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Abstract 
 

Compilers are extremely important programs that have been used since the very 
beginning of the modern "computing era". Developers have tried writing manual 
compilers for long. They faced too many problems, but this was their only available 
option. 
 
In general, compiler writing has always been regarded as a very complex task. In 
addition to requiring much time, a massive amount of hard and tedious work has to be 
done. The huge amount of code meant – inevitably – a proportional number of 
mistakes that normally lead to syntax and even logical errors. In addition, the larger 
the code gets, the harder the final product can be debugged and maintained. A minor 
modification in the compiler specification usually resulted in massive changes to the 
code. The result was usually an inefficient and a harder-to-maintain compiler. 
 
Scientists have observed that much of the effort exerted during compiler writing is 
redundant as the same principal tasks were repeated excessively. These observations 
strengthened the belief that some major phases of building compilers can be 
automated. By automating a process it's generally meant that the developer is only to 
specify what, rather than how, that process is to be done. The developer's mission is 
much easier – more specifications, less coding; and less errors as well.  
 
Up till now, it's widely acceptable that the phases that are – practically – "fully-
automatable" are building the lexical analyzer as well as building the parser. Attempts 
to automate semantic analysis and code generation were much less successful, 
although the latter is improving rapidly.  
 
The proposed project is mainly to develop a tool that takes a specification of the 
lexical analyzer and/or the parser and generates the lexical analyzer and/or the parser 
code in a specific programming language. This will be introduced to the user through 
a dedicated IDE that also offers a number of tools to help him/her achieve the mission 
in minimum time and effort. 
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Part I 
 

A General Introduction 
 
 
 
 
 
 

 

Part I 



1. Basic Concepts 
 
1.1 Definition 
 

A compiler is a program that reads a program written in one language – the source 
language – and translates it into an equivalent program in another language – the 
target language. It can be simply stated alternatively, that a compiler is a program that 
produces itself as an output if it were fed itself as an input! 

 
Figure I-1: The Compiler, Abstractly 

 
1.2 Historical Background 
 

Compilers have been used since the very beginning of inventing the computers, and 
have taken several shapes with varying ranges of complexity. Primarily, they were 
invented to facilitate writing programs, because the only language that a computer 
comprehends – the binary language (mere zeroes and ones) – are extremely 
unreadable by humans, and early programmers exerted tremendous efforts just writing 
the simplest of programs we run today. 
 
Early computers did not use compilers; because they had just a few opcodes and a 
confined amount of memory. Users had to enter binary machine code directly by 
toggling switches on the computer console/front panel. 
 
During the 1940s, programmers found that the tedious machine code could be denoted 
using some mnemonics (assembly language) and computers could translate those 
mnemonics into machine code. The primitive compiler, assembler, emerged. 
 
During the 1950s, machine-dependent assembly languages were still found not to be 
that ideal for programmers; and high level, machine-independent programming 
languages evolved. Subsequently, several experimental compilers were developed (for 
example, the seminal work by Grace Hopper [49] on the A-0 language), but the 
FORTRAN team led by John Backus at IBM is generally credited as having 
introduced the first complete compiler in 1957. Three years later, COBOL – an early 
language to be compiled on multiple architectures – emerged [39]. 
 
The idea of compilation quickly caught on, and most of the principles of compiler 
design were developed during the 1960s. 
 
Programming languages emerged as a compromise between the needs of humans and 
the needs of machines. With the evolution of programming languages and the 
increasing power of computers, compilers are becoming more and more complex to 

Source Language Target Language 

Error Messages 



bridge the gap between problem-solving modern programming languages and the 
various computer systems, aiming at getting the highest performance out of the target 
machines. 
 

Early compilers were written in assembly language. The first self-hosting compiler (a 
compiler capable of compiling its own source code in a high-level language) was 
created for Lisp by Hart and Levin at MIT in 1962. The use of high-level languages 
for writing compilers gained added impetus in the early 1970s when Pascal and C 
compilers were written in their own languages. Building a self-hosting compiler is a 
bootstrapping problem [1] – the first such compiler for a language must be compiled 
either by a compiler written in a different language, or (as in Hart and Levin's Lisp 
compiler) compiled by running the compiler on an interpreter. 
 
1.3 Feasibility of Automating the Compiler Construction Process 
 
 

Compiler writing is a very complex process that spans programming languages, 
machine architectures, language theory, algorithms and software engineering. 
Although a few people are likely to build or even maintain a compiler for a major 
programming language, the ideas and techniques used throughout the compiler 
writing process (or the compiler construction process – I'll use the two terms 
interchangeably) are widely applicable to general software design. 
 
May be the first question that may come into the reader's mind is: Do we have a new 
programming language every day? Programming languages – though numerous – are 
limited to a few hundreds, most of which are already running and whose compilers 
have been well-tested and optimized… so why do we need to automate the compiler 
construction process? And is it worth the effort and time exerted doing that? 
 
The following address these – and other questions – regarding the feasibility of 
automating the compiler construction process, or at least, some of its phases [2]: 
 
(1) The systematic nature of some of its phases. 
 

The variety of compilers may appear overwhelming. There are hundreds of source 
languages, ranging from traditional programming languages to specialized languages 
(that have arisen in virtually every area of computer application). Target languages 
are equally as varied; a target language may be another programming language or the 
machine language of any computer between a microprocessor and a supercomputer. 
Despite this apparent complexity, the basic tasks that any compiler must perform are 
essentially the same. By understanding these tasks, we can construct compilers for a 
wide variety of source languages and target machines using the same basic 
techniques, and thus many phases of the compiler construction process are 
automatable.  
 
(2) The extreme difficulty encountered in implementing a full-fledged 

compiler. 
 

The first FORTRAN compiler – for example – took 18 staff-years to implement. 
(3) The need for compilers in various applications, not only compiler-

related issues. 



 

The string matching techniques for building lexical analyzers have also been used in 
text editors, information retrieval systems, and pattern recognition programs. Context-
free grammars and syntax-directed definitions have been used to build many little 
languages; such as the typesetting and figure drawing systems used in editing books. 
 
In more general terms, the analysis portion (described shortly) in each of the 
following examples is similar to that of a conventional compiler [2]: 
 

I. Text Formatters: A text formatter takes its input as a stream of characters, 
most of which is text to be typeset, but some of which include commands 
to indicate paragraphs, figures or mathematical structures like subscripts 
and superscripts. 

 

II.  Silicon Compilers: A silicon compiler has a source language that is similar 
or identical to a conventional programming language. However, the 
variables of the language represent not locations in memory, but logical 
signals (0 or 1) or groups of signals in a switching circuit. The output is a 
circuit design in an appropriate language. 

 

III.  Query Interpreters: A query interpreter translates a predicate containing 
relational and Boolean operators into commands to search a database for 
records satisfying that predicate. 

 

IV. XML Parsers: The role of XML in modern database applications can't be 
overestimated. 

 

V. Converting Legacy Data into XML: For updating legacy systems. This is an 
extremely important application for large, old corporations with much data 
that can't be lost when switching to newer systems. 

 

VI. Internet Browsers: This is one of the interesting applications that assures the 
fact that the output of the process is not necessarily "unseen". In internet 
browsers; the output is drawn to the screen. 

 

VII. Parsing structured files: This is the most practical and widely used 
application of parsers. Virtually any application needs to take its input 
from a file. Once the structure of such a file is specified, a tool like ours 
can be used to construct a parser easily (along with any parallel activity, 
such as loading the contents of the file into memory) in a suitable data 
structure. 

 

VIII.  Circuit burning applications using HDL specifications: This is another 
example from the world of hardware. 

 

IX.  Checking spelling and grammar mistakes in word processing applications: 
This is very common in commercial packages, like Microsoft Word®. The 
importance of such an application stems from saving the great efforts 
exerted when revising large, formal documents. 



2. The Compiler Construction Lifecycle 
 

 
Figure I-2: The Compiler Construction Process 

 
2.1 Front and Back Ends 
 
Often, the phases (described shortly) are collected into a front end and a back end. 
The front end consists of those phases, or parts of phases, which depend primarily on 
the source language and are largely independent of the target machine. These 
normally include lexical and syntactic analysis, the creation of the symbol table, 
semantic analysis, and the generation of intermediate code. A certain amount of code 
optimization can be done by the front end as well. The front end also includes the 
error handling that goes along with each of these phases. 
 
Intermediate Representation: A More-Than-Justified Overhead 
 
It has become fairly routine to take the front end of a compiler and redo its associated 
back end to produce a compiler for the same source language on a different machine. 
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If the back end is designed carefully, it may not even be necessary to redesign too 
much of the back end. It is also tempting to compile several different languages into 
the same intermediate language and use a common back end for the different front 
ends, thereby obtaining several compilers for one machine. 
 
Software design experience has mandated that; "whenever you're in trouble, add an 
extra layer of abstraction". Let's start with an abstract figure that illustrates this 
concept with no technical details: 

 
Figure I-3: Intermediate Representation  

 
The figure illustrates the problem we are facing if no intermediate form were 
used. We have to redesign the back-ends for every front-end and vice versa. In 
summary, the advantages of using an intermediate form; which more than 
offsets the extra processing layer – and the performance degradation 
accordingly – include: 
 
(1) The presence of an intermediate layer reduces the number of "links" in 

the figure from N2 to 2*N. Note that each "link" is a complete compiler. 
 

(2) The optimization phase can be dedicated to optimizing the "standard" 
intermediate format. This raises the efficiency of the optimization phase 
and reduces its time and effort as the research increases in this area, 
where certain phases of the optimization phase can be automated as well. 

 

(3) Portability and machine-independence in source languages can be 
achieved easily, where the back-ends are realized on different platforms. 
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This approach is widely adopted nowadays; common examples include 
Java TM and .NET-Compliant languages. 

 
Now it's time to view the situation realistically: 

 

 
Figure I-4: The Whole Picture 

 
2.2 Breaking down the Whole Process into Phases 
 
Conceptually, a compiler operates in phases, each of which transforms the source 
program from one representation to another. There are two main categories of phases: 
analysis and synthesis. Another category, which we prefer to name "meta-phases", 
will be described shortly. The analysis part breaks up the source program into 
constituent parts and creates an intermediate representation of it. The synthesis part 
constructs the desired target program from the intermediate representation. 
 
 



2.2.1 The Analysis Phases 
 
2.2.1.1 Linear (Lexical) Analysis 
 

The stream of characters making up the source program is read in a linear fashion (in 
one direction, according to the language) and grouped into tokens – sequences of 
characters having a collective meaning [3]. 
 
In addition to its role as an "input reader", a lexical analyzer usually handles some 
"housekeeping chores" that simplify the remaining phases – especially the subsequent 
phase; parsing [2]: 
 
White space elimination: 
 

Many languages allow "whitespace" (blanks, tabs, and newlines) to appear between 
tokens. Comments can likewise be ignored by the parser as well as the translator, so 
they may also be treated as white space. 
 
Matching tokens with more than a single character: 
 

The character sequence forming a token is called the lexeme for the token. Normally, 
the lexemes of most tokens will consist of more than a character. For example, 
anytime a single digit appears in an expression, it seems reasonable to allow an 
arbitrary integer constant in its place. So the lexical analysis phase can't be simply 
reading the input character by character (except in very special cases). In other words, 
the character stream is usually different than the token stream. 
 
Correlating error handling information with the tokens: 
 

The lexical analyzer may keep track of the number of newline characters seen, so that 
a line number can be associated with an error message. 
 
Efficiency issues: 
 

Since the lexical analyzer is the only phase of the compiler that reads the source 
program character-by-character, it is possible to spend a considerable amount of time 
in the lexical analysis phase, even though the later phases are conceptually more 
complex. Thus, the speed of lexical analysis is a concern in compiler design [2]. 
 
Isolating anomalies associated with different encoding formats: 
 

Input alphabet peculiarities and other device-specific anomalies can be restricted to 
the lexical analyzer. The representation of special or non-standard symbols, such as ↑ 
in Pascal, can be isolated in the lexical analyzer. 
 
There is much more stuff the lexical analyzer can handle, according to the specific 
implementation at hand. The lexical analysis phase, together with the parsing phase, is 
actually our concern. For that we defer a detailed description of both to two dedicated 
chapters, in part II of this document. Consult section 6 in this part for more 
information about the document organization. 



2.2.1.2 Hierarchical (Syntactic) Analysis 
 

It involves grouping the tokens of the source program into grammatical phrases that 
are used by the compiler to synthesize output. Characters or tokens are grouped 
hierarchically into nested collections with collective meaning; these nested collections 
are what we call statements. 
 
For any context-free grammar there is a parser that takes at most O(n3) time to parse a 
string of n tokens [2]. However, this is very expensive when we engage into practical 
applications. So, researchers have exerted intensive efforts to find "smarter" 
techniques for parsing. 
 
Most practical parsing methods fall into one of two classes, called the top-down and 
bottom-up methods. These terms refer to the order in which nodes in the parse tree are 
constructed. In the former, construction starts at the root and proceeds towards the 
leaves, while in the latter, construction starts at the leaves and proceeds towards the 
root. (A parse tree is a visual representation of the hierarchical structure of a 
language statement, in which the levels in the tree depict the depth and breadth of the 
hierarchy. We will have more to say about different types of trees later). 
 
The popularity of top-down parsers is due to the fact that efficient parsers can be 
constructed more easily by hand using top-down methods. Bottom-up parsing, 
however, can handle a larger class of grammars and translation schemes. 
 
Lexical Analysis vs. Parsing 
 

I. The Rationale behind Separation 
 

There are several reasons for separating the analysis phase of compiling into lexical 
analysis and parsing, the most important of which are [2]: 
 

1. Simpler design is perhaps the most important consideration. The separation of 
lexical analysis from syntactic analysis often allows us to simplify one or the other of 
these phases. For example, a parser embodying the conventions for comments and 
whitespace is significantly more complex than one that can assume comments and 
whitespace have already been removed by a lexical analyzer. If we are designing a 
new language, separating the lexical and syntactic conventions can lead to a cleaner 
overall language design. 
 

2. Compiler efficiency is improved. A separate lexical analyzer allows us to 
construct a specialized and potentially a more efficient processor for the task. A huge 
amount of time is spent reading the source program and partitioning it into tokens. 
Specialized buffering techniques for reading input characters and processing tokens 
can significantly speed up the performance of a compiler. 
 

3. Compiler portability is enhanced. Input alphabet peculiarities and other device-
specific anomalies can be restricted to the lexical analyzer. The representation of 
special or non-standard symbols, such as ↑ in Pascal, can be isolated in the lexical 
analyzer. 
 

4. Specialized tools have been designed to help automate the construction of 
lexical analyzers and parsers when they are separated. These tools are actually the 



core of CCW, more about their importance, details and input specifications are 
presented in the relevant chapters later in the document. 
 

II. A Special Relation? 
 

The division between lexical and syntactic analysis is somewhat arbitrary. One factor 
in determining the division is whether a source language construct is inherently 
recursive or not. Lexical constructs do not require recursion, while syntactic 
constructs often do. The lexical analyzer and the parser form a producer-consumer 
pair. The lexical analyzer produces tokens and the parser consumes them. Produced 
tokens can be held in a token buffer until they are consumed. The interaction between 
the two is constrained only by the size of the buffer, because the lexical analyzer 
cannot proceed when the buffer is full and the parser cannot proceed when the buffer 
is empty. Commonly, the buffer holds just one token. In this case, the interaction can 
be implemented simply by making the lexical analyzer be a procedure called by the 
parser, returning tokens on demand. 
 
2.2.1.3 Semantic Analysis 
 

Certain checks are performed to ensure that the components of a program fit together 
meaningfully. The semantic analysis phase checks the source program for semantic 
errors and gathers type information for the subsequent code-generation phase. It uses 
the hierarchical structure determined by the syntax-analysis phase to identify the 
operators and operands of expressions and statements. 

 
2.2.2 The Synthesis Phases 
 
2.2.2.1 Intermediate Code Generation 
 

After syntax and semantic analysis, some compilers generate an explicit intermediate 
representation of the source program. We can think of this intermediate representation 
as an assembly program for an abstract machine. 
 
2.2.2.2 Code Optimization 
 

The code optimization phase attempts to improve the intermediate code, so that faster-
running machine code will result. There is a great variation in the amount of code 
optimization different compilers perform. In those that do the most – called 
"optimizing compilers" – a significant fraction of the compilation time is spent on this 
phase. However, there are simple optimizations that significantly improve the running 
time of the target program without slowing down the compilation performance 
noticeably. 
 
2.2.2.3 Final Code Generation 
 

Memory locations are selected for each of the variables used by the program. Then, 
intermediate instructions are each translated into a sequence of machine instructions 
that perform the same task. A crucial aspect is the assignment of variables to registers, 
since the intermediate code is the same for all platforms and machines and should not 
be dedicated to a specific one. 



 
2.2.3 Meta-Phases 
 
2.2.3.1 Symbol-Table Management 
 

An essential function of a compiler is to record the identifiers used in the source 
program and collect information about various attributes of each identifier. These 
attributes may provide information about the storage allocated for an identifier, its 
type, its scope (where in the program it is valid), and – in the case of procedure names 
– such things as the number and types of its arguments, the method of passing each 
argument (e.g. by reference), and the type returned, if any. 
 
A symbol table is a data structure containing a record for each identifier, with fields 
for the attributes of the identifier. The data structure allows us to find the record for 
each identifier and to store or retrieve data from its record quickly. 

 
2.2.3.2 Error Handling 
 

Each phase can encounter errors. However, after detecting an error, a phase must 
somehow deal with that error, so that the compilation can proceed, allowing further 
errors in the source program to be detected. A compiler that stops when it finds the 
first error is not as helpful as it could be. 
 
The syntax and semantic analysis phases usually handle a large fraction of the errors 
detectable by the compiler. The lexical phase can detect errors where the characters 
remaining in the input do not form any token of the language. Errors where the token 
stream violates the structure rules (syntax) of the language are determined by the 
syntax analysis phase. During semantic analysis the compiler tries to detect constructs 
that have the right syntactic structure but no meaning to the operation involved, e.g., if 
we try to add two identifiers, one of which is the name of an array, and the other the 
name of a procedure. 



3. Problem Definition 
 

3.1 Historical Background 
 

At about the same time that the first compiler was under development, Noam 
Chomsky [50] began his study of the structure of natural languages. His findings 
eventually made the construction of the compilers considerably easier and even 
capable of partial automation. Chomsky's studies lead to the classification of 
languages according to the complexity of their grammars and the power of the 
algorithms to recognize them. The Chomsky Hierarchy (as it's now called) [51] 
consists of four levels of grammars, called the type 0, type 1, type 2 and type 3 
grammars; each of which is a specialization of its predecessor. The type 2, or context-
free grammars, proved to be the most useful for programming languages – and today 
they are the standard way to represent the structure of programming languages. The 
study of the parsing problem (the determination of efficient algorithms for the 
recognition of context-free languages) was pursued in the 1960s and 70s, and lead to a 
fairly complete solution of this problem, which today has become a standard part of 
compiler theory. Context-free languages and parsing algorithms are discussed in the 
relevant chapters later in this document. 
 
Closely related to context-free grammars are finite automata and regular expressions, 
which correspond to Chomsky's type 3 grammars. Their study led to symbolic 
methods for expressing the structure of words (or tokens). Finite automata and regular 
expressions are discussed in detail in the chapter on lexical analysis. 
 
As the parsing problem became well understood, a great deal of work was devoted to 
developing programs that will automate this part of compiler development. These 
programs were originally called compiler-compilers, but are more aptly referred to as 
parser generators, since they automate only one part of the compilation process. The 
best-known of these programs, Yacc (Yet Another Compiler-Compiler), was written 
by Steve Johnson in 1975 for the UNIX system. Similarly, the study of finite 
automata led to the development of another tool called a scanner generator, of which 
LEX (developed for the UNIX system by Mike Lesk about the same time as Yacc) is 
the best known. 
 
During the late 1970s and early 1980s a number of projects focused on automating the 
generation of other parts of compilers, including code generation. These attempts 
have been less successful, possibly because of the complex nature of the operations 
and our less-than-perfect understanding of them. For example, the automatically- 
generated semantic analyzers have a general performance degradation of 1000%!! 
(This means that they run ten times slower than manually-written semantic analyzers).  

 
3.2 Compiler Construction Toolkits: Why? 
 

Is it worth automating the compiler writing process? The following – very briefly – 
discusses the main difficulties a compiler writer encounters when writing a compiler 
code manually: 
• Compiler writing is a complex, error-prone task that needs much time and effort. 
 



• The resulting (manual) code is usually hard to debug and maintain. 
 

• The code walkthrough is hard due to the amount of the written code and the 
diversity of the available implementations. 

 

• Any small modification in the specification of the compiler results in big changes 
to the code, and subsequently to severe performance deterioration on the long run 
as the structure of the code is continuously modified. 

 

• The class of algorithms that suits manual implementation of compilers is generally 
inefficient. 

 
For these and other problems, tremendous research efforts were exerted in the 1970s 
and 80s to automate some phases of the compiler writing process. Following the 
"bulletin board" convention used above; the following are some of the advantages that 
a compiler writer gains when using compiler construction tools: 
 

• The developer is responsible only for providing the specifications. No tedious, 
repeated work is required; thus avoiding the aforementioned difficulties. 

 

• Adopting the most efficient algorithms in its construction; thus providing the 
developer with an easy means to generating efficient programs that would 
otherwise have been too difficult to implement. Manually-written compilers have 
proven to lack the required efficiency and maintainability. 

 

• Ease of maintenance. Only the specifications are to be modified if a desired 
amendment is to be introduced. 

 

• Providing developers unfamiliar with the compiler theory with an access to the 
uncountable benefits of using compiler writing techniques in compiler-unrelated 
applications. 

 
3.3 Practical Automation of Compiler Writing Phases 
 

The compiler writer, like any programmer, can profitably use software tools such as 
debuggers, version managers, and profilers … to implement a compiler. These may 
include: 
 

• Structure Editors:  A structure editor takes as an input a sequence of commands 
to build a source program. The structure editor not only performs the text-creation 
and modification functions of an ordinary text editor, but it also analyzes the 
program text, putting an appropriate hierarchical structure on the source program. 
Thus, the structure editor can perform additional tasks such as checking that the 
input is correctly formed, supplying keywords automatically (such as supplying a 
closing parenthesis for an opened one, or auto-completing reserved keywords), 
and highlighting certain keywords. Furthermore, the output of such an editor is 
often similar to the output of the analysis phase of a compiler; that is – imposing a 
certain hierarchical structure on the input program. 

 

• Pretty Printers: A pretty printer analyzes a program and prints it in such a way 
that the structure of the program becomes clearly visible. For example, comments 
may appear in a special font, and statements may appear with an amount of 
indentation proportional to the depth of their nesting in the hierarchical 
organization of the statements. 



 
Both of these tools are implemented in CCW 1.0. 
 
In addition to these software-development tools, other more specialized tools have 
been developed for helping implement various phases of a compiler. I mention them 
briefly in this section; the tools implemented in CCW are covered in detail in the 
appropriate chapters. 
 
Shortly after the first compilers were written, systems to help with the compiler-
writing process appeared. These systems have often been referred to as compiler- 
compilers, compiler-generators, or translation-writing systems; as was discussed in 
the historical background above. Largely, they are oriented around a particular model 
of languages, and they are most suitable for generating compilers of languages similar 
to the model. 
 
For example, it is tempting to assume that lexical analyzers for all languages are 
essentially the same, except for the particular keywords and signs recognized. Many 
compiler-compilers do in fact produce fixed lexical analysis routines for use in the 
generated compiler. These routines differ only in the list of keywords recognized, and 
this list is all that's needed to be supplied by the user. 
 
Some general tools have been created for the automatic design of specific compiler 
components, these tools use specialized languages for specifying and implementing 
the component, and many use algorithms that are quite sophisticated. The most 
successful tools are those that hide the details of the generation algorithm and produce 
components that can be easily integrated into the remainder of a compiler. The 
following is a list of some useful compiler-construction tools: 
 
I. Parser Generators. These produce syntax analyzers, normally from input that is 
based on a context-free grammar. In early compilers, syntax analysis consumed not 
only a large fraction of the running time of a compiler, but also a large fraction of the 
intellectual effort of writing it. This phase is now considered one of the easiest to 
implement. Many "little languages", such as PIC and EQN (used in typesetting 
books), and any file with a definitive structure; were implemented in a few days using 
parser generators. Many parser generators utilize powerful parsing algorithms that are 
too complex to be carried out by hand. 
 

II. Scanner Generators. These automatically generate lexical analyzers, normally 
from a specification based on regular expressions. The basic organization of the 
resulting lexical analyzer is in effect a finite automaton – both to be detailed soon. 
 

III. Syntax-Directed Translation Engines. These produce collections of routines 
that walk the parse tree, generating intermediate code. The basic idea is that one or 
more "translations" are associated with each node of the parse tree, and each 
translation is defined in terms of translations at its neighbor nodes in the tree.  
 

IV. Automatic Code Generators. Such a tool takes a collection of rules that define 
the translation of each operation of the intermediate language into the machine 
language for the target machine. 
3.4 Motivation 
 



Among the aforementioned tools, the first two are the core of our project. There are a 
number of reasons that restricted us to implementing these two, the most important of 
which are: 
 

• Not all of these tools have gained wide acceptance due to the lack of efficiency, 
standardization and practicality. As mentioned before, the semantic analyzers – 
for example – generated automatically are about ten times slower than their ad-
hoc counterparts. 

 

• Practical lexical analyzers and parsers are widely applicable to other fields of 
application, unrelated to the compiler construction process. Page 8 contains some 
of the applications a parser (together with its lexical analyzer) can be useful in. 

 

• The available lexical analyzers and parsers – though numerous – share some 
drawbacks discussed in details in the next chapter on the market survey. We 
decided to implement a tool that – as much as the time limit permits – avoid these 
drawbacks. 



4. Related Work 
 
We have performed a survey on the currently available compiler construction toolkits. 
It was found that the most significant tools available are LEX and Yacc. However, 
numerous tools exist. Many of the disadvantages of LEX and Yacc were solved by 
other tools. However, so far no single tool has solved all of the problems normally 
encountered in such products. We are going to investigate some of them here: 

 
4.1 Scanner Generators – LEX 
 

As previously stated, lexical analyzer generators take as input the lexical 
specifications of the source language and generate the corresponding lexical 
analyzers. Different generator programs have different input formats and vary in 
power and use. We shall describe here LEX, which is one of the most powerful and 
widely used lexical analyzer generators. LEX was the first lexical analyzer generator 
based on regular expressions. It is still widely used. It is the standard lexical analyzer 
(scanner) generator on UNIX systems, and is included in the POSIX standard. 
 
LEX reads the given input files, or its standard input if no file names are given, for a 
description of a scanner to be generated.  The description is in the form of pairs of 
regular expressions and C code, called rules. After that, LEX generates as output a C 
source file that implements the lexical analyzer. This file is compiled and linked to 
produce an executable.  When the executable is run, it analyzes its input for 
occurrences of the regular expressions.  Whenever it finds one, it executes the 
corresponding C code. 

 
Some Disadvantages of LEX 
 

We have examined LEX from several perspectives and finally we were able to decide 
the following drawbacks in it: 
 
o The generated code is very complex and completely unreadable. Consequently, its 

maintainability is low. 
 

o The generated lexical analyzer can be generated only in the C language (Another 
version of LEX has been developed to support object oriented code in C++, but it 
is still under testing). 

 

o There is only one DFA compression technique utilized. 
 

o There is no clear interface between the scanner module and the application that is 
going to use the module. 

 

o It doesn't support Unicode, so the only supported language is English. 
 

o Some of the header files used by the generated scanner are restricted to the UNIX 
OS. Thus, its portability is low. 

 

o It lacks a graphical user interface. 
 

4.2 Parser Generators – Yacc 



 

Syntactic analyzer generators take as an input the syntactic specifications of the target 
language – in the form of grammar rules – and generate the corresponding parsers. It 
holds for automated parser generation as well that different generator programs have 
different input formats and vary in power and use. However, the variation here is 
more acute due to the different types of parsers that might be generated (top-down 
parsers vs. bottom-up parsers). We shall describe here Yacc, which is one of the most 
powerful and widely used parser generators. Indeed, LEX and Yacc were designed so 
that seamless effort is exerted in order to integrate the generated lexical analyzer and 
the generated parser. 
 
Yacc (Yet Another Compiler Compiler) is a general-purpose parser generator that 
converts a grammar description for an LALR(1) context-free grammar into a C 
program to parse that grammar. Yacc is considered to be the standard parser generator 
on UNIX systems. It generates a parser based on a grammar written in the BNF 
notation. Yacc generates the code for the parser in the C programming language.  

 
Some Disadvantages of Yacc 
 

The disadvantages of Yacc are almost the same as the disadvantages of LEX. They are 
repeated here for convenience: 
 
o The generated code is very complex and completely unreadable. Consequently, its 

maintainability is low. 
 

o The generated parser can be generated only in the C programming language 
(Another version of Yacc has been developed to support object oriented code in 
C++, but it is still under testing). 

