

Production Application Programming Interface
(PAPI)

Reference Manual

200212-04 REV A

This page intentionally left blank.

 WAVECREST Corporation continually engages in research related to
 product improvement. New material, production methods, and design
 refinements are introduced into existing products without notice as a
 routine expression of that philosophy. For this reason, any current
 WAVECREST product may differ in some respect from its published
 description but will always equal or exceed the original design
 specifications unless otherwise stated.

Copyright 2005

WAVECREST Corporation
7626 Golden Triangle Drive

Eden Prairie, Minnesota 55344
(952) 831-0030
(800) 733-7128

www.wavecrest.com

All Rights Reserved

U.S. Patent Nos. 4,908,784 and 6,185,509, 6,194,925, 6,298,315 B1, 6,356,850
6,393,088, 6,449,570 and R.O.C. Invention Patent No. 146548; other United States
and foreign patents pending.

WAVECREST, SIA-3000, GigaView, Remote GigaView and TailFit are trademarks of WAVECREST
Corporation.

PCI Express is a registered trademark of PCI-SIG in the United States and/or other countries. Visual
Basic is a registered trademark of Microsoft Corporation.

ATTENTION: USE OF THE SOFTWARE IS SUBJECT TO THE WAVECREST SOFTWARE LICENSE TERMS
SET FORTH BELOW. USING THE SOFTWARE INDICATES YOUR ACCEPTANCE OF THESE LICENSE
TERMS. IF YOU DO NOT ACCEPT THESE LICENSE TERMS, YOU MUST RETURN THE SOFTWARE FOR A
FULL REFUND.

WAVECREST SOFTWARE LICENSE TERMS

The following License Terms govern your use of the accompanying Software unless you have a separate written
agreement with Wavecrest.

License Grant. Wavecrest grants you a license to use one copy of the Software. USE means storing, loading, installing,
executing or displaying the Software. You may not modify the Software or disable any licensing or control features of
the Software.

Ownership. The Software is owned and copyrighted by Wavecrest or its third party suppliers. The Software is the
subject of certain patents pending. Your license confers no title or ownership in the Software and is not a sale of any
rights in the Software.

Copies. You may only make copies of the Software for archival purposes or when copying is an essential step in the
authorized Use of the Software. You must reproduce all copyright notices in the original Software on all copies. You
may not copy the Software onto any bulletin board or similar system. You may not make any changes or modifications
to the Software or reverse engineer, decompile, or disassemble the Software.

Transfer. Your license will automatically terminate upon any transfer of the Software. Upon transfer, you must deliver
the Software, including any copies and related documentation, to the transferee. The transferee must accept
these License Terms as a condition to the transfer.

Termination. Wavecrest may terminate your license upon notice for failure to comply with any of these License
Terms. Upon termination, you must immediately destroy the Software, together with all copies, adaptations and
merged portions in any form.

Limited Warranty and Limitation of Liability. Wavecrest SPECIFICALLY DISCLAIMS ALL OTHER
REPRESENTATIONS, CONDITIONS, OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT
NOT LIMITED TO ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. ALL OTHER IMPLIED TERMS ARE EXCLUDED. IN NO EVENT WILL
WAVECREST BE LIABLE FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OF OR INABILITY TO USE THE SOFTWARE, WHETHER OR NOT
WAVECREST MAY BE AWARE OF THE POSSIBILITY OF SUCH DAMAGES. IN PARTICULAR,
WAVECREST IS NOT RESPONSIBLE FOR ANY COSTS INCLUDING, BUT NOT LIMITED TO, THOSE
INCURRED AS THE RESULT OF LOST PROFITS OR REVENUE, LOSS OF THE USE OF THE SOFTWARE,
LOSS OF DATA, THE COSTS OF RECOVERING SUCH SOFTWARE OR DATA, OR FOR OTHER SIMILAR
COSTS. IN NO CASE SHALL WAVECREST'S LIABILITY EXCEED THE AMOUNT OF THE LICENSE FEE
PAID BY YOU FOR THE USE OF THE SOFTWARE.

Export Requirements. You may not export or re-export the Software or any copy or adaptation in violation of
any applicable laws or regulations.

U.S. Government Restricted Rights. The Software and documentation have been developed entirely at private
expense and are provided as Commercial Computer Software or restricted computer software.

They are delivered and licensed as commercial computer software as defined in DFARS 252.227-7013 Oct 1988,
DFARS 252.211-7015 May 1991 or DFARS 252.227.7014 Jun 1995, as a commercial item as defined in FAR 2.101 (a),
or as restricted computer software as defined in FAR 52.227-19 Jun 1987 or any equivalent agency regulations or
contract clause, whichever is applicable.

You have only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or
the Wavecrest standard software agreement for the product.

Table of Contents

SECTION 1 - INTRODUCTION
1-1 Elements of an Application Using the WAVECREST Production API 1

1-2 Function Call Structures ... 2

1-3 Files Included in the WAVECREST Production API 3

1-4 WAVECREST Production API Installation .. 4

1-5 Building the Sample Application ... 4
1-6 Executing the Sample Application ... 4
1-7 Reviewing the Sample Application.. 5
1-8 Where to Go From Here.. 8

SECTION 2 - TOOL SPECIFIC COMMANDS AND STRUCTURES
2-1 Introduction ... 9
2-2 Measurement Commands... 10
2-3 Plot Data Structure .. 12
2-4 Acquisition Parameter Structure.. 13
2-5 TailFit Result Structure ... 16
2-6 Single Side of TailFit Structure ... 16
2-7 Specification Limit Structure... 17
2-8 DDJ+DCD data Structure ... 18
2-9 Pattern Structure... 19
2-10 FFT window and analysis Structure.. 19
2-11 QTYS structure... 20
2-12 MEAS Structure ... 21

2-13 OHIS structure ... 21
2-14 MASK Structure ... 22
2-15 KPWM Structure ... 23
2-16 Adjacent Cycle Jitter TOOL ... 30
2-17 Clock Analysis Tool... 35
2-18 Clock Statistics Tool ... 38
2-19 Databus Tool .. 40
2-20 Datacom Bit Clock and Marker Tool .. 43
2-21 Datacom Known Pattern with Marker Tool .. 46
2-22 Datacom Random Data with Bit Clock Tool .. 57
2-23 Datacom Random Data with No Marker Tool... 64
2-24 Fibre Channel Compliance Tool .. 68
2-25 Folded Eye Tool .. 70
2-26 High Frequency Modulation Analysis Tool .. 73
2-27 Histogram Tool ... 77
2-28 InfiniBand Tool .. 81
2-29 Locktime Analysis Tool ... 83
2-30 Low Frequency Modulation Analysis Tool ... 87
2-31 Oscilloscope Tool... 90
2-32 PCI express 1.1 with Hardware Clock Recovery Tool........................... 92

©WAVECREST Corporation 2005 v

Table of Contents

(cont’d)

2-33 PCI express 1.1 with Software Clock Recovery Tool.......................95
2-34 PCI express 1.1 Clock Analysis Tool ..98
2-35 PCI express 1.0a Tool..101
2-36 Phase Noise Tool...104
2-37 PLL Analysis Tool ...106
2-38 Rambus DRCG Tool...109
2-39 Scope Tool ..113
2-40 Serial ATA Gen2i & Gen2m Tool..117
2-41 Serial ATA Gen 1x & Gen2x Tool ..119
2-42 Serial ATA Tool...121
2-43 Spread Spectrum Tool ...123
2-44 Statistics Tool ..127
2-45 Stripchart Tool ..130
2-46 Retrieving Spikelists ..134
2-47 Example Of How To Draw Using A Plot Structure135
2-48 Defines For Values In Measurement Structures136

SECTION 3 - GENERAL COMMAND REFERENCE ..139
3-1 GPIB Communication and I/O Layer Functions..................................140

COMM Layer Functions..140
I/O Layer Functions ..149

3-2 Measurement Utility Functions General Data Acquisition Functions....149
3-3 Pattern and PM50 Functions ...150
3-4 Calibration Utility Functions ..152
3-5 Signal Path Functions (DSM16, Path Mapping and Path Deskew)........155
3-6 Miscellaneous result and Status Functions..................................159
3-7 Advanced Group Measurement Functions161

SECTION 4 - CODE SAMPLES
4-1 Modifying Window Structure Parameters......................................167
4-2 Performing Tail-fit ...167
4-3 Drawing from a Plot Structure ...168
4-4 Performing a dataCOM Measurement..169
4-5 Using a PM50 Pattern Marker in a dataCOM Measurement................170

SECTION 5 - BUILD CONSIDERATIONS
5-1 Supported Compilers ...173
5-2 Build Requirements..173
5-3 Developing with C++...173
5-4 Win32 (95, 98, 2000 and NT 4.0) ...173
5-5 All UNIX Platforms..174
5-6 HP-UX 9.05 and HP-UX 10.20 ..174
5-7 Sun 4.1.x (Solaris 1) ...174
5-8 Sun 2.5.1 or above (Solaris 2) ...174

 ©WAVECREST Corporation 2005 vi

Table of Contents

(cont’d)

APPENDIX A - Error Codes.. 175

APPENDIX B - VBASIC Example .. 177

APPENDIX C - PAPI Revision Changes... 183

©WAVECREST Corporation 2005 vii

Table of Contents

This page intentionally left blank.

 ©WAVECREST Corporation 2005 viii

Purpose and Organization of this Manual

The WAVECREST SIA-3000 and GigaView™ software have the ability to run automated tests or control the
SIA-3000 remotely through a workstation or PC. This manual covers the Production Application Programming
Interface (PAPI) method.

Section 1 introduces the user to the elements of an application utilizing the WAVECREST PAPI software. This
section will aid in getting PAPI set up and ready to compile into applications. There is also a simple example
demonstrating the basic PAPI commands and concepts that can be applied to any measurements with any SIA-
3000 tool.

Section 2 provides information, in greater detail, pertaining to the basic measurement functions that comprise
PAPI. This section should help the developer gain a basic understanding of the measurement commands in PAPI
and serve as a reference for the variety of data structures used to pass information to and from the SIA-3000.

Section 3 is a function reference for any remaining functions not addressed in Section 2. Functions for setting up
patterns, calibration and making low-level GPIB calls are among the calls listed in this section. Most functions
addressed in Section 3 are for advanced PAPI usage or for making low-level GPIB calls. Some mandatory
functions for getting started and basic PAPI usage are COMM_InitDev() and COMM_CloseDev() in Section 3-1
as well as FCNL_PulsFind() in Section 3-2. Section 3-7 addresses the definition of groups for defining
advanced measurement sequences. It is not necessary to utilize the group functionality for basic PAPI
applications.

The best approach for the beginning PAPI developer is to review Section 1, followed by Sections 2-1 and 2-2.
Once this is complete, go through the following process when referring to the PAPI manual:

• Choose an SIA-3000 tool and the desired parameters/results

• Refer to the appropriate sub-section of Section 2 for the selected tool (i.e. Histogram – Section 2-25).
• Review the input and output parameters for the structure, the functions that apply to that tool and the

simple example. Refer to Sections 2-3 through 2-14 for information on interpreting any sub-structures
within the data structure for the tool.

• Refer to the application in Section 1-7, replacing any tool specific calls and structures with your own
• Refer to Section 3 and the Appendices as needed for explanations of other functions

Appendix A lists error codes.

Appendix B shows what the sample program in Chapter 1 might look like if written as a Visual Basic subroutine.

Appendix C lists changes to the measurement window structures and sub-structures for all supported revisions
of PAPI.

©WAVECREST Corporation 2005 vii

This page intentionally left blank.

 ©WAVECREST Corporation 2005 viii

SECTION 1- INTRODUCTION

WAVECREST has implemented the Production Applications Programming Interface (PAPI) to provide
direct access to the algorithms available in the SIA-3000™. This Production API allows programmers
to quickly integrate the functionality available in the SIA-3000 with their own applications. Many
tedious tasks such as GPIB interfacing and memory management are eliminated. A layered approach is
utilized which provides access to all the statistics and plot data available. This API is cross platform.
Versions for Microsoft® Windows as well as many UNIX platforms are available. The PAPI also
provides routines to utilize configurations established with the SIA-3000 software to streamline the
transition from laboratory characterization to production floor. The PAPI is compatible with SIA-3000
GigaView™ software.

1-1 ELEMENTS of an APPLICATION Using the WAVECREST PRODUCTION API
A typical application using the WAVECREST PAPI can be seen in the following figure.

WAVECREST
SIA-3000

Host Computer

HPIB SIA-3000 PAPI
HPIBGPIB

I/O
Driver GPIB

I/O
LIB

COM
LIB

IC Test

Program
using PAPI

Calling
Functions

 FCNL
LIB

The WAVECREST PAPI is divided into three layers. The I/O layer provides a hardware abstraction
layer to isolate the higher-level algorithms from the hardware itself. Although GPIB and HPIB are the
only physical medium supported at this time, this abstraction layer provides templates for custom I/O
routines.

The communication layer is an intermediate layer between the functional layer and the hardware
abstraction layer and provides functions such as polling and data requests. The FCNL (functional) layer
provides high-level functionality such as implementing the standard windows contained in the SIA-
3000 system, pulse-find and interpreting plot arrays.

©WAVECREST Corporation 2005 SECTION 1 – Introduction 1

1-2 FUNCTION CALL STRUCTURES
As function calls are listed throughout the manual, they will appear in the following format:

 Function Name
long __stdcall FCNL_PtnName (char sPtnName[], char *name)

This function is used to assist an application load the pattern file into the required measurement
structure. This function is included to assist when programming in Microsoft Visual Basic. When
programming in C, the data array can be accessed directly. Function Description

Input variables used INPUTS
sPtnName - Location where pattern name will be updated. Memory needs to be allocated by the caller.

*name - Name of pattern to load into measurement structure.

Output variables used OUTPUTS
Returns SIA_SUCCESS if operation is successful or a negative value to indicate error.

FCNL_PtnName (sPtnName[], *k28.5_pttn) //this function will change the pattern loaded //to the
pattern pointed to by the pointer //k28.5_pttn. k28.5_pttn
is user definable.

Sample code

Sample code comments

A few helpful notes:

NOTE: __stdcall and DllCall are part of the function definitions in the header file but can

essentially be ignored. They are utilized to provide options when building and using DLLs on
Microsoft® Windows. They are implemented to allow the same header file to be used for
building the DLL and importing the DLL, ensuring consistent declarations.

NOTE: Many of the measurement window structures contain padding fields. These fields are

usually called lPad1, lPad2, … or lPadLoc1, lPadLoc2, … and are used to insure
that variables are placed in the same absolute locations within the structure regardless of
compiler padding which varies from system to system. These fields are only used to take up
space, and can be safely ignored.

SECTION 1 – Introduction ©WAVECREST Corporation 2005 2

1-3 FILES INCLUDED IN THE WAVECREST PRODUCTION API
The WAVECREST PAPI consists of ten header files and associated libraries. The header files are platform
independent while the libraries are platform dependent. Libraries for Microsoft® Windows applications are
provided in the form of run-time Dynamic Link Libraries while Libraries for UNIX applications are provided
in both static and shared forms.

In addition to the header and library files, sample application source code and makefiles are also provided.
There is also a directory containing various dataCOM patterns. Files are located on the CDROM in the
following directory locations:

1-4 WAVECREST PRODUCTION API INSTALLATION
To install the WAVECREST PAPI, first create a target directory on the host system. Copy the files
from the WAVECREST PAPI CDROM contained in the base directory as well as those from the
particular platform directory to the newly created target directory.

1-5 BUILDING THE SAMPLE APPLICATION
Before attempting to build the sample application, the supported compiler should be installed and
properly configured. This may include modifying the PATH environment variable so that the
compiler’s executable can be launched from a command line. It may also involve setting INCLUDE
and LIB environment variables so that the standard include files and libraries may be located by the
compiler. Consult the compiler documentation for further information.

To build the sample application on UNIX, execute the following from a command prompt:
 make

To build the sample application on Microsoft® Windows, execute the following from a command
prompt:
 nmake

©WAVECREST Corporation 2005 SECTION 1 – Introduction 3

1-6 EXECUTING THE SAMPLE APPLICATION
Before attempting to execute the sample application, the supported GPIB interface card must be
installed and properly configured on the host workstation. (Consult the interface card manufacturer’s
documentation for further information.) The WAVECREST SIA-3000 should be powered on,
attached via GPIB cable to the host workstation, with CAL OUT connected to IN1 and CAL OUT
connected to IN2.

NOTE: Support is included for both National Instruments and SICL interface libraries on the Linux

platform. The only required change is that your application must be linked against the PAPI
library libWChpb.so instead of libWCgpb.so when using the SICL libraries. The makefile
included with the Linux sample application includes a detailed explanation of the
compilation changes required in order to utilize the SICL interface.

To execute the sample application, issue the following from a command prompt:

./sample

NOTE: Preceding the application name with “./” ensures that the executable is launched even if the

current directory is not included in the search path on UNIX.

If the sample application is successfully executed, the program should produce an output similar to
the following:

Single Histogram Mean: 50.392295ns
Single Histogram Sdev: 2.185318ps
Strike ENTER to continue

Congratulations! You have just built and ran your first application using the WAVECREST Production API.

SECTION 1 – Introduction ©WAVECREST Corporation 2005 4

1-7 REVIEWING THE SAMPLE APPLICATION
Let’s examine the sample application in more detail.

STEP 1 - Declare Required Include Files and Input Channels

 The WAVECREST PAPI utilizes a number of custom structures which are declared in the
supplied “include” files. In this example, IN1 and IN2 on the SIA-3000™ are declared as
measurement inputs.
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "../wccomm.h"
#include "../wcfcnl.h"

/* Uncomment for SUNOS */
/*#define SUNOS 1 */
#if (WIN32 | SUNOS | SOLARIS2 | LINUX)
#define APIDEVTYPE GPIB_IO
#define DEVICENAME "dev5"
#else
#if (HPUX)
#define APIDEVTYPE HPIB_IO
#define DEVICENAME "hpib,5"
#endif
#endif

/* Define channel inputs for illustration purposes */
#define IN_1 1
#define IN_2 2

int main(int argc, char *argv[])
 {

STEP 2 - Allocate Required Structures

Each tool has a specific structure and several function calls to facilitate the data acquisition
process. These structures contain input information concerning how to acquire the data, and
output data as a result of the acquisition.
 DCOM dcom;
 HIST hist;
 JITT jitt;
 long ApiDevId, retn = 0;
 char cmnd[256];

 /* Avoid compiler warnings */
 argc; argv;

STEP 3 - Initialize The Structures

Before utilizing a Tool Structure, it must be initialized. This initialization may involve two or more
parts.
The first part is to zero out the array using the standard memset() function. This step should only
be performed once immediately after the structure is allocated and prior to it being used, as
information concerning dynamic memory allocation is subsequently added to the structure.
The second part is to call the function intended to initialize each of the particular structure
parameters to their default values. In this case the FCNL_Defxxxx() function is called. This insures
that all parameters contain reasonable values.
The final step is to manually modify any parameters from their default values. Great care should be
used when manually adjusting parameters to ensure that valid values are used.
NOTE: lChanNum contains start channel in the lower 16 bits and stop channel in the upper 16 bits.

©WAVECREST Corporation 2005 SECTION 1 – Introduction 5

/* Initialize our structures */
memset (&hist, 0, sizeof (HIST));
FCNL_DefHist (&hist);
memset (&jitt, 0, sizeof (JITT));
FCNL_DefJitt (&jitt);
memset (&dcom, 0, sizeof (DCOM));
FCNL_DefDcom (&dcom);

/* To measure propagation delay between IN_1 and IN_2, these inputs are identified within a
bitfield */
hist.tParm.lChanNum = IN_1 + (IN_2 << 16);
hist.tParm.lStopCnt = 1;
hist.tParm.lFuncNum = FUNC_TPD_PP;

/* Make Known Pattern w/ Marker measurements using a simple clock pattern */
strcpy(&dcom.sPtnName[0], "clock.ptn");
dcom.tParm.lChanNum = IN_1;
dcom.tParm.lAutoArm = ARM_EXTRN;
dcom.tParm.lExtnArm = IN_2;

/* Measure High Frequency Modulation (Rising Edge, Triangular FFT window) */
jitt.tParm.lFuncNum = FUNC_TT_P;
jitt.tFfts.lWinType = FFT_TRI;
jitt.lAutoFix = 1;

STEP 4 - Initializing the SIA-3000
COMM_InitDev() must be called once at the beginning of your application to pass information
concerning the remote configuration. The initialization values shown may need to be altered if a
non-standard configuration is used. See Section 3.1.1 for complete details concerning
configuration options.
All PAPI functions return a non-zero value in the event of an error. These error codes are defined
in the supplied include files. A successful call to COMM_InitDev() must be accomplished before
any other calls to the WAVECREST PAPI.
/* Initialize device */
 if ((ApiDevId = COMM_InitDev (APIDEVTYPE, DEVICENAME)) < 1)
 {
 printf("\nCOMM_InitDev() failed...\n");
 goto Error;
 }

 /* Turn on calibration source */
 if ((retn = COMM_TalkDev (ApiDevId, ":CAL:SIG 10MSQ")) != SIA_SUCCESS)
 {
 printf("\nCOMM_TalkDev() failed...\n");
 goto Error;
 }

STEP 5 - Perform PulseFind
In this exercise, the calibration signals are used to provide a signal. FCNL_PulsFnd requires two
parameters. The first parameter is the ApId number returned from the COMM_InitDev function call.
The second parameter is a pointer to one of the PARM structures (initialized in step 3).
 /* Go ahead and perform a pulsefind */
 if ((retn = FCNL_PulsFnd (ApiDevId, &hist.tParm)) != SIA_SUCCESS)
 {
 printf("\nFCNL_PulsFnd() failed...\n");
 goto Error;
 }

SECTION 1 – Introduction ©WAVECREST Corporation 2005 6

STEP 6 - Perform Measurement and Return Statistics

A single call is made to perform the acquisition. Information concerning how to acquire the data is
drawn from the HIST structure, and output data as a result of the acquisition is also returned in the
HIST structure. If an error occurs during the acquisition a non-zero value is returned. See Appendix
A for definition of error codes.
Note that the WAVECREST PAPI performs its own dynamic memory allocation as required. The
calling application does not need to concern itself with memory management. However, since
dynamic memory allocation information is contained within the structure, the supplied cleanup
functions detailed below must be utilized in order to avoid memory leaks.
Acquisition functions may be called repeatedly with the same Tool Structure. When doing so the
output results contained within the structure are simply overwritten. Any dynamic memory previously
allocated is re-utilized. Using the same Tool Structure over and over again has the desirable
attribute of reducing the memory fragmentation that would occur if memory was allocated, freed, and
reallocated repeatedly.
 /* Perform a measurement and return the statistics */
 if ((retn = FCNL_RqstPkt (ApiDevId, &hist, WIND_HIST)) != SIA_SUCCESS)
 {
 printf("\nFCNL_RqstPkt() failed...\n");
 goto Error;
 }
 /* Now retrieve the plot structures for the previous measurement */
 /* This call is not necessary unless you want the plot data */
 if ((retn = FCNL_RqstAll (ApiDevId, &hist, WIND_HIST)) != SIA_SUCCESS)
 {
 printf("\nFCNL_RqstAll() failed...\n");
 goto Error;
 }

STEP 7 - Print Results
Results to be printed are drawn directly from the HIST structure. Note that all results are
returned in the units of Hertz, Volts, and seconds. Therefore a conversion factor may be
required in order to display the results in more appropriate units. For complete details on the
HIST structure, see Section 2-25.
/* Print the results */
printf("Single Histogram Mean: %lfns\n", hist.dNormAvg * 1e9);
printf("Single Histogram Sdev: %lfps\n", hist.dNormSig * 1e12);

STEP 8 - Perform a dataCOM Acquisition
This is an example of a dataCOM acquisition. FCNL_RqstPkt retrieves the data and
FCNL_RqstAll returns all of the plot data. For complete details on the dataCOM Tool and
Structure, see Section 2-20.
 if ((retn = FCNL_RqstPkt (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)
 {
 printf("\nFCNL_RqstPkt() failed...\n");
 goto Error;
 }
 if ((retn = FCNL_RqstAll (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)
 {
 printf("\nFCNL_RqstAll() failed...\n");
 goto Error;
 }

©WAVECREST Corporation 2005 SECTION 1 – Introduction 7

STEP 9 - Cleanup and Terminate Application

Before terminating the application, the supplied cleanup functions should be called. FCNL_ClrHist
and FCNL_ClrJitt frees any dynamic memory which may have been allocated and clears out the
structure. COMM_CloseDev() closes the remote device driver. After this cleanup has been
performed the application may terminate normally.
Error:
/* Return an error message if we had a problem */
if (retn)
printf ("Return Code: %i\n", retn);

/* Perform any cleanup and exit */
FCNL_ClrHist (&hist);
FCNL_ClrJitt (&jitt);
FCNL_ClrDcom (&dcom);
COMM_CloseDev (ApiDevId);
Printf(“Strike ENTER to continue…”);
Fgets(cmnd, sizeof(cmnd), stdin);
return (retn);

}

1-8 WHERE TO GO FROM HERE
This completes your introduction to the WAVECREST PAPI. You should have installed the software,
built a basic application and reviewed its composition. You should now have a basic understanding of
the underlying framework, and be ready to leverage that understanding to further explore the interface.
Subsequent chapters present additional detail concerning the structures and functions provided with the
WAVECREST PAPI.

SECTION 1 – Introduction ©WAVECREST Corporation 2005 8

SECTION 2 – TOOL-SPECIFIC COMMANDS AND STRUCTURES

2-1 INTRODUCTION
There are 29 tools currently supported in the Production API. These tools, or measurement windows,
perform all measurement functions of the SIA-3000 as well as all calculations based on the
measurements. All of these tools are represented in software to enable easy measurement programming
over GPIB. For any particular measurement, simply select the appropriate tool, program the necessary
settings and then execute the measurement command.

All measurements are handled by sending a measurement window structure containing all input
parameters to a calling function, which initiates the measurement. Each of the measurement window
structures is specific to one of the standard acquisition tools contained in the GigaView software.
Additional sub-structures are also defined that are used within these standard measurement window
structures. Beginning with Section 2-3, the additional structures are defined. The measurement window
structures and commands are detailed for the standard acquisition tools starting with Section 2-15.

Please note that many of the measurement window structures contain padding fields. These fields
are usually called lPad1, lPad2,… or lPadLoc1, lPadLoc2,… and are used to insure that
variables are placed in the same absolute locations within the structure regardless of compiler
padding which varies from system to system. These fields are only used to take up space, and can be
safely ignored.
Section 2-2 outlines the calling functions that are used to initiate a measurement and to retrieve the data
from the instrument. The commands in Section 2-2 are completely independent of the measurement
window structure to be used and are used with all of the structures. Once the measurement has been
successfully completed, the results are returned in the output section of the same measurement window
structure.

The basic process for conducting a measurement is as follows:

1. Initialize a window structure. This means that memory must be allocated, variables declared
and the structure set to defaults.

2. Modify any structure elements as needed for the given measurement. Typical modifications
include channel number, pattern file name (if data), number of measurements and triggering
information.

3. Call a measurement command. Use one of the measurement commands from Section 3.2 and
pass it the window structure defined in 1 and 2.

4. Parse the window structure for the results. Once the measurement is completed, the
command will return any error messages or a SIA_SUCCESS if measurement was completed
successfully.

If the program is to be done in a production environment, some attention needs to be paid to the
memory handling. In step 1, we allocated memory for the structure. If this is done repeatedly without
clearing the memory, this will result in a memory overflow error during run time. This can be avoided
by either moving the memory declarations to a section of the program that is executed only once. Be
sure to execute an appropriate FCNL_Clrxxxx() command when the structure is no longer needed.
This only needs to be done once at the end of the program. Alternatively, memory can be allocated
and cleared on a per-run basis although this will have a huge impact on test time.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 9

2-2 MEASUREMENT COMMANDS

There are three basic commands used to execute a measurement: FCNL_RqstPkt, FCNL_RqstAll
and FCNL_MultPkt. The FCNL_RqstPkt command is used to perform a measurement where only
the statistical result is desired. The FCNL_RqstAll command is used to perform a measurement where
the plot data is desired. The FCNL_MultPkt command is used when the same measurement is to be
executed on multiple channels. Again, the process is to define the measurement window structure then
pass it to one of these three commands for measurement execution. Each of these three commands
requires the device ID and the window structure as an input.

long __stdcall FCNL_RqstPkt (long ApiDevId, void *pData, long nType)

Use this function to perform data acquisitions with a particular tool (Histogram, dataCOM, etc.). Information on
how to acquire the data is drawn from the tool structure, and statistical output data resulting from the acquisition is
returned in the tool structure. Acquisition functions may be called repeatedly with the same tool structure. When
doing so, the output results contained within the structure are overwritten and any previously allocated dynamic
memory is re-utilized. Each measurement window structure is defined in Section 3.3. As shown in the example, a
measurement window structure is allocated in memory, then modified for the given measurement and passed to the
command for measurement execution. The results are stored in the measurement window structure that was used by
the FCNL_RqstPkt command. To retrieve the structure's plot data, use FCNL_RqstAll().

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
pData - Pointer to a particular tool structure like HIST, DCOM, etc. to hold the input and output values.
nType - Flag specifying the type of the request such as WIND_HIST, WIND_JITT etc. as described in section

3.1 in the column “Tool Type”.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what type
of error occurred.

EXAMPLE

memset (&hist, 0, sizeof (HIST)); //Allocate memory for measurement structure
FCNL_DefHist (&hist); //set structure to defaults
hist.tParm.lFuncNum = FUNC_PER; //Select period meas function of histogram tool
hist.tParm.lChanNum = 1; //Select channel number 1
hist.tParm.lStrtCnt = 1; //start on first edge after arm
hist.tParm.lStopCnt = 2; //stop measurement on second rising edge
FCNL_RqstPkt (ApiDevId, &hist, WIND_HIST); //execute the measurement.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 10

long __stdcall FCNL_RqstAll (long ApiDevId, void *pData, long nType)

This function is for getting the plot data of a particular type of measurement- like histogram that was done immediately
prior to this request. This command is kept separate from the measurement command to minimize test time when the
plot data is not desired. Once this command is executed, the plot data can be extracted from the measurement window
histogram. See Section 2-3 for information on the PLTD structure and Section 2-40 for an example on extracting plot
data from a measurement window structure.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
pData - Pointer to a particular tool structure like HIST, DCOM, etc. that contains the input/output and plot values.
nType - Flag specifying the type of the request, such as WIND_HIST, WIND_JITT, etc.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what
type of error occurred.

EXAMPLE
FCNL_RqstPkt (ApiDevId, &hist, WIND_HIST); //execute the measurement.
FCNL_RqstAll (ApiDevId, &hist, WIND_HIST); //get plot data

long __stdcall FCNL_MultPkt (long ApiDevId, void *pData, long nType,
long nRefChn, long nChns)

Use this function to perform pseudo-parallel data acquisitions with a particular tool (Histogram, dataCOM, etc.) on
multiple channels. Measurement setup is contained in the first element of the array of structures pointed to by *pData.
Results of the measurement are contained in the array structures. Only the structure needs to be defined. All other
structures will be copied from the first array structure. In the example below, two structures are created (hist[0] to
hist[1]) and defined as type HIST. Then, only the first element, hist[0], is modified with the desired measurement setup
parameters. The calling function will copy the info in hist[0] to hist[1].

INPUTS
 ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
 pData - Pointer to an array of particular tool structures such as HIST, DCOM, etc. to hold the input and output

values
 nType - Flag specifying the type of tool structure: WIND_HIST, WIND_JITT etc.
 nRefChn - Specifies the reference channel for channel-to-channel measurements. For single-channel

measurements, set to 0.
 nChns - Bit field specifying the channels to measure. Set Bit0 to measure channel 1, Bit1 to measure channel 2, etc.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what type
of error occurred.

EXAMPLE
static HIST hist[2]; //declare 2 window structures of type HIST
memset (&hist[0], 0, sizeof (HIST)); //clear the memory for first structure
FCNL_DefHist (&hist[0]); //Set first structure to defaults.
hist[0].tParm.lFuncNum = FUNC_PER; //declare measurement to be made
hist[0].tParm.lStrtCnt = 1; //declare the start count of the measurement
hist[0].tParm.lStopCnt = 2; //declare the stop count of the measurement
FCNL_MultPkt(ApiDevId, &hist[0], WIND_HIST, 0, 3) //execute the measurement on channel 1
 //and channel 2. Note that the nRefChn field
 //is set to 0 since no Ref Channel used.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 11

2-3 PLOT DATA STRUCTURE

This is an output structure used to hold the necessary information to construct a view of the
measurement that was performed. For example, the histogram tool can return a histogram plot.

In order to optimize performance the plot data itself is returned in the measurement window structure
only when FCNL_RqstAll() is called. The plot statistics are valid, but the pointer dData will be invalid
until FCNL_RqstAll() transfers the plot data, stores it locally, and assigns the dData pointer to this local
copy. The PLTD structure can then be used by a plotting utility to display the plot information. The plot
data may be manipulated directly from the PLTD structure, or FCNL_GetXval() and FCNL_GetYval()
may be called for simplicity.

See section 2-2 for more information about the FCNL_RqstAll() command and section 2-1 for higher
level Plot utility functions.

The data is organized by linear indexing of the x-axis and assignment of one element of X for each
element in the y-axis data array. The y-coordinate is extracted from the dData array, while the x-
coordinate may be calculated using the number of points in the array and the x-axis extents.

This formula is used to calculate an X value for a given index (0 <= index < plot.lNumb):
X = (plot.dXmax – plot.dXmin) * (double) index / (double) (plot.lNumb - 1) + plot.dXmin;

typedef struct
 {
 double *dData; /* Pointer to y-axis data array */
 long lNumb; /* Number of valid data points */
 long lRsvd; /* Used to track memory allocation */
 long lPad1;
 double dXmin, dXmax; /* X-axis values for ends of data array */
 double dYmin, dYmax; /* Min/Max values in y-axis data array */
 double dYavg, dYstd; /* Average/1-Sigma values for data array */

 long lXminIndx; /* Used by histograms to indicate */
 long lXmaxIndx; /* location of first and last valid bins */

 long lYminIndx; /* Indicates the location where the */
 long lYmaxIndx; /* min/max values occur in data array */

 double dAltXmin, dAltXmax; /* Alternate X-axis values, if applicable */
 } PLTD;

dData Pointer to y-axis data array.
LNumb Number of valid data points.
LRsvd Used to track memory allocation.
dXmin,dXmax X-axis values for ends of data array.
dYmin,dYmax Min & Max values in Y-axis data array.
dYavg,dYstd Average & 1-Sigma values for data array.
lXminIndx,lXmaxIndx Used by histograms to indicate location of first and

last valid bins.
lYminIndx,lYmaxIndx Indicates the location where the Min & Max values

 in data array. occur
dAltXmin,dAltXmax Alternate X-axis values, if applicable. For graphs where

it makes sense an alternate X-axis unit may be calculated.
Examples include time or index on a Clock High Frequency
Modulation Analysis 1-sigma plot, or unit interval or time on
a Datacom Known Pattern With marker bathtub plot. If no
applicable alternate unit is defined these variables will both
be set to zero.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 12

2-4 ACQUISITION PARAMETER STRUCTURE

An acquisition parameter structure is contained in every measurement window structure. It is an
input structure that holds common information for a variety of tool measurements such as channel
number, voltage, and sample size. For some simple tools, information such as start and stop counts
will also be drawn from this structure. For more algorithm-based tools these values may be
computed as needed.

typedef struct
 {
 long lFuncNum; /* Function to measure */
 long lChanNum; /* Channel to measure */
 long lStrtCnt; /* Channel start count */
 long lStopCnt; /* Channel stop count */
 long lSampCnt; /* Sample size */
 long lPadLoc1;
 double dStrtVlt; /* Start voltage */
 double dStopVlt; /* Stop voltage */
 long lExtnArm; /* Arm when external is selected */
 long lPadLoc2;

 long lOscTrig; /* O-scope trigger */
 long lOscEdge; /* O-scope rise/fall trig */

 long lFiltEnb; /* Filter enable */
 long lPadLoc3;
 double dFiltMin; /* Filter minimum */
 double dFiltMax; /* Filter maximum */

 long lAutoArm; /* Auto arm enable/mode */
 long lArmEdge; /* Arm rise/fall edge */
 long lGatEdge; /* Gate rise/fall edge */
 long lPadLoc4;
 double dArmVolt; /* Arm user voltage */
 double dGatVolt; /* Gate voltage */
 long lGateEnb; /* Enable gating */
 long lCmdFlag; /* Command flag for timestamping, etc.. */

 long lFndMode; /* Pulse find mode */
 long lFndPcnt; /* Pulse find percent */
 long lPadLoc5;
 long lPadLoc6;
 long lPadLoc7[2][6];

 long lTimeOut; /* Timeout in sec's, if negative it's ms */
 long lArmMove; /* Arming delay in steps [can be +/-] */
 long lNotUsed[2];
 } PARM;

lFuncNum Function to measure, use any of the following:
 2-Channel: FUNC_TPD_PP TPD +/+
 FUNC_TPD_MM TPD -/-
 FUNC_TPD_PM TPD +/-
 FUNC_TPD_MP TPD -/+
 1-Channel: FUNC_TT_P Rising edge time
 FUNC_TT_M Falling edge time
 FUNC_PW_P Positive pulse width
 FUNC_PW_M Negative pulse width
 FUNC_PER Period
 FUNC_FREQ Frequency
 FUNC_PER_M Period Minus
 Default: FUNC_PER

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 13

lChanNum Channel to measure, the minimum value is 1, the maximum is based on

the system configuration. For two channel TPD measurements, the lower
16 bits define the start channel and the upper 16 bits defines the
stop channel. In the Oscilloscope tool, channels are designated by a
bitfield, implying that multiple channels can be measured at the same
time. (example: If 1ChanNum=3, channels 1 and 2 will be measured)

lStrtCnt Channel start count; the valid range is from 1 to 10,000,000.

Default: 1

 Default: 1
lStopCnt Channel stop count; the valid range is from 1 to 10,000,000.
 Default: 2
lSampCnt Sample size; the valid range is from 1 to 950,000.

dStrtVlt Start voltage sets the reference voltage used to initiate the

time measurement. The valid range is +/-2.0 volts.

Default: 300

dStopVlt Stop voltage sets the reference voltage used to terminate the

time measurement. The valid range is +/-2.0 volts.

Default: 0.0

lExtnArm Channel to use for external arming. Only used if lAutoArm is

set to ARM_EXTRN. The minimum is 1, the maximum is based on
the system configuration.

Default: 0.0

lOscTrig Channel to use for oscilloscope trigger.

Default: 1

lOscEdge Edge to use to trigger oscilloscope, use any of the following:

EDGE_FALL, EDGE_RISE.

Default: 1

 Default: EDGE_RISE
lFiltEnb Filter enable, any non-zero value enables filters.
 Default: 0
dFiltMin Filter minimum in seconds, only used if lFiltEnb is non-zero;

valid range is +/-2.49 seconds.
 Default: -2.49
dFiltMax Filter maximum in seconds, only used if lFiltEnb is non-zero;

valid range is +/-2.49 seconds.
 Default: +2.49
lAutoArm Auto arm enable and mode, use any of the following:
 ARM_EXTRN Arm using one of the external arms
 ARM_START Auto-arm on next start event
 ARM_STOP Auto-arm on next stop event

lArmEdge Arming edge to use, only used if lAutoArm is set to ARM_EXTRN

and may be either EDGE_FALL or EDGE_RISE.

Default: ARM_STOP

lGateEdge Edge to use when external arming gate is enabled; only used if lAutoArm

is set to ARM_EXTRN and may be either EDGE_FALL or EDGE_RISE.

Default: EDGE_RISE

dArmVolt Arm1 voltage, the valid range is +/-2.0 volts and is only used

if lAutoArm is set to ARM_EXTRN.

Default: EDGE_RISE

dGatVolt Arm2 voltage, the valid range is +/-2.0 volts and is only used

if lAutoArm is set to ARM_EXTRN.

Default: 0.0

lGateEnb Enable external arm gating on the currently selected external

arming channel; any non-zero value enables gating.

Default: 0.0

 When gating is enabled, the arming edge and reference voltages of
the current external arm channel are associated with gating.

 Default: 0

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 14

lCmdFlag Bitfield containing modifiers. Most of the bits are reserved for
internal use and should be left to zero. However, the following
bits are provided for enabling user selectable options.

 CMD_PATNMARK (1<<4) Use PM50 card as arm source on the
selected external arming channel.

 CMD_BWENHANCED (1<<10) Apply Bandwidth Enhancement algorithm to
scope data. This is only appropriate if a stationary waveform
relative to the trigger is available.

lFndMode Pulse find mode, may be one of the following:

Default: 0

 PFND_FLAT Use flat algorithm for pulse-find calculation.
 PFND_PEAK Use peak value for pulse-find calculation.
 Default: PFND_PEAK
lFndPcnt Pulse find percentage, may be one of the following:
 PCNT_5050 Use 50/50 level for pulse-find calculation.
 PCNT_1090 Use 10/90 level for pulse-find calculation.
 PCNT_9010 Use 90/10 level for pulse-find calculation.

PCNT_USER Do NOT perform pulse-find, manual mode. When
this mode is selected, valid voltages must be
loaded in the dStrtVlt, dStopVlt, dArmVolt and
dGatVolt parameters.

 PCNT_2080 Use 20/80 level for pulse-find calculation.
 PCNT_8020 Use 80/20 level for pulse-find calculation.

lTimeOut Seconds for timeout before returning an error. A positive

number is used to indicate a value in seconds, a negative
number is used to indicate a value in milliseconds (Ex: -100
indicates 100ms.) The range of valid times is 10ms to 50s.

Default: PCNT_5050

 Default: 2
lArmMove This variable controls an arming delay that can be applied to

either an external arm source, or the channel itself if auto-
arming is enabled. Values in the range of –40 to 40 are
acceptable (each step represents a 25ps delay from nominal).

 Arm Delay (ns) Index Value
 19.0 -40

 19.75 -10

 20.0 0

 21.0 40

lNotUsed[n] Formerly DSM channel select, no longer used.

Default: -10

void __stdcall FCNL_DefParm (PARM *parm)

This function is used to fill a PARM structure with default values that are reasonable. It is not necessary to
clear a PARM structure using the standard memset() function prior to calling this function since no dynamic
memory allocation exists within this structure.

INPUTS
parm - Pointer to a PARM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 15

2-5 TAILFIT RESULT STRUCTURE

This output structure holds the results of a TailFit algorithm execution. This structure is imbedded in
all of the measurement structures that use the TailFit algorithm to separate Random Jitter and
Deterministic Jitter from a histogram of measurements. Should the measurement come to completion
without a successful TailFit, re-execute the measurement to acquire more data.

typedef struct
 {
 long lGood; /* Flag to indicate successful tail-fit */
 long lPad1;
 SIDE tL, tR; /* Individual left/right tail-fit data */
 double dDjit; /* Deterministic jitter, from both sides */
 double dRjit; /* Random jitter, average from both sides */
 double dTjit; /* Total jitter, calculated from bathtub */
 } TFIT;

lGood Flag to indicate successful tail-fit. This flag will be set to

a one if the TailFit algorithm successfully separated RJ and
DJ from within the histogram of measurements.

tL, tR Structures of type SIDE, defined below, containg individual
left & right tail-fit data.

dDjit Total Deterministic jitter, from both sides.
dRjit Total Random jitter, average from both sides.
dTjit Total jitter, calculated from bathtub curve.

