Create a code snippet app
by Michelangelo Altamore

Open Source Rails project
by Dmitry Amelchenko

Theme Support

by James Stewart

Observer and Singleton

design patterns in Ruby
by Khaled al Habache

JRuby monitoring with JMX
by Joshua Moore

Ruby Web Frameworks:

A Dive into Waves

by Carlo Pecchia

How to Implement

Automated Testing
by Eric Anderson

Ruby on Rails & Flex

by Arturo Fernandez

Workflow solutions with AASM
by Chee Yeo

TR

W

Y
bl

\
A
ah

:. -f

AT A
Y o

Carl Mercier * IlyaJ Gi‘igorlk *Ryan Sl -’.T :
S ntervzews by Rupak Ga

Ralls Magan

ﬁne artlcles on Ruby &I

L4

ISSN 1916-8004 | VOLUME 1, ISSUE #3 i Kk http://RailsMagazine.com

http://railsmagazine.com
http://RailsMagazine.com

E— ' Don’t listen to us,
O e et pp— listen to them.

Monitoning: | = Secuss pet 2] [= Comtraten H Tirne: Winciow: {38t 5] S5/28 18:00 to. 0578 £330 G |

Application Throughput

RPM gives your developers
transparency into the
performance details of our
applications, saving
significant timein
isolating bottlenecks.

— lan McFarland, Pivotal Labs

Slowest Controler Actions

New Relic’s RPM has
dramatically
improved the way we
monitor the health and
performance of our applications.
— Mark Imbriaco, 37signals

If you are running a Rails app of
any reasonable size YyOU
have to use New Relic.
There is no way around it.

New Relic RPM lets you see and — Tobias Liietke, Shopify

understand performance metrics in
real time so you can fix problems With RPM we had more
fast. It’s intuitive. It’s granular. And, time to add new

it’s a 10-second Rails plug-in install. features and fix issues

Take RPM Lite for a spin — it’s free! rather than scanning through
NewRelic.com piles of log files.
— Rick Olson, Lighthouse

We used the other tools out
there, and were NOt happy
until we switched to
New Relic. 1 was amazed
how much we found in just a
few hours of monitoring. We
got the real-time picture
\(/jve had beeg ,
o reaming about.
O NEW REIIC — Yaroslav La§or, railsware

Rails Performance Management

©2009 New Relic. All rights reserved.

http://www.newrelic.com/

A Word from the Editor by Olimpiu Metiu

A Word from the Editor Contents

by Olimpiu Metiu
Welcome to the largest edition of Rails Magazine yet! Editorialc.coveieveieeeeeceece e 3
The past couple of months were hectic as usual, with our by Olimpiu Metiu

team expanding to 7 people (http://railsmagazine.com/team),
not including our many authors and columnists
(http://railsmagazine.com/authors). Should you find an article
particularly useful or enjoyable, please take a moment to send
a thank you note to the appropriate author or editor - they

Create a simple code snippet app with Rails............... 4
by Michelangelo Altamore

Working on a typical Open Source Rails project12

worked hard on a volunteer basis to share their knowledge in by Dmitry Amelchenko
a professional format. Theme SUPPOTTuccvevereereereeeee e, 16
To help the magazine continue on, we are looking for by James Stewart

additional help - please contact us if interested in joining the

editorial team. Observer and Singleton design patterns in Ruby.....17

by Khaled al Habache

Olimpiu Metiu is a Toronto-based JRuby Tip: Monitoring with JMX........cccccccevunicueunnnee 20
architect and web strategist. b)’ Joshua Moore
He led the Emergent Technologies group at . .
e I e Workflow solutions using AASM........cccccceurneerennnee 22
work includes many of Canada's by Chee Yeo
largest web sites and intranet portals. ..
gl Olhsssn aeespiad @ posifon v Ruby Web Frameworks: A Dive into Waves.............. 26

Research in Motion (the maker of BlackBerry), b)/ Carlo Pecchia

where he is responsible with the overall

i e e el b ke, How to Implement Automated Testingc........ 32
by Eric Anderson
A long-time Rails enthusiast, he founded Rails Magazine .
as a way to give back to this amazing community. Ruby on Rails & Flex:
Building a new software generation..........ccececcuuecee 35

