
Uppsala Master’s Theses in
Computing Science 274

Examensarbete MN3
2004-07-01
ISSN 1100–1836

PHP Integration

with object relational DBMS

Christian Werner

Information Technology
Computing Science Department

Uppsala University
Box 337

S-751 05 Uppsala
Sweden

Abstract

This report describes how to extend a functional mediator system Amos II for
allowing access from web servers through PHP. Several possibilities are analysed
to combine the Amos II external interface with PHP. Based on this discussions,
new functionality has been added to the PHP language by implementing a PHP
external module. A basic API between PHP and Amos II is proposed in this
workout. The interface was illustrated by implementing a web interface to a
simple database. Further studies and experiences from this illustration resulted
in a simplified and more dynamic interface definition based on PHP arrays.

Supervisor: Tore Risch
Examiner: Tore Risch

Passed:



Contents

1 Introduction 5

2 The Amos II system 6

2.1 The mediator-wrapper architecture . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The Amos II architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Data model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 External interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 PHP integration 14

3.1 Introduction to PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Extending PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2.1 Internal PHP structure . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.2 PHP module structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.3 PHP function structure . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Connecting PHP and Amos II types . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Passing OIDs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5 Error Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.6 Garbage Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Performance observations 24

4.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Debugability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Comparision: PHP versus JSP . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 JSP structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 General comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.3 Amos II specific comparison . . . . . . . . . . . . . . . . . . . . . . . . 29

5 Function reference 30

5.1 Module functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.1 amos init . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.1.2 amos free . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1.3 amos gc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2 Connection interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2



5.2.1 amos connect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5.2.2 amos close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3 Scan interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.3.1 amos query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.2 amos closescan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3.3 amos eos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.4 amos getrow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3.5 amos next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Tuple interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.1 amos getarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.2 amos createtuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.4.3 amos closetuple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.4 amos getint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.5 amos setint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.4.6 amos getdouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.7 amos setdouble . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.8 amos getstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.4.9 amos setstring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.10 amos getobjectelem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.11 amos setobjectelem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.4.12 amos getseqelem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.13 amos setseqelem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.4.14 amos elemsize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5 Fast-path function calling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5.5.1 amos getfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.2 amos gettype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.5.3 amos callfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.4 amos addfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.5.5 amos setfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.5.6 amos remfunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6 Object creation and deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6.1 amos createobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.6.2 amos deleteobject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7 Transaction control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.1 amos commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.7.2 amos rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3



6 Example Program: The Addressbook 45

6.1 The database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.2 The program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6.3 Program test results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

7 Amos II tuples and PHP arrays 50

7.1 Tuple to array conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Array to tuple conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

8 Conclusion and future work 55

References 56

4



1 Introduction

The definition and properties of an API between Amos II and PHP are the main topics of this
report. Amos II (Active Mediator Object System) is an extensible functional multi-database
system [1]. Functional queries, expressed in AmosQL, can be executed by one database
or over a federation of distributed databases. AmosQL is a query language similar to the
OO parts of SQL-99. Furthermore Amos II can be set up as a stand-alone main-memory
object-relational DBMS.

Two kinds of interfaces are offered between Amos II and the programming languages C [5]
or Java [6], the callin interface and the callout interface. To call Amos II from an application
the callin-interface can be used. Establishing connections, sending queries and dealing with
result sets are tasks of this interface. Contrary the callout-interface is able to call external
functions from C or Java. Once known to Amos II , these external functions can be used
in AmosQL queries. The callin and callout interfaces permit the development of wrappers.
Wrappers are small program modules that can access external data, for example XML-
documents, relational databases, web forms, MIDI files and web browsers.

PHP (PHP: Hypertext Preprocessor) is a server side scripting language [8]. On the one hand
PHP scripts can be executed on the command line. This is very helpful feature for debugging.
On the other hand PHP is able to run inside a PHP-enabled web server. In this context
PHP can be used to create interactive web pages. The core of PHP, Zend, is extensible
which offers the possibility to access external systems like Amos II in this project. There are
already existing several PHP extensions to various relational DBMS such as Oracle, MySQL,
DB2 and ODBC. The goal of this project is the implemention of new PHP functions that
call Amos II systems.

This documentation deals with designing and implementing an API between Amos II and
PHP. First of all, interfaces to Amos II and PHP in a web server are analyzed in order to
combine these two programs. Based on this analysis and previous Amos II interfaces for C
and Java, the basic API was developed.

Several features have been considered while implementing the extension. Now it is possible
to establish either a tight connection or a client/server connection. With a tight connection
the Amos II database runs inside the PHP engine as a subsystem. The other possibility is to
run Amos II as a seperate server. PHP scripts can send their requests to this server where
they are worked on and answered.
Another very interesting feature is the passing of Amos II object identifiers, OIDs, between
Amos II systems and PHP. Thus Amos II objects can easily be accessed from PHP.
The error management of Amos II is integrated with the error management of PHP.

The defined API is illustrated by the implementation of a web interface to a simple database.
An addressbook containing person and address objects is stored in this database. The web
interface tests the implemented functions. Based on experiences of using the simple interface
and further studies of PHP a simplified and dynamic interface based on PHP arrays is
proposed.

This report is constructed as follows. First of all the Amos II system is detailly described
in chapter 2. The architecture behind Amos II, the data model based on Amos II and the
interfaces to this system are explained. Section 3 explains the basic structure of PHP and
the possibility to extend PHP’s core, Zend. It is furthermore investigated how to connect
PHP types with the ones from Amos II, how to pass OIDs between the two systems and

5



the integration of the two error managements. A very important point for server systems,
garbage collection, is also investigated in this chapter. After this, performance observations
are presented in chapter 4. Comparisons to a similar language, JSP, have additionally been
made in this chapter. A complete function reference is given in chapter 5. To test the
system an example PHP program has been implemented and is described in chapter 6. With
progressive studies a very important improvement is proposed in section 7, the combination
of Amos II tuples and PHP arrays. Finally chapter 8 gives a conclusion and some ideas for
possible future works.

2 The Amos II system

Amos II is a distributed mediator system with an object oriented and functional data model.
The name Amos stands for Active Mediator Object System. Queries to that data model
are written in AmosQL, a relationally complete functional query language. The system can
consist of several autonomous and distributed Amos II peers. These peers can interoperate
through its distributed multi-database facilities. Each mediator peer offers three possibilities
to access data:

• Access to data stored in an Amos II database.

• Access to wrapped datasources.

• Access to data that is reconciled from other mediator peers.

Especially the second point makes Amos II extensible. New application oriented data types
or operators can easily be wrapped. And it is possible to add them to the query language,
AmosQL. Thus a powerful query and data integration is offered by the Amos II system.

First of all this chapter deals with the mediator-wrapper approach, on which the Amos II
system is based. To put this into concrete terms, the Amos II architecture is described after
it. As the main purpose of Amos II is using it as a database, the data model of Amos II is
described. Finally the callin-interface, basically used to extend PHP, is explained.

2.1 The mediator-wrapper architecture

Today a lot of applications, especially web applications, are developed that need to access
databases. Therefore an increasing number of distributed databases is in use. Online travel
agencies for example must be able to access databases of flight companies to gain information
of empty seats, of airports to see arrival and departure timetables and of hotels to search
for free rooms. Of course these information won’t be stored in one database, but each
flight company, airport and hotel will have their own database. Thus access to distributed
databases is necessary.

Furthermore there exists a large amount of possibilities to store data. One company having
this database and that schema, the next company might have a completely different view
on the stored data. Thus an application needs the possibility to access herterogeneous data
sources.

6



Figure 1: Mediator Wrapper Architecture

Therefore the mediator/wrapper approach, first proposed by Wiederhold [14], gives a good
support for applications to access distributed and heterogeneous data sources. But what is
this approach?

A mediator system consists of a mediator server and one or several wrappers. The mediator
server is a central software module that comprises a common data model (CDM). This CDM
shares its domain-specific knowledge about data with higher levels of mediator layers or with
applications. The task of a mediator is to answer queries that are sent from applications
to the mediator’s common data model. The query will be split depending on the data and
capabilities of the target data sources. As a mediator can regard other mediators as data
sources, a network of mediators, consisting of several layers, can be created. In such a
network only primitive mediators should have access to data sources. Then higher layers,
consisting of an advanced data abstraction, can be accessed by applications.

One mediator can access different autonomous data sources, like databases, XML files or
object stores, but never directly. Each data source can be accessed through software inter-
faces, called wrapper. Queries, sent from the mediator, are translated by the wrapper to a
data source specific format and thus hides the heterogenity of that data source. After that
the wrapper retrieves the query result, which has to be translated again into the common
data model of the corresponding mediator. The translated data is passed to the mediator.
There all results from all data sources are integrated and returned to the application. Figure
1 illustrates the way of a query beginning at the application, through the mediator server
and the wrappers to the data sources. Then the result set takes the same way up.

2.2 The Amos II architecture

The Amos II system is based on the mediator/wrapper architecture. It is a distributed
mediator system consisting of one or several mediator peers. These peers can communicate
via the Internet using TCP/IP. Each peer offers its own virtual functional database layer,
consisting of

• data abstractions that provide transparent functional views for clients and other me-
diator peers to access data sources,

7



Figure 2: Example of an Amos II system with three mediators, [1]

• a functional query language, AmosQL,

• a storage manager

• a recovery manager and

• a transaction manager.

The core of Amos II is a open, light-weight and extensible database management system
(DBMS).

In Amos II it is possible to build up layers of peers with a dynamic communication topology.
A distributed mediator query optimizer optimizes this communication topology. To compute
an optimized execution plan for a given query, data and schema information are exchanged
between the peers. In figure 2, the high level mediator defines mediating functional view
integrating data from them. The views include facilities for semantic reconciliation of data
retrieved from the two lower mediators. The two lower mediators translate data from a
wrapped relational database and a web server, respectively. They have knowledge of how
to translate AmosQL queries to SQL through JDBC and, for the web server, to web service
requests. The description of figure 2 can also be found in [1].

To summarize this, figure 2 illustrates the distribution of mediator peers. Two distributed
data sources offer through three distributed mediator peers their data to an application.
Communication between peers is illustrated by thick lines, where the arrow indicates the
peer running as server. One special mediator peer is listed in the figure, the name server.
Every mediator peer must belong to a group and every group of mediator peers must have
a name server. The name server stores meta-information like

• names of peers,

• locations of peers and

• additional data

8



about all peers in that group. It must be mentioned that the mediator peers forming a
group are still autonomous and there exists no control schema in the name server. And it is
left to each peer to describe its own local data view and data sources. In what way is the
name server involved in peer communication? The kind of communication is done through
messages that can request or deliver data. To avoid a bottleneck the name server is only
involved when a new mediator peer wants to register to the group. As soon as mediators
are known to each other they can communicate directly without any information from the
name server. In figure 2 the communication with the nameserver is illustrated by dotted
lines. The name server always acts, with regard to the other mediator peers, as a server.

To access external data sources an Amos II mediator peer can have one or several wrappers.
A wrapper is a small program module that translates queries received by the mediator and
forwards them to the data source. It is also responsible to handle the result set returned
from that data source. The data must be adapted to the mediator’s data schema. Therefore
the wrapper must contain information about the meta-data and the data itself of the data
source. It furthermore must contain rewrite rules to translate the queries. As follows a
number of tasks for a wrapper is listed ([1]):

• Schema importation translates schema information from the sources into a set of Amos
II types and functions.

• Query translation translates internal calculus representations of AmosQL queries into
equivalent API calls or query language expressions executable by the source.