 

o There is only one type of parsers that may be generated which is the LALR(1) 
bottom-up parser. 

 

o There is no clear interface between the parser module and the application that is 
going to use the module. 

 

o Some of the header files used by the generated parser are restricted to the UNIX 
OS. Thus, its portability is low. 

 

o It lacks a graphical user interface.  

 
4.3 Flex and Bison 
 

LEX and Yacc have been replaced by Flex and Bison and, more recently, Flex++ and 
Bison++. Such enhancements have solved the problems of portability and provided 
the user with a means to generate object oriented compilers in C++ but still the rest of 
the drawbacks remain. 



4.4 Other Tools 
 

Other than LEX and Yacc, we will make a brief survey on the available tools and 
packages related to our product together with their drawbacks. The references [8] – 
[30] are used in this section. We preferred not to attach every reference to its program 
to avoid cluttering this page. 
  
ANTLR 
 

o Only the recursive descent parsing technique is supported. 
o It has no graphical user interface. 
o It has some problems with Unicode. 

 
Coco/R 
 

o The only parsing technique available is the LL table-based parsing technique. 
o It doesn’t support Unicode. 
o There is no graphical user interface. 

 
Spirit 
 

o The only output language supported is C++. 
o Only the recursive descent parsing technique is supported. 
o There is no graphical user interface. 
o It doesn't support Unicode. 
o It doesn't provide a scanner generation capability. 

 
Elkhound 
 

o The only output languages supported are C++ and Ocaml. 
o Only the bottom-up table based parsing technique is supported. 
o There is no graphical user interface. 
o It doesn't support Unicode. 
o It doesn't provide a scanner generation capability. 

 
Grammatica 
 

o The only parsing technique used is the recursive descent parsing technique. 
o There is no graphical user interface. 
o The scanner produced by its scanner generator is inefficient. 

 
LEMON 
 

o The only output languages available are C and C++. 
o The only parsing technique is the LALR(1) table-based parsing technique. 
o There is no graphical user interface. 
o It doesn't provide a scanner generation capability. 
o It doesn't support Unicode. 

 
SYNTAX 
 

o It works only on the UNIX OS. 
o There is no graphical user interface. 
o The only output language available is C. 



o Only the LALR(1) table-based parsing technique is supported. 
o It doesn't support Unicode. 

 
GOLD 
 

o Only the LALR(1) table-based parsing technique is supported. 
o Doesn't generate the driver programs (only the tables). 
o There is no graphical user interface. 

 
AnaGram 
 

o The only output languages allowed are C and C++. 
o Only the LALR(1) table-based parsing technique is supported. 
o It doesn't support Unicode. 

 
SLK 
 

o Only the LL(k) table-based parsing technique is supported. 
o There is no graphical user interface. 

 
Rie 
 

o The only output language available is C. 
o Only the LR table-based parsing technique is supported. 
o There is graphical user interface. 
o It doesn't support Unicode. 

 
Yacc++ 
 

o The only output language available is C++. 
o Only the ELR(1) table-based parsing technique is supported. 
o There is no graphical user interface. 
o It doesn’t support Unicode. 

 
ProGrammar 
 

o It uses a separate ActiveX layer which degrades performance. 
o It is not clear what type of parsing technique it uses. 

 
YaYacc 
 

o The only output language available is C++. 
o The only parsing technique available is LALR(1) table based parsing. 
o It works only on FreeBSD. 
o It doesn't have a graphical user interface. 
o It doesn't support Unicode. 
o It doesn’t provide a scanner generation capability. 

 
Styx 
 

o The only output language available is C. 
o Only the LALR(1) table-based parsing technique is supported. 
o It doesn't have a graphical user interface. 

 



PRECC 
 

o The only output language available is C. 
o Only the LL table-based parsing technique is supported. 
o There is no graphical user interface. 
o It doesn't support Unicode. 

 
YAY 
 

o The only output language available is C. 
o Only the LALR(2) table-based parsing technique is supported. 
o There is no graphical user interface. 
o It doesn't support Unicode. 
o There is scanner generation capability. 

 
Depot4 
 

o The only output languages available are Java and Oberon. 
o The only parsing technique available is recursive descent parsing. 
o There is no graphical user interface. 
o There is no scanner generation capability. 

 
LLGen 
 

o The only output language available is C. 
o Only the ELL(1) table-based parsing technique is supported. 
o There is no scanner generation capability. 
o It doesn't support Unicode. 
o There is no graphical user interface. 

 
LRgen 
 

o It is designed so that the output is mainly written in C++. 
o The only parsing technique is LALR(1) table based parsing.  
o It is a commercial application. 
o There is no Unicode support. 
o There is no graphical user interface. 

 
4.5 Conclusion 
 

Most of the available tools don’t provide the choice among table-based and recursive 
descent parsing. And it is rare to find a tool with a graphical user interface. Such a 
tool is usually a commercial one (i.e., it costs a lot of money).  
 
Unicode support is also missing in most of the tools surveyed. Also we can notice that 
only a few tools support multilingual code generation. That is, other than C and C++, 
it is not common to find a non-commercial tool that fulfills your needs. 
 
Some tools do provide a scanner generator besides the parser generator, but as we've 
just seen; this is not always the case. 



5. Our Objective 
 

As it's now obvious from the previous section, there are a number of common 
drawbacks shared by most of the available products. Most of the parser generators 
implement a single parsing technique, or at most two. Most of them are mere console 
applications, without a user interface. Unicode is supported in a few of them; even 
those tools that support Unicode suffer from some shortcomings that make them 
generally unpractical. Code generation is usually in one or two languages. Scanner 
generators are sometimes existent, but most often you have to implement them 
yourself. 
 
So we've decided to develop a tool that overcomes most of these drawbacks. Because 
of the time limit, we adopted extensibility as a principal paradigm, so that – for 
example – the LR parsing technique can be introduced in version 2.0 easily, even 
though version 1.0 currently supports recursive descent and LL(1) parsing techniques 
only. Unicode is supported in version 1.0, and some demos are available on the 
companion CD illustrating Arabic applications. Code generation is currently 
supported in three languages; namely ANSI C++, C# and Java. It's a trivial matter to 
add a new language, as will be illustrated in details in the chapter on parsing later in 
the document. LEXcellent, our lexical analyzer generator, is available to support its 
companion, ParSpring, the parser generator. 
 
Our interface for integrating the process is CCW (Compiler Construction 
Workbench), a user friendly interface that supports most of the nice features 
introduced in IDEs, such as syntax highlighting, line numbers, breakpoints and 
matching brackets. More advanced features such as auto-completion are included in 
the future work plan. It's expected that version 2.0 is to eliminate all the drawbacks 
evident in most commercial applications. Currently, version 1.0 eliminates about 80% 
of them, given the extensible framework it's based upon. 



6. Document Organization 
 

After the field and the problem have been introduced, we turn now to briefly 
discussing the organization of this document. 
 
Part I – which the reader has probably surveyed before reaching this section – mainly 
introduces the topic and clarifies the overall picture. Chapters 1 and 2 discuss the 
basic concepts. The problem is defined precisely in chapter 3. A market survey is 
carried out in chapter 4, and chapter 5 discusses our objective from implementing our 
tool. 
 
Part II, which is the bulk of this document, is dedicated essentially to those developers 
who will use our tool, together with those interested in any implementation details. 
 
Chapter 1 contains mainly a block diagram depicting the overall system architecture, 
together with a brief discussion of each component.  
Chapter 2 is dedicated to the lexical analysis phase. Section 1 is an introduction; 
augmenting what was presented in the 'Basic Concepts' chapter in Part I. Section 2 
introduces LEXcellent; our lexical analyzer generator. Section 3 discusses its input 
stream, and sections 4 and 5 are dedicated to its input file format. Sections 6, 7, 8 and 
9 illustrate in full details the algorithms used in our implementation for LEXcellent. 
Section 10 is dedicated to describing the generated lexical analyzer. Section 11 
describes the graphical GTG editor; which is a helper tool used to create regular 
expressions easily via a sophisticated graphical user interface. 
Chapter 3 is dedicated to the parsing phase. Sections 1, 2 and 3 are introductory; again 
augmenting the material presented in Part I. Sections 4 and 5 are dedicated to the 
input file format of ParSpring, the parser generator. Sections 6 and 7 are pure 
implementation details. Finally, two helper tools are discussed in section 8. 
 
Part III finalizes the document by providing the general conclusion; together with a 
summary for each tool and its future work plan. Then the tools, technologies and 
references used in this project are listed. The appendices are attached to the end of the 
document. 
 
This document may be used by more than one reader. If you are new to the whole 
issue, the following sections in Part I are recommended for first reading: 1.1, 1.3, 2.1, 
2.2, 3.1, 3.2, 3.3, 5, and sections 2.1, 3.1, 3.2 and 3.3 in Part II. 
 
If you know what you want to do, and you prefer to start using the tool directly; read 
the following in Part II: 2.4, 2.5, 3.4 and 3.5. Section 2.10 will be useful also; though 
not necessary to get started. Don't forget the user manual in the appendices.  
 
For using the helper tools, consult sections 2.11 and 3.8 in Part II. 
 
Finally, when you're done using the tool; you may want to take a look at the 
implementation details – and you're welcome to augment our work. The source code 
is provided on the companion CD. Sections 2.3, 2.6, 2.7, 2.8 and 2.9 discuss in full 
details the implementation details for LEXcellent. Its companion's details are outlined 
in sections 3.6 and 3.7. 
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Part II 



1. Architecture and Subsystems 
 
Our Compiler Construction Toolkit consists of several components that interact with 
each other to facilitate the process of compiler development. The general architecture 
of the package can be represented in figure II-1: 
 
 

 
Figure II-1: The General Architecture 

 
While the IDE was developed using the .NET platform, almost all the other 
components of the system were developed in native C++. Such combination allowed 
us to gain the powerful GUI capabilities of the .NET framework without sacrificing 
the efficiency and portability of the C++ unmanaged code.  
 
The following is a brief investigation of each component in the system. Each of these 
components is to be fully detailed in a dedicated chapter later in the document. 
 

• Integrated Development Environment: It the environment in which the compiler 
developer creates and maintains projects, edits specification files, uses the utilities 
and helper tools and invoke the scanner and parser generator tools to generate his 
compiler. 

 

• Lexical Analyzer Generator: It is the software component that is responsible for 
generating the lexical analyzer (scanner), given the user specifications. It consists 
of the following general modules: 

 

 

o Input File Parser: This module is responsible for parsing the specifications 
file that contains the regular definitions of the tokens to be returned by the 
generated scanner. The regular definitions are converted into an NFA then into 
a DFA. More on both later. 

 

o Optimization (Minimization/Compression): This module is responsible for 
optimizing the produced DFA obtained from the previous phase.  



o Scanner Code Generator: This module is responsible for generating the 
source code of the required scanner.  

 

• Syntactic Analyzer Generator: It is the software component that is responsible for 
generating the syntactic analyzer (parser), given the user specifications. It consists 
of the following general modules: 

 

o Input File Parser: This module is responsible for parsing the specifications 
file that contains the grammar specifications of the language to be recognized 
by the generated parser. The grammar rules are converted into a tree inside the 
program memory. 

 

o LL(1) Parser Code Generator: If the user specifies that the generated parser 
should be an LL(1) parser, then this module should assume responsibility for 
generating the parser. 

 

o Recursive-Descent Parser Code Generator: If the user specifies that the 
generated parser should be a recursive-descent parser, then this module should 
assume responsibility for generating the parser. 

 

• Helper Tools: A set of tools that facilitates the process of writing the 
specifications of the desired scanner and parser. They are mainly invoked from the 
IDE. 

 

o GTG to Regular Expression Converter: A tool that gives the developer the 
capability to specify his regular definition in terms of a Generalized Transition 
Graph instead of a regular expression. This may be easier in some cases. 

 

o Regular Expression Manipulator: A tool that allows the developer to 
generate new regular expressions from the union, intersection or negation of 
input regular expressions. 

 
 

o Left Factoring/Left Recursion Removal: A tool that performs left factoring 
and left recursion removal on a given CFG, which are two essential operations 
that must be performed if a recursive-descent parser is to be generated. Such 
facility frees the developer from doing all that effort manually. 

 

• Back End: It is the set of classes that generate the required scanners and parsers in 
any of the supported languages. Currently, only C++, C# and Java are available, 
but more languages may be supported easily. 

 
Figure II-2 gives a brief illustration of the two main components of the system, the 
scanner generator LEXcellent and the parser generator ParSpring. This block diagram 
is just for reference, more details about both tools are presented in the appropriate 
chapters later in this part. 



 
Figure II-2: LEXcellent and ParSpring – The Main Components 

 
The package consists of three main executables: The IDE, the scanner generator and 
the parser generator. The user runs the IDE to start his development, to create and 
maintain projects, to edit the specification files in a tailored editor and to utilize the 
available helper tools. 
 
When it is time to generate code, the IDE invokes the appropriate executable to 
generate a scanner or a parser, as required by the user. If the operations succeed, the 
generated code will be released in a code file, otherwise a list of errors will be 
returned from the code generator to the IDE.  
 
Thus, the process of dealing with the underlying code generators is completely 
transparent to the user. However, the user has the choice whether to use our IDE to 
invoke the scanner and parser generators, to use another IDE (such as the Visual 
Studio IDE) or to invoke the generators directly without an IDE. Our IDE, however, 
offers a group of functionalities and utilities that makes it the best choice for dealing 
with the scanner and parser generators. 



2. The Lexical Analysis Phase 
 

2.1 More about Lexical Analysis 

2.1.1 Definition 
 

Lexical analysis is usually the first phase of the compilation process in which the 
lexical analyzer takes a stream of characters and produces a stream of names, 
keywords, and punctuation marks that the parser uses for syntax analysis. In addition, 
it may discard whitespace and comments between the tokens to simplify the operation 
of later phases. It would unduly complicate the parser to have to account for possible 
whitespace and comments at every possible point; this is one of the main reasons for 
separating lexical analysis from parsing. For example [2], in lexical analysis the 
characters in the assignment statement 
 
position := initial + rate * 60 
 
would be grouped into the following tokens: 
 
1. The identifier position . 
2. The assignment symbol := . 
3. The identifier initial . 
4. The plus sign +. 
5. The identifier rate . 
6. The multiplication sign * . 
7. The number 60 . 
 
The blanks separating the characters of these tokens would normally be eliminated 
during lexical analysis. 
 
2.1.2 Lexical Tokens 
 

A lexical token is a sequence of characters that can be treated as a unit in the grammar 
of the source language [3]. Lexical tokens are usually classified into a finite set of 
token types. For example, some of the token types of a typical programming language 
are listed in the table below. 
 
Some tokens have special meaning in programming languages such as IF, VOID and 
RETURN. These are called reserved words and, in most languages, cannot be used as 
identifiers. Some of these are illustrated in ExTab 2-1 on the next page. 



ExTab 2-1: Reserved words and symbols 

 
 
 

 

 

 

 

The input file might contain sequences of characters that are either ignored by the 
lexical analyzer or not tackled by the language grammar. These are called nontokens. 
Examples of nontokens are illustrated in ExTab 2-2. 

ExTab 2-2: Examples of nontokens 

 

 

 

In languages weak enough to require a macro preprocessor, the preprocessor operates 
on the source character stream, producing another character stream that is then fed to 
the lexical analyzer. It is also possible to integrate macro processing with lexical 
analysis. 

Given a program such as 

float match0(char *s) /* find a zero */ 
{ 
   if (!strncmp(s, "0.0", 3)) 
   return 0.; 
} 

the lexical analyzer will return the stream 

FLOAT   ID(match0)   LPAREN   CHAR   STAR   ID(s)   RPAREN 
LBRACE   IF   LPAREN   BANG   ID(strncmp)   LPAREN   ID(s) 
COMMA   STRING(0.0)   COMMA   NUM(3)   RPAREN   RPA REN 
RETURN   REAL(0.0)   SEMI   RBRACE   EOF 

where the token-type of each token is reported; some of the tokens, such as identifiers 
and literals, have semantic values attached to them, giving auxiliary information in 
addition to the token-type. For example, the second identifier is attached the string 
“match0”. 

Type Examples 
ID foo n14 last  
IF if   
COMMA ,  
NOTEQ !=  
LPAREN (   
RPAREN )  
NUM 73 0 00 515 082  
REAL 66.1 .5 10. 1e67 5.5e-10  

comment  /* try again */  
preprocessor directive  #include<stdio.h>  
preprocessor directive  #define NUMS 5, 6   
macro NUMS 
blanks, tabs, and newlines  



There many ways to describe the lexical rules of a programming language. For 
example, we can use English to describe the lexical tokens of a language. A 
description of identifiers in C or Java is provided on the following paragraph [1]: 

An identifier is a sequence of letters and digits; the first character must be a letter. The 
underscore (_) counts as a letter. Uppercase and lowercase letters are different. If the 
input stream has been parsed into tokens up to a given character, the next token is 
taken to include the longest string of characters that could possibly constitute a token. 
Blanks, tabs, newlines and comments are ignored except as they serve to separate 
tokens. Some whitespace is required to separate otherwise adjacent identifiers, 
keywords, and constants. 

A more compact, precise, and formal way to specify the lexical tokens of a source 
language makes use of the formal language of regular expressions.  Not only can 
automated checks be performed on this form of specification, but it can be used to 
generate efficient lexical analyzers as well. 

 
2.1.3 Regular Expressions 
 

Regular expressions provide a mathematical way to specify patterns. Each pattern 
matches a set of strings. So, a regular expression will stand for a set of strings. Before 
providing a definition for regular expressions, we define some of the technical terms 
that will be used again and again during the discussion of lexical analysis and regular 
expressions. 
 
The term alphabet or character class denotes any finite set of symbols. Typical 
examples of symbols are letters and characters. The set {0, 1} is the binary alphabet. 
ASCII and EBCDIC are two examples of computer alphabets. 
 
A string over some alphabet is a finite sequence of symbols drawn from that alphabet. 
In language theory, the terms sentence and word are often used as synonyms for the 
term "string" [2]. The length of a string s, usually written as |s|, is the number of 
occurrences of symbols in s. For example, banana is a string of length six. The empty 
string, denoted by ε, is a special string of length zero.  
 
The term language denotes any set of strings over some fixed alphabet. This 
definition is very broad. Abstract languages like • , the empty set, or {ε}, the set 
containing only the empty string, are languages under this definition. If A and B are 
two languages over some fixed alphabet, then we define the concatenation of the two 
languages A.B is a language defined by: 

A.B = {xy:  x ∈ A and y ∈ B} 

L k refers to k concatenations of the language L . If k = 0, then L0 contains only the 
empty word ε. The Kleene Closure of a language L  denoted by L*  is the language 
containing all strings that can obtained by forming zero or more concatenations of 
words from L , or mathematically: 



L*  = U
∞

= 0i

L i. 

A regular expression describing a given language L  over some alphabet Σ can be any 
of the following [1]: 

• If a is a symbol in Σ (a ∈ Σ), then a is a regular expression with L (a) = { a }. 
• ε, where L(ε) = { ε } (The empty string). 
• If r is a regular expression over Σ, then (r) is a regular expression over Σ, with 

L( (r) )  = L(r) . 
• If r is a regular expression over Σ, then r* is a regular expression over Σ, with 

L(r*)  = L* (r) . 
• If r  and s are regular expressions over Σ, then their concatenation, r.s or 

simply r s, is a regular expression over Σ, with L(r s) = L(r).L(s) . 
• If r and s are regular expressions over Σ, then their union, r | s is a regular 

expression over Σ, with L(r | s) = L(r) U L(s). 

A language is regular if and only if it can be specified by a regular expression. Some 
regular expressions and descriptions of the languages they define are listed as 
examples in ExTab 2-3: 

ExTab 2-3: Example regular expressions 
 

(0 | 1)*  0 Binary numbers that are multiples of two. 

b* ( a b b* )* ( a | ∊ ) Strings of a's and b's with no consecutive a's. 

( a | b )* a a ( a | b )* Strings of a's and b's containing consecutive a's. 

 
In writing regular expressions, we will sometimes omit the concatenation symbol, and 
we will assume that Kleene closure "binds tighter" than concatenation, and 
concatenation binds tighter than alternation; thus the regular expression a b | c means 
(a . b) | c, and the regular expression ( a | b c * ) means a | (  b . (c)* ). 

 
ExTab 2-4: Operators of regular expressions 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

a An ordinary character stands for itself. 

∊ The empty string. Another way to write it. 

M | N Alternation, choosing from M or N. 
M . N Concatenation, an M followed by an N. 
MN Another way to write concatenation. 
"a.+*" Quotation, a string in quotes stands for itself 

literally. 
M* Repetition (zero or more times). 
M? Optional, zero or one occurrence of M. 
M+ Repetition, one or more times. 
[a − zA − Z]  Character set alternation. 
.  A period stands for any single character 

except newline. 



Next, we present some of the useful abbreviations that are commonly used to write 
regular expressions. [abcd] means (a | b | c | d), [b- g] means [bcdefg], [b- gM- Qkr ] 

means [bcdefgMNOPQkr], M? means (M | ∊), and M+ means (M · M*). These 
extensions are convenient, but none of them extend the descriptive power of regular 
expressions: Any set of strings that can be described using these abbreviations could 
also be described using the basic set of operators. All the operators are summarized in 
ExTab 2-4 on the previous page. 

Using this language, we can specify the lexical tokens of a programming language as 
follows: 
 

ExTab 2-5: More examples on regular expressions 
 

if IF 
[a-zA-Z_][a-zA-Z_0-9]* ID 
[0-9]+ NUM 
([0-9]+"."[0-9]*)|([0-9]*"."[0-9]+)  REAL 
("\\"[a-z]*"\n")|(" "|"\n"|"\t")+ no token, just white space  
. error  

 
The fifth entry of ExTab 2-5 recognizes comments or whitespace but does not report 
back to the parser. Instead, the white space is discarded and the lexical analysis 
process is resumed. The comments for this lexical analyzer begin with two slashes, 
contain only alphabetic characters, and end with a newline. 

Finally, a lexical specification should be complete, always matching some initial 
substring of the input; we can always achieve this by having a rule that matches any 
single character (and in this case, prints an illegal character  error message and 
continues). 

These rules are a bit ambiguous. For example, if8  can be matched as a single 
identifier or as the two tokens if  and 8. Moreover, the string if  can be considered an 
identifier or a reserved word. There are two important disambiguation rules to resolve 
such ambiguities that are used by LEXcellent: 

• Longest match: The longest initial substring of the input that can match any 
regular expression is taken as the next token. 

 

• Rule priority:  For a particular longest initial substring, the first regular 
expression that can match determines its token-type. This means that the order of 
writing down the regular-expression rules has significance. 

 
Thus, if8  matches as an identifier by the longest-match rule, and if  matches as a 
reserved word by rule-priority. 

 
2.1.4 Deterministic Finite Automata 
 

A deterministic finite automaton consists of [2]: 
 

1. A finite set of states, often denoted by Q.  
 

2. A finite set of input symbols, often denoted by Σ.  



 

3. A transition function that takes as arguments a state and an input symbol and 
returns a state. The transition function will commonly be denoted δ. 

 

4. A start state q0, one of the states in Q.  
 

5. A set, of final or accepting states F. The set F is a subset of Q. There can be 
zero or more states in F.  

 
Sometimes, it is comfortable to use informal graph representation of automata, in 
which states are represented by circles or nodes, and the transition from a give state qi 
to state qj on symbol a is represented by a directed edge from state (node) qi to state 
(node) qj, labeled with a. The start state is marked by an incoming edge, and 
accepting states are marked by an extra inner circle inside the node. 
 
ExFig 2-1 is a graph representation of a DFA with Σ = {a, b}: 

 

 
ExFig 2-1: An example DFA 

 
 

A deterministic finite automaton will often be referred to by its acronym: DFA. The 
most succinct representation of a DFA is a listing of the five components above. 
 
The first thing we need to understand about a DFA is how the DFA decides whether 
or not to accept a sequence of input symbols. The language of the DFA is the set of 
all strings that the DFA accepts. Suppose al a2 ... an is a sequence of input symbols. 
We start out with the DFA in its start state, q0. We consult the transition function δ, 
say δ(q0, a1) = q1 to find the state that the DFA enters after processing the first input 
symbol a1.We process the next input symbol, a2, by evaluating δ(q1, a2); let us 
suppose this state is q2. We continue in this manner finding states q3, q4 ... qn where 
δ(qi-1, ai) = qi, for each i. If qn is a member of F, then the input a1, a2 … an is accepted, 
and if not then it is rejected. The set of all strings that the DFA accepts is the language 
of that DFA. For example, the DFA in the figure above accepts the language of all 
strings over the alphabet {a, b} with even number of a’s and even number of b’s. 

 
2.1.5 Nondeterministic Finite Automata 
 

A nondeterministic finite automaton (NFA) has the power to be in several states at 
once. This ability is often expressed as an ability to "guess" something about its input. 
It guesses which state to go next such that if there is a sequence of guesses that leads 
the string to be accepted by the machine, then this sequence of guesses is chosen by 
the NFA. We introduce the formal notions associated with nondeterministic finite 
automata. The differences between DFAs and NFAs will be pointed out as we do. 
 
An NFA consists of [2]:  



 
1. A finite set of states, often denoted Q. 

 

2. A finite set of input symbols, often denoted Σ. 
 

3. A start state q0, one of the states in Q.  
 

4. F, a subset of Q, is the set of final (or accepting) states.  
 

5. The transition function δ is a function that takes a state in Q and an input 
symbol in Σ or the empty word ε as arguments and returns a subset of Q. 
Notice that the only difference between an NFA and a DFA is in the type of 
value that δ returns: a set of states in the case of an NFA and a single state in 
the case of a DFA. 

  

Here is an example of an NFA: 

 
 

ExFig 2-2: An example NFA 

In the start state, on input character a, the automaton can move either right or left. If 
left is chosen, then strings of a's whose length is a multiple of three will be accepted. 
If right is chosen, then even-length strings will be accepted. Thus, the language 
recognized by this NFA is the set of all strings of a's whose length is a multiple of two 
or three. 

On the first transition, the machine in ExFig 2-2 must choose which way to go. It is 
required to accept the string if there is any choice of paths that will lead to acceptance. 
Thus, it must "guess", and must always guess correctly. 

Edges labeled with ∊ may be taken without using up an input symbol. ExFig 2-3 is 
another NFA that accepts the same language: 

 
ExFig 2-3: An example NFA with ∊-transitions 

 

Again, the machine must choose which ∊-edge to take. If there is a state with some ∊-
edges and some edges labeled by symbols, the machine can choose to eat an input 
symbol (and follow the corresponding symbol-labeled edge), or to follow an ∊-edge 
instead. 

 
2.2 LEXcellent: An Introduction 



 
LEXcellent is the component responsible for generating the lexical analyzer based on 
the specifications given in an input file. Since lexical analysis is the only phase in a 
compiler that deals with input files, special care should be given to dealing with 
Unicode streams.  
 
The main components of LEXcellent are illustrated here. This is just a general 
overview and a thorough description of each phase of the generation process is 
provided in the appropriate sections of this chapter. 
 

 
Figure II-3: LEXcellent – The Process 

2.3 The Input Stream 
 



The input stream is represented by the class LexerInputReader . This class 
encapsulates all the fields and methods necessary for reading and parsing the input 
file. The class was designed principally to deal with Unicode files. Its functionalities 
can be summarized in two main functions: 
 

• Read the user options (such as the output language and the compression 
technique) and pass it to the following phases to control the scanner generation 
process. 

 

• Parse the regular definitions and produce the corresponding NFAs. Constructing 
an NFA from a regular definition should be a straight forward task. The NFAs are 
then grouped into a single NFA to be passed to the next stage. 

 

2.3.1 Unicode Problems 
 

One of the main features of LEXcellent is its ability to deal with the Unicode character 
set, and to generate lexical analyzers capable of dealing with Unicode. This 
guarantees that LEXcellent will have a widespread use because most systems are now 
Unicode-enabled and commercial lexical analyzer generators generally lack this 
feature. 

2.3.1.1 What is Unicode? 
 

Unicode [34] is an industry standard designed to allow text and symbols from all of 
the writing systems in the world to be consistently represented and manipulated by 
computers. Unicode characters can be encoded using any of several schemes termed 
Unicode Transformation Formats (UTF). 
 
The Unicode Consortium has as its ambitious goal the eventual replacement of 
existing character encoding schemes with Unicode, as many of the existing schemes 
are limited in size and scope, and are incompatible with multilingual environments. Its 
success in unifying character sets has led to its widespread and predominant usage in 
the internationalization and localization of computer software. The standard has been 
implemented in many recent technologies, including XML, the Java programming 
language, and modern operating systems. 