Follow on Twitter: http://twitter.com/olimpiu by Arturo Fernandez
Connect on LinkedIn: http://www.linkedin.com/in/ometiu
Building a Business with Open Source...................... 42

by Chris Wanstrath
Our RailsConf 2009 edition, intended originally as a

e , Interview with Carl Mercier.........c.cccoevvecucrnnccuennnee 46
2-page event report, took a life of its own and ended up with
. qe : Interview with Ilya Grigorik........cccoccvveciviiivivcinicins 48
12 pages of exclusive event coverage, Rails 3 information and] i)
interviews with prominent rubyists. Interview with Ryan Singer.........ccccccoevvevccnnicinnnnnce 50

(interviews by Rupak Ganguly)

Of course, these are exciting times for the entire Rails
community: Passenger for Nginx, MacRuby/HotCocoa,
Ruby 1.9 gem compatibility and Rails 3 rumours are just
a few things keeping everyone busy. Also, the Matt-gate
incident led to self-reflection and positive action, including
the creation of Railsbridge.org — an inclusive community we
hope will add value to the community and complement Rails
Activism efforts.

Without further ado, Rails Magazine Issue #3...

Discuss: http://railsmagazine.com/3/1

http://railsbridge.org
http://railsmagazine.com/3/1
http://bell.ca
http://rim.net
http://RailsMagazine.com
http://twitter.com/olimpiu
http://www.linkedin.com/in/ometiu

elo Altamore

Create a simple code snippet app with Rails

by Michelangelo Altamore

In this article you will see how to create a basic source
code snippet application. I will use tests to drive development
step by step and provide a practical example.

I assume that you are familiar with Ruby on Rails basic
concepts . You should have a working environment with a
recent version of Ruby (>= 1.8.7), RubyGems (>=1.3.0) and,
of course, Rails (>=2.1).

Initial Sketching

We create a new rails application called Snippety:

$ rails snippety; cd snippety

and install nifty_generators by Ryan Bates as a plugin by
running:

$ script/plugin install git://github.com/ryanb/nifty-
generators.git

so that we can quickly generate a simple layout with the
command:

$ script/generate nifty_layout

A code snippet will have the following attributes:

* name
* language
* body

Let’s scaffold a basic model:
$ script/generate nifty_scaffold snippet name:string
language:string body:text

Migrate the database with rake db:migrate, start your
web server with script/server and point your browser to local-
host:3000/snippets to see a functional snippet view.

‘ano Mew Snippet

al> Mela] | + | # http:/ flocalhost: 3000 /snippets new G = Q-

New Snippet

Narre

Language

Body

Soon after playing with the web interface we realize that
our fresh Snippety is lacking a few things:

1. language is in a free text field instead of a selectable list of
available languages

2. snippet name, language and body are not required nei-
ther on create nor on update

3. snippet body is not highlighted according to the snippet
language

4. two different snippets can have the same name

5. the list of snippet show a tabular list instead of a list of
snippets

These functionalities represent Snippety’s business value.
We can start by constraining a snippet to have a unique name,
a language and a body; after that we will try to get syntax
highlighting.

In general you should not care too much about the order
of activities when the sequence is not critical, and this is the
case since we can't ship a unit of work missing either syntax
highlighting or with a potentially inconsistent snippet collec-
tion.

Before start, I rearrange our previous list according to
their priority and express each as an expectation:
1. each snippet should have a mandatory unique name,
language and body
2. each snippet body should be rendered highlighted ac-
cording to its language
index action should list snippets in a blog-style way
4. snippet language should be chosen from a selectable list
of languages instead of free text

et

Now that we know where to head for, we can start our first
iteration.

Task 1: Snippet Validation

The business logic of Snippet requires a mandatory unique
name, a stated programming language and a body. We will
implement this starting with tests.

Test Driven Development (TDD) basically means that for
any new requirement we first add a new test asserting what
should happen for a case and then we will implement code so
that the new test, and all of the old tests, are satisfied.