2-6 SINGLE SIDE OF TAILFIT STRUCTURE
This output structure is used within the TFIT structure to contain all of the results of a Tail-Fit
pertaining to one side of the measurement histogram. This structure contains side specific RJ and DJ
information as well as Chi-squared data defining the “goodness of fit” criteria.

typedef struct
 {
 double dCoef[3]; /* Used by WavGetTfit() to generate */
 /* idealized tail-fit curves */
 double dDjit; /* Deterministic jitter, this side only */
 double dRjit; /* Random jitter, this side only */
 double dChsq; /* ChiSquare indicator, goodness of fit */
 double dLoValu, dHiValu; /* Xval range over which tail was fitted */
 double dMuValu; /* Projected Xval where mu was determined */
 double dEftvDj, dEftvRj; /* Effective jitter if calculated */
 double dTjit; /* Total jitter, calculated from bathtub */
 } SIDE;

dCoef Coefficient used to generate idealized tail-fit curves.
dDjit Deterministic jitter, this side only.
dRjit Random jitter, this side only.
dChsq ChiSquare indicator, goodness of fit.
dLoValu,dHiValu range over which tail was fitted.
dMuValu Projected dXval where mu was determined.
dEftvDj,dEftvRj Holds the effective jitter values if calculated. To

calculate the effective jitter, lFndEftv must contain a non-
zero value. Since the effective jitter is calculated by
optimizing a curve-fit, a result is not guaranteed. If the
curve-fit fails, a negative value will be returned in these
variables.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 16

2-7 SPECIFICATION LIMIT STRUCTURE

This input structure is used by the Datacom Known Pattern With Marker Tool to contain the
parameters for tRateInf, tDdjtInf and tRjpjInf. This tool uses these specifications when setting up
the measurement for capturing bit rate, DDJ and RJ/PJ spectra respectively.

typedef struct
 {
 long lSampCnt; /* Sample size to use */
 long lPad1;
 double dMaxSerr; /* LIM_ERROR if this std. error exceeded */
 long lPtnReps; /* Patterns to sample across */
 long lPad2;
 } SPEC;

lSampCnt Sample size to use when acquiring data
 Valid Entries: 1 to 10,000,000
 Default: 100
dMaxSerr Value of standard error which is tolerated, used to identify

wrong pattern or other setup error.
 Valid Entries: any integer greater than or equal to 0
 Default: 0.5
lPtnReps Patterns to sample across. The larger this number is the more

accurate the measurement will be with regards to absolute time
measurements. This is due to the effect of aver

 Valid Entries: 1 -
 Default: rRateInf - 10
 dDdjtInf - 1
 dRjpjInf - 1
lPad1,lPad2 Internal parameters, do not modify.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 17

2-8 DDJ+DCD DATA STRUCTURE

This output structure contains all of the measurement data used to calculate DDJ+DCD in the
Datacom Known Pattern With Marker Tool. This tool contains a pointer to an array of DDJT
structures with an element for each transition in the pattern.

typedef struct
 {
 double dMean; /* Average value for this span */
 double dVars; /* Variance value for this span */
 double dMini; /* Minimum value for this span */
 double dMaxi; /* Maximum value for this span */
 double dDdjt; /* Static displacement for this span (UI) */
 double dFilt; /* DDJT after LPF is applied (UI) */
 long lNumb; /* Number of measures in this span */
 long lPad1;

} DDJT;

dMean Average value for this span. This is the time elapsed from the
first edge in the pattern to transition associated with this
structure. In an ideal signal (one which contains no jitter),
this value would be an integer multiple of the bit period. Any
deviation there of is considered jitter and becomes an element
of the DDJ+DCD histogram.

dVars Variance value for this span. This is net deviation of the
mean to the ideal bit transition.

dMini Minimum value for this span. This is the earliest transition
for this bit period. It defines the earliest transition for
this location in the pattern.

dMaxi Maximum value for this span. This is the latest transition for
this bit period. It defines the latest transition for this
location in the pattern.

dDdjt Static displacement for this span (UI).
dFilt DDJT after HPF is applied (UI).
lNumb Number of measures in this span.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 18

2-9 PATTERN STRUCTURE

The pattern structure is used internally by the system as part of the measurement process. When
tools are used that reference a pattern, they have a member called sPtnName in their binary packet.
This field holds the name of the pattern file that is to be used. Whenever a binary packet is sent
which contains a new value in sPtnName, a new internal representation is loaded.

typedef struct
 {
 char *bHex; /* Pointer to raw hex data */
 short *iPos; /* Pointer to run length encoded data */
 short *iCnt; /* Pointer to start/stop counts to use */
 double *dCal; /* Pointer to calibration data if present */
 long lLpat; /* The length of pattern in UI */
 long lEpat; /* The edge count of pattern pos or neg */
 double dCalUI; /* Cal data taken at this unit interval */
 } PATN;

2-10 FFT WINDOW AND ANALYSIS STRUCTURE

This is an input structure used to specify the type of windowing function to use when generating an
FFT. It also contains information for an average calculation that is performed on the resulting FFT
for some specific tools such as Low Frequency Modulation Analysis.

typedef struct
 {
 long lWinType; /* Window type, use FFT constants above */
 long lPadMult; /* Power of 2 to use for padding (0 - 5) */
 double dCtrFreq; /* Frequency to assess yavg in plot array */
 double dRngWdth; /* Width over which to assess yavg */
 double dAlphFct; /* Alpha factor for Kaiser-Bessel window */
 } FFTS;

lWinType Window type, use one of the following:
 FFT_RCT Rectangular window
 FFT_KAI Kaiser-Bessel window
 FFT_TRI Triangular window
 FFT_HAM Hamming window
 FFT_HAN Hanning window
 FFT_BLK Blackman window
 FFT_GAU Gaussian window

lPadMult Power of 2 to use for padding (0 - 5)

Default: FFT_KAI

 Default: 4
dCtrFreq Frequency over which to assess dYavg in plot array (Hz)
 Default: 100.0
dRngWdth Width over which to assess dYavg (Hz)

dAlphFct Alpha factor when using Kaiser-Bessel window

Default: 10.0

 Default: 8.0

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 19

2-11 QTYS STRUCTURE

QTYS is an output structure used to return scope results.

typedef struct
 {
 double dMaxVolts;
 double dMinVolts;
 double dAvgVolts;
 double dPkPkVolt;
 double dRmsVolts;
 double dTopVolts;
 double dBtmVolts;
 double dMidVolts;
 double dAmplVolt;
 double dOvrShoot;
 double dUndShoot;
 double dMaskFail;
 double dMaskRgn1;
 double dMaskRgn2;
 double dMaskRgn3;
 double dMaskTotl;
 MEAS mRiseTime;
 MEAS mFallTime;
 } QTYS;

dMaxVolts Vmax in Volts
dMinVolts Vmin in Volts
dAvgVolts Vavg in Volts
dPkPkVolt Vpk-pk (Vmax – Vmin) in Volts
dRmsVolts Vrms in Volts
dTopVolts Vtop in Volts, flat top
dBtmVolts Vbase in Volts, flat base
dMidVolts Vmid (Vtop + Vbase) / 2 in Volts
dAmplVolt (Vtop – Vbase) in Volts
dOvrShoot Vovershoot in Volts
dUndShoot Vundershoot in Volts
dMaskFail Total Mask violations
dMaskRgn1 Mask Violations in Region 1
dMaskRgn2 Mask Violations in Region 2
dMaskRgn3 Mask Violations in Region 3
dMaskTotl Total Mask hits, both In and Outside the Mask
mRiseTime Structure holding Risetime information
mFallTime Structure holding Falltime information

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 20

2-12 MEAS STRUCTURE

MEAS is an output structure used to return scope rise/fall time results.

typedef struct
 {
 long lGood;
 long lPad1;
 double dValu;
 double dXpnt[2];
 double dYpnt[2];
 } MEAS;

lGood Flag indicates valid output data in structure.
DValu Field holds rise or fall time result
dXpnt[2] The starting and ending threshold location in secs.
dYpnt[2] The starting and ending threshold location in Volts.

2-13 OHIS STRUCTURE

OHIS is an output structure used to return oscilloscope histogram results.

typedef struct
 {
 PLTD tPlot;
 long lCoun;
 long lPad1;
 double dAver;
 double dMini;
 double dMaxi;
 double dSdev;
 double dEpsl;
 double dVars;
 } OHIS;

tPlot Plot structure that holds the histogram representation
lCoun Count of the total number of hits in the histogram
dAver Average of all the data contained in the histogram
dMini Minimum of all the data contained in the histogram
dMaxi Maximum of all the data contained in the histogram
dSdev Standard deviation of all the data contained in the histogram
dEpsl,dVars Used internally, DO NOT ALTER!

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 21

2-14 MASK STRUCTURE
MASK is an input structure that is used to specify an Eye Mask to be used in the Scope Tool.

typedef struct
 {
 /* Absolute voltages */
 double dVmask;
 double dVoffs; /* No longer used */
 double dV1pas;
 double dTmask;
 double dToffs; /* No longer used */
 double dTflat;
 double dV0pas;
 /* Relative voltages */
 double dXwdUI;
 double dXflUI;
 double dYiPct;
 double dV1Rel;
 double dV0Rel;
 } MASK;

dVmask Absolute width of mask in secs.
dVoffs No longer used, this field can be ignored
dV1pas Distance from the top of the mask to the upper region in Volts.
dTmask Absolute position of the center of the mask in secs.
dToffs No longer used, this field can be ignored
dTflat Width of the top and bottom flats of the mask in secs.
dV0pas Distance from the bottom of mask to the lower region in Volts.
dXwdUI Relative width of mask in UI
dXflUI Relative width of the top and bottom flats of the mask in UI
dYiPct Height of inner region of mask relative to the data, expressed as %
dV1Rel Distance from top of inner region to top region expressed as a

% of data height
dV0Rel Distance from bottom of inner region to bottom region

expressed as a % of data height

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 22

2-15 KPWM STRUCTURE

KPWM is a measurement structure used by some of the PCI Express and Serial ATA tools.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 char sPtnName[128]; /* Name of pattern file to be used */
 long lAcqEdge; /* Reference Edge and RJ+PJ measure edge */
 /* Could be: EDGE_FALL or EDGE_RISE */
 long lOneEdge; /* If true, DCD+ISI is rise or fall only */
 long lQckMode; /* Enable quick mode, external arm only */
 long lIntMode; /* Interpolation mode, non-zero is linear */
 long lErrProb; /* Error probability for Total Jitter */
 /* Valid range is (-1 to -16) */
 long lHeadOff; /* Header offset, external arming only */
 double dCornFrq; /* Corner Frequency for RJ+PJ */

 SPEC tRateInf; /* Parameters to acquire Bit Rate */
 SPEC tDdjtInf; /* Parameters to acquire DCD+DDJ */
 SPEC tRjpjInf; /* Parameters to acquire RJ+PJ */

 double dLpfFreq; /* Low pass filter corner frequency */
 double dHpfFreq; /* High pass filter corner frequency */
 double dLpfDamp; /* Low pass filter 2nd order damp_factor */
 double dHpfDamp; /* High pass filter 2nd order damp_factor */
 long lLpfMode; /* LPF mode, see constants above */
 long lHpfMode; /* HPF mode, see constants above */

 long lFndEftv; /* Flag to attempt effective jitter calc */
 long lMinEftv; /* Min probability for effective fit: -4 */
 long lMaxEftv; /* Max probability for effective fit: -12 */

 long lFiltEnb; /* Enable IDLE character insertion filter */
 long lQckTjit; /* Fast total jitter calc - no bathtubs! */
 long lPllComp; /* Enable PLL Curve Spike Compensation */
 long lPad0;

 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 PATN tPatn; /* Internal representation of pattern */

 double dWndFact; /**/
 long lMaxStop; /* These values are all used internally */
 long lPtnRoll; /* DO NOT ALTER! */
 long lAdjustPW; /**/
 long lPad1;

 double dBitRate; /* Bit Rate that was measured */
 DDJT *tDdjtData; /* Raw DCD+DDJ measurements */
 long lDdjtRsvd; /* Used to track memory allocation */
 double *dRjpjData; /* Raw variance data */
 long lRjpjRsvd; /* Used to track memory allocation */
 long *lPeakData; /* Tracks detected spikes in RJ+PJ data */
 long lPeakNumb; /* Count of detected spikes */
 long lPeakRsvd; /* Used to track memory allocation */

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 23

 long lHits; /* Total samples for DDJT+RJ+PJ combined */
 double dDdjt; /* DCD+DDJ jitter */
 double dDjit; /* Deterministic jitter */
 double dRjit; /* Random jitter */
 double dPjit; /* Periodic jitter */
 double dTjit; /* Total jitter */
 double dEftvLtDj; /* Effective jitter when enabled */
 double dEftvLtRj;
 double dEftvRtDj;
 double dEftvRtRj;

 PLOT tRiseHist; /* DCD+DDJ histogram of rising edges */
 PLOT tFallHist; /* DCD+DDJ histogram of falling edges */
 PLOT tNormDdjt; /* DCD+DDJvsUI for external arming only */
 PLOT tHipfDdjt; /* High Pass Filtered DCD+DDJvsUI */
 PLOT tLopfDdjt; /* Low Pass filtered DCD+DDJvsUI */
 PLOT tBathPlot; /* Bathtub plot */
 PLOT tEftvPlot; /* Effective Bathtub plots, if enabled */
 PLOT tSigmNorm; /* 1-Sigma plots */
 PLOT tFreqNorm; /* Frequency plots */
 } KPWM;

tParm A structure of type PARM that contains acquisition parameters.

The PARM structure is discussed in full detail in Section 2-4.
tFfts A structure of type FFTS that contains the setup parameters

for the FFT. See Section 2-10 for further details on FFTS
structures.

sPtnName A character array containing the name of pattern file to be
used, the file must exist in the pattern directory (C:\VISI\)
on the SIA3000 or else an error will be returned. The first
time a measurement is performed the pattern is loaded in
structure tPatn.

 Valid Entries: a valid file name (including extension)
 Default: “k285.ptn”
lAcqEdge Reference Edge and RJ+PJ measure edge: EDGE_FALL or EDGE_RISE.
 Default: EDGE_RISE
lOneEdge This parameter is used to enable a special mode where only

rising or falling edges are used to access DCD+ISI, as is the
case for the special PCI Express Clock Tool. Setting this
parameter to 1 will enable this special mode.

 Valid Entries: 0 – disable single edge mode
 1 – enable single edge mode
 Default: 0
lQckMode Parameter used to enable Quick Mode. QuickMode uses a sparse

sample of data points for the PJ and RJ estimates. In this
mode, the accuracy of these estimates is greatly reduced
depending on the application. Setting this structure element
to 1 enables quick mode, valid with external arm only.

 Valid Entries: 0 – disable quick capture mode
 1 – enable quick capture mode
 Default: 0
lIntMode Parameter used to enable linear Interpolation mode for RJ & PJ

estimate. RJ & PJ are calculated based on the frequency data
of the noise. Since data points are captured only on the
single polarity transitions, interpolation must be performed
between sample points. There are two types of interpolation
available in the SIA3000: linear and cubic. Setting this
parameter to 1 will enable linear interpolation; otherwise,
cubic interpolation will be used.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 24
 Valid Entries: 0 – use cubic interpolation in FFT data

 1 – use linear interpolation in FFT data
 Default: 0
lErrProb Error probability level for Total Jitter. Total Jitter is

calculated based on the desired Error Probability level. This
value is used in conjunction with the bathtub curve after the
successful completion of a tail-fit in order to project the
value of Total Jitter.

 Valid Entries: -1 to -16
 Default: -12
lHeadOff Header offset parameter, for use in packet-ized data which may

have a frame header before the test pattern. This offset value
can be used to skip past header information and into the
repeating data pattern stream. This can be useful when
analyzing data from disk drives when the pattern marker may be
synchronized with the start of frame data.

 Valid Entries: 0 to 10,000,000-pattern length I
 Default: 0 (indicating no header present)
dCornFrq Corner Frequency for RJ & PJ estimate in Hertz. This value is

used in conjunction with the Bit Rate and pattern to determine
the maximum stop count to be used to acquire RJ & PJ data. A
lower value increase acquisition time.

 Valid Entries: Bit-Rate /10,000,000 to Bit-Rate I
 Default: 637e3 (637kHz – Fibre Channel 1X)
tRateInf A structure of type SPEC used by the Bit Rate measurement. The

structure holds measurement specific parameters such as sample
count, pattern repeats and maximum standard error. See Section
2-7 for a description of the SPEC structure and its elements.

tDdjtInf A structure of type SPEC used by the Data Dependant Jitter
(DDJ) measurement. The structure holds measurement specific
parameters such as sample count, pattern repeats and maximum
standard error. See Section 2-7 for a description of the SPEC
structure and its elements.

 tRjpjInf A structure of type SPEC used by RJ & PJ estimate. The
structure holds measurement specific parameters such as sample
count, pattern repeats and maximum standard error. See Section
2-7 for a description of the SPEC structure and it’s elements.

dLpfFreq Low pass filter frequency in Hertz. This is only valid when
lLpfMode is enabled.

dHpfFreq High pass filter frequency in Hertz. This is only valid when
lHpfMode is enabled.

dLpfDamp Low pass damping factor. This is only valid when lLpfMode is
enabled, and a 2nd order filter is selected.

dHpfDamp High pass damping factor. This is only valid when lHpfMode is
enabled, and a 2nd order filter is selected.

lLpfMode Low pass filter mode. One of the following may be used:
 Valid Entries: FILTERS_DISABLED
 BRICKWALL_FILTER
 ROLLOFF_1STORDER
 ROLLOFF_2NDORDER
 PCIX_CLOK_FILTER
 Default: FILTERS_DISABLED
lHpfMode High pass filter mode. One of the following may be used:
 Valid Entries: FILTERS_DISABLED
 BRICKWALL_FILTER
 ROLLOFF_1STORDER
 ROLLOFF_2NDORDER
 PCIX_CLOK_FILTER
 Default: FILTERS_DISABLED

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 25

lFndEftv Flag to indicate
that an
effective jitter
calculation is
to be attempted.
Effective Jitter
is a means of
estimating the
effective
deterministic
jitter as it
relates to a .5
error
probability.
This is done by
first capturing
the bathtub
curve using
conventional RJ & DJ estimation techniques; then,
extrapolating from a few points in the bathtub curve to the .5
error probability level to estimate effective DJ. Effective RJ
is extracted based on the curve that was fitted to the sample
points. These values should only be used to correlate to a
BERT Scan measurement and should not be used as a vehicle for
quantifying jitter. This technique was developed to allow BERT
systems to correlate with SIA3000 results.

l

l

Extrapolated Bathtub curve versus real bathtub
curve as seen by BERT

E
Sampled
dxtrapolated

Ch bActual
h b

 Valid Entries: 0 – disable effective jitter estimate
 1 – enable effective jitter estimate
 Default: 0
lMinEftv, lMaxEftv Defines the error rates at which the eye width calculation

will be used in the estimating effective jitter components.
lMinEftv and lMaxEftv define points on the bathtub curve from
which the extrapolated RJ curve is traced. Then, where this
extrapolated curve intersects the .5 error probability, the
effective DJ is calculated.

 Valid Entries: -1 to –16 (indicating 10-1 to 10-16 error rate)
 Default: -4 and –12 (lMaxEftv: 10-4 BER, lMinEftv: 10-12 BER)
lFiltEnb Flag to enable IDLE character insertion filter. When enabled

any edge measurements that are not within ± 0.5 UI will be
discarded. This filter is used in systems, which may insert an
idle character from time to time to compensate for buffer
under-run/overrun issues. In those instances where an idle
character was inserted during a measurement, the edge
selection may be off. If this parameter is greater than or
equal to one, the filter is enabled and measurements that
differ from the mean by ± 0.5 UI will be discarded.

 Valid Entries: 0 – disable idle character filter
 1 – enable idle character filter

Default: 0
lQckTjit Flag to indicate a fast total jitter calculation will be

performed using simple linear calculation of Total Jitter
instead of convolving the DJ Probability Density Functions and
the RJ Probability Density Functions. This calculation is
based on the formula [TJ = DJ + n*RJ] where DJ and RJ are
measured, and n is the multiplier based on a theoretical
Gaussian distribution

 Valid Entries: 0 do not use convolution for TJ est.
1 Convolve DJ and RJ for TJ est.

 Default: 0

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 26

lPllComp Enable PLL Curve Spike Compensation. If a low frequency spike
is detected in the Power Spectral Density (FFT) plot, it is
automatically removed and it’s energy is dispersed evenly
across the rest of the Power Spectral Density.

 Default: 0
lGood Flag indicates valid output data in structure. A positive

value in this parameter indicates that the measurement was
completed successfully, and, valid data can be extracted from
this structure.

tPatn Structure of type PATN which holds all of the pattern
information with regards to pattern length, pattern content,
marker placement relative to location in pattern and other
pattern specific metrics. (See Section 2-9 for a detailed
description of the PATN structure elements.) This is an
internal structure that the system uses to store pattern
information and does not need to be altered by the user. The
first time a measurement is performed the pattern is loaded
into tPatn which is used internally for all subsequent
acquisition and analysis.

dBitRate The bit rate is measured and placed in this field (Hertz).
lHits Total samples taken to calculate DDJ, RJ, and PJ values

combined. Gives an indication of the actual data to support
the calculated total jitter number.

dDdjt DCD+DDJ measurement in seconds. This measurement is taken from
the mean deviation of each pattern edge from it’s ideal
location. All deviations are placed in a histogram and the
peak-peak value from this histogram is placed in this
structure location.

dDjit Deterministic jitter measurement, in seconds. This is the
DCD+DDJ summed with the Periodic Jitter.

dRjit Random jitter estimate, in seconds.
dPjit Periodic jitter measurement, in seconds.
dTjit Total jitter estimate, in seconds.
dEftvLtDj Effective Deterministic(eDJ) jitter estimate, in seconds, for

the left side of the bathtub curve. Total effective DJ is
calculated by adding dEftvLtDj to dEftvRtDj. In order to calculate
the effective jitter the flag lFndEftv must be enabled. Since the
effective jitter is calculated by optimizing a curve-fit to
the bathtub curve, a result is not guaranteed. If the curve-
fit is unsuccessful, a negative value will be returned in this
variable.

dEftvLtRj Effective Random(eRJ) jitter estimate, in seconds, for the
left side of the bathtub curve. Total effective RJ is
calculated by averaging dEftvLtRj and dEftvRtRj. In order to
calculate the effective jitter the flag lFndEftv must be enabled.
Since the effective jitter is calculated by optimizing a
curve-fit to the bathtub curve, a result is not guaranteed. If
the curve-fit is unsuccessful, a negative value will be
returned in these variables.

dEftvRtDj Effective Deterministic(eDJ) jitter estimate, in seconds, for
the right side of the bathtub curve. Total effective DJ is
calculated by adding dEftvLtDj to dEftvRtDj. In order to calculate
the effective jitter the flag lFndEftv must be enabled. Since the
effective jitter is calculated by optimizing a curve-fit to
the bathtub curve, a result is not guaranteed. If the curve-
fit is unsuccessful, a negative value will be returned in this
variable.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 27

dEftvRtRj Effective Random(eRJ) jitter estimate, in seconds, for the
right side of the bathtub curve. Total effective RJ is
calculated by averaging dEftvLtRj and dEftvRtRj. In order to
calculate the effective jitter the flag lFndEftv must be enabled.
Since the effective jitter is calculated by optimizing a
curve-fit to the bathtub curve, a result is not guaranteed. If
the curve-fit is unsuccessful, a negative value will be
returned in this variable.

tRiseHist Structure of type PLOT which contains all of the plot
information for generating a DCD+DDJ histogram of rising
edges. See Section 2-3 for details concerning the PLOT
structure and its elements.

tFallHist Structure of type PLOT which contains all of the plot
information for generating a DCD+DDJ histogram of falling
edges. See Section 2-3 for details concerning the PLOT
structure and its elements.

tNormDdjt Structure of type PLOT which contains all of the plot
information for generating a DCD+DDJ versus UI plot. This plot
is only valid in Pattern Marker mode. See Section 2-3 for
details concerning the PLOT structure and its elements.

tHipfDdjt Structure of type PLOT which contains all of the plot
information for generating an DCD+DDJ versus UI plot with the
DCD+DDJ High Pass Filter enabled. This plot is only valid in
Pattern Marker Mode and dDdjtHpf is a non-negative number. (For
a discussion on the High Pass Filter Function for DCD+DDJ
data, see dDdjtHpf above.) When dDdjtHpf is enabled, the dDdjt
value is calculated based on applying the dDdjtHpf filter. See
Section 2-3 for details concerning the PLOT structure and its
elements.

tLopfDdjt Structure of type PLOT \which contains all of the plot
information for generating an DCD+DDJ versus UI plot with the
DCD+DDJ Low Pass Filter enabled. This plot is only valid in
Pattern Marker Mode and dDdjtLpf is a non-negative number. (For
a discussion on the Low Pass Filter Function for DCD+DDJ data,
see dDdjtLpf above.) See Section 2-3 for details concerning the
PLOT structure and its elements.

tBathPlot Structure of type PLOT which contains all of the plot
information for generating a Bathtub curve. See Section 2-3
for details concerning the PLOT structure and its elements.

tEftvPlot Structure of type PLOT which contains all of the plot
information for generating an Bathtub curve based on Effective
Jitter if lFndEftv is set and a valid fit is obtained. (For a
detailed description of Effective Jitter, see lFndEftv above.)
See Section 2-3 for details concerning the PLOT structure and
its elements.

tSigmNorm Structure of type PLOT which contains all of the plot
information for generating an 1-Sigma versus UI plot. (x-axis
can be converted to time from UI based on dBitRate value.) This
plot describes the standard deviation for each accumulated
time sample. See Section 2-3 for details concerning the PLOT
structure and its elements.

tFreqNorm Structure of type PLOT which contains all of the plot
information for generating a Jitter versus Frequency plot. See
Section 2-3 for details concerning the PLOT structure and its
elements.

The following parameters are for internal use only. They are presented for reference only. Do not try

to read the values or parse the structures nor try to write the various locations.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 28

dWndFact, lMaxStop, lPtnRoll, lAdjustPW These values are for internal use only,

DO NOT ALTER or try to use.
tDdjtData Structure which contains the raw DCD+DDJ measurements. This

value is for internal use only, DO NOT ALTER or try to use.
lDdjtRsvd Used to track memory allocation for tDdjtData structures. This

value is for internal use only, DO NOT ALTER or try to use.
dRjpjData Raw variance data used for the calculation of RJ and PJ. This

structure is for internal use only, DO NOT ALTER or try to
use.

lRjpjRsvd Used to track memory allocation for dRjpjData values. This value
is for internal use only, DO NOT ALTER or try to use.

lPeakData Tracks detected spikes in RJ+PJ data. This value is for
internal use only, DO NOT ALTER or try to use.

lPeakNumb Count of detected spikes, indicates the number of values in
the lPeakData array.

lPeakRsvd Used to track memory allocation for lPeakData values. This value
is for internal use only, DO NOT ALTER or try to use.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 29

2-16 ADJACENT CYCLE JITTER TOOL

The Adjacent Cycle Jitter tool is used to capture period deviation information for two adjacent cycles.
This measurement is called out in a few standards as a means to estimate short-term jitter. Although this
metric has limited value in the physical world, it is a required measurement in many PLL test standards.

tPER1 tPER2

∆tPER1 = tPER2 - tPER1

tPER1 tPER2

∆tPER2 = tPER2 - tPER1

tPER1 tPER2

∆tPERn = tPER2 - tPER1

dM
in

i

dM
ea

n

dM
ax

i

Histogram of n number
of ∆tPER measurements

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 double dUnitInt; /* Unit Interval to assess Total Jitter */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lErrProb; /* Error probability for Total Jitter */
 /* Valid range is (-1 to -16) */
 long lTailFit; /* If non-zero a tail-fit will be tried */
 long lForcFit; /* If non-zero use the force-fit method */
 long lMinHits; /* Minimum hits before trying tail-fit */
 long lFndEftv; /* Flag to attempt effective jitter calc */
 long lMinEftv; /* Min probability for effective fit: -4 */
 long lMaxEftv; /* Max probability for effective fit: -12 */
 long lAutoFix; /* If true perform a pulsefind as req'd */
 long lDutCycl; /* If non-zero make duty cycle measurement*/
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */

 long lMeasCnt; /* Number of hits in measured normal data */
 double dMeasMin; /* Minimum value in measured normal data */
 double dMeasMax; /* Maximum value in measured normal data */
 double dMeasAvg; /* Average value of measured normal data */
 double dMeasSig; /* 1-Sigma value of measured normal data */

 long lNormCnt; /* Hits in adjacent cycle normal data */
 long lPad1;
 double dNormMin; /* Min. in adjacent cycle normal data */
 double dNormMax; /* Max. in adjacent cycle normal data */
 double dNormAvg; /* Avg. of adjacent cycle normal data */
 double dNormSig; /* 1-Sig of adjacent cycle normal data */

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 30

 long lTotlCnt; /* # of hits in measured accumulated data */
 long lPad2;
 double dTotlMin; /* Min. in measured accumulated data */
 double dTotlMax; /* Max. in measured accumulated data */
 double dTotlAvg; /* Avg. of measured accumulated data */
 double dTotlSig; /* 1-Sig of measured accumulated data */

 long lAcumCnt; /* Hits in adjacent cycle accumulated data*/
 long lPad3;
 double dAcumMin; /* Min. in adj. cycle accumulated data */
 double dAcumMax; /* Max. in adj. cycle accumulated data */
 double dAcumAvg; /* Avg. of adj. cycle accumulated data */
 double dAcumSig; /* 1-Sig of adj. cycle accumulated data */

 double dDutyMax; /* Maximum value of duty cycle measurement*/
 double dDutyMin; /* Minimum value of duty cycle measurement*/
 double dDutyAvg; /* Average value of duty cycle measurement*/

 long lBinNumb; /**/
 long lPad4; /* These values are all used internally */
 double dLtSigma[PREVSIGMA];/* as part of the measurement process */
 double dRtSigma[PREVSIGMA];/* DO NOT ALTER! */
 double dFreq; /**/

 PLTD tNorm; /* Histogram of prev. adj. cycles */
 PLTD tAcum; /* Histogram of all adj. cycles combined */
 PLTD tMaxi; /* Histogram of max across all adj. cycles*/
 PLTD tBath; /* Bathtub curves determined from PDF */
 PLTD tEftv; /* Effective Bathtub curves if enabled */
 TFIT tTfit; /* Structure containing tail-fit info */
 } ACYC;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
dUnitInt Unit Interval (UI) in seconds to assess Total Jitter as a

percent of UI. Set this parameter as the metric against which
TJ will be evaluated as a percentage. It is displayed as the
span of the x-axis in a bathtub curve. This parameter is only
used if tail-fit is enabled.

 Valid Entries: any number greater than 0 which represents the
 time (in secs) of a bit period or unit

interval.
 Default: 1e-9 (1ns)
lPassCnt This parameter is a bi-directional structure element that

tracks the number of acquisitions since last reset. This flag
can be read after an execution or set prior to an exectution.
Setting this parameter to 0 essentially resets this register.
A measurement can be performed repeatedly with the same HIST
structure. In this case, data is then accumulated in the tAcum
and tMaxi plot structures. When lPassCnt is set to 0 the tAcum and
tMaxi plot structures are flushed. It will be automatically
incremented by the next measurement.

 Valid Entries: any integer greater than or equal to 0
 Default: 0

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 31

lErrProb Error probability level for Total Jitter. Total Jitter is
calculated based on the desired Error Probability level. This
value is used in conjunction with the bathtub curve after the
successful completion of a tail-fit in order to project the
value of Total Jitter.

 Valid Entries: -1 to -16
 Default: -12
lTailFit Flag to indicate whether to perform a TailFit on data in tAcum

data array. If non-zero, a tail-fit will be attempted on the tAcum
data array. The lGood element of the tTfit structure will indicate
if the TailFit was successful. Any positive interger for this
parameter will initiate the TailFit algorithm.

 Valid Entries: 0 – disable TailFit
 1 – enable TailFit
 Default: 0
lForcFit If non-zero uses the force-fit method. If set to zero, the

measurement will continue to loop until a reasonably accurate
TailFit can be achieved.

 Valid Entries: 0 – do not use force fit.
 1 – force a fit using lMinHits number of hits.
 Default: 0
lMinHits Minimum hits before attempting a tail-fit in 1000's; the default

is 50. The larger the number the more likely a valid tailfit will
be found.

 Valid Entries: any integer ≥ 50
 Default: 50
lFndEftv Flag to indicate that an effective jitter calculation is to be

attempted. This is necessary for those instances in which correlation
to a BERT scan is necessary. In all other practical applications,
this parameter and it’s resultant measurement should be ignored.

 Valid Entries: 0 – do not estimate effective jitter values
 1 – calculate effective jitter values
 Default: 0
lMinEftv, lMaxEftv Defines the range of the bathtub curve that is to be used

to calculate an effective jitter value.
 Valid Entries: -1 to –16 with lMinEftv < lMaxEftv
 Default: -4 for MaxEftv and –12 for MinEftv
lAutoFix Flag indicating whether to perform a pulse-find as required. Setting

this value to any integer greater than zero tells the measurement to
perform a pulse find if needed. The system will know if a
measurement was recently performed and if a pulse find is necessary.

 Valid Entries: 0 – No pulsefind prior to measurement
 1 – Pulsefind if the measurement mode changed.
 Default: 0
lDutCycl Flag to indicate whether to perform a duty cycle measurement. This

measurement is done using three time measurement markers. It
measures the time elapsed from a rising edge to falling edge to
rising edge. This measurement is performed tParm.SampCnt number of
times.

 Valid Entries: 0 – do not perform a Duty Cycle measurement
 1 – perform a Duty Cycle measurement.
 Default: 0
lGood Flag indicates valid output data in structure.
lMeasCnt Number of hits in measured normal data.
dMeasMin Minimum period measurement as captured from the latest

execution of adjacent cycle jitter measurement.
dMeasMax Maximum period measurement as captured from the latest

execution of adjacent cycle jitter measurement.
dMeasAvg Average period measurement as captured from the latest

execution of adjacent cycle jitter measurement.
dMeasSig Standard deviation (1σ) of period measurements as captured

from the latest execution of the measurement.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 32

 lNormCnt Number of measurements captured in latest adjacent cycle
jitter execution.

dNormMin Minimum measured value of adjacent cycle period deviation. This
value indicates the smallest amplitude of period change between
two adjacent periods. This value is most likely a negative number
indicating that the measurement is actually the largest decrease
in period between two adjacent periods.

dNormMax Maximum measured value of adjacent cycle period deviation. This
value indicates the largest amplitude of period change between
two adjacent periods. This value is most likely a positive value
indicating that this register contains the largest increase in
periods between two adjacent periods. To identify the overall
largest change in periods, compare the absolute value of dNormMin
and dNormMax.

dNormAvg Average value of adjacent cycle period deviation. This value
should be zero indicating that the period amplitude on average is
remaining fixed. If this value is something other than zero, the
period was shifting during the measurement. In most cases, the
period of a clock signal will have instantaneous amplitude
deviations (also known as jitter) but on average, the periods
tend toward the same amplitude.

dNormSig Standard deviation (1σ) of adjacent cycle jitter measurements as
captured from the latest execution of the measurement.

lTotlCnt Number of hits in measured accumulated period measurement data.
This accumulation is of the absolute period measurements and not
the adjacent cycle jitter measurements.

dTotlMin Minimum period measurement found in the accumulated data.
dTotlMax Maximum period measurement found in the accumulated data.
dTotlAvg Average period measurement found in the accumulated data.
dTotlSig Standard deviation (1σ)of period measurements found in the

accumulated data.
lAcumCnt Number of measurements in adjacent cycle jitter accumulated

data.
dAcumMin Minimum adjacent cycle jitter measurement found in accumulated

data.
dAcumMax Maximum adjacent cycle jitter measurement found in accumulated

data.
dAcumAvg Average value of adjacent cycle jitter found in accumulated

data.
dAcumSig Standard deviation (1σ) of accumulated adjacent cycle jitter

data.
tNorm Structure of type PLTD containing all of the necessary

information to draw a Histogram of latest adjacent cycle jitter
measurements from most recent execution. See Section 2-3 for
details of the PLTD structure and its elements.

tAcum Structure of type PLTD containing all of the necessary
information to draw a Histogram of accumulated data from all
adjacent cycle acquisitions. See Section 2-3 for details of the
PLTD structure and its elements.

tMaxi Structure of type PLTD containing all of the necessary
information to draw a Histogram with the maximum number of
occurrences of a given measurement in all previous executions of
adjacent cycle jitter. See Section 2-3 for details of the PLTD
structure and its elements.

tBath Structure of type PLTD containing all of the necessary
information to draw a Bathtub curve based on the Probability
Density Function (PDF) of DJ and RJ as measured by the TailFit

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 33

routine (if enabled.) The data in this structure is only valid
when a successful tail-fit has been performed. See Section 2-3
for details of the PLTD structure and its elements.

tEftv Structure of type PLTD containing all of the necessary
information to draw an Effective Jitter Bathtub curve based on
the amplitude of effective DJ and effective RJ. The data in this
structure is only valid if lFndEftv is set and a valid fit is
obtained. See Section 2-3 for details of the PLTD structure and
its elements.

tTfit Structure of type TFIT containing all of the TailFit information
(including plot and limits.) This structure is only valid when a
successful tail-fit has been performed. See Section 2-3 for
details of the TFIT structure and its elements.

lBinNumb, dLtSigma, dRtSigma, dFreq Used internally, DO NOT ALTER!

void __stdcall FCNL_DefAcyc (ACYC *acyc)

This function is used to fill the acyc structure for the Adjacent Cycle Jitter tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted manually,
and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the ACYC structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
acyc - Pointer to a ACYC structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrAcyc (ACYC *acyc)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the acyc structure.

INPUTS
acyc - Pointer to a ACYC structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
#define FALSE 0
static ACYC cyc2cyc; //declare cyc2cyc to be a structure of
 //type ACYC
memset (&cyc2cyc, 0, sizeof (ACYC)); //clear the memory for cyc2cyc
FCNL_DefAcyc (&cyc2cyc); //set histogram structures to default
 //values
cyc2cyc.tparm.lChanNum = 1; //capture waveform on channel 1
cyc2cyc.tparm.lSampCnt = 10,000; //measure 10,000 samples per burst
cyc2cyc.lTailFit = TRUE; //indicate TailFit desired
cyc2cyc.lMinHits = 50,000; //don’t attempt a TailFit until at least
 //50,000 measurements have been
 //accuired.
cyc2cyc.lDutCycl = TRUE; //Measure true duty cycle my measuring
 //successive edges.

FCNL_RqstPkt (ApiDevId, &cyc2cyc, WIND_ACYC); //execute the measurement.
FCNL_RqstAll (ApiDevId, & cyc2cyc, WIND_ACYC); //get plot data

//print the worst case period decrease between two adjacent cycles.
printf(“Maximum Period Decrease in sample is %d\n”,ABS(cyc2cyc.dNormMin));

//print the worst case period increase between two adjacent cycles within the sample.

printf(“Maximum Period Increase in sample is %d\n”,ABS(cyc2cyc.dNormMax));
FCNL_ClrAcyc (&cyc2cyc); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 34

2-17 CLOCK ANALYSIS TOOL

This tool combines a few different measurement tools in the SIA-3000. By doing this, a large number of
useful results can be displayed quickly. The lMeas parameter allows you to toggle on or off certain
measurements. The measurement settings provide the best configuration to a variety of users.

This ease of use means that there is less control over individual settings. There may be instances where
there is the need to have more control over a specific measurement. An example would be changing the
trigger delay on the oscilloscope, or measuring a histogram over two periods rather than single period
jitter. Another example would be to find very low frequency jitter below the (clock/1667) low cutoff
frequency of this tool. If you need access to more configuration settings, use one of the individual tools
instead.

typedef struct
 {
 PARM tParm; /* Contains acquisition parameters */
 long lPass; /* Acquisitions so far, set to 0 to reset */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lMeas; /* Measure flag, see defines above */
 long lInps; /* Input selection, see defines above */
 double dAttn[POSS_CHNS]; /* Attenuation factor (dB) - per channel */
 long lGood; /* Flag indicates valid data in structure */
 long lPad0;
 long lHistCnt[POSS_CHNS];/* Number of hits in accumulated edge data*/
 double dHistMin[POSS_CHNS];/* Minimum value in accumulated edge data */
 double dHistMax[POSS_CHNS];/* Maximum value in accumulated edge data */
 double dHistAvg[POSS_CHNS];/* Average value of accumulated edge data */
 double dHistSig[POSS_CHNS];/* 1-Sigma value of accumulated edge data */
 double dPwPl[POSS_CHNS]; /* Pulsewidth plus */
 double dPwMn[POSS_CHNS]; /* Pulsewidth minus */
 double dFreq[POSS_CHNS]; /* Carrier frequency */
 double dDuty[POSS_CHNS]; /* Duty Cycle */
 double dPjit[POSS_CHNS]; /* Periodic jitter on N-clk basis */
 double dCorn[POSS_CHNS]; /* Corner Frequency used for measurement */

 long lBinNumb[POSS_CHNS];/**/
 double dWndFact[POSS_CHNS];/* These values are all used internally */
 double dLtSigma[POSS_CHNS][PREVSIGMA];/* DO NOT ALTER! */
 double dRtSigma[POSS_CHNS][PREVSIGMA];/*******************************/

 QTYS qNorm[POSS_CHNS]; /* Normal channel quantities */
 QTYS qComp[POSS_CHNS]; /* Complimentary channel quantities */
 QTYS qDiff[POSS_CHNS]; /* Differential quantities */
 QTYS qComm[POSS_CHNS]; /* Common (A+B) quantities */
 TFIT tTfit[POSS_CHNS]; /* Structure containing tailfit info */

 long lPeakNumb[POSS_CHNS];/* Count of detected spikes */
 long lPeakRsvd[POSS_CHNS];/* Used to track memory allocation */
 long *lPeakData[POSS_CHNS];/* Tracks detected spikes in RJ+PJ data */

 PLTD tNorm[POSS_CHNS]; /* Normal channel voltage data */
 PLTD tComp[POSS_CHNS]; /* Complimentary channel voltage data */
 PLTD tDiff[POSS_CHNS]; /* Differential voltage data */
 PLTD tComm[POSS_CHNS]; /* Common (A+B) voltage data */
 PLTD tHist[POSS_CHNS]; /* Histogram of all acquires combined */
 PLTD tShrt[POSS_CHNS]; /* Total Jitter for SHORT Cycles */
 PLTD tLong[POSS_CHNS]; /* Total Jitter for LONG Cycles */
 PLTD tBoth[POSS_CHNS]; /* Total Jitter for LONG & SHORT Cycles */

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 35

 PLTD tFftN[POSS_CHNS]; /* Frequency plot data on 1-clock basis */
 PLTD tSave[POSS_CHNS]; /* Average Frequency plot before scaling */
 } CANL;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lPassCnt This parameter is a bi-directional structure element that

tracks the number of acquisitions since last reset. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets this register.
It will be automatically incremented when a measurement is
performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lPcnt This field specifies the voltage thresholds to be used when

calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV and lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lMeas Measure flag, this is a bitfield which may be created by

combining any or all of the following constants:
 CANL_MEAS_RISEFALL – Rise and Fall times are calculated
 CANL_MEAS_VTYPICAL – Vtop and Vbase are calculated
 CANL_MEAS_VEXTREME – Vmin and Vmax are calculated
 CANL_MEAS_OVERUNDR – Overshoot and Undershoot are calculated
 CANL_MEAS_WAVEMATH – Vavg and Vrms are calculated
 CANL_MEAS_TAILFITS – Enables Histogram tailfits
 CANL_MEAS_PERIODIC – Yields Hi-Freq Mod. results
 Default: All of the above are included
dAttn[n] Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
lGood Flag indicates valid data in structure
lHistCnt[n] Number of hits in accumulated edge data, per channel
dHistMin[n] Minimum value in accumulated edge data, per channel
dHistMax[n] Maximum value in accumulated edge data, per channel
dHistAvg[n] Average value of accumulated edge data, per channel
dHistSig[n] 1-Sigma value of accumulated edge data, per channel
dPwPl[n] Pulsewidth plus, per channel
dPwMn[n] Pulsewidth minus, per channel
dFreq[n] Carrier frequency, per channel
dDuty[n] Duty Cycle, per channel
dPjit[n] Periodic jitter on N-clk basis, per channel
dCorn[n] Corner Frequency used for measurement, per channel

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 36

lBinNumb[n],dWndFact[n],dLtSigma[n][m],dRtSigma[n][m] These values are for
internal use only, DO NOT ALTER or try to use.

qNorm[n] + Input channel quantities, per channel
qComp[n] - Input channel quantities, per channel
qDiff[n] Differential quantities, per channel
qComm[n] Common (A+B) quantities, per channel
tTfit[n] Structure containing tailfit info, per channel

lPeakNumb[n] Count of detected spikes, per channel
lPeakRsvd[n] Used to track memory allocation, per channel
lPeakData[n] Tracks detected spikes in RJ+PJ data, per channel

tNorm[n] Normal channel voltage data, per channel
tComp[n] Complimentary channel voltage data, per channel
tDiff[n] Differential voltage data, per channel
tComm[n] Common (A+B) voltage data, per channel
tHist[n] Histogram of all acquires combined, per channel
tShrt[n] Total Jitter for SHORT Cycles, per channel
tLong[n] Total Jitter forCycles, per channel
tBoth[n] Total Jitter for& SHORT Cycles, per channel
tFftN[n] Frequency data on 1-clock basis, per channel
tSave[n] Average Frequency before scaling, per channel

void __stdcall FCNL_DefCanl (CANL *canl)

This function is used to fill the canl structure for the Clock Analysis tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted manually,
and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the CANL structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
canl - Pointer to a CANL structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrCanl (CANL *canl)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the canl structure.

INPUTS
canl - Pointer to a CANL structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static CANL clk; //declare clk to a structure of type

 //CANL
memset (&clk, 0, sizeof (CANL)); //clear the memory for clk structure
FCNL_DefCanl (&clk); //set clk structures to default values

FCNL_RqstPkt (ApiDevId, &clk, WIND_CANL); //execute the measurement.
FCNL_RqstAll (ApiDevId, &clk, WIND_CANL); //get plot data

FCNL_ClrCanl (&clk); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 37

2-18 CLOCK STATISTICS TOOL

The Statistics panel displays the results of several basic clock parameters: mean, minimum,
maximum, 1-sigma, peak-to-peak, hits, frequency and duty cycle. Also displayed are the measured
Vstart, Vstop as well as the Vp-p, Vmax and Vmin of the input channels.

The Statistics panel provides a summary of the statistics from a single histogram of measurements of
the chosen function (period, rise-time, fall-time, positive pulse width and negative pulse width). The
tool reports the clock frequency with 9 digits of precision. Duty cycle is displayed in this tool.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lPfnd; /* Force a pulse-find before each measure */
 long lQckMeas; /* If true skip frequency and voltages */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dPwPavg; /* Contains the PW+ average value */
 double dPwPdev; /* Contains the PW+ 1-Sigma value */
 double dPwPmin; /* Contains the PW+ minimum value */
 double dPwPmax; /* Contains the PW+ maximum value */
 double dPwMavg; /* Contains the PW- average value */
 double dPwMdev; /* Contains the PW- 1-Sigma value */
 double dPwMmin; /* Contains the PW- minimum value */
 double dPwMmax; /* Contains the PW- maximum value */
 double dPerPavg; /* Contains the PER+ average value */
 double dPerPdev; /* Contains the PER+ 1-Sigma value */
 double dPerPmin; /* Contains the PER+ minimum value */
 double dPerPmax; /* Contains the PER+ maximum value */
 double dPerMavg; /* Contains the PER- average value */
 double dPerMdev; /* Contains the PER- 1-Sigma value */
 double dPerMmin; /* Contains the PER- minimum value */
 double dPerMmax; /* Contains the PER- maximum value */

 double dDuty; /* Contains the returned duty cycle */
 double dFreq; /* Contains the carrier frequency */
 double dVmin; /* Pulse-find Min voltage */
 double dVmax; /* Pulse-find Max voltage */
 } CLOK;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lPfnd If true force a pulse-find before each measure
lQckMeas If true skip frequency and voltages
lGood Flag indicates valid output data in structure.
dPwPavg Contains the PW+ average value
dPwPdev Contains the PW+ 1-Sigma value
dPwPmin Contains the PW+ minimum value
dPwPmax Contains the PW+ maximum value
dPwMavg Contains the PW- average value
dPwMdev Contains the PW- 1-Sigma value
dPwMmin Contains the PW- minimum value
dPwMmax Contains the PW- maximum value
dPerPavg Contains the PER+ average value

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 38

dPerPdev Contains the PER+ 1-Sigma value
dPerPmin Contains the PER+ minimum value
dPerPmax Contains the PER+ maximum value
dPerMavg Contains the PER- average value
dPerMdev Contains the PER- 1-Sigma value
dPerMmin Contains the PER- minimum value
dPerMmax Contains the PER- maximum value
dDuty Contains the returned duty cycle
dFreq Contains the carrier frequency
dVmin Pulse-find Min voltage
dVmax Pulse-find Max voltage

void __stdcall FCNL_DefClok (CLOK *clok)

This function is used to fill the clok structure for the Clock Statistics tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted manually,
and may be called repeatedly to reestablish initial conditions; however, this will impact test time.