2.3.1.2 The Problem 
 

Since we have chosen to use the C++ programming language in the implementation of 
LEXcellent, and to restrict ourselves to the ANSI standards; we have used the 
IOStream  library to implement the input and the output. The input to LEXcellent is 
the text file containing the description of the lexical analyzer. The output is the 
generated lexical analyzer, along with errors (if any) and the statistics of the 
construction process. 
 
Changing the definition of a certain macro converts the program from the ASCII build 
mode to the Unicode build mode. This switches the program from using narrow 
characters and their related character processing functions and IOStream  classes to 
using wide characters and their related character processing functions and IOStream  
classes. Narrow-character programs tend to be faster and smaller. If the user needs are 
limited to narrow characters, it would be an overhead to use a Unicode program. On 



the other hand, the user might want to develop a set of programs for the Arabic 
language or the Chinese language, for instance. So, a Unicode-enabled lexical 
analyzer generator will be great. Consequently, two builds will be available: an ASCII 
release and a Unicode release. 
 
During the development process, the program was compiled and tested under the 
ASCII build. When the application was complete, it was the time to try the Unicode 
build. We thought defining the aforementioned macro would get things work as 
expected. Unicode-encoded test files were prepared and all what remained was to 
build the application under Unicode. It was true that the application compiled 
successfully with no problems, but it failed to read the input files of all test cases. The 
failures ranged from detecting invalid sequence of characters at the beginning of the 
file to reading spurious null before or after each character. When the input included 
Arabic letters, nothing related to Arabic was processed. We tried the same files with 
simple programs developed with C# and faced no problem. 
 
We started to write simple, “Hello World” text files under different Unicode 
encodings and use binary editors to view the contents of these files. We found that all 
Unicode files always begin with a fixed sequence of bytes that are independent of the 
actual text stored in the file. The bytes in that sequence differ according to the 
encoding under use. We correctly concluded that this was to help the application 
determine the specific encoding under use in the file. But this was not enough to tell 
how to solve the problem. 
 
Indeed, this problem exhausted an excessive amount of time from us. Such a problem 
was never expected. See references [40] – [48] for more about this problem. We made 
a research plan for the whole matter. The plan was organized as a set of questions to 
be answered as follows: 
 

- What are the different encodings used to represent Unicode? 
 

- How does IOStream  internally work and how does it deal with wide 
characters and different file encodings? 

 

- How did other tools deal with Unicode? 
 
The answer to the first question is quite long and is beyond the scope of this 
document. The answer of the second question is the topic of many books merely 
dedicated to the IOStream  library. For the third question, we were not surprised with 
the number of forums and websites that tackled the topic. However, we shall briefly 
and collectively illustrate the results of the three questions and the solution of the 
problem in the following outline [35]. 
 

• C++ IOStream  classes use some type of encoder/decoder classes to convert 
between the internal representation of characters and their external 
representation. If the characters are externally encoded using some encoding 
scheme, then an appropriate encoder/decoder object should be ‘imbued’ with 
the stream object. 

 

• The most famous Unicode encodings are UTF-8, UTF-16 BE, and UTF-16 
LE. UTF-32 BE and LE are not as famous. UTF-8 is an 8-bit, variable-width 
encoding, compatible with ASCII that uses one to four bytes per character. 



UTF-16 is a 16-bit, variable-width encoding that uses from two to four bytes 
per character. UTF-16 is available in two flavors: Little-Indian and Big-
Indian; which differ in the ordering of bytes in each character. UTF-32 is 32-
bit fixed-width encoding that is available either as Little-Indian or Big-Indian. 
UTF-32 encodings are less commonly used. 

 

• The C++ standard library has not implemented encoder/decoder classes for 
Unicode encodings. It defines the template, but does not implement it. The 
C++ standard library implements something like a fake encoder/decoder class 
for dealing with wide characters. All it has to do is to convert a two-byte 
character into a single byte when writing to a file (or the opposite if reading 
from a file). If this is not bad enough, how this conversion is performed is 
implementation-dependent. 

 

• The number of characters in the Unicode character set exceeds 65,536. Thus, a 
Unicode character needs more than two bytes for storage. Despite this fact, a 
wide character variable in Microsoft Visual C++.NET 2003™ takes only two 
bytes. Thus, some characters took more than two bytes in memory. This 
means that in-memory characters have variable lengths. 

 

• We were able to find implementations of the encoder/decoder classes for 
UTF-8 and UTF-16 LE. When  it was the time to retry the testing process, we 
found that it is the responsibility of the developer to determine which encoding 
scheme is used in the text file, and ‘imbue’ the appropriate encode/decoder 
object to deal with before opening the file. This means that the file must be 
opened twice, once to determine its encoding and another to read it. 

 

• Microsoft Visual C++.NET 2003™ implementation of IOStream  library is not 
that good. It works very well with IOStream  classes based on narrow 
characters, but it fails miserably to operate with wide characters and different 
‘imbued’ encoder/decoder objects. The most predominant failure occurs when 
trying to reposition the read pointer (seek) although the address sought is 
given as an absolute address rather than a relative one. The latter feature is 
crucial for any lexical analyzer to be able to deal with arbitrary lookaheads. 

 
The last observation was extremely painful to us, since it meant that we had to either 
stop trying to support the Unicode character set or to find an alternative method to 
process the input. In addition, any alternative method for processing the input should 
comply with the standards; otherwise our top goal (which is platform independence) 
is to be sacrificed. 
 
At last, we decided to make our own input classes that wrapped the C file I/O routines 
included in the C++ standard library. The input classes we have developed support 
UTF-8, UTF-16 BE and UTF-16 LE. The application was then tested under the 
Unicode build over Unicode test files and it operated smoothly and without problems. 
We implemented a successful sample application that deals with the Arabic language. 
You can view it on the companion CD. 

2.4 Input File Format 
 



The input file format of LEXcellent is very similar to that of LEX. This is because 
LEX is widely used and its input format explained in many compiler books. Thus, 
anyone familiar with LEX should be able to use LEXcellent with little trouble. 
 
The LEXcellent input file consists of five sections, a line beginning with %% separates 
each two: 
 
 
 
 
 
 
 
 
 
 

Figure II-4: LEXcellent – The Format of the Input File 
 
The specializations of these sections differ depending on the programming language 
used for code generation. For example, the 'Extended Definitions (1)' section specifies 
user code to be copied into the generated files. If the lexical analyzer is to be 
generated in C++, this section will be copied onto the top of the C++ source code file 
(.cpp file). If the lexical analyzer is to be generated in C#, this section will be copied 
onto the C# source code file (.cs file) just after the lexical analyzer class definition but 
inside the same namespace. 
 
Each section is detailed below. 

 
2.4.1 Top File Definition 
 
This section can be used for the following purposes: 
 

• Specifying options related to code generation. 
• Declaring macros for latter use in the specification. 
• Writing some code that is placed, as-is, at the top of the generated file. 
 

These can be specified in any order, and can be mixed together in the specification. In 
addition, comments can be freely added anywhere in this section and are copied 
without changes to the generated code. There are two types of comments:  
 

i) Single-line comments. The line should begin with // 
ii)  Comments delimited by /* */ . The delimiters should be placed at the 

beginning of the line without any indentation. Otherwise, their effect is 
ignored. 

 
The format of each of the above purposes is detailed below: 
 
Options  
 

Top File Definition  
%% 
Class Definition – User Code 
%% 
Rules  
%% 
Extended Definitions (1) – User Code 
%% 
Extended Definitions (2) – User Code  
 



Options related to code generation can be specified and configured in the Top File 
Definition  section using the following format: 
 
%option  OptionName  =  OptionValue 
 
For example, the following statement tells the code generator to use the C++ 
programming language for code generation: 
 
%option Language = C++ 
 
The following statement tells the code generator that the permitted range of Unicode 
characters is from 0x0000 to 0x007F: 
 
%option CharacterSet = [\d0-\d127] 
 
Lines describing options should be unindented. Otherwise, it will be considered user-
defined code that should be copied as-is into the generated code. This anomaly is 
found in the LEX input file format, too. That's why we preferred not to modify it. 
 
OptionName  and OptionValue  are case insensitive. In addition, each option has 
a pre-specified default value. If an option is not specified in the specification file, its 
default value is assumed. Thus, it is possible to write a specification file without 
explicitly specifying any option. 
 
Table II-1 lists the different configurable options in this section: 
 

Table II-1: Configurable Options in Top File Definition Section 
 

Option Name Option Values Default 
Value 

Description 

Language C++ 
C# 
Java 

C++ The programming language of the 
generated lexical analyzer. 

CharacterSet Character class 
(described below) 

[d0-d127] The subset of Unicode character 
range to use for the input of the 
lexical analyzer. 

Namespace Identifier Compiler The namespace of the generated 
lexical analyzer class. 

ClassName Identifier LexicalAnalyzer The lexical analyzer class name. 
FunctionName Identifier GetNextToken The pattern matching function 

name. 
ReturnType Identifier int The Return type of the pattern 

matching function. 
FileName Name and path of the file Lex The path and name of the 

generated lexical analyzer file(s) – 
Appropriate file extensions are 
appended automatically. 

CompressionTechniqu
e 

None 
Redundancy 
Pairs 
Best 

Redundancy The compression technique to use 
for compressing the lexical 
analyzer transition table. 

PairsThreshold A nonnegative integer 8 If pairs compression is used, this 
specifies the number of items 
above which, the state is 
considered dense and is 
represented by an array rather 
than a linked list. 



InvalidTokenAction Value to be returned by 
the function. 

-2 If the lexical analyzer faced an 
invalid token, then the pattern 
matching function returns by 
executing: 
return InvalidTokenAction;  

EOFAction Value to be returned by 
the function. 

-1 If the lexical analyzer reaches the 
end of file, then the pattern 
matching function returns by 
executing: 
return EOFAction; 

 
Macros  
 

Macros provide a way to give frequently used regular expressions more user-friendly 
names for later use. They help improve readability as well as maintainability of the 
specification. Indeed, macros provide a way for centralizing the changes; i.e. if we 
have a macro used in more than one regular expression and it is required to change the 
value of this macro, then the change is made only at the macro definition statement. 
This section contains declarations of simple macro definitions to simplify the scanner 
specification. Macro definitions have the form: 
 
MacroName Definition  
 
The MacroName is a word beginning with a letter or an underscore ('_') followed by 
zero or more letters, digits, or '_'. The Definition  is to begin at the first non-
white-space character following the name and continuing to the end of the line.  For 
example, 
 
DIGIT [0-9] 
 
The definition can subsequently be referred to using {MacroName} , which will 
expand to (Definition) . It is possible to invoke previously defined macros in the 
definition of the current macro. For example, 
 
DIGIT [0-9] 
LETTER [a-zA-Z] 
ID  {LETTER}({LETTER}|{DIGIT})*  
 
defines DIGIT  to be a regular expression which matches a single digit, LETTER to 
be a regular expression which matches an English letter (either in upper-case or 
lower-case), and ID  to be a regular expression which matches a letter followed by 
zero-or-more letters or digits.  A subsequent reference to 
 
{DIGIT}+"."{DIGIT}*  
 
is identical to 
 
([0-9])+"."([0-9])*  
 
and matches one-or-more digits followed by a '.' followed by zero-or-more digits. 
 



Lines describing macros should be unindented. Otherwise, it will be considered user-
defined code that should be copied as-is into the generated code. This anomaly is 
found in the LEX input file format, too. That's why we preferred not to modify it. 
 
User-Defined Code  
 
This is the code to be copied as-is into the generated file. Indented lines represent 
user-defined code, which is copied in order into the generated code. An alternative is 
to delimit a section of code by %{ %}  (copied as-is into the generated code after 
removing the delimiters). For example, 
 
 #include <iostream> 
%{ 
#include <cmath> 
using namespace std; 
%} 
 
These will be copied to the top of the generated header file as follows: 
 
#include <iostream> 
#include <cmath> 
using namespace std; 
 
The delimiters are to be placed at the beginning of the line. Otherwise, they will be 
ignored. The exact location in the generated code where user-defined code is pasted 
differs depending on which programming language the code uses. The following table 
illustrates the location in the generated code where user-defined code is pasted with 
respect to the used programming language. 

 
 

 

 

Table II-2: Top of Definition – User Defined Code Placement 
 

Programming Language Location 
C++ At the top of the header file (.h). 
Java At the top of the source file (.java). 
C# At the top of the source file (.cs). 

 
2.4.2 Class Definition 
 
In this section, the user writes code to be placed inside the lexical analyzer class 
definition. For a C++ developer, this allows declaring member variables, member 
functions, static variables and/or static functions. For a C#/Java developer, this allows 
declaring member/static variables and defining member/static functions. The code is 
copied as-is into the generated code. 
 
The exact location in the generated code where user-defined code is pasted differs 
depending on which programming language the code uses. The following table 



illustrates the location in the generated code where user-defined code is pasted with 
respect to the used programming language. 
 

Table II-3: Class Definition – User Defined Code Placement 
 

Programming Language Location 
C++ Inside the lexical analyzer class definition, in the 

header file (.h). 
Java Inside the lexical analyzer class definition, in the 

source file (.java). 
C# Inside the lexical analyzer class definition, in the 

source file (.cs). 

 
2.4.3 Rules 
 
The rules section contains a series of rules of the form: 
 
pattern   action  
 
where pattern must be unindented and the action must begin on the same line. A 
detailed discussion of patterns and actions is provided below. 
 
Patterns  
 
The patterns in the input are written using an extended set of regular expressions. 
These are: 

 

 

 

Table II-4: Regular Expression Patterns 
 

Regular Expression Description 
X match the character x 
. any character except newline (Note that any character 

means any character from the defined character set in the 
options) 

[xyz] a "character class"; in this case, the pattern matches either 
an x, a y, or a z 

[abj-oZ] a "character class" with a range in it; matches an a, a b, any 
letter from j through o, or a Z 

[ab[-] a "character class"; in this case, the pattern matches either 
a, b, [, or -. 

[^A-Z] a "negated character class", i.e., any character but those in 
the class.  In this case, any character EXCEPT an 
uppercase letter. 

[^] match ^ 
[^A-Z\n] any character EXCEPT an uppercase letter or a newline 
[] an empty word; a[]b matches ab 



r * zero or more r's, where r is any regular expression 
r + one or more r's 
r ? zero or one r's (that is, "an optional r") 
{Macro} the expansion of the "Macro " definition 
\x if x is an a, b, f, n, r, t, or v, then the ANSI-C interpretation 

of L'\x'.  Otherwise, a literal x (used to escape operators 
such as *) 

"[xyz]\"foo" the literal string: [xyz]"foo 
\O12 the Unicode character with octal value 12 
\o12 the Unicode character with octal value 12 
\x43F the Unicode character with hexadecimal value 0x043F 
\X1212FF the Unicode character with hexadecimal value 0x1212 

followed by two capital F's. 
\D48 the Unicode character with decimal value 48 
\d434344 the Unicode character with decimal value 43434 followed 

by the Unicode character L'4' 
( r ) match an r; parentheses are used to override precedence 
rs the regular expression r followed by the regular expression 

s; called "concatenation" 
R | s  either regular expression r or regular expression s 
 
Note that inside a character class, all regular expression operators lose their special 
meaning except escape \  and the character class operators, - , ] , and, at the beginning 
of the class, ̂. 
 
The regular expressions listed above are grouped according to precedence, higher 
precedence first.  Those grouped together have equal precedence.  For example, 
 
foo | bar* 
 
is the same as 
 
 (foo) | (ba(r*)) 
 
since the *  operator has higher precedence than concatenation, and concatenation is 
higher than alternation | .  This pattern therefore matches either the string "foo" or the 
string "ba" followed by zero-or-more r's.  To match "foo" or zero-or-more "bar"'s, use: 
 
foo | (bar)* 
 
and to match zero-or-more "foo"'s-or-"bar"'s: 
 
(foo | bar)* 
 
Actions  
 
Each pattern in a rule has a corresponding action, which can be any arbitrary 
C++/C#/Java statement.  The pattern ends at the first non-escaped whitespace 
character; the remainder of the line is its action.  If the action is empty, then when the 
pattern is matched the input token is simply discarded.  For example, here is the 



specification for a regular expression, which deletes all occurrences of the single-line 
C++ comment from the input: 
 
"//".* 
 
If the action contains a { , then the action spans until the balancing }  is found, and the 
action may cross multiple lines. LEXcellent knows about strings and comments and 
will not be fooled by braces found within them. Actions are allowed to begin with %{ 
and will consider the action to be all the text up to the next %} (regardless of ordinary 
braces, comments, and strings inside the action). 

 
2.4.4 Extended Definitions (1) 
 
This section and the next are optional and the input file may be terminated without 
specifying them. This section is used to write code that is placed as-is into the 
generated files. Thus, no syntactic checks are performed on the contents of this 
section. 
 
For a C++ developer, the code in this section is placed at the top of the generated 
source (.cpp) file. This can be used to include header files, declare/define external 
and/or static variables and define macros. For Java and C# developers, the code in this 
section is placed right after the end of the definition of the lexical analyzer class, but 
inside the same namespace. This can be used to define other classes, structures, and 
enumerations under the same namespace. The following table summarizes the 
placement of the code in the generated files according to the programming language 
under use. 
 

Table II-5: Extended Definitions (1) – User Defined Code Placement 
 

Programming 
Language 

Location 

C++ At the top of the generated source file (.cpp). 
Java Right after the end of the lexical analyzer class, but inside the 

same namespace in the generated source file (.java). 
C# Right after the end of the lexical analyzer class, but inside the 

same namespace in the generated source file (.cs). 

 
2.4.5 Extended Definitions (2) 
 
This section is also used to write code that is placed without modifications into the 
generated files. Hence, the tool does not perform syntactic checks on the contents of 
this section. 
 
For a C++ developer, the code in this section is placed at the end of the generated 
source (.cpp) file. Thus, it can be used to implement any member functions declared 
in the 'Class Definition' section or add any required code. For C# and Java developers, 
the code is placed at the bottom of the generated source file, after the end of the 
namespace. This can be used to define other namespaces along with their classes. The 



following table summarizes the placement of the code in the generated files according 
to the programming language used. 
 

Table II-6: Extended Definitions (2) – User Defined Code Placement 
 

Programming 
Language 

Location 

C++ At the bottom of the generated source file (.cpp). 
Java At the bottom of the generated source file, right after the 

namespace of the lexical analyzer class (.java). 
C# At the bottom of the generated source file, right after the 

namespace of the lexical analyzer class (.cs). 

 
2.5 Input File Error Handling 
 
In this section, we describe the error messages that LEXcellent provides for various 
types of errors encountered in input files, and indicate some of the situations that 
cause such errors. 
 

Unexpected End of File. 

Causes 

The input file terminates before defining the Rules section. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
sin (S|s)(I|i)(N|n) 
%% 
 

Bad Directive. 

Causes  

The Top File Definition section contains an invalid directive. The three valid 

directives are  

o %option name = value. 

This line specifies modifying the value of an option such as the language to be 

used for code generation. Although the option name is not case-sensitive, the 

keyword option is case-sensitive. 

o %{ 

This begins a block of code that will be placed as-is in the generated file. This 

block is terminated by %}. For further information, see “LEXcellent Input File 
Format”. 



o %% 

This terminates the Top File Definition section. 
 

Example 

The following sample includes two lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
 
/* The following line is valid. */ 
%option LanGuage = C++ 
 
/* The following line is invalid. */ 
%OPTION ClassName = Lexer 
 
/* The following line is invalid. */ 
%unknown_directive 

 

Invalid Option Specification. 

Proper option format: 

%option some_thing = some_value. 

Causes 

The option format is invalid. 
 

Example 

The following sample includes three lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
 
/* The following line is invalid. */ 
%option 
 
/* The following line is invalid. */ 
%optionLanguage = C++ 
 
/* The following line is invalid. Missing = */ 
%option ClassName Lexer 
 

The Specified Option is not Supported. 

Causes 

Although the format of the option is valid, it specifies an unsupported option. 
 

Example 

The following sample includes three lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
 
/* The following line is invalid. */ 
%option Lang = C++ 



 
/* The following line is invalid. */ 
%OPTION aBrandNewOption = Lexer 
 
/* The following line is invalid. */ 
%option Class Name = Lexer 

 

Invalid Macro Definition. Eliminate the Trailing Characters. 

Causes 

The macro definition is followed by spurious characters. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
Macro1 [a-z]+     /* A valid line. */ 
 
/* The following line is invalid. */ 
InvMacro [0-9]+ spurious characters are the cause o f the error  

 

The Specified Macro Name is Already Defined. 

Causes 

The user is trying to redefine a macro. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
/* The following line is valid. */ 
Macro1 [a-z]+ 
 
/* The following line is invalid. */ 
Macro1 [0-9]+ 

 

The Invoked Macro is Undefined. 

Causes 

The user invokes a macro within a regular expression that has not been defined. 
 

Example 

The following sample includes three lines that generate the specified error. 



%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
/* The following two lines are valid. */ 
Macro1 [a-z] 
Macro2 {Macro1}+ 
 
/*The following line is invalid*/ 
Macro3 {Macro4}+ 
Macro4 (a|b)* 
 
/*The following line is invalid due to self-referen ce*/ 
Macro5 a|{Macro5} 
 
%% 
/*Top class definition*/ 
%% 
 /* The following definition is invalid */ 
[0-9]{UndefinedMacro} { cout<<”I am invoking an 
undefined macro.”<<endl; } 
 
%% 
 

Invalid Macro Invocation within the Regular Expression. The Macro 
Name Contains Invalid Characters. 

Causes 

The name of the macro invoked by the user is not a valid identifier. The valid 

format for a macro name is: 

[a-zA-Z_][a-zA-Z_0-9]* 
 

Example 

The following sample includes two lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
/* The following two lines are valid. */ 
GoodMacro [a-z] 
BadOrGoodMacro {Macro1}+ 
 
/*The following two lines are invalid*/ 
Macro3 {Good Macro}+ 
Macro4 {Bad|GoodMacro}+ 
 

Bad Character Set Definition. Check the Supplied %option 
Character Set. 

Causes 

The user specifies an invalid character set. If the user does not specify a 

character set to use in the input file, then the default character set (ASCII [\x00-



\x7F]) is assumed. Otherwise, the valid format for character sets is the same as 

that for a valid character class. 
 

Example 

The following samples generate the specified error. 

 

/* The following line is invalid */ 
%option CharacterSet = ][ 
 
/* The following line is invalid. Unexpected end of  character 
class*/ 
%option CharacterSet = [\x00-\x7F 

 
Invalid Use of Parentheses within the Regular Expression. Check 
Balancing. 

Causes 

The user has put a spurious closing parenthesis ")" inside the regular expression. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
(a|b)*)abcd { cout<<”I am closing something that I did not 
open.”<<endl; }  

 

Unexpected End of the Regular Expression. Check Balance of 
Parentheses. 

Causes 

The user has opened one or more parentheses and the regular expression has 

terminated before balancing them. 
 

Example 

The following sample includes two lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
((a|b)* { cout<<”The regex should have terminated with 
)”<<endl; } 
 
 /* The following regular definition is valid. */ 
\((a|b)* { cout<<”The first ( is escaped is by the 



backslash.”<<endl; } 

 

Unexpected End of Regular Expression. 

Causes 

The user has opened double quotes “ but has forgotten to close them. It may be 

the case also that the user has opened a character class [ but has forgotten to 

close it. Finally, the user might have tried to invoke a macro but have forgot the 

closing brace }.  
 

Example 

The following sample includes three lines that generate the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
“bad { cout<<”bad 1”<<endl; } 
 
 /* The following regular definition is invalid. */  
{bad2 { cout<<”bad 2”<<endl; } 
 
 /* The following regular definition is invalid. */  
[a-z { cout<<”bad 3”<<endl; } 

 

Illegal Spaces within Regular Expression. 

Causes 

The regular expression contains white spaces. White spaces are not allowed 

inside a regular expression except after backslashes, inside double quotes, or 

inside character classes. 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
((a| b)* { cout<<”The fifth character is invalid.”<<endl; 
} 
 
 /* The following regular definition is valid. */ 
((a|\ b)*”  “[  ]  { cout<<”All spaces here are 
legal.”<<endl; } 

 
 



Negative Ranges within a Character Class are not Allowed. 

Causes 

A character class contains one or more range from a later character to an earlier 

one. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
[z-a] {cout<<”It should have been a-z.”<<endl;} 

 

One or More Characters within the Regular Expression are 
Outside the Range of the Defined Character Set. 

Causes 

Some characters in a regular expression are not covered by the character set 

defined by the user or by the default character set if the user has not specified a 

one. 
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [a-z] 
%option Language = C++ 
%% 
%% 
 /* The following regular definition is invalid. */  
A|b  { cout<<”A is outside [a-z].”<<endl; } 

Unknown Error. 

Causes 

An error has occurred that is not classified under any of the previous classes of 

errors.  
 

Example 

The following sample generates the specified error. 

%option CharacterSet = [\x00-\x7F] 
%option Language = C++ 
 
/* The following line is invalid. */ 
/ 
 
/* The following line is invalid. */ 
/43 



 
2.6 Thompson Construction Algorithm 
 
This phase in the lexical analyzer construction process is that responsible for 
converting the set of regular expressions specified in the input file into a set of 
equivalent Nondeterministic Finite Automata (NFAs). Thompson’s Construction is 
the algorithm we apply to transform a given regular expression into the corresponding 
NFA. The resulting NFA has a special structure that we exploit so that the remaining 
phases are performed more efficiently. 
 

Regular Expression Context-Free Grammar 
 

The language of all regular expressions is not regular, i.e., there is no regular 
expression characterizing the general pattern of any regular expression. This fact is 
easy to prove by observing that the language 
 

{  ( n a ) n : n ≥ 0 } 
 

which was proved to be irregular by the pumping-lemma for regular languages, is a 
mere subset of the language of all legal regular expressions. However, the language of 
all regular expressions can be expressed by means of a CFG. The production rules of 
the CFG employed in our application is listed below in EBNF: 
 

Regex         → Regex  or ConcateRegex  | ConcateRegex  
 

ConcateRegex  → ConcateRegex  Term | Term 
 

Term         → Term plus  | Term star  | 
Term question_mark  | Atom  

 

Atom         → LB Regex  RB | quoted_text | symbol  | 
               any  | epsilon  | ccl  | macro  

 
The following are the lexical definitions (the regular definitions of terminals, using 
regular expressions): 
 

or    → ‘ |’   

plus    → ‘ +’  

star    → ‘ * ’  

question_mark  → ‘ ?’   

LB   → ‘ ( ‘  

RB   → ‘ ) ’  

quoted_text  → \“(\ \ .|[^\ ” ])*\”  

symbol   → .  

any    → ‘ . ’  

epsilon   → “ [] ”  



ccl    → “ [ “([^\ ] ]|\ \ .)+” ] “  

identifier  → [ a- zA- Z_][ a-zA-Z_0-9 ]*  

macro   → “ { “ identifier ” } ”  
 
The start symbol of this CFG is Regex . All nouns beginning with a capital letter are 
non-terminals. All nouns beginning with small letters are terminals. Since we need to 
find an NFA that accepts the same language as the parsed regular expression, we add 
to all non-terminals the attribute nfa  that provides the NFA equivalent to the regular 
expression expressed by that nonterminal. The computation of that attribute follows a 
recursive manner such that the nfa  of a given nonterminal is constructed recursively 
from the nfa ’s  of its constituents. The production rules for all non-terminals are 
written again after augmentation with attribute equations: 

Table II-7: Regular Expression Context-Free Grammar 
 

Production Semantic Rules 

Regex1 → Regex 2 or 
ConcateRegex 

Regex1.nfa = Or(Regex 2.nfa, 
ConcateRegex.nfa) 

Regex → ConcateRegex Regex.nfa = ConcateRegex.nfa 

ConcateRegex 1 → 
ConcateRegex 2 Term  

ConcateRegex 1.nfa = 
Concat(ConcateRegex 2.nfa, 
Term.nfa) 

ConcateRegex → Term ConcateRegex.nfa = Term.nfa 

Term1 → Term 2 plus  
 

Term1.nfa = Closure_plus( 
Term2.nfa ) 

Term1 → Term 2 star 
 

Term1.nfa = Closure_star( 
Term2.nfa ) 

Term1 → Term 2 
question_mark 

Term1.nfa = Closure_quest( 
Term2.nfa ) 

Term → Atom Term.nfa = Atom.nfa 

Atom → LB Regex RB Atom.nfa = Regex.nfa 

Atom → symbol 
Atom.nfa = NfaFromSymbol( 
symbol.value ) 

Atom → epsilon Atom.nfa = NfaFromEpsilon() 

Atom → quoted_text 
Atom.nfa = NfaFromQuotedText( 
quoted_text.value ) 

Atom → ccl 
Atom.nfa = NfaFromCCL( 
ccl.value ) 

Atom → any   
Atom.nfa = NfaFromCCL( 
all_symbols ) 

Atom → macro  
Atom.nfa = ParseRegex( 
macro.regex ) 



 
The Thompson’s Construction algorithm provides a way to construct the NFA of 
some part from its subparts, such that the resulting NFA accepts the desired language. 
However, the regular expression grammar we have employed has other features and 
operations that are not explicitly described in the algorithm. Although these features 
can be defined in terms of the basic features and operations covered in the algorithm, 
the definition will be inefficient, as will be seen later as we describe the algorithm. 
 