Let’s start by editing test/unit/snippet_test.rb and imple-
menting a test method named test_should_have_a_name that fails
when the snippet’s name is not present:

1 require ‘test_helper’
2
3 class SnippetTest < ActiveSupport::TestCase

Create a simple code snippet app with Rails by Michelangelo Altamore

def test_should_have_a_name

snippet = Snippet.new

4
5
6 assert_nil snippet.name
7 snippet.valid?

8 assert_not_nil snippet.errors.on(:name)
9

end

Take a break to understand what this test is saying. On
line 5 we are instantiating a new snippet. On the next line we
assert that our snippet has no default name, that is snippet.
name should evaluate to nil. Then we run the active record
validation on line 7 by sending the valid? message on the
snippet object.

We have fulfilled our preconditions, so on line 8 we assert
that we should have an error for the snippet object on the
name symbol.

That is sufficient to express that a snippet validation
should fail when it has no name. Run rake test:units on your
console to see the following failure:

1) Failure:
test_should_have_a_name(SnippetTest)

[./test/unit/snippet_test.rb:8:in ‘test_should_have_a_
name’

<nil> expected to not be nil.

1 tests, 2 assertions, 1 failures, @ errors

The next step is to make the test pass by implementing the
simplest thing that could possibly work . Let’s modify app/mod-
els/snippet.rb so that it looks like that:

class Snippet < ActiveRecord: :Base
validates_presence_of :name

end

and run rake test:units again.
Started

Finished in ©.076376 seconds.

1 tests, 2 assertions, @ failures, @ errors

The test passes! We are done with that iteration. Now it’s
your turn: using the above code as a guide try to write a test
that fails when the language attribute is not set on a snippet
object. Then implement the simplest thing that makes your
test pass. Do the same for the body attribute and finally con-
front your snippet unit test suite with mine.

To accomplish task 1 we still need a unique name attribute
for our snippets. Consider the following test method:

25 def test_should_have_a_unique_name

26 snippet_one = Snippet.create(:name => ‘Hello
World’, :language => “ruby”, :body => “puts \”Hello

World\””)
27 assert_nil snippet_one.errors.on(:name)
28 snippet_two = Snippet.create(:name => snip-

pet_one.name, :language => “ruby”, :body => “def hello;
#{snippet_one.body}; end”)

29 assert_not_nil snippet_two.errors.on(:name)
30 end

We instantiate two snippet objects, we assert that the first
one is created and saved without errors on name in line 27,
while the second one on line 28 is expected to have an error
on name, having the same of the first. Run the usual rake
test:units to see:

Started

.F

Finished in 0.099406 seconds.

1) Failure:
test_should_have_a_unique_name(SnippetTest)

[./test/unit/snippet_test.rb:33:in ‘test_should_have_a_
unique_name’

<nil> expected to not be nil.

4 tests, 8 assertions, 1 failures, @ errors

As you may have guessed we need to change app/models/
snippet.rb like that:

class Snippet < ActiveRecord::Base
validates_presence_of :name, :language, :body
validates_uniqueness_of :name

end

Let’s try our tests again:
Started

Finished in ©.095361 seconds.

4 tests, 8 assertions, @ failures, @ errors

All tests are passing now. We have validation for our snip-
pets and the first task is complete.

s
ey X |

al» ||l |+

New Snippet

A bitp: § Plocalhest: 3000/ s rappets

3 errors prohibited this solppet from belng saved

There were problems with the following fields:

s Name can't be blank
s Body can't be blank
s Language car't be blank

Mame

Time to move on the next one.

Task 2: Snippet Highlighting

For this task we will use the library CodeRay by Kornelius
Kalnbach. Check if it is already installed on your system with
gem list coderay. If it is not listed you can install by running:

$ sudo gem install coderay.

Our aim is to let Snippety being able to use the coderay
gem to render an highlighted version of a snippet body ac-
cording to its language syntax.