Before calling this function, zero out the CLOK structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
clok - Pointer to a CLOK structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrClok (CLOK *clok)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the clok structure.

INPUTS
clok - Pointer to a CLOK structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static CLOK clkstat; //declare clkstat to a structure of type
 //CLOK
memset (&clkstat, 0, sizeof (CLOK)); //clear the memory for clkstat structure
FCNL_DefClok (&clkstat); //set clkstat structures to default values

FCNL_RqstPkt (ApiDevId, &clkstat, WIND_CLOK); //execute the measurement.
FCNL_RqstAll (ApiDevId, &clkstat, WIND_CLOK); //get plot data

FCNL_ClrClok (&clkstat); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 39

2-19 DATABUS TOOL

With the SIA-3000 Signal Integrity Analyzer and GigaView Databus software, single-ended and
differential clock and data signals can be characterized for timing, clock and data jitter, clock-to-data
skew, channel-to-channel skew and Bit Error Rate (BER) on up to ten channels in parallel. The analysis
is done using one reference clock and up to nine data channels. Users can input the setup and hold
specifications. Setup and Hold violations can be measured based on the actual mean of the data
histogram referenced to the clock edge.

For each data lane there are two histograms: one showing the transitions before the clock edge and one
showing the transitions after the clock edge. The tool also applies statistical long term BER in the form
of a bathtub curve. This measurement is used to determine long-term system reliability. If the jitter is too
high, the tool will indicate a failure.

The following example shows the Data signal connected to Channel 1 and Bit Clock Signal connected to
Channel 2. Therefore, two histograms can be made. One histogram represents a measurement of Data
RISING edges to clock reference edge, the other represents Data FALLING edges to the clock reference
edge.

These histograms would show many modes or distributions because there are many possible
relationships between clock and data edges. These histograms are filtered to show only those times that
relate to the measured Data edges closest in time to the Reference Clock Edge.

typedef struct
 {
 /* Input parameters */
 long lClokChn; /* Reference Clock channel */
 long lChanNum; /* Bitfield indicating channels to measure*/
 double dSetTime; /* Setup time to assess PASS/FAIL */
 double dHldTime; /* Hold time to assess PASS/FAIL */
 double dEyeSpec; /* Eye opening size to assess PASS/FAIL */
 double dUserVlt[POSS_CHNS];/* Array of user voltages */
 EYEH tDbus; /* Contains acquisition parameters */
 /* Output parameters */

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 40

 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dDutCycl; /* Duty cycle measurement of clock signal */
 HIST tHist; /* Contains output data for clock channel */
 EYEH tEyeh[POSS_CHNS]; /* Contains output data for enabled chans */
 /* The following are bitfields indicating */
 /* PASS/FAIL [0/1] for each channel */
 long lTypclSetHldPF; /* Means of histograms to setup/hold time */
 long lEyeOpenSpecPF; /* Eye opening spec (jitter only) */
 long lWorstSetHldPF; /* Histogram means w/jitter to setup/hold */
 /* The following indicate PASS only if all*/
 /* selected channels PASS [Pass=1;Fail=0] */
 long lTypclSetHldAll; /* Means of histograms to setup/hold time */
 long lEyeOpenSpecAll; /* Eye opening spec (jitter only) */
 long lWorstSetHldAll; /* Histogram means w/jitter to setup/hold */
 } DBUS;

lClokChn Reference Clock channel
 Default: 2
lChanNum Bitfield indicating channels to measure
 Default: 1
dSetTime Setup time to assess PASS/FAIL
 Default: 5e-10
dHldTime Hold time to assess PASS/FAIL
 Default: 5e-10
dEyeSpec Eye opening size to assess PASS/FAIL, in UI
 Default: 0.6
dUserVlt[n] Array of user voltages
 Default: 0.0
tDbus This is the same structure as is defined in the Random Data

With Bitclock tool. It contains all the acquisition parameters
that are used for the measurement, with the exception of those
defined directly above.

 Default: See Random Data With Bitclock Tool
lGood Flag indicates valid data in structure
dDutCycl Duty cycle measurement of clock signal
tHist This is the same structure as is defined for the Histogram

Tool. It contains all the output data for the clock channel.
tEyeh[n] This is an array of the same structures as are defined in the

Random Data With Bitclock tool. It contains all the output
data for each of the channels which a measurement is performed
on.

lTypclSetHldPF Means of histograms to setup/hold time, this is a bitfield
 indicating PASS/FAIL [0/1] for each channel
lEyeOpenSpecPF Eye opening spec, this is a bitfield
 indicating PASS/FAIL [0/1] for each channel
lWorstSetHldPF Histogram means w/jitter to setup/hold, this is a bitfield
 indicating PASS/FAIL [0/1] for each channel
lTypclSetHldAll Means of histograms to setup/hold time, this is a bitfield
 indicating PASS/FAIL [0/1] for each channel
lEyeOpenSpecAll Eye opening spec (jitter only) , this is a bitfield
 indicating PASS/FAIL [0/1] for each channel
lWorstSetHldAll Histogram means w/jitter to setup/hold, this is a bitfield
 indicating PASS/FAIL [0/1] for each channel

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 41

void __stdcall FCNL_DefDbus (DBUS *dbus)

This function is used to fill the dbus structure for the DataBus tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the DBUS structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
dbus - Pointer to a DBUS structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrDbus (DBUS *dbus)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the dbus structure.

INPUTS
dbus - Pointer to a DBUS structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static DBUS databus; //declare clkstat to a structure of type
 //DBUS
memset (&databus, 0, sizeof (DBUS)); //clear the memory for databus structure
FCNL_DefDbus (&databus); //set databus structures to default values

FCNL_RqstPkt (ApiDevId, &databus, WIND_DBUS); //execute the measurement.
FCNL_RqstAll (ApiDevId, &databus, WIND_DBUS); //get plot data in tEyeh[n]

FCNL_ClrDbus (&databus); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 42

2-20 DATACOM BIT CLOCK AND MARKER TOOL

This tool can operate either with the Clock Recovery option installed or with an external bit clock applied
to another input. A pattern marker is necessary and is possibly derived from the data pattern generator.
But, in many cases, this signal is not externally available and it is useful to have the SIA-3000 Pattern
Marker (PM50) option. The pattern requirements are such that it needs to be a repeating pattern.

typedef struct
 {
 PARM tParm; /* Contains acquisition parameters */
 char sPtnName[128]; /* Name of pattern file to be used */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lHeadOff; /* Header offset, external arming only */
 long lFftMode; /* 0=NoFFT, 1=Fc/1667, 2=Use dCornFrq */
 long lMinHits; /* Minimum hits before trying tail-fit */
 long lTailFit; /* If non-zero a tail-fit will be tried */
 long lErrProb; /* Error probability for Total Jitter */
 /* Valid range is (-1 to -16) */
 double dBitRate; /* Bit Rate, may be specified or measured */
 double dCornFrq; /* Corner Frequency for RJ+PJ */
 double dMaxSerr; /* LIM_ERROR if this std. error exceeded */
 long lGood; /* Flag indicates valid data in structure */

 long lBinNumb; /**/
 long lMaxStop; /* */
 long lPtnRoll; /* */
 long lFallAdj; /* These values are all used internally */
 long lClokAdj; /* as part of the measurement process */
 long lLeftCnt; /* DO NOT ALTER! */
 long lRghtCnt; /* */
 double dWndFact; /* */
 double dDdjMove; /* */
 double dLtSigma[PREVSIGMA];/* */
 double dRtSigma[PREVSIGMA];/**/

 double dHistMed; /* Total Jitter Histogram median location */
 double dLeftMed; /* Left Edge Histogram median location */
 double dRghtMed; /* Right Edge Histogram median location */
 long lAcumHit; /* Accumulated Histogram hits */
 long lPassHit; /* Histogram hits for this pass only */
 TFIT tTfit; /* Structure containing tail-fit info */

 PATN tPatn; /* Internal representation of pattern */
 long lPeakNumb; /* Count of detected spikes */
 long lPeakRsvd; /* Used to track memory allocation */
 long *lPeakData; /* Tracks detected spikes in RJ+PJ data */
 long lDdjtRsvd; /* Used to track memory allocation */
 DDJT *tDdjtData; /* Raw DCD+DDJ measurements */
 long lPad1;

 PLTD tRiseHist; /* DCD+DDJ histogram of rising edges */
 PLTD tFallHist; /* DCD+DDJ histogram of falling edges */
 PLTD tNormDdjt; /* DCD+DDJvsUI for external arming only */
 PLTD tTotlHist; /* Histogram of all acquires combined */
 PLTD tLeftHist; /* Leftmost Histogram */
 PLTD tRghtHist; /* Rightmost Histogram */
 PLTD tBathPlot; /* Bathtub curves determined from PDF */
 PLTD tSigmPlot; /* 1-Sigma vs. span plot */
 PLTD tFreqPlot; /* Jitter vs. frequency plot */
 } RCPM;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 43

tParm A structure of type PARM that contains acquisition parameters.

The PARM structure is discussed in full detail in Section 2-4.
sPtnName A character array containing the name of pattern file to be

used, the file must exist in the pattern directory (C:\VISI\)
on the SIA3000 or else an error will be returned. The first
time a measurement is performed the pattern is loaded into
structure tPatn.

 Valid Entries: a valid file name (including extension)
 Default: “k285.ptn”
lPassCnt This parameter is a bi-directional structure element that tracks

the number of acquisitions since last reset. This flag can be
read after an execution or set prior to an execution. Setting
this parameter to 0 essentially resets this register. It will be
automatically incremented when a measurement is performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lHeadOff Header offset parameter, for use in packet-ized data which may

have a frame header before the test pattern. This offset value
can be used to skip past header information and into the
repeating data pattern stream. This can be useful when
analyzing data from disk drives when the pattern marker may be
synchronized with the start of frame data.

 Valid Entries: 0 to 10,000,000-pattern length I
 Default: 0 (indicating no header present)
lFftMode 0=NoFFT, 1=Fc/1667, 2=Use dCornFrq
 Default: 0
lMinHits Minimum hits before trying tail-fit
 Default: 0
lTailFit If non-zero a tail-fit will be tried
 Default: 1
lErrProb Error probability level for Total Jitter. Total Jitter is

calculated based on the desired Error Probability level. This
value is used in conjunction with the bathtub curve after the
successful completion of a tail-fit in order to project the
value of Total Jitter.

 Valid Entries: -1 to -16
 Default: -12
dBitRate Bit Rate, may be specified or measured
 Default: 2.5e9
dCornFrq Corner Frequency for RJ & PJ estimate in Hertz. This value is

used in conjunction with the Bit Rate and pattern to determine
the maximum stop count to be used to acquire RJ & PJ data. A
lower value increase acquisition time.

 Valid Entries: Bit-Rate /10,000,000 to Bit-Rate I
 Default: 637e3 (637kHz – Fibre Channel 1X)
dMaxSerr An error is returned if this std. error is exceeded
 Default: 0.5
lGood Flag indicates valid data in structure
lBinNumb,lMaxStop,lPtnRoll,lFallAdj,lClokAdj,lLeftCnt,lRghtCnt
dWndFact,dDdjMove,dLtSigma[n],dRtSigma[n] These values are for internal use

only, DO NOT ALTER or try to use.
dHistMed Total Jitter Histogram median location
dLeftMed Left Edge Histogram median location
dRghtMed Right Edge Histogram median location
lAcumHit Accumulated Histogram hits
lPassHit Histogram hits for this pass only

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 44

tTfit Structure containing tail-fit info
tPatn Internal representation of pattern
lPeakNumb Count of detected spikes
lPeakRsvd Used to track memory allocation
lPeakData Tracks detected spikes in RJ+PJ data
lDdjtRsvd Used to track memory allocation
tDdjtData Raw DCD+DDJ measurements
tRiseHist DCD+DDJ histogram of rising edges
tFallHist DCD+DDJ histogram of falling edges
tNormDdjt DCD+DDJvsUI for external arming only
tTotlHist Histogram of all acquires combined
tLeftHist Leftmost Histogram
tRghtHist Rightmost Histogram
tBathPlot Bathtub curves determined from PDF
tSigmPlot 1-Sigma vs. span plot
tFreqPlot Jitter vs. frequency plot

void __stdcall FCNL_DefRcpm (RCPM *rcpm)

This function is used to fill the rcpm structure for the Datacom Bit Clock and Marker tool with reasonable default
values. It is recommended that this function be called initially even if parameters within the structure are to be
adjusted manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the RCPM structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
rcpm - Pointer to a RCPM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrRcpm (RCPM *rcpm)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the rcpm structure.

INPUTS
rcpm - Pointer to a RCPM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static RCPM bcam; //declare bcam to a structure of type
 //RCPM
memset (&bcam, 0, sizeof (RCPM)); //clear the memory for bcam structure
FCNL_DefRcpm (&bcam); //set bcam structures to default values

FCNL_RqstPkt (ApiDevId, &bcam, WIND_RCPM); //execute the measurement.
FCNL_RqstAll (ApiDevId, &bcam, WIND_RCPM); //get plot data

FCNL_ClrRcpm (&bcam); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 45

2-21 DATACOM KNOWN PATTERN WITH MARKER TOOL

The Datacom Known Pattern With Marker Tool is used to measure jitter on serial communication
signals. This tool is not protocol specific and works with all communication standards that rely on
jitter separation to define jitter limits for compliance. Such standards include: Fibre Channel,
Gigabit Ethernet, the XAUI layer of 10G Ethernet, SFI 4, SFI 5, XFP, RapidIO, PCI Express and
Serial ATA. This tool requires that a pattern trigger be available either externally from the test
environment or internally from the PM50. Measurements are made based on this diagram. Each
measurement is from the first edge after the pattern trigger to each subsequent edge in the pattern.
DDJ is based on edges 1 through n, where n is the last edge in the pattern. PJ and RJ estimates are
based on edges 1 through m where m is last edge measured based on the prescribed cutoff frequency.

 Pattern Trigger

Data Signal
Edge 1

Edge 3
Edge 2

Edge n
Edge m

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 char sPtnName[128]; /* Name of pattern file to be used */
 long lAcqMode; /* Mask defining modes for RJ+PJ acquire */
 /* Bit3:PW- Bit2:PW+ Bit1:Per- Bit0:Per+ */
 long lRndMode; /* Enable random mode, auto-arming only */
 long lQckMode; /* Enable quick mode, external arm only */
 long lIntMode; /* Interpolation mode, non-zero is linear */
 long lGetRate; /* If non-zero Bit Rate will be measured */
 /* Not valid for random mode */
 long lTailFit; /* Count of tailfits, see constants above */
 /* Not valid when auto-arming */
 long lErrProb; /* Error probability for Total Jitter */
 /* Valid range is (-1 to -16) */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lFftAvgs; /* 2^fft_avgs averages used to smooth FFT */
 long lFitPcnt; /* Automode suceed %, see constants above */

 SPEC tRateInf; /* Parameters to acquire Bit Rate */
 SPEC tDdjtInf; /* Parameters to acquire DCD+DDJ */
 SPEC tRjpjInf; /* Parameters to acquire RJ+PJ */

 /* Negative values disable these filters */
 double dDdjtLpf; /* Low pass DCD+DDJ filter frequency */
 double dDdjtHpf; /* High pass DCD+DDJ filter frequency */
 double dRjpjFmn; /* Minimum integration limit for RJ+PJ */
 double dRjpjFmx; /* Maximum integration limit for RJ+PJ */

 double dBitRate; /* Bit Rate, may be specified or measured */
 double dCornFrq; /* Corner Frequency for RJ+PJ */
 long lHeadOff; /* Header offset, external arming only */

 long lFndEftv; /* Flag to attempt effective jitter calc */
 long lMinEftv; /* Min probability for effective fit: -4 */
 long lMaxEftv; /* Max probability for effective fit: -12 */

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 46

 long lFiltEnb; /* Enable IDLE character insertion filter */
 long lQckTjit; /* Fast total jitter calc - no bathtubs! */
 long lTfitCnt; /* Sample count per pass when tailfitting */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 PATN tPatn; /* Internal representation of pattern */

 double dWndFact; /**/
 long lMaxStop; /* These values are all used internally */
 long lCmpMode; /* */
 long lPosRoll; /* DO NOT ALTER! */
 long lNegRoll; /* */
 long lAdjustPW[2]; /**/

 DDJT *tDdjtData; /* Raw DCD+DDJ measurements */
 long lDdjtRsvd; /* Used to track memory allocation */
 double *dMeasData[2]; /* Raw allmeas histogram when auto-arming */
 long lMeasRsvd[2]; /* Used to track memory allocation */
 double *dRjpjData[4]; /* Raw variance data */
 long lRjpjRsvd[4]; /* Used to track memory allocation */
 double *dTfitData[4]; /* Raw tail-fit data if used */
 long lTfitRsvd[4]; /* Used to track memory allocation */
 long *lPeakData[4]; /* Tracks detected spikes in RJ+PJ data */
 long lPeakNumb[4]; /* Count of detected spikes */
 long lPeakRsvd[4]; /* Used to track memory allocation */
 double *dFreqData[4]; /* Raw FFT output when averaging */
 long lFreqRsvd[4]; /* Used to track memory allocation */
 double *dTailData[4]; /* Raw tailfit FFT output when averaging */
 long lTailRsvd[4]; /* Used to track memory allocation */

 long lHits; /* Total samples for DDJT+RJ+PJ combined */
 long lPad2;
 double dDdjt; /* DCD+DDJ jitter */
 double dRang; /* Pk-Pk of allmeas histogram for auto-arm*/
 double dRjit[4]; /* Random jitter, for enabled modes */
 double dPjit[4]; /* Periodic jitter, for enabled modes */
 double dTjit[4]; /* Total jitter, for enabled modes */
 double dEftvLtDj[4]; /* Effective jitter when enabled */
 double dEftvLtRj[4];
 double dEftvRtDj[4];
 double dEftvRtRj[4];

 PLTD tRiseHist; /* DCD+DDJ histogram of rising edges */
 PLTD tFallHist; /* DCD+DDJ histogram of falling edges */
 PLTD tRiseMeas; /* Rising allmeas histo. auto-arm only */
 PLTD tFallMeas; /* Falling allmeas histo. auto-arm only */
 PLTD tNormDdjt; /* DCD+DDJvsUI for external arming only */
 PLTD tHipfDdjt; /* High Pass Filtered DCD+DDJvsUI */
 PLTD tLopfDdjt; /* Low Pass filtered DCD+DDJvsUI */
 PLTD tBathPlot[4]; /* Bathtub plots, for enabled modes */
 PLTD tEftvPlot[4]; /* Effective Bathtub plots, if enabled */
 PLTD tSigmNorm[4]; /* 1-Sigma plots, for enabled modes */
 PLTD tSigmTail[4]; /* 1-Sigma tail-fits, for enabled modes */
 PLTD tFreqNorm[4]; /* Frequency plots, for enabled modes */
 PLTD tFreqTail[4]; /* Tail-fit FFT plots, for enabled modes */
 } DCOM;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 47

tParm A structure of type PARM that contains acquisition parameters.
The PARM structure is discussed in full detail in Section 2-4.

sPtnName A character array containing the name of pattern file to be
used, the file must exist in the pattern directory (C:\VISI\)
on the SIA3000 or else an error will be returned. The first
time a measurement is performed the pattern is loaded into
structure tPatn.

 Valid Entries: a valid file name (including extension)
 Default: “k285.ptn”
lAcqMode Measurement mode for Random Jitter (RJ) and Periodic Jitter

(PJ) estimate. To calculate RJ and PJ, variance data for each
transition must be captured. This variance data is then passed
through an FFT to create the frequency response. Since rise
time and fall time may be asymmetrical, bogus frequency
components could be inserted into the RJ & PJ records if both
rising and falling edges were used in the data records. Since
the frequency response will be calculated based on the
records, the slew rate effect must be eliminated from the
data. To do this, we force the measurement to either capture
only rising edges or falling edges for this data record. For
completeness, the start of the measurement could be either a
rising or a falling edge. This parameter allows the user to
select the polarity of both the reference edge and the
measured edge in the data signal. The user can select all
permutations of rising and falling edges. This parameter is
parsed as a 4-bit binary value with each bit representing a
possible permutation. A value of b1111 would indicate that the
measurement is to be run using all permutations.

 Valid Entries: b0001 – rising edge to rising edge
 b0010 – falling edge to falling edge
 b0100 – rising edge to falling edge
 b1000 – falling edge to rising edge
 Default: b0001 – rising edge to rising edge
lRndMode Parameter used to enable Random Mode. This parameter is only used

in conjunction with RAND structures as used in the Random Data
Tool. This parameter enables random mode, valid when auto-arming
only. Setting this parameter to 1 will enable Random Mode.

 Valid Entries: 0 – disable random data mode
 1 – enable random data mode
 Default: 0
lQckMode Parameter used to enable Quick Mode. QuickMode uses a sparse

sample of data points for the PJ and RJ estimates. In this
mode, the accuracy of these estimates is greatly reduced
depending on the application. Setting this structure element
to 1 enables quick mode, valid with external arm only.

 Valid Entries: 0 – disable quick capture mode
 1 – enable quick capture mode
 Default: 0
lIntMode Parameter used to enable linear Interpolation mode for RJ & PJ

estimate. RJ & PJ are calculated based on the frequency data
of the noise. Since data points are captured only on the
single polarity transitions, interpolation must be performed
between sample points. There are two types of interpolation
available in the SIA3000: linear and cubic. Setting this
parameter to 1 will enable linear interpolation; otherwise,
cubic interpolation will be used.

 Valid Entries: 0 – use cubic interpolation in FFT data
 1 – use linear interpolation in FFT data
 Default: 0

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 48

lGetRate Parameter used to enable Bit Rate measurement. Knowledge of
the pattern enables the instrument to measure from one
transition in the pattern to the same edge several pattern
repeats later. If this function is disabled, an appropriate
value must be supplied in dBitRate variable. This function is
NOT available when using random mode.

 Valid Entries: 0 – use user specified bit rate
 1 – measure bit rate from data
 Default: 0
lTailFit Parameter used to enable TailFit algorithm for RJ estimate. The

TailFit algorithm yields the highest level of accuracy when
calculating an RJ estimate. However, millions of samples must be
taken in order to perform an accurate TailFit. Valid with
external arm only. The number of TailFits to be performed is
based on the value assigned to this parameter. In practice, only
a small sampling of edges need to be analyzed for RJ content. The
smallest sample is three. The edges selected are the first edge
in the pattern, the middle edge and the last edge. This allows a
reasonable span of frequency content. It is assumed that the
noise components can be approximated by a continuous function (as
is generally the case.) If the RJ changes over frequency, there
will be a delta between the different samples. A change in value
of less than 5% between adjacent points is considered acceptable.
If the delta is larger, more TailFit points should be taken.

 Valid Entries: DCOM_NONE Do not perform a TailFit
 DCOM_AUTO Perform TailFits until the delta
 Between successive fits < 5%.

 DCOM_FIT3 Perform 3 TailFits
 DCOM_FIT5 Perform 5 TailFits
 DCOM_FIT9 Perform 9 TailFits
 DCOM_FIT17 Perform 17 TailFits
 DCOM_ALL Perform TailFit on every edge
 Default: DCOM_NONE
lErrProb Error probability level for Total Jitter. Total Jitter is calculated

based on the desired Error Probability level. This value is used in
conjunction with the bathtub curve after the successful completion
of a tail-fit in order to project the value of Total Jitter.

 Valid Entries: -1 to -16
 Default: -12
lPassCnt This parameter is a bi-directional structure element that tracks

the number of acquisitions since last reset. This flag can be
read after an execution or set prior to an execution. Setting
this parameter to 0 essentially resets this register. It will be
automatically incremented when a measurement is performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lFftAvgs This variable is used to calculate the number of averages to

use in the FFT. Increasing the number of averages reduces the
background noise associated with the FFT algorithm. The number
of averages is calculated based on the equation:

 AVERAGES = 2n where n = lFftAvgs
 Valid Entries: any integer greater than or equal to 0
 Default: 0 (indicating 20 averages = 1 execution.)
tRateInf A structure of type SPEC used by the Bit Rate measurement. The

structure holds measurement specific parameters such as sample
count, pattern repeats and maximum standard error. See Section
2-7 for a description of the SPEC structure and its elements.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 49

tDdjtInf A structure of type SPEC used by the Data Dependant Jitter

(DDJ) measurement. The structure holds measurement specific
parameters such as sample count, pattern repeats and maximum
standard error. See Section 2-7 for a description of the SPEC
structure and its elements.

 tRjpjInf A structure of type SPEC used by RJ & PJ estimate. The
structure holds measurement specific parameters such as sample
count, pattern repeats and maximum standard error. See Section
2-7 for a description of the SPEC structure and it’s elements.

dDdjtLpf Low pass DCD+DDJ filter frequency in Hertz, negative value
disables filter. This filter allows the user to apply a low pass
filter function to the DCD+DDJ data to approximate the low pass
filtering effects that would be present on the receiver or in
the transmission line. The low pass filter is basically the
bandwidth of the transmission line and the input bandwidth of
the receiver. This is only valid when external arming is
enabled.

 Valid Entries: 0 to the Carrier Frequency (Fc) or –1 to
disable.

 Default: -1 (indicating the filter is off.)
dDdjtHpf High pass DCD+DDJ filter frequency in Hertz, a negative value

disables filter. This filter allows the user to apply a high
pass filter function to the DCD+DDJ data to approximate the
high pass filtering effects that would be present on the
receiver or in the transmission line. The High Pass filter is
basically the PLL’s response to the DCD+DDJ. Since the data
will be clocked into the de-serializer by the PLL, the
response of the PLL to the DCD+DDJ will become apparent as a
function of the PLL to the de-serializer. This is only valid
when external arming is enabled.

 Valid Entries: 0 to the Carrier Frequency (Fc) or –1 to
disable.

 Default: -1 (indicating the filter is off.)
dRjpjFmn Minimum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is used post-measurement as a
means of focusing the RJ & PJ estimates on specific frequency
bands with in the FFT. This filter is not normally used in a
production program and should be left disabled.

 Valid Entries: 0 to the Carrier Frequency (Fc) or –1 to
disable.

 Default: -1 (indicating the filter is off.)
dRjpjFmx Maximum integration limit for RJ+PJ in Hertz, a negative value

disables filter. This filter is used post-measurement as a
means of focusing the RJ & PJ estimates on specific frequency
bands with in the FFT. This filter is not normally used in a
production program and should be left disabled.

 Valid Entries: 0 to the Carrier Frequency (Fc) or –1 to
disable.

 Default: -1 (indicating the filter is off.)
dBitRate A bi-directional variable that allows the user to specify the

bit rate or read back what the SIA3000 measured as the bit
rate. If lGetRate is non-zero the bit rate is measured and
placed in this field. If lGetRate is set to zero an the bit rate
is read by the software from this field. This value must be
supplied when Random mode is being used.

 Valid Entries: 0 to the maximum bit rate of channel card
 Default: 0 (indicating bit rate will be measured.)

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 50

dCornFrq Corner Frequency for RJ & PJ estimate in Hertz. This value is used
in conjunction with the Bit Rate and pattern to determine the
maximum stop count to be used to acquire RJ & PJ data. A lower
value increase acquisition time.

 Valid Entries: Bit-Rate /10,000,000 to Bit-Rate I
 Default: 637e3 (637kHz – Fibre Channel 1X)
lHeadOff Header offset parameter, for use in packet-ized data which may have a

frame header before the test pattern. This offset value can be used
to skip past header information and into the repeating data pattern
stream. This can be useful when analyzing data from disk drives when
the pattern marker may be synchronized with the start of frame data.

 Valid Entries: 0 to 10,000,000-pattern length I
 Default: 0 (indicating no header present)
lFndEftv Flag to indicate that

an effective jitter
calculation is to be
attempted. Effective
Jitter is a means of
estimating the
effective
deterministic jitter
as it relates to a .5
error probability.
This is done by first
capturing the bathtub
curve using
conventional RJ & DJ
estimation
techniques; then,
extrapolating from a
few points in the
bathtub curve to the .5 error probability level to estimate
effective DJ. Effective RJ is extracted based on the curve that
was fitted to the sample points. These values should only be used
to correlate to a BERT Scan measurement and should not be used as
a vehicle for quantifying jitter. This technique was developed to
allow BERT systems to correlate with SIA3000 results.

l

l

Extrapolated Bathtub curve versus real bathtub
curve as seen by BERT

Sampled data point
Extrapolated Bathtub
Curve
Actual Bathtub
Curve

 Valid Entries: 0 – disable effective jitter estimate
 1 – enable effective jitter estimate
 Default: 0
lMinEftv, lMaxEftv Defines the error rates at which the eye width calculation will

be used in the estimating effective jitter components. lMinEftv and
lMaxEftv define points on the bathtub curve from which the
extrapolated RJ curve is traced. Then, where this extrapolated curve
intersects the .5 error probability, the effective DJ is calculated.

 Valid Entries: -1 to –16 (indicating 10-1 to 10-16 error rate)
 Default: -4 and –12 (indicating 10-4 BER for lMaxEftv and
 10-12 BER for lMinEftv)
lFiltEnb Flag to enable IDLE character insertion filter. When enabled any

edge measurements that are not within ± 0.5 UI will be discarded.
This filter is used in systems, which may insert an idle character
from time to time to compensate for buffer under-run/overrun issues.
In those instances where an idle character was inserted during a
measurement, the edge selection may be off. If this parameter is
greater than or equal to one, the filter is enabled and measurements
that differ from the mean by ± 0.5 UI will be discarded.

 Valid Entries: 0 – disable idle character filter
 1 – enable idle character filter

Default: 0

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 51

lQckTjit Flag to indicate a fast total jitter calculation will be
performed using simple linear calculation of Total Jitter
instead of convolving the DJ Probability Density Functions and
the RJ Probability Density Functions. This calculation is
based on the formula [TJ = DJ + n*RJ] where DJ and RJ are
measured, and n is the multiplier based on a theoretical
Gaussian distribution

 Valid Entries: 0 do not use convolution for TJ est.
2 Convolve DJ and RJ for TJ est.

 Default: 0
lGood Flag indicates valid output data in structure. A positive

value in this parameter indicates that the measurement was
completed successfully, and, valid data can be extracted from
this structure.

tPatn Structure of type PATN which holds all of the pattern
information with regards to pattern length, pattern content,
marker placement relative to location in pattern and other
pattern specific metrics. (See Section 2-9 for a detailed
description of the PATN structure elements.) This is an
internal structure that the system uses to store pattern
information and does not need to be altered by the user. The
first time a measurement is performed the pattern is loaded
into tPatn which is used internally for all subsequent
acquisition and analysis.

dHits Total samples taken to calculate DDJ, RJ, and PJ values
combined. Gives an indication of the actual data to support
the calculated total jitter number.

dDdjt DCD+DDJ measurement in seconds. This measurement is taken from
the mean deviation of each pattern edge from it’s ideal
location. All deviations are placed in a histogram and the
peak-peak value from this histogram is placed in this
structure location.

dRang Peak-to-peak of “All-Measurements” histogram. This histogram is
part of the random data analysis package and should not be used
as a metric of jitter measurement. Numbers captured in this tool
are for comparison purposes only and only coincidentally share
some terminology with jitter measurements.

dRjit[n] Random jitter estimate, in seconds, for each of the enabled
acquire modes. Each mode’s RJ estimate is kept separate since
the data came from frequency information derived from
different FFTs.

dPjit[n] Periodic jitter measurement, in seconds, for each of the
enabled acquire modes. Each enabled acquire mode’s PJ
measurement is kept separate since the data came from
frequency information derived from different FFTs.

dTjit[n] Total jitter estimate, in seconds, for each of the enabled
acquire modes. Each mode’s TJ estimate is kept separate since
the data came from frequency information derived from
different FFTs.

dEftvLtDj[n] Effective Deterministic(eDJ) jitter estimate, in seconds, for
the left side of the bathtub curve. Total eDJ is calculated by
adding dEftvLtDj to dEftvRtDj. Each of the enabled acquire modes is
stored in the appropriate array location as specified in the
table below. In order to calculate the effective jitter the
flag lFndEftv must be enabled. Since the effective jitter is
calculated by optimizing a curve-fit to the bathtub curve, a
result is not guaranteed. If the curve-fit is unsuccessful, a
negative value will be returned in this variable.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 52

dEftvLtRj[n] Effective Random(eRJ) jitter estimate, in seconds, for the
left side of the bathtub curve. Total eRJ is calculated by
averaging dEftvLtRj and dEftvRtRj. Each of the enabled acquire modes
is stored in the appropriate array location as specified in
the table below. In order to calculate the effective jitter
the flag lFndEftv must be enabled. Since the effective jitter is
calculated by optimizing a curve-fit to the bathtub curve, a
result is not guaranteed. If the curve-fit is unsuccessful, a
negative value will be returned in these variables.

dEftvRtDj[n] Effective Deterministic(eDJ) jitter estimate, in seconds, for
the right side of the bathtub curve. Total eDJ is calculated
by adding dEftvLtDj to dEftvRtDj. Each of the enabled acquire modes
is stored in the appropriate array location as specified in
the table below. In order to calculate the effective jitter
the flag lFndEftv must be enabled. Since the effective jitter is
calculated by optimizing a curve-fit to the bathtub curve, a
result is not guaranteed. If the curve-fit is unsuccessful, a
negative value will be returned in this variable.

dEftvRtRj[n] Effective Random(eRJ) jitter estimate, in seconds, for the
right side of the bathtub curve. Total eRJ is calculated by
averaging dEftvLtRj and dEftvRtRj. Each of the enabled acquire modes
is stored in the appropriate array location as specified in
the table below. In order to calculate the effective jitter
the flag lFndEftv must be enabled. Since the effective jitter is
calculated by optimizing a curve-fit to the bathtub curve, a
result is not guaranteed. If the curve-fit is unsuccessful, a
negative value will be returned in this variable.

tRiseHist Structure of type PLTD which contains all of the plot information
for generating a DCD+DDJ histogram of rising edges. See Section
2-3 for details concerning the PLTD structure and its elements.

tFallHist Structure of type PLTD which contains all of the plot information
for generating a DCD+DDJ histogram of falling edges. See Section
2-3 for details concerning the PLTD structure and its elements.

tRiseMeas Structure of type PLTD (See Section 2-3) which contains all of
the plot information for generating an all-measurements histogram
of rising edges. This plot is only valid when using random mode.
This histogram is for informational use and qualitative
assessment. Numbers originating from this measurement methodology
are not to be confused with jitter measurements.

tFallMeas Structure of type PLTD which contains all of the plot information
for generating an all-measurements histogram of falling edges.
This plot is only valid when using random mode. This histogram is
for informational use and qualitative assessment. Numbers
originating from this measurement methodology are not to be
confused with jitter measurements. See Section 2-3 for details
concerning the PLTD structure and its elements.

tNormDdjt Structure of type PLTD which contains all of the plot
information for generating a DCD+DDJ versus UI plot. This plot
is only valid in Pattern Marker mode. See Section 2-3 for
details concerning the PLTD structure and its elements.

tHipfDdjt Structure of type PLTD which contains all of the plot information
for generating an DCD+DDJ versus UI plot with the DCD+DDJ High
Pass Filter enabled. This plot is only valid in Pattern Marker
Mode and dDdjtHpf is a non-negative number. (For a discussion on
the High Pass Filter Function for DCD+DDJ data, see dDdjtHpf
above.) When dDdjtHpf is enabled, the dDdjt value is calculated
based on applying the dDdjtHpf filter. See Section 2-3 for details
concerning the PLTD structure and its elements.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 53

tLopfDdjt Structure of type PLTD \which contains all of the plot
information for generating an DCD+DDJ versus UI plot with the
DCD+DDJ Low Pass Filter enabled. This plot is only valid in
Pattern Marker Mode and dDdjtLpf is a non-negative number. (For
a discussion on the Low Pass Filter Function for DCD+DDJ data,
see dDdjtLpf above.) See Section 2-3 for details concerning the
PLTD structure and its elements.

tBathPlot[n] Structure of type PLTD which contains all of the plot
information for generating a Bathtub curve. There is one
structure and associated plot for each of the acquisition
modes specified in lAcqMode. See Section 2-3 for details
concerning the PLTD structure and its elements.

tEftvPlot[n] Structure of type PLTD which contains all of the plot
information for generating an Bathtub curve based on Effective
Jitter if lFndEftv is set and a valid fit is obtained. (For a
detailed description of Effective Jitter, see lFndEftv above.)
There is one structure and associated plot for each of the
acquisition modes specified in lAcqMode. See Section 2-3 for
details concerning the PLTD structure and its elements.

tSigmNorm[n] Structure of type PLTD which contains all of the plot information
for generating an 1-Sigma versus UI plot. (x-axis can be
converted to time from UI based on dBitRate value.) This plot
describes the standard deviation for each accumulated time
sample. There is one structure and associated plot for each of
the acquisition modes specified in lAcqMode. See Section 2-3 for
details concerning the PLTD structure and its elements.

tSigmTail[n] Structure of type PLTD which contains all of the plot
information for generating a 1σ TailFit results versus UI
plot. (x-axis can be converted to time from UI based on dBitRate
value.) Each successful TailFit will be displayed as a data
point and connected to adjacent TailFit samples. The plot
value represents the overall RJ for the given amount of
accumulated UI. This plot is only valid if tail-fit is
enabled. . There is one structure and associated plot for each
of the acquisition modes specified in lAcqMode. See Section 2-3
for details concerning the PLTD structure and its elements.

tFreqNorm[n] Structure of type PLTD which contains all of the plot
information for generating a Jitter versus Frequency plot.
There is one structure and associated plot for each of the
acquisition modes specified in lAcqMode. See Section 2-3 for
details concerning the PLTD structure and its elements.

tFreqTail[n] Structure of type PLTD which contains all of the plot
information for generating a 1σ TailFit results versus
frequency plot. This plot is only valid if tail-fit is
enabled. There is one structure and associated plot for each
of the acquisition modes specified in lAcqMode. See Section 2-3
for details concerning the PLTD structure and its elements.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 54

The following parameters are for internal use only. They are presented for reference only. Do not try

to read the values or parse the structures nor try to write the various locations.

dWndFact, lMaxStop, lCmpMode, lPosRoll, lNegRoll, lAdjustPW These values are for

internal use only, DO NOT ALTER or try to use.
tDdjtData Structure which contains the raw DCD+DDJ measurements. This

value is for internal use only, DO NOT ALTER or try to use.
lDdjtRsvd Used to track memory allocation for tDdjtData structures. This

value is for internal use only, DO NOT ALTER or try to use.
dMeasData Raw all-measurements histogram data, only valid when auto-

arming is used. This structure is for internal use only, DO
NOT ALTER or try to use.

lMeasRsvd Used to track memory allocation for dMeasData values. This
value is for internal use only, DO NOT ALTER or try to use.

dRjpjData Raw variance data used for the calculation of RJ and PJ. This
structure is for internal use only, DO NOT ALTER or try to
use.

lRjpjRsvd Used to track memory allocation for dRjpjData values. This value
is for internal use only, DO NOT ALTER or try to use.

dTfitData Raw tail-fit data if tail-fit data is enabled and successful,
as indicated by the lGood variable in the tTfit structure being
non-zero. This structure is for internal use only, DO NOT
ALTER or try to use.

lTfitRsvd Used to track memory allocation for dTfitData values. This value
is for internal use only, DO NOT ALTER or try to use.

lPeakData Tracks detected spikes in RJ+PJ data. This value is for
internal use only, DO NOT ALTER or try to use.

lPeakNumb Count of detected spikes, indicates the number of values in
the lPeakData array.

lPeakRsvd Used to track memory allocation for lPeakData values. This value
is for internal use only, DO NOT ALTER or try to use.

dFreqData Raw FFT output when averaging is enabled. This structure is
not normally directly access by an application program. This
value is for internal use only, DO NOT ALTER or try to use.

lFreqRsvd Used to track memory allocation for dFreqData values. This value
is for internal use only, DO NOT ALTER or try to use.

dTailData Raw tail-fit FFT output when tail-fit and averaging are both
enabled. This structure is not normally directly access by an
application program. This value is for internal use only, DO
NOT ALTER or try to use.

lTailRsvd Used to track memory allocation for dTailData values. This value
is for internal use only, DO NOT ALTER or try to use.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 55

void __stdcall FCNL_DefDcom (DCOM *dcom)

This function is used to fill the dcom structure for the Datacom Known Pattern with Marker tool with reasonable
default values. It is recommended that this function be called initially even if parameters within the structure are to
be adjusted manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test
time.
Before calling this function, zero out the DCOM structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
dcom - Pointer to a DCOM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrDcom (DCOM *dcom)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the dcom structure.

INPUTS
dcom - Pointer to a DCOM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
static DCOM dataJit; //declare dataJit to be a structure of
 //type DCOM
memset (&dataJit, 0, sizeof (DCOM)); //clear the memory for dataJit structure
FCNL_DefDcom (&dataJit); //set dataJit structure to default values
 //NOTE: dataJit.tparm, dataJit.tRateInf,
 //dataJit.DdjtInf, dataJit.tRjpjInf,
 //dataJit.tPatn and dataJit.tDdjtData
 //are also set to defaults by this
 //command.
dataJit.tParm.lChanNum = 1; //Set channel number to 1
dataJit.tparm.lExtnArm = 2; //Set Pattern Marker to Channel 2
dataJit.tParm.lSamCnt = 500; //Capture 500 measurements per pass.
dataJit.tParm.lAutoArm = ARM_EXTRN; //Set to External Arming mode
strcpy(&dataJit.sPtnName[0], "cjtpat.ptn"); //Use k28.5 pattern
dataJit.lTailFit = DCOM_AUTO; //Perform TailFit for RJ estimate. Let
 //SIA3000 decide how many TailFit
 //samples to take.
dataJit.tRateInf.SampCnt = 10000; //Set sample count for BitRate meas. To
dataJit.tRateInf.PtnReps = 100; //10,000 and Pattern Repeats to 100 for
 //improved DDJ measurement accuracy.
dataJit.dCornFrq = 637000; //Set Corner Frequency to 637kHz
dataJit.lQckTjit = TRUE; //Use simple calc for TJ for faster result.

FCNL_RqstPkt (ApiDevId, & dataJit, WIND_DCOM); //execute the measurement.
FCNL_RqstAll (ApiDevId, & dataJit, WIND_DCOM); //get plot data

//Print Total Jitter Estimate.
If (dataJit.lGood>0) printf(“\nTJ = %d\n”,dataJit.dTjit[0]);

FCNL_ClrDcom (&dataJit); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 56

2-22 DATACOM RANDOM DATA WITH BIT CLOCK TOOL

The Datacom Random Data With Bit Clock Tool is used to measure jitter from a reference clock to a
data signal. This measurement setup is the same as the setup used by an oscilloscope when generating an
Eye Diagram or for Eye Mask testing. The measurement starts out with a quick frequency measurement
for the reference clock. Based on this information, the algorithm finds the next clock transition and
establishes data filters that limit the data to only those transitions that are within a ± 0.5 UI window of
the expected clock. This means that the software will throw out any measurements that are not valid and
belong to a different location in the pattern. Then, the instrument measures from the bit clock to the data
channel and generates two histograms of measurements, one for each polarity of the data signal. Then,
the histograms are overlaid and the right most and left most edges are used to perform a TailFit for
RJ/DJ separation.

Eye Histogram Tool is used primarily for long data patterns (greater than 2k in length) or for fully
random data streams in which no repeating pattern is available. The bit clock for this measurement could
be placed on any one of the other input channels or may come from the optional Clock Recovery
Module (CRM) available on most SIA3000 systems.