• Source statistics computation estimates costs and selectivities for API calls or query
expressions to a data source.

• Proxy OID generation executes in the source query expressions or API calls to construct
proxy OIDs describing source data.

• OID verification executes in the source query expressions or API calls to verify the
validity of involved proxy OIDs, in case they have become invalid between different
query requests.

As soon as a wrapper is defined for a special data source, every query written in AmosQL
can be rewritten.

To summarize and to put everything together, the route of a query is observed. Figure 3
gives a picture of such a route. An application sends a query to any mediator peer using
AmosQL. In dependence of the data to access, the query will be split and forwarded to the
wrappers. There the query is translated into a format that is analyzable by the data source.
The right side of the picture shows the way of the result set. The data sources deliver their
query result back to the wrapper that translates the data to the CDM of the mediator. There
all result sets are unified and returned to the application.

The first time an Amos II server is initialized it runs initially as a stand-alone database in
single-user mode. For this project it is also necessary to run Amos II as a server. Therefore
the nameserver must first be started by using

nameserver(Charstring name)->Charstring

with name being the mediator name that is registered with starting the name server. If name
is an empty string, only the name server is started. All other peers, that want to belong to
the same group, must register to the name server of the current system by using

9



Figure 3: Example for a query execution

register(Charstring name)->Charstring .

For preparing the mediator to receive queries start the listening loop:

listen() .

2.3 Data model

The basic components of the data model of Amos II are objects, types and functions.

2.3.1 Types

For each entity type in an Entity-Relationship diagram an Amos II type is created. Types
unite objects with similar properties. Furthermore multiple inheritance is offered, what
means a supertype/subtype hierarchy can be built. An instance of a type is always an
instance of all supertypes. If an object inherits from more than one type it gains all properties
from all supertypes.

Two kinds of types are existing, stored and derived types. Derived types are mainly used for
reconciliation, while the stored types are defined and stored in an Amos II database. The
following command creates a person and an assistant type in Amos II:

create type Person;
create type Assistant under Person;

Every Amos II peer offers a basic type hierarchy that can be seen in figure 4. The root
element is named Object. All (system and user) defined type names are stored in a type
named Type. Again all functions (described in chapter 2.3.2) are instances of a type named
Function. When a user defines a type it is always a subtype of type Userobject.

10



Figure 4: System type hierarchy

2.3.2 Functions

Functions model the relationship between objects, model properties of objects and computa-
tions over objects. In functional queries and views they are representing the basic primitives.
As already mentioned, functions are instances of the type Function.

The function’s signature contains information about all arguments, such as the types and
optional names, and about the result of the function. The next example shows the signature
of a function modeling the attribute street of type Address:

street(Address)->Charstring

2.3.3 Objects

Objects in Amos II are corresponding to Entities in an Entity-Relationship diagram and are
instances of Amos II types. Everything in Amos II is represented as an object, independent
whether the object is user-defined or system-defined. Literals and surrogates are are the main
kinds for representing objects. Literal objects are primitive objects like integers, strings or
even collections that represent arrays of other objects. In addition to this are surrogates that
are created by the user or the system and are describing real world entities.

An address-object in Amos II can be created with a command as follows:

create address instances :hereiswhereilive;

When a query requests this object, the returned result will be displayed similar to this
scheme:

#[OID 1101]

The system assigns unique object identifiers (OIDs) to all surrogate objects. In combination
with the external interface for the programming language C these OIDs are stored as object
handles. An object handle is a reference to any kind of data stored in Amos II databases
such as numbers, strings, Amos II OIDs and other internal structures. Reversed no object
handle that references a literal object has an OID.

11



It will be discussed later in chapter 3.4, how object handles are passed from C to PHP and
the other way.

2.4 External interface

Applications that are developed in programming languages and want to access the Amos II
system require special interfaces to the mediator layer. Interfaces to several programming
languages are already existing:

1. Lisp: Amos II can be called from an extended Lisp language, named ALisp. The
AmosQL parser is based on Lisp macros that translate queries and statements written
in AmosQL to Lisp code. The interface from ALisp to Amos II is an embedded query
interface. As explained in [5], this method for accessing Amos II can be very efficient.

2. Java: The most convenient way to write Amos II applications is using the Java in-
terface that is described in [6]. The Java interface is divided into a callin and callout
interface. The use of these two interfaces is similar to the ones from C. Thus the use
is only described for C, but the technic is explained shortly.
A driver program, called JavaAMOS, is necessary to call Amos II from Java code and
is provided through javaamos.jar. For using the callout interface the multi-directional
foreign function interface can be used.

3. C: The external interface to C is used for this project and is thus explained in detail
below.

It is PHP that needs to be extended in this project. As the core of PHP, Zend, is written in
C, the study of the C interface has been the basics for implementing the API of chapter 5.
The rest of this chapter deals with this interface.

The external interface to C is divided into the callin and the callout interface.

• For calling Amos II from a C program the callin interface can be used. As it appears
between the Amos II kernel (peer) and the PHP extension, callin makes the mediator-
wrapper available to PHP.

• With the callout interface external procedures can be called from AmosQL. There is a
similarity to data blades [18] in object-relational databases and foreign functions can
be used as a form of stored procedures.

Having a more detailed look on the internal interface, there appear two ways to call Amos
II from C:

• The evaluation of passed strings containing AmosQL statements is done by the embed-
ded query interface. Some basic functions are provided to the programmer to handle
results of AmosQL statements.

• Since the embedded query interface always has to parse and compile AmosQL statements
it is rather slow. To handle this disadvantage, the fast-path interface is able to call
predefined Amos II functions from C.

12



typedef struct {
int status;
a connection con;
char *session id;

} amos con;

typedef struct {
int status;
a scan scan;
int con index;

} amos scan;

typedef struct {
int status;
a tuple tuple;
int con index;

} amos tuple;

Figure 5: Data structures used in the PHP extension

In what way can Amos II be connected or how can result sets be handled in C code? There
are two answers for the first question:

• On the one hand a tight connection to an Amos II system can be established. Here Amos
II is directly linked with an application program in C and thus runs as an embedded
database inside the application. As the same address space is used this is the fastest
possibility between an application and Amos II. However only a single application can
be linked to Amos II. Another disadvantage with the tight connection is that errors
appearing in the application may also cause the crash of Amos II.

• Amos II can, as already described, act as an server. An application can establish a
client-server connection to the Amos II peer. With this connection several applications
can access the same Amos II concurrently. If one application crashes, it will have no
influence on Amos II. Speed is a disadvantage for this kind of connection.

A connection handle to an Amos II database is stored in a C variable of type a connection.
The connection is established by calling

int a connect(a connection c, char *dbname, int catcherror);

with dbname being the name of the database peer to connect to. If dbname is an empty
string, then a tight connection is established. Otherwise this string must be a name of an
Amos II mediator peer known to the nameserver. In the PHP extension the connection
handle is stored in an array of type amos con. See figure 5 for more details. The element
status indicates whether there is a valid connection handle con stored or not. Additionaly
the string session id is used for garbage collection (see section 3.6) and stores either the
value "0" if connection con is established outside of a session, otherwise the session identifier
is stored in this variable.

13



Now the connection is established and queries can be sent to an Amos II system that can
return result sets. Scan handles are holding the result set of queries and are returning them to
the application as scans. Scans are specified by the type a scan in Amos II and by amos scan
in the PHP extension. Again status indicates a valid scan. A scan handle is always created
in correlation with a connection handle. This information is stored in con index.

A scan is a stream of tuples that hold the actual values. Tuples are stored by using type
a tuple in Amos II and amos tuple in PHP. The variables in the PHP structure are the
same as in amos scan.

3 PHP integration

This report deals with integrating Amos II into PHP. First of all a short introduction of
the PHP environment in section 3.1 is done, followed by a description for extending PHP in
chapter 3.2. The next topic to be studied is how to pass OIDs of Amos II objects to the user
of PHP. In case of an error thrown in Amos II, the error managements of Amos II and PHP
must be combined. Section 3.5 deals with this. Finally, but very important, techniques for
garbage collection to cleaning used storage are described.

3.1 Introduction to PHP

PHP is above all a scripting language that can be embedded into HTML and is therefore
mainly used as a server side scripting language. The shortcut PHP is a recursive acronym
for ’PHP: Hypertext Preprocessor’.

There are three possibilities for using PHP. It can be used

• as a server side scripting language,

• for command line scripting or

• for client-side GUI applications.

The first point is the most important one. As soon as a client (e.g. web browser) requests a
PHP site from the server, PHP is called by the server to translate the PHP page into pure
HTML code. The resulting HTML page is then returned to the client. The advantage of
this architecture is that the PHP code from the PHP page cannot be seen by the user. The
page is translated on the server and the user only sees the resulting HTML page. For this
project the Apache Web Server is used, as Apache already has a PHP integration.

PHP also offers the possibility to execute scripts via the command line. This feature has
been used in this project to test the implemented Amos II functions (described in section 5).

The third possibility to use PHP is developing GUI applications with the help of the PHP-
GTK extension. For this work that feature is not of interest.

3.2 Extending PHP

For calling Amos II from PHP code, the functionality of PHP must be extended. But how
to extend this language?

14



Figure 6: The structure of PHP

3.2.1 Internal PHP structure

First of all the structure of PHP must be discussed. As already mentioned, PHP is a web
script interpreter. To implement such an interpreter, three parts are necessary:

• The interpreter that analyses the input code, compiles it and executes it.

• The functionality part offers function calls to the user.

• An interface to the webserver.

Therefore PHP is split up into two parts, the PHP language and the real core of PHP, named
Zend. Zend contains the interpreter and offers in addition some basic functionality to the
user via the Zend API. PHP takes the rest of the functionality and the interface part. Figure
6 illustrates the structure of PHP.

PHP can be extended at three points:

• External Modules

• Built-in Modules

• Zend Engine

External modules are loaded at script runtime by using the ’dl(modulename)’ command. A
shared object is loaded from the disk and all functionality of the module is made available
to the current script. At the end of the script the module is unloaded and discarded from
memory.
An advantage of this procedure is, when changing the module only that module must be
recompiled. PHP itself need not be recompiled and thus the size of PHP remains small and
uses less memory. But as the module has to be loaded every time a script is being executed,
PHP is getting quite slow. Furthermore external additional files clutter up the disk and every
script that wants to call functions from an external module must include a call to dl().

15



Thus external modules are only recommendable for small programs, or modules that are
rarely used.

The second possibility, built-in modules, avoids the disadvantages of an external module
by compiling it into PHP. Thus each time a PHP process is started, the functionality is
automatically available to every running script, without calling the function dl(). The
disadvantages are if changes to built-in modules are made recompiling of PHP is required
and the PHP binary grows and consumes more memory.
Thus built-in modules can be used when it has a solid library of functions that remain
relatively unchanged. The disadvantage recompiling PHP is quickly compensated by the
speedup of the built-in module.

The last possibilty to extend PHP is to change the Zend Engine itself. This will result in
a change of the PHP language behaviour. But as mentioned in [8] this precedure is not
recommended as changes result in incompatibilities with the rest of the world. All changes
to the PHP core will disappear with the next version of PHP, or have to rewritten.

This project uses an external module. In that way a recompilation of PHP can be avoided.
As explained above the module must be loaded dynamically by the dl()-command, which
will probably reduce the performance. It is also possible to tell PHP to load the module
automatically by adding the Amos extension to file ’php.ini’. The last possibility is used
in this project and no real performance problems have been observed. The next thing to
discuss is how to write a PHP module.