So we configure that dependency in config/environment.rb by
adding the line:

config.gem "coderay”

We still don’t know how to interact with that library. How-
ever that knowledge is not that far away, by running ri CodeRay
you can see its usage; I report here what is relevant for us:

Highlight Ruby code in a string as html
require ‘coderay’

print CodeRay.scan(‘puts “Hello, world!”’, :ruby).html
prints something like this:

puts "Hello, world!"
Highlight C code from a file in a html div

require ‘coderay’

print CodeRay.scan(File.read(‘ruby.h’), :c).div
print CodeRay.scan_file(‘ruby.h’).html.div

You can include this div in your page. The used CSS
styles can be

printed with

% coderay_stylesheet

elo Altamore

The documentation tells us that:

1. we can obtain coderay’s stylesheet with the command
coderay_stylesheet

2. we can highlight a string calling scan method on the
CodeRay class

In order to integrate coderay stylesheet we run the follow-
ing inside root folder of Snippety:

$ coderay_stylesheet > public/stylesheets/coderay.css

You should obtain the stylesheet file. To get it loaded we
must modify application layout, as you can see on line 6 in
app/views/layouts/application.html.erb file:

4 <head>

5 <title><%= h(yield(:title) || “Untitled”) %></
title>

6 <%= stylesheet_link_tag ‘coderay’, ‘application’
%>

7 <%= yield(:head) %>

8 </head>

The stylesheet should be loaded now (you can look at the
source to be sure).

tml=
<head:
<titlexSnippets</title=

zlink href="/stylesheets/coderay .cas?1l233458447" media="screen" r
<link href="/stylesheets/application.css?123342258468" media="screen" r

</ head:
v

Now it’s time to explore CodeRay from the Rails console:
$ script/console

Loading development environment (Rails 2.2.2)

Create a simple code snippet app with Rails by Michelan

>> CodeRay
=> CodeRay

The gem has been correctly loaded if you can see that.
Let’s try now to get syntax highlighting using the same ex-
ample as the user manual:

>> CodeRay.scan(‘puts “Hello, world!”’, :ruby).html

=> “puts "</
span>Hello, world!"”

We see a bunch of span tags with their own css class, but
we would need a div mentioning a CodeRay css class. Let’s
try again calling the div method on it:

>> CodeRay.scan(‘puts “Hello, world!”’, :ruby).html.div

=> “<div class=\"CodeRay\”>\n <div
class=\"code\”><pre>puts "Hello,
world!"</
pre></div>\n</div>\n”

It looks much better now. It has a div with a CodeRay class
and the code is inside a pre tag so that multiline code will be
shown on separate lines.

We now have enough ingredients for the following test:
def test_should_render_highlighted_html
plain_body = %Q(puts “Hello, world!”)

hightlighted_body = %Q(<div class=\"”CodeRay\”>\n
<div class=\"code\”><pre>puts "Hello,
world!"</
pre></div>\n</div>\n)

snippet = Snippet.new(:name => “Hello”, :language =>

“ruby”, :body => plain_body)
assert_equal hightlighted_body, snippet.highlight

end

First we instantiate a Ruby snippet with the content of
puts “Hello, world!” as body and with the requirement that
it should be rendered by the same markup that we last saw in
the console. We run our unit test suite as usual and we get:

Started

..E

Finished in 0.098842 seconds.

1) Error:
test_should_render_highlighted_html(SnippetTest):

NoMethodError: undefined method ‘highlight’ for
#<Snippet:0x211b460>

./test/unit/snippet_test.rb:44:in ‘test_should_ren-
der_highlighted_html’

5 tests, 8 assertions, @ failures, 1 errors

It complains since we do not still have any highlight

method. So we add it to app/models/snippet.rb:
def highlight

end

Michelangelo Altamore is an Italian Ruby

on Rails evangelist with a passion for expressive
beautiful code. He holds a B.S. in Computer Science
from Catania University, Italy.

Michelangelo has more than 3 years of experience
in software development and offers his services
from Convergent.it (http://convergent.it)

Rerun the test to find that now we've got a different prob-
lem:

Started

..F

Finished in 0.102812 seconds.

1) Failure:
test_should_render_highlighted_html(SnippetTest)

[./test/unit/snippet_test.rb:44:in ‘test_should_ren-
der_highlighted_html’

<”’<div class=\"CodeRay\”>\n <div
class=\"code\”><pre>puts "Hello,
world!"</
pre></div>\n</div>\n">

expected but was
<nil>

5 tests, 9 assertions, 1 failures, 0 errors

It fails since the highlight method actually returns nil. We
are ready to implement source highlighting by writing the
implementation that we have already seen using the console
and hopefully making the tests pass:

def highlight
CodeRay.scan(self.body, self.language).html.div

end

We try our tests again:
Started

Finished in ©.111017 seconds.