 Ref Channe

 Bit Cl

 Data Cha

 Start of

 Measurement

 End of
 Measurement

 Histogram of
 Measurements
 for rising e

 Histogram of
 Measurements

 for falli

l =
ock

nnel

dges

ng edges

TailFit performed on
outermost histogram in both
directions

Measurement methodology for Eye Histogram Measurements.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 57

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lRefEdge; /* Referenced to: EDGE_FALL or EDGE_RISE */
 long lErrProb; /* Error probability used Total Jitter */
 /* Valid range is (-1 to -16) */
 long lClokSmp; /* Sample size while acquiring clock rate */
 long lFiltSmp; /* Sample size when finding filter limits */
 long lTailFit; /* If non-zero a tail-fit will be tried */
 long lForcFit; /* If non-zero use the force-fit method */
 long lMinHits; /* Minimum hits before trying tail-fit */
 long lFndEftv; /* Flag to attempt effective jitter calc */
 long lMinEftv; /* Min probability for effective fit: -4 */
 long lMaxEftv; /* Max probability for effective fit: -12 */
 long lDdrClok; /* Non-zero for double data rate clocks */
 double dMinSpan; /* Minimum span between edges in seconds */
 long lFiltOff; /* Filter offset in %UI (100 to -100) */
 long lKeepOut; /* If non-zero use tailfit keep out below */
 double dKpOutLt; /* Keep out value for left side */
 double dKpOutRt; /* Keep out value for right side */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lRiseCnt; /* Number of hits in rising edge data */
 long lFallCnt; /* Number of hits in falling edge data */
 long lPad2;
 double dDataMin; /* Minimum value relative to clock edge */
 double dDataMax; /* Maximum value relative to clock edge */
 double dDataSig; /* 1-Sigma of all values relative to clock*/
 double dAvgSkew; /* Average of all values relative to clock*/
 double dUnitInt; /* Measured Unit Interval */

 long lUnitOff; /**/
 long lSpanCnt; /* */
 double dRiseMin; /* These values are all used internally */
 double dRiseMax; /* as part of the measurement process */
 double dFallMin; /* */
 double dFallMax; /* */
 long lRiseBin; /* DO NOT ALTER! */
 long lFallBin; /* */
 double dLtSigma[PREVSIGMA];/* */
 double dRtSigma[PREVSIGMA];/* */
 double dAltMean; /**/

 PLTD tRise; /* Histogram of rising edge data */
 PLTD tFall; /* Histogram of falling edge data */
 PLTD tBoth; /* Histogram of combined edge data */
 PLTD tRiseProb; /* Probability Histogram of rising edges */
 PLTD tFallProb; /* Probability Histogram of falling edges */
 PLTD tBothProb; /* Probability Histogram of combined edges*/
 PLTD tBath; /* Bathtub curves determined from PDF */
 PLTD tEftv; /* Effective Bathtub curves if enabled */
 TFIT tTfit; /* Structure containing tail-fit info */
 } EYEH;

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 58

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4. Be sure to
either set the following parameters in tParm for a successful
EyeHistogram Tool execution or review the default settings:

lChanNum This is a 32 bit word that represents the channel for this
measurement. The upper 16 bits define which channel will be used as
the reference edge (or bit clock) the lower 16 bits are used for
identifying the channel to be measured. It is best to manipulate
the channel selection field using HEX format or by using binary
shift functions. See sample code at the end of this section for an
example of using binary shift function in the channel declaration.
in HEX format, simply enter the reference channel number in the
first two bytes and the measured channel in the last two bytes such
that 0x000m000n would indicate a reference channel of m and a
measured channel of n (in hexadecimal format) where m and n are
elements of the set {1,2,3,4,5,6,7,8,9,a}. For example, 0x00050003
would indicate that channel 5 was the channel with the bit clock
signal and channel 3 was the channel with the data signal. The
default for tParm.lChanNum within a EYEH structure is 0x00010002
indicating that the reference channel is defaulted to channel 1 and
the measured channel is set to 2.

dStrtVlt Since measurements are made from the data signal to the next
clock signal, the start of measurement is the data signal and
thus dStrtVlt controls the threshold level for the data
channel. It is typically best to leave this variable at the
default and allow Pulse Find to establish the 50% level at
which to test the device. However, there are two cases in
which this may not be desirable. First, in a production
environment, it may be too time-consuming to perform a Pulse
Find each time the test is to be executed. All of the parts
should have roughly the same voltage characteristics (if they
are passing parts) and will most likely have the same
threshold settings. Second, in some cases, it might be
desirable to account for any slew rate issues by adjusting the
threshold voltage to the cross point. A simple script can be
written to identify the cross point prior to testing.

dStopVlt Since measurements are made from the data signal to the next
clock signal, the stop of measurement is the reference clock
signal and thus dStopVlt controls the threshold level for the
clock channel. It is typically best to leave this variable at the
default and allow Pulse Find to establish the 50% level at which
to test the device. In a production environment, this value can
be forced by turning pulse find off and setting this parameter.

lPassCnt This parameter is a bi-directional structure element that tracks
the number of acquisitions since last reset. This flag can be
read after an execution or set prior to an execution. Setting
this parameter to 0 essentially resets this register. It will be
automatically incremented when a measurement is performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lRefEdge Parameter to define the polarity of the clock edge which will

be used as the reference.
 Valid Entries:EDGE_FALL reference clock to data measurements

tothe falling edge of the clock signal.
 EDGE_RISEreference clock to data measurements to
 the rising edge of the clock signal.
 Default: EDGE_RISE

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 59

lErrProb Exponent of Bit Error Probability (BER) to which Total Jitter
will be calculated if TailFit is enabled. TJ is calculated based
on the convolution of DJ and RJ out to 10n BER where n = lErrProb.,

 Valid Entries: Any integer from –1 to –16
 Default: -12
lClokSmp Sample size while acquiring clock rate.
 Valid Entries: Any integer less than or equal to 1,000,000
 Default: 10000.
lFltSmp Sample size when finding filter limits
 Valid Entries: Any integer less than or equal to 1,000,000
 Default: 1000.
lTailFit Flag to indicate whether to perform a TailFit on data in the

rising and falling data histograms. If non-zero, a tail-fit will
be attempted. The lGood element of the tTfit structure will indicate
if the TailFit was successful. Setting this structure element to
1 will initiate the TailFit algorithm.

 Valid Entries: 0 – disable TailFit algorithm
 1 – enable TailFit algorithm
 Default: 0
lForcFit Flag to indicate whether to force a TailFit on a fixed sample

size or to continue acquiring data until a sufficient amount of
data has been collected resulting in a high level of confidence
in the accuracy of the TailFit on the given sample. If selected,
the TailFit algorithm will make a single attempt at fitting
Gaussian tails to the tail regions of the histograms after
acquiring the minimum number of samples as defined by lMinHits.

 Valid Entries: 0 continue acquiring data until chi squared
(Χ2)

 estimate indicates a good TailFit was
 accomplished.
 1 perform tail fit on only lMinHits amount of

data.
 Default: 0
lMinHits Minimum number of samples (in thousands) to acquire prior to

attempting a TailFit.
 Valid Entries: any positive integer less than or equal to 100,000
 Default: 50
lFndEftv Flag to indicate

that an effective
jitter calculation
is to be
attempted.
Effective Jitter
is a means of
estimating the
effective
deterministic
jitter as it
relates to a .5
error probability.
This is done by
first capturing
the bathtub curve
using conventional
RJ & DJ estimation
techniques; then, extrapolating from a few points in the
bathtub curve to the .5 error probability level to estimate
effective DJ. Effective RJ is extracted based on the curve
that was fitted to the sample points. These values should only

l

l

Extrapolated Bathtub curve versus real bathtub
curve as seen by BERT

E
Sampled
dxtrapolated

Ch bActual
h b

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 60

be used to correlate to a BERT Scan measurement and should not
be used as a vehicle for quantifying jitter. This technique
was developed to allow BERT systems to correlate with SIA3000
results.

 Valid Entries: 0 – disable effective jitter estimate
 1 – enable effective jitter estimate
 Default: 0
lMinEftv, lMaxEftv Defines the error rates at which the eye width calculation

will be used in the estimating effective jitter components. lMinEftv
and lMaxEftv define points on the bathtub curve from which the
extrapolated RJ curve is traced. Then, where this extrapolated
curve intersects the .5 error probability, the effective DJ is
calculated.

 Valid Entries: -1 to –16 (indicating 10-1 to 10-16 error
rate)

 Default: -4 and –12 (indicating 10-4 BER for lMaxEftv
and

 10-12 BER for lMinEftv)
dMinSpan Minimum delay between reference clock and measured edges. This

parameter will skip a sufficient number of edges to measure the
data transitions that are at least dMinSpan (in seconds) away from
the reference clock. This parameter is used to correlate with
oscilloscopes, which have a trigger delay of at least 20ns
(typ.). It is not typically used in a production environment.

 Valid Entries: 0 to 1.0
 Default: 0
lFiltOff This allows an offset to be made to the filter that is used to

isolate histogram data to within 1 UI of the bit clock. The
filter is established on the first pass by the instrument, and
can normally be left alone. However, in the presence of large
amounts of jitter it may be necessary to tweak this value
slightly. The offset is entered as a percentage of UI, and a
value in the range of +/-100 is valid.

 Valid Entries: -100 to +100
 Default: 0
lGood Flag indicates valid output data in structure.
lRiseCnt Number of hits in rising edge data.
lFallCnt Number of hits in falling edge data.
dDataMin Minimum value relative to clock edge.
dDataMax Maximum value relative to clock edge.
dDataSig 1-Sigma of all values relative to clock.
dAvgSkew Average of all values relative to clock.
dUnitInt Measured Unit Interval, this is based on the clock.
tRise Structure of type PLTD which contains all of the plot

information to generate a Histogram of rising-edge data to
next reference clock measurements. See Section 2-3 for details
of the PLTD structure and its elements.

tFall Structure of type PLTD which contains all of the plot
information to generate a Histogram of falling-edge data to
next reference clock measurements. See Section 2-3 for details
of the PLTD structure and its elements.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 61

tRiseProb Structure of type PLTD which contains all of the plot
information to generate a probability histogram of rising-edge
data to next reference clock measurements. The amplitude of
each point in the probability histogram is normalized to the
probability of a given measurement occurring as opposed to the
total number of measurements made with the given result. See
Section 2-3 for details of the PLTD structure and its elements.

tFallProb Structure of type PLTD which contains all of the plot information

to generate a probability histogram of falling-edge data to next
reference clock measurements. The amplitude of each point in the
probability histogram is normalized to the probability of a given
measurement occurring as opposed to the total number of
measurements made with the given result. See Section 2-3 for
details of the PLTD structure and its elements.

tBath Structure of type PLTD which contains all of the plot
information to generate a bathtub curve based on Probability
Density Function derived from histogram data and RJ estimate
from TailFit algorithm. . See Section 2-3 for details of the
PLTD structure and its elements.

tEftv Structure of type PLTD which contains all of the plot information
to generate a bathtub curve based on the estimate of effective
Deterministic Jitter (eDJ) and effective Random Jitter (eRJ)
derived from the true data bathtub curve. This plot is only
available when lFndEftv is set and a valid fit is obtained. See
Section 2-3 for details of the PLTD structure and its elements.

tTfit A structure of type TFIT containing tail-fit info. See Section
2-5 for details of the TFIT structure and its elements.

lUnitOff, dRiseMin, dRiseMax, dFallMin, dFallMax,
lRiseBin, lFallBin, dLtSigma, dRtSigma, lSpanCnt
 These values are all used internally, DO NOT ALTER!

void __stdcall FCNL_DefEyeh (EYEH *eyeh)

This function is used to fill the eyeh structure for the Datacom with Bit Clock tool with reasonable default values. It
is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the EYEH structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
eyeh - Pointer to a EYEH structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 62

void __stdcall FCNL_ClrEyeh (EYEH *eyeh)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the eyeh structure.

INPUTS
eyeh - Pointer to a EYEH structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
#define FALSE 0

static EYEH eyehist; //declare eyehist to be a structure of
 //type EYEH
memset (&eyehist, 0, sizeof (EYEH)); //clear the memory for eyehist structure
FCNL_DefEyeh (&eyehist); //set eyehist structure to default values
 //NOTE: eyehist.tparm, are also set to
 //defaults by this command.
eyehist.tParm.lChanNum = 1 | (2<<16); //Set ch 1 for data and ch 2 for ref clk
eyehist.tParm.lSampCnt = 50,000; //Set sample size to 50k
eyehist.lTailFit = TRUE; //Enable TailFit for RJ estimate
eyehist.ForcFit = TRUE; //Force the fit with first 50k samples
eyehist.MinHits = 50,000; //set minimum samples to 50k

FCNL_RqstPkt (ApiDevId, & eyehist, WIND_EYEH); //execute the measurement.

//Print Total Jitter Estimate.
If (eyehist.lGood>0) printf(“\nTJ = %d\n”,eyehist.tTfit.dTjit);

FCNL_ClrEyeh (&eyehist); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 63

2-23 DATACOM RANDOM DATA WITH NO MARKER TOOL

The Datacom Random Data With No Marker Tool is used to estimate jitter components on random
data signals without the benefit of a repeating data pattern or access to a bit clock. This tool is used
primarily to capture relative jitter amplitudes and is not considered an accepted means of accurately
measuring jitter components on a data signal. For accurate jitter measurements on data signals, it is
imperative to have a repeating pattern and a pattern trigger or have access to a bit clock. This tool,
the Random Data Tool, is prone to inaccuracies when periodic jitter is present and data dependent
jitter is present on the signal. This tool does not take into account any PJ amplitude when estimating
Total Jitter. Secondly, this tool may underestimate the amplitude of DDJ due to data binning errors.

Example of Random Data utility when edge count equals 1. In a complete execution of the random data utility,
edge count will range from 1 to FC/(4*FM) where FC is the carrier frequency and FM is the modulation cutoff
frequency.

Data Signal
Edge Count = 1

2UI bin

4UI bin 5UI bin 2UI bin 5UI bin

To capture jitter information, this tool measures time from randomly selected transitions in the
pattern to a subsequent edge in the pattern some “n” number of transitions after the start of the
measurement. “n” is swept from a count of 1 to a count as defined by the carrier frequency and the
desired cutoff frequency. Once all of the measurements are captured, the data is binned according to
their proximity to integer multiples of the bit period. (For example, all measurements within ± .5UI
of 5xbit-period are placed in the 5UI bin.) Then, each bin is parsed for statistical information
including jitter and mean offset from ideal. The mean offset is used to estimate Data Dependent
Jitter (DDJ). As such, the location of the mean for a given bin’s histogram could be artificially
inflated based on combining measurements from transitions which are not from the same point in the
data pattern. The above example shows a given burst of measurements where the edge count was
equal to 1. During the course of the complete measurement, the edge count will be varied from an
initial value of 1 to a final value determined based on the bit rate and the intended cutoff frequency.
Each is bin is also sorted based on edge count and polarity in an attempt to maximize accuracy of
DDJ estimate. Once all of the data is captured, the mean of each histogram for each sub-bin is
compared to an ideal bit clock and the deviation is taken as Data Dependant Jitter. All DDJ estimates
are combined to determine the peak to peak spread of DDJ. Then, the algorith selects appropriate
edge counts to create a histogram from which to capture TailFit information in an attempt to estimate
RJ. Based on the users selection of the structure element tDcom.lTailFit.

The structure used in this tool incorporates a Datacom Known Pattern With Marker structure. In
other words, this tool basically creates a “wrapper” structure around the dataCOM structure which
has settings unique to the random data tool.

To estimate Random Jitter (RJ) on a random signal without the benefit of a reference clock, the
random data tool uses TailFit on sampled data histograms from various amounts of accumulated bit
periods. The precision of the measurement is increased as the number of different accumulations used
is increased. There is a significant increase in test time for increasing the number of tailfit points. As
such, the user can specify 4 different setting selections or have the instrument dynamically decide
which to use (AUTO). In AUTO mode, the tool first performs 3 tailfits (maximum count, minimum

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 64

count and middle count) and checked to see if the deviation between adjacent RJ measurements is less
than the percentage specified in lPcnt. If the deviation is greater, the instrument will perform two more
TailFit measurements between the three already taken. Again, the instrument will check adjacent RJ
estimates and decide whether to capture additional interstitial samples.

typedef struct
 {
 /* Input parameters */
 long lCoun; /* Count of tailfits, see constants above */
 long lPcnt; /* Automode suceed %, see constants above */
 DCOM tDcom; /* DCOM structure holds most information */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dDjit; /* Deterministic jitter value */
 double dRjit; /* Random jitter value */
 double dTjit; /* Total jitter value */
 PLTD tSigmTail; /* 1-Sigma plot using tail-fits */
 } RAND;

lCoun This parameter selects the number TailFit iterations to be

captured. This number can be any of 3, 5, 9 or 17. In
RAND_AUTO mode, the user can choose to have the instrument
dynamically decide the number based on the deviation of
adjacent RJ estimates. The instrument will start with 3
TailFits and increase the count based on the value specified
in lPcnt.

 Valid Entries: RAND_AUTO - Continue to perform tailfits
until

 RJ is within some percentage of
the

 previous pass.
 RAND_FIT3 - Perform 3 tailfits
 RAND_FIT5 - Perform 5 tailfits
 RAND_FIT9 - Perform 9 tailfits
 RAND_FIT17 - Perform 17 tailfits
lPcnt Target maximum amount of deviation between adjacent RJ

estimates. Each RJ estimate is calculated based on a histogram
of accumulated bit periods. Then, each RJ is compared with the
RJ estimate of the adjacent accumulations. The percentage
difference is compared with this entry to determine if the RJ
estimate is valid.

 RAND_PCNT5 RJ within 5% of adjacent estimates
 RAND_PCNT10 RJ within 10% of adjacent estimates
 RAND_PCNT25 RJ within 25% of adjacent estimates
 RAND_PCNT50 RJ within 50% of adjacent estimates
tDcom Structure of type DCOM which specifies most of the input and

output parameters necessary for a data signal analysis. See D-
3 for more details on the DCOM structure and the elements
described below. The user will need to review all of the
default parameters of the DCOM structure and decide which to
change. The following entities from the DCOM structure are
valid for use with the random data tool:

tDcom.tParm Acquisition parameter sub structure.
tDcom.AcqMode Acquire Mode (rise-rise, rise-fall, fall-rise, fall-fall)
tDcom.lRndMode Enable/Disable Random Mode
tDcom.lErrProb Error Probably level to which TJ is to be calculated.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 65

tDcom.lPassCnt Number of passes using same RAND structure since
tDcom.lFftAvgs Number of FFTs to capture and average
tDcom.tDdjtInf SPEC structure used to set up DDJ measurement.
tDcom.dBitRate Bit Rate of data signal under test.
tDcom.dCornFrq Corner Frequency as specified by given standard
tDcom.lFndEftv Enable/Disable Effective Jitter measurements
tDcom.lMinEftv Minimum BER point in Bathtub curve used for Effective Jitter.
tDcom.lMaxEftv Maximum BER point in Bathtub curve used for Effective Jitter.
tDcom.lQckTjit Enable Quick TJ estimate rather than convolving RJ+DDJ for TJ.
tDcom.lGood Flag to indicate valid data results exist in structure.
tDcom.dHits total number of measurements made
tDcom.dDdJt peak-peak amplitude of DDJ
tDcom.dRang peak-peal of all measurements histogram.
tDcom.dRjit[n] RJ estimate for each possible mode.
tDcom.dPjit[n] PJ estimate for each possible mode.
tDcom.dTjit[n] TJ estimate for each possible mode.
tDcom.dEftvLtDj[n] Effective DJ estimate for left or short cycle side.
tDcom.dEftvLtRj[n] Effective RJ estimate for left or short cycle side.
tDcom.dEftvRtDj[n] Effective DJ estimate for right or long cycle side.
tDcom.dEftvRtRJ[n] Effective RJ estimate for right or long cycle side.
tDcom.tRiseHist PLTD structure of DDJ histogram for rising edges
tDcom.tFallHist PLTD structure of DDJ histogram for falling edges
tDcom.tRiseMeas PLTD structure of “All Measurements” of rising edges.
tDcom.tFallMeas PLTD structure of “All Measurements” of falling edges.
tDcom.tBathPlot[n] PLTD structure of bathtub curves for each measurement mode.
tDcom.tEftvPlot[n] PLTD structure of Effective Jitter for each measurement mode.
tDcom.tSigmNorm[n] PLTD structure of standard Deviation (1σ) versus time.
tDcom.tSigmTail[n] PLTD structure of 1σ versus time using TailFit for RJ.
tDcom.tFreqNorm[n] PLTD structure of 1σ versus frequency.
tDcom.tFreqTail[n] PLTD structure of 1σ versus frequency using TailFit for RJ.
lGood Flag indicates valid output data in structure.
dDjit Deterministic Jitter estimate. This value is based strictly on

the Data Dependant Jitter calculation and does not account for
any Periodic Jitter since it is impossible to accurately
separate Periodic Jitter in the FFT results when DDJ is
present.

dRjit Random Jitter estimate. This value comes from the series of
TailFits that were performed on the accumulated jitter data.

dTjit Total Jitter estimate. This value is the convolution of the
DDJ probability density function captured in dDjit and the RJ
estimate captured in dRjit.

tSigmTail Structure of type PLTD containing information necessary to
create a plot of RJ (based on the TailFit results) and 1-σ
(standard deviation) as a function of accumulated bit periods.
See Section 2-3 for details of the PLTD structure and its
elements.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 66

void __stdcall FCNL_DefRand (RAND *rand)

This function is used to fill the rand structure for the Datacom Random Data With No Marker tool with reasonable
default values. It is recommended that this function be called initially even if parameters within the structure are to be
adjusted manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.

Before calling this function, zero out the RAND structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
rand - Pointer to a RAND structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrRand (RAND *rand)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the rand structure.

INPUTS
rand - Pointer to a RAND structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
#define FALSE 0
static RAND rdataJit; //Declare rdataJit to be a structure of
 //type RAND
memset (&rdataJit, 0, sizeof (RAND)); //Clear the memory for rdataJit structure
FCNL_DefRand (&rdataJit); //Set rdataJit structure to default values
 //NOTE: rdataJit.tdcom and all of the
 //DCOM substructures (including tparm)
 //are also set to defaults by this
 //command.
rdataJit.tDcom.tParm.lChanNum = 1; //Set channel number to 1
rdataJit.tDcom.tParm.lSamCnt = 500; //Capture 500 measurements per pass.
rdataJit.tDcom.dCornFrq = 637000; //Set Corner Frequency to 637kHz
rdataJit.lCoun = RAND_AUTO; //Set TailFit count to aotomatic mode.
rdataJit.lPcnt = RAND_PCNT10; //Set target deviation maximum to 10%

FCNL_RqstPkt (ApiDevId, & rdataJit, WIND_RAND); //execute the measurement.
FCNL_RqstAll (ApiDevId, & rdataJit, WIND_RAND); //get plot data

//Print Total Jitter Estimate.
If (rdataJit.lGood>0) printf(“\nTJ = %d\n”,rdataJit.dTjit);

FCNL_ClrRand (&rdataJit); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 67

2-24 FIBRE CHANNEL COMPLIANCE TOOL

The Fibre Channel Compliance Tool utilizes the Datacom Known Pattern with Marker Tool for the
measurements. In addition to the data signal to be analyzed, this tool requires a pattern marker to be
connected to the Arm Channel. If your SIA-3000 is equipped with the PM-50 option, the marker signal
will be generated on the card and no additional input signals are required for making a measurement.
The Marker signal has an edge relative to the same bit of the pattern each time the marker occurs. Since
no bit-clock is used, analysis of jitter is independent of clock-jitter effects, and because the Arm is not a
trigger, any jitter on the marker will not transfer to the measurement of the Data.

For an in depth description on Known Pattern With Marker measurement theory, refer to the Known
Pattern With Marker quick reference guide.

typedef struct
 {
 /* Input parameters */
 double dAttn; /* Attenuation factor (dB) */
 DCOM tDcom; /* DCOM structure holds most information */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad0;
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 } FCMP;

dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tDcom Structure of type DCOM which specifies most of the input and

output parameters necessary for a data signal analysis. The
user will need to review all of the default parameters of the
DCOM structure and decide which to change.

lGood Flag indicates valid data in structure
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data

void __stdcall FCNL_DefFcmp (FCMP *fcmp)

This function is used to fill the fcmp structure for the Fibre Channel Compliance tool with reasonable default
values. It is recommended that this function be called initially even if parameters within the structure are to be
adjusted manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the FCMP structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
fcmp - Pointer to a FCMP structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 68

void __stdcall FCNL_ClrFcmp (FCMP *fcmp)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the fcmp structure.

INPUTS
fcmp - Pointer to a FCMP structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static FCMP fibre; //declare fibre to a structure of type
 //FCMP
memset (&fibre, 0, sizeof (FCMP)); //clear the memory for fibre structure
FCNL_DefFcmp (&fibre); //set fibre structures to default values

FCNL_RqstPkt (ApiDevId, &fibre, WIND_FCMP); //execute the measurement.
FCNL_RqstAll (ApiDevId, &fibre, WIND_FCMP); //get plot data (including tDcom plots)

FCNL_ClrFcmp (&fibre); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 69

2-25 FOLDED EYE DIAGRAM TOOL

The Folded Eye Tool is designed to provide an eye mask test to be applied to a repeating
pattern. This allows a DSP Bandwidth Extension algorithm to be applied to improve the
apparent front end performance. See the SIA-3000 User Manual for additional information
concerning the Bandwidth Extension.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lPatnLen; /* Pattern length in bit periods */
 long lScopRes; /* Scope resolution in ps increments */
 long lInps; /* Input selection, see defines above */
 long lVoff; /* Voltage offset (mV) - per channel */
 long lVdif; /* Differential offset (mV)- per channel */
 MASK tMask; /* Structure which holds mask definition */
 double dMargin; /* Margin in percentage [-1.0 to 1.0] */
 double dBitRate; /* Bit Rate, must be specified */
 double dAttn; /* Attenuation factor (dB) */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad2;
 double d1stEdge; /* This value is used internally */
 double dNrmPkpk; /* Vpp for Normal Channel Eye Diagrams */
 double dCmpPkpk; /* Vpp for Complimentary Eye Diagrams */
 double dDifPkpk; /* Vpp for Differential Eye Diagrams */
 QTYS qNorm; /* Normal channel quantities */
 QTYS qComp; /* Complimentary channel quantities */
 QTYS qDiff; /* Differential channel quantities */
 PLOT tNrmScop; /* Normal channel voltage data */
 PLOT tCmpScop; /* Complimentary channel voltage data */
 PLOT tDifScop; /* Differential voltage data */
 char *bNrmData; /* Eye diagram of normal data */
 long lNrmRsvd; /* This value is used internally */
 char *bCmpData; /* Eye diagram of complimentary data */
 long lCmpRsvd; /* This value is used internally */
 char *bDifData; /* Eye diagram of differential data */
 long lDifRsvd; /* This value is used internally */
 } FEYE;

tParm A structure of type PARM that contains acquisition parameter.

tParm is discussed in full detail in a previous section.
lPassCnt This parameter is a bi-directional structure element that

tracks the number of acquisitions in the data set. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets the accumulated
data on the instrument. The value in the returned structure
will be automatically incremented by the instrument.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lPatnLen This parameter configures the number of UI that are measured

and folded into the Eye Mask.
 Valid Entries: any integer greater than or equal to 1
 Default: 40
lScopRes This parameter configures the sample interval and is entered

in units of picoseconds.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 70
 Valid Entries: any integer greater than or equal to 1

 Default: 2
lInps Input selection, can be any of the following:
 SCOP_INPS_NORM +Input Only
 SCOP_INPS_COMP –Input Only
 SCOP_INPS_DIFF +Input minus -Input
 Default: SCOP_INPS_DIFF
lVoff Offset voltage used for scope acquire, specified in mV
 Default: 0
lVdif Differential offset voltage used for display, specified in mV
 Default: 0
tMask MASK Structure which holds mask definition. See the definition

above.
 Defaults: tMask.dXwdUI = 0.40
 tMask.dXflUI = 0.20
 tMask.dYiPct = 0.60
 tMask.dV1Rel = 0.20
 tMask.dV0Rel = 0.20
 tMask.dVmask = 64e-3
 tMask.dTmask = 700e-12
 tMask.dV1pas = feye->tMask.dVmask * 0.75
 feye->tMask.dV0pas = feye->tMask.dVmask * 0.75
 tMask.dTflat = feye->tMask.dTmask * 3.0 / 7.0
dMargin Margin in percentage for Eye Mask [-1.0 to 1.0]
 Default: 0
dBitRate Bit Rate, must be specified
 Default: 2.5e9
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
lGood Flag indicates valid data in structure
d1stEdge Used internally, DO NOT ALTER!
dNrmPkpk Vpp for normal Channel scope data
dCmpPkpk Vpp for complimentary Channel scope data
dDifPkpk Vpp for differential Channel scope data
qNorm Normal channel quantities
qComp Complimentary channel quantities
qDiff Differential channel quantities
tNrmScop Normal channel voltage data, last pass only
tCmpScop Complimentary channel voltage data, last pass only
tDifScop Differential channel voltage data, last pass only
bNrmData, lNrmRsvd, bCmpData, lCmpRsvd, bDifData, lDifRsvd for internal use

only, DO NOT ALTER or try to use.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 71

void __stdcall FCNL_DefFeye (FEYE *feye)

This function is used to fill the feye structure for the Folded Eye tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the FEYE structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
feye - Pointer to a FEYE structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrFeye (FEYE *feye)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the feye structure.

INPUTS
feye - Pointer to a FEYE structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static FEYE feye; //declare feye to a structure of type
 //FEYE
memset (&feye, 0, sizeof (FEYE)); //clear the memory for FEYE structure
FCNL_DefFeye (&feye); //set FEYE structures to default values

FCNL_RqstPkt (ApiDevId, &feye, WIND_FEYE); //execute the measurement.
FCNL_RqstAll (ApiDevId, &feye, WIND_FEYE); //get plot data

FCNL_ClrFeye (&feye); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 72

2-26 HIGH FREQUENCY MODULATION ANALYSIS TOOL

The High Frequency Modulation Analysis Tool is used typically for frequency analysis of noise on
clock and clock-like signals (101010…). The controls for the tool deal primarily with measurement
setup, corner frequency selection and normalization technique.

Signal

Accum 1

21 n n+13 4

Accum 2
Accum n

This tool will take several randomly selected time measurements using Accumulated Time Analysis
(ATA). The data can be displayed in the time domain (accumulated jitter versus time) or in the
frequency domain (jitter versus frequency). This latter plot is used to identify spectral peaks in the
noise which may indicate modulation and can typically be attributed to crosstalk or EMI effects.
The Jitter Analysis Tool can be set up to calculate RJ and DJ of a clock signal over a specified
frequency band (typically the corner frequency to ½ the clock rate) and separate the DJ by frequency
content. The DJ measured in this tool is strictly Periodic Jitter.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 long lIncStop; /* Increase stop count by this value */
 long lMaxStop; /* Maximum stop count to collect data */
 long lAutoFix; /* If true calculate the above parameters */
 long lPad1;
 double dCornFrq; /* Corner Frequency for RJ+PJ */
 double dRjpjFmn; /* Minimum integration limit for RJ+PJ */
 double dRjpjFmx; /* Maximum integration limit for RJ+PJ */
 long lFftAvgs; /* 2^fft_avgs averages used to smooth FFT */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 /**/
 double dWndFact1Clk; /* These values are used internally */
 double dWndFactNClk; /* DO NOT ALTER! */
 /**/
 PLTD tSigm; /* Contains the 1-Sigma plot array */
 PLTD tPeak; /* Contains the (max - min) plot array */
 PLTD tFft1; /* Frequency plot data on 1-clock basis */
 double dPjit1Clk; /* Periodic jitter on 1-clk basis */
 double dRjit1Clk; /* Random jitter on 1-clk basis */
 long *lPeakData1Clk; /* Tracks detected spikes in RJ+PJ data */
 long lPeakNumb1Clk; /* Count of detected spikes */
 long lPeakRsvd1Clk; /* Used to track memory allocation */
 long lPad2;
 PLTD tFftN; /* Frequency plot data on N-clock basis */
 double dPjitNClk; /* Periodic jitter on N-clk basis */
 double dRjitNClk; /* Random jitter on N-clk basis */
 long *lPeakDataNClk; /* Tracks detected spikes in RJ+PJ data */
 long lPeakNumbNClk; /* Count of detected spikes */
 long lPeakRsvdNClk; /* Used to track memory allocation */
 long lPad3;
 double dFreq; /* Carrier frequency */
 } JITT;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 73

tParm A structure of type PARM that contains acquisition parameter.

tParm is discussed in full detail in Section 2-4.
tFfts A structure of type FFTS that contains the setup parameters

for the FFT. See Section 2-10 for further details on FFTS
structures.

lIncStop Timing resolution of Accumulated Time Analysis. This value
will define the highest frequency component that will be
observed (low-pass filter function approximated by a brick
wall)

 Valid Entries: tParm.lStopCnt to lMaxStop.
 Default: 1
lMaxStop Maximum number of accumulated periods to acquire. This value

defines the low frequency cut off for this measurement. The
larger this number is, the more lower-frequency modulation
content can be observed. Furthermore, the larger this number
is, the more data that is taken and the longer the test time.

 Valid Entries: tParm.StopCnt to 10,000,000
 Default: 256
lAutoFix Flag to indicate whether to use dCornFrq or lMaxStop to indicate

the low-frequency cutoff. If the value is of this parameter is
greater than zero, dCornFrq will be used to calculate the stop
count. If this parameter is equal to zero, lMaxStop will be
used.

 Valid Entries: 0 – no pulsefind prior to measurement
 1 –pulsefind if the measurement mode changed.
 Default: 0
dCornFrq Corner Frequency for RJ & PJ estimate in Hertz. This value is

used in conjunction with the measured clock frequency (FCM) to
determine the maximum number of accumulated periods used to
acquire. A lower value increases acquisition time while
capturing more low frequency data.

 Valid Entries: FCM /10,000,000 to FCM I
 Default: 637e3 (637kHz – Fibre Channel 1X)
dRjpjFmn High-pass digital filter function in Hertz for calculating RJ

and DJ. A negative value disables filter. The accuracy of low
frequency modulation measurements can be improved by setting
the measurement corner frequency lower than the desired corner
frequency and then using this filter for the RJ and PJ
estimate.

 Valid Entries: -1 to dCornFreq or Clock Frequency ÷ lMaxStop
 Default: -1
dRjpjFmx Low-pass Digital filter function in Hertz for calculating RJ

and DJ. A negative value disables filter. This filter is used
as a post-processing filter applied to the measured data to
limit high frequency information present in the data when
calculating RJ-DJ estimate.

 Valid Entries: -1 to Clock Frequency ÷ lIncStop
 Default: -1
lFftAvgs This variable is used to calculate the number of averages to

use in the FFT. Increasing the number of averages reduces the
background noise associated with the FFT algorithm. The number
of averages is calculated based on the equation:

 AVERAGES = 2n where n = lFftAvgs
 Valid Entries: any integer greater than or equal to 0
 Default: 0 (indicating 20 averages = 1 execution.)

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 74

lGood Flag indicates valid output data in structure. A positive

value in this parameter indicates that the measurement was
completed successfully, and, valid data can be extracted from
this structure.

dWndFact1Clk, dWndFactNClk These values are for internal use only, DO NOT
ALTER or try to use.

tSigm A structure of type PLTD containing the 1-Sigma plot array.
This plot is used to observe the standard deviation (1σ) of
accumulated jitter versus time. See Section 2-3 for details of
the PLTD structure elements.

tPeak A structure of type PLTD containing the peak-to-peak
Accumulated jitter versus time plot array. See Section 2-3 for
details of the PLTD structure elements.

tFft1 A structure of type PLTD containing the Accumulated jitter
versus frequency with amplitudes normalized to their effect on
1-clock. This is sometimes referred to as accumulated period
jitter. See Section 2-3 for details of the PLTD structure
elements.

dPjit1Clk Amplitude of the largest spectral component in the normalized
accumulated jitter versus frequency (1-clock PJ estimate).

dRjit1Clk Random jitter calculated based on filter functions (if
enabled) and Normalized Accumulated Jitter versus frequency
plot (RJ as a function of 1-clock FFT).

lPeakData1Clk For internal use only, DO NOT ALTER or attempt to interpret.
lPeakNumb1Clk Count of detected spikes observed in the normalized

Accumulated Jitter versus frequency plot. (spectral peaks in
1-clock FFT)

lPeakRsvd1Clk for internal use only, DO NOT ALTER or try to use.
tFftN A structure of type PLTD containing the Accumulated Jitter

versus Frequency plot data. The amplitudes show the total
amplitude of the modulation and is referred to as “N-clock”
mode in reference to edge deviation due to a given modulation
tone relative to an ideal clock. This is sometimes referred to
as accumulated edge jitter. See Section 2-3 for details of the
PLTD structure elements.

dPjitNClk Amplitude of the largest spectral component in the accumulated
jitter versus frequency plot. (N-clock PJ estimate).

dRjitNClk Random jitter calculated based on filter functions (if
enabled) and Accumulated Jitter versus frequency plot (RJ as a
function of n-clock FFT).

lPeakDataNClk For internal use only, DO NOT ALTER or attempt to interpret.
lPeakNumbNClk Count of detected spikes observed in the accumulated jitter

versus frequency plot. (spectral peaks in n-clock FFT)
lPeakRsvdNClk for internal use only, DO NOT ALTER or try to use.
dFreq Measured clock frequency.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 75

void __stdcall FCNL_DefJitt (JITT *jitt)

This function is used to fill the jitt structure for the High Frequency Modulation tool with reasonable default values.
It is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the JITT structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
jitt - Pointer to a JITT structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrJitt (JITT *jitt)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the jitt structure.

INPUTS
jitt - Pointer to a JITT structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
static JITT hfm; //declare hfm to be a structure of
 //type JITT
memset (&hfm, 0, sizeof (JITT)); //clear the memory for hfm structure
FCNL_DefJitt (&hfm); //set hfm structure to default values
 //NOTE: hfm.tparm & hfm.tFfts
 //are also set to defaults by this
 //command.
hfm.tparm.lChanNum = 1; //perform measurement on CH1
hfm.tparm.lSampCnt = 500; //measure 500 different samples per
 //accumulated edge
hfm.lAutoFix = TRUE; //use dCornFrq instead of lMaxStop
hfm.dCornFrq = 2e6; //set corner frequency to 2MHz
FCNL_RqstPkt (ApiDevId, &hfm, WIND_JITT); //execute the measurement.
FCNL_RqstAll (ApiDevId, &hfm, WIND_JITT); //get plot data

FCNL_ClrJitt (&hfm); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 76

2-27 HISTOGRAM TOOL

The histogram tool is used for displaying the statistical distribution of a given measurement.
Measurements made with this tool are limited to repetitive signal measurements such as clock period,
duty cycle, pulse width, rise time, fall time, propagation delay and frequency. This tool is typically used
for displaying the statistical distribution of thousands of measurements. Important distribution
parameters can be calculated based on the data including: RMS, peak to peak, Random Jitter (RJ),
Deterministic Jitter (DJ) and Total Jitter (TJ).

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 double dUnitInt; /* Unit Interval to assess Total Jitter */
 long lPassCnt; /* Acquisitions so far, set to 0 to reset */
 long lErrProb; /* Error probability for Total Jitter */
 /* Valid range is (-1 to -16) */
 long lTailFit; /* If non-zero a tail-fit will be tried */
 long lForcFit; /* If non-zero use the force-fit method */
 long lMinHits; /* Minimum hits before trying tail-fit */
 long lFndEftv; /* Flag to attempt effective jitter calc */
 long lMinEftv; /* Min probability for effective fit: -4 */
 long lMaxEftv; /* Max probability for effective fit: -12 */
 long lAutoFix; /* If true perform a pulsefind as req'd */
 long lKeepOut; /* If non-zero use tailfit keep out below */
 double dKpOutLt; /* Keep out value for left side */
 double dKpOutRt; /* Keep out value for right side */
 long lPad0; /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */

 long lPad1;
 long lNormCnt; /* Number of hits in normal edge data */
 double dNormMin; /* Minimum value in normal edge data */
 double dNormMax; /* Maximum value in normal edge data */
 double dNormAvg; /* Average value of normal edge data */
 double dNormSig; /* 1-Sigma value of normal edge data */

 long lPad2;
 long lAcumCnt; /* Number of hits in accumulated edge data*/
 double dAcumMin; /* Minimum value in accumulated edge data */
 double dAcumMax; /* Maximum value in accumulated edge data */
 double dAcumAvg; /* Average value of accumulated edge data */
 double dAcumSig; /* 1-Sigma value of accumulated edge data */

 long lBinNumb; /**/
 long lPad3; /* These values are all used internally */
 double dLtSigma[PREVSIGMA];/* as part of the measurement process */
 double dRtSigma[PREVSIGMA];/* DO NOT ALTER! */
 double dFreq; /**/

 PLTD tNorm; /* Histogram of previous acquisition */
 PLTD tAcum; /* Histogram of all acquires combined */
 PLTD tMaxi; /* Histogram of max across all acquires */
 PLTD tBath; /* Bathtub curves determined from PDF */
 PLTD tEftv; /* Effective Bathtub curves if enabled */
 PLTD tShrt; /* Total Jitter for SHORT Cycles */
 PLTD tLong; /* Total Jitter for LONG Cycles */
 PLTD tBoth; /* Total Jitter for LONG & SHORT Cycles */
 TFIT tTfit; /* Structure containing tail-fit info */
 } HIST;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 77

tParm A structure of type PARM that contains acquisition parameters.
tParm is discussed in full detail in Section 2-4.

dUnitInt Unit Interval (UI) in seconds to assess Total Jitter as a
percent of UI. Set this parameter as the metric against which
TJ will be evaluated as a percentage. It is displayed as the
span of the x-axis in a bathtub curve. This parameter is only
used if tail-fit is enabled.

 Valid Entries: any number greater than 0 which represents the
time (in seconds) of a bit period or unit interval.

 Default: 1e-9 (1ns)
lPassCnt This parameter is a bi-directional structure element that

tracks the number of acquisitions in the data set. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets the accumulated
data on the instrument. The value in the returned structure
will be automatically incremented by the instrument.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lErrProb Error probability level for Total Jitter. Total Jitter is

calculated based on the desired Error Probability level. This
value is used in conjunction with the bathtub curve after the
successful completion of a tail-fit in order to project the
value of Total Jitter.

 Valid Entries: -1 to -16
 Default: -12
lTailFit Flag to indicate whether to perform a TailFit on data in tAcum

data array. If non-zero, a tail-fit will be attempted on the
tAcum data array. The lGood element of the tTfit structure will
indicate if the TailFit was successful. Any positive interger
for this parameter will initiate the TailFit algorithm.

 Valid Entries: 0 – disable TailFit
 1 – enable TailFit
 Default: 0
lForcFit If non-zero uses the force-fit method. If set to zero, the

measurement will continue to loop until a reasonably accurate
TailFit can be achieved.

 Valid Entries: 0 – do not use force fit.
 1 – force a fit using lMinHits number of hits.
 Default: 0
lMinHits Minimum hits before attempting a tail-fit in 1000's; the

default is 50. The larger the number the more likely a valid
tailfit will be found.

 Valid Entries: any integer ≥ 50
 Default: 50
lFndEftv Flag to indicate that an effective jitter calculation is to be

attempted. This is necessary for those instances in which
correlation to a BERT scan is necessary. In all other
practical applications, this parameter and it’s resultant
measurement should be ignored.

 Valid Entries: 0 – do not estimate effective jitter values
 1 – calculate effective jitter values
 Default: 0
lMinEftv, lMaxEftv Defines the range of the bathtub curve that is to be used

to calculate an effective jitter value.
 Valid Entries: -1 to –16 with lMinEftv < lMaxEftv
 Default: -4 for MaxEftv and –12 for MinEftv

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 78

lAutoFix Flag indicating whether to perform a pulse-find as required.

Setting this value to any integer greater than zero tells the
measurement to perform a pulse find if needed. The system will
know if a measurement was recently performed and if a pulse
find is necessary.

 Valid Entries: 0 – no pulsefind prior to measurement
 1 –pulsefind if the measurement mode changed.
 Default: 0
lGood Flag indicates valid output data in structure. This parameter

does not indicate success of TailFit measurement only whether
a valid time measurement was performed and valid measurement
data was placed in tNorm, tAcum and tMaxi.

lNormCnt Number of measurements in tNorm plot array.
dNormMin, dNormMax Minimum and maximum values in tNorm plot array.
dNormAvg Average value of distribution in tNorm plot array.
dNormSig Standard Deviation (1-Sigma (1σ)) value of distribution in

tNorm plot array.
lAcumCnt Number of hits of distribution in tAcum plot array.
dAcumMin, dAcumMax Minimum and maximum values of distribution in

tAcum plot array.
dAcumAvg Average value of distribution in tAcum plot array.
dAcumSig 1-Sigma value of distribution in tAcum plot array.
lBinNumb, dLtSigma, dRtSigma These values are for internal use only, DO

NOT ALTER or try to use.
tNorm A structure of type PLTD containing a Histogram of data from

latest acquisition only. See Section 2-3 for further details
on PLTD structures.

tAcum A structure of type PLTD containing Histogram of data from all
acquisitions combined. See Section 2-3 for further details on
PLTD structures.

tMaxi A structure of type PLTD containing Histogram with the maximum
value obtained for every particular bin across all of the
acquisitions performed so far. See Section 2-3 for further
details on PLTD structures.

tBath A structure of type PLTD containing Bathtub curves determined
from PDF, only valid when a successful tail-fit has been
performed. See Section 2-3 for further details on PLTD
structures.

tEftv A structure of type PLTD containing Effective Bathtub curves
if lFndEftv is set and a valid fit is obtained. Effective Bathtub
curves are used for correlation to BERT scan only. See Section
2-3 for further details on PLTD structures.

tTfit A structure of type TFIT containing tail-fit info; only valid
when a successful tail-fit has been performed. See end of
chapter for additional details. See Section 2-3 for further
details on TFIT structures.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 79

void __stdcall FCNL_DefHist (HIST *hist)

This function is used to fill the hist structure for the Histogram tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.

Before calling this function, zero out the HIST structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
hist - Pointer to a HIST structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrHist (HIST *hist)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the hist structure.