3.2.2 PHP module structure

PHP offers a lot of macros to implement a module. The basic structure for the Amos II
extension to PHP can be seen in figure 7.

First of all the header files for PHP and Amos II have to be included. The next important
entry is a list of all implemented PHP functions. The list

function entry amos functions[] = {...}

can be created by using the macro PHP FE for each entry. Now Zend knows which functions
this module offers to the user.

Next all necessary information about the module contents must be collected. This infor-
mation is stored in a structure named zend module entry. The first entry is a macro
and sets the size of the whole zend module entry, the number of the Zend module API
(ZEND MODULE API NO, whether it is a debug build or normal build and if ZTS (Zend Thread
Safety) is enabled the fourth value is set to USING ZTS. The second entry contains the
name of the module: amos. Furthermore the name of the array with all function names
(amos functions) must be available to Zend. The fourth and fifth entry are defining func-
tions that are called when initializing (amos init, section 5.1.1) and closing (amos free,
section 5.1.2) this module. The next three values are set to NULL, as they are not used in this
project. The programmer has the possibility to register at this place startup and shutdown
functions for page requests and an info function if a footnote should appear at the output of
the PHP function phpinfo(). The ninth entry identifies the version of this module and the
last is a macro setting some remaining internal values.

Another special function for dynamic loadable modules must be considered: the creation of
the function get module(). It is called by Zend at load time of the module and has the

16



/* include standard PHP and Amos II headers */
#include "php.h"
#include "callin.h"
#include "php amos.h"

/* compiled function list, so Zend knows
what functions are distributed by the Amos II module */

function entry amos functions[] = {
PHP FE(amos functionname, NULL)
...
{NULL, NULL, NULL}

}

/* compiled information about Amos II module */
zend module entry amos module entry = {

STANDARD MODULE HEADER,
"amos",
amos functions,
ZEND MINIT(amos init),
ZEND MSHUTDOWN(amos free),
NULL, NULL, NULL,
NO VERSION YET,
STANDARD MODULE PROPERTIES

};

/* implement standard "stub" routine to
introduce Amos II module to Zend */

#ifdef COMPILE DL AMOS
ZEND GET MODULE(amos)

#endif

/* Macro for implenting a PHP function */
PHP FUNCTION(amos functionname) {

...
}

Figure 7: Code structure for the Amos II extension

17



PHP FUNCTION(function name) {
/* retrieving the number of PHP arguments */
int param count = ZEND NUM ARGS();

/* parsing arguments */
switch (param count) {
/* parse parameters here */
case x:

...
default:

WRONG PARAM COUNT;
}

/* check parameters */

/* do function action */

/* return possible values */
}

Figure 8: Basic structure for an PHP function

task to pass module information to Zend in order to inform the engine about the module
contents.
This function can be implemented by using the macro ZEND GET MODULE. Since this feature
is only required if the module is built as a dynamic extension, the implementation must be
surrounded by a conditional compilation statement that can again be seen in figure 7. Thus
if this module would be compiled as a built-in extension, the implementation of get module
is simply left out.

Now the basic module structure is described but there still remains the layout of an PHP
function. The next section considers this point.

3.2.3 PHP function structure

The general structure of an PHP function and some useful macros are described in this
section.

First of all the new module function must be initiated with macro PHP FUNCTION. The macro
takes the function name as parameter as it can be seen in figure 8. The interior structure of
the function starts with initializing all necessary variables for this function. Especially the
number of function parameters can be retrieved by the macro ZEND NUM ARGS(). The next
block deals with parsing the parameters with differing between the amount of parameters.
Parsing with a fixed parameter count can be done by using a PHP function as follows:

int zend parse parameters(int num args TSRMLS CC, char *type spec, ...);

Where the first argument refers to the number of PHP function arguments. The second
defines the parameter types by a string. When parsing a long- and a string-value, the

18



PHP type Receive Send
long a getintelem a setintelem
double a getdoubleelem a setdoubleelem
string a getstringelem a setstringelem
array a getseqelem a setseqelem

Table 1: Data exchange between PHP and Amos II

string type spec looks like ”ls”, where ’l’ denotes the first parameter to be a long value
and ’s’ represents a string value. Other possibilities can be found in the PHP manual ([8]).
Finally there must be a list of initialized variable addresses, where Zend should store the
parameter values. If there is an illegal number of arguments in the PHP function, the macro
WRONG PARAM COUNT prints an error message.

Now we can deal with a fixed number of function arguments of a special type. But what to
do if a function must deal with one argument having a runtime dependent type? Zend offers
a structure type named zval for handling this. Every kind of data can be stored in a zval
variable and additional information about that data, e.g. the type. Type-checking can thus
easily be done with the help of constants (e.g. IS LONG) offered by Zend.

The next step consists of checking the parsed parameters. Normally Amos II connections,
scans and tuples need to be checked, whether they are still valid. After this the parameters
can be edited and/or passed to Amos II functions. For the case of a returning function
PHP again offers some macros to return spezial types, e.g. to return a long-value the macro
RETURN LONG(long value) should be used.

3.3 Connecting PHP and Amos II types

Till this chapter all explanations concern the structure of the PHP module named amos.
Now a closer eye must be kept on some internal aspects.

Data exchange between PHP applications and Amos II databases can be done via the get and
set methods of the callin-interface from Amos II. Table 1 lists an overview of all basic PHP
types and how to receive and send this data to Amos II. The corresponding PHP functions,
this project offers to the PHP user, are described in chapter 5.4.

The next section describes how Amos II object identifiers are handled.

3.4 Passing OIDs

The object oriented character of Amos II is already explained in chapter 2.3.3. It is mentioned
that a programmer using C must deal with object handles. But how to use these object
identifiers?

Basically object handles are logical pointers to an Amos II data structure. Any kind of data
in Amos II (numbers, strings, arrays, Amos II OIDs and other internal data structures) can
be referenced by an object handle. Object handles have the C datatype oidtype that is
represented by an unsigned integer. They can be declared by using

dcl oid(o);

19



and after usage they must be freed by calling

free oid(o);

And there exists a macro for assigning a new value to a handle:

a setf(<location>, <new value>);

where <location> is an oidtype that receives a new value <new value>. This macro invokes
an incremental garbage collector based on reference counting. Thus the old value stored in
<location> is deallocated if no other location references the old value. It must be men-
tioned that free oid deallocates the referenced object only if no other location refers to it.
Forgetting to free a handle can result in memory leaks as the internal counter might not be
reduced.

The question now for this section is how to pass an object to the user. It might simply
be done by passing the object handle as an unsigned integer to the PHP script. But this
method has some significant disadvantages listed below.

• The PHP user has no idea what is referenced by this integer value. It might be a
string, an integer or, what we really want, an OID.

• There is a difference compared to the Amos II command line. There an OID for a
surrogate object is printed in a scheme as follows:

#[OID <oidnr>]

<oidnr> is a system maintained object identifier for surrogate objects. When the PHP
user wants to print the object, he either prints only the references to the real value,
or he would have to call an additional function to transform the object handle into a
fitting string. Therefore the object handle must reference a surrogate object, otherwise
this transformation would lead into an error.

• An object handle cannot directly be used with a query. The same string, as mentioned
in the second item, has to be used. Thus a function call for transforming the object
handle to this string is a must.

The other possibility is to convert a surrogate object handle straight into a PHP string with
syntax ”#[OID <oidnr>]” and return it to the PHP script. Integer value <oidnr> is the
system maintained object identifier for surrogate objects. The value is unique for each object.
It must be mentioned that only references to surrogate objects can be transformed, as literal
objects have no object identifiers. And thus literal objects such as string and numbers must
be converted to the corresponding PHP literal objects. The advantage of this method is that
the PHP user need not take care of the internal representation of objects as object handles.

But how to transform a surrogate object handle into this OID string and vice versa?
Two steps are necessary for converting an oidtype to the object string as it can be seen in
the code extract of figure 9. Before starting with transformation, an object handle must
be initialized and a new value must be assigned to it. First step is to get the OID number
from the Amos II system by calling the system C function a getid. A try to convert a
literal object would result in an error. After this a string is allocated and the OID number
is printed into the object string. Finally this string can be returned to the PHP script.

The other direction, passing an object string from PHP to Amos II, can occur when calling
e.g. the function amos setobjectelem (section 5.4.11). Again two steps are necessary to

20



char* make OID string(oidtype oid) {
char *toreturn;
char buffer[30];
int id = a getid(oid, TRUE);
if (a errorflag) AMOS ERROR;
sprintf(buffer, "#[OID %d]", id);
toreturn = (char *)emalloc(strlen(buffer)+1);
strcpy(toreturn,buffer);
return toreturn;

}

Figure 9: Transforming an object handle to an object string

gain an object handle out of an object string. The first thing to do is to retrieve the number,
the real OID, out of the given string. For example 1101 is the OID from the object string
#[OID 1101]. Next the location handle of the OID must be obtained, given its OID number.
It can be done by calling the Amos II function

a getobjectno(a connection c, int oid, int catcherror),

which returns the expected location handle.

3.5 Error Management

Another important topic for this project is error management integration of Amos II with
the one of PHP. First the Amos II error management is explained, then the PHP error
management and finally the integration.

Almost all functions of the external C interface have a flag as parameter that indicates the
kind of error handling. This parameter is an integer-value and can accept the values TRUE
or FALSE. As well most of the functions return an error flag that indicates the occurance of
an error. An example for such a function is

int a nextrow(a scan s, int catcherror)

with catcherror defining the kind of error handling. If this parameter is FALSE then Amos
II deals with the error and possibly shuts down the system. The other possibilty, TRUE,
means that the user has to deal with the error on his own, what is done in this project.

What happens if an error occurs? First of all there exists a global variable

int a errorflag;

which is 0 if the current Amos II functions ends normally or not equal to zero for the case
of an error. Some functions, as the one mentioned above, return this flag, and for other
functions this global flag must be investigated. For example like this:

if (a errorflag != 0) {
/* do some error handling here */

}

To receive information about the error, the following three global variables are of use.

21



• For storing the error number:
int a errno;

• A string explanation of the error:
char *a errstr;

• A reference to an Amos II object:
oidtype a errform;

For the case of an Amos II error, this error must be forwarded to the calling PHP script.
Zend offers function

zend error(int type, char *message);

for printing a message to the current output (e.g. an HTML page). The first function
parameter defines the error type, which can have influence on script execution. There exist
different error types in PHP, but for this project only two of them are of interest.

• E ERROR – Signals an error and the script execution terminates immideately.

• E WARNING – Signals a generic warning, but the script execution continues.

Integrating this with the Amos II management system results in two define-statements, one
representing a warning and the other an error.

#define AMOS ERROR zend error(E ERROR, "Error %d: %s", a errno, a errstr);
#define AMOS WARNING zend error(E ERROR, "Error %d: %s", a errno, a errstr);

3.6 Garbage Collection

Every time a connection is established or queries are sent to Amos II, connection, scan and
tuple handles are initialized, and they are occupying memory. After termination of a script
or a session this storage has again to be freed. That means, two different ways for dealing
with garbage collection have to be considered.

First on script termination a garbage collector function should be called that frees all used
memory. Except the memory that is needed for a session, for which the connetion should
stay up. The Amos II extension offers a completely automatic method to deal with this
kind of garbage collection. The most important thing is to retrieve the connection handles
that can be freed. To put in concrete terms, as soon as a new connection is going to be
established, a function for closing this connection on script termination has to be registered
to Zend. The Amos II extension offers amos close (section 5.2.2) for resetting a connection
and for freeing all memory that is correlated to that connection.