We begin by describing the basic features and operations covered in the algorithm. In 
the following illustrations, the states drawn outside boxes are those that have been 
newly added. 
 
 If we have a regular expression consisting of only one symbol s, then an NFA that 
accepts the same language is given by: 
 

 
Figure II-5: NFA for a One-Symbol RegEx 

 
This shows how the function NfaFromSymbol is implemented. 
 
Now, suppose that we have the regular expression r | s, where r and s represent any 
two regular expressions. Suppose that we have successfully constructed the NFA of 
the regular expression r  and that of the regular expression s. We can construct an 
NFA that accepts the same language of the regular expression r | s as follows: 
 

 
Figure II-6: NFA for Two ORed RegEx's 

 
This shows how the Or  function used in the first semantic rule is implemented. 
Assume that we are to construct the NFA equivalent to the regular expression r s, and 
inductively assume that we have available the NFA of r and the NFA of s. Then, we 
can construct the NFA of their concatenation by eliminating the start state of s after 
duplicating all its transitions into the final state of r , and setting as the final state of 
the new NFA the final state of s. The configuration is shown below: 
 

 



Figure II-7A: NFA for Two Concatenated RegEx's 

 
It could have been alternatively made as follows: 
 

 
Figure II-7B: NFA for Two Concatenated RegEx's 

 
However, the former configuration takes less storage due to the elimination of one of 
the states. We have implemented the Concat used in the third semantic rule so that 
it achieves the former configuration. 
 
Assuming that we have the regular expression r*  and that the NFA of the regular 
expression r is available. Then the final operation described in the method, which is 
the Kleene Closure (*), is implemented as follows: 

 
Figure II-8: NFA for a RegEx Closure 

 
The above NFA indeed accepts zero or more occurrences of r. This shows how the 
Closure_star is implemented. Next, we describe how the other features and 
operations are implemented. We begin by constructing the NFA of the empty word 
(epsilon  or []  in our grammar): 
 

 
Figure II-9: NFA for the Empty Word (ε) 

 

This is how the function NfaFromEpsilon is implemented. The regular 
expression r+  means one or more occurrences of r. Although this could have been 
implemented as r r* ; we have used another method to implement it that takes much 
less space than the former technique. The configuration is shown below: 
 

 
Figure II-10: NFA for a RegEx Positive Closure 

 



If the number of states in the NFA of r  is M, the number of states in the resulting 
NFA would be M+2. However, the former technique results in an NFA that has 2M+1 
states. This shows how the function Closure_plus is implemented. By the 
regular expression r?, we mean at most one occurrence of r . Implementing this as r | 
[]  will result in an NFA that has M+3 states. However, we implemented it so that it 
takes only M+1 states. The configuration is shown in figure II-11: 
 

 
Figure II-11: NFA for an Optional RegEx 

 
This shows how the function Closure_quest is implemented. The regular 
expression a b c should be interpreted as a followed by b followed by c. Hence, it is 
implemented as a b c. The NFA of a b c is shown in ExFig 2-4: 
 
 

 
ExFig 2-4: NFA of the regex (a b c) 

 
This shows how the function NfaFromQuotedText is implemented. The reason 
behind enclosing a string by double quotes rather than writing it directly is that many 
of the special symbols, having special meaning in the language of all regular 
expressions, lose that special meaning inside the double quotes. For example, “ |”  
means exactly one occurrence of the symbol |. The regular expression [abA-Zde] is 
equivalent to the regular expression a | b | A | B | … | Y | Z | d | e. However, 
constructing the NFA of the regular expression using the latter mechanism wastes 
much space since each “Or” adds new states. We have made an informal technique to 
implement this as seen in ExFig 2-5: 
 

 
ExFig 2-5: Example 

 
That is, we represent this transition by an edge labeled with a set of symbols. We 
move from the start to the final state if we read any of the characters included in that 
set. We associate with each edge a pointer that is initially set to null . If the 
transition of the edge is based on a character class, then we allocate a portion in the 
memory to store a representation of that set, and store its address in that pointer. This 
shows how the function NfaFromCCL is implemented. If the regular expression is a 
mere invocation of a previously defined macro, then we parse the regular expression 
of that macro. The resulting NFA is the NFA of the macro. Thus, any valid regular 



expression can be converted into an equivalent NFA using the aforementioned 
guidelines. 
 
As we previously stated, the NFA resulting from the above procedures has a special 
structure that allows efficient implementation of the next phase which is the subset 
construction. The properties of the obtained NFA are: 
 

• The NFA has a unique, non-enterable start state. 
• The NFA has a unique, non-exitable final state. 
• A given state has exactly one outgoing edge labeled by a symbol, a set of 

symbols (in case a character class), or at most two edges labeled ε. 

 
 
2.7 Subset Construction Algorithm 
 
Now we need to convert the NFA obtained from the Thomson Construction phase, 
into a DFA to be used in the next phases. The basic idea here is that sets of states in 
the NFA will correspond to just one state in the DFA.  
 

• From the point of view of the input, any two states that are connected by an ε-
transition may as well be the same, since we can move from one to the other 
without consuming any input characters. Thus states which are connected by a ε-
transition will be represented using the same states in the DFA. 

 

• If it is possible to have multiple transitions based on the same symbol, then we can 
regard a transition on a symbol as moving from a state to a set of states (i.e. the 
union of all those states reachable by a transition on the current symbol). Thus 
these states will be combined into a single DFA state. 

 

2.7.1 The Basic Idea 
 

To perform this operation, let us define two functions: 
 

o The ε-closure function takes a state and returns the set of states reachable 
from it based on (one or more) ε-transitions. Note that this will always include 
the state itself. We should be able to get from a state to any state in its ε-
closure without consuming any input. 

 

o The function move takes a state and a character, and returns the set of states 
reachable by one transition on this character. 

 
We can generalize both these functions to apply to sets of states by taking the union of 
the application to individual states. For example, if A, B and C are states; 
 
move({A,B,C},‘a’) = move(A, ‘a’) U move(B, ‘a’) U m ove(C, 
‘a’). 

 
1) Create the start state of the DFA by taking the ε-closure of the start state of the 

NFA. 
 



2) Perform the following for the new DFA state: For each possible input symbol: 
a. Apply move to the newly-created state and the input symbol; this will 

return a set of states. 
b. Apply the ε-closure to this set of states, possibly resulting in a new set. 

This set of NFA states will be a single state in the DFA. 
 

3) Each time we generate a new DFA state, we must apply step 2 to it. The process is 
complete when applying step 2 does not yield any new states. 

 

4) The finish states of the DFA are those which contain any of the finish states of the 
NFA. 

 

2.7.2 The Implementation 
 
BuildDFA(list_of_states, list_of_actions) 
 

o list_of_states:  A vector of the states in the NFA to be converted into a 
corresponding DFA. 

o list_of_actions:  A vector of the actions to be performed if the input string 
terminates while the machine is at the corresponding state. The non-accepting 
states have a corresponding action of  NULL. 
 

This procedure takes an NFA as a parameter in the form of two parallel vectors: The 
vector of states and the vector of corresponding actions. 
 
The procedure is a member function in the DFA class; when the procedure is invoked, 
the host DFA will be set in such a way that it becomes equivalent to the input NFA. 
 
The procedure makes use of the following classes: 
 

o IntermediateState:  This class holds a subset of the states in the input 
NFA corresponding to one state in the output DFA. 

 

o IntermediateStateList:  A linked list of intermediate states. 
 
Besides using the following helper functions: 
 

o eClosure():  This function takes an NFA state as a parameter and returns 
the ε-closure of that state. 

 
For example: Given the following NFA which is obviously equivalent to the regular 
expression (a* | b): 



 
ExFig 2-6: NFA for ( a * | b ) 

 
The procedure starts by constructing a single subset containing the start states of the 
input NFA, which, in our case, is {1}. It runs the eClosure()  procedure to obtain 
the ε-Closure of the subset. This will give {1, 2, 3, 5, 6, 7} in our case. Such subset 
becomes an intermediate state and it should be added to the intermediate states list 
(the DFA). This will give the following initial value to the DFA State Table: 
 
 

ExTab 2-6A: DFA state table 
 

DFA State NFA Subset Next State (a) Next State (b) 
A {1, 2, 3, 5, 6, 7}   

 
The next step is to determine the next state of the DFA if the current state is A and the 
input character is a or b.  
 
Given the current state is A and input character is a then the next state can be defined 
as "the set of all NFA states that can be reached from any of the NFA states in A by 
following an edge labeled a in the original NFA."  
 
Thus, for each NFA state x, where x Є A, run the NFA against ( x, a). Then take the 
closure of the result. That is, ε-Closure (nxtStat (NFA, x, 'a')), for each x Є A. This 
will give the following Next State Table: 
 

ExTab 2-7A: DFA next-state table 
 

State Next State (a) Closure (Next State(a)) 
1 - - 
2 - - 
3 {4} {3, 4, 5, 6} 
5 - - 
6 - - 
7 - - 
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Since the subset {3, 4, 5, 6} is not already in the intermediate states list (that is, to the 
constructed DFA), then we have to add it. And we shall give it a name, say B. Thus, 
nxtStat(DFA, A, 'a') = B. 
 
Repeating the same steps for nxtStat(DFA, A, 'b') we get the following Next State 
Table: 
 

ExTab 2-7B: DFA next-state table 
 

State Next State (b) Closure (Next State(b)) 
1 - - 
2 - - 
3 - - 
5 - - 
6 - - 
7 {8} {6,8} 

 
Similarly the resulting subset {6, 8} doesn't belong to the DFA, then we have to add a 
new state, let it be C, to the DFA, such that nxtStat(DFA, A, 'b') = C . This will give 
the following DFA Table: 

 

 

 

 

ExTab 2-6B: DFA state table 
 

DFA State NFA Subset Next State (a) Next State (b) 
A {1, 2, 3, 5, 6, 7} B C 
B {3, 4, 5, 6}   
C {6, 8}   
 
Now we repeat all the above mentioned steps on the next incomplete row in the DFA 
State Table. The operations continue until all the intermediate states are fully 
determined.  
 
The final table configuration will be like ExTab 2-6C: 

 

ExTab 2-6C: DFA state table 
 

 
A state (whether deterministic or not) is said to be an accepting state if there is an 
action associated with it. That is, the ith state in the list_of_states  is an 
accepting state if the ith action in the list_of_actions  is not NULL. 
 

DFA State NFA Subset Next State (a) Next State (b) 
A {1, 2, 3, 5, 6, 7} B C 
B {3, 4, 5, 6} B - 
C {6, 8} - - 



A DFA state is said to be an accepting state if at least one of the NFA states that it 
contains is an accepting state. In our case, all the DFA states contain NFA accepting 
states, since the only NFA accepting state available, which is state 6, belongs to all the 
states in the new DFA. We can say that all the DFA states A, B and C are accepting. 
 
The resulting DFA is shown in the next figure. Obviously it corresponds to the regular 
language (a* | b), which is that same as that of the NFA. 
 

 
ExFig 2-7: The final DFA 

2.7.3 Contribution 
 

It has been noticed that the traditional subset construction algorithm produces so 
much intermediate states than needed. We have modified such algorithm to get rid of 
redundant states. 
 
For example, given the following NFA: 

 
ExFig 2-8: Identifier NFA 

 
The traditional subset construction should give the following DFA: 
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ExFig 2-9: Identifier DFA – The traditional algorithm 

 
We noticed that some of the states in the original NFA have no outgoing transitions 
but the ε-transitions. We have called such states empty states; other states that have 
character-labeled-edges are called active states. When comparing intermediate states, 
two intermediate states are said to be the same if there active states are the same, that 
is, we don’t take empty states in consideration. This contributes to a considerable 
reduction in the number of resulting intermediate states.  
 
Our algorithm should give the following DFA, as illustrated in ExFig 2-10: 
 

 
ExFig 2-10: Identifier DFA – The enhanced algorithm 

 
It's noteworthy that this idea was mentioned by Aho in his classical book about 
compilers [2]. Thus it's indeed a previously realized optimization, but we reached it 
alone before reading it in his book. That's why we listed it under the title 
"Contribution". 

 
2.8 DFA Minimization 
 
After the regular expression passed Thomson Construction and Subset Construction 
phases; a DFA resulted. But it's not the optimal one. The role of the DFA 
minimization algorithm is to produce a new DFA with the minimum number of states. 
 
The algorithm can be illustrated by the following pseudo-logic mentioned below. 
 
INITIALLY  
Partition the original states into a series of grou ps. Non-accepting 
states comprise a group, and accepting states havin g the same 
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accepting string are grouped together. A one-elemen t-group containing 
a single accepting state is permissible. Groups are  stored in a 
Variable called Groups. 
 
REPEAT UNTIL NO NEW GROUPS ADDED 
 BEGIN 
   FOREACH  (GROUP G in Groups) 
   BEGIN 
      GROUP new   = Empty. 
      STATE first  = First state in group G. 
      STATE next   = Next state in Group G or NULL if none. 
      WHILE ( next  != NULL) 
       BEGIN 
         FOREACH (CHARACTER C) 
         BEGIN 
             STATE goto_first = State reached by making a transition 
                                  on C out of first . 
             STATE goto_next   = State reached by making a transition 
                                   on C out of next.  
            IF ( goto_first  is not in the same group as goto_next ) 
            THEN 
               Move next  from the G into new.  
            ENDIF 
         END_FOREACH 
         next     = The next state in group G or NULL if none. 
      END_WHILE 
      IF ( new is not empty) 
      THEN 
         Add it to Groups . 
      END_IF 
   END_FOREACH 
ENDREPEAT 
 
// Generate the new DFA 
DFA Min_DFA  
 
 
FOREACH (GROUP G in Groups) 
BEGIN 
   Min_DFA.CREATE(NEW_STATE)  
   FOREACH (CHARACTER CH) 
   BEGIN 
      ADD transition on NEW_STATE on C to the group in which 
       the destination exists. 
   END_FOREACH 
END_FOREACH 
                                                                               

For example if we have as an input to the algorithm the following DFA represented in 
transition matrix of ExTab 2-8A: 
 

ExTab 2-8A: DFA transition matrix 
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ExTab 2-8B: DFA transition matrix 
 
Initially, the matrix is partitioned into 
two parts; one for the accepting states (0, 
1, 2, 4) and another for the non-accepting 
states (3, 5, 6, 7). ExTab 2-8B with the 
illustration. 
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ExTab 2-8C: DFA transition matrix 
 

Starting with D column, states 0, 1 and 4 
all go to a state in partition 0 on a D, but 
state 2 goes to partition 1 on a D, and 
thus state 2 must be removed from 
partition 0. Continuing in the same 
manner, state 3 is also distinguished by a 
D. Changes are illustrated in ExTab 2-
8C.  
 
 
 
 
 

 

ExTab 2-8D: DFA transition matrix 

  
Now, going down the dot (.) column, the 
dot distinguishes state 1 from states 0 and 
4 because state 1 goes to a state in 
partition 1 on a dot, but states 0 and 4 go 
to states in partition 2. The new partitions 
are on the last column in ExTab 2-8D. 
 
 
 
 
 
 
 

ExTab 2-8E: DFA transition matrix 
  

Going through the array a second time, 
column by column, now D distinguishes 
state 0 from state 4 because state 0 goes 
to a state in partition 4 on a D, but state 4 
goes to a state in partition 0 on a D, and 
here no other states can be distinguished 
from each other, so it's done. So the final 
partition looks like ExTab 2-8E. 
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ExTab 2-8F: DFA transition matrix 
 

Finally we build a new transition matrix. Each 
partition is a single state in the minimized DFA 
and all next states in the original table are 
replaced by the partition in which these states are 
found. Hence, for example, states 5, 6 and 7 are 
all in partition 1. All references to one of these 
states in the original table are replaced by a 
reference to the new state 1. So the new transition 
table looks like ExTab 2-8F. 
 

 
2.9 DFA Compression 
 

 
Figure II-12A: Class Diagram for the Compressed DFA 

 
The DFA generated from the scanner generator is always represented in the form of a 
two dimensional transition matrix with one dimension representing the states and the 
other representing the input; an element in the matrix indexed as (state, character) 
merely determines the next state of the DFA if a certain input character has been 
encountered while the machine is in the given state. It has been noticed that several 
columns (and perhaps rows) are redundant in the resulting matrix. Such redundancy 
becomes significant when dealing with Unicode (as in our case) where the DFA 
transition matrix becomes extremely large. 
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ExFig 2-11: A transition matrix suitable for compression 

Several techniques were devised to remove such redundancy, that is, to compress the 
transition matrix. Amongst the techniques used we use two in our package: 
Pairs Compression (with its two flavors, normal and default) and Redundancy 
Removal Compression. 
 
Another choice given to the user is to let the package choose the Best Compression 
technique in terms of the compression ratio. We shall give more details about the two 
techniques used in our package in the following two subsections: 
 
2.9.1 Redundancy Removal Compression 
 

The basic idea behind this technique is to create two supplementary arrays to 
eliminate the redundant rows and columns.  

 
ExFig 2-12: Redundancy removal compression 

 
All the redundant rows are eliminated into one row. The resulting unique rows are 
grouped together in the compressed matrix. Such matrix cannot be accessed directly 
using the state number; rather it is accessed using a "row map"; that is, a one 
dimensional array indexed by the state number and holding in each of its elements a 
pointer to a row in the compressed matrix.  
 
Thus, the transition matrix is now accessed indirectly in two steps. Use the state 
number to index the row map and to get a pointer to the appropriate row. Then use 
this pointer to access the appropriate row. A -1 indicates a "Hell" state. 
 
The same steps are applied to columns to eliminate the redundant ones, using a 
"column map". The final transition matrix is shown in ExFig 2-12. 
 
 

2.9.2 Pairs Compression 
 

This technique gives a better compression ratio if the transition matrix is sparse, 
however, access time is usually longer. The basic idea behind this technique is to 
convert the rectangular transition matrix to a jagged matrix. The new matrix is simply 
a group of one-dimensional rows of unequal length.  
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The compressed matrix is represented in memory as an array of pointers; the length of 
such an array equals the number of rows in the original matrix. Each pointer points to 
a row, represented as a one-dimensional array, where the different rows are not 
necessarily the same length. ExFig 2-13 illustrates the logical memory organization. 
 

 
 

ExFig 2-13: Pairs compression 

 
Each row begins with an integer that determines the number of character / next state 
pairs in the row.  If the number at the beginning is 0 then the row is not compressed at 
all, that is, the compressed row is the same as the original one. Such case occurs when 
the compressed row is more memory extensive than the original row itself. The row 
is, therefore, accessed normally by using the input character as an index in the one-
dimensional array that represents the row. 
 
In the typical case, however, the number at the beginning of the row is a positive 
integer that determines the number of pairs in the compressed row. The row is then 
searched pair by pair for the right one. If the search is terminated without a result then 
the next state is the "Hell" state, or -1 . 
 
Accessing the transition table this way is apparently O(n), but its compression ratio is 
much better if the original transition table is sparse. 

 
2.10 The Generated Scanner 
 
The code generation phase is the last step in the scanner generation process. By then, 
the regular expressions, which the user provided as an input, have been converted into 
a NFA, converted into a DFA, minimized, and finally compressed by any of the 
available compression techniques (or may be not compressed at all). 
 
Each of the compressed DFA classes (or the uncompressed DFA class) has its own 
code generation functions. Generally speaking, the scanners generated by any of the 
three possibilities (DFA, Pairs Compression, Redundancy Removal) are essentially 
the same except for the transition mechanisms, that is, the mechanism by which the 
machine switches from one state into another. 
 
Every scanner can be divided into three parts: the transition table, the input 
mechanism and the driver.  
 

• The transition table is a two-dimensional data structure, usually represented as a 
rectangular matrix or a jagged matrix; it determines the next state of the scanner 
given the current state and the current input symbol. 
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• The input mechanism is the mechanism by which the scanner deals with the input 
data; its functionality includes dealing with the Unicode encoding schemes in a 
transparent manner, keeping track of the current line number and column number 
in the input file for buffering and error handling purposes.  

 

• The driver is the software module that invokes the input mechanism to read the 
input file symbol by symbol. It uses the transition table, together with a data 
variable that keeps track of the current state, to execute the DFA that represents 
the regular grammar specified by the compiler developer. When the machine 
reaches an accepting state, it executes the appropriate action code associated with 
the given state. 

  

 
Figure II-12B: Class Diagram for the Compressed DFA 

 
We will describe each of these components separately, and then we will provide a 
complementary explanation of the Scanner  class itself. 

 
2.10.1 The Transition Table 
 
The structure of the transition table depends on the compression settings specified by 
the compiler developer in the input file. More details about the compression of 
transition tables may be found in the "DFA Compression" section (2.9). 

 
2.10.1.1 No Compression 
 

In case no compression is applied to the DFA, the generated transition table is merely 
a 2-dimensional matrix where the row index represents the state and the column index 
represents the input symbol. Determining the next state is achieved by substituting the 
current state and the current input symbol in the row and column indexes respectively; 
the resulting matrix cell holds the next state of the machine. 
 
For example, in C# the transition table will be defined as follows: 
 
private int [,] transitionTable = new int  [numberStates, sizeCharSet]; 

 



Where numberStates is the number of states in the DFA representing the regular 
language specified by the compiler developer, and sizeCharSet is the size of the 
character set to be used by the generated scanner. 
 
Accessing the table will be as follows: 
 
currentState = transitionTable[currentState, curren tSymbol]; 

 
2.10.1.2 Redundancy Removal Compression 
 

In case of Redundancy Removal compression, the transition table is compressed into 
a 2-dimensional array whose size is smaller than or equal to the original matrix size. 
The new matrix is obtained by removing the redundant rows and columns from the 
original one. Two linear vectors (1-dimensional arrays) are used to index the new 
compressed matrix: 
 

• The Row Map: Its size equals the number of states in the original matrix. It may 
be indexed by the state number to determine, for a given current state, which row 
in the compressed matrix is to be used in next-state lookup. 

 

• The Column Map: Its size is equal to the size of the character set of the scanner. It 
may be indexed by symbols to determine, for a given current symbol, which 
column in the compressed matrix is to be used in looking up the next-state. 

 
For example, in C# the transition table will be defined as follows: 
 
int  [] rowMap = new int  [numberStates]; 
int  [] columnMap = new int [sizeCharSet]; 
int  [,] transitionTable = new int [newRowsCount, newColumnsCount]; 

 
Where numberStates  is the number of states in the DFA representing the regular 
language specified by the compiler developer, sizeCharSet  is the size of the 
character set to be used by the generated scanner, newRowsCount  is the number of 
rows in the new compressed matrix, and newColumnsCount  is the number of columns 
in the new compressed matrix. 
 
Accessing the table will be as follows: 
 
currentState = transitionTable [rowMap[currentState ],  
      columnMap[currentSymbol]]; 

 
2.10.1.3 Pairs Compression 
 

In case of Pairs Compression, the transition table is compressed into a jagged matrix 
together with a linear vector (1-dimensional array) whose length equals the number of 
states in the DFA. Each element in the linear vector points to one of the rows in the 
jagged matrix, that is, it determines which of the rows in the jagged matrix is to be 
used while looking up the next state.  
 
For example, in C# the transition table will be defined as follows: 
int  [][] transitionTable = new int [numberStates][]; 



where numberStates  is the number of states in the DFA representing the regular 
language specified by the compiler developer. 
 
Accessing the transition table is not as easy as the previous two techniques. Since the 
matrix is jagged, we cannot lookup the next state by simple array indexing. We have 
to search the appropriate row (the one corresponding to the current state) as if we 
were searching a linked list. This is done by the driver. 

 
2.10.2 The Input Mechanism 
 
LEXcellent generates an input stream class, called CodeStream , to act as an 
interface between the generated lexical analyzer and its input files. The main tasks 
performed by CodeStream  are: 
 
• Decoding the Unicode input files in a transparent manner, that is, the lexical 

analyzer shouldn't care whether the input file is in the Unicode format or not. 
 

• Keeping track of the current line number and column number so that the lexical 
analyzer might make use of them is error handling or other purposes. 

 

• Giving the lexical analyzer the capability to bookmark positions within the input 
file. The lexical analyzer can backup an arbitrary number of positions in a stack to 
be restored later. This gives the lexical analyzer higher flexibility in looking ahead 
and backtracking. 

 
Now, we shall give a brief description of the CodeStream  class, we shall assume – 
without loss of generality – that the output language, specified by the compiler 
developer, is C++. However, such claim should never affect our description since all 
the lexical analyzers generated by LEXcellent share essentially the same structure. 

 
2.10.2.1 Constructor 
 

The CodeStream  class has only one constructor: 
 
CodeStream(tifstream& _stream): 
 stream(_stream), 
 curlineno(1), 
 curcolumn(1), 
 nextlineno(1), 
 nextcolumn(1), 
 position(0) 
 {} 

 
It takes an STL input stream as a parameter and stores it in the local variable stream . 
Besides, it initializes the data members of the class so that the current position is 
adjusted to the beginning of the input file and the line and column numbers are 
initialized by 1. 



2.10.2.2 Data Members 
Table II-8: CodeStream Class Data Members 

 

Data Member Description 
private  tifstream& 
stream  

The STL input stream wrapped by the code stream. It should 
be obtained through the constructor. 

private  stack< int > 
lines 

A stack that allows the lexical analyzer to backup the current 
line number. Changes in that stack are always accompanied 
by changes in other stacks to accomplish the overall task of 
backup-restore of positions. 

private  stack< int > 
cols 

A stack that allows the lexical analyzer to backup the current 
column number. Changes in that stack are always 
accompanied by changes in other stacks to accomplish the 
overall task of backup-restore of positions. 

private  stack< int > 
positions 

A stack that allows the lexical analyzer to backup the current 
stream position (in bytes). Changes in this stack are always 
accompanied by changes in other stacks to accomplish the 
overall task of backup-restore of positions. 

private  int  
curlineno 

Holds the line number at the beginning of the last consumed 
token. 

private  int  
curcolumn  

Holds the column number at the beginning of the last 
consumed token. 

private  int  
nextlineno  

Holds the line number at the end of the last consumed token. 

private  int  
nextcolumn  

Holds the column number at the end of the last consumed 
token. 

private  int  
position  

The current stream position (in bytes). That is, the number 
of bytes that have been consumed up till now. 

 
2.10.2.3 Methods 

Table II-9: CodeStream Class Methods 
 

Methods Description 
int  CurrentLineNo()  const  Returns the line number before the last consumed 

token. It merely returns the value of the curlineno  
data member. 

int  CurrentColumn()  const Returns the column number before the last 
consumed token. It merely returns the value of the 
curcolumn  data member. 

int  NextLineNo()  const Returns the line number after the last consumed 
token. It merely returns the value of the 
nextlineno  data member. 

int  NextColumn() const Returns the column number after the last consumed 
token. It merely returns the value of the 
nextcolumn  data member. 

TCHAR Peek()  Peeks the input stream, that is, returns the next 
symbol without consuming it. The symbol may be 
more than one byte depending on the encoding 



scheme. The position , curlineno  and 
curcolumn  variables aren't affected by this 
method. 

Void  Advance Advance the position of the stream to after the next 
symbol. That is, skip the next symbol. It makes one 
symbol-size jump in the input file. 

TCHAR ReadChar()  Read the next symbol and advance your position. 
The symbol may be more than one byte depending 
on the encoding scheme. The position , 
curlineno  and curcolumn  variables are affected 
by this method. 

Void  Backup() Save the current position, line number and column 
number values in the appropriate stacks. 

Void  Restore()  Restore the last saved position, line number and 
column number values from the appropriate stacks. 
That is, pop the tops of the stacks. 

Void  ReplaceLastBackup()  Delete the last saved position, line number and 
column number values from the appropriate stacks. 
Then save the current position, line number and 
column number values. 

Void  RemoveLastBackup()  Delete the last saved position, line number and 
column number values from the appropriate stacks. 

Void  SaveCurrentPosition()  This function should be called by the lexical 
analyzer before consuming any token. It updates 
the line and column numbers by making the 
current column and line numbers equal to the next 
column and line numbers respectively. That is, set 
the current line and column numbers to the 
beginning of the next token. 

 
2.10.3 The Driver 
 
The driver is the component of the lexical analyzer that keeps track of the current 
state and invokes the input mechanism (the CodeStream  class) to get the next symbol 
from the input file. Then, given the current state and input symbol, it looks up the 
transition table for the next state.  
 