INPUTS
hist - Pointer to a HIST structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

#define TRUE 1
static HIST histogram; //declare histogram to be a structure of
 //type HIST
memset (&histogram, 0, sizeof (HIST)); //clear the memory for histogram str.
FCNL_DefHist (&histogram); //set histogram structures to default
 //values
histogram.tparm.lChanNum = 1; //capture waveform on channel 1
histogram.tparm.lFuncNum = FUNC_PER; //set measurement to be period
histogram.tparm.lStrtCnt = 1; //measure from first edge to second
histogram.tparm.lStpCnt = 2; //edge
histogram.tparm.lSampCnt = 10,000; //measure 10,000 samples per burst
histogram.lPassCnt = 0; //reset pass count to zero
histogram.lTailFit = TRUE; //indicate TailFit desired
histogram.lMinHits = 50,000; //don’t attempt a TailFit until at least
 //50,000 measurements are
 //accumulated
histogram.lAutoFix = TRUE; //perform pulse find initially if needed.
FCNL_RqstPkt (ApiDevId, &histogram, WIND_HIST);//execute the measurement.
FCNL_RqstAll (ApiDevId, &histogram, WIND_HIST);//get plot data

FCNL_ClrHist (&histogram); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 80

2-28 INFINIBAND TOOL

This tool is similar to the Random Data With Bitclock Tool, but also provides voltage information.

typedef struct
 {
 /* Input parameters */
 long lVoff; /* Offset voltage used for scope acquire */
 long lPad1;
 double dAttn; /* Attenuation factor (dB) */
 EYEH tEyeh; /* EYEH structure holds most information */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad2;
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 PLTD tDifScop; /* Differential voltage data */
 PLTD tComScop; /* Common (A+B) voltage data */
 } INFI;

lVoff Offset voltage used for scope acquire, specified in mV
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tEyeh This is the same structure as is defined in the Random Data

With Bitclock tool. It contains all the acquisition parameters
and all the output results associated with this measurement,
with the exception of those defined directly above.

 Default: See Random Data With Bitclock Tool
lGood Flag indicates valid data in structure
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
tDifScop Differential voltage data
tComScop Common (A+B) voltage data

void __stdcall FCNL_DefInfi (INFI *infi)

This function is used to fill the infi structure for the Infiniband Compliance tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.

Before calling this function, zero out the INFI structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
infi - Pointer to a INFI structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 81

void __stdcall FCNL_ClrInfi (INFI *infi)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the infi structure.

INPUTS
infi - Pointer to a INFI structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static INFI iband; //declare iband to a structure of type
 //INFI
memset (&iband, 0, sizeof (INFI)); //clear the memory for iband structure
FCNL_DefInfi (&iband); //set iband structures to default values

FCNL_RqstPkt (ApiDevId, &iband, WIND_INFI); //execute the measurement.
FCNL_RqstAll (ApiDevId, &iband, WIND_INFI); //get plot data (including tEyeh)

FCNL_ClrInfi (&iband); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 82

2-29 LOCKTIME ANALYSIS TOOL

The Locktime Analysis tool is used to analyze timing
measurement variation as a function of location in pattern.
This is important when measuring periods, pulse widths, slew
rates and propagation delay right after an event such as a
reset, power-up, data bus read/write, chip enable, ref clock
enable etc. Common measurements include PLL lock time
and cross talk sensitivity to specific functionalities occurring
on the DUT. The Locktime Analysis Tool makes several
measurements of the same event after a trigger and then can
increment to the next event. For example, a period measurement could be made on the first clock
pulse after a trigger occurs. This measurement could be made hundreds of times. Then, this tool
automatically will increment to the next clock period and measure that one hundred times. This is
repeated for as many sequential periods as desired. The increment and the number of measurements
is programmed by the user.

Trigger

Signal

Per 1

21 1+
2*

in
c

2+
2*

in
c

1+
in

c

2+
in

c

Per 2

Per 3

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 long lIncStrt; /* Increase start count by this value */
 long lMaxStrt; /* Maximum start count to collect data */
 long lAnlMode; /* Relationship of start and stop counts */
 /* Use one of: ANL_FNC_FIRST */
 /* ANL_FNC_PLUS1 */
 /* ANL_FNC_START */
 long lAutoFix; /* If true calculate the above parameters */
 long lSpanCnt; /* The span across which to measure */
 long lDataPts; /* The data points within span to measure */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 PLTD tTime; /* Time domain plot data */
 PLTD tDerv; /* 1st derivative of time domain plot data*/
 PLTD tFftT; /* Frequency domain plot data */
 PLTD tFftD; /* Frequency domain of 1st derivative */
 PLTD tSigm; /* Contains the 1-Sigma plot array */
 PLTD tPeak; /* Contains the (max - min) plot array */
 PLTD tMini; /* Contains the Minimum plot array */
 PLTD tMaxi; /* Contains the Maximum plot array */
 double dSigmAvg; /* Average 1-Sigma value */
 double dSigmMin; /* Minimum 1-Sigma value */
 double dSigmMax; /* Maximum 1-Sigma value */

 double dTimePos; /* Maximum increase between time values */
 double dTimeNeg; /* Maximum decrease between time values */
 long lTimePosLoc; /* Index to max increase between values */
 long lTimeNegLoc; /* Index to max decrease between values */

 double dDervPos; /* Maximum increase between 1st deriv's */
 double dDervNeg; /* Maximum decrease between 1st deriv's */
 long lDervPosLoc; /* Index to max incr. between 1st deriv's */
 long lDervNegLoc; /* Index to max decr. between 1st deriv's */

 double dFreq; /* Carrier frequency */
 } FUNC;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 83

tParm A structure of type PARM that contains acquisition parameter.

The PARM structure is discussed in full detail in Section 2-4.
tFfts A structure of type FFTS that contains the setup parameters

for the FFT. See Section 2-10 for further details on FFTS
structures.

lIncStrt Resolution of successive time measurements. This parameter
defines the number edges to skip between successive
measurements. Increase start count by this value, the default
is 1. Data is collected for start counts ranging from
tParm.lStrtCnt to lMaxStrt.

 Valid Entries: 1 to lMaxStrt
 Default: 1
lMaxStrt Maximum start count used. The start count will be incremented

from the value in tParm.lStrtCnt to lMaxStrt in step size of lIncStrt.
 Valid Entries: tParm.StrtCnt to 10,000,000
 Default: 250
lAnlMode Relationship of start and stop counts. In general, this

measurement is done either on a single channel measuring
successive cycles’ slew rate, period or pulse width. As such,
the stop count will always be either equal to the start count
or one more than the start count in the case of period
measurements.

 Valid Entries: ANL_FNC_PLUS1 Stop Count = Start Count + 1
 Use this for period measurements
 ANL_FNC_START Stop Count = Start Count
 Use this for skew, slew rate and
 pulse width
 Default: ANL_FNC_PLUS1
lAutoFix If set to 1, calculate the number of measurements skipped and

the total number of measurements based on lSpanCnt and
lDataPts plus information measured on the live data signal.

 Valid Entries: 0 use lMaxStrt, tParm.lStrtCnt & lIncStrt to
 calculate the stop counts for each

measurement.
1 use lSpanCnt, DataPts and measured data from

signal to calculate the stop counts for each
measurement.

lSpanCnt The total number of edges across which to measure. This is the

maximum delay count for a measurement and is synonymous with
lMaxStrt.

Default: 0

 Valid Entries: 1 to 10,000,000-tParm.StrCnt
 Default: 1000
lDataPts The total data points within span to measure. If every data

point is to be measured such that the start and stop counters
are incremented by one, then lDataPts must equal lSpanCnt. The

 Valid Entries: 1 to lSpanCnt
 Default: 100
lGood Flag indicates valid output data in structure.
tTime A structure of type PLTD containing the time domain plot data.

See Section 2-3 for details on the PLTD structure elements.
tDerv A structure of type PLTD containing 1st derivative of time

domain plot data. See Section 2-3 for details on the PLTD
structure elements.

tFftT A structure of type PLTD containing Frequency domain plot
data. See Section 2-3 for details on the PLTD structure
elements.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 84

tFftD A structure of type PLTD containing Frequency domain of 1st
derivative plot data. See Section 2-3 for details on the PLTD
structure elements.

tSigm A structure of type PLTD containing 1-Sigma plot array. See
Section 2-3 for details on the PLTD structure elements.

tPeak A structure of type PLTD containing the (max - min) plot
array. See Section 2-3 for details on the PLTD structure
elements.

tMini A structure of type PLTD containing the Minimum plot array.
See Section 2-3 for details on the PLTD structure elements.

tMaxi A structure of type PLTD containing the Maximum plot array.
See Section 2-3 for details on the PLTD structure elements.

dSigmAvg Average 1-Sigma value.
dSigmMin Minimum 1-Sigma value.
dSigmMax Maximum 1-Sigma value.
dTimePos Maximum increase between time values.
dTimeNeg Maximum decrease between time values.
lTimePosLoc Index to maximum increase between values.
lTimeNegLoc Index to maximum decrease between values.
dDervPos Maximum increase between 1st derivative values.
dDervNeg Maximum decrease between 1st derivative values.
lDervPosLoc Index to maximum increase between 1st derivative values.
lDervNegLoc Index to maximum decrease between 1st derivative values.
dFreq Carrier frequency.

void __stdcall FCNL_DefFunc (FUNC *func)

This function is used to fill the func structure for the Locktime tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the FUNC structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
func - Pointer to a FUNC structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 85

void __stdcall FCNL_ClrFunc (FUNC *func)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the func structure.

INPUTS
func - Pointer to a FUNC structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
#define TRUE 1
static FUNC funcAnal; //declare funcAnal to be a structure of
 //type FUNC
memset (&funcAnal, 0, sizeof (FUNC)); //clear the memory for funcAnal structure
FCNL_DefFunc (&funcAnal); //set funcAnal structure to default values
 //NOTE: funcAnal.tparm & funcAnal.tFfts
 //are also set to defaults by this
 //command.
funcAnal.tparm.lChanNum = 1; //perform measurement on CH1
funcAnal.tparm.lSampCnt = 500; //measure 500 different samples per
 //offset from trigger
funcAnal.lIncStrt = 1; //set increment between successive
 //period measurements to 1
funcAnal.lMaxStrt = 1000; //Capture all period measurements
 //after the trigger up to and including
 //the period 1000 cycles after the
 //trigger.

FCNL_RqstPkt (ApiDevId, & funcAnal, WIND_FUNC); //execute the measurement.
FCNL_RqstAll (ApiDevId, & funcAnal, WIND_FUNC); //get plot data

FCNL_ClrFunc (&funcAnal); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 86

2-30 LOW FREQUENCY MODULATION ANALYSIS TOOL

The Low Frequency Modulation Analysis tool is used to analyze low frequency modulation on clock
signals. It uses its internal time stamp capability to identify when a given measurement is made. This
tool combines the actual time measurements with the relative time each measurement was made to
identify low frequency modulation components. This tool can be used for modulation frequencies
below 120kHz.

S ignal (Fc)

1st Meas.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

2 nd Meas.

F c
/lM

ax
Fr

eq
 +

TP
ar

m
.lS

tr
tC

nt

n th Meas.

Fc/lMaxFreq

F c
/lM

ax
Fr

eq
 +

TP
ar

m
.lS

to
pC

nt

n*
 F

c/
lM

ax
Fr

eq
 +

TP
ar

m
.lS

tr
tC

nt

n*
 F

c/
lM

ax
Fr

eq
 +

TP
ar

m
.lS

to
pC

nt

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 long lAutoFix; /* If true calculate the above parameters */
 long lPad1;
 double dMaxFreq; /* Maximum Frequency that is desired */
 long lFftAvgs; /* 2^fft_avgs averages used to smooth FFT */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 PLTD tTime; /* Time domain plot data */
 PLTD tStmp; /* Time stamp array, not normally plotted */
 PLTD tFft1; /* Frequency plot data on 1-clock basis */
 PLTD tFftN; /* Frequency plot data on N-clock basis */
 double dCarFreq; /* Carrier frequency */
 double dSmpRate; /* Sampling rate */
 double dFftNdBc; /* dBc assessed on 1-clock FFT data */
 } TDIG;

tParm A structure of type PARM that contains acquisition parameters.

The PARM structure is discussed in full detail in Section 2-4.
tParm.lStampTm is enabled for this tool by default. All other
defaults listed in Section 2-4 apply.

tFfts A structure of type FFTS that contains the FFT setup parameters
such as window type and padding factor. See Section 2-10 for
further details.

lAutoFix This tool uses tParm.lSampCnt to define the number of
measurements to make and the span of tParm.lStrCnt to tParm.lStopCnt
to define the maximum frequency observed in the FFT plots. If
this structure element is set to 1, then tParm.StrCnt and

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 87

tParm.lStopCnt will be calculated based on dMaxFreq plus
information measured on the live data signal.

 Valid Entries: 0 – use tParm data
 1 – calculate tParm data using dMaxFreq
 Default: 0
dMaxFreq Maximum Frequency information that is desired.
lFftAvgs This variable is used to calculate the number of averages to

use in the FFT. Increasing the number of averages reduces the
background noise associated with the FFT algorithm. The number
of averages is calculated based on the equation:

 AVERAGES = 2n where n = lFftAvgs
 Valid Entries: any integer greater than or equal to 0
 Default: 0 (indicating 20 averages = 1 execution.)
lGood Flag to indicate valid output data is in structure.
tTime A structure of type PLTD containing the time domain plot data.

See Section 2-3 for details on the PLTD structure elements.
tStmp A structure of type PLTD containing time stamp data plot data.

This is not normally plotted. See Section 2-3 for details on
the PLTD structure elements.

tFft1 A structure of type PLTD containing the Frequency plot data
with frequency amplitude roll off of 20dB/decade from the
sampling Nyquist Frequency. This plot is typically used for
debug purposes only. See Section 2-3 for details on the PLTD
structure elements.

tFftN A structure of type PLTD containing the Frequency plot data
with amplitudes representing the cumulative effect of the
frequency component. See Section 2-3 for details on the PLTD
structure elements.

dCarFreq Carrier frequency.
dSmpRate Sampling rate.
dFftNdBc dBc assessed on 1-clock FFT data.

void __stdcall FCNL_DefTdig (TDIG *tdig)

This function is used to fill the tdig structure for the Low Frequency Modulation tool with reasonable default values. It
is recommended that this function be called initially even if parameters within the structure are to be adjusted manually,
and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the TDIG structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
tdig - Pointer to a TDIG structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 88

void __stdcall FCNL_ClrTdig (TDIG *tdig)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the tdig structure.

INPUTS
tdig - Pointer to a TDIG structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
#define TRUE 1
static TDIG TimDig; //declare timDig to be a structure of
 //type TDIG
memset (&TimDig, 0, sizeof (TDIG)); //clear the memory for timDig structure
FCNL_DefTdig (&TimDig); //set timDig structure to default values
 //NOTE: timDig.tparm & timDig.tFfts
 //are also set to defaults by this
 //command.
TimDig.tParm.lChanNum = 1; //Set channel number to 1
TimDig.tparm.lStrtCnt = 1; //Measure from 1st rising edge
TimDig.tParm.lStopCnt = 10000; //to 10,000th rising edge for each meas.
TimDig.tParm.lSampCnt = 100000; //capture 100,000 measurements per
 //pass
TimDig.lFftAvgs = 3; //Perform 23 passes or 8 total passes
 //with which to average data in FFT.

FCNL_RqstPkt (ApiDevId, & TimDig, WIND_TDIG); //execute the measurement.
FCNL_RqstAll (ApiDevId, & TimDig, WIND_TDIG); //get plot data

FCNL_ClrTdig (&TimDig); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 89

2-31 OSCILLOSCOPE TOOL

The Oscilloscope Tool is typically used to view the waveform of a signal relative to a trigger. In a
diagnostic environment, this tool is essential when debugging any signal measurement challenge. In
a production environment, this capability is used to make voltage measurements on signals such as
amplitude, glitch energy, overshoot and undershoot. This section describes the structure used to
initiate a waveform capture. This is the original measurement window structure for conducting an
oscilloscope measurement, and was later replaced by the Scope Tool, but is still supported for legacy
operations.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 long lStrt; /* Start time (ps), 20,000 to 100,000,000 */
 long lStop; /* Stop time (ps), 20,000 to 100,000,000 */
 long lIncr; /* Time increment (ps), minimum is 10 */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 PLTD tTime[POSS_CHNS]; /* Time domain plot of voltage data */
 PLTD tFreq[POSS_CHNS]; /* Frequency domain plot of voltage data */
 PLTD tNorm[POSS_CHNS]; /* Normal channel voltage data (3000 only)*/
 PLTD tComp[POSS_CHNS]; /* Complimentary voltage data (3000 only)*/
 } OSCI;

tParm A structure of type PARM that contains acquisition parameter.

See Section 2-4 for further details concerning this structure.
tFfts A structure of type FFTS that contains setup parameters for

the FFT window. These parameters needs to be set if the user
is interested in capturing the spectrum analysis on the
waveform. See Section 2-10 for further details concerning this
structure.

lStrt Start time in picoseconds.
 Valid Entries: (24,000 to 100,000,000)
 Default: 24,000
lStop Stop time in picoseconds
 Valid Entries: (24,000 to 100,000,000)
 Default: 100,000
lIncr Resolution of time base in picoseconds. Maximum Resolution is

equal to the window width (lStop - lStrt), such that only 2
data points would be captured.

 Valid Entries: (10 to window width)
 Default: 500
lGood Flag indicates waveform capture was successful and valid

output data is in the structure.
tTime[n] A structure of type PLTD which contains the differential time

domain plot of voltage data for channel n. See Section 2-3 for
further details on PLTD structures.

tFreq[n] A structure of type PLTD which contains the differential
frequency domain plot of voltage data for channel n. See
Section 2-3 for further details on PLTD structures.

tNorm[n] A structure of type PLTD which contains the single ended time
domain plot of the positive channel voltage information for
channel n. See Section 2-3 for further details on PLTD
structures.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 90

tComp[n] A structure of type PLTD which contains the single ended time
domain plot of the negative channel voltage information for
channel n. See Section 2-3 for further details on PLTD
structures.

void __stdcall FCNL_DefOsci (OSCI *osci)

This function is used to fill the osci structure for the Oscilloscope tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the OSCI structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
osci - Pointer to a OSCI structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrOsci (OSCI *osci)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the osci structure.

INPUTS
osci - Pointer to a OSCI structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static OSCI oscope; //declare oscope to a structure of type
 //OSCI
memset (&oscope, 0, sizeof (OSCI)); //clear the memory for oscope structure
FCNL_DefOsci (&oscope); //set oscope structures to default values

oscope.tparm.lChanNum = 1; //capture waveform on channel 1
oscope.tparm.lOscTrig = 2; //trigger on channel 2
oscope.tparm.lOscEdge = EDGE_RISE; //trigger on rising edge of channel 2
oscope.tparm.lFndPcnt = PCNT_5050; //set trigger level at 50% point

oscope.lStrt = 200; //start waveform capture at 200ps
oscope.lStop = 10,000; //stop waveform capture at 10ns
oscope.lIncr = 10; //set resolution to 10ps (this means
 //that there will be 980 points in
 //oscope.tTime[1].data array

FCNL_RqstPkt (ApiDevId, &oscope, WIND_OSCI); //execute the measurement.
FCNL_RqstAll (ApiDevId, &oscope, WIND_OSCI); //get plot data

FCNL_ClrOsci (&oscope); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 91

2-32 PCI EXPRESS 1.1 WITH HARDWARE CLOCK RECOVERY TOOL
The PCI Express 1.1 with Hardware Clock Recovery Tool provides both timing and amplitude
compliance measurements using the SIA3000 Multirate Clock Recovery Option. This tool
accurately determines device performance by quantifying both random and deterministic jitter
components.

typedef struct
 {
 /* Input parameters */
 long lCompPnt; /* Compliance Point 0-RX 1-TX */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lIdleOk; /* Common mode idle voltages are valid */
 long lPad0;
 double dAttn; /* Attenuation factor (dB) */
 RCPM tRcpm; /* Contains acquisition parameters */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dEyeOffs;
 double dXmnDiff;
 double dXmxDiff;
 double dVdiffPP; /* Pk-pk differential voltage */
 double dVdRatio; /* De-emphaisis voltage ratio */
 double dOpnEyeT; /* Eye opening */
 double dMedEyeT; /* Median to max jitter */
 double dOpnEyeT1M; /* Eye opening @ 10^-6 BER */
 double dTranVolts; /* Vpp for Transition Eye */
 double dDeemVolts; /* Vpp for De-Emphasis Eye */

 double dVcommonAc; /* V?x-cm-acp */
 double dVcommonDc; /* V?x-cm-dc */
 double dVcmDcActv; /* V?x-cm-dc-active-idle-delta */
 double dVcmIdleDc; /* V?x-cm-idle-dc */
 double dVcmDcLine; /* V?x-cm-dc-line-delta */
 double dVcmDcDpls; /* V?x-cm-dc-d+ */
 double dVcmDcDmin; /* V?x-cm-dc-d- */
 double dVIdleDiff; /* V?x-idle-diffp */

 QTYS qNorm; /* Normal channel quantities */
 QTYS qComp; /* Complimentary channel quantities */
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 char *bTranEye;
 long lTranRsv;
 char *bDeemEye;
 long lDeemRsv;
 } PCIM;

lCompPnt Compliance Point, may be one of the following constants:
 PCIX_RX_MODE – Receive Mode
 PCIX_TX_MODE – Transmit Mode
 PCIX_RX_CARD – Receive Add-In Card Mode
 PCIX_TX_CARD – Transmit Add-In Card Mode
 PCIX_RX_SYST – Receive System Card Mode
 PCIX_TX_SYST – Transmit System Card Mode
 Default: PCIX_RX_MODE

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 92

lPcnt This field specifies the voltage thresholds to be used when
calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV and lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lIdleOk This flag is set by the system when an Idle Mode measurement

is successfully made. The results are then applied in
subsequent measurements. Set this flag to zero to invalidate
the previous Idle Mode measurement results, and force a new
Idle measurement to be made using the command :PCIM:IDLE?
Before the common mode idle voltages are applied once again.

 Default: 0
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tRcpm Datacom With Bitclock and Marker Tool which specifies most of

the input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Datacom With Bitclock and Marker Tool and
decide which to change.

lGood Flag indicates valid data in structure
dEyeOffs, dXmnDiff, dXmxDiff Used internally, DO NOT ALTER!
dVdiffPP Pk-pk differential voltage
dVdRatio De-emphaisis voltage ratio
dOpnEyeT Eye opening at Bit Error rate 10e-12
dMedEyeT Median to max jitter based on 1 million samples
dOpnEyeT1M Eye opening at Bit Error rate 10e-6
dTranVolts Vpp for Transition Eye
dDeemVolts Vpp for De-Emphasis Eye
dVcommonAc V?x-cm-acp
dVcommonDc V?x-cm-dc
dVcmDcActv V?x-cm-dc-active-idle-delta
dVcmIdleDc V?x-cm-idle-dc
dVcmDcLine V?x-cm-dc-line-delta
dVcmDcDpls V?x-cm-dc-d+
dVcmDcDmin V?x-cm-dc-d-
dVIdleDiff V?x-idle-diffp
qNorm Normal channel quantities
qComp Complimentary channel quantities
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
bTranEye,lTranRsv, bDeemEye,lDeemRsv Used internally, DO NOT ALTER!

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 93

void __stdcall FCNL_DefPcim (PCIM *pcim)

This function is used to fill the pcim structure for the PCI Express Compliance tool with reasonable default values.
It is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the PCIM structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
pcim - Pointer to a PCIM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrPcim (PCIM *pcim)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the pcim structure.

INPUTS
pcim - Pointer to a PCIM structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static PCIM pcim; //declare pcim to a structure of type
 //PCIM
memset (&pcim, 0, sizeof (PCIM)); //clear the memory for pci structure
FCNL_DefPcim (&pcim); //set pci structures to default values

FCNL_RqstPkt (ApiDevId, &pcim, WIND_PCIM); //execute the measurement.
FCNL_RqstAll (ApiDevId, &pcim, WIND_PCIM); //get plot data (includes tRcpm)

FCNL_ClrPcim (&pcim); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 94

2-33 PCI EXPRESS 1.1 WITH SOFTWARE CLOCK RECOVERY TOOL
The PCI Express 1.1 with Software Clock Recovery Tool provides both timing and amplitude
compliance measurements using the SIA3000. This tool accurately determines device performance
by quantifying both random and deterministic jitter components.

typedef struct
 {
 /* Input parameters */
 long lCompPnt; /* Compliance Point 0-RX 1-TX */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lIdleOk; /* Common mode idle voltages are valid */
 long lPass; /* Acquisitions so far, set to 0 to reset */
 double dAttn; /* Attenuation factor (dB) */
 KPWM tKpwm; /* Contains acquisition parameters */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lTtlHits;
 double dEyeOffs;
 double dHistMed;
 double dXmnDiff;
 double dXmxDiff;
 double dVdiffPP; /* Pk-pk differential voltage */
 double dVdRatio; /* De-emphaisis voltage ratio */
 double dOpnEyeT; /* Eye opening */
 double dMedEyeT; /* Median to max jitter */
 double dOpnEyeT1M; /* Eye opening @ 10^-6 BER */
 double dTranVolts; /* Vpp for Transition Eye */
 double dDeemVolts; /* Vpp for De-Emphasis Eye */

 double dVcommonAc; /* V?x-cm-acp */
 double dVcommonDc; /* V?x-cm-dc */
 double dVcmDcActv; /* V?x-cm-dc-active-idle-delta */
 double dVcmIdleDc; /* V?x-cm-idle-dc */
 double dVcmDcLine; /* V?x-cm-dc-line-delta */
 double dVcmDcDpls; /* V?x-cm-dc-d+ */
 double dVcmDcDmin; /* V?x-cm-dc-d- */
 double dVIdleDiff; /* V?x-idle-diffp */

 QTYS qNorm; /* Normal channel quantities */
 QTYS qComp; /* Complimentary channel quantities */
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 PLTD tTtlHist; /* Total Histogram of median-to-max data */
 char *bTranEye;
 long lTranRsv;
 char *bDeemEye;
 long lDeemRsv;
 } EXPR;

lCompPnt Compliance Point, may be one of the following constants:
 PCIX_RX_MODE – Receive Mode
 PCIX_TX_MODE – Transmit Mode
 PCIX_RX_CARD – Receive Add-In Card Mode
 PCIX_TX_CARD – Transmit Add-In Card Mode
 PCIX_RX_SYST – Receive System Card Mode
 PCIX_TX_SYST – Transmit System Card Mode
 Default: PCIX_RX_MODE

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 95

lPcnt This field specifies the voltage thresholds to be used when
calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV and lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lIdleOk This flag is set by the system when an Idle Mode measurement

is successfully made. The results are then applied in
subsequent measurements. Set this flag to zero to invalidate
the previous Idle Mode measurement results, and force a new
Idle measurement to be made using the command :EXPR:IDLE?
Before the common mode idle voltages are applied once again.

 Default: 0
lPass This parameter is a bi-directional structure element that

tracks the number of acquisitions since last reset. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets this register.
It will be automatically incremented when a measurement is
performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tKpwm Known Pattern With Marker Tool which specifies most of the

input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Known Pattern With Tool and decide which to
change.

lGood Flag indicates valid data in structure
lTtlHits Total hits collected in the Total Jitter Histogram
dHistMed Median location for the Total Jitter Histogram
dEyeOffs, dXmnDiff, dXmxDiff Used internally, DO NOT ALTER!
dVdiffPP Pk-pk differential voltage
dVdRatio De-emphaisis voltage ratio
dOpnEyeT Eye opening at Bit Error rate 10e-12
dMedEyeT Median to max jitter based on 1 million samples
dOpnEyeT1M Eye opening at Bit Error rate 10e-6
dTranVolts Vpp for Transition Eye
dDeemVolts Vpp for De-Emphasis Eye
dVcommonAc V?x-cm-acp
dVcommonDc V?x-cm-dc
dVcmDcActv V?x-cm-dc-active-idle-delta
dVcmIdleDc V?x-cm-idle-dc
dVcmDcLine V?x-cm-dc-line-delta
dVcmDcDpls V?x-cm-dc-d+

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 96

dVcmDcDmin V?x-cm-dc-d-
dVIdleDiff V?x-idle-diffp
qNorm Normal channel quantities
qComp Complimentary channel quantities
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
tTtlHist Total Jitter Histogram data
bTranEye,lTranRsv, bDeemEye,lDeemRsv Used internally, DO NOT ALTER!

void __stdcall FCNL_DefExpr (EXPR *expr)

This function is used to fill the expr structure for the PCI Express Compliance tool with reasonable default values. It
is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the EXPR structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
expr - Pointer to a EXPR structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrExpr (EXPR *expr)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the expr structure.

INPUTS
expr - Pointer to a EXPR structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static EXPR expr; //declare expr to a structure of type
 //EXPR
memset (&expr, 0, sizeof (EXPR)); //clear the memory for expr structure
FCNL_DefExpr (&expr); //set expr structures to default values

FCNL_RqstPkt (ApiDevId, &expr, WIND_EXPR); //execute the measurement.
FCNL_RqstAll (ApiDevId, &expr, WIND_EXPR); //get plot data (includes tRcpm)

FCNL_ClrExpr (&expr); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 97

2-34 PCI EXPRESS 1.1 CLOCK ANALYSIS TOOL
The PCI Express 1.1 Clock Analysis Tool provides both timing and amplitude compliance
measurements for PCI Express Reference Clocks using the SIA3000. This tool accurately
determines device performance by quantifying both random and deterministic jitter components.

typedef struct
 {
 /* Input parameters */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lPad0;
 double dAttn; /* Attenuation factor (dB) */
 KPWM tKpwm; /* Contains acquisition parameters */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dRiseRate; /* Rising edge rate (V/ns) */
 double dFallRate; /* Falling edge rate (V/ns) */
 double dDifMaxVin; /* Differential Input High Voltage */
 double dDifMinVin; /* Differential Input Low Voltage */

 double dPeriodPpm; /* Average Clock Period Accuracy */
 double dPeriodMin; /* Absolute Period Minimum */
 double dPeriodMax; /* Absolute Period Maximum */
 double dCycl2Cycl; /* Cycle to Cycle Jitter */
 double dVmaxSingl; /* Absolute Max input voltage */
 double dVminSingl; /* Absolute Min input voltage */
 double dDutyCycle; /* Duty Cycle */
 double dRFMatches; /* Rising Rate to Falling Rate Matching */
 double dMaxJitt1M; /* Maximum Pk-Pk Jitter @ 10^-6 BER */

 QTYS qNorm; /* Normal channel quantities */
 QTYS qComp; /* Complimentary channel quantities */
 QTYS qDiff; /* Differential channel quantities */
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 PLTD tDifScop; /* Differential channel voltage data */
 } PCLK;

lPcnt This field specifies the voltage thresholds to be used when

calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV and lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lPad0 Used internally, DO NOT ALTER!

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 98

dAttn Attenuation factor in dB, this is provided to allow the
results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tKpwm Known Pattern With Marker Tool which specifies most of the

input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Known Pattern With Marker Tool and decide
which to change.

lGood Flag indicates valid data in structure
lPad1 Used internally, DO NOT ALTER!
dRiseRate Rising edge rate (V/ns)
dFallRate Falling edge rate (V/ns)
dDifMaxVin Differential Input High Voltage
dDifMinVin Differential Input Low Voltage
dPeriodPpm Average Clock Period Accuracy expressed in Parts Per Million
dPeriodMin Absolute Period Minimum in seconds
dPeriodMax Absolute Period Maximum in seconds
dCycl2Cycl Cycle-To-Cycle Jitter in seconds
dVmaxSingl Absolute Max Single-Ended input voltage
dVminSingl Absolute Min Single-Ended input voltage
dDutyCycle Duty Cycle expressed as a percentage
dRFMatches Rising Rate to Falling Rate Matching expressed as a Percentage
dMaxJitt1M Maximum Pk-Pk Jitter @ 10^-6 BER
qNorm Normal channel quantities
qComp Complimentary channel quantities
qDiff Differential (IN - /IN) channel quantities
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
tDifScop Differential (IN - /IN) channel voltage data

void __stdcall FCNL_DefPclk (PCLK *pclk)

This function is used to fill the pclk structure for the PCI Express Compliance tool with reasonable default values. It
is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the PCLK structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
pclk - Pointer to a PCLK structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 99

void __stdcall FCNL_ClrPclk (PCLK *pclk)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the pclk structure.

INPUTS
pclk - Pointer to a PCLK structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static PCLK pclk; //declare pclk to a structure of type
 //PCLK
memset (&pclk, 0, sizeof (PCLK)); //clear the memory for pclk structure
FCNL_DefPclk (&pclk); //set pclk structures to default values

FCNL_RqstPkt (ApiDevId, &pclk, WIND_PCLK); //execute the measurement.
FCNL_RqstAll (ApiDevId, &pclk, WIND_PCLK); //get plot data (includes tRcpm)

FCNL_ClrPclk (&pclk); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 100

2-35 PCI EXPRESS 1.0a TOOL

The PCI Express 1.0a Tool provides both timing and amplitude compliance measurements in any
environment, system or IC, electrical or optical. Compliance tests can be completed in seconds with
a simple pass/fail indication for each test parameter. It is the most comprehensive and easy to use
signal integrity test solution on the market today.

The PCI Express 1.0a Tool accurately determines device performance by quantifying random and
deterministic jitter components. In addition, the PCI Express 1.0a Tool can quickly isolate and
quantify unwanted deterministic jitter due to crosstalk and EMI with a spectral view of jitter as well
as perform Eye Diagram analysis for a quick qualitative view of device performance.

typedef struct
 {
 /* Input parameters */
 long lCompPnt; /* Compliance Point 0-RX 1-TX */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lIdleOk; /* Common mode idle voltages are valid */
 long lPad0;
 double dAttn; /* Attenuation factor (dB) */
 RCPM tRcpm; /* Contains acquisition parameters */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dEyeOffs;
 double dXmnDiff;
 double dXmxDiff;
 double dVdiffPP; /* Pk-pk differential voltage */
 double dVdRatio; /* De-emphaisis voltage ratio */
 double dOpnEyeT; /* Eye opening */
 double dMedEyeT; /* Median to max jitter */

 double dVcommonAc; /* V?x-cm-acp */
 double dVcommonDc; /* V?x-cm-dc */
 double dVcmDcActv; /* V?x-cm-dc-active-idle-delta */
 double dVcmIdleDc; /* V?x-cm-idle-dc */
 double dVcmDcLine; /* V?x-cm-dc-line-delta */
 double dVcmDcDpls; /* V?x-cm-dc-d+ */
 double dVcmDcDmin; /* V?x-cm-dc-d- */
 double dVIdleDiff; /* V?x-idle-diffp */

 QTYS qNorm; /* Normal channel quantities */
 QTYS qComp; /* Complimentary channel quantities */
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 char *bTranEye;
 long lTranRsv;
 char *bDeemEye;
 long lDeemRsv;
 } PCIX;

lCompPnt Compliance Point, may be one of the following constants:
 PCIX_RX_MODE – Receive Mode
 PCIX_TX_MODE – Transmit Mode
 PCIX_RX_CARD – Receive Add-In Card Mode

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 101
 PCIX_TX_CARD – Transmit Add-In Card Mode

 PCIX_RX_SYST – Receive System Card Mode
 PCIX_TX_SYST – Transmit System Card Mode
 Default: PCIX_RX_MODE
lPcnt This field specifies the voltage thresholds to be used when

calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV and lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lIdleOk This flag is set by the system when an Idle Mode measurement

is successfully made. The results are then applied in
subsequent measurements. Set this flag to zero to invalidate
the previous Idle Mode measurement results, and force a new
Idle measurement to be made using the command :PCIX:IDLE?
Before the common mode idle voltages are applied once again.

 Default: 0
dAttn[n] Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tRcpm Datacom With Bitclock and Marker Tool which specifies most of

the input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Datacom With Bitclock and Marker Tool and
decide which to change.

lGood Flag indicates valid data in structure
dEyeOffs, dXmnDiff, dXmxDiff Used internally, DO NOT ALTER!
dVdiffPP Pk-pk differential voltage
dVdRatio De-emphaisis voltage ratio
dOpnEyeT Eye opening
dMedEyeT Median to max jitter
dVcommonAc V?x-cm-acp
dVcommonDc V?x-cm-dc
dVcmDcActv V?x-cm-dc-active-idle-delta
dVcmIdleDc V?x-cm-idle-dc
dVcmDcLine V?x-cm-dc-line-delta
dVcmDcDpls V?x-cm-dc-d+
dVcmDcDmin V?x-cm-dc-d-
dVIdleDiff V?x-idle-diffp
qNorm Normal channel quantities
qComp Complimentary channel quantities
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
bTranEye,lTranRsv, bDeemEye,lDeemRsv Used internally, DO NOT ALTER!

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 102

void __stdcall FCNL_DefPcix (PCIX *pcix)

This function is used to fill the pcix structure for the PCI Express Compliance tool with reasonable default values. It
is recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the PCIX structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
pcix - Pointer to a PCIX structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrPcix (PCIX *pcix)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the pcix structure.

INPUTS
pcix - Pointer to a PCIX structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static PCIX pci; //declare pci to a structure of type
 //PCIX
memset (&pci, 0, sizeof (PCIX)); //clear the memory for pci structure
FCNL_DefPcix (&pci); //set pci structures to default values

FCNL_RqstPkt (ApiDevId, &pci, WIND_PCIX); //execute the measurement.
FCNL_RqstAll (ApiDevId, &pci, WIND_PCIX); //get plot data (includes tRcpm)

FCNL_ClrPcix (&pci); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 103

2-36 PHASE NOISE TOOL

The Phase Noise tool allows users to measure phase noise in clock/oscillator sources. By simply choosing
the highest frequency to be displayed and the frequency resolution, the tool will measure and display the
phase noise spectrum. This tool reports the phase noise values at common offset frequencies.

The Phase Noise tool is used to show the amplitude and frequency of phase noise relative to the carrier
signal frequency. This tool measures the fluctuations in the phase of a signal caused by time domain
instabilities. Fast and easy phase noise measurements of oscillators and PLL devices can be easily
correlated to other noise effects on the signal.

The sensitivity of the tool is limited by hardware and is dependent on f0 and Maximum Freq. Alternate
methods of characterizing random noise in clock sources are available in the SIA-3000.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 FFTS tFfts; /* FFT window and analysis parameters */
 long lAutoFix; /* If true calculate the above parameters */
 long lPad1;
 double dMaxFreq; /* Maximum Frequency that is desired */
 double dFreqRes; /* Frequency resolution that is desired */
 long lFftAvgs; /* 2^fft_avgs averages used to smooth FFT */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 PLTD tTime; /* Time domain plot data */
 PLTD tStmp; /* Time stamp array, not normally plotted */
 PLTD tFft1; /* Frequency plot data on 1-clock basis */
 PLTD tPhas; /* Phase noise plot in dBc/Hz */
 double dCarFreq; /* Carrier frequency */
 double dSmpRate; /* Sampling rate */
 double dValByDec[DECADES]; /* Phase Noise by Decade, first is 10Hz */
 /* last is fMax, zero means illegal value */
 } PHAS;

tParm A structure of type PARM that contains acquisition parameter.

The PARM structure is discussed in full detail in Section 2-4.
tFfts A structure of type FFTS that contains the FFT setup parameters

such as window type and padding factor. See Section 2-10 for
further details.

lAutoFix If true calculate some of the above tParm parameters
 Default: 0
dMaxFreq Maximum Frequency that is desired
 Default: 1000.0
dFreqRes Frequency resolution that is desired
 Default: 1.0
lFftAvgs 2^fft_avgs averages used to smooth FFT
 Default: 2
lGood Flag indicates valid data in structure
tTime Time domain plot data
tStmp Time stamp array, not normally plotted
tFft1 Frequency plot data on 1-clock basis
tPhas Phase noise plot in dBc/Hz

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 104

dCarFreq Carrier frequency
dSmpRate Sampling rate
dValByDec[n] Phase Noise by Decade, first is 10Hz
 last is fMax, zero means illegal value

void __stdcall FCNL_DefPhas (PHAS *phas)

This function is used to fill the phas structure for the Phase Noise tool with reasonable default values. It is recommended
that this function be called initially even if parameters within the structure are to be adjusted manually, and may be
called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the PHAS structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
phas - Pointer to a PHAS structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrPhas (PHAS *phas)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the phas structure.

INPUTS
phas - Pointer to a PHAS structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE

static PHAS phase; //declare phase to a structure of type
 //PHAS
memset (&phase, 0, sizeof (PHAS)); //clear the memory for phase structure
FCNL_DefPhas (&phase); //set phase structures to default values

FCNL_RqstPkt (ApiDevId, &phase, WIND_PHAS); //execute the measurement.
FCNL_RqstAll (ApiDevId, &phase, WIND_PHAS); //get plot data

FCNL_ClrPhas (&phase); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 105

2-37 PLL ANALYSIS TOOL

The PLL Analysis tool permits users to study characteristics and parameters of a 2nd-order PLL.
With a simple set of variance measurements, the tool can extract information such as damping
factor, natural frequency, input noise level, lock range, lock-in time, pull-in time, pull-out range and
noise bandwidth. The tool also presents a transfer function and Bode plots up to the natural
frequency, as well as a plot of the poles and zero for a 2nd-order PLL.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 double dXiGuess; /* Initial value for damping factor */
 double dWnGuess; /* Initial value for natural frequency */
 double dS0Guess; /* Initial power spectral density dBc/Hz */
 double dInitOff; /* Initial offset frequency - delta W0 */
 long lIncStop; /* Increase stop count by this value */
 long lMaxStop; /* Maximum stop count to collect data */
 double dCornFrq; /* Corner Frequency for Record Length */
 double dRecTime; /* Record Length in units of time (s) */
 long lRecUnit; /* Record length units, must be one of: */
 /* 0=lMaxStop, 1=dCornFreq, 2=dRecTime */
 long lIniCond; /* Calc. initial conditions if non-zero */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lVfit; /* Indicates if the variance fit was good */
 double dDampFct; /* Damping factor from variance fit */
 double dNatFreq; /* Natural frequency from fit (rad/s) */
 double dS0Noise; /* Noise process power spectral density */
 double dChSquar; /* Chi-square of variance fit */
 double dFreq; /* Carrier frequency */
 complex dPole[2], dZero; /* Poles and zero */
 double dLockRng; /* Lock Range (rad/s) */
 double dLockInT; /* Lock-in Time (s) */
 double dPullInT; /* Pull-in Time (s) */
 double dPullOut; /* Pull-out Range (rad/s) */
 double dNoiseBW; /* Noise Bandwidth (rad/s) */
 PLTD tSigm; /* Contains the 1-Sigma plot array */
 PLTD tVfit; /* Resulting variance fit plot array */
 PLTD tInit; /* Initial Conditions variance plot array */
 PLTD tXfer; /* PLL Transfer Function plot array */
 PLTD tBodeMag; /* Bode plot magnitude/gain response */
 PLTD tBodePha; /* Bode plot phase response */
 } APLL;

tParm A structure of type PARM that contains acquisition parameter.

The PARM structure is discussed in full detail in Section 2-4.
dXiGuess Initial value for damping factor
 Default: 0.25
dWnGuess Initial value for natural frequency
 Default: 315e3
dS0Guess Initial power spectral density dBc/Hz
 Default: -90.0
dInitOff Initial offset frequency - delta W0
 Default: 1000.0
lIncStop Increase stop count by this value
 Default: 1

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 106

lMaxStop Maximum stop count to collect data
 Default: 1000
dCornFrq Corner Frequency for Record Length
 Default: 50e3
dRecTime Record Length in units of time (s)
 Default: 10e-6
lRecUnit Record length units, must be one of:
 0=lMaxStop, 1=dCornFreq, 2=dRecTime
 Default: 2
lIniCond Calc. initial conditions if non-zero
 Default: 1
lGood Flag indicates valid data in structure
lVfit Indicates if the variance fit was good
dDampFct Damping factor from variance fit
dNatFreq Natural frequency from fit (rad/s)
dS0Noise Noise process power spectral density
dChSquar Chi-square of variance fit
dFreq Carrier frequency
dPole[2] Location of Poles of transfer function
dZero Location of zero of transfer function
dLockRng Lock Range (rad/s)
dLockInT Lock-in Time (s)
dPullInT Pull-in Time (s)
dPullOut Pull-out Range (rad/s)
dNoiseBW Noise Bandwidth (rad/s)
tSigm Contains the 1-Sigma plot array
tVfit Resulting variance fit plot array
tInit Initial Conditions variance plot array
tXfer PLL Transfer Function plot array
tBodeMag Bode plot magnitude/gain response
tBodePha Bode plot phase response

void __stdcall FCNL_DefApll (APLL *apll)

This function is used to fill the apll structure for the PLL Analysis tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the APLL structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
apll - Pointer to a APLL structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 107

void __stdcall FCNL_ClrApll (APLL *apll)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the apll structure.

INPUTS
apll - Pointer to a APLL structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static APLL pll; //declare pll to a structure of type
 //APLL
memset (&pll, 0, sizeof (APLL)); //clear the memory for pll structure
FCNL_DefApll (&pll); //set pll structures to default values

FCNL_RqstPkt (ApiDevId, &pll, WIND_APLL); //execute the measurement.
FCNL_RqstAll (ApiDevId, &pll, WIND_APLL); //get plot data

FCNL_ClrApll (&pll); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 108

2-38 RAMBUS DRCG TOOL

The Rambus DRCG tool was developed specifically to test Rambus® clock generator chips which
have a compliance test that includes adjacent cycle jitter at 6 incremental accumulations for both
period polarities. This tool is a true compliance tool such that the specification, as defined by
Rambus Corporation, has been incorporated into this tool to validate a DRCG’s performance relative
to the standard.

The measurement consists of accumulated adjacent cycle jitter measurements (cycle to cycle) for
both rising edges and falling edges. The measurement algorithm is depicted above. Each
measurement configuration is executed in 4 “sweeps”. Each sweep is a burst of 4000 measurements.
For a given execution, 4 sweeps of 4000 measurements for both rising and falling edges at 6
different amplitudes of accumulation results in 4x4000x2x6=192,000 measurements. The results are
placed in arrays, which are organized by cumulative cycles and sweep number.