The user can register functions that are executed when script process is complete. It can be
done by using

void register shutdown function(callback function);

As register shutdown function is a PHP scripting function, it cannot be called directly
from the C code. Here Zend offers a possibility to call and execute user functions by us-
ing Zend function call user function ex. Figure 10 explains how to to this. First the

22



zval *fct shutdown, *fct aclose, *fctparam;
zval *retval;
zval ***params;
MAKE STD ZVAL(fct shutdown);
MAKE STD ZVAL(fct aclose);
MAKE STD ZVAL(fctparam);
ZVAL STRING(fct shutdown, "register shutdown function", 1);
ZVAL STRING(fct aclose, "amos close", 1);
ZVAL LONG(fctparam, new con);
params = (zval ***)emalloc(2*sizeof(zval **));
params[0] = &fct aclose;
params[1] = &fctparam;

/* register amos close(new con); */
if (call user function ex(CG(function table), NULL,

fct shutdown, &retval, 2, params, 0,
NULL TSRMLS CC) != SUCCESS) {

zend error(E WARNING, "Function call failed");
}

Figure 10: Example code for registering a function for garbage collection

function name to be called (register shutdown function) is stored in a zval container
fct shutdown. Furthermore this function’s parameters (the Amos II extension function
to initiate the garbage collection amos close and its parameter, the array position of the
used connection) must be stored in a zval-array (params). Finally a return-value must be
allocated again as a zval variable and then amos close can be registered.

The second step in garbage collection concerns sessions. A session consists of one or more
scripts, while old data is still needed. For example the Amos II extension to PHP should
offer the possibility to keep connections alive although script execution has ended. PHP
already comprises the handling of sessions which makes it easier to use this behavior in the
Amos II extension. The difficult part is deallocating all connections, scans and tuples that
are associated with this session.

As it can be seen in figure 5, it is possible to link a connection handle to a session. A session
has a unique identifier and it can be obtained by invoking the user function session id().
Similar code to the one for registering shutdown functions is necessary to call this function
from C code. Thus each time a new connection is going to be established inside a session,
this connection is stored together with the current session identifier.

Now it is up to the user to implement a session save handler. A session save handler controls
six session functions:

• open($save path, $session name) – opens a session

• close() – closes a session

• read($id) – reads the current session data

23



• write($id, $sess data) – writes the current session data

• destroy($id) – destroys a session

• gc($maxlifetime) – starts garbage collection after a given time

To make these functions available, set them by using

session set save handler(
"open", "close",
"read", "write",
"destroy", "gc"

);

An example implementation for a session save handler can be seen in figure 11. It is an
extended version to the one offered by [8]. The most important part for collecting garbage
are the functions destroy and gc. There must be a call to the Amos II extension to start
clearing memory:

amos gc(session id());

This functions checks each stored connection whether it belongs to the current session. If
the session identifiers are the same, deallocation process starts.

Now all connection handles can be freed when script process is complete or a sessions ends.
Scan and tuple handles are stored in seperate arrays. As the connection is stored for each scan
and tuple handle, a simple loop runs through these arrays and frees all with the connection
associated scans and tuples.

4 Performance observations

4.1 Performance

The performance is tested by using

• Amos II Release 6, v7

• Apache HTTP Server 2.0

• PHP 4.3.4

The test machine is a Pentium with 800MHz. In case of a client/server database access the
Amos II server runs on the same machine.

During the test a query is sent to the database and the result set is printed. Timestamps
are taken before and after query execution and after printing all tuple data of the scan.
Thus query execution time, tquery, result set printing time, tdisplay, and total time, ttotal

can be determined and calculated. Time is measured in the current Unix timestamp with
microseconds by calling PHP function microtime() (for description see [8]).

A test database, with 10000 person objects having a name, has been created for the test.
To test a selection query, one of the persons has an address. Therefore an AmosQL script
has been generated which fills the database at Amos II startup with person objects having

24



function sess open($save path, $session name) {
global $sess save path, $sess session name;
$sess save path = $save path;
$sess session name = $session name;
return(true);

}

function sess close() {
return(true);

}

function sess read($id) {
global $sess save path, $sess session name;
$sess file = "$sess save path\sess $id";
if ($fp = @fopen($sess file, "r")) {

$sess data = fread($fp, filesize($sess file));
return($sess data);

} else {
return(""); // Must return "" here.

}
}

function sess write($id, $sess data) {
global $sess save path, $sess session name;
$sess file = "$sess save path\sess $id";
if ($fp = @fopen($sess file, "w")) {

return(fwrite($fp, $sess data));
} else {

return(false);
}

}

function sess destroy($id) {
global $sess save path, $sess session name;
amos gc(session id());
$sess file = "$sess save path\sess $id";
return(@unlink($sess file));

}

function sess gc($maxlifetime) {
amos gc(session id());
return true;

}

session set save handler(
"sess open", "sess close", "sess read",
"sess write", "sess destroy", "sess gc");

session start();

Figure 11: An example implementation for a session save handler
25



Test Query DB tquery tdisplay ttotal

1 1 c/s 1.4849369525909 0.48234820365906 1.96728515625
2 1 c/s 1.0670609474182 0.39609503746033 1.4631559848785
3 1 c/s 1.5469870567322 0.41786289215088 1.9648499488831
4 1 c/s 1.2793309688568 0.38292217254639 1.6622531414032
5 1 c/s 1.627240896225 0.3448691368103 1.9721100330353
6 1 e 1.3398990631104 0.50183582305908 1.8417348861694
7 1 e 0.95206499099731 0.36082601547241 1.3128910064697
8 1 e 1.031594991684 0.40175485610962 1.4333498477936
9 1 e 1.1383380889893 0.45624804496765 1.5945861339569
10 1 e 1.0584740638733 0.49389100074768 1.552365064621
11 2 c/s 0.016000032424927 0.00046181678771973 0.016461849212646
12 2 c/s 0.015414953231812 0.00045299530029297 0.015867948532104
13 2 c/s 0.015239000320435 0.00049495697021484 0.015733957290649
14 2 c/s 0.016252994537354 0.00043201446533203 0.016685009002686
15 2 c/s 0.015311002731323 0.00045895576477051 0.015769958496094
16 2 e 0.011516809463501 0.00043606758117676 0.011952877044678
17 2 e 0.011462926864624 0.00046205520629883 0.011924982070923
18 2 e 0.0094878673553467 0.00044012069702148 0.0099279880523682
19 2 e 0.009490966796875 0.00058412551879883 0.010075092315674
20 2 e 0.0096340179443359 0.0004417896270752 0.010075807571411

Table 2: Performance measurement results

a name and one of them an address. Two queries, a scan and a selection query, have been
tested:

1. select name(p) from person p;

2. select livesat(p) from person p where name(p)=’Name9975’;

The first query scans the database for all names, which will cause the database and PHP
to handle a large result set (10000 names). The display time tdisplay can be expected to be
quite high. The second query searches the address of a person with the name Name9975.
Here the display time can be expected to be small. Both queries are sent via two different
connection types, a tight connection – symbolized through an e in the DB column – and a
client/server connection – symbolized through a c/s. The resulting times are displayed in
table 2.

To summarize table 2 and to draw conclusions the average for each type is calculated:

• Result for Query 1, c/s (test cases 1-5)
tquery,avg = 1.401
tdisplay,avg = 0.404
ttotal,avg = 1.805

• Result for Query 1, e (test cases 6-10)

26



tquery,avg = 1.104
tdisplay,avg = 0.443
ttotal,avg = 1.547

• Result for Query 2, c/s (test cases 11-15)
tquery,avg = 0.015
tdisplay,avg = 0.00046
ttotal,avg = 0.015

• Result for Query 2, e (test cases 16-20)
tquery,avg = 0.010
tdisplay,avg = 0.00047
ttotal,avg = 0.010

What is the gain in running Amos II in the PHP address spaces compared to running it
client-server? To focus on the first query, there is a speedup of 21% when using an embedded
connection instead of a client-server connection. The second query delivers a speedup of 33%.
The display time is just as expected. It has a larger influence on the first query, it takes
0.4s to print the result set. Definitely no influence on total time has the display time of the
second query.

4.2 Debugability

The Amos II extension to PHP is program module that lies between two large projects, PHP
and Amos II. This makes the possibility to debug the program quite difficult. It is possible
to execute PHP scripts on the command line. With the extern variable

extern int trace interface = TRUE;

message logging for Amos II is switched on. Thus it is possible to see messages that are
received and sent by an Amos II server.

Another point that shows the difficulty for debugging is that some errors occured only when
PHP is used with a web server. The execution of the PHP script resulted in a crash. As
Amos II also run as a server, it stayed up. When testing the same script on the command
line to debug the script, no error occurred.

4.3 Comparision: PHP versus JSP

JSP (JavaServer Pages) is, similar to PHP, a server side scripting language. First the struc-
ture for JSP is explained and after this a comparision between both is done.

4.3.1 JSP structure

JavaServer Pages, short JSP, are based on Java Servlets. Servlets are Java classes that are
used to extend the capability of servers. Through request-response architecture a servlet
communicates with clients (e.g. browsers). A JSP page is a simple ASCII textfile that
contains two kinds of data. First static template data that is responsible for creating static
content of a webpage. Secondly JSP elements are provided to add a dynamic content to the

27



Figure 12: The JSP Model 2 structure, proposed in [12]

text file. JSP is able to project the full dynamic functionality of Java Servlets Technology,
but provides a more natural approach to create static content [11].

The combination of all described technologies results in the JSP Model 2 structure, illustrated
by figure 12. Let’s follow a request initiated by a browser. The request is received by the
Servlet that works as a controller. The data transfered through the request has to be stored.
Therefore a JavaBean is instantiated that contains the sent data. Additionally, data from
exernal data sources may be loaded into this JavaBean instance. As a third step the controller
starts the view generation, in other words, an HTML page is generated out of the JSP page.
JSP is used for the so called presentation layer. For binding the dynamic data into the
generated HTML page, data from the JavaBean instance is used. As soon as an HTML has
been generated, it is returned as a response to the request to the browser, which displays
the dynamic generated web page.

4.3.2 General comparison

PHP and JSP are not entirely different, but they exist for a different purpose. While PHP
does everything concerning processing, logic and layout in the same page, JSP should only
be used on the presentation layer. The following list gives a comparison translated from [13].

1. Common features of PHP and JSP

• server side scripting languages for HTML integreation

• requires an HTTP servermodule with JSP/PHP runtime environment

• pages must be read and interpreted

• offer session handling

2. JSP

+ independent of operating system

+ independent of server

28



+ programming is made in Java (no new programming language)

+ access to the complete Java-API and Java-classes

+ supports separation of layout and program logic

+ unique access on almost all relational database systems via JDBC

– large use of resources for Java runtime environment

3. PHP

+ typeless variables and dynamic array structures simplify web programming

+ automatic processing of formulars

+ high error tolerance, especially for programming with variables

+ contains a great amount of modules (e.g. for data compression, pay services, XML-
processing)

+ offers a lot of macros and functions to write external modules

– supported DB-functionality is dependent on the database; specific functions for
each database system are existing

– a large part of program logic has to be implemented as an external module in
C/C++

4.3.3 Amos II specific comparison

In this chapter an Amos II specific comparison between PHP and JSP is done. As JSP is
built on Java, the PHP extension is compared with the external Java interface [6].

