsche 911 Porsche 911 Carrera Porsche Boxster Porsche Cayenne

Plymouth Breeze Plymouth Colt Plymouth Grand Voyager Plymouth Neon Plymouth Prowler Plymouth Voyager

Subaru Forester Subaru Impreza Subaru Legacy Subaru Outback Subaru SVX

Suzuki Aerio Suzuki Esteem Suzuki Forenza Suzuki Grand Vitara Suzuki Sidekick Suzuki Swift Suzuki Verona Suzuki Vitara Suzuki X-90 Suzuki XL-7

Toyota Corolla Toyota Echo Toyota Highlander Toyota Land Cruiser Toyota Matrix

54

CAN OBDII SCANNER

Toyota MR2 Toyota MR2 Spider Toyota Paseo Toyota Previa Toyota Rav4 Toyota Sequoia Toyota Sienna Toyota T-100 Toyota Tacoma Toyota Tercel Toyota Tundra

### V

Volkswagen Beetle Volkswagen Bora Volkswagen Eurovan L5 Volkswagen Eurovan VR6 Volkswagen Golf A3 Volkswagen Golf A4 Volkswagen GTI Volkswagen Jetta A3 Volkswagen Jetta A4 Volkswagen Passat Volkswagen Touareg

Volvo C70 Volvo S40 Volvo S60 Volvo S80 Volvo V40 Volvo V70 Volvo XC70 Volvo XC90

- Supports ISO, VPW and PWM bus systems as well as CAN bus systems
- U.S. Models European Japanese Asian German Korean:
- Suitable for almost all cars after 1996.
- GM '96 Current Year (OBD-II / EOBD)
- Ford '96 Current Year (OBD-II / EOBD)
- Chrysler '96 Current Year (OBD-II / EOBD)
- Toyota '96 Current Year (OBD-II / EOBD)
- Honda '96 Current Year (OBD-II / EOBD)
- NISSAN '96 Current Year (OBD-II / EOBD)
- All other Asian and European '96 Current Year (OBD-II / EOBD)



CAN OBDII

# <u>4.4 - Appendix D – What is EOBD, EOBD2 and OBD-II</u>

#### What is EOBD?

EOBD is an abbreviation of European On-Board Diagnostics.

All petrol cars sold within Europe since 1 Jan 2001, and diesel cars manufactured from 2003, must have on-board diagnostic systems to monitor engine emissions.

These systems were introduced in line with **European Directive 98/69/EC** to monitor and reduce emissions from cars.

All such cars must also have a standard EOBD diagnostic socket that provides access to this system (as shown below).

### 1 2 3 4 5 6 7 8 9 1011 1213 1415 16

### The EOBD / ODBII 16-pin diagnostic connector (DLC)

#### Where is the connector?

The EOBD connector is required by the Directive to be located within the passenger compartment of the car, within reach of the driver's seat. Tools should not be required to reveal the connector, but it may have a removable cover over it.

#### What does the connector look like?

The connector has the following shape:



- 56 -

CAN OBDII SCANNER

#### Which pins contacts should be present on the connector?

Different pins on the connector are used by different manufacturers. There are 5 pin out combinations within the standard, each of which uses a specific communications protocol. These are listed below:

| Protocol                         | Connector pins used            |
|----------------------------------|--------------------------------|
| J1850 VPW                        | 2, 4, 5, and 16, but not 10    |
| ISO 9141-2                       | 4, 5, 7, 15 (see below) and 16 |
| J1850 PWM                        | 2, 4, 5, 10 and 16             |
| KWP2000<br>(ISO 14230)           | 4, 5, 7, 15 (see below) and 16 |
| CAN (Controller<br>Area Network) | 4, 5, 6, 14 and 16             |

**Note:** For ISO/KWP2000 communications, **pin 15** (L-line) is not always required. Pin 15 was used on earlier ISO/KWP2000 cars to "wake-up" the ECU before communication could begin on pin 7 (K-Line). Later cars tend to communicate using only pin 7 (K-Line).

**Rover and MG cars:** We have noticed that many Rover and MG models do not have pin 5 (Signal Ground). This can prevent some diagnostic tools from 'powering up' where they use pin 5 as the ground for the circuitry.