During the process of consuming a token, the driver keeps track of the last accepting 
state it had encountered. When it eventually crashes into an error state it backtracks to 
that last accepting state and it executes the code associated with that state. This allows 
the driver to match the longest possible token given the regular definition. For 
example, on confronting the input 
 
intex 
 

it matches the identifier intex  rather than the keyword int . After executing the action 
code, the driver will go on consuming the next token unless the action code does 
make a return statement. 



On the other hand, if the driver doesn't encounter any accepting states before entering 
the error state, it executes the invalid-token action; that is, the action determined by 
the compiler developer to be executed when an invalid token is consumed. Such 
action must be either a function to be called or a value to be returned. The driver must 
return immediately after executing the invalid-token action. 
 
Execution continues until the driver encounters the EOF (End-Of-File) symbol, where 
it executes the EOF-action and returns immediately. Further invocation of the driver 
will do nothing but executing the EOF-action again. Similar to the invalid-token 
action, the EOF-action must be either a function to be called or a value to be returned. 
 

 
 

Figure II-13: Driver Flowchart 

 
Note that if the action code of the last accepting state doesn't return, the driver will not 
return until an invalid-token or an EOF is encountered. 



 
2.10.4 The Lexical Analyzer Class 
 
Now we will give a brief explanation of the structure of the lexical analyzer class. The 
name of such a class is provided as an option in the LEXcellent input file. The class 
encapsulates the driver as a member function (whose name is a developer option, too); 
and encapsulates the transition table as a member variable, besides other helper 
functions and data members.  

 
2.10.4.1 Constructors 
 

The constructor of the lexical analyzer class performs necessary initializations. It 
takes, as a parameter, an STL input stream, and then calls the constructor of its 
CodeStream  object and passes the former STL stream as a parameter to it.  
 
Other initializations include setting the last accepting state to the error state -1 , 
setting the current state to the start state index 0 , setting the backup length to 0  and 
negating the EOF flag. Such initialization steps will be repeated before reading each 
token. 
 
<LexicalAnalyzerClassName> (tifstream& stream) : 
 fin(stream), 
 lastAccepting(errorState), 
 currentState(startStateIndex), 
 backupLength(0), 
 endOfFile(FALSE) 
 {} 

 
2.10.4.2 Constants 
 

The generated lexical analyzer class contains a set of constants whose values are set 
by LEXcellent at generation time. These are listed in table II-10. 
 

Table II-10: Lexical Analyzer Class Constants 
 

Constant Description 
private static  const  
int  startStateIndex  

The index of the start state. The default value is 0. 

private static  const  
UTCHAR startSymbol  

The first symbol in the character set of the lexical 
analyzer, provided as an option in the LEXcellent input 
file. 

private static  const  
UTCHAR finalSymbol  

The last symbol in the character set of the lexical analyzer, 
provided as an option in the LEXcellent input file. 

private static  const  
BOOL accepting[]  

An array whose size is equal to the number of states. It 
determines, for each possible state, whether it is accepting 
or not. 

Besides, the lexical analyzer class contains the transition map as a constant private 
member. The data members declared differ according to the compression technique 
utilized, as mentioned in the Transition Table subsection. 
2.10.4.3 Data Members 



Table II-11: Lexical Analyzer Class Data Members 
 

Data Member Description 
private  CodeStream fin  The code stream that the lexical analyzer deals 

with. 
private  TCHAR currentChar The most recently consumed character obtained 

from the input stream. 
public int  lastAccepting The last accepting state encountered. 
private  int  backupLength  The number of characters consumed since the last 

accepting character. 
private  int  currentState  The current state. 
private  tstring lexeme  The lexeme of the most recently consumed token. 
private  BOOL endOfFile Determines whether the end of file has been 

encountered or not. 

 
2.10.4.4 Methods 

Table II-12: Lexical Analyzer Class Methods 
 

Function Name Description 
private static  int  
indexOf(UTCHAR c)  

Checks if the given character is in the character set, 
if so, return its numeric order. 

CodeStream& CodeStream()  Returns a reference to the code stream used by the 
lexical analyzer. It merely returns the value of the 
private data member fin . 

tstring Lexeme() Returns the lexeme of the most recently consumed 
token. It merely returns the value of the private 
data member lexeme . 

 
Besides, the lexical analyzer class contains a parameterless function that represents 
the driver of the lexical analyzer. The name and the return type of the driver function 
are provided by the compiler developer as options in the LEXcellent input file. 

 
2.11 Helper Tools 
 
As was stated in the introductory part of this document, the main goal behind our tool 
is to facilitate the compiler construction process. For that end we provide – both in the 
lexical analysis and parsing phases – a set of helper utilities that automate some tasks 
normally encountered during the process. 
 

2.11.1 Graphical GTG Editor 
 
The set of patterns that the lexical analyzer recognizes are specified as regular 
languages. A regular language over a certain character set is the set of all strings over 
that character set that have the same pattern as a particular regular expression, i.e., a 
language that can be defined by a regular expression is called a regular language. 
Relying only on regular expressions to specify the regular patterns of the lexical 
analyzer can often be cumbersome and error-prone. Indeed, not every regular pattern 



is best specified by a regular expression. In some situations, it is very hard to deduce 
the regular expression of a particular regular pattern. In such cases, using an 
alternative – yet equivalent – method to express the regular pattern can be helpful and 
straightforward. A generalized transition graph (GTG) is one such alternative. 
 

2.11.1.1 Definition 
 

A generalized transition graph (GTG) is a collection of three items: 
 
1. A finite set of states, with one or more start states and some (may be none) 

accepting (final) states. 
 

2. An alphabet Σ of input letters (the character set of the input language). 
 

3. Directed edges connecting some pairs of states, each labeled with a regular 
expression. 

 
For example, we can represent the language of all strings over the alphabet {a, b, c} 
that begins with bb or have exactly two a’s by the GTG in ExFig 2-14: 
  

 
ExFig 2-14: Example GTG 

 
It is easy to see that every DFA is a GTG and every NFA is a GTG, as well. However, 
the converse is not true. 
 

 
Figure II-14: RegEx as a GTG 

 
It is also straight forward to see that any regular expression can be specified by a GTG 
with two states, one as a start state, and the other is a final state, and a single edge 
from the start state to the final state having that regular expression as a label. Figure 
II-14 illustrates. These observations are the key behind the feasibility of the tool, as 
will be later illustrated. 
 
In general, automata provide a mathematical way of describing algorithms for 
recognizing regular patterns. Recall that Deterministic Finite Automata (DFAs) give 
the description of the algorithm in a deterministic manner. NFAs, TGs and GTGs are 
nondeterministic.  It was proved that for any language expressible via a regular 
expression, there exists a DFA that recognizes the same language (and thus a GTG 



also exists). The basic task of the lexical analyzer generator is to find such a DFA for 
a set of regular expressions. Finding the regular expression corresponding to a given 
GTG is the main task of the GTG graphical tool. The algorithm employed in the 
process is described in a later section, firstly its important to illustrate the need for 
such a tool. 
 

2.11.1.2 Why GTGs? 
 

Some regular languages are originally specified in a rather procedural manner. 
Deducing regular expressions for such languages is not often straightforward. The ‘C 
Comment’ regular language is an example. Any string in that language begins with 
“/*” and continues until reading the first “*/”. As seen, the description takes the form 
of a procedure and thus, the associated regular language is more suitably described by 
means of an automaton rather than a regular expression. A GTG for this language is 
shown in figure II-15. 
 

 
Figure II-15: The "C Comment" Regular Language 

 
Another example is the language ‘EVEN-EVEN’ of all strings over the alphabet {a, 
b} with even number of a’s and even number of b’s. Specifying an automaton for this 
language is far easier than deducing the corresponding regular expression. The GTG 
for ‘EVEN-EVEN’ regular language is shown in figure II-16. 
 

 
Figure II-16: The "Even-Even" Regular Language 

 
Thus, accepting the specification of regular languages in the form of GTGs, as well as 
regular expressions, makes the specification process easier and more intuitive. It 
greatly reduces the errors committed if one tries to deduce the regular expressions of 
many regular languages. 
 



2.11.1.3 GTG to Regular Expression: The Algorithm 
 

As previously stated, a regular expression r  can be represented as a GTG (look at 
figure II-14). Thus, if we can convert any general GTG to an equivalent GTG having 
the same structure depicted in figure II-14, we can obtain the corresponding regular 
expression. We can repeatedly reduce the number of states in the given GTG, without 
changing the language it accepts, until we get the structure depicted in figure. This is 
illustrated in the following pseudo code: 
 
Given a GTG G = (S, E), where S = {s 1, s 2, …, s n} is the set of 
states, and E is the set of edges, with each edge l abeled by a 
regular expression.  

Step 1:  

Create a non-enterable start state s 0 and for each other start state 
s j, add the edge (s 0, s j), label it as •, and remove the start 
attribute from s j. By the end of this step, the GTG will have a 
unique, non-enterable start state. 

Step 2:  

Create a non-exitable final state s n+1 and for each other final state 
s j, add the edge (s j, s n+1) and label it as  •, then remove the final 
attribute from s j. By the end of this step, the GTG will have a 
unique non-exitable final state. 

Step 3: (Elimination)  

WHILE ( S – {s 0, s n+1} • • ) do 

   Select a state s j from S. 

   IF there is a self-edge on s j labeled with M, 

 THEN set SelfLabel = (M)* 

  ELSE set SelfLabel = • 

   FOREACH edge (s k, s j) labeled with R, DO 

  FOREACH edge (s j, s m) labeled with Q, DO 

     Let NewRegex = R.SelfLabel.Q 

    IF there is an edge (s k, s m) labeled with OldRegex 

       THEN set the label of that edge as OldRegex | NewRegex 

       ELSE add the edge (s k, s m) with the label NewRegex 
    to the set E 

 
       END_FOREACH 
 
   END_FOREACH 
  
   Remove state s j from S 
 
END_WHILE 



IF there is no edge between s 0 and s n+1, then the language of this GTG 
is •. 

ELSE the regular expression is the label of that ed ge. 
 

 
For the sake of illustration, we apply the steps of the algorithm on the “C Comment” 
GTG. Initially, we add to the original GTG in figure II-15 the non-enterable start state 
and the non-exitable final state according to steps 1 and 2. We obtain the equivalent 
GTG shown in ExFig 2-15A. Although these steps seem unnecessary here since the 
original start and final states have the desired attributes, not every GTG possess this 
characteristic. 
 

 
ExFig 2-15A: Converting the "C-Comment" regex to a corresponding GTG 

 
After that, we choose to eliminate state 1 which luckily has a single incoming edge, a 
single outgoing edge and no cycles. We simply concatenate the regular labels of the 
two edges. The GTG obtained after this step is shown in ExFig 2-15B. Recall that •  
represents the empty string and consequently the result of concatenating • with 
“/*” is “/*”. 
 

 
ExFig 2-15B: Converting the "C-Comment" regex to a corresponding GTG 

 
State 2 has one outgoing edge labeled with “*”, a self-edge with label [^*], and two 
incoming edges labeled “/*” and [^*], respectively. Performing concatenation gives 
us the labels “/*”[^*]*”*” and [^/*][^*]*”*”. The G TG is shown again in ExFig 2-
15C after eliminating state 2. 
 

 
ExFig 2-15C: Converting the "C-Comment" regex to a corresponding GTG 

 
Eliminating state 3 is rather straightforward. ExFig 2-15C shows that the GTG after 
the elimination of state 3 becomes: 
 



 

 
ExFig 2-15D: Converting the "C-Comment" regex to a corresponding GTG 

 
After eliminating state 4, the final GTG results; as illustrated in ExFig 2-15E. The 
label on the edge (0, 5) is the regular expression for the “C Comment” language. 
 
 

 
ExFig 2-15E: Converting the "C-Comment" regex to a corresponding GTG 

 

2.11.1.4 Implementation Details 
 

The GTG is represented as a list of states. Each state contains a list of the edges 
emanating from that state as well as a list of the edges entering it. There is an 
additional field for the self-edge of that state. This field is kept NULL if no self-edge 
exists. Each state contains two Boolean fields to indicate whether the state is a start 
and/or a final state. Each edge contains pointers to the source and destination states, in 
addition to a string representing its label. Whether the label is valid or not is checked 
once and the result of the check is stored along with the edge to help speed up the 
application. The validity check is made again only when the label is changed or the 
character set of the GTG is changed. 
 
Since this is a visual tool, additional geometric data are kept in the data structure. For 
example, each state contains a Point  structure to keep track of the x and y-
coordinates of the center of that state. Furthermore, geometric data are cached and 
maintained along each edge to help speed up the execution of the program. 
 
The GTG-to-Regular Expression algorithm is implemented with minor modifications. 
For example, we never try to eliminate those states that are not reachable from the 
unique start state or those that have no paths to the unique final states. This reduces 
the execution time of the algorithm. Specifically, we perform, as a preprocessing 
stage, a depth-first search starting from the unique start state to identify those states 
that are reachable from the start state. Then, we perform a depth-first search starting 
from the unique final state (the orientation of the edges is reversed in that case) to 
identify those states that have paths to the unique final state. The result of both 
searches is kept as an array of Booleans indicating whether a given state can be 
ignored from elimination or not. 
 

2.11.1.5 Geometric Issues 
 

During the development of the user interface of the graphical GTG tool, we faced 
certain geometric problems, but we were able to solve them successfully and 
elegantly. The following subsections contain descriptions of some of these problems 



and how we solved them, both the idea and the implementation. However, we start by 
a brief description of the UI of the GTG tool. 
 
Each state is represented as a circle of a certain constant radius R. Edges are 
represented by lines connecting the circles of the two states as shown in ExFig 2-16. 
The label of each edge has the same orientation as that edge. 
 

 
ExFig 2-16: The GUI of the GTG Editor - States 

Edges  
As seen in the above figure, each edge has the same direction as the vector connecting 
the start state and the end state. The problem is to find the coordinates of the end-
points a, b of a given edge, given the coordinates of the centers c1, c2 of the two 
states the edges connect. As a further constraint, the line segment should have a small 
offset h on the perpendicular vector of the vector connecting the two centers c1 and c2 
so that if the edge of the inverse direction is present, the two edges do not cover each 
other. (For an example, look at the two edges between the states S1 and S2 in the 
figure above). The end-point a must lie on the circle of radius R around c1 and the 
end-point b must lie on the circle of radius R around c2. The whole issue is illustrated 
in ExFig 2-17. 

 
ExFig 2-17: The GUI of the GTG Editor - Edges 

 
We now show how to compute the coordinates of the point a. Since a lies on the 

circle of radius R around c1, the line segment ac1  has length R (a constant value). The 

line segment ka (which is normal to 21cc ) has length h (a constant value). Let w 



denote the length of the line segment kc1 . Thus, w can be computed by applying 
Pythagorean Theorem on the triangle c1 a k. The whole picture becomes: 
 

 
 

ExFig 2-18: Finding the endpoints of an edge 
 
The value of w can be computed and fixed at compile time. We reach the point a from 
c1 by taking a step w along the direction of the vector V

v
, followed by a step h along 

the direction of the perpendicular vector n. The equations are listed below: 
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All the remaining computations are performed at runtime. 
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The above computations guarantee that the edge of the reverse direction (the edge 
from state c2 to state c1) takes the small offset h on the reverse direction of the 
perpendicular vectorn

v
, computed above. This is because the vector from c2 to c1 is 

the inverse of V
v

. Thus, the new normal will be the inverse ofn
v

. 



Selection of States and Edges  
When the user clicks the button of the mouse, the operating system informs the 
application that the user pressed the button of the mouse and supplies the coordinates 
of the mouse pointer at that time instance. The problem here is to determine whether 
that event occurred when the mouse pointer was inside the circle of a given state or 
near an edge. In addition, we need to determine that specific state or that edge that 
contained the mouse pointer. This is needed because the user might want to change 
the label of the state, change the start/final attributes of the state, change the position 
of the state on the screen, remove that state, change the label of the edge, or remove 
that edge. The solution of the problem seems pretty easy. We just loop through each 
state and check whether that state contains the mouse pointer (the state contains the 
mouse pointer if and only if the distance between the center of the state and the mouse 
pointer is less than or equal to R). If no state contains the mouse pointer, we just loop 
through the edges and check whether the mouse pointer lies on the line segment 
defined by that edge or not. The routine was implemented using these ideas, and was 
thoroughly tested, but matters did not go as were intended. There was no problem 
selecting a state. However, edges were never selected except when the direction of the 
edge was strictly vertical, strictly horizontal or making a 45° angle with the 
horizontal. After further analysis of the situation, we discovered that although the 
pointer of the mouse visually lies very near to (or even lies exactly on) the line 
segment of the edge, the coordinates of the mouse are integral and would rarely 
represent a point on the line at the specified x-coordinate of the mouse pointer. The 
situation is illustrated in the following figure:  
 

 
ExFig 2-19A: The edge-clicking problem 

 
 
To solve this problem, we enclosed each edge in an imaginary rectangle having one 
side parallel and equal in length to the edge, and the other perpendicular side has a 
predefined, fixed length 2U. The situation is illustrated again on the next page. An 
edge is selected if no state is selected and the mouse pointer lies within the enclosing 
rectangle. It is worth noting that setting U = 0 will be the same as testing whether the 
mouse pointer lies on the edge defined by that line segment. U is chosen large enough 
so that the area sensitive to mouse clicks around the edge has a suitable value. 
 
The line segment passes through these points only when the line segment is vertical, 
horizontal or making a 45° angle with the horizontal. 
 
But how can we determine if a given point Z lies near the edge defined by the two 
points P and Q?  



 
ExFig 2-19B: The edge-clicking problem 

 
Let z denote the vector from the point P to the point Z. Let v be the vector from the 
point P to the point Q, and n be the vector perpendicular to v. We resolve z into its 
components along v and n. This is illustrated in the figure below. Thus, we can write z 
as a linear combination of both vectors v and n as follows: 
 

nKvMz ⋅+⋅=  
 
If  ||Kn|| ≤ U and 0 ≤ M ≤ 1, then z lies inside the enclosing rectangle. Otherwise, it is 
outside. 

 
ExFig 2-19C: The edge-clicking problem 

 
M can be found by forming the dot product of both sides by v: 
 

vMvvz ⋅=⋅  
 
Dividing both sides by v.v gives us M: 
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Of course, we must check that P and Q are not coincident so that v.v is nonzero. 
Similarly, ||Kn|| can be found by forming the dot product of both sides by n: 
 

nKnnz ⋅=⋅  
 
Dividing both sides by n.n gives us K: 
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Hence; 
 

nKKn ⋅=  



3. The Parsing Phase 
 

The bulk of this part is devoted to parsing methods that are typically used in 
compilers. We first present the basic concepts, then the techniques we used in our 
tool. Since programs may contain syntactic errors, we extend the parsing methods so 
they recover from commonly occurring errors. We also present the input file 
specifications as a guide to the user to build a parser using our tool, as well as the 
helper tools we provide to aid the user adjust the input grammar to suit the parsing 
methods we provide. 

 
3.1 More about Parsing 
 

3.1.1 A General Introduction 
 

Every programming language has rules that prescribe the syntactic structure of well-
formed programs. In Pascal, for example, a program is made out of blocks, a block 
out of statements, a statement out of expressions, an expression out of tokens, and so 
on. The syntax of programming language constructs can be described by context-free 
grammars or BNF (Backus-Naur Form) notation. 
 
A context-free grammar (grammar, for short), also known as BNF (Backus-Naur 
Form) notation, is a notation for specifying the syntax of a language. A grammar 
naturally describes the hierarchical structure of many programming language 
constructs. For example, an if-else statement in C has the form 
 
if  ( expression ) statement else statement 
 
That is, the statement is the concatenation of the keyword if , an opening parenthesis, 
an expression, a closing parenthesis, a statement, the keyword else, and another 
statement. (In C, there is no keyword then.) Using the variable expr to denote an 
expression and the variable stmt to denote a statement, this structuring rule can be 
expressed as: 
 
stmt → if ( expr ) stmt else stmt 
 
in which the arrow may be read as "can have the form". Such a rule is called a 
production. In a production, lexical elements like the keyword if and the parentheses 
are called terminals, variables like expr and stmt represent sequences of tokens and 
are called non-terminals [2]. 
 
A context-free grammar has four components: 
 
1) A set of tokens, known as terminal symbols. 
 

2) A set of non-terminals. 
 

3) A set of productions where each production consists of a non-terminal, called the 
left side of the production, an arrow, and a sequence of tokens and/or non-
terminals, called the right side of the production. 

 



4) A designation of one of the non-terminals as the start symbol. 
 
We follow the convention of specifying grammars by listing their productions, with 
the productions for the start symbol listed first. We assume that digits, signs such as 
<=, and boldface strings such as while are terminals. An italicized name is a non-
terminal and any non-italicized name or symbol may be assumed to be a token. For 
notational convenience, productions with the same non-terminal on the left can have 
their right sides grouped, with the alternative right sides separated by the symbol |, 
which we read as "or". 
 

3.1.2 Advantages of using Grammars 
 

Grammars offer significant advantages to both language designers and compiler 
writers [2].  
 
• A grammar gives a precise, yet easy-to-understand, syntactic specification of a 

programming language. 
 

• From certain classes of grammars we can automatically construct an efficient 
parser that determines if a source program is syntactically well-formed. As an 
additional benefit, the parser construction process can reveal syntactic ambiguities 
and other difficult-to-parse constructs that might otherwise go undetected in the 
initial design phase of a language and its compiler. 

 

• A properly designed grammar imparts a structure to a programming language that 
is useful for the translation of source programs into correct object code and for the 
detection of errors. Tools are available for converting grammar-based descriptions 
of translations into working programs. 

 

• Languages evolve over a period of time, acquiring new constructs and performing 
additional tasks. These new constructs can be added to a language more easily 
when there is an existing implementation based on a grammatical description of 
the language. 

 
In our compiler model, the parser obtains a string of tokens from the lexical analyzer, 
as shown in figure III-1 [2], and verifies that the string can be generated by the 
grammar for the source language. 

 
Figure III-1: Parser-Lexical Analyser Interaction 

We expect the parser to report any syntax errors in an intelligible fashion. It should 
also recover from commonly occurring errors so that it can continue parsing the 
remainder of its input. 
 



There are three general types of parsers for grammars [1]. Universal parsing methods 
such as the Couke-Younger-Kasami algorithm and Earley's algorithm can parse any 
grammar. These methods, however, are too inefficient to use in production compilers. 
The methods commonly used in compilers are classified as being either top-down or 
bottom-up. 
 
As indicated by their names, top-down parsers build parse trees from the top (root) to 
the bottom (leaves), while bottom-up parsers start from the leaves and work up to the 
root. In both cases, the input to the parser is scanned in one direction (according to the 
language), one symbol at a time. Our tool implements two top-down parsers, the 
details of which are covered in the next two sections. 
 
The last concept to present in this brief introduction is that of a parse-tree and a 
syntax-tree. 
 

3.1.3 Syntax Trees vs. Parse Trees 
 

During analysis, the operations implied by the source program are determined and 
recorded in a hierarchical structure called a tree. A parse-tree pictorially shows how 
the start symbol (or a grammar) derives a string in the language. Each node in the 
parse-tree is labeled by a grammar symbol. An interior node and its children 
correspond to a production; the interior node corresponds to the left side of the 
production, the children to the right side.  
 
Abstract syntax trees, or simply syntax trees, differ from parse trees because 
superficial distinctions of form – unimportant for translation – do not appear in syntax 
trees. 
 
Formally, given a context-free grammar, a parse-tree is a tree with the following 
properties: 
 
1) The root is labeled by the start symbol. 
 

2) Each leaf is labeled by a token or by ε (the empty string). 
 

3) Each interior node is labeled by a non-terminal. 
 

4) If A is the non-terminal labeling some interior node and XI, X2 … Xn are the 
labels of the children of that node from left to right, then A → X1 X2 … Xn is a 
production. Here, XI, X2 … Xn stand for a symbol that is either a terminal or a 
non-terminal. As a special case, if A → ε then a node labeled A may have a single 
child labeled ε. 

 
The leaves of a parse tree read from left to right form the yield of the tree, which is the 
string generated or derived from the non-terminal at the root of the parse tree. 
 
Another definition of the language generated by a grammar is as the set of strings that 
can be generated by some parse tree. The process of finding a parse tree for a given 
string of tokens is called parsing that string. 
 
Often, a special kind of trees called a syntax-tree is used, in which each node 
represents an operation and the children of a node represent the arguments of the 



operation [2]. Thus, a syntax-tree is a compressed representation of the parse tree in 
which the operators appear as the interior nodes, and the operands of an operator are 
the children of the node for that operator. 
 
For example, a syntax tree for the assignment statement ( x := y * z ) may be as 
illustrated in ExFig 3-1: 
 

 
ExFig 3-1: Syntax tree 

 

3.2 Recursive Descent Parsers 
 
A recursive descent parser is a top-down parser built from a set of mutually-recursive 
procedures (or a non-recursive equivalent) where each such procedure usually 
implements one of the production rules of the grammar. Thus the structure of the 
resulting program closely mirrors that of the grammar it recognizes [1]. 
 
A predictive parser is a recursive descent parser with no backup. Predictive parsing is 
possible only for the class of LL(k) grammars, which are the class of context-free 
grammars for which there exists some positive integer k that allows a recursive 
descent parser to decide which production to use by examining only the next k tokens 
of input. (The LL(k) grammars therefore exclude all ambiguous grammars, as well as 
all grammars that contain left recursion. Any context-free grammar can be 
transformed into an equivalent grammar that has no left recursion, but removal of left 
recursion does not always yield an LL(k) grammar.) A predictive parser runs in linear 
time, and that's why it's preferred on an equivalent backtracking parser, whose 
running time is cubic in the input size, although the latter can parse any input 
grammar. 
 
Recursive descent with backup is a technique that determines which production to use 
by trying each production in turn. Recursive descent with backup is not limited to 
LL(k) grammars, but is not guaranteed to terminate unless the grammar is LL(k). 
Even when they terminate, parsers that use recursive descent with backup may require 
exponential time. 
 
A packrat parser is a modification of recursive descent with backup that avoids non-
termination by remembering its choices, so as not to make exactly the same choice 
twice. A packrat parser runs in linear time, but usually requires more space than a 
predictive parser. 
 
Our project generates recursive descent predictive parsers; the parser generator 
expects left-factored and left-recursion-free grammar. Thus we implemented two tools 
for this purpose. More on both of them later in this part. 

x * 

:= 

y z 



 
To explain the concept of recursive descent parsers, we will take a complete example 
which will run on our tool to produce the parser code which is going to be explained. 
First of all, we are going to list the parser description file which acts as the input to 
our parser generator tool and we will explain it briefly. The grammar contained in the 
file describes variable declaration statements in a C-language-like format. For 
simplicity we work with two data types only: int and float. 
 
Options 

NameSpace = "MyLangCompiler" ClassName="Parser" Language = CSharp 
 
Tokens 

int float identifier comma 
 
Grammar 

Declaration → DataType VarList. 
VarList  → identifier Var. 
Var  → comma identifier Var | Eps. 
DataType → int | float. 

 
In the Options section we specify the name of the generated parser class; in this case 
it is Parser. The namespace in which the parser class will be contained is 
MyLangCompiler in this example. Also, we specify CSharp as the language in which 
the generated parser is written in. 
 
Next, we specify the Tokens section, which is the interface between the generated 
parser and the scanner used by that parser. In this section we specify the terminals 
which will be used in our grammar productions. These tokens will be translated into 
enumerated members where int will take the value 3, "float" will take the value 4, 
"identifier" will take the value 5 and "comma" will take the value 6. 
 
Last but not least, we specify our productions rules in the Grammar section. A 
grammar production is specified in this format: 
 

A → B 

 
where A denotes a non-terminal, and B is a set of terminals and non-terminals. Each 
production is terminated by a dot. We use the bar symbol "|" to denote the ORing 
operation. Also, we use Eps which is a reserved keyword to denote epsilon "ε", the 
empty string. 
 
Before discussing the generated code we list the first sets and the follow sets of our 
terminals and non-terminals: 
 
first set of [DataType] is {   int , float   } 
first set of [Declaration] is {   int , float   } 
first set of [Var] is {   Eps , comma   } 
first set of [VarList] is {   identifier   } 
 

follow set of [DataType] is {   identifier   } 
follow set of [Declaration] is {   EOF   } 
follow set of [Var] is {   EOF   } 



follow set of [VarList] is {   EOF   } 

 
We could run our tool (ParserGenerator) as follows from the command prompt 
passing "MyParser.cs" as the filename for the generated code. 
  