1. Garbage Collection

• The Amos II extension to PHP offers a partly automatic garbage collection to the
user. For scripts, executed like CGI scripts, the user need not care about garbage
collection. Using Amos II funtions in combination with sessions a session save
handler has to implemented by the user. See chapter 3.6 for more details.

• Garbage collection in Java is secured through the already built in garbage collec-
tor.

2. Error Management

• All Amos II errors are forwarded to the Error Management of PHP. These errors
or warnings are then printed to the current output stream.

• There exists an AmosException in Java that can be caught by using a try-catch
clause.

3. Connections, scans and tuples are treated in dependence of the programming language
almost the same way.

4. As Java supports overloading on method arguments, there exists only one function,
setElem, to set values to tuples. There exists no overloading for return values in Java,
therefore different get-functions exist for each type. In PHP it is possible to have only
one function for setting and one for getting values. As explained in chapter 7, the

29



interface can be further simplified by using PHP arrays. In this way all set and get
methods can be eliminated which makes the PHP interface significantly simpler than
the Java interface.

5. Function calls

• Every time an Amos II function is called from Java, the function name has to be
passed as argument.

• In C the function to call is specified by an OID representing the Amos II function
to be called. Right now, parameters have to be passed as a tuple handle. Based
on experiences from the basic interface an improved one is proposed using PHP
arrays instead of tuples. The proposed improvements are explained in chapter 7.

The same characteristic is valid for adding, setting and removing stored function data.

5 Function reference

This chapter gives a complete overview of all implemented functions to access Amos II
databases from PHP scripts. For full functionality, some entries in file php.ini must be
added.

1. Make PHP know the Amos II extension:

extension=php amos.dll

This entry makes the Amos II extension available to PHP. Be sure not to use the
semicolon in front of the line! Thus the extension will automatically be loaded at PHP
startup.

2. Define some module initialization parameters:

[amos]
; file for Amos II initialization
amos.init file = $AMOS ROOT\bin\amos2.dmp

; array sizes at module initialization
amos.max cons = 10
amos.max scans = 20
amos.max tuples = 30

The first entry is an image file that is used to initialize Amos II for the first time.
Normally file amos2.dmp should be declared. The other three entries are defining the
arraysize for storing connection, scan and tuple handles at startup. If the average
number of accesses (database connections) is known, these values can be adjusted. It
will have no influence on the programs behaviour and little on the performance as the
arrays will automatically increased when running out of memory. Notice that there
should be more scans than connections as every connection can hold several scans. The
same is valid for tuples.

This chapter is organized as follows. First functions concerning the module are explained.
Next primitive functions starting with connecting to Amos II, scan handling and ending with

30



the tuple interface. Leaving the basic functions, the fast-path interface, object creation and
finally transaction control is explained.

Before studying the functions, some conventions as follows should be considered.

1. A connection is an index to the array of Amos II connection handles.

2. A scan is an index to the array of Amos II scan handles.

3. A tuple is an index to the array of Amos II tuple handles.

A PHP programmer uses all indices via PHP variables of type long.

So each time a connection, scan or tuple is passed to or returned by a function, it is only
the index that is passed or returned. It has no influence on the meaning of the described
function, but this reference is much easier to read.

5.1 Module functions

As soon as PHP starts up, the Amos II extension is automatically loaded. With it amos init
is called. On module shutdown amos free is called. Notice here that these two functions
cannot be accessed by PHP users. Furthermore it is possible to call a garbage collection
routine, amos gc, out of a PHP script.

5.1.1 amos init

Three things are done in this function. First the Amos II system is started using

a initialize(char *image, int catcherror);

with image being the file for initializing Amos II. In addition a default database that store
for example information about existing types and functions is loaded. The image-value can
be defined in php.ini by setting amos.init file. Zend function

ini get(’amos.init file’);

retrieves this value.

The second step consists of allocating memory to store connection, scan and tuple handles.
Therefore three arrays of structure amos con, amos scan and amos tuple are allocated. For
every entry the status is set to 0, with the meaning that no handle is stored at this position.
Furthermore con index is set to -1 for all scans and tuples. As soon as a scan or a tuple
is stored, the index to the connection handle under that the scan or tuple has been created
is assigned to con index. If one of the arrays runs out of storage space, a realloc-operation
resizes the array.

Finally some constants are registered to Zend:

• AMOS INTEGERTYPE – marks an object of type integer.

• AMOS REALTYPE – marks an object of type double.

• AMOS STRINGTYPE – marks an object of type string.

31



• AMOS ARRAYTYPE – marks an object of type array.

• AMOS OIDTYPE – marks an object of type object.

The scope of these constants is dependent on the module’s lifetime.

5.1.2 amos free

During module shutdown all three arrays that are storing connection, scan and tuple handles
are freed.

5.1.3 amos gc

Frees memory used by a connection or a session.

Syntax:

void amos gc(long amos con);
void amos gc(string session id);

Description:

Not only on module shutdown, but also at the end of scripts or sessions, garbage must be
collected and used memory freed. It is possible for the user to invoke this function whenever
he wants, but it must be invoked at the points chapter 3.6 lists.

This method can receive two different parameter types.

• The first possibility is calling amos gc with a connection amos con. All tuples and scans
are searched and deallocated that are belonging to that connection. The connection is
closed and the handle is deallocated.

• A string, representing a session identifier (session id), is the second possibility. There
is a loop that searches all connections that are correlated to the current session. If a
connection is found, it will be handled the same way as described above.

5.2 Connection interface

This interface offers PHP functions for connecting and disconnecting to Amos II databases.

5.2.1 amos connect

A connection to Amos II is established and an index to a connection handle is returned to
the user.

Syntax:

long amos connect(string dbname);

Description:

32



Before accessing an Amos II database the user must open a connection by using function
amos connect. The database can be specified by argument dbname. In dependance of the
parameter value two different kinds of connections can be established:

1. The first possibility is a tight connection to an Amos II database. It can be established
by passing an empty string.

$mytightcon = amos connect("");

Now Amos II runs as an embedded system inside the PHP application.

2. The second possibility is to open a connection to an existing Amos II database by
passing a non-empty string to amos connect:

$mycon = amos connect("mydatabasename");

This will work like a client-server connection, with Amos II running as server (Amos
II peer). Then a free amount of scripts (clients) can access the database.

As soon as a connection handle is created it will be stored in an internal global array. The
user can access this connection by a long-value that points to the array position holding the
connection handle.

Now garbage collection has to be prepared. Therefore function amos gc is registered to Zend
with the connection as parameter. At the end of the current PHP script it will be executed
and thus automatically free all to the connection correlated tuples and scans and finally the
connection itself. In case of a session the session identifier is stored in combination with the
connection handle. If a correct working session save handler is implemented for the script
– which has to be done by the user – everything, corresponding to the connection, will be
deallocated as soon as the session ends. See chapter 3.6 for more details!

If no error occured, the index that holds the new handle is returned to the user, otherwise
’-1’ is returned.

5.2.2 amos close

Closes a connection and initiates garbage collection.

Syntax:

void amos close(long amos con);

Description:

Function amos close is offered to the user to control garbage collection in addition to the
other methods that are described so far. If the passed index, amos con contains a valid
connection handle, the garbage collection routine is started. All tuples and scans belonging
to that connection are deallocated. At last the connection handle is freed. The array index
is signaled to be free by setting a flag.

5.3 Scan interface

The scan interface offers PHP functions to send queries to Amos II peers and to run through
returned result sets. Figure 13 show how the scan interface can be used.

33



/* sending query */
$current scan = amos query($con, $query);

/* handling result set */
while (!amos eos($current scan)) {

amos getrow($current scan, $tpl);
...// code to retrieve elements of tuple ’tpl’

amos next($current scan);
}

Figure 13: Example code for using the scan-interface.

5.3.1 amos query

Sends queries to Amos II databases and returns scans.

Syntax:

long amos query(long amos con, string query);

Description:

Any kind of queries written in AmosQL can be passed to this function via parameter query.
In dependance of connection amos con the query is forwarded to an Amos II database. The
Amos II system generates a result set and fills it with tuples. Then this query result is
delivered to the Amos II module and is stored in a global array. In combination with the
current scan the index to connection amos con is stored. Thus the garbage collection routine
is able to determine all scans that belong to a connection.

If no error occurs, the index that holds the new handle is returned to the user, otherwise
’-1’ is returned.

The following example returns all function names currently stored in an Amos II system:

$query = "select name(f) from function f;";
$scan index = amos query($current con, $query);

Notice that all AmosQL statements must end with a semicolon!

5.3.2 amos closescan

Closes a scan.

Syntax:

void amos closescan(long amos scan);

Description:

Function amos closescan frees the scan handle stored at index amos scan. The array index
is signaled to be free by setting a flag.

34



5.3.3 amos eos

Checks for more rows (tuples) in a scan.

Syntax:

bool amos eos(long amos scan);

Description:

It is checked if the current curser of scan amos scan points to a valid tuple. If so, TRUE is
returned, otherwise FALSE. This function is well used inside a while-loop as shown in figure
13. In that way all tuples of a scan are taken into account.

5.3.4 amos getrow

Copies the current row into a tuple handle.

Syntax:

long amos getrow(long amos scan, long amos tuple[, array empty array]);

Description:

Before elements of data can be retrieved, it must be copied from the current curser position
of scan amos scan into tuple amos tuple. The tuple can be created by using PHP function
amos createtuple (section 5.4.2).

The index of the tuple-handle with new data is returned. But it is the same index like the
parameter amos tuple.

An example code is shown in figure 13.

As an additional feature, amos getrow can be called by passing an empty array. This function
initializes this array and fills it recursively with the data of the current row. Why recursively?
An Amos II tuple can contain arrays, thus the array is stored inside the main array. And
this has to be done recursively. The PHP code gets very simple by using this method. No
functions calls of the tuple-interface have to be done. The array is filled with all the data
of the row, and the user can run through the array to read the data. This function still
returns the used tuple, that contains the same data and can be accessed by functions from
the tuple-interface. The following PHP code gives an example:

$row = array();
$tuple = amos getrow($scan, $tuple, $row);
/* PHP method for printing arrays */
print r($row);

5.3.5 amos next

Advances the scan curser position one step forward.

Syntax:

void amos next(long amos scan);

Description:

35



$i = 0;
$scan = amos query($con,

"select name(f) from function f;");
$tpl = amos createtuple($con);
while (!amos eos($scan)) {

amos getrow($scan, $tpl);
$val = amos getstring($tpl, 0);
print "row $i: $val";
amos next($scan);
$i = $i + 1;

}

Figure 14: Example PHP code for using the tuple- and scan-interface

The current tuple is set to the next tuple in scan amos scan. Notice that the scan handle
will automatically be closed by Amos II when all tuples have been read or another query
result is assigned to the scan.

An example code is shown in figure 13.

5.4 Tuple interface

The tuple-interface offers PHP functions to set and get data to and from a tuple. Figure 14
shows an example how to use the tuple interface in combination with the scan interface.

5.4.1 amos getarity

Returns the arity of a tuple.

Syntax:

long amos getarity(long amos tuple);

Description:

Tuples are representing a complete row of a query result. This functions returns the number
of elements in tuple amos tuple. All elements in a tuple are enumerated beginning with index
’0’ for the first element.

5.4.2 amos createtuple

Creates an empty tuple.

Syntax:

long amos createtuple(long amos con[, long arity]);

Description:

Before using a tuple, it must be created by this function. Either a tuple with an undefined
length or a tuple with a given arity can be created. If the tuple is used with function

36



amos getrow, it is not necessary to pass an arity to create a tuple. It will automatically be
filled with all necessary elements. For garbage collection tuples must belong to a connection
defined by parameter amos con. This connection is stored in combination with the tuple
handle.