#### What are each of the pins used for?

The pins are used as follows:

| Pin | Use                                      |
|-----|------------------------------------------|
| 2   | J1850 Bus+                               |
| 4   | Chassis Ground                           |
| 5   | Signal Ground                            |
| 6   | CAN High (J-2284)                        |
| 7   | ISO 9141-2 K Line and ISO/DIS<br>14230-4 |
| 10  | J1850 Bus                                |
| 14  | CAN Low (J-2284)                         |
| 15  | ISO 9141-2 L Line and ISO/DIS 14230-4    |
| 16  | Battery power (+)                        |

- 57 -

CAN OBDII SCANNER

Additional pins may be wired on your car - these may be used by the vehicle Manufacturer for other purposes.

#### Which protocol is used by each manufacturer?

As a rough guide, the protocols are generally found on cars from the following manufacturers:

| Protocol   | Manufacturers                                                                                                                                                                                                                                                                                                            |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| J1850 VPW  | General Motors, Chrysler                                                                                                                                                                                                                                                                                                 |
| J1850 PWM  | Ford models to 2003 with EEC-V engine management system, this includes;<br>Ford <b>Cougar</b> (all UK models), Ford <b>Puma</b> (1.6 and 1.7), Ford <b>Fiesta</b> Zetec models to 2003, Ford <b>Mondeo</b> Zetec models to 2003, Ford <b>Focus</b> to 2003 (and some of the newer Ford-based <b>Jaguars</b> e.g. S-Type) |
| 190 01/1 8 | Most European and Asian manufacturers of a                                                                                                                                                                                                                                                                               |
| KWP 2000   | Alfa Romeo, Audi, BMW, Citroen, Fiat, Honda, Hyundai, Jaguar<br>(X300, XK series and X-Type), Jeep, Kia, Land Rover, Mazda,<br>Mercedes, Mitsubishi, Nissan, Peugeot, Renault, Saab, Skoda,<br>Subaru, Toyota, Vauxhall, Volkswagen (VW), Volvo                                                                          |
| CAN        | Ford 2004+ Fiesta, Fusion, Mondeo, Focus models<br>Mazda RX-8<br>Vauxhall Vectra 2003+ model                                                                                                                                                                                                                             |
|            | Most new models from approx. 2004 - CAN must be used for EOBD engine diagnostics by all manufacturers by 2008                                                                                                                                                                                                            |

Only the latest scan tools and code readers can be relied upon to read the diagnostic information through the EOBD socket.

#### 'Check Engine' light



The 'Check Engine' warning light on the dashboard is often the first sign that the car owner knows about a problem with his car.

This provides very little information to the owner, or to the technician when asked to investigate the problem.

- 58 -

CAN OBDII SCANNER

#### **Problem diagnosis**

With the modern tools, skilled technicians should be able to diagnose and solve many of the problems, which prior to this, required the sophisticated console tools of main dealers.

#### New technology

The introduction of European on-board diagnostics standards has opened up new opportunities for car workshops and owners.

A range of low-cost tools are now available to read and clear error codes, to view live/stored readings from sensors within the car, and to switch off the 'Check Engine' light.

#### What information is available?

EOBD systems monitor and store information from sensors throughout the car, e.g. air flow sensors, oxygen sensors, etc.

Sensor values outside an acceptable range will trigger a Diagnostic Trouble Code (DTC). The Scan tools can display and interpret these codes. Some Scan Tools will also provide 'Live Data' of the sensors output.

#### EOBD or OBD II?

On-Board Diagnostics, or OBD, was the name given to the early emission control and engine-management systems introduced in cars. There is no single OBD standard and each manufacturer, often using quite different systems (even between individual car models).

OBD systems have been developed and enhanced, in line with United States government requirements, into the current OBD II standard.

The OBD II Federal requirements apply to cars sold in the United States from 1996.

EOBD is the European equivalent of the American OBD II standard, which applies to petrol cars sold in Europe from 2001 (and for diesel cars 3 years later).

# Why do OBDII and EOBD tools not work on all cars from 1996 in the UK and Europe?

- 59 -

Some of our most frequently asked questions on our OBDII and EOBD tools are:

CAN OBDII SCANNER

"I have seen these/similar products advertised as working on all 1996 and newer cars - why don't yours?"

"I've just bought an OBDII/EOBD tool from someone else that was advertised as working with all 1996 and newer cars. Why doesn't it work on my [1999 Vauxhall Vectra]?"

Here is the answer...

In 1996 in the United States, a Federal Law came into force requiring **all US-sold cars** to be OBDII compliant. Most OBDII tools are therefore advertised as working with all cars from 1996.

The OBDII Federal Law applied only to cars sold in the US.