 C:\ParserGenerator MyParser.cs 
 
Now, it is time to list the generated code, the "MyParser.cs" file: 
 
namespace  MyLangCompiler 
{ 
   public  class  Parser 
   { 
      public  Parser( IScanner lexicalAnalyzer ) 
 { 
    scanner = lexicalAnalyzer;  
 }  
 
 public  void  Declaration() 
 { 
    DataType(); 
    VarList(); 
 } 
 
 public  void  VarList() 
 { 
    match( _TokenType._identifier ); 
    Var(); 
 } 
 
 public  void  Var() 
 { 
    if  ( currentToken.TokenType == _TokenType._comma ) 
    { 
       match( _TokenType._comma ); 
       match( _TokenType._identifier ); 
       Var(); 
    } 
 } 
 
 public  void  DataType() 
 { 
    if  ( currentToken.TokenType == _TokenType._int ) 
    { 
       match( _TokenType._int ); 
    } 
    else  if  ( currentToken.TokenType == _TokenType._float ) 
    { 
       match( _TokenType._float ); 
    } 
    else 
  SyntaxError(currentToken); 
 } 
 public  void  Parse()  
 { 
    currentToken = scanner.GetNextToken(); 
    Declaration(); 
    if  ( currentToken.TokenType != _TokenType._EOF ) 
       SyntaxError(currentToken); 



 } 
 
 protected  void  match( _TokenType expected ) 
 { 
    if  ( currentToken.TokenType == expected ) 
       currentToken = scanner.GetNextToken(); 
    else 
       ErrorHandler( expected, currentToken ); 
 } 
 
 protected  void  ErrorHandler(_TokenType expected, Token  found)
 { 
    // Write your own error handling here  
 } 
 
 protected  void  SyntaxError( Token errorAtToken ) 
 { 
    // Write your own error handling here  
 } 
 
 Token currentToken; 
 IScanner scanner; 
   } 
 
   public  enum _TokenType 
   { 
      _EOF, _Char, _String, _int, _float, _identifi er, _comma 
   } 
 
   public  interface  IScanner 
   { 
      Token GetNextToken(); 
   } 
 
   public  class  Token 
   { 
      public  _TokenType TokenType; 
   } 
}  
 
 
Note that our tokens specified in the "Tokens" section is mapped to the following 
_TokenType enum: 
 
   public  enum _TokenType 
   { 
      _EOF, _Char, _String, _int, _float, _identifi er, _comma 
   } 
 

The used scanner must return a _TokenType  value that is equivalent to the token it 
sees. 
 
To understand the generated code we have to clarify some concepts first, then we are 
going to investigate each grammar production and see its effect on the generated code. 
First of all, to use our generated parser we have to pass an object from a class which 
implements the IScanner  interface. This object is going to be the scanner used by the 
generated parser. To implement the IScanner  interface, you have to implement the 
following function, GetNextToken()  



 
   Token GetNextToken(); 
 

This function returns an object of type Token which contains the TokenType  member 
of type _TokenType  enum which tells the parser the type of the token it is currently 
working with. 
 
Recursive descent parsers use one lookahead token, we call it currentToken  to 
predict what path to production to produce starting from the start symbol 
(Declaration  in this example). Every time the grammar tells us that a specific token 
is expected we call the match  function: 
 
   protected  void  match( _TokenType expected ) 
   { 
      if  ( currentToken.TokenType == expected ) 
    currentToken = scanner.GetNextToken(); 
 else 
    ErrorHandler( expected, currentToken ); 
   } 
 

The match  function works as follows, if the currentToken  is the expected one, then 
the next lookahead token is requested from the scanner and we continue parsing. If 
not, then an error is present so we call the ErrorHandler  function passing the 
expected and the found tokens for the user to handle the error as the application 
requires. 
 
In recursive descent parsers, every non-terminal corresponds to a function which is 
called every time this non-terminal is seen in any production. To grasp the idea, we 
are going to take every production and see its corresponding fuction, as each 
production yields a function in the produced code. 
 

Declaration → DataType VarList. 

 
public  void  Declaration() 
{ 

         DataType(); 
         VarList(); 

} 
 

Since the righthand side of this production consists of only non-terminals, the 
corresponding fuctions to these non-terminals are called. 

 
VarList → identifier Var. 
 
public  void  VarList() 

 { 
    match( _TokenType._identifier ); 
    Var(); 

} 
 

Here the identifier is matched as it is a terminal and the function Var()  is called for 
the Var terminal. 
 

Var → comma identifier Var                //Production1 

                        | Eps.          //Production2 



 
public  void  Var() 

 { 
    if  ( currentToken.TokenType == _TokenType._comma ) 
    { 
       match( _TokenType._comma ); 
  match( _TokenType._identifier ); 
  Var(); 
    } 

}  
 
Because Var is optional, as one of its right-hand-side is ε, the lookahead is checked. If 
it is a comma, then we work with the Production1 else we return from the Var()  
function adhering to Production2. 

 
DataType → int | float. 

 
public  void  DataType() 

 { 
    if  ( currentToken.TokenType == _TokenType._int ) 
    { 
       match( _TokenType._int ); 
    } 
    else  if  ( currentToken.TokenType = _TokenType._float ) 
    { 
       match( _TokenType._float ); 
    } 
    else 
            SyntaxError(currentToken);  
 } 
 

Because this production is really composed of two productions ORed together, we use 
the look ahead token to decide which one we are going to follow. Note that if the 
current token is not one of the types _TokenType._int or _TokenType.float we call 
the SyntaxError function because the Data Type production is not an optional one. 
The implementation of the SyntaxError is left to the user. 
 
Finally, we have to see how this process begins. The user initiates the parsing process 
by calling the Parse() function: 
 

public  void  Parse()  
 { 
    currentToken = scanner.GetNextToken(); 
    Declaration(); 
    if  ( currentToken.TokenType != _TokenType._EOF ) 
       SyntaxError(currentToken); 
 } 
 

which simply initialized the lookahead token, currentToken . Then, it calls the first 
production rule (Declaration) which is the start symbol of our grammar. Finally, it 
makes sure that at the end of the parsing process the file has reached an end and that 
no tokens appear after accepting the processed input. 

 
3.3 LL(1) Parsers 
 



3.3.1 Definition 
 

An LL parser is a table-based top-down parser for a subset of context-free grammars. 
It parses the input from Left to right, and constructs a Leftmost derivation of the 
sentence (Hence LL ). The class of grammars parsable this way is known as the LL 
grammars. Older programming languages sometimes use LL grammars because it is 
simple to create parsers for them by hand – using either the table-based method 
(described shortly), or a recursive-descent parser as we've just seen. 
 
An LL parser is called an LL(k) parser if it uses k tokens of lookahead when parsing a 
sentence. If such a parser exists for a certain grammar and it can parse sentences of 
this grammar without backtracking then it is called an LL(k) grammar. Of these 
grammars, LL(1) grammars, although fairly restrictive, are very popular because the 
corresponding LL parsers only need to look at the next token to make their parsing 
decisions. 

 
3.3.2 Architecture of an LL Parser 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
A table-based top-down parser can be schematically presented as in figure III-3. The 
parser has an input buffer, a stack on which it keeps symbols from the grammar, a 
parsing table which tells it what grammar rule to use given the symbols on top of its 
stack, and its input tape. To explain its working we will use the following small 
grammar: 
 
(1) S → F  
(2) S → ( S + F )  
(3) F → 1  
 
The parsing table for this grammar looks as follows: 
 

 ( ) 1 + $ 

 
         +---+---+---+---+---+---+ 
  Input: | ( | 1 | + | 1 | ) | $ | 
         +---+---+---+---+---+---+ 
                       ^ 
  Stack:               | 
               +-------+--------+ 
  +---+        |                | 
  | + |<-------+    Parser      +-----> Output  
  +---+        |                | 
  | F |        +------+---------+ 
  +---+               |  ^ 
  | ) |               |  | 
  +---+        +------+---------+ 
  | $ |        |    Parsing     | 
  +---+        |    table       | 
               +----------------+ 

Figure III-2: Architecture of a Table-Based Top-Down Parser 



S 2 - 1 - - 

F - - 3 - - 

 
(Note that there is also a column for the special terminal $ that is used to indicate the 
end of the input stream). Depending on the top-most symbol on the stack and the 
current symbol in the input stream, the parser applies the rule stated in the matching 
row and column of the parsing table (e.g., if there is an 'S' on the top of the parser 
stack and a '1' in the front-most position of the input stream, the parser executes rule 
number 1, i.e., it replaces the 'S' on its stack by 'F'). 

  

When the parser starts it always starts on its stack with 
 

[ S, $ ] 
 

where $ is a special terminal to indicate the bottom of the stack (and the end of the 
input stream), and S is the start symbol of the grammar. The parser will attempt to 
rewrite the contents of this stack to what it sees on the input stream. However, it only 
keeps on the stack what still needs to be rewritten. For example, let's assume that the 
input is "( 1 + 1 )". When the parser reads the first "(" it knows that it has to rewrite S 
to ( S + F ) and writes the number of this rule to the output. The stack then 
becomes: 
 

[ ( , S, +, F, ) , $ ] 
 

In the next step it removes the '(' from its input stream and from its stack: 
 

[ S, +, F, ) , $ ] 
 

Now the parser sees a '1' on its input stream so it knows that it has to apply rule (1) 
and then rule (3) from the grammar and write their number to the output stream. This 
results in the following stacks: 
 

[  F , +, F, ) , $ ] 
[ 1, +, F, ) , $ ] 
 

In the next two steps the parser reads the '1' and '+' from the input stream and also 
removes them from the stack, resulting in: 
 

[ F, ) , $ ] 
 

In the next three steps the 'F' will be replaced on the stack with '1', the number 3 will 
be written to the output stream and then the '1' and ')' will be removed from the stack 
and the input stream. So the parser ends with both '$' on its stack and on its input 
stream. In this case it will report that it has accepted the input string and on the output 
stream it has written the list of numbers [ 2, 1, 3, 3 ] which is indeed a leftmost 
derivation of the input string. Therefore, the derivation goes like this: 
 

S → ( S + F ) → ( F + F ) → ( 1 + F ) → ( 1 + 1 )). 
 

As can be seen from the example the parser performs three types of steps depending 
on whether the top of the stack is a non-terminal, a terminal or the special symbol $: 
 



• If the top is a non-terminal then it looks up the parsing table (on the basis of this 
non-terminal and the symbol on the input stream) which rule of the grammar it 
should use to replace the one on the stack. The number of the rule is written to the 
output stream. If the parsing table indicates that there is no such rule then it 
reports an error and stops. 

 

• If the top is a terminal then it compares it to the symbol on the input stream. If 
they are equal, they are both removed. Otherwise the parser reports an error and 
stops. 

 

• If the top is $ and on the input stream there is also a $ then the parser reports that 
it has successfully parsed the input, otherwise it reports an error. In both cases the 
parser will stop. 

 
These steps are repeated until the parser stops, and then it will have either completely 
parsed the input and written a leftmost derivation to the output stream, or it will have 
reported an error. 

 
3.3.3 Constructing an LL(1) Parsing Table 
 

In order to fill the parsing table, we have to establish what grammar rule the parser 
should choose if it sees a non-terminal A on the top of its stack and a symbol a on its 
input stream. It is easy to see that such a rule should be of the form A → w and that 
the language corresponding to w should have at least one string starting with a. For 
this purpose we define the First-Set of w, written here as Fi(w), as the set of terminals 
that can be found at the start of any string in w, plus ε if the empty string also belongs 
to w. Given a grammar with the rules A1 → w1, ..., An → wn, we can compute the 
Fi(wi) and Fi(Ai) for every rule as follows: 

• Initialize every Fi(wi) and Fi(Ai) with the empty set  
• Add Fi(wi) to Fi(wi) for every rule Ai → wi, where Fi is defined as follows:  

o Fi(a w' ) = { a } for every terminal a  
o Fi(A w' ) = Fi(A) for every non-terminal A with ε not in Fi(A)  
o Fi(A w' ) = Fi(A) | { ε } ∪ Fi(w' ) for every non-terminal A with ε in 

Fi(A) 
o Fi(ε) = { ε }  

• Add Fi(wi) to Fi(Ai) for every rule Ai → wi  
• Do steps 2 and 3 until all Fi sets stay the same.  

Unfortunately, the First-Sets are not sufficient to compute the parsing table. This is 
because a right-hand-side w of a rule might ultimately be rewritten to the empty 
string. So the parser should also use the rule A → w if ε is in Fi(w) and it sees on the 
input stream a symbol that could follow A. Therefore we also need the Follow-Set of 
A, written as Fo(A) here, which is defined as the set of terminals x such that there is a 
string of symbols αAxβ that can be derived from the start symbol. Computing the 
Follow-Sets for the non-terminals in a grammar can be done as follows: 

• Initialize every Fo(Ai) with the empty set 
• If there is a rule of the form Aj → wAiw' , then  

o if the terminal a is in Fi(w' ), then add a to Fo(Ai)  



o if ε is in Fi(w' ), then add Fo(Aj) to Fo(Ai)  
• Repeat step 2 until all Fo sets stay the same.  

Now we can define exactly which rules will be contained where in the parsing table. 
If T[A, a] denotes the entry in the table for non-terminal A and terminal a, then 

• T[A, a] contains the rule A → w if one of the following is true. 
o a is in Fi(w)  
o ε is in Fi(w) and a is in Fo(A).  

If the table contains at most one rule in every one of its cells, then the parser will 
always know which rule it has to use and can therefore parse strings without 
backtracking. Precisely is this case that the grammar is called an LL(1) grammar. 

 

3.4 Input File Format 
 
In this chapter we present the syntax of the recursive descent parser generator input 
file (grammar file) and then we present the slight differences in the LL(1) parser 
generator input file from the recursive descent one. 
 
It is important to note that the recursive descent parser accepts grammar in the EBNF 
(Extended Backus-Naur Format) while the LL(1) parser generator accepts grammar in 
the BNF (Backus-Naur Format). 
 
The input file consists of labeled sections, in what follows; we present each section 
with its syntax and meaning. The next two subsections introduce the overall picture 
and the detailed explanation of the input file. 



3.4.1 Input File Syntax: The Overall Picture 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure III-3: ParSpring – The Syntax of the Input File 

 
3.4.2 Input File Syntax: The Details 
 

Options: Denotes the beginning of the Options sections 
 
namespace is a string representing the name of the namespace where the generated 
class will be enclosed in. 
 
classname is a string representing the name of the generated parser class. 
 
language is an identifier that specifies the language in which the generated parser will 
be written in. The following values are currently supported: 
 CSharp For generation in the C# language 
 JAVA  For generation in the Java language 
 CPlusPlus For generation in the C++ language 

Options 
NameSpace = namespace ClassName = classname Language = language 
 
Tokens 
token1 token2 ……… tokenN 
 
TopOfDeclaration 
%%  
anystring 
%%  
 
BottomOfDeclaration 
%%  
anystring 
%%  
 
TopOfDefinition  
%%  
anystring 
%%  
 
BottomOfDefinition  
%%  
anystring 
%%  
 
Grammar 
NonTerminal → terminalsAndNonTerminals. 
….. 
….. 
ProductionN 



Tokens: Denotes the beginning of the tokens section which is the interface between 
the generated parser and the scanner used by that parser. In this section, specify the 
terminals which will be used in the grammar productions. These tokens will be 
translated into enumerated members beginning at the value 3. 
 
token1 token2 … tokenN are a set of identifiers separated by spaces which represents 
the terminals used in the grammar productions. 
 
 
TopOfDeclaration: Denotes the beginning of the TopOfDeclaration section where 
%% delimits the beginning and the end of a block of code which will be pasted as-is 
in the generated file. Depending on the target language, the TopOfDeclaration block 
of code will be pasted as follows: 
 

C#: At the very beginning of the generated file; before opening the 
namespace. 

 

 Java: At the very beginning of the generated file; before opening the class. 
 

 C++: At the top of the .h declaration file.   
 
 
BottomOfDeclaration: Denotes the beginning of the BottomOfDeclaration section 
where %% delimits the beginning and the end of a block of code which will be pasted 
as-is in the generated file. Depending on the target language, the 
BottomOfDeclaration block of code will be pasted as follows: 
 
 C#: At the end of the generated file; after closing the namespace. 
 

 Java: At the end of the generated file; after closing the class. 
 

 C++: At the bottom of the .h declaration file. 
 
 
TopOfDefinition: Denotes the beginning of the TopOfDefinition section where %% 
delimits the beginning and the end of a block of code which will be pasted as-is in the 
generated file. Depending on the target language, the TopOfDefinition block of code 
will be pasted as follows: 
 

C#: At the top of the generated file; after opening the namespace but before 
opening the class. 

 

 Java: At the top of the generated class. 
 

 C++: At the top of the .cpp definition file. 
 
 
BottomOfDefinition: Denotes the beginning of the BottomOfDefinition section 
where %% delimits the beginning and the end of a block of code which will be pasted 
as-is in the generated file. Depending on the target language, the BottomOfDefinition 
block of code will be pasted as follows: 
 
 C#: At the bottom of the generated file; before closing the class. 
 

 Java: At the end of the class before closing it. 



 

 C++: At the bottom of the .cpp definition file. 
 
 
Grammar: Denotes the beginning of the grammar productions section. It consists of 
an identifier representing a non-terminal at the left hand side of the "->" mark where 
its right-hand-side is the production itself consisting of terminal and non-terminals. 
Every production is terminated by a dot. The following lines are going to give the 
syntax of writing productions, let S1 and S2 denotes any two terminals or non-
terminals or a mixture, then: 
 

 S1 | S2    S1 or S2 
 S1 S2      S2 is concatenated after S1 
 {S1}       S1 closure 
 [S1]       S1 is optional 
 

 <. .> delimits a semantic action which is a piece of code which is guaranteed to be 
executed after evaluating S1 and before evaluating S2.  
 
 S1 <. semAction .> S2  
 

Every non-terminal produces a void function in the generated code. By default this 
function takes no parameters, to make it take parameters; in the left hand side of the 
production write the parameters enclosed between (. .), for example: 
 

 S1 (. TreeNode node, int level .) → 
S2 S1 (. node.Left, level+1 .). 

 

Note that when S1 is called in the right hand side, you have to pass the parameters it 
is expecting as shown above. 

 
3.4.3 Resolvers 
 
Consider the following production: 
 
 S1 -> S2 | S3. 
 

If the S2 and S3 first sets are intersecting; we can remove this ambiguity by using 
resolvers. We can write a Boolean expression which will be checked and the 
associated symbol will be evaluated if it evaluates to true. For example: 
 
 S1 -> IF (. BoolExpression .) S2 | S3. 
 

So if there is an ambiguity S2 will be chosen if BoolExpression evaluates to true, 
otherwise S3 way will be chosen. 

 
3.4.4 Comments 
 
We can use the one line comments // and the multiline ones /* */ in the input file and 
the comments will be ignored totally by the generator. 

3.4.5 The LL(1) Input File Differences 



 
The LL(1) input file is the same as the recursive decent one except that the LL(1) 
input file doesn't support the following: 
 

• Specifying parameters to non-terminals. 
 

• Specifying resolvers. 

 
3.5 Input File Error Handling 
 
Our parser generator tool ParSpring besides generating the parser, it also detects 
various types of errors and warnings whether syntactic or semantic ones. Error 
handling is one of the most important aspects for achieving the practicality of any 
parser. That's why we discuss this vital capability in this separate chapter. 

 
3.5.1 Semantic Errors and Warnings 
 

The semantic error handler embedded in our tool detects various types of semantic 
errors and warnings. The following describes each of them in detail. 
 
3.5.1.1 Warnings 
 
Terminal defined but not used 
  

This is just a warning that occurs when a terminal defined in the Tokens section is not 
used within the Grammar section. 
 
For example, if the terminal 
 
Addop 
 
is defined in the Tokens section but not used the error handler displays the message 
 

Warning: Terminal Addop defined but not used. 

 
Unreachable production 
  

A warning occurs when a production is not reachable from the start symbol. This is 
equivalent in programming to writing code after a return , break  or continue  
statement. 
 
For example, if 
 
S → a S | b B | Eps. 
B → b. 
C → c C | Eps. 
 
It's clear that production C is not reachable from the start symbol S and the error 
handler displays the message 
 



Warning: Unreachable Production for C. 
 
Contents of {…} or […] must not be deletable 
  

This is an LL(1) grammar warning that occurs when the contents of a closure or an 
option are deletable. 
 
For example, if there exists a rule such as 
 
A → {[a]}. 
 
The error handler displays the message 
 

Warning: LL(1) Conflict in A: Contents of {...} must not be deletable. 

 
Several alternatives start with … 
  

This is another LL(1) warning that occurs when more than one alternative overlap in 
the first set. 
 
For example if we have a rule 
 
A → b [ a ] [ a B ].  
A → a b | a c. 
 
The error handler displays the message 
 

LL(1) Warning in A: Several alternatives start with a. 

 
3.5.1.2 Errors 
 
Non-terminal undefined 
  

This is an error that occurs when a given non-terminal was used in a rule but has no 
definition, i.e. it doesn't occur on the left-hand-side of a production. 
 
For example, if we have the rule 
 
S → b B | a A | Eps. 
B → b. 
 
The error handler displays the message 
 

Error: Non-terminal A undefined. 
 
Using a reserved keyword as a terminal or a non-terminal name 
  

This is an error caused by using a reserved keyword (i.e. without being within double 
quotes) as a name of a terminal or a non-terminal. 
 



For example, if the keyword ClassName is used within the Tokens section, the error 
handler displays the message 
 

Error: ClassName is a reserved keyword and can not be used as a token. 
You can use "ClassName" instead. 

 
However, as the message clarifies, we allow the user to use reserved keywords as 
tokens after surrounding them with double quotes. 

 
Non-terminal … does not lead to a terminal 
  

This is an error that occurs when given a non-terminal X, there's no derivation of X 
that leads to a terminal. 
 
For example, if we have a rule 
 
A->b A| a A. 
 
The error handler displays the message 
 

Error: Non-terminal A does not lead to a terminal. 

 
3.5.2 Syntactic Errors 
 

The error handler also tool detects various types of syntactic errors mentioned below. 
 
Missing keyword Grammar  
 

Occurs when the keyword Grammar is missing. 
 
Unbalanced () or [] or {} 
 

Occurs on detecting unbalances in any bracket type: () or [] or {}. 
 
Missing non-terminal in the left-hand-side 
 
Missing production operator "→"   
 
Missing "." to terminate a grammar rule  
 

 
 
3.6 Syntactic Analyzer Generator Front-End (SAG-FE) 

 
This chapter discusses the design and some implementation details for the parser 
generator tool such as scanning, parsing and tree node functions and algorithms. 
 
The following figure illustrates the skeleton of the parser generator front end. 

 



 
 

  
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

Figure III-4: The Parser Generator Front-End 

 
3.6.1 Scanning the Input File 
 
In this phase, the input file is scanned by reading characters and assembling them into 
logical units (tokens) to be dealt with in the parsing process. 

 
3.6.1.1 Reserved Keywords 
 

"Tokens", "Options", "NameSpace", "ClassName", "Lan guage", 
"TopOfDeclaration", "TopOfDefinition", "BottomOfDec laration", 
"BottomOfDefinition", "CPlusPlus", "CSharp", "Java" , "Grammar", 
"Eps", "Sync", "IF". 

 
3.6.1.2 Macro Representation of Other Tokens 

Table III-1: Macro Representation of Tokens 
 

Token Representation 
BulkOfCode          %% {ANY} %%              

Scanning 
  

Parsing 

Building the 
Syntax Tree 

 Tokens 

Detecting Syntax 
Errors 

 

Computing First Sets 

 

Checking Semantic Errors 

 

Calculating Follow Sets 



Identifier          (_a-zA-Z){_0-9a-zA-Z}.   
String              "{ANY}"                  
Character           'ANY'                  
Production          ->                       
Or                  | 
Dot                 . 
Equal               = 
OpenBracket         ( 
CloseBracket        ) 
OpenSquareBracket   [ 
CloseSquareBracket ]  
OpenCurly           { 
CloseCurly   } 
Attributes (. {ANY} .) 
SemAction   <. {ANY} .> 
EndOfFile   EOF Char 
Error       Otherwise 

 
3.6.1.3 Data Structure for Scanning 
 

The following is the code of the data structures used during scanning. The comments 
in the code are useful to understand the whole topic in a glance. 
 

TokenType Enumerator 
 

enum TokenType  
{ 
   Tokens, Options, NameSpace, ClassName, Language,  DeclTop, 
DeclBottom, DefTop, DefBottom, CPlusPlus, CSharp, J ava, Grammar, 
Weak, Eps, Any, Sync, If, BulkOfCode, Identifier, S tring,  Character, 
Production, Or, Dot, Equal, OpenBracket, CloseBrack et, 
OpenSquareBracket, CloseSquareBracket, OpenCurly, C loseCurly, 
Attributes, SemAction, Error, EndOfFile 
} 
 

Token Structure 
 
struct  Token 
{ 
public : 
   tstring Lexeme;       // String containing the lexeme  
   TokenType Type;       // Type of matched token  
   unsigned  int  LineNo;  // Line number (useful for error handling) 
   unsigned  int  ColNo;   // Column number  (useful for error handling) 
}; 

States Enumerator 
 
enum States  // Holds the current state of scanner DFA 
{ 
   Start, InIdent, InString, InChar, InProduction,  
   InDot, InOpenBracket, InSemAction, Done, ErrorSt ate,   
   InBulkCode, AttributesState 
}; 

 
Scanner Class 

 
class  Scanner 



{ 
public : 
  Scanner(string fileName, unsigned  int  numberOfCharsPerRead = 1024); 
  Token GetToken(); // Get next token from the input file  
  ~Scanner(); 
  unsigned  char  TabSize; 
 
protected : 
  TCHAR getNextCharachter(); // TCHAR is the Unicode character  
  void  ungetCharachter(); 
  void  initializeReservedKeywords(); 
  TokenType reservedLookUp(tstring lexeme); 
  InputFile* file; 
  unsigned  int  currentLineNum, 
               bufferSize, 
               currentColNo, 
               maxCharsToRead, // Number of characters to read per 
                               // journey to the ha rd disk  
               currentCharPosition; // A pointer in the buffer 
  TCHAR* buffer; 
  map<tstring, TokenType> reservedWords; 
};  

  
3.6.2 Parsing the Input File 
 
This section introduces a detailed explanation of the ParserGenerator  and Node 
classes and supported functionalities. The CFGs for LL(1) and recursive descent 
parsers are listed, along with nodes' functionalities, the process of building the tree 
and syntax error detection.  

    
3.6.2.1 Recursive Descent Parser Generator CFG 

 

Start     → [ OptionSet ] TokenSet { TDec | TDef | BDec | BDef  } 
 MyGrammar. 

OptionSet → "Options" [ "NameSpace" Equal String ] [ "ClassNam e" 
 Equal String ] [ "Language" Equal ID ]. 

TokenSet  → "Tokens" { ID | String }. 

TDec      → "TopOfDeclaration" { "ANY" }. 

TDef      → "TopOfDefinition" { "ANY" }. 

BDec      → "BottomOfDeclaration" { "ANY" }. 

BDef      → "BottomOfDefinition" { "ANY" }. 

MyGrammar → "Grammar" { ( ID | String [ Attributes ] ) Product ion 
 Expression Dot }. 

Expression (. int x, int y .) → 
 Term { Or Term } <. string s = ""; .>. 

Term    → [ Resolver ] Factor { Factor }. 

Factor    → IF (..) Symbol [ Attributes ] 
| OpenBracket Expression CloseBracket 
| OpenOption Expression CloseOption 
| OpenClosure Expression CloseClosure 
| "SYNC" | SemAction. 



Attributes → OpenAttr { "ANY" } CloseAttr. 

SemAction  → OpenAction { "ANY" } CloseAction . 

Resolver   → "IF" OpenBracket { "ANY" } CloseBracket.  
      
[Hint: Words without rules in the previous grammar represent the tokens previously 
discussed ("Options", "Namespace" …)].  

 
3.6.2.2 LL(1) Parser Generator CFG 

 

Start      → [ OptionSet ] TokenSet { TDec | TDef | BDec | BDef  } 
 MyGrammar. 

OptionSet  → "Options" [ "NameSpace" Equal String ] [ "ClassNam e" 
 Equal String ] [ "Language" Equal ID ]. 

TokenSet   → "Tokens" { ID | String }. 

TDec       → "TopOfDeclaration" { "ANY" }. 

TDef       → "TopOfDefinition" { "ANY" }. 

BDec       → "BottomOfDeclaration" { "ANY" }. 

BDef       → "BottomOfDefinition" { "ANY" }. 

MyGrammar  → "Grammar" { ( ID | String ) [ Attributes ] Product ion 
 Expression Dot }. 

Expression(. int x, int y .) → 
 Term { Or Term } <. string s = ""; .>. 

Term       → [ Resolver ] Factor { Factor }. 

Factor     → IF(..) Symbol [ Attributes ] | "SYNC" | SemAction.  

Attributes → OpenAttr {"ANY"} CloseAttr. 

SemAction  → OpenAction {"ANY"} CloseAction. 

Resolver   → "IF" OpenBracket { "ANY" } CloseBracket. 