If no error occurs, the index that holds the new handle is returned to the user, otherwise
’-1’ is returned.

The following example creates a new tuple with the arity of another one:

$new tpl = amos createtuple($con, amos getarity($old tpl));

5.4.3 amos closetuple

Closes a tuple.

Syntax:

void amos closetuple(long amos tuple);

Description:

Function amos closetuple frees the tuple handle stored at index amos tuple. The array index
is signaled to be free by setting a flag.

5.4.4 amos getint

Returns an integer value.

Syntax:

long amos getint(long amos tuple, long pos);

Description:

Use function amos getint to gain an integer value. It takes the element value of tuple
amos tuple at position pos and returns the integer value. The specified element must hold
an integer, otherwise an error message is printed and script execution is stopped.

The code line as follows gives an example on how to gain an integer value at position ’1’
from tuple ’tpl’:

$result int = amos getint($tpl, 1);

5.4.5 amos setint

Assigns an integer value to an element of a tuple.

Syntax:

void amos setint(long amos tuple, long pos, long value);

Description:

Function amos setint stores a value of type long to the element in tuple amos tuple at position
pos. This function is not intended to set an integer value to a result tuple, e.g. result of

37



amos getrow. The reaction would be a fatal error. But it is possible to set the element value
of a tuple more than once, even with different types.

5.4.6 amos getdouble

Returns a double precision floating point number.

Syntax:

double amos getdouble(long amos tuple, long pos);

Description:

Use function amos getdouble to fetch a double value. It takes the element value of tuple
amos tuple at position pos and returns the double value. The specified element must hold a
double, otherwise an error message is printed and script execution is stopped.

The code line as follows gives an example on how to gain a double value at position ’1’ from
tuple ’tpl’:

$result double = amos getdouble($tpl, 1);

5.4.7 amos setdouble

Assigns a double value to an element of a tuple.

Syntax:

void amos setdouble(long amos tuple, long position, double value);

Description:

Function amos setdouble stores a value of type double to the element in tuple amos tuple at
position pos. This function is not intended to set a double value to a result tuple, e.g. result
of amos getrow. The reaction would be a fatal error. But it is possible to set the element
value of a tuple more than once, even with different types.

5.4.8 amos getstring

Returns a string.

Syntax:

string amos getstring(long amos tuple, long pos);

Description:

Use function amos getstring to gain a string value. It takes the element value of tuple
amos tuple at position pos and returns the string value. The specified element must hold a
string, otherwise an error message is printed and script execution is stopped.

The code line as follows gives an example on how to gain an string value at position ’1’ from
tuple ’tpl’:

$result str = amos getstring($tpl, 1);

38



5.4.9 amos setstring

Assigns a string value to an element of a tuple.

Syntax:

void amos setstring(long amos tuple, long position, string value);

Description:

Function amos setstring stores a value of type string to the element in tuple amos tuple at
position pos. This function is not intended to set a string value to a result tuple, e.g. result
of amos getrow. The reaction would be a fatal error. But it is possible to set the element
value of a tuple more than once, even with different types.

5.4.10 amos getobjectelem

Returns the OID of an Amos II surrogate object as a string.

Syntax:

string amos getobjectelem(long amos tuple, long position);

Use function amos getobjectelem to gain an OID string. It takes the element value of tuple
amos tuple at position pos and returns the object identifier string. The returned OID string
has a structure as follows:

#[OID 1101]

with 1101 being the actual identifier number. This function only retrieves the OID of
surrogate objects. Literals have no OID. Use the other get-methods to get literal objects,
e.g. to get a string use amos getstring. The code line as follows gives an example on how to
gain an OID string at position ’1’ from tuple ’tpl’:

$result oid = amos getobjectelem($tpl, 1);

The result string can simply be used in queries written in AmosQL:

select name(p) from person p
where address(p)=$address oid;

This query delivers the name of the person that lives at $address oid.

5.4.11 amos setobjectelem

Assigns an OID to an element of a tuple.

Syntax:

void amos setobjectelem(long amos tuple, long pos, string oid);

Description:

Function amos setoblectelem stores an object with the corresponding OID string oid to an
element in tuple amos tuple at position pos. This function is not intended to set an OID
string to a result tuple, e.g. result of amos getrow. The reaction would be a fatal error. But
it is possible to set the element value of a tuple more than once, even with different types.

39



5.4.12 amos getseqelem

Returns an index to a tuple that represents the sequence.

Syntax:

long amos getseqelem(long amos tuple, long pos);

When tuple amos tuple holds a sequence element at position pos, the index to a new tuple,
which represents the sequence, is returned by function amos getseqelem.

To ensure garbage collection, the connection index stored with tuple amos tuple is used to
create the new tuple. Thus in case of a disconnect, enough information exists to free this
tuple.

5.4.13 amos setseqelem

Assigns a sequence to a tuple.

Syntax:

void amos setseqelem(long amos tuple, long position, long sequence tuple);

Description:

Function amos setseqelem stores a sequence, sequence tuple, to the element in tuple amos tuple
at position pos. This function is not intended to set a sequence to a result tuple, e.g. result
of amos getrow. The reaction would be a fatal error. But it is possible to set the element
value of a tuple more than once, even with different types.

5.4.14 amos elemsize

Returns the size of an element in a tuple.

Syntax:

long amos elemsize(long amos tuple, long pos);

Description:

In dependence of the element type at position pos of tuple amos tuple, the size of that element
is returned. In case of a string, the string size is returned. If the element holds a sequence,
the number of elements in that sequence is returned.

5.5 Fast-path function calling

All functions described so far deal with the embedded query call. Queries can be sent to Amos
II databases and a result set is returned. This result can be explored by the tuple-interface.
The fast-path interface permits to call Amos II functions from PHP without sending a query.
The result of a fast-path function call is again a scan handle. It can be treated the same
way like the result sets from the embedded query call.

During this chapter PHP functions are introduced to call functions and to add, set and

40



/* create a new tuple for storing function arguments */
$argl = amos createtuple($con, 1);
amos setobjectelem(argl, 0, $person oid);

/* get function id */
$fct id = amos getfunction($con, "person.name->charstring");

/* execute function */
$scan = amos callfunction($con, $argl, $fct id);

/* handle scan result by using tuple interface */
...

Figure 15: Example PHP code for using the fast-path interface

remove data of a function. But how to pass parameters to the called functions? It can be
done by using argument lists that contains all arguments. A tuple represents this list and
must be allocated with the correct arity (number of parameters) by using

$tpl = amos createtuple($con, arity);

Now this tuple can be filled with argument values by using tuple update functions. The first
parameter should be stored at position ’0’ (the first tuple element), etc. Finally this list can
be passed as parameter to the corresponding PHP function amos callfunction.

Figure 15 shows an example on how to retrieve the name of a person by using the fast-path
interface.

Concerning the speed, this interface is much faster than the embedded query call as no query
parsing and optimization has to be done.

5.5.1 amos getfunction

Retrieves the OID string of a function.

Syntax:

string amos getfunction(long amos con, string function name);

Description:

Before calling amos getfunction the OID of the called function is needed. Normally the user
has only knowledge of the function name (e.g. ’FUNCTION.ARGUMENTS->VECTOR’). Thus a
function is necessary to retrieve the OID from the function name.

Function amos getfunction takes a connection, amos con, and an Amos II function name,
function name, as parameters. The return value is an OID string that represents the function
name.

5.5.2 amos gettype

Returns the OID string of a type.

41



Syntax:

string amos gettype(long amos con, string typename);

Description:

Function amos gettype is the analogous to amos getfunction for types. It computes in de-
pendence of the connection amos con the OID string of a specified type, typename. The
OID string of a type is for example necessary for creating and deleting new objects (see
amos createobject and amos deleteobject at chapter 5.6).

5.5.3 amos callfunction

Calls a specified function.

Syntax:

long amos callfunction(long amos con, string function oid, long fct argl);

Description:

With Amos II connection amos con, an Amos II function, specified by OID string func-
tion oid, is called by using this PHP function. Parameters of the Amos II function must be
stored in a tuple and passed through parameter fct argl. The return value is an index pointig
to the result scan.

Figure 15 shows an example that calls an Amos II function to retrieve names of all persons.

5.5.4 amos addfunction

Adds new data to a function.

Syntax:

void amos addfunction(long amos con, string function oid,
long argl, long resl);

Description:

Function amos addfunction adds new data to an Amos II function. In dependence of connec-
tion amos con new data is added to function function oid. The data of a function is definite
specified by its arguments and by its result set. All arguments are stored in an argument list
(a tuple). The result values are again stored in a tuple. For both, an index to the prevailing
tuple (argl and resl) is passed to this function.

The following code gives an example that sets a name, Marc, to an empty person object
person oid.

/* add new data to function ’person.name->charstring’ */
amos setobjectelem($argl, 0, $person oid);
$name = "Marc";
amos setstring($resl, 0, $name);
amos addfunction($con, $fct oid, $argl, $resl);

42



5.5.5 amos setfunction

Sets the value of a function.

Syntax:

void amos setfunction(long amos con, string function oid,
long argl, long resl);

Description:

Assigns a new value to an Amos II function. Concerning parameters an index to a connection
handle amos con, the function handle function oid, a tuple argl containing the argument list
and a tuple resl that stores the result value are needed. PHP function amos setfunction
assigns resl as the result of applying function oid on the argument tuple argl. The difference
to function amos addfunction is the replacement of an old existing value, while the add-
function adds completely new data.

5.5.6 amos remfunction

Removes data from a function.

Syntax:

void amos remfunction(long amos con, string function oid,
long argl, long resl);

Description:

Removes data from an Amos II function. In dependence of connection amos con data is
removed from function function oid. The data to remove is described by the argument list,
represented by tuple argl, and the result tuple resl.

5.6 Object creation and deletion

The Amos II extension offers methods for creating and deleting objects.

5.6.1 amos createobject

Creates a new object.

Syntax:

string amos createobject(long amos con, string type);

Description:

Function amos createobject creates a new object of a specified type. The index to a connec-
tion handle, amos con, and the type as a string, type, are taken as parameters. With this
information a new surrogate object is created and the OID string of that created object is
returned to the user.

For creating a new object of type person call:

$newobj = createobject($con, "person");

43



Variable $newobj holds the returned OID string that identifies the new object.

5.6.2 amos deleteobject

Deletes a surrogate object.

Syntax:

void amos deleteobject(long amos con, string type oid);

Description:

For deleting an existing object the index to the connection handle amos con and the OID
string that identifies this object is necessary.

5.7 Transaction control

These transaction control primitives have only effect on tight connections. Using an embed-
ded database the user can send a lot of operations to the Amos II system. Only when the
commit-function is called, changes will be fixed. In case of a rollback, all changes disappear.

There exists an autocommit for client-server connections. After the execution of every oper-
ation data changes are fixed and stored in the database. It is thus useless to call transaction
control functions explicitly.

5.7.1 amos commit

Commits a transaction.

Syntax:

void amos commit(long amos con);

Description:

All operations for the specified connection, amos con, are fixed with calling this function. It
will have effect only on embedded databases.

5.7.2 amos rollback

Aborts a transaction.

Syntax:

void amos rollback(long amos con);

Description:

All operations to connection amos con that are executed after the last commit are cancelled
with this operation. It will have effect only on embedded databases.

44



Figure 16: Entity-Relationship diagram for the Addressbook database

6 Example Program: The Addressbook

This chapter describes an example database in Amos II and explains PHP sites using this
database.