D RCG U tility ’s m easurem ent a lgorithm

Ram bus
Com plian t
DRCG IC

Wavecrest
S IA3000

PER1 PER2

∆PER 1= PER 1-PER 2

PER3 PER4

∆PER 2= PER 3-PER 4

PER m PER m+ 1

∆PERn=PER m -PER m + 1

dR
is

eM
in

dR
is

eM
ax

H istogram of 4000 ∆PER
m easurem ents for 1 Sw eep
of (+)period cycle-cycle jitter

Repeat
Acqu is ition for 4
sw eeps o f 4000
cycle-cycle
M easurem ents

PER1 PER2

∆PER 1=PER 1-PER 2

PER3 PER4

∆PER 2=PER 3-PER 4

PER m PER m+ 1

∆PERn=PER m-PER m + 1

dR
is

eM
in

dR
is

eM
ax

H istogram of 4000 ∆PER
m easurem ents for 1 Sw eep
of (-)period cycle -cyc le jitte r

Repeat
Acqu is ition for 4
sw eeps o f 4000
cycle-cycle
M easurem ents

Repeat Acqu is ition
o f Period (+) and
Period (-) for
accum ulations of:
1 period, 2 period,
3 period, 4 period ,
5 period and 6
period.

Accum u lation
of 1 period

Accum ulation
o f 2 periods

Accum ulation
o f 3 periods

Accum u lation
of 4 periods

Accum u lation
of 5 periods

Accum ulation
o f 6 periods

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lAutoFix; /* If true perform a pulsefind as req'd */
 long lDutCycl; /* If non-zero make duty cycle measurement*/
 long lUsrSpec; /* If non-zero use the specified TJ value */
 long lPad1;
 double dSpecVal; /* User-defined TJ specification */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPass;
 double dDutyMax; /* Maximum value of duty cycle measurement*/
 double dDutyMin; /* Minimum value of duty cycle measurement*/

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 109

 double dDutyAvg; /* Average value of duty cycle measurement*/
 PLTD tRiseMax; /* Minimum deltaT of rising adj. periods */
 PLTD tRiseMin; /* Maximum deltaT of rising adj. periods */
 PLTD tFallMax; /* Minimum deltaT of falling adj. periods */
 PLTD tFallMin; /* Maximum deltaT of falling adj. periods */
 PLTD tMaxiLim; /* Maximum limit per specification */
 PLTD tMiniLim; /* Minimum limit per specification */
 double dRiseMax[DRCG_CYCLES][DRCG_SWEEPS];
 double dRiseMin[DRCG_CYCLES][DRCG_SWEEPS];
 double dFallMax[DRCG_CYCLES][DRCG_SWEEPS];
 double dFallMin[DRCG_CYCLES][DRCG_SWEEPS];
 double dFreq; /* Carrier frequency */
 } DRCG;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lAutoFix Flag indicating whether to perform a pulse-find as required.

Setting this value to any integer greater than zero tells the
measurement to perform a pulse find if needed. The system will
know if a measurement was recently performed and if a pulse
find is necessary.

 Valid Entries: 0 – No pulsefind prior to measurement
 1 – Pulsefind if the measurement mode changed.
 Default: 0
lDutCycl Flag indicating whether to perform a duty cycle measurement.

Measuring three successive transitions, this measurement
represents the absolute duty cycle and allows the user to
identify the maximum, minimum and average duty cycle.

 Valid Entries: 0 – do not perform a duty cycle measurement
 1 – perform a duty cycle measurement
 Default: 0
lUsrSpec Flag to indicate whether to use a user specified limit for

maximum/minimum cycle to cycle jitter or to use the Rambus
defined specification. If this flag is set, the parameter
specified in dSpecVal will be used as the pass/fail limit for
this test.

 Valid Entries: 0 – Use Rambus defined specification
 1 – Use limit defined in dSpecVal
 Default: 0
dSpecVal Test limit used by this tool, depending on the state of lUsrSpec,

indicate a pass/fail condition based on the measured cycle to
cycle jitter for each pass, polarity and accumulation.

lGood Flag used to indicate valid output data in structure.
dDutyMax, dDutyMin, dDutyAvg Maximum, minimum and average values of duty

cycle measurement.
tRiseMax Structure of type PLTD containing all of the necessary

information to draw a histogram of data containing the maximum
increase in period of adjacent positive periods (periods
characterized by a rising edges). See Section 2-3 for details
of the PLTD structure and its elements.

tRiseMin Structure of type PLTD containing all of the necessary
information to draw a histogram of data containing the maximum
decrease in period of adjacent positive periods. See Section
2-3 for details of the PLTD structure and its elements.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 110

tFallMax Structure of type PLTD containing all of the necessary
information to draw a histogram of data containing the maximum
increase in period of adjacent negative periods (periods
characterized by a falling edges). See Section 2-3 for details
of the PLTD structure and its elements.

http://www.buginword.com
http://www.buginword.com

tFallMin Structure of type PLTD containing all of the necessary
information to draw a histogram of data containing the minimum
deltaT of falling adjacent periods. See Section 2-3 for
details of the PLTD structure and its elements.

tMaxiLim Structure of type PLTD containing all of the necessary
information to draw a histogram of maximum limits per
specification. See Section 2-3 for details of the PLTD
structure and its elements.

tMiniLim Structure of type PLTD containing all of the necessary
information to draw a histogram of minimum limits per
specification. See Section 2-3 for details of the PLTD
structure and its elements.

dRiseMax[m][n] A 6x4 array of maximum period increase between two adjacent
positive periods organized by the number of accumulated
periods and the sweep number. Each execution of this structure
results in 6 accumulations and 4 sweeps. (Each sweep is a
burst of 4000 measurements.)

dRiseMin[m][n] A 6x4 array of maximum period decrease between two adjacent
positive periods organized by the number of accumulated
periods and the sweep number. Each execution of this structure
results in 6 accumulations and 4 sweeps. (Each sweep is a
burst of 4000 measurements.)

dFallMax[m][n]A 6x4 array of maximum period increase between two adjacent
negative periods organized by the number of accumulated
periods and the sweep number. Each execution of this structure
results in 6 accumulations and 4 sweeps. (Each sweep is a
burst of 4000 measurements.)

dFallMin[m][n]A 6x4 array of maximum period decrease between two adjacent
negative periods organized by the number of accumulated
periods and the sweep number. Each execution of this structure
results in 6 accumulations and 4 sweeps. (Each sweep is a
burst of 4000 measurements.)

dFreq Measured carrier frequency.

void __stdcall FCNL_DefDrcg (DRCG *drcg)

This function is used to fill the drcg structure for the Rambus DRCG tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the DRCG structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
drcg - Pointer to a DRCG structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 111

void __stdcall FCNL_ClrDrcg (DRCG *drcg)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the drcg structure.

INPUTS
drcg - Pointer to a DRCG structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
#define TRUE 1
#define FALSE 0
#define ACCUM_MAX 6
#define SWEEP_MAX 4

int i,j;
static DRCG rambus; //declare cyc2cyc to be a structure of
 //type ACYC
memset (&rambus, 0, sizeof (DRCG)); //clear the memory for cyc2cyc
FCNL_DefDrcg (&rambus); //set histogram structures to default
 //values
rambus.tparm.lChanNum = 1; //capture waveform on channel 1
rambus.lDutCycl = TRUE; /Measure true duty cycle my measuring
 //successive edges.

FCNL_RqstPkt (ApiDevId, &rambus, WIND_DRCG); //execute the measurement.
FCNL_RqstAll (ApiDevId, & rambus, WIND_DRCG); //get plot data

printf(“MAX PERIOD DECREASE: NEGATIVE PERIODS\n”); //Display results for all sweeps and cycles
printf(“\tSweep1\tSweep2\tSweep3\tSweep4\n”);
for(i=1;i<=ACCUM_MAX;i++)
 {
 printf(“%i PER CYC-CYC\t”,i);
 for(j=0;j<SWEEP_MAX;j++)
 printf(“\t%d”,ABS(rambus.dFallMin[i][j]));
 printf(“\n”));
 }
printf(“MAX PERIOD INCREASE: NEGATIVE PERIODS\n”);
printf(“\tSweep1\tSweep2\tSweep3\tSweep4\n”);
for(i=1;i<=ACCUM_MAX;i++)
 {
 printf(“%i PER CYC-CYC\t”,i);
 for(j=1;j<=SWEEP_MAX;j++)
 printf(“\t%d”,ABS(rambus.dFallMax[i][j]));
 printf(“\n”));
 }

FCNL_ClrDrcg (&rambus); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 112

2-39 SCOPE TOOL

The Oscilloscope tool provides a quick and easy display of the signal to be analyzed. The
Oscilloscope has many different capabilities. It can capture a waveform, measure voltage
parameters, and create eye masks.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lVoff[POSS_CHNS]; /* Voltage offset (mV) - per channel */
 long lVdif[POSS_CHNS]; /* Differential offset (mV)- per channel */
 long lVcom[POSS_CHNS]; /* Common offset (mV) - per channel */
 long lTper; /* Time per division (ps) - all channels */
 long lTdel; /* Delay time (ps) - all channels */
 long lPcnt; /* Amount +/- 50% to calc. rise/fall time */
 long lHiRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lLoRFmV; /* Absolute rise/fall voltage if lPcnt<0 */
 long lInps; /* Input selection, see defines above */
 long lMeas; /* Measure flag, see defines above */
 long lPass; /* Acquisitions so far, set to 0 to reset */
 long lAvgs; /* 2^lAvgs = averages used to smooth data */
 long lPad1;
 MASK tMask; /* Structure which holds mask definition */
 double dMargin; /* Margin in percentage [-1.0 to 1.0] */
 double dHistDly; /* Histogram horizontal location, seconds */
 double dHistWid; /* Histogram horizontal width, seconds */
 double dHistVlt; /* Histogram vertical location, volts */
 double dHistHgt; /* Histogram vertical height, volts */
 double dAttn[POSS_CHNS]; /* Attenuation factor (dB) - per channel */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad2;
 QTYS qNorm[POSS_CHNS]; /* Normal channel quantities */
 QTYS qComp[POSS_CHNS]; /* Complimentary channel quantities */
 QTYS qDiff[POSS_CHNS]; /* Differential quantities */
 QTYS qComm[POSS_CHNS]; /* Common (A+B) quantities */
 PLTD tXval; /* Xaxis data to go with the voltage data */
 PLTD tNorm[POSS_CHNS]; /* Normal channel voltage data */
 PLTD tComp[POSS_CHNS]; /* Complimentary channel voltage data */
 PLTD tDiff[POSS_CHNS]; /* Differential voltage data */
 PLTD tComm[POSS_CHNS]; /* Common (A+B) voltage data */
 OHIS tHorz[POSS_CHNS]; /* Horizontal histogram data */
 OHIS tVert[POSS_CHNS]; /* Vertical histogram data */
 } SCOP;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
LVoff[n] Offset voltage used for scope acquire, specified in mV, one

per channel
lVdif[n] Differential offset voltage used for scope acquire, specified

in mV, one per channel
lVcom[n] Common mode offset voltage used for scope acquire, specified

in mV, one per channel
lTper Time per division specified in ps – applies to all channels,

any of the following are valid values:
 5000000, 2000000, 1000000, 500000, 200000, 100000,
 50000, 20000, 10000, 5000, 2000, 1000, 500, 200, 100, 50

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 113

 Default: 10000
lTdel Delay time to start specified in ps – applies to all channels
 Valid Range: 24,000 to 100,000,000
 Default: 24,000
lPcnt This field specifies the voltage thresholds to be used when

calculating rise and fall times. The voltage thresholds are
assumed to be symmetrical about the 50% threshold, and this is
the distance from the 50% threshold to the starting and ending
thresholds. For example if this field is equal to 30, then 20%
and 80% thresholds are used. If this field is equal to 40,
then 10% and 90% thresholds are used. The absolute voltage
levels used are based on the previous pulsefind minimum and
maximum voltages. If this field is negative, then the absolute
rise and fall thresholds are taken from the following fields
lHiRFmV & lLoRFmv.

 Default: 30
lHiRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: +250
lLoRFmV Absolute rise/fall voltage if lPcnt<0, in units of mV
 Default: -250
lInps Input selection, can be any of the following:
 SCOP_INPS_NORM +Input Only
 SCOP_INPS_COMP –Input Only
 SCOP_INPS_DIFF +Input minus -Input
 SCOP_INPS_BOTH +Input and -Input
 SCOP_INPS_COMM +Input plus –Input
 Default: SCOP_INPS_NORM
lMeas Measure flag, this is a bitfield which may be created by

combining any or all of the following constants:
 SCOP_MEAS_RISEFALL – Rise and Fall times are calculated
 SCOP_MEAS_VTYPICAL – Vtop and Vbase are calculated
 SCOP_MEAS_VEXTREME – Vmin and Vmax are calculated
 SCOP_MEAS_OVERUNDR – Overshoot and Undershoot are calculated
 SCOP_MEAS_WAVEFORM – Vavg and Vrms are calculated
 SCOP_MEAS_VERTHIST – Create a vertical histogram
 SCOP_MEAS_HORZHIST – Create a horizontal histogram
 SCOP_MEAS_EYEMASKS – Apply an Eye Mask Keep In/Out Region
 Default: None of the above are included
lPass This parameter is a bi-directional structure element that

tracks the number of acquisitions since last reset. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets this register.
It will be automatically incremented when a measurement is
performed.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
lAvgs This variable is used to calculate the number of averages to

use. Increasing the number of averages reduces the background
noise associated with the algorithms. The number of averages
is calculated based on the equation:

 AVERAGES = 2n where n = lAvgs
 Valid Entries: any integer greater than or equal to 0
 Default: 0 (indicating 20 averages = 1 execution.)
tMask MASK Structure which holds mask definition. See the definition

above.
 Defaults: tMask.dXwdUI = 0.40
 tMask.dXflUI = 0.20
 tMask.dYiPct = 0.60
 tMask.dV1Rel = 0.20

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 114

 tMask.dV0Rel = 0.20
 tMask.dVmask = 64e-3
 tMask.dTmask = 700e-12
 tMask.dV1pas = scop->tMask.dVmask * 0.75
 scop->tMask.dV0pas = scop->tMask.dVmask * 0.75
 tMask.dTflat = scop->tMask.dTmask * 3.0 / 7.0
dMargin Margin in percentage for Eye Mask [-1.0 to 1.0]
 Default: 0
dHistDly Histogram Box center horizontal location, seconds
 Default: 120e-9
dHistWid Histogram Box horizontal width, seconds
 Default: 160e-9
dHistVlt Histogram Box center vertical location, volts
 Default: 0.0
dHistHgt Histogram Box vertical height, volts
 Default: 1.6
dAttn[n] Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
lGood Flag indicates valid data in structure
qNorm[n] Normal channel quantities, one for each channel
qComp[n] Complimentary channel quantities, one for each channel
qDiff[n] Differential quantities, one for each channel
qComm[n] Common (A+B) quantities, one for each channel
tXval Xaxis data to go with the voltage data
tNorm[n] Normal channel voltage data, one for each channel
tComp[n] Complimentary channel voltage data, one for each channel
tDiff[n] Differential voltage data, one for each channel
tComm[n] Common (A+B) voltage data, one for each channel
tHorz[n] Horizontal histogram data, one for each channel
tVert[n] Vertical histogram data, one for each channel

void __stdcall FCNL_DefScop (SCOP *scop)

This function is used to fill the scop structure for the Scope tool with reasonable default values. It is recommended
that this function be called initially even if parameters within the structure are to be adjusted manually, and may be
called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the SCOP structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
scop - Pointer to a SCOP structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 115

void __stdcall FCNL_ClrScop (SCOP *scop)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the scop structure.

INPUTS
scop - Pointer to a SCOP structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static SCOP scope; //declare scope to a structure of type
 //SCOP
memset (&scope, 0, sizeof (SCOP)); //clear the memory for scope structure
FCNL_DefScop (&scope); //set scope structures to default values

FCNL_RqstPkt (ApiDevId, &scope, WIND_SCOP); //execute the measurement.
FCNL_RqstAll (ApiDevId, &scope, WIND_SCOP); //get plot data

FCNL_ClrScop (&scope); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 116

2-40 SERIAL ATA GEN2I & GEN2M TOOL

The SERIAL ATA GEN2I & GEN2M Tool provides both timing and amplitude compliance
measurements. It accurately determines device performance by quantifying both random and
deterministic jitter components.

typedef struct
 {
 /* Input parameters */
 long lCompPnt; /* Compliance Point 0-Gen2i 1-Gen2m */
 long lVoff; /* Offset voltage used for scope acquire */
 double dAttn; /* Attenuation factor (dB) */
 KPWM tKpwm; /* KPWM structure holds most information */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad2;
 double dTjit10; /* TJ @ Fbaud / 10 */
 double dRjit10; /* RJ @ Fbaud / 10 */
 double dDjit10; /* DJ @ Fbaud / 10 */
 double dTjit500; /* TJ @ Fbaud / 500 */
 double dRjit500; /* RJ @ Fbaud / 500 */
 double dDjit500; /* DJ @ Fbaud / 500 */
 double dTjit1667; /* TJ @ Fbaud / 1667 */
 double dRjit1667; /* RJ @ Fbaud / 1667 */
 double dDjit1667; /* DJ @ Fbaud / 1667 */
 PLTD tDdjt10; /* DCD+DDJvsUI @ Fbaud / 10 */
 PLTD tFreq10; /* Frequency PLTD @ Fbaud / 10 */
 PLTD tBath10; /* Bathtub PLTD @ Fbaud / 10 */
 PLTD tDdjt500; /* DCD+DDJvsUI @ Fbaud / 500 */
 PLTD tFreq500; /* Frequency PLTD @ Fbaud / 500 */
 PLTD tBath500; /* Bathtub PLTD @ Fbaud / 500 */
 PLTD tDdjt1667; /* DCD+DDJvsUI @ Fbaud / 1667 */
 PLTD tFreq1667; /* Frequency PLTD @ Fbaud / 1667 */
 PLTD tBath1667; /* Bathtub PLTD @ Fbaud / 1667 */
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 PLTD tDifScop; /* Differential voltage data */
 PLTD tComScop; /* Common (A+B) voltage data */
} ATA2;

lCompPnt Compliance Point, may be one of the following constants:
 0 – GEN2I Specification
 1 – GEN2M Specification
 Default: 0
lVoff Offset voltage used for scope acquire, specified in mV
 Default: 0
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tKpwm Known Pattern With Marker Tool which specifies most of the

input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Known Pattern With Marker Tool and decide
which to change.

lGood Flag indicates valid data in structure
lPad2 Internal parameter, do not modify.
dTjit10 Total Jitter with Fbaud/10 High Pass Filter Applied

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 117

dRjit10 Random Jitter with Fbaud/10 High Pass Filter Applied
dDjit10 Deterministic Jitter with Fbaud/10 High Pass Filter Applied
dTjit500 Total Jitter with Fbaud/500 High Pass Filter Applied
dRjit500 Random Jitter with Fbaud/500 High Pass Filter Applied
dDjit500 Deterministic Jitter with Fbaud/500 High Pass Filter Applied
dTjit1667 Total Jitter with Fbaud/1667 High Pass Filter Applied
dRjit1667 Random Jitter with Fbaud/1667 High Pass Filter Applied
dDjit1667 Deterministic Jitter with Fbaud/1667 High Pass Filter Applied
tDdjt10 DCD+DDJvsUI @ Fbaud/10
tFreq10 Frequency plot @ Fbaud/10
tBath10 Bathtub plot @ Fbaud/10
tDdjt500 DCD+DDJvsUI @ Fbaud/500
tFreq500 Frequency plot @ Fbaud/500
tBath500 Bathtub plot @ Fbaud/500
tDdjt1667 DCD+DDJvsUI @ Fbaud/1667
tFreq1667 Frequency plot @ Fbaud/1667
tBath1667 Bathtub plot @ Fbaud/1667
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
tDifScop Differential mode (IN - /IN) voltage data
tComScop Common mode (IN + /IN) voltage data

void __stdcall FCNL_DefAta2 (ATA2 *ata2)

This function is used to fill the ata2 structure for the Serial ATA tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the ATA2 structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
ata2 - Pointer to a ATA2 structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrAta2 (ATA2 *ata2)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the ata2 structure.

INPUTS
ata2 - Pointer to a ATA2 structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static ATA2 ata2; //declare ata2 to a structure of type
 //ATA2
memset (&ata2, 0, sizeof (ATA2)); //clear the memory for ata2 structure
FCNL_DefAta2 (&ata2); //set ata2 structures to default values

FCNL_RqstPkt (ApiDevId, &ata2, WIND_ATA2); //execute the measurement.
FCNL_RqstAll (ApiDevId, &ata2, WIND_ATA2); //get plot data

FCNL_ClrAta2 (&ata2); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 118

2-41 SERIAL ATA GEN1X & GEN2X TOOL

The SERIAL ATA GEN1X & GEN2X Tool provides both timing and amplitude compliance
measurements. It accurately determines device performance by quantifying both random and
deterministic jitter components.

typedef struct
 {
 /* Input parameters */
 long lCompPnt; /* Compliance Point, see defines above */
 long lVoff; /* Offset voltage used for scope acquire */
 double dAttn; /* Attenuation factor (dB) */
 EYEH tEyeh; /* EYEH structure holds most information */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad2;
 PLTD tNrmScop; /* Normal channel voltage data */
 PLTD tCmpScop; /* Complimentary channel voltage data */
 PLTD tDifScop; /* Differential voltage data */
 PLTD tComScop; /* Common (A+B) voltage data */
 } ATAX;

lCompPnt Compliance Point, may be one of the following constants:
 ATAX_RX_1X_MODE – 1X Receive Mode
 ATAX_TX_1X_MODE – 1X Transmit Mode
 ATAX_RX_2X_MODE – 2X Receive Mode
 ATAX_TX_2X_MODE – 2X Transmit Mode
 Default: 0
lVoff Offset voltage used for scope acquire, specified in mV
 Default: 0
dAttn Attenuation factor in dB, this is provided to allow the

results to be scaled to compensate for external attenuation
from sources such as probes.

 Default: 0
tEyeh Random Data With Bit Clock Tool which specifies most of the

input and output parameters necessary for a data signal
analysis. The user will need to review all of the default
parameters of the Random Data With Bit Clock Tool and decide
which to change.

lGood Flag indicates valid data in structure
lPad2 Internal parameter, do not modify.
tNrmScop Normal channel voltage data
tCmpScop Complimentary channel voltage data
tDifScop Differential mode (IN - /IN) voltage data
tComScop Common mode (IN + /IN) voltage data

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 119

void __stdcall FCNL_DefAtax (ATAX *atax)

This function is used to fill the atax structure for the Serial ATA tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the ATAX structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
atax - Pointer to a ATAX structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrAtax (ATAX *atax)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the atax structure.

INPUTS
atax - Pointer to a ATAX structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static ATAX atax; //declare atax to a structure of type
 //ATAX
memset (&atax, 0, sizeof (ATAX)); //clear the memory for atax structure
FCNL_DefAtax (&atax); //set atax structures to default values

FCNL_RqstPkt (ApiDevId, &atax, WIND_ATAX); //execute the measurement.
FCNL_RqstAll (ApiDevId, &atax, WIND_ATAX); //get plot data

FCNL_ClrAtax (&atax); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 120

2-42 SERIAL ATA TOOL

The SATA Specification requires that jitter measurements be made from Data edge to Data edge
across varying spans. The spans are from 0 to 5 UI, and then from 6 to 250 UI. This tool automates
these measurements and provides pass/fail results. For the specification point A2, or 25,000 UI, a
1010 pattern is used and the Low frequency modulation tool can be used.

This tool requires no knowledge of the data stream prior to making a measurement. It simply
measures data edge to data edge and places the measurements in their relative bins. The bin size is
base on the "Bit Rate (Gb/s)" entered into the tool plus or minus 0.5 UI. For example, if a span of
1.12UI is measured, it is placed in the 1UI bin. Some random time later (see SIA-3000 measurement
theory) another measurement is made and is 2.34 UI, so it is placed in the 2UI bin. After each bin
has sufficient data, a tail-fit is performed on each UI span to get RJ, DJ and TJ at 10-12 BER.

typedef struct
 {
 PARM tParm; /* Contains acquisition parameters */
 long lPassCnt;
 long lPad1;
 double dBitRate; /* Bit Rate, must be specified */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lTfit; /* Flag indicates all tailfits are good */
 long lMinHits; /* Min hits across all DJ spans */
 long lPad2;

 long lSetSave[SATA_TFITS];/***/
 long lPad3; /* */
 long lBinNumb[SATA_TFITS];/* These values are all used internally */
 long lPad4; /* */
 double dLtSigma[SATA_TFITS][PREVSIGMA];/* DO NOT ALTER! */
 double dRtSigma[SATA_TFITS][PREVSIGMA];/******************************/

 double dDjit5, dDjit250; /* DJ at 5 and 250 spans */
 double dTjit5, dTjit250; /* TJ at 5 and 250 spans */
 long lHits[SATA_TFITS]; /* Contains count of histogram hits */
 long lPad5; /* */
 TFIT tTfit[SATA_TFITS]; /* Structure containing tail-fit info */
 PLTD tDjit; /* Determinstic Jitter plot */
 PLTD tTjit; /* Total Jitter plot */
 PLTD tHist[SATA_TFITS]; /* Histograms for specific spans */
 } SATA;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lPassCnt This parameter is a bi-directional structure element that

tracks the number of acquisitions since last reset. This flag
can be read after an execution or set prior to an execution.
Setting this parameter to 0 essentially resets the accumulated
data. A measurement can be performed repeatedly with the same
structure. It will be automatically incremented by the next
measurement.

 Valid Entries: any integer greater than or equal to 0
 Default: 0
dBitRate Bit Rate, must be specified
 Default: 1.5e9
lGood Flag indicates valid data in structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 121

lTfit Flag indicates all tailfits are good
lMinHits Min hits across all DJ spans
lSetSave[n],lBinNumb[n],dLtSigma[n][m],dRtSigma[n][m] These values are all

used internally, DO NOT ALTER!
dDjit5 DJ at 5 spans
dDjit250 DJ at 250 spans
dTjit5 TJ at 5 spans
dTjit250 TJ at 250 spans
lHits[n] Contains count of histogram hits
tTfit[n] Structure containing tail-fit info
tDjit Determinstic Jitter
tTjit Total Jitter
tHist[n] Histograms for specific spans

void __stdcall FCNL_DefSata (SATA *sata)

This function is used to fill the sata structure for the Serial ATA tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the SATA structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
sata - Pointer to a SATA structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrSata (SATA *sata)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the sata structure.

INPUTS
sata - Pointer to a SATA structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static SATA ser_ata; //declare ser_ata to a structure of type
 //SATA
memset (&ser_ata, 0, sizeof (SATA)); //clear the memory for ser_ata structure
FCNL_DefSata (&ser_ata); //set ser_ata structures to default values

FCNL_RqstPkt (ApiDevId, &ser_ata, WIND_SATA); //execute the measurement.
FCNL_RqstAll (ApiDevId, &ser_ata, WIND_SATA); //get plot data

FCNL_ClrSata (&ser_ata); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 122

2-43 SPREAD SPECTRUM TOOL

The SSC tool will measure the appropriate number of the input clock cycles to see the maximum
peak-to-peak deviation due to the SSC profile (see figure below). This will be equal to the
fundamental frequency divided by the frequency of ½ the SSC cycle. The tool will search for this
maximum deviation within the range of possible SSC frequencies entered in the "Max. SSC Freq.
(kHz)" and "Min. SSC Freq. (kHz)" inputs.

The SSC tool will then measure a histogram of this span and determine the PPM deviation
form the input "Nominal Freq. (MHz)". The figure below shows what this corresponds to in
the frequency domain.

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 123

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 double dBegFreq; /* Starting freq to find peak jitter span */
 double dEndFreq; /* Ending freq to find peak jitter span */
 double dNomFreq; /* Nominal frequency */
 long lClokDiv; /* Scaling factor for divided clock */
 long lHstSamp; /* Samples for histogram at peak span */
 long lPpmAvgs; /* 2^lPpmAvgs used to average results */
 long lSscStds; /* Standard used, see above defines */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lMaxSpan; /* Span across which max jitter is found */
 double dCarFreq; /* Measured carrier frequency */
 double dModFreq; /* Apparent jitter modulation frequency */
 double dPpmPstv; /* Parts per million positive */
 double dPpmNgtv; /* Parts per million negative */
 double dMeasMin; /* Minimum value in measured normal data */
 double dMeasMax; /* Maximum value in measured normal data */
 double dMeasAvg; /* Average value of measured normal data */
 double dMeasSig; /* 1-Sigma value of measured normal data */
 double dUnitInt; /* Unit Interval of data signal */
 PLTD tHist; /* Histogram of results for peak freq. */
 PLTD tSigm; /* 1-Sigma data to find max jitter span */
 } SSCA;

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 124

tParm A structure of type PARM that contains acquisition parameter.
The PARM is discussed in full detail in Section 2-4.

dBegFreq Starting freq to find peak jitter span
 Valid Range: 1e3 to 1e6
 Default: 30e3
dEndFreq Ending freq to find peak jitter span
 Valid Range: 1e3 to 1e6
 Default: 33e3
dNomFreq Nominal frequency
 Valid Range: 1e6 to 10e9
 Default: 750e6
lClokDiv Scaling factor for divided clock
 Valid Range: 1 to 5
 Default: 1
lHstSamp Samples for histogram at peak span
 Valid Range: 1 to 950,000
 Default: 100,000
lPpmAvgs This variable is used to calculate the number of averages to

use. Increasing the number of averages reduces the background
noise associated with the algorithm. The number of averages is
calculated based on the equation:

 AVERAGES = 2n where n = lFftAvgs
 Valid Entries: any integer greater than or equal to 0
 Default: 0 (indicating 20 averages = 1 execution.)
lSscStds Standard used, the following defines apply:
 SSCA_USER, SSCA_SATA1, SSCA_SATA2, SSCA_PCIX
 Default: SSCA_SATA1
lGood Flag indicates valid data in structure
lMaxSpan Span across which max jitter is found
dCarFreq Measured carrier frequency
dModFreq Apparent jitter modulation frequency
dPpmPstv Parts per million positive
dPpmNgtv Parts per million negative
dMeasMin Minimum value in measured normal data
dMeasMax Maximum value in measured normal data
dMeasAvg Average value of measured normal data
dMeasSig 1-Sigma value of measured normal data
dUnitInt Unit Interval of data signal
tHist Histogram of results for peak freq.
tSigm 1-Sigma data to find max jitter span

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 125

void __stdcall FCNL_DefSsca (SSCA *ssca)

This function is used to fill the ssca structure for the SSC tool with reasonable default values. It is recommended
that this function be called initially even if parameters within the structure are to be adjusted manually, and may be
called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the SSCA structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
ssca - Pointer to a SSCA structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

void __stdcall FCNL_ClrSsca (SSCA *ssca)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the ssca structure.

INPUTS
ssca - Pointer to a SSCA structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
static SSCA spread; //declare spread to a structure of type
 //SSCA
memset (&spread, 0, sizeof (SSCA)); //clear the memory for spread structure
FCNL_DefSsca (&spread); //set spread structures to default values

FCNL_RqstPkt (ApiDevId, &spread, WIND_CLOK); //execute the measurement.
FCNL_RqstAll (ApiDevId, &spread, WIND_CLOK); //get plot data

FCNL_ClrSsca (&spread); //deallocate the structure

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 126

2-44 STATISTICS TOOL

The statistics tool is used to capture a few basic
parameters of a measurement that the user
selected in the tParm structure. The statistics tool
will also return voltage parameters of the signal
under test. As seen in the accompanying example
for a simple period measurement, the number of
parameters returned may be more extensive than
is typically desired in a production program. For
a simple time measurement, it is best to use the
histogram tool which can be set to return just the
statistics of the interest and not any of the
voltage information nor the extra timing
measurements as is captured in this tool. There is
added test time to capture duty cycle, frequency
and the voltage parameters.

Example of a period measurement using the Statistics Utility

measurement

dM
in

i

dM
ea

n

dM
ax

i

dVmax

dVmin

tACCUM_PER

dFreq = 100,000/tACCUM_PER

10
0,

00
0th

ed

ge

1
ed

ge

0
ed

ge

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lPfnd; /* Force a pulse-find before each measure */
 long lAutoFix; /* If true perform a pulsefind as req'd */
 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 long lPad1;
 double dMean; /* Contains the returned average value */
 double dMaxi; /* Contains the returned maximum value */
 double dMini; /* Contains the returned minimum value */
 double dSdev; /* Contains the returned 1-Sigma value */
 double dDuty; /* Contains the returned duty cycle */
 double dFreq; /* Contains the carrier frequency */
 double dVmin[2]; /* Pulse-find Min voltage for Start&Stop */
 double dVmax[2]; /* Pulse-find Max voltage for Start&Stop */
 } STAT;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lPfnd A flag used to force the execution of a pulse find execution.

In normal operation, the SIA3000 dynamically decides whether a
pulsefind is necessary based on previous test conditions. In
may cases, this is sufficient. However, in a production
environment, the previous test may have the same type of
voltage settings, however, the devices are different and may
have different voltage characteristics and would thus require
a pulse find on each device. Be aware that most production
test have specified amplitudes at which measurements are to be
made such that the programmer must specify the amplitude in
tPARM rather than use pulse find to establish test conditions.

 Valid Entries: 0 – No pulsefind prior to measurement
 1 – perform a pulse find.
 Default: 0

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 127

lAutoFix Flag to indicate to the system whether pulse find should be
performed if needed. This flag essentially enables the
“automatic pulse find” capability which will execute a

pulsefind based on the previous test setup and not with any
regard to device-device variations in amplitude.

 Valid Entries: 0 – No pulsefind prior to measurement
 1 – Pulsefind if the measurement mode changed.
 Default: 0
lGood Flag used to indicate valid output data in structure.
dMean Contains the returned average value.
dMaxi Contains the returned maximum value.
dMini Contains the returned minimum value.
dSdev Contains the returned 1-Sigma value.
dDuty Contains the returned duty cycle of the signal being measured.

This is not measured if a two channel measurement is being
performed.

dFreq Contains the frequency of the signal being measured. This is
not measured if a two channel measurement is being performed.

dVmin Min voltage returned from last pulse-find. It is important to
note that the accuracy of this voltage measurement is severely
bandwidth limited. For accurate amplitude measurements, use
the oscilloscope tool.

dVmax Max voltage returned from last pulse-find. It is important to
note that the accuracy of this voltage measurement is severely
bandwidth limited. For accurate amplitude measurements, use
the oscilloscope tool.

void __stdcall FCNL_DefStat (STAT *stat)

This function is used to fill the stat structure for the Statistics tool with reasonable default values. It is recommended
that this function be called initially even if parameters within the structure are to be adjusted manually, and may be
called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the STAT structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
stat - Pointer to a STAT structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 128

void __stdcall FCNL_ClrStat (STAT *stat)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the stat structure.

INPUTS
stat - Pointer to a STAT structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
#define TRUE 1
#define FALSE 0
static STAT statistics; //declare statistics to be a structure of
 //type STAT
memset (&statistics, 0, sizeof (STAT)); //clear the memory for statistics structure
FCNL_DefStat (&statistics); //set statistics structure to default values
 //NOTE: statistics.tparm, are also set to
 //defaults by this command.
statistics.tParm.lChanNum = 2 | (3<<16); //Set ch 2 for start and ch 3 for stop
statistics.tParm.lSampCnt = 1,000; //Set sample size to 1k per burst.
statistics.tParm.lFuncNum = FUNC_TPD_PP; //make propogation delay meas. from
 //rising edge on ch2 to rising edge on
 //ch 2.
statistics.tParm.lExternArm = 1; //use ch1 as arm channel
statistics.tParm.lAutoArm = ARM_EXTRN; //use External Arming
statistics.tParm.lStrtCnt = 1; //start measurement on first edge of
 //ch2 after the arm signal.
statistics.tParm.lStopCnt = 6; //stop measurement on sixth edge of
 //ch3 after the arm signal.
FCNL_RqstPkt (ApiDevId, & statistics, WIND_STAT); //execute the measurement.

If (statistics.lGood=TRUE)
 {
 printf(“\nSkew = %d\n”,statistics.dMean); //Print skew measurement
 printf(“\nSkew jitter = %d\n”,statistics.dSdev); //print skew jitter result
 }

FCNL_ClrStat (&statistics); //deallocate the structure

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 129

2-45 STRIPCHART TOOL

The Time Series Tool is used to capture timing issues that are occurring at sub Hertz rates. This tool
performs a measurement, extracts the statistical information from the measurement burst then waits a
defined interval and performs the measurement again. This type of measurement is used in Allan
Variance measurements and in real time debugging of various environment parameters (such as
VDD, VIL/VIH, timing skew, etc.) and their impact on various time measurements (such as period,
jitter, slew rate and modulation). To use this tool, the user must initiate a measurement with the
TSER structure in a loop that includes the wait time between measurements.

If this tool is to be used as a debug tool, it is recommended that the plot be redrawn between
measurements so as to allow the user to see a real-time display of the successive measurements. It is
also recommended that this routine be placed in a user-aborted infinite loop such that the user can
initiate and stop a Time Series measurement session.

If this tool is used to simply gather a fixed number of successive measurements and to analyze the
variance of the mean/peak-peak/1s/min/max over the said number of successive iterations, then the
last execution’s plot structures will contain all of the combined results.

In both cases, be sure to initialize the TSER structure element lNumb to zero when the first
measurement is performed via a call to FCNL_RqstPkt(). On subsequent calls, be sure to leave the
lNumb parameter undeclared so that the tool will continue to accumulate measurements on each
successive measurement burst. Measurements are acquired as follows:

Call FCNL_RqstPkt() with TSER
structure element “lNumb”
undeclared. Use a software wait
statement between function
calls to control delay between
bursts.

Call FCNL_RqstPkt() with TSER
structure element “lNumb” set
to zero to reset plot arrays and
clear old data.

Signal (Fc)

1st
 M

ea
s.

Time Series of Period Measurements Example

2nd
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

nth
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

1st Measurement
Burst

1st
 M

ea
s.

2nd
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

nth
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

2nd Measurement
Burst

1st
 M

ea
s.

2nd
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

nth
 M

ea
s.

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

TP
ar

m
.lS

to
pC

nt

TP
ar

m
.lS

tr
tC

nt

nth Measurement
Burst

Call FCNL_RqstPkt() with TSER
structure element “lNumb”
undeclared. Use a software wait
statement between function
calls to control delay between
bursts.

Implement a dialog box with
user to end loop, or, repeat
loop sufficiently to acquire
accurate Allan Variance
estimate.

typedef struct
 {
 /* Input parameters */
 PARM tParm; /* Contains acquisition parameters */
 long lNumb; /* Measurements so far, set to 0 to reset */
 long lPad1;
 double dSpan; /* Span between measurements in seconds */
 long lAutoFix; /* If true perform a pulsefind as req'd */

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 130

 /* Output parameters */
 long lGood; /* Flag indicates valid data in structure */
 double dYstd; /* 1-Sigma value calculated on all data */
 double dAvar; /* Allan variance calculation */
 /**/
 double dSumm; /* These values are all used internally */
 double dTyme; /* as part of the measurement process */
 /* DO NOT ALTER! */
 /**/
 PLTD tMean; /* Contains the average plot array */
 PLTD tMini; /* Contains the minimum plot array */
 PLTD tMaxi; /* Contains the maximum plot array */
 PLTD tTime; /* Contains the time samples were taken */
 PLTD tSdev; /* Contains the 1-Sigma plot array */
 PLTD tPeak; /* Contains the (max - min) plot array */
 } TSER;

tParm A structure of type PARM that contains acquisition parameter.

The PARM is discussed in full detail in Section 2-4.
lNumb When implemented correctly, a measurement is performed

repeatedly with the TSER structure to generate a Time Series
plot of a given measurement. (User defines measurement
parameters in tParm.). For the first execution, set lNumb to
zero to reset the plot arrays. All subsequent measurements
should not assign any value to this structure element. This
parameter is automatically incremented by the next measurement
and can be read after execution to determine the number of
times this structure has been called.

 Valid Entries: 0 reset counter and clear all plot data.
 Default: Increment previous value.
lAutoFix Flag indicating whether to perform a pulse-find as required.

Setting this value to any integer greater than zero tells the
measurement to perform a pulse find if needed. The system will
know if a measurement was recently performed and if a pulse
find is necessary.

 Valid Entries: 0 – no pulsefind prior to measurement
 1 – pulsefind if the measurement mode changed.
 Default: 0
lGood Flag indicates valid output data in structure.
dYstd 1-Sigma, or standard deviation of all data.
dAvar Allan variance estimate.
tMean Structure of type PLTD which contains all of the plot

information to generate a diagram of mean values versus
iteration number. Use this in PLTD structure in conjunction
with the structure tTime to generate a Maximum measurement
versus time plot. See Section 2-3 for details of the PLTD
structure and its elements.

tMini Structure of type PLTD which contains all of the plot
information to generate a diagram of minimum measurement of a
given burst versus iteration number. Use this in PLTD
structure in conjunction with the structure tTime to generate a
Maximum measurement versus time plot. See Section 2-3 for
details of the PLTD structure and its elements.

 tMaxi Structure of type PLTD which contains all of the plot
information to generate a diagram of maximum measurement of a
given burst versus iteration number. Use this in PLTD
structure in conjunction with the structure tTime to generate a

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 131

Maximum measurement versus time plot. See Section 2-3 for
details of the PLTD structure and its elements.

tTime Structure of type PLTD which contains all of the time values at
which measurements were taken. Use this structure in
conjunction with tMini, tMaxi, tSdev, tPeak & tMean to plot
said structures as a function of time. . See Section 2-3 for
details of the PLTD structure and its elements.

tSdev Structure of type PLTD which contains all of the plot
information to generate a diagram of 1-Sigma values of a given
burst versus iteration number. Use this in PLTD structure in
conjunction with the structure tTime to generate a Maximum
measurement versus time plot. See Section 2-3 for details of
the PLTD structure and its elements.

tPeak Structure of type PLTD which contains all of the plot
information to generate a diagram of peak to peak (maximum
measurement – minimum measurement) of a given burst versus
iteration number. Use this in PLTD structure in conjunction
with the structure tTime to generate a Maximum measurement
versus time plot. See Section 2-3 for details of the PLTD
structure and its elements.

dSumm, dTyme, dSpan These values are all used internally, DO NOT ALTER!

void __stdcall FCNL_DefTser (TSER *tser)

This function is used to fill the tser structure for the Time Series tool with reasonable default values. It is
recommended that this function be called initially even if parameters within the structure are to be adjusted
manually, and may be called repeatedly to reestablish initial conditions; however, this will impact test time.
Before calling this function, zero out the TSER structure using the standard memset() function to ensure that any
information pertaining to dynamic memory allocation is cleaned out prior to using the structure.

INPUTS
tser - Pointer to a TSER structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 132

void __stdcall FCNL_ClrTser (TSER *tser)

This function frees any dynamic memory that may have been allocated during previous data acquisitions and clears
out the tser structure.

INPUTS
tser - Pointer to a TSER structure. Memory needs to be allocated by the caller.

OUTPUTS
None.

EXAMPLE
#define TRUE 1
#define FALSE 0
static TSER tiseries; //declare tseries to be a structure of
 //type TSER
memset (&tseries, 0, sizeof (TSER)); //clear the memory for tseries structure
FCNL_DefTser (&tseries); //set tseries structure to default values
 //NOTE: tseries.tparm, are also set to
 //defaults by this command.
tseries.tParm.lChanNum = 1; //Set ch 1 to be measured channel
tseries.tParm.lSampCnt = 1000; //Set sample size to 1k per burst.
tseries.tParm.lFuncNum = FUNC_PER; //make period measurements

for (I=0;I<100,000;I++)
 {
 FCNL_RqstPkt (ApiDevId, &tseries, WIND_TSER); //execute the measurement.
 plot_data(tseries.tPeak); //call subroutine which generates a plot
 } //of the data contained in the
 //tseries.tPeak PLTD structure.

FCNL_ClrTser (&tseries); //deallocate the structure

void plot_data(PLTD *plotstruc)
 { //see section 2-40 for an example of
 //a subroutine which will plot a PLTD
 //structure.