[Hint:  The CFG for the LL(1) parser generator does not include closure, option or 
bracket (for BNF notation restrictions) rather than EBNF notation for recursive 
descent parser generator specification]. 
 
According to the previous CFGs (i.e. separate parser for each supported type) a 
recursive-descent parser is built for analyzing the input file, the parser generator class 
has a member function for this purpose. 

 
void  ParserGenerator::Parse() // Maps Start in the CFG  
void  ParserGenerator::OptionsSet() // Maps OptionSet  
void  ParserGenerator::TokensSet() // Maps TokenSet 
void  ParserGenerator::TopOfDeclaration() // Maps TDec  
void  ParserGenerator::TopOfDefinition() // Maps TDef  
void  ParserGenerator::BottomOfDeclaration()  // Maps BDec  
void  ParserGenerator::BottomOfDefinition()  // Maps BDef  
void  ParserGenerator::Productions() 
void  ParserGenerator::Expression(GenericCFGNode** node,  bool   
 reachable) 
void  ParserGenerator::Term(GenericCFGNode** node,  bool  reachable)  
void  ParserGenerator::Factor(GenericCFGNode** node,  bool  reachable)  
void  ParserGenerator::match(TokenType expected, string  ErrorMsg="",   
 bool  Resume= true ) 
void  ParserGenerator::onError(tstring errorMsg)   

 
The mentioned functions implement parsing the input files, building the syntax tree 
and detecting syntax errors, the following is a detailed description of the three 
processes. 
 
The tree data structure is used to represent the RHS of a rule. The following section 
describes how the optimized syntax tree is generated and how syntax errors are 
detected during parsing. 

 
3.6.2.3 The Tree Data Structure 
 

Firstly it's better to mention why to represent the LHS of a rule by a node rather than a 
closure of terminals and non-terminals {N U T} (i.e. rules in the form  
 
A → BCD... 

 
only is accepted). This is to accept productions in a flexible form and to facilitate 
dealing with the left factored form of a rule. For example, a rule in the form 
 
A → BC ( A [F] | YU (IO <. int x = 7; int y = x*x + 3* x; .> | {PU} Y).  
 
is accepted. 
 
As mentioned in the previous example, the LHS can be an Or, an And, an Option, a 
Closure, a Terminal, a Non-terminal, or a Semantic Action. So the LHS must be a 
generic node that can be an OredNode, an AndedNode, a ClosureNode… so the data 
structure is represented as follows: 
 
NodeType Enumerator 



 
enum NodeType // various types of nodes Ored,Anded,closure,….,etc .  
{ 

_Anded, _Ored, _Closure, _Brackets, _Optional, _Ter minal, 
_NonTerminal, _SyncNode, _SemAction 

};   

 
GenericCFGNode Class 
 
class  GenericCFGNode               
{ 
public : 
   NodeType NType; // Store the type of this node  
   virtual  BitSet_Min FirstSet(ParserGenerator* P);  
   virtual  bool  FollowSet(ParserGenerator* P); 
   virtual  BitSet_Min GetNonTerminals(ParserGenerator* P); 
   void  virtual  Print(ParserGenerator* P)=0; // Print this node  
   tstring virtual  check_LL1(ParserGenerator* P)=0;  
   virtual  GenericCFGNode*   Copy()=0; 
 // Returns a copy of this node      
   void  virtual  Remove()=0; 

// remove all descendents the this node 
   virtual  bool  LeadToTerminal(ParserGenerator* P, 

unsigned  int LHS)=0; 
};   

 
Functions that are in not bold will be discussed later. 
 
The GenericCFGNode  class mentioned above is just the interface; thus all types of 
nodes inherit from it. The children are as follows: 
 
OredNode Class 
 
class  OredNode : public  GenericCFGNode 
{ 
public : 
   list<GenericCFGNode*> Children;  // A list of Ored children  
   OredNode(); 
 }; 

 
AndedNode Class 
 
class  AndedNode : public  OredNode 
{ 
public : 
   tstring ResolverString;  // Used if there is an LL(1) conflict 
                           // Contains the decision  logic to  
                           // determine which produ ction to go  
      // through.  
   AndedNode(); 
 };  
 
 
ClosureNode Class 
 
// Semantically having zero or more occurrences of the child node 
// A ClosureNode can have only one child that can b e Ored, Anded, ...  



class  ClosureNode : public  OredNode  
{                                   
public                              
   ClosureNode();  
};                              
 
OptionNode Class 
 
// Semantically having zero or more occurrences of the child node 
class  OptionNode : public  OredNode 
{               
public :                          
   OptionNode(); 
}; 

 
SemActionNode Class 
 
// Actions to be executed  
class  SemActionNode : public  GenericCFGNode  
{ 
public :  
   tstring SemAction; // The string containing the action.  
   SemActionNode(); 
}; 

 
TerminalNode Class 
 
class  TerminalNode : public  GenericCFGNode 
{ 
public : 
   int  NameIndex; // Index of the terminal  
   tstring Attributes; // Attributes for this node  
   RDParserGenerator::TokenType TerminalType; 
   bool  IsWeak; 
   TerminalNode(); 
}; 

 
NonTerminalNode Class 
 
// Here the inherited NameIndex and attributes refe r to a non- 
// terminal one rather than terminal  
class  NonTerminalNode :  public  TerminalNode  
{ 
public : 
   NonTerminalNode(); 
}; 
  

The last declarations are shortened by ignoring the repeated code for overriding 
functions (e.g. Copy(), Remove(), Print(), …) in the interface (i.e. the 
GenericCFGNode  class). 



3.6.2.4 Building an Optimized Syntax-Tree 
 

The tree building process in the ParserGenerator  class deals with data members that 
comprise a number of data structures described here. 
  
ParserGenerator Class Members 
 
// Terminals used in the specifications. 
// Terminals  are  loaded  from  values  in  the Tokens  section.  
map<tstring,TerminalEntry> Terminals; 
 
// Non-Terminals used in the specifications. 
// Non-Terminals  are  loaded  during the parsing phase.  
map<tstring,NonTerminalEntry> NonTerminals;  

       
// Index of the next terminal 
// [initialized using a TerminalBase] 
unsigned  int  nextTerminalIndex;  
      
// Index of the next non-terminal 
// [initialized using a NonTerminalBase] 
unsigned  int  nextNonTerminalIndex;  
 

 
The goal of representing terminals as an index is to only store the index in the node 
rather than storing a string representing the non-terminal; as it's faster to compare 
integers rather than strings. To avoid ambiguities for a given node each type has a 
range of indices. Terminals start from TerminalBase , non-terminals starts from 
NonTerminalBase  [in case of LL(1) parser generator a code index starts from 
CodeBase ]. These bases are defined in a #define  directive which can be easily 
changed, there is no intersection among any of these ranges (i.e. terminals' range, non-
terminals' range and codes' range). 

 
Grammar Items Data Structures 
 

TerminalEntry Class 
 
class  TerminalEntry 
{ 
public : 
   unsigned  int  NameIndex;  // The index given to the terminal  
   BitSet_Min* FirstSet; // The First Set of this Terminal  
   TokenType Type; // The type of this token  
   vector<location> locations ; // Locations at which this 

  // terminal exist  
   bool  used; //Is this terminal used so far or not?  
    
   TerminalEntry(); 
   TerminalEntry( unsigned  int  NI, TokenType T, bool  used =  false );  
}; 

 
 
TerminalEntry Class 
 
class  NonTerminalEntry 
{ 



public : 
   unsigned  int  NameIndex; // The index given to the non-terminal  
   BitSet_Min* FirstSet; // The First Set of this non-terminal  
   BitSet_Min* FollowSet; // The Follow Set of this terminal  
   bool  Defined; // This non-terminal has a rule?  
   bool  reachable; // Is this non-terminal reachable?  
   ProductionRule* Rule; // The rule of this non-terminal  
   vector<location> locations; // Locations at which this  
                               // non-terminal exis ts  
   NonTerminalEntry(); 
   NonTerminalEntry( unsigned  int  NI,  bool  defined = false ); 
}; 

 
Grammar Data Structure 
 
Simply, the grammar is a list of production rules in the ParserGenerator  class. 
 
list<ProductionRule*> Grammer;       //ParserGeneratormember  

 
Firstly, we want to know how a rule is represented, and so this is the rule declaration 
containing overall attributes required for the rule like LHS, attributes, 
SemAction,…,etc. 
 
ProductionRule Class 
 
class  ProductionRule 
{ 
public :  
   ProductionRule( void ); 
   ~ProductionRule( void ); 
 
   unsigned  int  LHS; //The index of the non-terminal in the LHS  
   tstring Attributes; // Attributes for LHS  
   tstring SemAction; // Semantic action "string of code"  
   GenericCFGNode* RHS; // Root node for RHS  
   bool  reachable; // Is this rule reachable?  
   list<location> locations;    
}; 

 
Tree Construction 
 

During building the tree two types of operation are done, these operations are 
optimization and gathering. 

 
Tree Optimization 
 
The tree is built in the minimum number of levels and nodes. For example, a tree for 
the production 

A → B C D. 
 

is the same as the tree for the production 
 

A → (B)(C D). 
 

is the same as the tree for the production 
 



A → ((B)C)D. 

 
To illustrate the difference between an optimized tree and non-optimized tree the 
following is the representation of the tree of each rule in a non-optimized form:  

 
ORed(ANDed(B, C, D)). 
 

ORed(ANDed(ORed(ANDed(B)), ORed(ANDed(ORed(ANDed(C,  D)))))). 
 

ORed(ANDed(ORed(ANDed(ORed(ANDed(B)), C)), D)). 

 
But the optimized tree is the simplest of the three for all of them. 

 

A → B C D      … ANDed(B, C, D). 

A → (B)(C D)   … ANDed(B, C, D). 

A → ((B)C)D    … ANDed(B, C, D). 

  
Optimization is achieved in the implementation as the called process assigns the 
children pointer. And that's why Expression , Term and Factor  functions each has a 
pointer to the node pointer as a parameter. 
 
void  ParserGenerator::Expression(GenericCFGNode** node,  

   bool  reachable) 
void  ParserGenerator::Term(GenericCFGNode** node, bool  reachable)  
void  ParserGenerator::Factor(GenericCFGNode** node, bool  reachable)  

 
The reachable parameters are used to assign the reachable  property of the non-
terminal (if it exists) in the node's children. 

 
Optimization While Traversing 
 
The following listing illustrates how the optimization is carried out while traversing 
the tree. We adopted a convention of "mixing" C++ and structured English to clarify 
the overall situation. 
 
 
FUNCTION ParserGenerator::Expression  
         ( 

GenericCFGNode** node, // A passed node, to be assigned  
bool  reachable 

   ) 
BEGIN 
   IF (Token in first Set of Term) 
   THEN 
 GenericCFGNode* ChildNode;  
 Term(&ChildNode, reachable); 
   // If this is the only child of the ORed node, 
   // assign it to a referenced node.  

    IF (token.Type != Or)  
 THEN 
    *node = ChildNode;  
    return ; 
      END 
   *node = new OredNode(); 
   ((OredNode*)*node) -> Children.push_back(ChildNo de); 



   END 
   ... 
   The remaining logic is here 
   ... 
END 
 
 
 
FUNCTION ParserGenerator::Term 

  (GenericCFGNode** node, bool  reachable) 
BEGIN 
   *node=NULL; 
   IF (token.Type == Eps) 
   THEN 
   ... 
   Eps logic is here 
   ...  
   ELSE 

bool  ResolverExists = false ; 
 IF (token.Type == If) 
 THEN 
         ... 
         Resolver logic is here 
    ... 
      END  
   END 
 
   IF (Token is in the First Set of factor) 
   THEN 
 GenericCFGNode* child; 
 Factor(&child, reachable); 
 IF (!ResolverExists) 
 THEN 
         IF (Token is not in the First Set of factor)  

   // If the only child of anded node,  
   // assign  it to  a referenced  node  

         THEN  
  *node = child;  // Assign referenced node                      
  return ; 
    END 
    *node = new AndedNode(); 
 END 
 if (child != NULL) 
         ((AndedNode*)*node) -> Children.push_back( child); 
   END 
   ... 
   Remaining logic is here 
   ... 
END 
   
 
 
 
FUNCTION ParserGenerator::Factor 

   (GenericCFGNode** node,  bool  reachable)  
BEGIN 
   ... 
   Factor logic is here 
   ... 
END 

 



This function assigns a node directly for terminals, non-terminals, semantic actions, 
but continues the recursion process on the expression in case of closures, options or 
parentheses and does not have a clear optimization code. 

 
Gathering 
 
Rules are gathered using the non-terminal on the left-hand-side of the rule. For 
example, the rules 
 

A → B. 

A → C. 

A → D. 
 

are gathered to a single rule with a right-hand-side having a prefix notation of  
ORed(B, C, D) for the non-terminal A. 
 
The gathering logic is described in the following listing. 
 
 
IF (It's the first rule for the given non-terminal) 
BEGIN 
   // Add the grammar rule and assign it to the non -terminal  
   Expression(&Rule->RHS, reachable);  
   Rule -> locations.push_back(loc); 
   Grammer.push_back(Rule); 
END 
ELSE  
 GenericCFGNode* RuleNode; 
 Expression(&RuleNode, reachable); 
      ... 
      Code for ORing the current node with the curr ent rule of the  
      LHS non-terminal and assigning the result to the rule of this  
      non-terminal 
      ... 
END 

 
Building the Tree 
 
The tree is built using the Expression , Term and Factor  functions. Expression  
makes an OredNode  if there exists OR(s) between at least two terms. Term function 
makes an AndedNode  if there exists two or more ANDed factors. Factor  function has 
no more than one child adding just one node in this process. 

 
 
Expression Function 
 
void  ParserGenerator::Expression 
    (GenericCFGNode** node, bool  reachable) 
BEGIN 
   IF (token is in the First Set of Term) 
   THEN 
 GenericCFGNode* ChildNode; 
 Term(&ChildNode, reachable); 



 IF (token.Type != Or) // If a single child exists  
 THEN 
         *node = ChildNode; 
    return ; 
 END 
 *node = new OredNode(); 
 ((OredNode*)*node) -> Children.push_back(ChildNode ); 
   END 
   while (token.Type == Or) // If more than one child exist,  
   BEGIN                   // add children to the Ored Node  
 match(Or);  
 GenericCFGNode* Child;  
 Term(&Child, reachable); 
 ((OredNode*)*node) -> Children.push_back(Child); 
   END 
END 

  
Term Function 

 
*node = NULL; 
IF (token.Type == Eps) 
   ... 
   Eps logic code 
   ... 
ELSE 
   bool  ResolverExists = false ; 
   IF (token.Type == If) // If there is a resolver  
   THEN                 // It must be an ANDed node  
 match(If); // Even if a single child exists  
 *node = new AndedNode(); 
 IF (token.Type == Attributes) 

BEGIN 
         ((AndedNode*)*node) -> ResolverString = to ken.Lexeme; 
    match(Attributes, 

   "Error: Resolver attributes are missing, 
the valid form is IF(. {ANY} .)", 

   false ); 
    ResolverExists = true ;  
 END 
 IF (token is in the First Set of Factor) 
 THEN 
         GenericCFGNode* child; 
    Factor(&child, reachable); 
    IF (!ResolverExist) 
    THEN 
       IF (Token is not in the First Set of factor) 
       THEN  // If one child  
     *node = child; 
     return ; 
       END 
    *node = new AndedNode(); 
 END 
 IF (child != NULL) 
    ((AndedNode*)*node) -> Children.push_back(child ); 
   END 
 
   // More than one child  
   WHILE (token in the First Set of Factor)  
   BEGIN 
 GenericCFGNode* child; // Add a new child  
 Factor(&child,reachable); // To given Anded node 



      // This check is just for error handling purp oses  
 IF (child != NULL) 
         ((AndedNode*)*node) -> Children.push_back( child); 
   END 
END 

 
3.6.2.5 Syntax Error Detection 
 

This is supported by the match  function that deals with many variables as number of 
braces, brackets and square-brackets to detect any non-balancing, if exists. 

 
void  ParserGenerator::match( 
   TokenType expected,  // Type of expected token  
   tstring ErrorMsg, // Error message to store if there exists a type 
                     // mismatch  
   bool  Resume) // In case that an error exists, 
                // is an advance to the next token needed?  
{                     
   ... 
   Logic for balancing braces, brackets and square- brackets 
   ... 
 
   // If the current token type is as expected adva nce to the 
   // next token,  where token  is the current token 
   if  (token.Type == expected) 
   {                            
      token = la1; // la1 is the first lookahead  
 la1 = la2;   // la2 is the second lookahead  
 la2 = scanner -> GetToken(); 
   }  
   else // An error exists, perform the error action 
   { 
 onError(ErrorMsg); // Store error message  
 HasErrors = TRUE;  // Mark grammar as has errors  
 if  (Resume)        // If advancing on errors is allowed  
 { 
    token = la1; // Advance to the next token  
    la1 = la2; 
    la2 = scanner -> GetToken(); 
 } 
   } 
}  

 

As described in the previous code, when the match()  function detects an error it 
marks the error using OnError()  function that stores the error in an internal data 
structure with the associated location (i.e. row number, column number…). 



void  ParserGenerator::onError(tstring errorMsg) 
{ 
   // Store the error  
   FileErrors[token.LineNo][token.ColNo].push_back( errorMsg); 
   NumberOfErrors++; // Increment the errors counter  
 
   // If the number of errors exceeds a certain thr eshold  
   if (NumberOfErrors >= 1000)  
   {                         
  cout<<"Error: Too many errors!"<<endl; 
 exit(1); // Exit unsuccessfully 
   } 
} 

 

In the previous code, the FileErrors  (a ParserGenerator  data member) is defined 
as 
 
map<int, map<int, list<tstring> > > FileErrors; 
 

where the first integer is the line number, the second is the column number, and 

list<string>  is used to store the errors with their corresponding line number and 
column number. 
 
On the call of the match  function, only the expected token, "message if error" and 
"advance on errors" parameters are passed. For example, 
 
match(Equal, "Error: Equal Sign Missing", false ); 
 

is used to match the equal token, store passed message if mismatch exists, and not to 
advance on mismatch. 

 
3.7 Syntactic Analyzer Generator Back-End (SAG-BE) 

 

3.7.1 Code Generation Internals - RD Parser Generator 
 

The code generation part in the parser generator (either the LL(1) or Recursive-
Descent) is designed and implemented in a way that permits extensibility. It is very 
easy to extend the parser to generate in a new language by only implementing a well-
defined interface called ICodeGenerator  which abstracts the core of the parser 
generator from code generation. 
 
The ICodeGenerator  interface for the recursive-descent parser generator is defined 
as follows: 
 
class  ICodeGenerator 
{ 
public : 
   void  virtual  GenerateCode( ParserGenerator* parser ) = 0; 
   void  virtual  OrGenerator( OredNode* node ) = 0; 
   void  virtual  ClosureGenerator( ClosureNode* node ) = 0; 
   void  virtual  OptionalGenerator( OptionNode* node ) = 0; 
   void  virtual  AndGenerator( AndedNode* node ) = 0; 
   void  virtual  SemActionGenerator( SemActionNode* node ) = 0; 
   void  virtual  TerminalGenerator( TerminalNode* node ) = 0; 
   void  virtual  NonTerminalGenerator( NonTerminalNode* node ) = 0;  



 
protected : 
   ofstream DefinitionFile; 
   ParserGenerator* Parser; 
};  
 
In the current version, three classes implement the ICodeGenerat or interface: 
CPlusPlusGenerator , CSharpGenerator  and JavaGenerator . These classes 
generate code in C++, C# and Java respectively. 
 
We will discuss the ICodeGenerator  protected members first: 
 
• DefinitionFile: Every code generator must write to at least one file. This member 

represents the output file stream through which the generated parser is written to 
the disk. The DefinitionFile  member for example creates the .cs file in the 
CSharpGenerator  class. Also, in the JavaGenerator  class, it creates the .java 
file. For languages that needs more than one file to be generated, the derived class 
representing the code generator for this language must define these files. For 
example, the CPlusPlusGenerator  generates two files (.cpp and .h files). Here, 
the definition file (.cpp file) is written through the DefinitionFile  member 
inherited from the parent abstract class ICodeGenerator  while the declaration file 
(.h file) is written to disk through the CPlusPlusGenerator  class member 
DeclarationFile .  

• Parser: This is a pointer to a parser object for which code is to be generated. This 
pointer is used by the generator class to access the syntax tree from which code is 
generated. 

 
The public members of the ICodeGenerator  are as follows: 
 

• OrGenerator( OredNode* node ):  takes an OredNode  pointer and writes its 
contents to the stream used in code generation. 
 

• ClosureGenerator( ClosureNode* node ):  takes a ClosureNode  pointer and 
writes its contents to the stream used in code generation. 

 

• OptionalGenerator(OptionalNode* node ):  takes an OptionalNode  pointer 
and writes its contents to the stream used in code generation. 

 

• AndGenerator( AndedNode* node ):  takes an AndedNode  pointer and writes 
its contents to the stream used in code generation. 

 

• SemActionGenerator( SemActionNode* node ):  takes a SemActionNode  
pointer and writes its contents to the stream used in code generation. 

 

• TerminalGenerator( TerminalNode* node ):  takes a TerminalNode  pointer 
and writes its contents to the stream used in code generation. 

 

• NonTerminalGenerator( NonTerminalNode* node ):  takes a 
NonTerminalNode  pointer and writes its contents to the stream used in code 
generation. 

 

• GenerateCode( ParserGenerator* parser ):  this is the most important 
function which is called firstly to begin code generation. This function takes a 
pointer to a parser. By passing a pointer to a parser, the code generation class will 
have access to all the sections found in the grammer input file besides the most 



important member, Grammer, which is a list of the production rules each of which 
consists of an object of a derived class from GenericCFGNode . Objects of classes 
inherited from the GenericCFGNode  class contain a fuction called 
GenerateCode()  which overrides the virtual function GenerateCode()  of the 
GenericCFGNode  base class. This virtual function is to be called from 
ICodeGenerator.GenerateCode()  function. Depending on the type of the node, 
a specific function is called which calls the suitable function in ICodeGenerator . 
For example, if ICodeGenerator  is now processing a GenericCFGNode  object 
which is a NonTerminalNode  object, then on calling node.GenerateCode( this ) 

(where this  is the pointer of the calling ICodeGenerator ) then the 
NonTerminalNode.GenerateCode()  function will be called due to the rules of 
virtual functions. Finally, the NonTerminalNode.GenerateCode()  function will 
call ICodeGenerator.NonTerminalGenerator()  passing the NonTeminalNode  
object to be used in generating the code corresponding to this NonTerminalNode . 
This is a very elegant usage which illustrates the beauty of virtual functions. 

 
In what follows, we show the class diagram of the code generation part of the 
recursive descent parser generator targeting the languages C++, C# and Java: 
 

 
 

Figure III-5: RD Parser Generator 

Code Generation Class Diagram 

 
3.7.2 Code Generation Internals – LL(1) Parser Generator 
 

The code generation of the LL(1) parser generator is simpler than the code generation 
of the recursive-descent parser generator. This is due to the fact that in the LL(1) code 
generation we use the LL(1) table (whose details were demonstrated in the LL(1) 
parser section) which is contained in the parser object. So, instead of traversing the 
simple trees as in recursive-descent code generation; we only translate the LL(1) table 
into a data structure in the output code of the generated parser with the 
implementation of the LL(1) parsing algorithm in the target language (C++, C#, Java). 
 



The ICodeGenerator  interface for the LL(1) parser generator is defined as follows: 
 
class  ICodeGenerator 
{ 
public : 
   void  virtual  GenerateCode( ParserGenerator* parser ) = 0; 
 
protected : 
   ofstream DefinitionFile; 
   ParserGenerator* Parser; 
}; 
 

We will discuss the ICodeGenerator  protected members first: 
 
• DefinitionFile: Every code generator must write to at least one file. This member 

represents the output file stream through which the generated parser is written to 
the disk. The DefinitionFile  member for example creates the .cs file in the 
CSharpGenerator  class. Also, in the JavaGenerator  class, it creates the .java 
file. For languages that needs more than one file to be generated, the derived class 
representing the code generator for this language must define these files. For 
example, the CPlusPlusGenerator  generates two files (.cpp and .h files). Here, 
the definition file (.cpp file) is written through the DefinitionFile  member 
inherited from the parent abstract class ICodeGenerator  while the declaration file 
(.h file) is written to disk through the CPlusPlusGenerator  class member 
DeclarationFile .  

• Parser: This is a pointer to a parser object for which code is to be generated. This 
pointer is used by the generator class to access the syntax tree from which code is 
generated. 

 
The public members of the ICodeGenerator  are as follows: 
 
• GenerateCode( ParserGenerator* parser ):  This function is called to 

generate the LL(1) table as a data structure using the LL(1) parsing algorithm 
(referred to as the LL(1) driver). 

 
The ICodeGenerator  is the interface that should be implemented by developers 
extending our parser generator tool to generate code. Currently, three languages are 
supported for code generation: C++, C# and Java. Specific to our implementation for 
the generators of these three languages; the classes CPlusPlusGenerator , 
CSharpGenerator  and JavaGenerator  inherit also from a class called 
ISpecificGenerator  as these three classes share three functions that are used 
internally in code generation. Here is the declaration of the ISpecificGenerator  and 
a description for its three members: 
 
class  ISpecificGenerator 
{ 
public : 
   void  generateUserFunctions(); 
   void  initializeParser(); //Initialize the LL(1) table and the delegates  

   void  generateLL1Controller(); 
}; 
 



• generateUserFunctions:  Every block of code embedded in the grammar is 
generated as a fuction by the generateUserFunctions()  where each generated 
fuction is called in its correct time while parsing. 

 

• initializeParser: This function initializes the LL(1) table to that of the parser 
and initializes pointers (for C++) or delegates (for C#) to the generated user 
functions to be called while parsing (to run the user code embedded in the 
grammar). In the Java generated parsers, we give a unique number to each 
function and when it is time for function X to be called (X is an integer 
representing the id of the function), a switch statement is made on this number to 
call the corresponding function. 

 

• generateLL1Controller:  This function generates the implementation of the 
LL(1) parsing algorithm in the target language. 

 
 
This is the class diagram of the code generation part of the LL(1) parser generator 
targeting the languages ParSpring supports in its current version; C++, C# and Java: 
 

 
Figure III-6: LL(1) Parser Generator 

Code Generation Class Diagram 



 

3.8 Helper Tools 
 
Sometimes developers write grammars that contain LL(1) conflicts and it's such a 
tedious mission to convert them manually into grammars without conflicts by using 
algorithms like left recursion removal and left factoring that it's worth automating the 
process. In this chapter we discuss both tools in full detail.  
 
 
 
 
 
 
 
 

Figure III-7: Syntax Analyzer Helper Tools 

 
3.8.1 Left Recursion Removal 
 

Left recursion removal is an algorithm commonly used to make operators left 
associative and to eliminate LL(1) conflicts emerging due to left recursive rules. 
Taking the simple expression CFG 
 
exp  → exp  addop  term  | term  
 
as a simple example of left recursion removal, the rule is split into two rules: 
 
exp   → term  exp1 
exp1  → addop  term  exp1  | Eps. 
 
It's noteworthy that these tools are more important in the case of LL(1) parsers 
than in their recursive-descent counterparts; this is because the recursive-
descent parser generator accepts its input grammar in the EBNF notation that 
solves repetition and choice problems, however the LL(1) parser generator 
accepts its input grammar in the BNF notation.  
 
3.8.1.1 The Input 
 

The input of this tool is considered to be a valid LL(1) parser specification file, if the 
file contains errors the tool will inform the developer that the file contains errors and 
will exit. 
 
3.8.1.2 The Output 
 

The output is a new specification file containing the left-recursion-free grammar, 
which may be the same as the input grammar if no left-recursion originally existed. 
The figure above illustrates the skeleton of the left recursion removal tool. 

Syntax Analyzer Helper Tools 

Left Recursion 
Removal Tool 

Left Factoring Tool 



Left Recursion Removal Tool 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure III-8: Left Recursion Removal Tool 
 

 

Figure III-8: Left Recursion Removal Tools 

 
Some phases (such as the scanning and the parsing phase) illustrated above have been 
already explained, so we will skip these two phases and we will focus on the 
"Removing Left Recursion" and "Generating Output File" phases. 
 
3.8.1.3 The Process 
 

This process performs left recursion removal on the current grammar (represented as 
nodes in memory) and generates a new grammar after eliminating left recursion from 
the old one. The logic of the operations to be performed is illustrated in the following 
pseudo code. 
 