6.1 The database

This chapter describes the database for the addressbook. The ER-diagram is shown in figure
16. Figure 17 shows the corresponding AmosQL script that defines the database.

6.2 The program

The program should have several properties.

• It should be able to display all persons with all information correlated to each person.

• It should be possible to add a new person to the database.

• It should be possible to edit data of an existing person.

• It should be possible to delete an existing person.

• The connection should stay up for a complete session.

These features are realized in three PHP scripts. First of all there is a file index.php which
displays all information of all persons in a table. Script new.php offers text fields for entering
data for a new person. And finally file edit.php offers filled text fields for editing data for
a person. The connection is stored in the global PHP session array with the keyword con
($ SESSION[’con’]). Thus the connection stays up and is accessible in other PHP scripts.

45



create type person;
create function name(person)->charstring as stored;
create function emails(person)->vector of charstring as stored;
create function tels(person)->vector of charstring as stored;

create type address;
create function street(address)->charstring as stored;
create function plz(address)->integer as stored;
create function city(address)->charstring as stored;
create function country(address)->charstring as stored;

create function livesat(person)->address as stored;

Figure 17: Database definition for the addressbook

To generate the overview of all persons the query as follows is used.

select p, name(p) from person p;

With this query the OID string and the name of that person is retrieved out of the database.
If there is a person object without a name, it won’t be displayed. It is still left to retrieve the
email addresses, the telefone numbers and the addresses from that person. To test different
methods, all email addresses of one person are fetched by using the fast-path interface:

$fct emails = amos getfunction($ SESSION[’con’],
"PERSON.EMAILS->VECTOR-CHARSTRING");

$emails scan = amos callfunction($ SESSION[’con’], $fct emails,
$person tpl);

$emails tpl = amos createtuple($ SESSION[’con’]);
amos getrow($emails scan, $emails tpl);
$emails = amos getseqelem($emails tpl, 0);
for ($i=0; $i<amos getarity($emails); $i++) {

$email = amos getstring($emails, $i);
print "$email";

}
amos closetuple($emails);
amos closetuple($emails tpl);
amos closescan($emails scan);

The telefone numbers are fetched by sending a query to Amos II:

$tels scan = amos query($ SESSION[’con’],
"select tels(p) from person p where p=$pid;");

$tels tpl = amos createtuple($ SESSION[’con’]);
amos getrow($tels scan, $tels tpl);
$tels = amos getseqelem($tels tpl, 0);
for ($i=0; $i<amos getarity($tels); $i++) {

$tel = amos getstring($tels, $i);
print "$tel";

}

46



amos closetuple($tels);
amos closetuple($tels tpl);
amos closescan($tels scan);

The addresses are fetched by using both methods, the fast-path interface to retrieve the
address objects and the query interface to retrieve the street, the postal code and the city
name of the specified address object. The following code fragment is responsible for these
actions:

/* retrieve address objects */
$fct livesat = amos getfunction($ SESSION[’con’], "PERSON.LIVESAT->ADDRESS");
$ad scan = amos callfunction($ SESSION[’con’],

$fct livesat, $person tpl);
$ad tpl = amos createtuple($ SESSION[’con’]);
$ad oid = amos getobjectelem(amos getrow($ad scan, $ad tpl), 0);
amos closetuple($ad tpl);
amos closescan($ad scan);
/* retrieve street, postal code and city */
$ad scan = amos query($ SESSION[’con’],

"select street(a), plz(a), city(a) from address a where a=$ad oid;");
$ad tpl = amos createtuple($ SESSION[’con’]);
amos getrow($ad scan, $ad tpl);
$street = amos getstring($ad tpl, 0);
$plz = amos getint($ad tpl, 1);
$city = amos getstring($ad tpl, 2);
print "$street, $plz $city";
amos closetuple($ad tpl);
amos closescan($ad scan);

For adding a new person the user is able to switch to new.php, where text fields as follows
can be filled. E-Mails and telefone numbers will be stored in an Amos II vector. For sending
the data back to index.php, the post method from PHP is used.

• Name

• E-Mail

• E-Mail (2)

• Telefone

• Telefone (2)

• Street

• Postal code

• City

Additionally a PHP session variable, action, is created that indicates the action at the
beginning of script index.php. For adding a new person action is set to ’new’. Back to the
overview, the posted data is read and added to the database by using the fast-path interface.

47



First a new person object has to be created. Then PHP function amos addfunction (5.5.4)
is used to add the new data. A code extract is given that will add all email addresses:

/* create a new person object */
$p type = amos gettype($ SESSION[’con’], "person");
$new person = amos createobject($ SESSION[’con’], $p type);
$new person tpl = amos createtuple($ SESSION[’con’], 1);
amos setobjectelem($new person tpl, 0, $new person);
/* check email entries */
if (isset($ POST[’email’])) {

$data;
if (isset($ POST[’email2’])) {

/* two given email entries => tuple arity = 2 */
$data = amos createtuple($ SESSION[’con’], 2);
amos setstring($data, 0, $ POST[’email’]);
amos setstring($data, 1, $ POST[’email2’]);
unset($ POST[’email’]);
unset($ POST[’email2’]);

}
else {

/* one given email address => tuple arity = 1 */
$data = amos createtuple($ SESSION[’con’], 1);
amos setstring($data, 0, $ POST[’email’]);
unset($ POST[’email’]);

}
/* add function data */
$data seq = amos createtuple($ SESSION[’con’], 1);
amos setseqelem($data seq, 0, $data);
amos addfunction($ SESSION[’con’], $fct emails, $new person tpl, $data seq);
amos closetuple($data);
amos closetuple($data seq);

}
else if (isset($ POST[’email2’])) {

/* one given email address => tuple arity = 1 */
$data = amos createtuple($ SESSION[’con’], 1);
amos setstring($data, 0, $ POST[’email2’]);
/* add function data */
$data seq = amos createtuple($ SESSION[’con’], 1);
amos setseqelem($data seq, 0, $data);
amos addfunction($ SESSION[’con’], $fct emails, $new person tpl, $data seq);
amos closetuple($data);
amos closetuple($data seq);
unset($ POST[’email2’]);

}

For changing the data of an existing person a similar page, edit.php, is displayed. To specify
the person to change the OID string must be passed to this page. There all text fields contain
the old values that can be edited. The action variable is set to ’edit’. Via the post method
the edited data is sent back to the overview script, where it is read and the changes are fixed

48



in the database. Therefore function amos setfunction (5.5.5) from the fast-path interface is
used. An example code that sets a new value for a telefone number is shown below. It is
assumed that there already exists some telefone numbers for this person, so no new function
entry has to be created. Otherwise a function call would have to be done to check for an
existing entry. Variable person tpl is a tuple that contains the existing person object which
data is going to be changed.

/* check for telefone entries */
if (isset($ POST[’telefone’])) {

if (isset($ POST[’telefone2’])) {
/* two given telefone numbers => tuple arity = 2 */
$data = amos createtuple($ SESSION[’con’], 2);
amos setstring($data, 0, $ POST[’telefone’]);
amos setstring($data, 1, $ POST[’telefone2’]);
unset($ POST[’telefone’]); // unset handled data
unset($ POST[’telefone2’]);

}
else {

/* one given telefone number => tuple arity = 1 */
$data = amos createtuple($ SESSION[’con’], 1);
amos setstring($data, 0, $ POST[’telefone’]);
unset($ POST[’telefone’]);

}
/* set function data */
amos setfunction($ SESSION[’con’], $fct tels, $person tpl, $data);
amos closetuple($data);

}
else if (isset($ POST[’telefone2’])) {

/* one given telefone number => tuple arity = 1 */
$data = amos createtuple($ SESSION[’con’], 1);
amos setstring($data, 0, $ POST[’telefone2’]);
/* set function data */
amos setfunction($ SESSION[’con’], $fct tels, $person tpl, $data);
amos closetuple($data);
unset($ POST[’telefone2’]);

}
else {

/* no given telefone number => remove old values ($old data) */
amos remfunction($ SESSION[’con’], $fct tels, $person tpl, $old data)

}

The last possible user action is removing an existing person. No new script is necessary - file
index.php is reloaded. The person to delete is specified by an OID string. The remove action
is defined by an unset action variable and a set post variable $ POST[’person’]. With
function amos remfunction (5.5.6) from the fast-path interface all data can be removed.
Below the code extract is displayed that deletes a given person object. It is not necessary to
delete all function entries on its own, it is enough to delete only the person object.

if (!isset($ SESSION[’action’]) && isset($ POST[’person’])) {
amos deleteobject($ SESSION[’con’], $ POST[’person’]);

49



unset($ POST[’person’]);
}

6.3 Program test results

While testing the program some errors occurred which could not be resolved before this
report was finished. They are listed in this section.

1. The adding of two email addresses results in an error. Normally one or several emails
are stored in an Amos II vector, displayed on the command line as follows:

{"email1","email2"}

The result of adding new mails via the PHP script is {NIL}. When trying to read the
data with PHP function amos getstring, this error message is displayed:

Fatal error: Error 72: Illegal kind of object in index.php on line 278

The same problem exists for the telefone numbers that are also stored in an Amos II
vector.

2. A similar error appears when changing a person’s email address. All email addresses
for this person are set to {NIL}. The error message is the same like above:

Fatal error: Error 72: Illegal kind of object in index.php on line 278

The problem again exists for telefone numbers.

3. A different error occurrs sometimes when trying to display data for a person:

Fatal error: Error 46: No object numbered in index.php on line 272

When refreshing the page the error mainly disappears.

7 Amos II tuples and PHP arrays

As studies have come so far, a basic interface has been implemented. All PHP functions
(chapter 5) are based on the same idea and structure like the external interface to C. This
chapter describes an interesting result that is not implemented or only partly implemented.

Similarities cannot only be seen in the functionality of the Amos II extension and the external
interface to C, but also in structures. A connection to Amos II in C is represented as a
connection handle, a con. As soon as a connection is established it is stored in an array.
The PHP user can access this connection handle by using an index to the storage position.
It is valid for all PHP functions that if an index to a connection handle is passed, then
the corresponding connection handle will be used for the C function. Scans and tuples are
treated the same way.

The conclusion for this implementation is that it is quite an inelegant way, especially for
tuples. All tuples contain nothing more than an array with data. As the language PHP
also offers arrays to its users it would be better to use arrays in PHP where C uses tuples.
Another argument for PHP arrays is storage management. Let’s consider the following loop
to read a result set:

50



while (!amos eos($scan)) {
$tpl = amos createtuple($con);
amos getrow($scan, $tpl);
/* read data from the tuple by using amos getXXX */
...
amos next($scan);

}

Let’s assume furthermore that scan handle $scan holds 10000 tuples. Function amos createtuple
would then create a new tuple for each loop, so to say really 10000 tuples. And the variable
$tpl is only able to reference one of these tuples. To work-around this the user should place
the tuple creation in front of the while loop, thus only one tuple will be created. But still it
is possible to write such a program. The best solution for this problem are arrays:

while (!amos eos($scan)) {
$data = array(); // create new array
amos getrow($scan, $data);
/* read data from the tuple by using e.g. $data[2] */
...
amos next($scan);

}

Function amos getrow will internally allocate a tuple, representing the current row, and
copy its complete content into the PHP array $data. Finally the internal used tuple can
immediately be deallocated again and no memory leaks would stay as PHP has its own
storage management that will deallocate the array, if its is not used any more by the script.
This would be a great advantage especially for server use.