In the UK and the rest of Europe, the equivalent law (European On-Board Diagnostics, or EOBD) did not come into force, and more importantly, was not fully implemented by our car manufacturers, until 2001 for petrol cars (2003/4 for diesels).

Where an OBDII tool is sold in the UK/Europe claiming to work on all cars from 1996, this is highly **unlikely to be the case**.

Even where a seemingly identical car may have been sold in Europe and the US before 2001, from our own testing and research, it is rarely the case that the European model will be OBDII/EOBD compliant.

The fact that we sell these tools as only working with 2001 and newer petrol (and similarly 2003/4 diesels) is due to the fact that we are being honest in the coverage, rather than simply duplicating the sales information from the US.

So do these tools work with any UK/European cars before 2001?

Yes they do, but certainly not across the board, and very rarely back as far as 1996. A few manufacturers that we know have some OBDII/EOBD support (on petrol models) before 2001 are listed below:

Ford (most petrol cars using the EEC-V engine management system) Jaguar (most models from the beginning of the X300 series) Volvo (some models)

A few examples of manufacturers that we have had very little success connecting OBDII/EOBD tools on pre-2001 models are:

- 60 -

CAN OBDII SCANNER

#### Vauxhall Peugeot Citroen Fiat

Please be aware that we do not try to sell these tools as something they are not.

#### What is EOBD2?

EOBD2 is **not** a new version of EOBD.

Where EOBD stands for 'European On-Board Diagnostics', EOBD2 actually stands for 'Enhanced On-Board Diagnostics, Second Generation'.

EOBD2 tends to refer to manufacturer-specific features available on some OBDII/EOBD tools to access additional parameters/information from a car, over and above the normal parameters and information available within the EOBD/OBDII standard.

EOBD2 features are normally highly manufacturer-specific, and will usually only be available for a certain car manufacturer, e.g. Ford.

There are, as such, no 'EOBD2 cars', i.e. cars that require an EOBD2 tool to access their diagnostics information. EOBD2 functionality might however allow more information to be extracted from an EOBD/OBDII compliant car.

- 61 -

CAN OBDII SCANNER

# 5.0 - Notice

# <u> 5.1 – Disclaimer</u>

All information, illustrations, and specifications contained in this user manual are based on the latest information available at the time of printing. The right is reserved to make any changes at any time without obligation to notify any person or organization of such revisions or changes.

Furthermore, the manufacturer or its sales agents are not liable for errors contained herein or for incidental or consequential damages (including lost profits) in connection with the furnishing, performance or use of this material.

This user manual tells how to use and perform the required procedures on vehicles. Safe and effective use of this Scan tool is very much dependant on the user following the normal practices and procedures outline in this manual.

# 6.0 - Warranty Information

# 6.1 – Limited Warranty

This limited warranty cover defects in materials and workmanship for a period of twelve (12) months which begins from the date the product is purchased by the end user and is subjected to the following terms and conditions:

- 1. Within the warranty period, the manufacturer will repair or replace, at their options, any defective parts and return to the owner in good working condition.
- 2. Any repaired or replaced parts will be warranted for the balance of the original warranty or three months (3) months from the date of repair, whichever is longer.
- 3. This warranty only extends to the first owner and not assignable or transferable to any subsequent owner.
- 4. Cost of delivery charges incurred for the repair of the product to and from the manufacturer will be borne by the owner.

- 62 -

- 5. This limited warranty covers only those defects that arises as a result of normal use and does not cover those that arises as a result of:
  - Unauthorized modifications and repair.
  - Improper operation or misuse.
  - Accident or neglect such as dropping the unit onto hard surfaces.
  - Contact with water, rain or extreme humidity.
  - Contact with extreme heat.
  - Cables that have broken, bent contact pins or subject to extreme stress or wear.
  - Physical damage to the product surface including scratches, cracks or other damage to the display screen or other externally exposed parts.

# 6.2 - Limitations of Warranty

Other than the foregoing limited warranty, the manufacturer does not make any other warranty or condition of any kind, whether express or implied.

Any implied warranty of merchantability, or fitness for use shall be limited to the duration of the foregoing limited warranty.

Otherwise, the foregoing limited warranty is the owner's sole and exclusive remedy and is in lieu of all other warranties whether express or implied.

The manufacturer or any of its exclusive sales agents shall not be liable for any consequential or incidental damages or losses arising of the loss of uses of this product.

All warranty information, product features and specifications are subjected to change without prior notice.

- 63 -

CAN OBDII SCANNER