 }

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 133

2-46 RETRIEVING SPIKELISTS

Many of the tools that contain FFT’s have the ability to detect and characterize spikes by their
frequency and amplitude from within the GUI. The commands used to retrieve the spikelists were
designed to remain flexible, and if used properly will adapt from release to release with a simple
recompile of your source code. This functionality is supported via the low level GPIB command set
and the low level communication functions in Section 4. The spikelist GPIB commands take the
following form:

Command syntax- :SPIKelist:<toolname>(@n)<offset>

<toolname> is replaced with the same name used with the :ACQUIRE command
(@n) is used to specify the channel which the spikelist is taken

from
<offset> is the length in bytes from the start of a binary packet to

the pointer to the spikelist to be returned in the same binary
packet, it is normally calculated from the structure
definition

The correct way to obtain the spikelist is shown in the following example:

// Initialize RCPM structure and set to defaults
static RCPM bcam;
memset (&bcam, 0, sizeof (RCPM));
FCNL_DefRcpm (&bcam);

//execute the measurement
FCNL_RqstPkt (ApiDevId, &bcam, WIND_RCPM);

// Create the command to get the spikelist
sprintf(buffer, “:SPIK:CLKANDMARK(@1)%i”, (long)&bcam.lPeakData–
(long)&bcam);

// Send the command and place the returned data into the spikelist buffer
COMM_ReqBin (ApiDevId, buffer, strlen(buffer), spikes, sizeof(spikes));

// Use the spikelist as required

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 134

2-47 EXAMPLE OF HOW TO DRAW USING A PLTD STRUCTURE:
/**/
/* DrawPlot() is a function that will plot a graph based on the variables defined */
/* in the PLTD structure passed into this function. */
/* (1) get initial (x,y) coordinates within diagram to start plot. */
/* (2) Normalize (x,y) coordinates to amplitudes between 0 and 1 to represent */
/* their relative location between [xmin,xmax] or [ymin,ymax] for */
/* x coordinates and y coordinates respectively */
/* (3) Initialize the pointer pCdc to the start of the plot in units of pixels */
/* (4) step through the data array, normalize the coordinates and pass them to */
/* the pCdc function to draw a line to from the previous pCdc location. */
/* (5) repeat step 4 for all coordinates. */
/* The variables passed into the function are: */
/* CDC *pCdc – Windows® pointer to communicate cursor location during plot. */
/* Crect *wind – Windows® pointer to indicate window size and location in the */
/* display. the parameters are in units of pixels top, bottom, left */
/* and right define the boundaries for the display window. The */
/* origin is set to the upper left hand corner with increasing */
/* amplitude to the lower right hand corner. */
/* PLTD *pldt – Wavecrest plot structure */
/* double xmax – user specified maximum x value for x-axis. This may be larger */
/* than pltd.dXmax if a margin is desired. Xmax is in same units as */
/* the pldt structure’s x axis elements. */
/* double xmin - user specified minimum x value for x-axis. This may be smaller */
/* than pltd.dXmin if a margin is desired. Xmin is in same units as */
/* the pldt structure’s x axis elements. */
/* double ymax – user specified maximum y value for y-axis. This may be larger */
/* than pltd.dYmax if a margin is desired. Ymax is in same units */
/* as the pldt structure’s y axis elements. */
/* double ymin - user specified minimum x value for x-axis. This may be larger */
/* than pltd.dYmin if a margin is desired. Ymin is in same units */
/* as the pldt structure’s y axis elements. */
/**/

void DrawPlot(CDC *pCdc, CRect *rect, PLTD *plot,
 double xmin, double xmax, double ymin, double ymax)
 {
 long i;
 double x, y;
 double xrange = xmax-xmin;
 double yrange = ymax-ymin;

 x = (plot->dXmin - xmin) / xrange; //normalize first X plot point
 x = (double)(rect.right-rect.left)*x+(double)rect.left; //convert first plot point to
Windows®
 //coordinates in pixels
 y = (plot.dData[0]-ymin)/yrange; //normalize first Y plot point
 y = (double)(rect.bottom-rect.top)*(1.0-y) //convert first plot point to Windows®
 + (double) rect.top; //coordinates in pixels. Note, the
 //(1.0-y) function is used to account for
 //the reverse direction of the coordinate
 //system between pixels and the plot elements
 pCdc.MoveTo ((int)x,(int)y); //move display cursor to start of plot

 for (i = 1; i < plot.lNumb; i++)
 {
 x = ((plot.dXmax–plot.dXmin)*(double)i //find next x-coordinate
 / (double)(plot.lNumb-1)+plot.dXmin);

 x = (x-xmin)/xrange; //normalize new x-coordinate

 x = (double)(rect.right–rect.left)*x+(double)rect.left; //convert new x-coord to Windows®
 //coordinates in pixels.
 y = (plot.dData[i]-ymin)/yrange; //find next y-coordinate and normalize it

 y = (double)(rect.bottom-rect.top)*(1.0-y) //convert y-coord to Windows® pixel
 + (double) rect.top; //coordinates

 pCdc.LineTo((int)x,(int)y); //draw a line from previous cursor
 //location to new (x,y) coordinates.
 }
 return 0;

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 135
 }

2-48 DEFINES FOR VALUES IN MEASUREMENT STRUCTURES

The following defines were created to aid in assigning values to various fields in the binary packet
structure. They would have been referenced in the above definitions.

/* Standard acquire functions */
#define FUNC_TPD_PP 1 /* TPD +/+ 2-Chan */
#define FUNC_TPD_MM 2 /* TPD -/- 2-Chan */
#define FUNC_TPD_PM 3 /* TPD +/- 2-Chan */
#define FUNC_TPD_MP 4 /* TPD -/+ 2-Chan */
#define FUNC_TT_P 5 /* Rising edge 1-Chan */
#define FUNC_TT_M 6 /* Falling Edge 1-Chan */
#define FUNC_PW_P 7 /* Positive pulse width 1-Chan */
#define FUNC_PW_M 8 /* Negative pulse width 1-Chan */
#define FUNC_PER 9 /* Period 1-Chan */
#define FUNC_FREQ 10 /* Frequency 1-Chan */
#define FUNC_PER_M 11 /* Period minus 1-Chan */
/* Available analysis macros */
#define ANAL_FUNC 0 /* Function analysis macro */
#define ANAL_JITT 1 /* Jitter analysis macro */
#define ANAL_RANG 2 /* Range analysis macro */
#define ANAL_CLOK 3 /* PW+/PW-/PER+/PER- macro */
/* Stop count designators specific to ANAL_FUNC macro */
#define ANL_FNC_FIRST 0 /* Arm start first */
#define ANL_FNC_PLUS1 1 /* Start + 1 */
#define ANL_FNC_START 2 /* Start */
/* Rise/Fall edge designators */
#define EDGE_FALL 0 /* Measurement reference is falling edge */
#define EDGE_RISE 1 /* Measurement reference is rising edge */
#define EDGE_BOTH 2 /* Used for DDR in EYEH, DBUS, & FCMP */
/* Pulsefind mode designators */
#define PFND_FLAT 0 /* Use flat algorithm for pulse-find calc */
#define PFND_PEAK 1 /* Use peak value for pulse-find calc */
/* Pulsefind percentage designators */
#define PCNT_5050 0 /* Use 50/50 level for pulse-find calc */
#define PCNT_1090 1 /* Use 10/90 level for pulse-find calc */
#define PCNT_9010 2 /* Use 90/10 level for pulse-find calc */
#define PCNT_USER 3 /* Do NOT perform pulse-find; manual mode */
#define PCNT_2080 4 /* Use 20/80 level for pulse-find calc */
#define PCNT_8020 5 /* Use 80/20 level for pulse-find calc */
/* Arming mode designators */
#define ARM_EXTRN 0 /* Arm using one of the external arms */
#define ARM_START 1 /* Auto-arm on next start event */
#define ARM_STOP 2 /* Auto-arm on next stop event */
/* Valid lCmdFlag values for special features */
#define CMD_PATNMARK (1<<4)
#define CMD_BWENHANCED (1<<10)
/* Constants to assist in setting lArmMove */
#define ARMMOVE_MAX_STEP 40
#define ARMMOVE_MIN_STEP -40
#define ARMMOVE_PICO_PER_STEP 25
/* Used for structure definitions below */
#define POSS_CHNS 10
/* Constants used to identify FFT window type */
#define FFT_RCT 0 /* Rectangular window */
#define FFT_KAI 1 /* Kaiser-Bessel window */
#define FFT_TRI 2 /* Triangular window */
#define FFT_HAM 3 /* Hamming window */
#define FFT_HAN 4 /* Hanning window */

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 136
#define FFT_BLK 5 /* Blackman window */

#define FFT_GAU 6 /* Gaussian window */
/* Constants used by new scope tool to identify which plot to show */
#define SCOP_INPS_NORM 0
#define SCOP_INPS_COMP 1
#define SCOP_INPS_DIFF 2
#define SCOP_INPS_BOTH 3
#define SCOP_INPS_COMM 4
/* Constants used by new scope tool for measures to calculate */
#define SCOP_MEAS_VEXTREME (1<<0)
#define SCOP_MEAS_VTYPICAL (1<<1)
#define SCOP_MEAS_WAVEFORM (1<<2)
#define SCOP_MEAS_OVERUNDR (1<<3)
#define SCOP_MEAS_RISEFALL (1<<4)
#define SCOP_MEAS_VERTHIST (1<<5)
#define SCOP_MEAS_HORZHIST (1<<6)
#define SCOP_MEAS_EYEMASKS (1<<7)
/* Used internally for tailfit algorithm */
#define PREVSIGMA 5
/* Used by Advanced PLL tool */
#define MIN_APLL_INI_DAMP_FCT 1e-3
#define MAX_APLL_INI_DAMP_FCT 10.0
#define MIN_APLL_INI_NAT_FREQ 10.0
#define MAX_APLL_INI_NAT_FREQ 10e9
#define MIN_APLL_INI_NOISEPSD -120
#define MAX_APLL_INI_NOISEPSD -40
/* Used by Phase Noise tool for number of decades to span */
#define DECADES 8
/* Constants for: lTailFit the number of dataCOM tailfits to perform */
#define DCOM_NONE 0
#define DCOM_AUTO 1
#define DCOM_FIT3 2
#define DCOM_FIT5 3
#define DCOM_FIT9 4
#define DCOM_FIT17 5
#define DCOM_ALL 6
#define DCOM_1SIGMA 7
/* Constants for: lFitPcnt the auto-mode percentage to converge within */
#define DCOM_PCNT5 0
#define DCOM_PCNT10 1
#define DCOM_PCNT25 2
#define DCOM_PCNT50 3
/* Constance used for PCI Express mode */
#define PCIX_SCOP_AVG 8
#define PCIX_RX_MODE 0
#define PCIX_TX_MODE 1
#define PCIX_RX_CARD 2
#define PCIX_TX_CARD 3
#define PCIX_RX_SYST 4
#define PCIX_TX_SYST 5
#define PCIX_SPECS 6
#define PCIX_EYE_XDOTS 408
#define PCIX_EYE_YDOTS 630
/* Constants used for Serial ATA tool */
#define SATA_SPANS 250
#define SATA_TFITS 11
/* Constants used to identify which clock analysis measures to calculate
*/
#define CANL_MEAS_RISEFALL (1<<0)
#define CANL_MEAS_VTYPICAL (1<<1)
#define CANL_MEAS_VEXTREME (1<<2)
#define CANL_MEAS_OVERUNDR (1<<3)

©WAVECREST Corporation 2005 SECTION 2 – Measurement Commands and Structures 137

#define CANL_MEAS_WAVEMATH (1<<4)
#define CANL_MEAS_TIMEPARM (1<<5)
#define CANL_MEAS_TAILFITS (1<<6)
#define CANL_MEAS_PERIODIC (1<<7)
/* Constants to define the number of random data tailfits to perform */
#define RAND_AUTO 0
#define RAND_FIT3 1
#define RAND_FIT5 2
#define RAND_FIT9 3
#define RAND_FIT17 4
/* Constants for percentage to succeed when Random Data using auto-mode */
#define RAND_PCNT5 0
#define RAND_PCNT10 1
#define RAND_PCNT25 2
#define RAND_PCNT50 3
/* Constants used for Rambus DRCG adjacent cycle tool */
#define DRCG_SWEEPS 4
#define DRCG_CYCLES 6
/* Constants used for Spread Spectrum tool */
#define SSCA_USER 0
#define SSCA_SATA1 1
#define SSCA_SATA2 2
#define SSCA_PCIX 3
/* Constants used for filter selection */
#define FILTERS_DISABLED 0
#define BRICKWALL_FILTER 1
#define ROLLOFF_1STORDER 2
#define ROLLOFF_2NDORDER 3
#define PCIX_CLOK_FILTER 10

Section 2 – Measurement Commands and Structures ©WAVECREST Corporation 2005 138

SECTION 3 – GENERAL COMMAND REFERENCE

The WAVECREST Production API provides low level and administrative functions to simplify
GPIB operations and provide advanced configuration and measurement options. With the exception
of the GPIB functions that initialize device communication via the ApiDevID, these functions are
not prerequisite for using the Production API to acquire simple measurements. Most of these
routines provide greater flexibility for the advanced user.

This chapter provides a general overview of these functions along with examples for the more
commonly used functions. These functions apply to all tools, but may require the pointer to a
specific measurement window structure to be passed along with a type identifier (i.e., WIND_HIST).
For more information regarding specific measurement tools and their corresponding measurement
window structures and commands, refer to the previous chapter.

NOTE: __stdcall and DllCall are part of the function definitions in the header file but can

essentially be ignored. They are utilized to provide options when building and using DLLs
on Microsoft® Windows. They are implemented to allow the same header file to be used for
building the DLL and importing the DLL, ensuring consistent declarations.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 139

3-1 GPIB COMMUNICATION AND I/O LAYER FUNCTIONS

COMM Layer Functions
The functions in this section provide GPIB bus functionality. GPIB commands may be used in
conjunction with Production API commands for advanced functionality. However, COMM_InitDev and
COMM_CloseDev are the only functions that must be called in order to utilize the Production API. These
functions initialize and close a GPIB connection and acquire an API Device ID through which higher-
level Production API measurement functions are called. All other functions are strictly optional unless
low-level GPIB functions must be sent or more customized GPIB error handling is required.

Required Functions

void __stdcall COMM_CloseDev (long ApiDevId)

Calls IO_close to close the device specified by ApiDevid.

INPUTS
ApiDevid - API Device ID of the device. This value can be from 1 to 31. The device must have been opened using

COMM_InitDev(..).

OUTPUTS
None.

long __stdcall COMM_InitDev (long ApiDevTyp, char *devname)

This function first calls IO_open to open the device specified by devname. Then initializes the device for communication
using the COMM library and returns the API Device ID. If an error occurs, a negative number is returned instead.

INPUTS
ApiDevType - An integer value indicating the device type:
 HPIB = 0 (HP Systems Only)
 GPIB = 1
 CUST1 = 11
 CUST2 = 12
 CUST3 = 13
devname - A pointer to an ASCII string containing a device name.

OUTPUTS
Returns an integer containing the API Device ID or a negative number to indicate an error.

long __stdcall COMM_ResetDev (long ApiDevId)

This function first calls IO_clear to reset the device specified by devname. Then initializes the device for communication
using the COMM library. If an error occurs, a negative number is returned instead.

INPUTS
 ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
OUTPUTS
 Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 140

long __stdcall COMM_TalkDev (long ApiDevId, char *cmnd)

This function first clears the response byte of the specified device and then sends the specified command with an "*opc"
command appended and waits for the ESB bit in the response byte to be set or LONG_TIME (100) seconds. If the ESB
bit is set, the ESR byte is checked for errors. If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
cmnd - A pointer to a NULL terminated ASCII string containing the command to send.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_TalkBin (long ApiDevId, char *sCmnd, long lCmnd)

This function first clears the response byte of the specified device and then sends the specified command with an "*opc"
command appended and waits for the ESB bit in the response byte to be set or LONG_TIME (100) seconds. If the ESB
bit is set the ESR byte is checked for errors. If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
sCmnd - A pointer to buffer containing the command and binary data to send.
lCmnd - Integer containing the length of sCmnd.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_ReqAsc (long ApiDevId, char *cmnd, char *sval,
long svalLen)

This function first clears the response byte of the specified device and then sends the specified command and waits for the
ESB or MAV bit in the response byte to be set or LONG_TIME (100) seconds. If the MAV bit is set, an IO_read of the
specified number of bytes minus one (svalLen - 1) is done and the returned NULL terminated ASCII data is placed in the
specified location (sval). The ESR byte is then checked for errors. If a timeout occurs or an error is found, a negative
value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
cmnd - A pointer to a NULL terminated ASCII string containing the command to send.
sval - A pointer to store the returned NULL terminated ASCII data. This buffer must be long enough to hold the

expected number of ASCII bytes plus a NULL terminator.
svalLen - An integer containing the length of sval. This value must be the length of or greater than the expected

number of bytes returned plus one (1) or the IO_read will not return all the data from the specified
device.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 141

long __stdcall COMM_ReqBin (long ApiDevId, char *sCmnd, long lCmnd,
char *sRetn, long *lRetn)

This function first clears the response byte of the specified device and then sends the specified command and waits for the
ESB or MAV bit in the response byte to be set or LONG_TIME (100) seconds. If the MAV bit is set, an IO_read of the
specified number of bytes (lRetn) is done and the returned binary data is placed in the specified location (sRetn). The ESR
byte is then checked for errors. If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
sCmnd - A pointer to buffer containing the command and binary data to send.
lCmnd - Integer containing the length of sCmnd.
sRetn - A pointer to store the returned binary data. This buffer must be long enough to hold the expected number

of bytes.
lRetn - An integer containing the length of sRetn. This value must be the length or greater than the expected

number of bytes returned or the IO_read will not return all the data from the specified device.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_ReqInt (long ApiDevId, char *cmnd, long *ival)

This function first clears the response byte of the specified device and then sends the specified command and waits for the
ESB or MAV bit in the response byte to be set or LONG_TIME (100) seconds. If the MAV bit is set, an IO_read is done
and the returned ASCII data is converted to a long integer and placed in the specified location (ival). The ESR byte is then
checked for errors. If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
cmnd - A pointer to a NULL terminated ASCII string containing the command to send.
ival - A pointer to a long integer to store the returned value.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_ReqDbl (long ApiDevId, char *cmnd, double *dval)

This function first clears the response byte of the specified device and then sends the specified command and waits
for the ESB or MAV bit in the response byte to be set or LONG_TIME (100) seconds. If the MAV bit is set, an
IO_read is done and the returned ASCII data is converted to a double and placed in the specified location (dval). The
ESR byte is then checked for errors. If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
cmnd - A pointer to a NULL terminated ASCII string containing the command to send.
dval - A pointer to a double to store the returned value.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 142

long __stdcall COMM_PollUntilTrue (long ApiDevId, long mask, time_t
tyme)

This function will poll the response byte of the specified device until one of the specified bits becomes true or the specified
number seconds elapses.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
mask - Integer containing the response bits to wait for. Refer to the device documentation for definition of the

response bits.
tyme - Integer containing the amount of time in seconds to wait for one of the specified response bits to

become true.

OUTPUTS
Returns an integer containing the response byte from ApiDevId (Refer to the device documentation for definition
of the response bits.) or a negative value to indicate error.

long __stdcall COMM_PollWhileTrue (long ApiDevId, long mask, time_t
tyme)

This function will poll the response byte of the specified device until one of the specified bits becomes true or the specified
number seconds elapses.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
mask - Integer containing the response bits to wait for. Refer to the device documentation for definition of the

response bits.
tyme - Integer containing the amount of time in seconds to wait for one of the specified response bits to

become true.

OUTPUTS
Returns an integer containing the response byte from ApiDevId (Refer to the device documentation for definition
of the response bits.) or a negative value to indicate error.

long __stdcall COMM_PollWithStatUntilTrue (long ApiDevId, long mask,
time_t tyme)

This function will poll both the status byte and the response byte of the specified device while all of the specified bits are
clear, or the specified number of seconds elapses.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
mask - Integer containing the response bits to wait for. Refer to the device documentation for definition of the

response bits.
tyme - Integer containing the amount of time in seconds to wait for one of the specified response bits to become true.

OUTPUTS
Returns an integer containing the response byte from ApiDevId (Refer to the device documentation for definition of
the response bits.) or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 143

long __stdcall COMM_ClearRspByt (long ApiDevId)

If any of the status indicators are set on the specified device, this function send a "*cls" command to the specified device and
waits for the response byte to clear or SHORT_TIME (5) seconds. If the function times out, an error is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.

OUTPUTS
Returns an integer containing the response byte from ApiDevId (Refer to the device documentation for definition of
the response bits.) or a negative value to indicate error.

long __stdcall COMM_ReqEsr (long ApiDevId, char *esr)

This function sends a "*esr?" command and waits for the byte to return or SHORT_TIME (5) seconds. If the function times
out, an error is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
esr - A character pointer to the location to store the esr byte.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_DevChans (long ApiDevId)

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device

must have been opened using COMM_InitDev(..).

OUTPUTS
Returns the number of channels installed in the specified device or a negative number to indicate error.

long __stdcall COMM_DevMarkers (long ApiDevId)

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using COMM_InitDev(..).
OUTPUTS

Returns the number of pattern markers installed in the specified device or a negative number to indicate error.

char * __stdcall COMM_DevIdn (long ApiDevId)

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using COMM_InitDev(..).

OUTPUTS
Returns a pointer to the IDN of the specified device or NULL to indicate error.

long __stdcall COMM_GetApiDevId (char *devname, long *ApiDevId)

INPUTS
ApiDevid - Integer pointer to location to return ApiDevId.

devname - A pointer to an ASCII string containing a device name.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 144

long __stdcall COMM_GetDevName (long ApiDevId, char *devname)

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using COMM_InitDev(..).
devname - A pointer to location to return device name.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_ReadFile (long ApiDevId, const char *srcFilename,
const char *destFilename, long lFileSize)

Use this function to read back a file from the SIA3000 and save the contents in a specified file on the host.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using COMM_InitDev(..).
srcFilename - A pointer to the name of the file to read data from. This file is located on the SIA3000 hard drive.
destFilename - A pointer to the location of the file the data will be saved to.
lFileSize - The known size (in bytes) of the file being read in.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_SendFile (long ApiDevId, const char *filename)

Use this function to send a file to the SIA3000.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The

device must have been opened using COMM_InitDev(..).
filename - A pointer to the name of the file whose contents will be saved to the SIA3000 in a file with the

same name.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall COMM_InitSingleShot (long ApiDevId, char *sCmnd,
long lCmnd)

Use this function to configure a device specified by ApiDevId to perform a "Single Shot" measurement. If a timeout
occurs or an error occurs, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
sCmnd - A pointer to buffer containing the command and binary data to send.
lCmnd - Integer containing the length of sCmnd.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 145

long __stdcall COMM_ReqSingleShot (long ApiDevId, char *sRetn,
long *lRetn)

Use this function to read the results of the "Single Shot" measurement requested by COMM_InitSingleShot for the
device specified by ApiDevId. If result exists, the returned binary data is placed in the location specified by sRetn.
If a timeout occurs or an error is found, a negative value is returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
sRetn - A pointer to store the returned binary data. This buffer must be long enough to hold the expected

number of bytes.
lRetn - An integer containing the length of sRetn. This value must be the length or greater than the expected

number of bytes returned or the IO_read will not return all the data from the specified device.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

void __stdcall COMM_libver (char *StrPtr)

This function returns the current COMM library versions (i.e. "2.5.0").

INPUTS
Strptr - Pointer to location to store version string. Memory must be allocated by user.

OUTPUTS
None.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 146

I/O Layer Functions

NOTE: These functions can be used to control other devices using the same I/O protocol (GPIB, HPIB

or Custom).

void __stdcall IO_clear (int ApiDevid)

Clears the internal or device functions of the specified device.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device

must have been opened using IO_open (...).
OUTPUTS

None.

void __stdcall IO_close (int ApiDevid)

Closes the device specified by ApiDevid.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device

must have been opened using IO_open (...).
OUTPUTS

None.

int __stdcall IO_count (int ApiDevid)

This function returns the byte count of the last data transfer operation.

INPUTS
ApiDevTyp - Integer containing the API Device ID of the device. This value can be from 1 to 31.

OUTPUTS
Returns an integer containing the byte count of the last data transfer operation.

void __stdcall IO_libver (char *StrPtr)

This function returns the current IO library version (i.e. "2.5.0").

INPUTS
Strptr - Pointer to location to store version string. Memory must be allocated by user.

OUTPUTS
None.

int __stdcall IO_open (int ApiDevTyp, char *devname)

INPUTS
ApiDevType - An integer value indicating the device type:
 HPIB = 0 (HP Systems Only)
 GPIB = 1
 CUST1 = 11
 CUST2 = 12
 CUST3 = 13
devname - A pointer to an ASCII string containing a device name.

OUTPUTS
Returns an integer containing the API Device ID or a negative number to indicate an error. Opens the device
specified by devname and returns the API Device ID. If an error occurs, a negative number is returned instead.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 147

int __stdcall IO_read (int ApiDevid, void *buf, long cnt)

Read a maximum of cnt bytes from ApiDevid and place it in buf. Use IO_count() to check actual number of bytes read.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using IO_open (...).
buf - Location to place data read. Must be at least cnt long.
cnt - Number of bytes to try and read.

OUTPUTS
Returns an integer containing the status of the last I/O operation.

int __stdcall IO_response (int ApiDevid, char *rsp)

Get response byte from ApiDevid and place it in rsp. Refer to the device documentation for definition of the response bits.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using IO_open (...).
rsp - Location to place response byte.

OUTPUTS
Returns an integer containing the status of the last I/O operation.

int __stdcall IO_status (int ApiDevid)

This function returns the status of the last I/O operation. Fourteen bits within the status word are meaningful. Three are
used throughout the API:

ERROR - bit 15, hex value 8000, Error detected
TIMEO - bit 14, hex value 4000, Time out
END - bit 13, hex value 2000, END detected.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.

OUTPUTS
Returns an integer containing the status of the last I/O operation.

void __stdcall IO_trigger (int ApiDevid)

Sends a device trigger to the specified device.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device

must have been opened using IO_open (...).
OUTPUTS

None.

int __stdcall IO_write (int ApiDevid, void *buf, long cnt)

Write cnt bytes from buf to ApiDevid. Use IO_count() to check actual number of bytes written.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31. The device must

have been opened using IO_open (...).
buf - Location of data to write.
cnt - Number of bytes to write.

OUTPUTS
Returns an integer containing the status of the last I/O operation.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 148

3-2 MEASUREMENT UTILITY FUNCTIONS

The following functions perform actions that will prepare a configured measurement for execution by
setting thresholds or timing values based on detection algorithms.

long __stdcall FCNL_CalcArmDelay (double dFreq, PARM *tParm)

This function calculates the Arm Delay for a given input frequency If a math error occurs or an error is found, a negative
value is returned.

INPUTS
dFreq - The current test frequency in MHz.
tParm - A pointer to the PARM structure.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_PulsFnd (long ApiDevId, PARM *tParm)

This function is used to perform a pulse-find operation. The pulse-find feature determines minimum and maximum voltage
levels for the channels specified in the PARM structure and sets the voltage thresholds based on the percentage set in the
tParm.lFndPcnt field supplied in the PARM structure.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
tParm - A pointer to the PARM structure.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what type
of error occurred.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 149

3-3 PATTERN AND PM50 FUNCTIONS

The following functions are related to configuration of patterns. The first function, FCNL_PtnName(),
will set the pattern file name within a measurement window structure of any tool that requires it. All
other functions are related to the configuration of a PM50 to generate a pattern marker.

long __stdcall FCNL_PtnName (char sPtnName[], char *name)

This function is used to load the pattern file name into the required measurement structure. This function is included to
assist when programming in Microsoft Visual Basic. When programming in C, it is best to use a sprintf() command to
write a character string into the structure element associated with the pattern name.

INPUTS
sPtnName - Location where pattern name will be updated. Memory needs to be allocated by the caller.
name - Name of pattern file to load into measurement structure.

OUTPUTS
Returns SIA_SUCCESS if operation is successful or a negative value to indicate error. Error codes are defined in
Appendix B.

EXAMPLE
 memset(&dcom,0,sizeof(DCOM)); //allocate memory space for dcom structure
 FCNL_DefDcom(&dcom); //set dcom structure to defaults
 FCNL_Ptn(&dcom.sPtnName[0], “cjtpat.ptn”); //load cjtpat.ptn file into dcom’s pattern
 //name element. This command could be
 //replaced with a sprintf command when
 //programming in C.

long __stdcall FCNL_MarkerInit (long ApiDevId, long MarkerId, PMKR
*tPmkr)

Use this function to initialize the specified PM50. This must be called before using a PM50 in any application.

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
MarkerId - Which PM50 card in the system to initialize
tPmkr - Pointer to a PM50 PMKR measurement and control structure

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating
what type of error occurred.

long __stdcall FCNL_MarkerReset (long ApiDevId, PMKR *tPmkr)

Use this function to reset the state of the specified PM50.

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
tPmkr - Pointer to a PM50 PMKR measurement and control structure.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code negative value) indicating what type of
error occurred.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 150

long __stdcall FCNL_MarkerConfig (long ApiDevId, PMKR *tPmkr)

Use this function to change the configuration of the PM50 specified.
INPUTS

ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
tPmkr - Pointer to a PM50 PMKR measurement and control structure.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what
type of error occurred.

long __stdcall FCNL_MarkerStatus (long ApiDevId, PMKR *tPmkr)

Use this function to monitor the current state of the specified PM50.

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
tPmkr - Pointer to a PM50 PMKR measurement and control structure.

OUTPUTS
Returns a value > 0 to indicate the presence of an arming condition on the specified PM50 or an error code
(negative value) indicating what type of error occurred.

long __stdcall FCNL_MarkerReadErr (long ApiDevId, PMKR *tPmkr)

Use this function to read bit errors recorded by the specified PM50.

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
tPmkr - Pointer to a PM50 PMKR measurement and control structure.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating
what type of error occurred.

long __stdcall FCNL_PatternMatch (long ApiDevId, PARM *tParm,
const char *filename, double *dBits, long lSize)

Use this function to perform a functional pattern match test and report results to the user.

INPUTS
ApiDevid - Contains the API Device ID of the device. This value can be from 1 to 31.
tParm - Pointer to a PARM acquisition structure.
filename - Name of pattern file to be used for comparison purposes.
dBits - Pointer to a array representing each bit in a pattern.
lSize - Size of array representing each bit in a pattern.

OUTPUTS
Returns SIA_SUCCESS upon successful completion or a specific error code (negative value) indicating what type
of error occurred.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 151

3-4 CALIBRATION UTILITY FUNCTIONS

long __stdcall FCNL_GoReq (long ApiDevId, long (*CallBackFunc) (long
ApiDevID, char *Prompt), char *Prompt)

This is an internal function used by the calibration functions to allow the programmer to physically change the connections to
the instrument either through a matrix or manually with cables. This function requires that a process be running on the
SIA3000 which has paused operation and sent a RQC_BIT back. At present, the only functions doing this are the calibration
routines. Future expansion of This function waits for the RQC_BIT to be set then sends a :SYST:GO or SYST:NOGO to the
specified device based on the return value of CallBackFunc. Only the calibration commands have the ability to set
RQC_BIT and monitor :SYST:GO and SYST:NOGO.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
CallBackFunc - A pointer to a function to call to determine if a :SYST:GO (continue) or :SYST:NOGO (skip)

command should be sent to the device (see functional description below). CallBackFunc can be
NULL or it must follow these rules:

long CallBackFunc (long ApiDevID, char *Prompt)
It must return an integer value of...
... >0 Send :SYST:GO to device
... 0 Send :SYST:NOGO to device
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
Prompt - A pointer to a string prompt generally specifying what an operator needs to do before the :SYST:GO

or :SYST:NOGO command should be sent to the device.
Prompt - A pointer to a string prompt that will be passed to the CallBackFunction generally specifying what an

operator needs to do before the :SYST:GO or :SYST:NOGO command should be sent to the device (see
functional description below). This parameter is simply passed through and is not checked for NULL.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error/abort.

EXAMPLE
 long (*CallBackFunc)(long ApiDevId, char *prompt); //Declare CalBackFunc to be a pointer to a
 //function with two parameters passed in.
 static long ConChan(long ApiDevId, char * Prompt); //Declare ConChan to be function with two
 //parameters passed in.
 main()
 {
 char userPrompt[256]; //declare userPrompt to be a string of 256
 //characters in length.

 CallBackFunc = ConChan; //Let *CallBackFunc() point to ConChan()
 strcpy(userPrompt, “Connect CH1”); //Define userPrompt string.
 FCNL_GoReq (ApiDevId,*CallBackFunc,inpPrompt); //continue execution of paused calibration
 //command after ConChan is executed and
 //ConChan has returned a 1.
 }
 ConChan (long ApiDevID, char *Prompt) //User defined function that prompts the
 { //user to “Connect CH1” as defined by the
 char buf[10]; //calling function above.

 printf(“Ready to execute. Please %s\n”,Prompt); //display string passed from FCNL_GoReq
 gets(buf); //pause execution until enter key is pressed.
 return (1); //return a value of 1 to allow SIA3000 to
 } //proceed with calibration routine.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 152

long __stdcall FCNL_CalInt (long ApiDevId, long Multiplier)

The internal calibration function will process 10,000,000 samples multiplied by Multiplier, taking 5.5 minutes/10,000,000
samples to complete.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
Multiplier - Integer containing a value 1 - MAX_CAL_MULT. The selected multiplier, from 1 -

MAX_CAL_MULT, sets the calibration period of approximately 5.5 minutes by that factor.
OUTPUTS

Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_CalDeskew (long ApiDevId, long (*CallBackFunc) (long
ApiDevID, char *prompt))

This function will calibrate all the channels installed in the device according to the following conditions determined by the
CallBackFunc function:

…If the return value is > 0, the current channel is calibrated.
…If the return value is 0, the current channel is skipped.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
CallBackFunc - A pointer to a function to call to determine if the channel should be calibrated or skip the channel

(see functional description below). CallBackFunc cannot be NULL. It must follow these rules:
long CallBackFunc (long ApiDevID, char *Prompt)

It must return an integer value of...
... >0 Continue with this channel
... 0 Skip this channel
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
Prompt - A pointer to a string prompt generally specifying what an operator needs to do before

calibrating the channel.
OUTPUTS

Returns SIA_SUCCESS upon completion or a negative value to indicate error/abort.
Deskew (external) calibration without DC Calibration.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 153

long __stdcall FCNL_CalDeskewDc (long ApiDevId, long (*CallBackFunc)
(long ApiDevID, char *prompt))

This function will calibrate all the channels installed in the device according to the following conditions determined
by the CallBackFunc function.

...If the return value is > 0, the current channel is calibrated.

...If the return value is 0, the current channel is skipped.
INPUTS

ApiDevid -Integer containing the API Device ID of the device. This value can be from 1 to 31.
CallBackFunc - A pointer to a function to call to determine if the channel should be calibrated or skip the channel

(see functional description below). CallBackFunc cannot be NULL. It must follow these rules:
long CallBackFunc (long ApiDevID, char *Prompt)

It must return an integer value of...
... >0 Continue with this channel
... 0 Skip this channel
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
Prompt - A pointer to a string prompt generally specifying what an operator needs to do before

calibrating the channel.
OUTPUTS

Returns SIA_SUCCESS upon completion or a negative value to indicate error/abort.
Deskew (external) calibration with DC Calibration.

long __stdcall FCNL_CalStrobe (long ApiDevId)

The strobe calibrarion funtion does an Oscilloscope Strobe calibration.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetCalData(long ApiDevId, long *pChannelCards,
double *pDeSkewData)

Use this function to obtain the current external deskew values for all available channels in the device.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
pChannelCards - Upon successful completion, pointer to variable containing the number of channels in the device
pDeSkewData - Upon successful completion, pointer to an array containing a deskew value for each channel

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_SetCalData(long ApiDevId, long ChannelCards, double
*pDeSkewData)

Use this function to update the current external deskew values for the number of channels specified in the device.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
ChannelCards - Number of channels to set external deskew values for
pDeSkewData - Pointer to an zero-based indexed array containing the desired deskew values for each channel

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 154

3-5 SIGNAL PATH FUNCTIONS (DSM16, PATH MAPPING AND PATH DESKEW)

*NOTE: MuxAddr (1 thru 8) is assigned based on the RS232C output connectors on the USB-to-RS232C
interface module.

long __stdcall FCNL_DSM16Switch (long ApiDevId, long MuxAddr, long
switch_ON_OFF)

Use this function to enable or disable the DSM connected to the device specified in ApiDevId.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
MuxAddr - An integer address identifying DSM to select. The range is 1 to 8, based on information in above note.
switch_ON_OFF - An integer with value 0 to disable the DSM16 front panel buttons and any non zero value or 1

to enable.
OUTPUTS

Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_DSM16Ver (long ApiDevId, long MuxAddr, char
*outbuf)

Use this function to determine the revision level of the DSM connected to the device specified in ApiDevId

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
MuxAddr - An integer address identifying DSM to select. The range is 1 to 8, based on information in above note.

OUTPUT PARAMETER
outbuf - A pointer to a character array which will be filled with the revision level.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_DSM16GetSwitchNumbers (long ApiDevId, long MuxAddr,
char *switchNums)

Use this function to determine the current configuration of the DSM connected to the device specified in ApiDevId.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
MuxAddr - An integer address identifying DSM to select. The range is 1 to 8, based on information in above

note.
OUTPUT PARAMETER

switchNum - A pointer to a character array which will be filled with the switch numbers currently active in
the banks.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 155

long __stdcall FCNL_DSM16SetSwitchNumber (long ApiDevId, long MuxAddr,
long switchNum)

Use this function to reconfigure the switch settings of the DSM connected to the device specified in ApiDevId.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
MuxAddr - An integer address identifying DSM to select. The range is 1 to 8, based on information in above note.
SwitchNum - Integer containing the switch number to activate. The range for the relays is : 11 to 18 for bank 1 : 21

to 28 for bank 2.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_DefPathMap (long path, long DevType, char *DevName,
long Channel, long MuxSwitch, long MuxIsADsm)

Use this function to map an unique path (pin number) to an individual channel on a particular device. This function will
initialize the device if this had not been done previously.

INPUTS
Path - Number of the path being defined. This value can be from 0 to 511.
DevType - Number that indicates the device type:
 HPIB = 0 (HP Systems Only)
 GPIB = 1
 CUST1 = 11
 CUST2 = 12
 CUST3 = 13
DevName - A pointer to an ASCII string containing a device name
Channel - A valid SIA channel of the device named in DevName above
MuxSwitch - A flag indicating if an external MUX is included in path.
MuxIsADsm - A flag indicating if a DSM is included in this path.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_DefPathDutDeskew (long path, double value)

Use this function to set the external deskew value for the DUT path indicated.

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
value - DUT Deskew value for this path

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_DefPathFixDeskew (long path, double value)

Use this function to set the external deskew value for the fixture path indicated.

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
value - Fixture Deskew value for this path

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 156

long __stdcall FCNL_GetPathDevName (long path, char *DevName)

Use this function to retrieve the device name for the path indicated.
The path must have been defined previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
DevName - A pointer to an ASCII string containing a device name

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathDevType (long path, long *DevType)

Use this function to retrieve the device type for the path indicated.
The path must have been defined previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
DevType - Pointer to location that returns the device type:
HPIB = 0 (HP Systems Only)
GPIB = 1
CUST1 = 11
CUST2 = 12
CUST3 = 13

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathApiDevId (long path, long *ApiDevId)

Use this function to retrieve the device id for the path indicated.
The path must have been defined previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
DevType - Pointer to location that returns the ApiDevId (a value between 1 and 31)

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathChannel (long path, long *Channel)

Use this function to retrieve the channel for the path indicated.
The path must have been defined previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
Channel - Pointer to location that returns the device channel

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 157

long __stdcall FCNL_GetPathMuxSwitch (long path, long *MuxSwitch)

Use this function to indicate the MUX switch index for the path indicated. The path must have been defined
previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
MuxSwitch - Pointer to location that returns the MUX switch index

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathMuxIsADsm (long path, long *MuxIsADsm)

Use this function to inquire if a DSM is being used as a MUX in this path indicated. The path must have been defined previously
using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
MuxIsADsm - Pointer to location that indicates if a DSM is being used as a MUX in this path.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathDutDeskew (long path, double *value)

Use this function to retrieve the external deskew value for the DUT path indicated. The path must have been defined previously
using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
value - Pointer to location containing the DUT Deskew value for the path indicated

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

long __stdcall FCNL_GetPathFixDeskew (long path, double *value)

Use this function to retrieve the external deskew value for the fixture path indicated. The path must have been defined
previously using FCNL_DefPathMap(..).

INPUTS
path - Number of the path being defined. This value can be from 0 to 511.
value - Pointer to location containing the fixture Deskew value for the path indicated

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 158

3-6 MISCELLANEOUS RESULT AND STATUS FUNCTIONS

double __stdcall FCNL_GetXval (PLTD *plot, long indx)

This function is used to simplify the process of extracting X-axis information from a PLTD structure. In order to reduce
memory requirements, only Y-axis values are contained within PLTD structures. This is permissible since X-axis values
represent the independent variable. This function uses the same method for calculating the X-axis values based on the
elements in the measurement structure. Results are only valid after a successful call to FCNL_RqstAll, FCNL_MultPkt,
or FCNL_GrpGetPkt.

INPUTS
*plot - Pointer to a PLTD structure. Memory needs to be allocated by the caller. This pointer will be the

PLTD structure pointer used in the measurement command of interest.
indx - Index from which to determine X-value, range is (0 to tPlot.lNumb - 10).

OUTPUTS
The value is double of the x coordinate.

EXAMPLE
 FCNL_RqstAll (ApiDevId, &hist, WIND_HIST); //execute a histogram based on settings in
 //hist structure as defined in preceding lines
 val = FCNL_GetXval(&hist.tAcum, inpIndx); //get x-value of Accumulated Jitter Plot
 //inpIndx number of units from the
 //minimum x value.
 printf("Plot value of hist.tAcum for index %d = %2.18lf ns\n", inpIndx, val*1e9);

double __stdcall FCNL_GetYval (PLTD *plot, long indx)

This function is used to simplify the process of extracting Y-axis information from a PLDT structure. It is primarily included
to assist when programming in Microsoft Visual Basic. When programming in C, the data array can be accessed directly.
This function is called after a successful execution of a measurement. The return value is the Y-value at an X-location offset
from X-min by indx. Results are only valid after a successful call to FCNL_RqstAll, FCNL_MultPkt, or
FCNL_GrpGetPkt.

INPUTS
plot - Pointer to a PLDT structure. Memory needs to be allocated by the caller.
indx - Index from which to determine Y-value, range is (0 to tPlot.lNumb - 10).

OUTPUTS
The value is double the y coordinate.

EXAMPLE
 FCNL_RqstAll (ApiDevId, &hist, WIND_HIST); //execute a histogram based on settings in
 //hist structure as defined in preceding lines
 val = FCNL_GetYval(&hist.tAcum, inpIndx); //get y-value of Accumulated Jitter Plot
 //inpIndx number of units from the
 //minimum y value.
 printf("Plot value of hist.tAcum for index %d = %2.18lf ns\n", inpIndx, val*1e9);

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 159

long __stdcall FCNL_Diagnostics (long ApiDevId)

Use this function to perform a system diagnostics test on the device. If any portion of the test fails, a negative value is
returned.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.

OUTPUTS
Returns SIA_SUCCESS upon completion or a negative value to indicate error.

void __stdcall FCNL_libver (char *StrPtr)

This function returns the current API version (i.e. "2.5.0").

INPUTS
Strptr - Pointer to location to store version level. Memory must be allocated by user.

OUTPUTS
None

Section 3 – General Command Reference ©WAVECREST Corporation 2005 160

3-7 ADVANCED GROUP MEASUREMENT FUNCTIONS

Grouping of commands provides an advanced Production API technique to further minimize GPIB bus
traffic and set up complex sequences including multiple tools and/or channels. Once a group is
established, it can be quickly and repeatedly executed.

If the fastest possible test time is desired, then these commands and programming techniques may be of
use. Keep in mind that any measurement sequence can be accomplished through repeated calls to the
standard FCNL_RqstPkt, FCNL_RqstALL, or FCNL_MultPkt functions. Since the measurement
sequences are stored remotely on the GPIB host rather than the SIA-3000, the standard calls will require
some GPIB bus overhead each time a measurement is taken. This overhead is reduced via grouping by
storing all the measurement configuration information for the group locally on the SIA-3000 instrument.

Configuring a group involves the following steps:

1. Issue the FCNL_GrpDefBeg (groupNumber) command
2. Send down various measurement and configuration requests using FCNL_GrpDefAsc

(command Syntax) or FCNL_GrpDefPkt (toolWindow, type, GetPlots?)
3. When finished defining a group, issue FCNL_GrpDefEnd (groupNumber)

Then issue:
FCNL_GrpGetAll

Then issue:
FCNL_GrpGetAsc (dataBuffer, expectedLength) or FCNL_GrpGetPkt (toolWindow, type,
PlotsRetrieved?) in the same order the corresponding FCNL_GrpDefAsc and
FCNL_GrpDefPkt were originally issued.

NOTE: Nesting of groups is not allowed.

CAUTION: DO NOT intersperse group definitions to multiple devices or call FCNL_RqstPkt
or FCNL_MultPkt in the middle of a group definition. Unpredictable results will
occur.

long __stdcall FCNL_GrpDefBeg (long nNumb)

Define a group; the group must be defined only once.

INPUTS
nNumb - Long Integer specifying the index of a group to be defined. A maximum of 20 groups are allowed

at present.
OUTPUTS

Returns an integer 0 specifying a success or a negative value to indicate error.

long __stdcall FCNL_GrpDefAsc (char *sCmnd)

This function is for standard ASCII commands to be included in a group.
INPUTS

sCmnd - Pointer to a character array containing the ASCII command string to be used in the group. For the list of
commands not allowed in groups please consult the manual.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 161

long __stdcall FCNL_GrpDefPkt (void *pData, long nType, long bGetPlots)

This function is for setting up for getting data and/or plot values from a measurement like histogram, datacom etc within the
scope of a group command.
If bGetPlots is non-zero memory is allocated for plot too and the binary structure will hold the binary plot data when
executed later.

INPUTS
pData - Pointer to a data structure like HIST, DCOM etc to hold the input/output/plot values.
nType - Long Integer specifying the type of the request like: WIND_HIST, WIND_JITT etc.
bGetPlots - Long Integer specifying whether to get the plot data.
Zero - no plot data retrieved.
non- zero - get plot data.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

long __stdcall FCNL_GrpDefEnd (long ApiDevId, long nNumb)

Finalize the group definition, for group specified in nNumb.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
nNumb - Long Integer specifying the index of a group to be defined. A maximum of 20 groups are allowed at

present.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

long __stdcall FCNL_GrpGetAll (long ApiDevId, long nNumb)

This function does the measurements and gets the whole block of data.

INPUTS
ApiDevid - Integer containing the API Device ID of the device. This value can be from 1 to 31.
nNumb - Long Integer specifying the index of a group to be defined. A maximum of 10 groups is allowed

at present.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

long __stdcall FCNL_GrpGetAsc (void *sBuff, long nSize)

This function gets the ASCII data back corresponding to the FCNL_GrpDefAsc command in the sequence. Refer to the
manual for the example program that lists the order in which the commands in a group are defined and used.