To realise the connection between Amos II tuples and PHP arrays, two ways need to be
considered:

• conversion of an Amos II tuple handle to a PHP array

• conversion of a PHP array to an Amos II tuple handle

7.1 Tuple to array conversion

The first point concerns the PHP function that might return an array, like amos getrow. It
is quite easy to create a new array and fill it with Zend macros and functions. A PHP array
is stored in a zval-container (new array in the example below) which has to be initialized.

zval *new array;
MAKE STD ZVAL(new array);
array init(new array);

Now this array is ready to fill. Another possibility is to pass an empty array to a PHP
function as parameter and initialize it with this function. This second method is applied in
PHP function amos getrow which has been extended to

amos getrow(long scan, long tpl, array tofill);

Now data from the current row, represented as a tuple handle in C, can be copied into the
PHP array by using Zend macros. The copy process is dependent on the data type stored in

51



the tuple. A string must inserted to the PHP array as a string. The same for integers and
doubles. An object handle must be transformed to an OID string and added as a string to
the array. A tuple can also contain a sequence element. The sequence is represented again
by a tuple. Consequently the tuple must be read recursively and PHP arrays must be stored
into a PHP array position.

Concerning arrays PHP is very flexible. One array can contain data of any type, including
arrays. Figure 18 shows the algorithm that copies all kind of tuple data to a PHP array. In
dependence of the Amos II type a PHP function add index xxx is used to copy the data.

The filled array can be returned by using the code fragment as follows [8].

//Make this our $array[0] I do not use add index long to
//to show a "by-hand" assignation
zend hash index update(HASH OF(return value), 0,

(void *)&my long, sizeof(zval *), NULL);

//Returns nothing to satisfy the void prototype
return;

7.2 Array to tuple conversion

The second point concerns the PHP functions with an array as parameter, like

amos callfunction(long connection, string function oid, array argl)

instead of

amos callfunction(long connection, string function oid, long argl tuple).

This approach, to access data from a PHP array and store it into an Amos II tuple, has not
been implemented yet. Studies have come so far:

• First of all a header file has to be included:
#include "zend hash.h"

• An array is retrieved as a zval-container with zval.type = IS ARRAY.

• The array itself is stored in zval.value as a HashTable and can be obtained as follows:
HashTable *ht = zval->value.ht;

• The header file offers some methods for traversing a HashTable.
zend hash move forward(ht);
zend hash move backwards(ht);
zend hash get current key(ht, str index, num index, duplicate);
zend hash get current key type(ht);
zend hash get current data(ht, pData);
zend hash internal pointer reset(ht);
zend hash internal pointer end(ht);

First the internal pointer has to be reset. Then by using a method that forwards the
pointer, the complete hashtable can be traversed and data copied out of the hashtable.

Now an Amos II tuple can be created internally and filled with data from the HashTable
by using the set-methods from the external tuple interface, like a setintelem, to fill the

52



int fill array(zval *array, int tpl) {
int i;
for (i=0; i<a getarity(amos tuple list[tpl].tuple, FALSE); i++) {

int type = a getelemtype(amos tuple list[tpl].tuple, i, TRUE);
if (a errorflag != 0) {

AMOS WARNING;
return 1;

}
switch (type) {
case INTEGERTYPE: {

add index long(array, i, retrieve int(tpl, i));
break;

}
case REALTYPE: {

add index double(array, i, retrieve double(tpl, i));
break;

}
case STRINGTYPE: {

add index string(array, i, retrieve string(tpl, i), 1);
break;

}
case ARRAYTYPE: {

int sequence tuple;
zval *sequence;
MAKE STD ZVAL(sequence);
array init(sequence);
// retrieve amos vector
sequence tuple = create new tuple(amos tuple list[tpl].con index);
if (retrieve sequence(tpl, i, sequence tuple) != 0) {

AMOS WARNING;
return 1;

}
// recursive call to fill next array
if (fill array(sequence, sequence tuple) != 0) {

return 1;
}
add index zval(array, i, sequence);
break;

}
case OIDTYPE: {

add index string(array, i, retrieve oid(tpl, i), 1);
break;

}
}

}
return 0;

}

Figure 18: Algorithm for copying tuple data to a PHP array

53



tuple. Finally this tuple can be used by some Amos II functions as parameter, such as
a callfunction(c, fid, tuple).

An overview as follows lists all necessary PHP functions to Amos II with using PHP arrays
instead of Amos II tuples. The amount of PHP functions is strongly reduced as no set- and
get-functions are necessary to fill and read tuples.

• long amos connect(string dbname)

• void amos close(long amos con)

• long amos query(long amos con, string query)

• void amos closescan(long amos scan)

• bool amos eos(long amos scan)

• void amos getrow(long amos scan, array empty array)

• void amos next(long amos scan)

• string amos getfunction(long amos con, string function name)

• string amos gettype(long amos con, string typename)

• long amos callfunction(long amos con, string function oid,
array fct argl)

• void amos addfunction(long amos con, string function oid,
array argl, array resl)

• void amos setfunction(long amos con, string function oid,
array argl, array resl)

• void amos remfunction(long amos con, string function oid,
array argl, array resl)

• amos createobject(long amos con, string type)

• amos deleteobject(long amos con, string type oid)

• amos commit(long amos con)

• amos rollback(long amos con)

This implementation would be a great advantage for the PHP user. He would not have to
create a tuple and fill each entry with a seperate PHP function. Instead a PHP array could
be created and passed to functions of the Amos II extension. Again for handling result rows,
this would be a great advantage. The user retrieves an already filled array, containing all
the data of one resulting row, instead of dealing with tuples that have to be read by the get-
methods of the extension. The last point has been implemented and is doing fine (chapter
5.3.4).

The return of scan handles as arrays has also been considered but rejected again. Filling an
array with the complete query result, can result in large memory usage. Result sets normally
contain a few columns, what is good for using arrays instead of tuples, but a lot of rows.

54



8 Conclusion and future work

With this project a complete PHP extension API to access Amos II has been realized. It is
possible to establish connections either to one embedded database via a tight connection or
to one or several databases where the Amos II system runs as a server. It is a very interesting
feature that one client script can open more than one connection to one database. This might
be necessary when a PHP based web page is requested by several users, e.g. n user requests
will open n connections to the same database. Each connection handle has its own storage
and can be treated seperately.

PHP functions have been implemented to send queries, written im AmosQL, to Amos II peers
and to handle returned result scans. At the moment only the tuple interface can be used for
this. As outlined in chapter 7 an interesting improvement would be to realise the connection
of PHP arrays and Amos II tuples. In addition to this investigations about PHP resources
[8] should be made to represent Amos II interface objects such as scans, connections and
objects through PHP resources. These features would make the handling of this extension
much easier to PHP users that want to access Amos II databases.

Furthermore it is possible to use the fast-path interface, which offers a fast way to call Amos
II functions, add, set and remove data from a function. Data of a function is defined through
its parameters and its result elements. Both items are currently stored in tuples. As soon as
these tuples are replaced by PHP arrays it offers an easy to handle way to use the fast-path
interface.

Another idea for a future work is to extend the Amos II extension with the callout interface.
This interface offers the possibility to call external subroutines by using AmosQL statements.
To put in concrete terms a PHP user could implement PHP functions, make them known to
Amos II and could to call them in queries written in AmosQL. The implemented function
should have a signature as follows (similar to the implementation of external C functions):

void fn(long ctx, array a);

With ctx being a reference to an internal Amos II data structure (a callcontext) for man-
aging calls and a representing an PHP array that contains the actual arguments and results.
First the function parameters are stored and after this the result values.

55



References

[1] T.Risch, V.Josifovski, and T.Katchaounov: Functional Data Integration in a Dis-
tributed Mediator System, in P.Gray, L.Kerschberg, P.King, and A.Poulovassilis
(eds.): Functional Approach to Data Management - Modeling, Analyzing and
Integrating Heterogeneous Data, Springer, ISBN 3-540-00375-4, 2003.

[2] Gustav Fahl, Tore Risch: Amos II Introduction. Tutorial, Dept. of Information
Science, Uppsala University, Sweden, 1999.

[3] Staffan Flodin, Martin Hansson, Vanja Josifovski, Timour Katchaounov, Tore
Risch, and Martin Sköld: Amos II Release 6 User’s Manual. UDBL Technical
Report, Dept. of Information Science, Uppsala University, Sweden, March 27,
2004, http://user.it.uu.se/~udbl/amos/doc/amos_users_guide.html.

[4] Tore Risch: AMOS II Functional Mediators for Information Modelling, Query-
ing, and Integration. UDBL whitepaper, Dept. of Information Science, Uppsala
University, Sweden. http://user.it.uu.se/~udbl/amos/amoswhite.html.

[5] Tore Risch: Amos II External Interfaces. UDBL Technical Report,
Dept. of Information Science, Uppsala University, Sweden, 2001,
http://user.it.uu.se/~torer/publ/external.pdf.

[6] Daniel Elin, Tore Risch: Amos II Java Interfaces. UDBL Technical Re-
port, Dept. of Information Science, Uppsala University, Sweden, 2000,
http://user.it.uu.se/~torer/publ/javaapi.pdf.

[7] Kristofer Cassel, Tore Risch. An Object-Oriented Multi-Mediator Browser. 2nd
International Workshop on User Interfaces to Data Intensive Systems, Zurich,
Switzerland, 2001.

[8] Stig Sæther Bakken, Alexander Aulbach, Egon Schmid, Jim Winstead, Lars Tor-
ben Wilson, Rasmus Lerdorf, Andrei Zmievski, Jouni Ahto: PHP Manual. PHP
Documentation Group, 12-04-2004, http://www.php.net/manual/en/.

[9] George Schlossnagle: Advanced PHP Programming. Macmillan Computer Pub,
ISBN 0672325616, 2004.

[10] Stephanie Bodoff: Java Servlet Technology. Sun Microsystems Technical Report,
http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/Servlets.html.

[11] Stephanie Bodoff: JavaServer Pages Technology. Sun Microsystems Technical Re-
port, http://java.sun.com/j2ee/tutorial/1_3-fcs/doc/JSPIntro.html.

[12] Govind Seshadri: Understanding JavaServer Pages
Model 2 architecture. JavaWorld Technical Report, 2004,
http://www.javaworld.com/javaworld/jw-12-1999/jw-12-ssj-jspmvc.html.

[13] Erhard Rahm: Datenbanksysteme 2, Online-Skript,
Kapitel 2. Universität Leipzig, Database Group, 2003.
http://dbs.uni-leipzig.de/en/skripte/DBS2/inhalt2.html.

56



[14] Gio Wiederhold: Mediators in the Architecture of Future Information Systems.
IEEE Computer, 25(3), 38-49, 1992.

[15] George Shi: Data Integration using Agent based Mediator-Wrapper Architecture.
Tutorial Report, Dept. of Electrical and Computer Engineering, The University
of Calgary, 2002.

[16] Felix Naumann: Qualitätsgesteuerte Anfragebearbeitung für Integrierte Informa-
tionssysteme. it - Information Technology 45(1): 55-58, Lehrstuhl Datenbanken
und Informationssysteme, Humboldt Universität zu Berlin, 2001.

[17] Guido Gerding, Werner Kuhn: A Functional Approach to a Wrapper-Mediator
Architecture. Paper, Universität Münster, 2003.

[18] Michael Stonebraker, Paul Brown, Dorothy Moore: Object-Relational DBMSs:
Tracking the Next Great Wave. Morgan Kaufmann Publishers, Inc., ISBN
1558604529, 1999.

57