RemoveLeftRecursion(Non-Terminal LHS) returns  
BEGIN 

// Temp_NonTerminals store new generated non-termin als  
 Map<tstring, NonTerminalEntry> Temp_NonTerminals  
 

FOREACH(NonTerminal NT in NonTerminals) 
 BEGIN 

 FOREACH(NonTerminal NTi in NonTerminals from the  
              beginning to NT)  // Not including NT 

  BEGIN 
   NT.Rule.RHS = NT.Rule.RHS.ReplaceIfPosible(NTi) 
  END_FOREACH 
   

NT.Rule = ILRemoval(NT.Rule, &Temp_nonTerminals); 
  // ILRemoval function makes an immediate left recur sion  
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            // Removal adding rules to the new gram mar 
END_FOREACH 
 
FOREACH(NonTerminal NT1 in Temp_nonTerminals) 

 BEGIN 
  Add NT1 to NonTerminals Map 

END_FOREACH 
 
RETURN LeadToTerminal 

END 
 

As exposed in the previous logic, the node has added functionality – the 
ReplaceIfPossible()  function; which is implemented for all node types, besides the 
ILRemoval()  function. 
 
ReplaceIfPossible() Function 
 
1) OredNode  
 

The returned node in the case of an OredNode is a big Or Node between children 
ReplaceIfPossible()  call, if the Child  call returned an OredNode just children are 
added not the OredNode. 
 
OredNode::ReplaceIfPossible(non-terminal NTi) retur ns node 
BEGIN 
 OredNode ReturnedNode = New OredNode 
 
 FOREACH(Child Ch in Children) 
 BEGIN 
  Node N = Ch.ReplaceIfPossible(NTi) 
  IF (N.Type = OredNode) 
  THEN    
   Add each child in N to ReturnedNode children 
  ELSE 
   Add Node N to ReturnedNode Children 

END_IF 
 END_FOREACH 
 
 RETURN ReturnedNode; 
END 

 
2) Anded Node  
 

Replacement is done if left recursion exists, each existence of a node referring to NTi  
is replaced with mapped Rule Right Hand Side node and then formatting them in BNF 
notation, as illustrated in the logic below. 
 
AndedNode::ReplaceIfPossible(non-terminal NTi) retu rns node 
BEGIN 

AndedNode ReturnedNode = New AndedNode  
 SELECT(Child Ch in Children; 

 Ch is the Left Recursive and Equal NTi) 
 BEGIN 
  Replace Ch Node with the definition of its Rule. 
  Formatting it and store it into ReturnedNode  

END_SELECT 
 

 RETURN ReturnedNode 
END 



The following is an example to illustrate this functionality: 
 

Production   :  A → B a A1 | c A1  

Current Rule :  B → B b | A b | d  

Replacement  :  B → B b | (B a A1 | c A1) b | d  

Formatting   :  B → B b | B a A1 b | C A1 b | d 

 
3) Terminal Node & SemAction  
 

No replacement of these nodes is done; they just return a copy of themselves. 
  
ReplaceIfPossible(non-terminal NTi) returns node 
BEGIN 
 RETURN this .Clone() 
END 
 
4) NonTerminal Node  
 

A non-terminal node returns a copy of itself except when it refers to the passed non-
terminal; in which case the RHS of the passed non-terminal rule is returned. 
 
NonTerminalNode::ReplaceIfPossible(non-terminal NTi ) returns node 
BEGIN   
 IF  ( this  refers to NTi) 
 THEN 
  NTi.Rule.RHS.Clone() 
 ELSE 
  RETURN this.Clone() 
 END_IF 
END 

 
ILRemoval() Function 
 
This procedure makes Immediate Left (IL ) recursion for a non-terminal if necessary. 
 
ILRemoval(Rule r, Map* Temp-NonTerminals) returns r ule 
BEGIN   
 Split r.RHS into two types 

(one left-recursive and one non-left-recursive) 
  

OredNode N1 = r.RHS.LeftRecursiveNode 
(without recursive non-terminal) 

OredNode N2 = r.RHS.Non-LeftRecursive Node 
  

Let NT be a new non-terminal  
 Let R1 new rule with r1.LHS   
 Let R2 new rule with NT as LHS  
 

IF  (N2.ChildrenCount = 0) //No possible immediate left recursion  
 THEN 
  Add r.Clone() To New_Grammar 
  RETURN r.RHS 
 ELSE 
  Add NT to Temp-NonTerminals  
   R1.RHS = N1.Children && NT  
  R2.RHS = N2.Children && ( NT | Eps ) 
  Add R1, R2 to New_Grammar 
 END 
END 



3.8.1.4 Generating the Output File 
 

This function generates the new file containing the specification of the grammar after 
eliminating left recursion. 
 
OutputFile() 
BEGIN   
 Output Options, Terminals, TopOfDeclaration, TopOf Definition,  
            ButtomOfDeclaration, BottomOfDefinition  sections as-is 

into the new file 
 Output The Word "Grammar" 
 
 Rule R = Start Symbol Rule 
 R.RHS.Output() //Node function that prints to the file 
 
 FOREACH(Rule R in New_Grammar) 
 BEGIN 
  IF (R.LHS does not refer to start symbol) 
  THEN 
   Output R.LHS 
   Output "->" 
   R.RHS.Output() 
   Output "."  
   Output "\n"   
  END 
 END 
END 
 

As mentioned in the logic above, a function is implemented in each node to output its 
contents to the file. 
 
1) Ored Node  
 

OredNode::Output() 
BEGIN 
 FOREACH(Child Ch in Children) 
 BEGIN 
  Ch.Output() 
  IF (Ch is not the last child) 
  THEN 
   Output " |" 
  END_IF 
 END_FOREACH 
  

RETURN FS; 
END 
 
2) Anded Node  
 

AndedNode::Output() 
BEGIN 

IF (Resolver) 
 THEN 
  Output Resolver 
 END_IF 
  

FOREACH(Child Ch in Children) 
 BEGIN 
  Ch.Output() 
   

IF (Ch is not the last child) 



  THEN 
   Output " " 
  END 
 END_FOREACH 
  

RETURN FS; 
END 

 
3) Terminal Node  
 

TerminalNode::Output()  
BEGIN   
 Output TerminalNode.Name 
END 

 
4) NonTerminal Node  
 

NonTerminalNode::Output() 
BEGIN   
 Output NonTerminalNode.Name 

 
IF (Attributes) 

 THEN 
Output Attributes between (.  .) 

END_IF 
END 
 
5) SemAction Node  
 
SemActionNode::FirstSet() returns BitSet 
BEGIN   
      Output semantic action string between <.  .> terminal Name 
END 



Left Factoring Tool 

 

3.8.2 Left Factoring Tool 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure III-9: Left Factoring Tool 

 
Left factoring is an algorithm required when two or more grammar rule choices 
(productions) share a common prefix string. For example; 
 
Before Left-Factoring : A  → B C | B D 
After  Left-Factoring : A  → B A1 
                        A1 → C | D 

 
3.8.2.1 The Input 
 

The input of this tool is considered to be a valid LL(1) parser specification file. If the 
file contains errors the tool will inform the developer that the file contains errors and 
will exit. 
 
3.8.2.2 The Output 
 

The output is a new specification file containing the left-factored grammar, which 
may be the same as the input grammar if no common prefixes exist. 
 
Some phases (such as the scanning and the parsing phase) illustrated above have been 
already explained, so we will skip these two phases and we will focus on the "Left 
Factoring" and "Generating Output File" phases. 
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3.8.2.3 The Process 
 

This process performs left factoring on the current grammar (represented as nodes in 
memory) and generates a new grammar after left factoring the old one. The logic of 
the operations to be performed is illustrated in the following pseudo code. 
 
 
Left Factoring ()  
BEGIN 
 BOOL Changed = TRUE 
 WHILE (Changed) 
 BEGIN 
  Changed = FALSE 
 

 FOREACH(NonTerminal A in NonTerminals) 
   BEGIN 
   Let F be a prefix of maximal length shared by  

two or more production choices for A  
 
 IF (F != Eps) 
 THEN 
  Let A → F 1 | F 2 | F 3 ... | F n. 

be all production choices for A 
Suppose F 1, F 2, ..., F k share F so that 

     A → F B 1|F B 2|...|F B k|F k+1 |...|F n. 
     The B j 's share no common prefix, and the 
     F k+1  | ... | F n do not share F. 
            Replace rule A → F 1 | F 2 | F 3 | ... | F n. 

   by adding two new rules in New_Grammar 
   Map: 

   A   → F A 1 | F k+1 | ... | F n.  
   A 1 → B 1 | B 2 | ... | B k. 

END_IF 
END_FOREACH 

END 
END 

 
As exhibited in the above logic, the algorithm just extracts common factors in the 
given production choices and perform the factorization process for each non-terminal 
rule if possible. For example, consider the grammar: 
     

A → a b d c A | a b d c B D | a b c d C D | a b c d A B . 
B → b B | Eps.  
C → c C | Eps. 
D → d D | Eps.      

 
Considering symbols in bold as non-terminals and non-bold symbols as terminals (i.e. 
defined in the Tokens section), if this grammar is applied as an input to the algorithm, 
in the first loop a b d c is detected as the prefix with maximal length shared in the first 
rule, while other rules has no common prefixes, and the changes the happen to the 
first rule are: 
 

A    → a b d c A1 | a b c d C D | a b c d A B . 
A1   →  A | B D. 

 



In the second loop, the prefix with maximal length detected is a b c d for the first rule 
while other rules have no common prefixes, and the rule changes to: 
 

A   → a b d c A1 | a b c d A2. 
A2  → C D | A B . 
 

In the last loop, a b is detected as the prefix with maximal length, so it becomes: 
 
A   → a b  A3. 
A3  → d c A1 | c d A2. 

 
The left-factored grammar after all changes take effect is listed below. 
 

A0  → a b  A3. 
A3  → d c A1 | c d A2. 
A2  →  C D | A B . 
A1  →  A | B D. 
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1. LEXcellent 
 
1.1 Summary 
 

We can summarize the features and the capabilities offered by LEXcellent as follows: 
 

• The developer interacts with LEXcellent via providing the specification of his 
tokens in a text file, together with the actions to be performed by the scanner when 
a given token is encountered. 

 

• The format of the input file provides the developer with the capability to declare 
macros, so as to simplify his regular definitions. It allows him to define specific 
pieces of code to be inserted in the generated code files in the positions needed. 

 

• The format of the LEXcellent input file is closely similar to the format of the LEX 
input file. Such a similarity makes it easier for the developers to learn the 
LEXcellent format since LEX is a well known tool by most compiler developers. 

 

• LEXcellent converts the regular definitions stated in the input file into an NFA 
through a very efficient process. The Thompson construction of LEXcellent is 
characterized by a special memory management system that was developed 
specifically for that purpose. 

 

• The NFA is converted into a DFA through the well known Subset Construction 
algorithm. However, we have made a contribution to the Subset Construction 
algorithm making it more efficient than the generic one published in most of the 
classic compiler texts. After such modifications have been made, the resulting 
DFA is almost ideally optimized to the extent that only a small effort is needed in 
the forthcoming optimization phase. 

 

• The DFA is then minimized to optimize its memory size. 
 

• The optimized DFA then undergoes a compression process to further optimize the 
memory size. LEXcellent gives the developer two compression techniques to 
choose from (besides one of them – the Pairs compression technique – has two 
variations, which makes them effectively three), besides the choice not to 
compress at all. Another choice, and possibly the most useful one, is to let 
LEXcellent choose the best compression technique for you, based on the 
compression ratio criterion. 

 

• LEXcellent can generate the lexical analyzer using any of the three languages 
supported in its current version: C++, C# and Java. Such languages where chosen 
from among all available languages since they are the most widely used. 
LEXcellent, however, can be easily extended to support more languages with a 
little maintenance cost. 

 

• The lexical analyzer generated by LEXcellent supports the Unicode [34] encoding 
system, thus, it supports an uncountable number of languages, including Arabic. 
This feature is missing in many other similar tools. 



1.2 Future Work 
 

As a future work, LEXcellent is expected to undergo the following enhancements: 
 

• Supporting more output languages. Besides C++, C# and Java we can support 
other languages easily. 

 

• Supporting other input file formats so as not to restrict the compiler developer to 
the LEX input file format. 

 

• Providing more compression techniques besides the Pairs and the Redundancy 
Removal techniques currently available. 

 

• Adding more error and warning messages as reported by the prospective users of 
LEXcellent. 



2. ParSpring 
 
2.1 Summary 
 

We can summarize the features and the capabilities offered by ParSpring as follows: 
 

• ParSpring takes as an input a text file describing the parser to be generated. The 
main section in the input file is the Grammar section which contains the CFG of 
the desired parser. The grammar mainly consists of terminals and non-terminals. 
The terminals are declared firstly in the Tokens section. The generated parser 
expects from the used scanner to pass it a number corresponding to a token 
declared in the Tokens section of the input specification file. 

 

• The input grammar must be left-factored and left-recursion free. 
 

• ParSpring provides warnings and errors reporting problems in the input file, if any. 
 

• We provide tools to left factor CFGs and remove left recursion from them. 
 

• The user is able to embed code within the grammar productions. These lines of 
code are guaranteed to be executed in the right time specified by its position 
within the production. 

 

• The user is able to use predetermined sections by writing code in them which is 
guaranteed to be generated in the output parser code file according to the 
description of these sections (TopOfDeclaration, TopOfDefinition, 
BottomOfDeclaration, BottomOfDefinition) in the input file specification section. 

 

• ParSpring generates parsers of two types: recursive-descent and LL(1) parsers. 
 

• The generated parser could be generated in any one of three famous languages 
supported in version 1.0: C++, C# and Java. 

 
2.2 Future Work 
 

Generally speaking, the way of making parser generators more powerful is to make 
them capable of accepting less-restricted grammars as well as generating parsers in 
many languages (Python, Delphi, …) as well as of different types( LALR, LR(1), …). 
 
So, in the future, it's expected that ParSpring will be enhanced to support: 
 

• Generating LALR(1) parsers. 
 

• Generating LR(1) parsers. 
 

• Generating LR(n) parsers, which is the Nirvana of any parser generator. 
 

• Generating parsers in more languages (like Delphi and Python). 
 

• Enhancing error handling in the generated parser. 



3. The General Conclusion 
 
A compiler writer's mission becomes a nightmare once manual implementation is 
decided. Developers get bored repeating the same tedious work writing scanners and 
parsers; essentially "reinventing the wheel" every time a new product is to be coded. 
The manual process is extremely time consuming and highly error-prone. Nowadays, 
manual compilers are only written in compiler undergraduate courses as a kind of 
training, but as long as "real" applications are regarded, tools must be used to 
facilitate the process. 
 
Using CCW, LEXcellent and ParSpring provides the developer with numerous 
advantages, including the ability of generating parsers using more than one technique, 
using different programming languages, and parsing endless languages via the 
Unicode [34] support feature. The graphical user interface provided simulates actual 
IDEs intended for developing complete applications. By integrating the previous 
advantages, our tool has virtually overcome all the difficulties encountered in the 
compiler writing process and the drawbacks found in the available tools, given its 
extensible architecture. 
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Appendices 



 A. User's Manual 
 

This user manual is mainly dedicated to the prospective users of CCW (Compiler 
Construction Workbench) in its first version. We list the functionalities of the menus, 
together with their hierarchical arrangement. Then the tool bar is depicted in an 
independent figure. The dockable windows are illustrated. 
 
We depend heavily on the user viewing the accompanying tutorials, and that's why 
the manual here is relatively simple. We believe that "an image is worth a thousand 
words.  



 
 

 
 
 



[File] Menu Details 
 
File 
Common file operations 

New 
Common operations for dealing with new items 

        Project 
Create a new project 

                        File 
  Create a new file 
            Lexical Analyzer Specification File 
   New lexical analyzer specification file 

Blank File 
New blank lexical analyzer specification file 

    C# 
New blank C# lexical analyzer specification file 

    C++ 
New blank C# lexical analyzer specification file 
Java 
New blank C# lexical analyzer specification file 

   Wizard-Assisted File 
Use the RegEx builder to create a set of regular expressions 

   Parser Specification File  
New parser specification file 

Blank File 
    C# 

New blank C# lexical analyzer specification file 
    C++ 

New blank C++ lexical analyzer specification file 
    Java 

New blank Java lexical analyzer specification file 

 
   Wizard-Assisted File 

Use the CFG builder to create a CFG 
  Graphical Regular Language Specification File 

New graphical regular language specification file 
  Other File 

New file of any type 
Open 
Common operations for dealing with existing items 

        Project 
  Open an existing project 
                        File 
  Open an existing file 
            Lexical Analyzer Specification File 
   Open an existing lexical analyzer specification file for editing 

    
C# 

   Open an existing C# lexical analyzer specification file for editing 
   C++ 

Open an existing C++ lexical analyzer specification file for editing 

   Java 
Open an existing Java lexical analyzer specification file for editing 

   Parser Specification File 
   Open an existing parser specification file for editing 

   C# 



Open an existing C# parser specification file for editing 
   C++ 

Open an existing C++ parser specification file for editing 
   Java 

Open an existing Java parser specification file for editing 
  Graphical Regular Language Specification File 
  Open an existing graphical regular language specification file for editing 
  Other File 

Open an existing file of any type for editing 
Save 
Common operations for saving modified documents 

  Project 
Save changes in the current project 

            File 
Save changes in the current file 

Save As 
Save changes in the current project as a new project without altering the current one 

  Project 
Creates a new project as a copy of the current project 

                        File 
Creates a new file as a copy of the current file 

Save All 
Save changes in all open files 
Page Setup 
Adjustments before printing 
Print Preview 
Preview for WYSIWYG printing 
Print 
Print the current document 

Recent Files 
A list of the most recently used files 

Recent Projects 
A list of the most recently used projects 
Exit 
Exit the application 



 

 

 



[Edit] Menu Details 
 
Edit 
Common operations for editing in the current file 

  
 Undo 
Undo the last operation 
 Redo 
Redo the last operation 
 Cut 
Cut the current selection into the clipboard 
 Copy 
Copy the current selection into the clipboard 
 Paste 
Paste the current contents of the clipboard into the current file, at the position of the caret 

 Delete 
Delete the current selection 
 Select All 
Select all the contents of the current file 
 Find and Replace 
Find and replace strings in the current file 
 Go To 
Go to a certain line in the current file 

 Close 
Close the current file 

 
 
 
[Windows] Menu Details 
 
Windows 
Common windows 
 
  Project Explorer 

View the files in the current project 

   Output 
View the tasks in the current build 

  Task List 
View the output of the current build 

  Show All Windows 
Show all dockable windows 

  Hide All Windows 
Hide all dockable windows 



 

 

 



[Tools] Menu Details 
 
Tools 
Helper tools 

 
  LEXcellent 

Generate a lexical analyzer 
  ParSpring 

Generate a parser 
    LL(1) Parser Generator 
  Generate an LL(1) Parser 
   RD Parser Generator 

Generate an RD Parser 
  Left Recursion Removal 

Remove the left recursion - if exists - from a context-free grammar 

  Left Factoring 
Left-factor a context-free grammar 

  Syntax Options 
Options for customizing text appearances in files 

 
 
 

[Help] Menu Details 
 
Help 
Help and support information 

 
  Contents 

Help contents 
   About LEXcellent 

Technical support for LEXcellent 
  About ParSpring 

Technical support for ParSpring 
  About CCW 1.0 

Technical support for CCW 1.0 

  Acknowledgements 
Acknowledgements 



 

 



[Project] Menu Details 
 
Project 

 
Add New Item 
Add a new item to the project 

        Folder 
  Add a new folder to your project 
                        File 
  Add a new file to your project 
            Lexical Analyzer Specification File 
   Add a new lexical analyser specification file to your project 

Blank File 
Add a new blank lexical analyser specification file to your project 

    C# 
Add a new lexical analyser specification file to your project, 
C# used for coding 

    C++ 
Add a new lexical analyser specification file to your project, 
C++ used for coding 

     Java 
Add a new lexical analyser specification file to your project, 
Java used for coding 

   Wizard-Assisted File 
Use the RegEx builder to add a set of regular expressions 
to your project 

   Parser Specification File 
   Add a new parser specification file to your project 

Blank File 
Add a new blank parser specification file to your project 

    C# 
Add a new parser specification file to your project, 
C# used for coding 

     C++ 
Add a new parser specification file to your project, 
C++ used for coding 

    Java 
Add a new parser specification file to your project, 
Java used for coding 

   Wizard-Assisted File 
Use the CFG builder to add a context-free grammar to your project 

  Graphical Regular Language Specification File 
Add a new graphical regular language specification file to your project 

  Other File 
  Add a new file of any type you want to associate with your project 
Add Existing Item 
Add an existing item to your project 

           Lexical Analyzer Specification File 
  Add an existing lexical analyzer specification file to your project 

  C# 
Add an existing lexical analyzer specification file to your project, 
C# used for coding 

  C++ 
Add an existing lexical analyzer specification file to your project, 
C++ used for coding 

  Java 
Add an existing lexical analyzer specification file to your project, 
Java used for coding 



 
  Parser Specification File 

Add an existing parser specification file to your project  
  C# 

Add an existing parser specification file to your project, C# used for coding 
  C++ 

Add an existing parser specification file to your project, C++ used for coding 

  Java 
Add an existing parser specification file to your project, Java used for coding 

 Graphical Regular Language Specification File 
Add an existing graphical regular language specification file to your project 

 Other File 
Add an existing file of any type to your project 

Include In Project 
Include the selected item in the project 
Exclude From Project 
Exclude the selected item from the project 
Show All Files 
Show all the available files in the selected folder. 
Some of these files may NOT be related to the project 
Refresh 
Reload the file list 

Properties 
View the properties of the current project 



Main ToolBar Details 
 

 
 

 

Table A-1: Main ToolBar Details 
 

Number Button Name Icon Description 
1 New Button  

 
Common operations for dealing with new items 

2 Open Button  
 

Common operations for dealing with existing 
items 

3 Save Button  
 

Save changes in the current file 

4 Save As Button  
 

Save changes in the current file as a new file 
without altering the current one 

5 Print Button  
 

Print the current document 

6 Print Preview 
Button   

Preview for WYSIWYG printing 

7 Page Setup 
Button   

Adjustments before printing 

8 Undo Button  
 

Undo the last operation 

9 Redo Button  
 

Redo the last undone operation 

A Cut Button  
 

Cut the current selection into the clipboard 

B Copy Button  
 

Copy the current selection into the clipboard 

C Paste Button  
 

Paste the current contents of the clipboard into 
the current file, at the position of the caret 

D Find Button  
 

Find strings in the current file 

E Find Next Button  
 

Find the next currently searched string 

F Replace Button  
 

Replace strings in the current file 

1 

2 
3  

4 

5 

6 
7 

8 

9 

A 

C  

D  

E  
F  B  



Docking Windows 
 

 
 
 
 
Project Explorer Window  
Shows the files in the current project directory, either those registered in the project or 
all files. Double-clicking a file name opens it for editing. Clicking a tab 
collapses/uncollapses it. This window is dockable, i.e. you can show it, hide it or 
make it invisible, via the appropriate commands in the Windows menu or using the 
two small buttons on the right side of the title bar. 
 
Task List Window  
Shows the tasks in the current build if there were errors. Double-clicking an error 
opens its file for editing, and highlights the line number that contains the error. You 
can select what types of output are shown (errors, warnings or messages) by toggling 
the appropriate push button. This window is dockable,  i.e. you can show it, hide it or 
make it invisible, via the appropriate commands in the Windows menu or using the 
two small buttons on the right side of the title bar. 
 
Output Window  
Shows a summary of the output of the current build. This window is dockable, i.e. 
you can show it, hide it or make it invisible, via the appropriate commands in the 
Windows menu or using the two small buttons on the right side of the title bar. 



B. Tools and Technologies 
 

• Visual C++ 6.0, Enterprise Edition 
 

• Standard Template Library (STL) 
 

• Component Object Model (COM) 
 

• Visual Studio .NET 2003 
 

• Visual Studio .NET 2005 
 

• DotNetMagic Library (Ver 3.0.2) 
 

• Fireball Text Editor 
 

• Microsoft Office Visio 2003 

 



C. Glossary 

 
Deterministic Finite Automaton: A state transition function implementation. It 
consists of: 
 

1. A finite set of states, often denoted by Q.  
 

2. A finite set of input symbols, often denoted by Σ.  
 

3. A transition function that takes as arguments a state and an input symbol and 
returns a state. The transition function will commonly be denoted δ. 

 

4. A start state q0, one of the states in Q.  
 

5. A set, of final or accepting states F. The set F is a subset of Q. There can be 
zero or more states in F.  

 
Compiler: A program that reads a program written in one language – the source 
language – and translates it into an equivalent program in another language – the 
target language. 

 
Front End of a Compiler: Consists of those phases, or parts of phases, which depend 
primarily on the source language and are largely independent of the target machine. 
These normally include lexical and syntactic analysis, the creation of the symbol 
table, semantic analysis, and the generation of intermediate code. 

 
Lexical Analysis: The stream of characters making up the source program is read in a 
linear fashion (in one direction, according to the language) and grouped into tokens – 
sequences of characters having a collective meaning. 

 
Parser Generator: A program that produce syntax analyzers, normally from an input 
that is based on a context-free grammar. 

 
Scanner Generator: A program that automatically generates lexical analyzers, 
normally from a specification based on regular expressions. The basic organization of 
the resulting lexical analyzer is in effect a finite automaton. 

 
Syntax-Directed Translation Engine: A program that produce collections of 
routines that walk the parse tree, generating intermediate code. The basic idea is that 
one or more "translations" are associated with each node of the parse tree, and each 
translation is defined in terms of translations at its neighbor nodes in the tree.  

 
Automatic Code Generator: A program that takes a collection of rules that define 
the translation of each operation of the intermediate language into the machine 
language for the target machine. 

 
Lexical Token: A sequence of characters that can be treated as a unit in the grammar 
of the source language 

 
Regular Language: A language is regular if and only if it can be specified by a 
regular expression. 



Unicode: is an industry standard designed to allow text and symbols from all of the 
writing systems in the world to be consistently represented and manipulated by 
computers. Unicode characters can be encoded using any of several schemes termed 
Unicode Transformation Formats (UTF). 
 
Thompson’s Construction Algorithm: This phase in the lexical analyzer 
construction process is responsible for converting the set of regular expressions 
specified in the input file into a set of equivalent Nondeterministic Finite Automata 
(NFAs). 
  
Nondeterministic Finite Automaton: An NFA consists of:  
 

1. A finite set of states, often denoted Q. 
 

2. A finite set of input symbols, often denoted Σ. 
 

3. A start state q0, one of the states in Q.  
 

4. F, a subset of Q, is the set of final (or accepting) states.  
 

5. The transition function δ is a function that takes a state in Q and an input 
symbol in Σ or the empty word ε as arguments and returns a subset of Q. 
Notice that the only difference between an NFA and a DFA is in the type of 
value that δ returns: a set of states in the case of an NFA and a single state in 
the case of a DFA. 

 
Subset Construction Algorithm: This phase in the lexical analyzer construction 
process is responsible for converting the nondeterministic finite automata (NFAs) 
resulting from the Thompson's construction algorithm into their corresponding DFA's. 
 
Context-Free Grammar: (Grammar, for short), also known as BNF (Backus-Naur 
Form) notation, is a notation for specifying the syntax of a language. A grammar 
naturally describes the hierarchical structure of many programming language 
constructs. It mainly consists of four components: 
 

1. A set of tokens, known as terminal symbols. 
 

2. A set of non-terminals. 
 

3. A set of productions where each production consists of a non-terminal, called the 
left side of the production, an arrow, and a sequence of tokens and/or non-
terminals, called the right side of the production. 

 

4. A designation of one of the non-terminals as the start symbol. 
 
Parse Tree: A structure that shows pictorially how the start symbol (or a grammar) 
derives a string in the language. Each node in the parse-tree is labeled by a grammar 
symbol. An interior node and its children correspond to a production; the interior node 
corresponds to the left side of the production, the children to the right side. 
Formally, given a context-free grammar, a parse-tree is a tree with the following 
properties: 
 

1. The root is labeled by the start symbol. 
 

2. Each leaf is labeled by a token or by ε (the empty string). 
 

3. Each interior node is labeled by a non-terminal. 
 



4. If A is the non-terminal labeling some interior node and XI, X2 … Xn are the 
labels of the children of that node from left to right, then A → X1 X2 … Xn is a 
production. Here, XI, X2 … Xn stand for a symbol that is either a terminal or a 
non-terminal. As a special case, if A → ε then a node labeled A may have a single 
child labeled ε. 

 
Syntax Tree: A compressed representation of the parse tree in which the operators 
appear as the interior nodes, and the operands of an operator are the children of the 
node for that operator. 
 
Recursive-Descent Parser: A top-down parser built from a set of mutually-recursive 
procedures (or a non-recursive equivalent) where each such procedure usually 
implements one of the production rules of the grammar. Thus the structure of the 
resulting program closely mirrors that of the grammar it recognizes. 
 
Predictive Parser: A recursive-descent parser with no backup. 
 
Packrat Parser: A modification of recursive descent with backup that avoids non-
termination by remembering its choices, so as not to make exactly the same choice 
twice. 



 
 
 
 
 
 
 

                          



 
 