INPUTS
sBuff - Pointer to a void to store the ASCII string from this call. Memory to be allocated by the caller.
nSize - Long Integer specifying the number of bytes to fetch.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 162

long __stdcall FCNL_GrpGetPkt (void *pData, long nType, long bGetPlots)

This function gets the data back corresponding to the FCNL_GrpDefPkt command in the sequence. Refer to the manual
for the example program that lists the order in which the commands in a group are defined and used.
This command is mostly used for getting a single histogram/dataCOM etc. data back.

INPUTS
pData - Pointer to a data structure like HIST, DCOM etc to hold the input/output/plot values.
nType - Long Integer specifying the type of the request like: WIND_HIST, WIND_JITT etc.
bGetPlots - Long Integer specifying whether to get the plot data.
Zero - no plot data retrieved.
non- zero - get plot data.

OUTPUTS
Returns an integer 0 specifying a success or a negative value to indicate error.

EXAMPLE
The following example shows how to utilize the group functions together to define a measurement group, and
acquire multiple passes of the group. This code is meant to replace Steps 6, 7, and 8 of the Sample.c example
given in Section 1.7

STEP 1 – Define a Group
Up to 20 distinct command “groups” can be sent to the SIA-3000™, where any number of commands
can be “grouped” together, sent down to the SIA-3000 and executed in the order they are received
(“pseudo-parallel” mode). Controlling the SIA3000 with Command Groups significantly reduces any
overhead associated with the remote driver (GPIB, HPIB). Refer to the sample program comments or
the SIA3000 GPIB Programming Guide for further details regarding command groups.
 /* Now define a group, the group must only be defined once */
 /* There can be up to 20 different groups defined */
 if ((retn = FCNL_GrpDefBeg (1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefBeg() failed...\n");
 goto Error;
 }
 /* You can have standard ascii commands included in a group */
 if ((retn = FCNL_GrpDefAsc (":ACQ:RUN PER")) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefAsc() failed...\n");
 goto Error;
 }
 /* You can also retrieve blocks of binary data */
 if ((retn = FCNL_GrpDefAsc (":MEAS:DATA?")) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefAsc() failed...\n");
 goto Error;
 }
 /* And you can also use the structure calls, the zero argument skips plots */
 if ((retn = FCNL_GrpDefPkt (&hist, WIND_HIST, 0)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefPkt() failed...\n");
 goto Error;
 }
 /* Ascii & structure calls can be interspersed */
 if ((retn = FCNL_GrpDefAsc (":ACQ:RUN PW+")) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefAsc() failed...\n");
 goto Error;
 }
 /* With this structure call, the 1 argument requests all the plot data */
 if ((retn = FCNL_GrpDefPkt (&jitt, WIND_JITT, 1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefPkt() failed...\n");
 goto Error;
 }
 if ((retn = FCNL_GrpDefPkt (&dcom, WIND_DCOM, 1)) != SIA_SUCCESS)
 {

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 163

 printf("\nFCNL_GrpDefPkt() failed...\n");
 goto Error;
 }
 /* You can nest multiple ascii commands, but only the last should return data */
 if ((retn = FCNL_GrpDefAsc (":ACQ:FUNC FREQ;:ACQ:COUN 1000;:ACQ:MEAS"))
 != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefAsc() failed...\n");
 goto Error;
 }
 /* Finalize the group definition, for group 1 */
 if ((retn = FCNL_GrpDefEnd (ApiDevId, 1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpDefEnd() failed...\n");
 goto Error;
 }

 /* The definition doesn't acquire anything; use WavGrpGetAll to acquire */
 /* You can loop and re-use the same definition over and over again */
 for (loop = 0; loop < 10; loop++)
 {

STEP 2 – Perform a Group Acquire and Print Results

When the function FCNL_GrpGetAll(deviceID, groupNumber) is called, the group of commands indicated
by groupNumber is executed by the SIA-3000 and the measurement results are available to the user in
the same order the corresponding measurement commands were defined in that particular group.
 /* WavGrpGetAll does the measurements and gets the whole block of data */
 if ((retn = FCNL_GrpGetAll (ApiDevId, 1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetAll() failed...\n");
 goto Error;
 }

 /* The following calls parse the individual results out of the group data */
 /* There must be a 1-to-1 correspondence between the definition and these calls */
 if ((retn = FCNL_GrpGetAsc (per, sizeof (per))) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetAsc() failed...\n");
 goto Error;
 }
 /* The same method is used for binary blocks from ascii requests */
 if ((retn = FCNL_GrpGetAsc (data, sizeof (data))) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetAsc() failed...\n");
 goto Error;
 }

 /* For structure calls, the bGetPlot argument must be the same as in the
 definition */
 if ((retn = FCNL_GrpGetPkt (&hist, WIND_HIST, 0)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetPkt() failed...\n");
 goto Error;
 }
 if ((retn = FCNL_GrpGetAsc (pw, sizeof (pw))) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetAsc() failed...\n");
 goto Error;
 }

 /* If bGetPlot = 1, plots are returned; these can be BIG and will be slower!!! */
 if ((retn = FCNL_GrpGetPkt (&jitt, WIND_JITT, 1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetPkt() failed...\n");
 goto Error;
 }
 if ((retn = FCNL_GrpGetPkt (&dcom, WIND_DCOM, 1)) != SIA_SUCCESS)
 {
 printf("\nFCNL_GrpGetPkt() failed...\n");
 goto Error;
 }
 if ((retn = FCNL_GrpGetAsc (freq, sizeof (freq))) != SIA_SUCCESS)

Section 3 – General Command Reference ©WAVECREST Corporation 2005 164
 {

 printf("\nFCNL_GrpGetAsc() failed...\n");
 goto Error;
 }

 /* Print the simple ascii command results */
 printf("Group Loop %i - Period Measurement: %s\n", loop + 1, per);
 printf("Group Loop %i - Pulsewidth Measurement: %s\n", loop + 1, pw);
 printf("Group Loop %i - Frequency Measurement: %s\n", loop + 1, freq);
 /* Print the start of the binary block of raw data */
 printf("Group Loop %i - Raw Period Measurements: %lf, %lf, %lf, ...\n", loop + 1,
 data[0] * 1e9, data[1] * 1e9, data[2] * 1e9);

 /* Print out some of the statistics from the HIST and JITT tool structures */
 printf("Group Loop %i - Histogram Mean: %lfns\n", loop + 1, hist.dNormAvg * 1e9);
 printf("Group Loop %i - Histogram Sdev: %lfps\n", loop + 1, hist.dNormSig * 1e12);
 printf("Group Loop %i - 1Clock RJ: %lfps\n", loop + 1, jitt.dRjit1Clk * 1e12);
 printf("Group Loop %i - NClock RJ: %lfps\n", loop + 1, jitt.dRjitNClk * 1e12);
 /* Print the max of the FFT to show how data within a plot is accessed */
 printf("Group Loop %i - NClock Plot Max: %lfps\n", loop + 1,
 jitt.tFftN.dData[jitt.tFftN.lYmaxIndx] * 1e12);

 /* Print the dataCOM tool DJ & RJ values */
 printf("Group Loop %i - dataCOM DJ: %lfps\n", loop + 1, dcom.dDdjt * 1e12);
 printf("Group Loop %i - dataCOM RJ: %lfps\n", loop + 1, dcom.dRjit[0] * 1e12);

©WAVECREST Corporation 2005 SECTION 3 – General Command Reference 165

This page intentionally left blank.

Section 3 – General Command Reference ©WAVECREST Corporation 2005 166

SECTION 4 – CODE SAMPLES

The following code samples are provided in order to aid in getting started using the WAVECREST
Production API. These code samples are provided for instructional purposes only.

4-1 MODIFYING WINDOW STRUCTURE PARAMETERS
The following code snippet shows how parameters pertaining to a high-level window structure may
be modified.

/* Allocate window structure */
STAT tStat;

/* Zero out the structure, and initialize to defaults */
memset (&tStat, 0, sizeof (STAT));
FCNL_DefStat (&tStat);

/* Change input parameters from default */
tStat.tParm.lFuncNum = FUNC_PW_P; /* Function PW+ */
tStat.tParm.lChanNum = 2; /* Channel 2 */
tStat.tParm.lAutoArm = ARM_EXTRN; /* External Arm */
tStat.tParm.lStrtArm = 2; /* Start Arm 2 */
tStat.tParm.lStopArm = 2; /* Stop Arm 2 */
tStat.tParm.lSampCnt = 500; /* Sample Size */
tStat.tParm.lStopCnt = 11; /* Stop Count */

4-2 PERFORMING TAILFIT

The following code snippet shows how a tailfit can be performed in a Histogram Window. Note that it
may take many passes for the tailfit to succeed. Therefore you may want to error if not successfully in a
certain number of passes. Set the lPass parameter to 0 to start a new tailfit analysis.

/* Allocate window structure, and initialize to defaults */
HIST tHist;
memset (&tHist, 0, sizeof (HIST));
FCNL_DefHist (&tHist);

/* Enable tailfit */
tHist.lTailFit = 1;

/* Loop until tailfit is successful */
while (!tHist.tTfit.lGood)
 {
 if (FCNL_RqstPkt(ApiDevId, tHist, WIND_HIST (&tHist))
 goto ErrorHandler;
 }

©WAVECREST Corporation 2005 SECTION 4 – Code Samples 167

4-3 DRAWING FROM A PLOT STRUCTURE
This code snippet shows how to draw from a plot structure. The example is for Microsoft® Visual C++, but
can be modified for other platforms.

void DrawPlot (CDC *pCdc, // Pointer to device context.
 CRect *wind, // Window to draw within
 // in device coordinates.
 PLDT *pldt, // Source plot structure.
 double xmin, // Plot extents to use when
 double xmax, // drawing, this allows a
 double ymin, // margin to be added around
 double ymax)// plot or overlay of plots
 { // with differing extents.
 long i;
 double x, y;

 // First plot X point as a percent of window extents
 x = (pldt->dXmin - xmin) / (xmax - xmin);

 // First plot X point in device coordinates
 x = (double) (wind->right - wind->left)
 * x + (double) wind->left;

 // First plot Y point as a percent of window extents
 y = (pldt->dData[0] - ymin) / (ymax - ymin);

 // First plot Y point in device coordinates
 y = (double) (wind->bottom - wind->top)
 * (1.0 - y) + (double) wind->top;

 // Move current location to the first plot point
 pCdc->MoveTo ((int) x, (int) y);

 for (i = 1; i < pldt->lNumb; i++)
 {
 // Calculate what the next X point is
 x = ((pldt->dXmax - pldt->dXmin) * (double) i
 / (double) (pldt->lNumb - 1) + pldt->dXmin);

 // This plot X point as a percent of window extents
 x = (x - xmin) / (xmax - xmin);

 // This plot X point in device coordinates
 x = (double) (wind->right - wind->left)
 * x + (double) wind->left;

 // This plot Y point as a percent of window extents
 y = (pldt->dData[i] - ymin) / (ymax - ymin);

 // This plot Y point in device coordinates
 y = (double) (wind->bottom - wind->top)
 * (1.0 - y) + (double) wind->top;

 // Draw line to this plot point
 pCdc->LineTo ((int) x, (int) y);
 }
 }

SECTION 4 – Code Samples ©WAVECREST Corporation 2005 168

4-4 PERFORMING A DATACOM MEASUREMENT
This code snippet shows how a dataCOM measurement can be taken. Error checking is performed at
each step, and several acquisition parameters are overridden. A pulsefind is used to determine suitable
voltage levels, and results are printed.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "WCcomm.h"
#include "WCfcnl.h"

long main()
{
 DCOM dcom;
 long ApiDevId, retn = 0;

 /* Initialize device */
 if ((ApiDevId = COMM_InitDev (APIDEVTYPE, DEVICENAME)) < 1)
 {
 fprintf(stderr, “\nUnable to initialize device\n”);
 return –1;
 }

 /* Initialize structure to default values */
 memset (&dcom, 0, sizeof (DCOM));
 FCNL_DefDcom (&dcom);

 /* Measure on Channel 1; External Arm using Channel 2 */
 dcom.tParm.lChanNum = 1;
 dcom.tParm.lAutoArm = ARM_EXTRN;
 dcom.tParm.lExtnArm = 2;

 /* Select the pattern to use */
 strcpy(&dcom[0].sPtnName, "crpat.ptn");

 /* Do not measure the Bit Rate; assign the Bit Rate to use */
 dcom.lGetRate = 0;
 dcom.dBitRate = 1.0625e9;

 /* Perform a pulsefind */
 if ((retn = FCNL_PulsFnd (ApiDevId, &dcom.tParm)) != SIA_SUCCESS)

goto Error;

 /* Acquire measurement and obtain all values */
 if ((retn = FCNL_RqstPkt (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)

goto Error;
 if ((retn = FCNL_RqstAll (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)

goto Error;

 /* Print out the dataCOM DJ, RJ and TJ values in picoseconds */
 printf("dataCOM DJ: %lf ps\n", dcom.dDdjt * 1e12);
 printf("dataCOM RJ: %lf ps\n", dcom.dRjit[0] * 1e12);
 printf("dataCOM TJ: %lf ps\n", dcom.dTjit[0] * 1e12);

Error:
 /* Return an error message if we had a problem */
 if (retn)
 printf ("Return Code: %i\n", retn);

 /* Perform any cleanup and exit */
 FCNL_ClrDcom (&dcom);
 COMM_CloseDev (ApiDevId);
 return retn;
}

©WAVECREST Corporation 2005 SECTION 4 – Code Samples 169

4-5 USING A PM50 PATTERN MARKER IN A DATACOM MEASUREMENT
This example illustrates how to utilize a PM50 Pattern Marker in a dataCOM measurement to determine bit
errors and the Bit Error Rate using the PM50’s Bit Error Counter.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "WCcomm.h"
#include "WCfcnl.h"

/* Uncomment for SUNOS */
/*#define SUNOS 1 */
#if (WIN32 || SUNOS || SOLARIS2)
#define APIDEVTYPE GPIB_IO
#define DEVICENAME "dev5"
#else
#if (HPUX)
#define APIDEVTYPE HPIB_IO
#define DEVICENAME "hpib,5"
#endif
#endif

#define PATN_WORD_SIZE 20

int main()
{
 DCOM dcom;
 PMKR pmkr;

 char buff[PATN_WORD_SIZE];
 long ApiDevId, MarkerId, indx, bitIndx, retn = 0;

 /* In this example, use the PM50 associated with Input 1 */
 MarkerId = 1;

 /* Initialize our DCOM structure */
 memset (&dcom, 0, sizeof (DCOM));
 FCNL_DefDcom (&dcom);
 strcpy(&dcom.sPtnName[0], "cjtpat.ptn");
 dcom.tParm.lChanNum = 1;

 /* Request that the PM50 be used as the arm */
 dcom.tParm.lAutoArm = ARM_EXTRN;
 dcom.tParm.lExtnArm = 1;
 dcom.tParm.lCmdFlag |= CMD_PATNMARK;

 /* Initialize SIA3000 */
 if ((ApiDevId = COMM_InitDev (APIDEVTYPE, DEVICENAME)) < 1)
 {
 printf ("Unable to initialize SIA3000. Program terminated.\n");
 goto Error;
 }

SECTION 4 – Code Samples ©WAVECREST Corporation 2005 170

 /* Initialize PM50 */
 if ((retn = FCNL_MarkerInit (ApiDevId, MarkerId, &pmkr)) != SIA_SUCCESS)
 printf ("FCNL_MarkerInit: Return Code: %i\n", retn);

 printf(" - Wavecrest Production API - \n - Sample PM50 Application -\n\n");

 /* PART I: Configure the PM50 for edge count mode */
 pmkr.lModeSel = PMKR_EDGE_COUNT;
 strcpy(&pmkr.sPtnName[0], "cjtpat.ptn");
 if ((retn = FCNL_MarkerConfig (ApiDevId, &pmkr)) != SIA_SUCCESS)
 printf ("FCNL_MarkerConfig: Return Code: %i\n", retn);

 /* Is the PM50 detecting the pattern? */
 if ((retn = FCNL_MarkerStatus (ApiDevId, &pmkr)) <= 0)
 printf ("FCNL_MarkerStatus: Return Code: %i\n", retn);

 /* Perform a pulsefind before making a DCOM measurement */
 if ((retn = FCNL_PulsFnd (ApiDevId, &dcom.tParm)) != SIA_SUCCESS)
 printf ("FCNL_PulsFnd: Return Code: %i\n", retn);
 if ((retn = FCNL_RqstPkt (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)
 {
 printf ("FCNL_RqstPkt: Return Code: %i\n", retn);
 goto Error;
 }

 /* Print the results */
 printf(" Edge Count Mode\n\n");
 printf("Pattern: %s\n", pmkr.sPtnName);
 printf("Edge Count: %i\n", pmkr.lEdgeCnt);
 printf("dataCOM DCD+ISI: %lfps\n", dcom.dDdjt * 1e12);
 printf("dataCOM RJ: %lfps\n\n", dcom.dRjit[0] * 1e12);

 /* PART II: Configure the PM50 for pattern match mode @ 1.0625 GBit/s */
 pmkr.lModeSel = PMKR_PATN_MATCH;
 pmkr.lProtSel = PMKR_FC1X;
 strcpy(&pmkr.sPtnName[0], "cjtpat.ptn");
 if ((retn = FCNL_MarkerConfig (ApiDevId, &pmkr)) != SIA_SUCCESS)
 printf ("FCNL_MarkerConfig: Return Code: %i\n", retn);

 /* Is the PM50 detecting the pattern? */
 if ((retn = FCNL_MarkerStatus (ApiDevId, &pmkr)) <= 0)
 printf ("FCNL_MarkerStatus: Return Code: %i\n", retn);

 /* Perform a pulsefind before making a DCOM measurement */
 if ((retn = FCNL_PulsFnd (ApiDevId, &dcom.tParm)) != SIA_SUCCESS)
 printf ("FCNL_PulsFnd: Return Code: %i\n", retn);
 if ((retn = FCNL_RqstPkt (ApiDevId, &dcom, WIND_DCOM)) != SIA_SUCCESS)
 {
 printf ("FCNL_RqstPkt: Return Code: %i\n", retn);
 goto Error;
 }

©WAVECREST Corporation 2005 SECTION 4 – Code Samples 171

 /* Print the results */
 printf(" Pattern Match Mode\n\n");
 printf("Pattern: %s\n", dcom.sPtnName);
 printf("dataCOM DCD+ISI: %lfps\n", dcom.dDdjt * 1e12);
 printf("dataCOM RJ: %lfps\n\n", dcom.dRjit[0] * 1e12);

 /* Did the PM50 detect any bit errors? */
 if ((retn = FCNL_MarkerReadErr (ApiDevId, &pmkr)) != SIA_SUCCESS)
 {
 printf ("FCNL_MarkerReadErr: Return Code: %i\n", retn);
 goto Error;
 }

 /* Print the Bit Error Counter results */
 printf ("Number of Bit Errors: %i\n", pmkr.lNumBitErr);
 printf ("Total Compare Count: %.0lf\n", pmkr.dTtlCmpCnt);
 printf ("Bit Error Rate: %.10e\n\n", pmkr.dBitErrRat);

 for (indx = 0; indx < BEC_ERRS; indx++)
 {
 BECT *bec = &pmkr.tBerTest[indx];

 if (bec->lErrBits == 0)
 break;
 printf ("Error %i:\n", indx + 1);
 printf (" Pattern Repeat: %.0lf\n", bec->dLoopCnt);
 printf (" Frame Number: %i\n", bec->lFrameNo);
 printf (" 20-bit Data in Error: ");

 /* Display each bit, noting bits in error with special characters */
 buff[1] = 0;
 for (bitIndx = PATN_WORD_SIZE - 1; bitIndx >= 0; bitIndx--)
 {
 if (bec->lErrBits & (1 << bitIndx))
 buff[0] = (bec->lExpBits & (1 << bitIndx)) ? 140 : 147;
 else
 buff[0] = (bec->lExpBits & (1 << bitIndx)) ? '1' : '0';
 printf ("%c", buff[0]);
 if (bitIndx == (PATN_WORD_SIZE / 2))
 printf(" ");
 }
 printf ("\r\n\n");
 }

Error:
 /* Perform any cleanup and exit */
 FCNL_ClrDcom (&dcom);
 COMM_CloseDev (ApiDevId);
 return retn;

}

SECTION 4 – Code Samples ©WAVECREST Corporation 2005 172

SECTION 5 – BUILD CONSIDERATIONS

5-1 SUPPORTED COMPILERS FOR THE WAVECREST PRODUCTION API
The WAVECREST Production API was built and is supported using the following compilers. Other
compilers may be used and provide satisfactory results, although performance is not guaranteed.

Win32 (Win9x, WinNT 4.0 and Win2k)
 Microsoft Visual C++ 5.0 and later
 Microsoft C/C++ Optimizing Compiler 11.00
 Microsoft Visual Basic 6.0 and later
 National Instruments LabVIEW 6.1 and later
HP-UX 9.05, 10.2 and 11i
 HP C/ANSI C Developer's Bundle B.10.20.03
Sun 4.1.x (Solaris 1)
 SPARCompiler C 3.0.1
Sun 2.5.1 or above (Solaris 2)
 SPARCompiler C 3.0.1
LINUX 7.2 and above
 GNU compiler gcc version 2.96 or above

5-2 BUILD REQUIREMENTS
When building an application using the WAVECREST Production API, the following requirements
need to be considered.

5-3 DEVELOPING WITH C++
The define CPLUSPLUS must be supplied if you are developing a C++ application. This informs the
compiler that the module was created as a C library, and does not contain the additional information
that is normally contained in a C++ library. If you are developing a standard C application, supplying
this define will result in an error. If you are using a command line compiler, this define may be
supplied as follows:
 cl -c -DCPLUSPLUS sample.c

5-4 WIN32 (WIN9X, WINNT 4.0, WIN2K AND WINXP)
A static stub library and dynamic library link library (DLL) are supplied for developing under Microsoft
Windows. You can link to the static stub library that relieves all the programming of the chores normally
associated with linking to a DLL. The DLL libraries must be available in the current directory or
somewhere in the PATH in order to execute the application.

The define WIN32 must be supplied to enable options specific to Microsoft Windows platforms. If you
are developing within the Visual C++ environment, this define is automatically supplied for you. If
you are using a command line compiler, this define may be supplied as follows:
 cl -c -DWIN32 sample.c

©WAVECREST Corporation 2005 SECTION 5 – Build Considerations 173

5-5 ALL UNIX PLATFORMS
The define WIN32 must NOT be defined when compiling under UNIX platforms. This define enables
options that are not suitable under UNIX platforms.

5-6 HP-UX 9.05, HP-UX 10.20 AND HP-UX 11i
The ANSI C compiler must be used. ANSI compatibility is enabled from a command line by
specifying the -Aa option as follows:
 cc -c -Aa –DHPUX –DHP9X (HP-UX 9.05)

 cc -c -Aa –DHPUX (HP-UX 10.20)

 cc -c -Aa –DHPUX (HP-UX 11.i)

Required HPIB support is supplied by linking to the Standard Instrument Control Library. This library must
already be installed per manufacturers documentation. This library can be included by adding -lsicl to
the link command. The resulting link command including the Wavecrest API libraries takes the form:
 cc -Aa sample.o –lWChpb -lWCcu1 -lWCcu2 -lWCcu3 -lWCio –lWCmc -lWCfnl
 -lsicl -lm –o sample

5-7 SUN 4.1.X (SOLARIS 1)
The ANSI C compiler must be used. ANSI compatibility is enabled from a command line by using the acc
command as follows:
 acc -c –DSUNOS sample.c
Required GPIB support is supplied by linking to the National Instruments GPIB Library. This library must
already be installed per manufacturers documentation. This library can be included by adding -lgpib to
the link command. The resulting link command including the Wavecrest API libraries takes the form:
 acc sample.o –lWChpb -lWCcu1 -lWCcu2 -lWCcu3 -lWCio –lWCmc -lWCfnl –lgpib

 -o sample

5-8 SUN 2.5.1 OR ABOVE (SOLARIS 2)
The standard ANSI C compiler must be used. The command line would appear as follows:
 cc –c –DSUNOS -DSOLARIS sample.c
Required GPIB support is supplied by linking to the National Instruments GPIB Library. This library must
already be installed per manufacturers documentation. This library can be included by adding -lgpib to
the link command. The resulting link command including the Wavecrest API libraries takes the form:
 cc sample.o –lWChpb -lWCcu1 -lWCcu2 -lWCcu3 -lWCio –lWCmc -lWCfnl -lgpib
 -lm -o sample

SECTION 5 – Build Considerations ©WAVECREST Corporation 2005 174

APPENDIX A – ERROR CODES

Define Value Description
SIA_SUCCESS 0 Success
SIA_ERROR -1 Communication error with device
MEM_ERROR -2 Could not allocate required memory
CMD_ERROR -3 Invalid parameters passed to function
VER_ERROR -4 Wrong version of software detected
FIT_ERROR -5 Failure applying tail-fit
LIM_ERROR -6 Results exceed specified limits
FIO_ERROR -7 File I/O error
ARM_ERROR -8 No suitable arm signal detected
TRG_ERROR -9 No suitable trigger signal detected
USR_ERROR -10 Operation was terminated by user
UNT_ERROR -11 Unit Interval data exceeds limits
DDJ_ERROR -12 DCD+DDJ data exceeds limits
VAR_ERROR -13 Variance data for RJ+PJ exceeds limits
LRN_ERROR -14 Learn Mode data exceeds limits
INT_ERROR -15 Insufficient points for interpolation
TIM_ERROR -16 Maximum measurement timeout exceeded
PCI_ERROR -17 PCI bus error
LOK_ERROR -18 Memory transfer error
CAL_ERROR -19 Missing or invalid calibration file
SYS_ERROR -20 System or hardware failure
PTN_ERROR -21 Indicates an invalid pattern was used
FRQ_ERROR -22 Channel does not support this Bit Rate
BEC_ERROR -23 Pattern is too long for BEC comparison
NOI_ERROR -24 Obtained an invalid Phase Noise result
PAT_ERROR -25 DCD+ISI calibration pattern is no longer supported
PKT_ERROR -26 Invalid data returned in binary packet

©WAVECREST Corporation 2005 APPENDIX A – Error Codes 175

This page intentionally left blank.

APPENDIX A – Error Codes ©WAVECREST Corporation 2005 176

APPENDIX B – VBASIC EXAMPLE

The following example shows what the sample program in Chapter 1 might look like written as a Visual
Basic subroutine:

Private Sub Sample_Click()
' Start of Sample Program
Dim bHist As HIST
Dim bJitt As JITT
Dim bDcom As DCOM

Dim ApiDevid As Long
Dim Round As Long
Dim retn As Long
Dim avg As Double
Dim data(299) As Double

Dim per As String
Dim pw As String
Dim rise As String
Dim AsciData(255) As Byte
Dim AsciLeng As Long

' Initialize our structures
FCNL_DefHist bHist
FCNL_DefJitt bJitt
FCNL_DefDcom bDcom

' Bitfield of input channels to measure (Channel 1 = lower 16 bits; Channel 2
= upper 16 bits)
' Equivalent to (1 + (2 << 16) in ANSI C
bHist.tParm.lChanNum = 131073
bHist.tParm.lStopCnt = 1
bHist.tParm.lFuncNum = FUNC_TPD_PP

retn = FCNL_PtnName(bDcom.sPtnName(0), "clock.ptn")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

bDcom.lQckMode = 1
bDcom.tParm.lChanNum = 1
bDcom.tParm.lAutoArm = ARM_EXTRN
bDcom.tParm.lExtnArm = 2

' Initialize device
ApiDevid = COMM_InitDev(GPIB_IO, "dev5")
If (ApiDevid < 1) Then
 GoTo Error:
End If

©WAVECREST Corporation 2005 APPENDIX B – VBasic Example 177

' Turn on calibration source
retn = COMM_TalkDev(ApiDevid, ":CAL:SIG 10MSQ")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Go ahead and perform a pulsefind
retn = FCNL_PulsFnd(ApiDevid, bHist.tParm)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Perform a simple measurement and get the average
retn = COMM_ReqDbl(ApiDevid, ":ACQ:RUN PER", avg)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Print the results
mainDisplay.Text = " - Wavecrest Production API - " & _
 vbCrLf & " - Sample Application -" & vbCrLf & _
 vbCrLf & "Simple Period Command: " & _
 Format(avg * 1000000000#, "0.000") & "ns" & vbCrLf

' Perform a measurement and return the statistics
retn = FCNL_RqstPkt(ApiDevid, bHist, WIND_HIST)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Now retrieve the plot structures for the previous measurement
' This call is not necessary unless you want the plot data
retn = FCNL_RqstAll(ApiDevid, bHist, WIND_HIST)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Print the results
mainDisplay.Text = mainDisplay & "Single Histogram Mean: " & _
 Format(bHist.dNormAvg * 1000000000#, "0.000") & "ns" & _
 vbCrLf & "Single Histogram Sdev: " & _
 Format(bHist.dNormSig * 1000000000000#, "0.000") & "ps" & vbCrLf

retn = FCNL_RqstPkt(ApiDevid, bDcom, WIND_DCOM)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

retn = FCNL_RqstAll(ApiDevid, bDcom, WIND_DCOM)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

APPENDIX B – VBasic Example ©WAVECREST Corporation 2005 178

' Now define a group, the group must only be defined once
' There can be up to 20 different groups defined
retn = FCNL_GrpDefBeg(1)
If (retn <> 0) Then
 GoTo Error:
End If

' You can have standard ascii commands included in a group
retn = FCNL_GrpDefAsc(":ACQ:RUN PER")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' You can also retrieve blocks of binary data
retn = FCNL_GrpDefAsc(":MEAS:DATA?")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' And you can also use the structure calls, the zero argument skips plots
retn = FCNL_GrpDefPkt(bHist, WIND_HIST, 0)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Ascii & structure calls can be interspersed
retn = FCNL_GrpDefAsc(":ACQ:RUN PW+")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' With this structure call, the 1 argument requests all the plot data
retn = FCNL_GrpDefPkt(bJitt, WIND_JITT, 1)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

retn = FCNL_GrpDefPkt(bDcom, WIND_DCOM, 1)
If (retn <> 0) Then
 GoTo Error:
End If

' You can nest multiple ascii commands, but only the last should return data
retn = FCNL_GrpDefAsc(":ACQ:FUNC TT+;:ACQ:COUN 1000;:ACQ:MEAS")
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

' Finalize the group definition, for group 1
retn = FCNL_GrpDefEnd(ApiDevid, 1)
If (retn <> SIA_SUCCESS) Then
 GoTo Error:
End If

©WAVECREST Corporation 2005 APPENDIX B – VBasic Example 179

' The definition doesn't acquire anything; use WavGrpGetAll to acquire
' You can loop and re-use the same definition over and over again
For Round = 0 To 1 Step 1
 ' WavGrpGetAll does the measurements and gets the whole block of data
 retn = FCNL_GrpGetAll(ApiDevid, 1)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 ' The following calls parse the individual results out of the group data
 ' There must be a 1-to-1 correspondence between the definition and these
 ' calls
 retn = FCNL_GrpGetAsc(AsciData(0), 256)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 For AsciLeng = 0 To 255 Step 1
 per = per & Chr$(AsciData(AsciLeng))
 Next AsciLeng

 ' The same method is used for binary blocks from ascii requests
 retn = FCNL_GrpGetAsc(data(0), 2400)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 ' For structure calls, the bGetPlot argument must be the same as in the
 ' definition
 retn = FCNL_GrpGetPkt(bHist, WIND_HIST, 0)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 retn = FCNL_GrpGetAsc(AsciData(0), 256)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 For AsciLeng = 0 To 255 Step 1
 pw = pw & Chr$(AsciData(AsciLeng))
 Next AsciLeng

 ' If bGetPlot = 1, plots are returned; these can be BIG and will be
 ' slower!!!
 retn = FCNL_GrpGetPkt(bJitt, WIND_JITT, 1)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 retn = FCNL_GrpGetPkt(bDcom, WIND_DCOM, 1)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

APPENDIX B – VBasic Example ©WAVECREST Corporation 2005 180

 retn = FCNL_GrpGetAsc(AsciData(0), 256)
 If (retn <> SIA_SUCCESS) Then
 GoTo Error:
 End If

 For AsciLeng = 0 To 255 Step 1
 rise = rise & Chr$(AsciData(AsciLeng))
 Next AsciLeng

 ' Print the simple ascii command results and print the start of the binary
 ' block of raw data
 mainDisplay.Text = mainDisplay & "Group Loop " & _
 Format(Round + 1, "0") & " - Period Measurement: " & per
 mainDisplay.Text = mainDisplay & vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - Pulsewidth Measurement: " & pw
 mainDisplay.Text = mainDisplay & vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - Risetime Measurement: " & rise
 mainDisplay.Text = mainDisplay & vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - Raw Period Measurements: " & _
 Format(data(0) * 1000000000#, "0.000") & "ns," & _
 Format(data(1) * 1000000000#, "0.000") & "ns," & _
 Format(data(2) * 1000000000#, "0.000") & "ns, ..." & vbCrLf

 ' Print out some of the statistics from the HIST and JITT tool structures
 mainDisplay.Text = mainDisplay & "Group Loop " & _
 Format(Round + 1, "0") & " - Histogram Mean: " & _
 Format(bHist.dNormAvg * 1000000000#, "0.000") & "ns" & _
 vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - Histogram Sdev: " & _
 Format(bHist.dNormSig * 1000000000000#, "0.000") & "ps" & _
 vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - 1Clock RJ: " & _
 Format(bJitt.dRjit1Clk * 1000000000000#, "0.000") & "ps" & _
 vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - NClock RJ: " & _
 Format(bJitt.dRjitNClk * 1000000000000#, "0.000") & "ps" & vbCrLf

 ' Print the max of the FFT to show how data within a plot is accessed and
 ' print the dataCOM tool DJ & RJ values
 mainDisplay.Text = mainDisplay & "Group Loop " & _
 Format(Round + 1, "0") & " - dataCOM DJ: " & _
 Format(bDcom.dDdjt * 1000000000000#, "0.000") & "ps" & _
 vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - dataCOM RJ: " & _
 Format(bDcom.dRjit(0) * 1000000000000#, "0.000") & "ps" & _
 vbCrLf & "Group Loop " & _
 Format(Round + 1, "0") & " - NClock Plot Max: " & _
 Format(FCNL_GetYval(bJitt.tFftN, bJitt.tFftN.lYmaxIndx) * 1000000000000#, "0.000")
& "ps" & vbCrLf

©WAVECREST Corporation 2005 APPENDIX B – VBasic Example 181

Next Round

Error:
' Return an error message if we had a problem
If (retn) Then
 mainDisplay.Text = mainDisplay & vbCrLf & "ERROR! Return Code: " &
Format(retn, "0")
End If

' Perform any cleanup and exit
FCNL_ClrHist bHist
FCNL_ClrJitt bJitt
FCNL_ClrDcom bDcom
COMM_CloseDev ApiDevid
End Sub

APPENDIX B – VBasic Example ©WAVECREST Corporation 2005 182

APPENDIX C – PAPI REVISION CHANGES

The following listings provide changes to the measurement window structures and sub-structures for all
supported revisions of PAPI. Find the version of GigaView or VISI that is currently installed on your
SIA-3000. All the changes in that section and previous sections (newer versions) show the differences
between the latest version of PAPI and the version of PAPI compatible with your SIA-3000.

GIGAVIEW 1.5 CHANGES (FROM GIGAVIEW 1.4)

New Tools
Folded Eye Diagram (FEYE)

Measurement Window Structure Changes
Added Input Parameters

None
Sub-Structure Changes

None

GIGAVIEW 1.4 CHANGES (FROM GIGAVIEW 1.3)
New Tools

PCI Express 1.1 Clock Analysis (PCLK)
PCI Express 1.1 Hardware Clock Recovery (PCIM)
PCI Express ATA 1.1 Software Clock Recovery (EXPR)
Serial ATA Gen2i & Gen2m (ATA2)
Serial ATA Gen1x & Gen2x (ATAX)

Measurement Window Structure Changes
Added Input Parameters

None
Sub-Structure Changes

None

GIGAVIEW 1.3 CHANGES (FROM GIGAVIEW 1.2)
New Tools

Feature Analysis (FEAT)
Measurement Window Structure Changes

Added Input Parameters
EYEH – lFiltOff

Sub-Structure Changes
None

©WAVECREST Corporation 2005 APPENDIX C – PAPI Revision Changes 181

GIGAVIEW 1.2 CHANGES (FROM GIGAVIEW 1.1)
New Tools

None
Measurement Window Structure Changes

Added Input Parameters
CANL – lHiRFmV, lLoRFmV, dAttn[POSS_CHNS]
FCMP – dAttn
INFI – dAttn
PCIX – lPcnt, lHiRFmV, lLoRFmV, lIdleOk, dAttn
SCOP – lVdif[POSS_CHNS], lVcom[POSS_CHNS], lHiRFmV, lLoRFmV

Added Output Parameters
CANL - qComm[POSS_CHNS], tComm[POSS_CHNS]
INFI – tDifScop, tComScop
PCIX – dEyeOffs, dXmnDiff, dXmxDiff, dVcommonAc, dVcommonDc,

dVcmDcActv, dVcmIdleDc, dVcmDcLine, dVcmDcDpls, dVcmDcDmin,
dVIdleDiff, *bTranEye, lTranRsv, *bDeemEye, lDeemRsv

SCOP – qComm[POSS_CHNS], tComm[POSS_CHNS]
Element Order and Padding

INFI – tEyeh moved
INFI – Added lPad1 and lPad2

Sub-Structure Changes
Added Parameters

MASK – dV0pas, dXwdUI, dXflUI, dYiPct, dV1Rel, dV0Rel
QTYS – dMaskRgn1, dMaskRgn2, dMaskRgn3

Modified Parameters
MASK – dToffs, dVoffs are now ignored
MASK – dVpass renamed to dV1pas

GIGAVIEW 1.1 CHANGES (FROM GIGAVIEW 1.0)
New Tools

Spread Spectrum Clock Analysis (SSCA)
Measurement Window Structure Changes

Added Input Parameters
DCOM – lTfitCnt
EYEH – lKeepOut, dKpOutLt, dKpOutRt
HIST – lKeepOut, dKpOutLt, dKpOutRt

Added Output Parameters
EYEH – tBoth, tBothProb

Element Order and Padding
HIST – Added lPad0
EYEH, RCPM, SIMP and STRP – Added lPad1
PCIX – Added lPad0 and lPad1
SATA – Added lPad3, lPad4, and lPad5
SCOP – Added lPad1 and lPad2

Sub-Structure Changes
None

APPENDIX C – PAPI Revision Changes ©WAVECREST Corporation 2005 182

GIGAVIEW 1.0 CHANGES (FROM VISI 7.4.0)
NOTE: Beginning with this release, VISI is now called GigiView and a new version numbering

system has been started.

New Tools
Clock Analysis (CANL)
Infiniband (INFI)
PCI Express (PCIX)
Recovered Clock / Pattern Marker dataCOM (RCPM)
Serial ATA (SATA)

Measurement Window Structure Changes
Added Input Parameters

SCOP – dAttn[POSS_CHNS]
Added Output Parameters

HIST – tShrt, tLong, tBoth
SCOP – qNorm[POSS_CHNS], qComp[POSS_CHNS], qDiff[

POSS_CHNS]
Modified Parameters

SCOP – qDisp[POSS_CHNS] eliminated. Use qNorm[POSS_CHNS].
Sub-Structure Changes

None

VISI 7.4.0 CHANGES (FROM VISI 7.3.0)
New Tools

None
Measurement Window Structure Changes

Added Input Parameters
SCOP – lVoff[POSS_CHNS], dHistDly, dHistWid, dHistVlt, dHistHgt

Added Output Parameters
SCOP – tHorz[POSS_CHNS], tVert[POSS_CHNS]

Modified Parameters
SCOP – lMask eliminated

Sub-Structure Changes
New Structures

Oscilloscope Histogram (OHIS)
Added Parameters

QTYS – dMidVolts

©WAVECREST Corporation 2005 APPENDIX C – PAPI Revision Changes 183

VISI 7.3.0 CHANGES (FROM VISI 7.2.1)
New Tools

Clock Statistics (CLOK)
New Oscilloscope (SCOP)

Measurement Window Structure Changes
Added Output Parameters

APLL - tInit
Sub-Structure Changes

New Structures
Measurement (MEAS)
Quantities (QTYS)
Mask (MASK)

VISI 7.2.1 CHANGES (FROM VISI 7.2.0)

NOTE: VISI 7.2.2 and 7.2.1 are identical as far as PAPI structures are concerned.
New Tools

None
Measurement Window Structure Changes

Added Input Parameters
APLL – dRecTime, lRecUnit, lIniCond

Modified Parameters
APLL – lAutoFix eliminated

Element Order and Padding
APLL – dCornFrq moved
APLL – lPad1 eliminated

Sub-Structure Changes
None

APPENDIX C – PAPI Revision Changes ©WAVECREST Corporation 2005 184

WAVECREST Corporation
World Headquarters: West Coast Office: Europe Office: Japan Office:
7626 Golden Triangle Drive 1735 Technology Drive, Ste. 400 Hansastrasse 136 Otsuka Sentcore Building, 6F
Eden Prairie, MN 55344 San Jose, CA 95110 D-81373 München 3-46-3 Minami-Otsuka
TEL: (952) 831-0030 TEL: (408) 436-9000 TEL: +49 (0)89 32225330 Toshima-Ku, Tokyo
FAX: (952) 831-4474 FAX: (408) 436-9001 FAX: +49 (0)89 32225333 170-0005, Japan
Toll Free: 1-800-733-7128 1-800-821-2272 TEL: +81-03-5960-5770
www.wavecrest.com FAX: +81-03-5960-5773
200212-04 REV A

http://www.wavecrestcorp.com/

	Table of Contents
	Table of Contents - page vi
	Table of Contents - page vii

	Purpose and Organization of this Manual
	Section 1 - Introduction
	1-1 Elements of an Application Using the Wavecrest PAPI
	1-2 Function Call Structures
	1-3 Files Included in the Wavecrest PAPI
	1-4 Wavecrest PAPI Installation
	1-5 Building the Sample Application
	1-6 Executing the Sample Application
	1-7 Reviewing the Sample Application
	1-8 Where to Go From Here

	Section 2 - Tool-Specific Commands and Structures
	2-1 Introduction
	2-2 Measurement Commands
	2-3 Plot Data Structure
	2-4 Acquisition Parameter Structure
	2-5 TailFit Result Structure
	2-6 Single Side of TailFit Structure
	2-7 Specification Limit Structure
	2-8 DDJ + DCD Data Structure
	2-9 Pattern Structure
	2-10 FFT Window and Analysis Structure
	2-11 QTYS Structure
	2-12 MEAS Structure
	2-13 OHIS Structure
	2-14 MASK Structure
	2-15 KPWM Structure
	2-16 Adjacent Cycle Jitter Tool
	2-17 Clock Analysis Tool
	2-18 Clock Statistics Tool
	2-19 Databus Tool
	2-20 Datacom Bit Clock and Marker Tool
	2-21 Datacom Known Pattern with Marker Tool
	2-22 Datacom Random Data with Bit Clock Tool
	2-23 Datacom Random Data with No Marker Tool
	2-24 Fibre Channel Compliance Tool
	2-25 Folded Eye Diagram Tool
	2-26 High Frequency Modulation Analysis Tool
	2-27 Histogram Tool
	2-28 InfiniBand Tool
	2-29 Locktime Analysis Tool
	2-30 Low Frequency Modulation Analysis Tool
	2-31 Oscilloscope Tool
	2-32 PCI Express 1.1 with Hardware Clock Recovery Tool
	2-33 PCI Express 1.1 with Software Clock Recovery Tool
	2-34 PCI Express 1.1 Clock Analysis Tool
	2-35 PCI Express 1.0a Tool
	2-36 Phase Noise Tool
	2-37 PLL Analysis Tool
	2-38 Rambus DRCG Tool
	2-39 Scope Tool
	2-40 Serial ATA Gen2i and Gen2m Tool
	2-41 Serial ATA Gen1x and Gen2x Tool
	2-42 Serial ATA Tool
	2-43 Spread Spectrum Tool
	2-44 Statistics Tool
	2-45 Stripchart Tool
	2-46 Retrieving Spikelists
	2-47 Example of How to Draw Using a PLTD Structure
	2-48 Defines for Values in Measurement Structures

	Section 3 - General Command Reference
	3-1 GPIB Communication and I/O Layer Functions
	COMM Layer Functions
	I/O Layer Functions

	3-2 Measurement Utility Functions
	3-3 Pattern and PM50 Functions
	3-4 Calibration Utility Functions
	3-5 Signal Path Functions (DSM16, Path Mapping and Path Deskew
	3-6 Miscellaneous Result and Status Functions
	3-7 Advanced Group Measurement Functions

	Section 4 - Code Samples
	4-1 Modidying Window Structure Parameters
	4-2 Performing TailFit
	4-3 Drawing from a Plot Structure
	4-4 Performing a Datacom Measurement
	4-5 Using a PM50 Pattern Marker in a Datacom Measurement

	Section 5 - Build Considerations
	5-1 Supported Compilers for the Wavecrest PAPI
	5-2 Build Requirements
	5-3 Developing with C++
	5-4 WIN32 (WIN9x, WINNT 4.0, WIN2K and WINXP)
	5-5 All UNIX Platforms
	5-6 HP-UX 9.05, HP-UX 10.20 and HP-UX 11i
	5-7 Sun 4.1.x (Solaris 1)
	5-8 Sun 2.5.1 or above (Solaris 2)

	Appendix A - Error Codes
	Appendix B - VBasic Example
	Appendix C - PAPI Revision Changes