5 tests, 9 assertions, @ failures, @ errors

And they pass! We can highlight source code snippets
now and we have a test that confirms that. However, we can’t
show highlight source code for anyone until we modify the
snippet views.

Your first instinct could be to look for snippet views,

—

Create a simple code snippet app with Rails by Michelan

elo Altamore

ails

manually customize them and finish the work.

That would be great, however you will end up without any
tests for your controller or views, and that is not good. We
instead maintain discipline and proceed with the next task.

Task 3: Action Views Customization

Let’s explore functional tests with rake test:functionals:
Started
Finished in ©.259097 seconds.

9 tests, 10 assertions, @ failures, @ errors

You may wonder how it is possible that you already have a
suite of 9 different passing functional tests without even writ-
ing a single one.

You should thank Ryan for this, he is so good that nifty_
generators comes with functional tests not only for Test::Unit
but also for Shoulda and RSpec.

That simply means that our work for functional tests will
be less than expected. So open test/functionals/snippets_con-
troller_test.rb with your editor and have a look at the first
method:

1 require ‘test_helper’

2

3 class SnippetsControllerTest <
ActionController: :TestCase

4 def test_index

5 get :index

6 assert_template ‘index’
7 end

As the name suggests, the method is testing the index ac-
tion of the snippets controller. On line 5, there is a call to an
HTTP request, in particular the get method; the symbol index,
that actually stands for the index action of our snippets view,
is passed as an argument to the get request. That request is
expected to produce a response rendering the index template
view for the snippet controller. This is fine and it works, we
just would like to add the expectation that a list of snippets is
rendered on the template. To do that we modify the method
in that way:

4 def test_index

5 get :index

6 assert_template ‘index’

7 snippets = assigns(:snippets)

8 assert_select ‘divi#snippets’ do

9 assert_select ‘div.CodeRay’, :count => snippets.
size

10 end

On line 7 we are assigning to snippets the fixtures set
contained in snippets.yml that you can see under the test/
fixtures directory, and we expect that our template contains a
snippets id div tag, and inside it, a number of div with Cod-
eRay class matching the number of the snippets.

Running our functional tests we see:
Started

. Fu..

Finished in 0.227583 seconds.

1) Failure:
test_index(SnippetsControllerTest)

Expected at least 1 element matching “div#snippets”,
found @.

<false> is not true.

9 tests, 11 assertions, 1 failures, @ errors

Our test is failing. Indeed, we have no div#snippets for our
view. We can implement that and produce the div.CodeRay
listing with the following index.html.erb:

<% title “Snippety” %>

<h2><%= link_to “Create a new code snippet”, new_snip-
pet_path %></h2>

<hr/>

<h2>View available code snippets</h2>
<div id="snippets”>
<% for snippet in @snippets %>
<h3>
<%=h snippet.name %>
</h3>

<small>

<%=h snippet.language %>

<%= link_to “Show”, snippet %> |
<%= link_to “Edit”, edit_snippet_path(snippet) %> |

<%= link_to “Destroy”, snippet,
sure?’, :method => :delete %>

</small>

:confirm => ‘Are you

<%= snippet.highlight %>
<hr/>
<% end %>

</div>

Check our functional tests:
Started
Finished in 0.22947 seconds.

9 tests, 13 assertions, 0 failures, @ errors

And they pass. In fact, you can now see div#snippets and
div.CodeRay by looking at the source code of the index page.

Create a simple code snippet app with Rails by Michelan

<hZ=m href="/inippets/new"=Create a nev code snippetc/ose/hZ>

Snippety ...
; I <hZxView available code snippets<'hZs
. iV id="snippets"s
43
view availabl Hello, world! = ruby
oM
<smal =

Hello, world! - ruk - href="/znippets/9"sShou</ms |

< href="/snippets/d/edit >Editwios |

-0 href="/znippetsd° onclicks"1f (confirn 'Are you sure?‘}) {
worldll Mone's thiz, parentiode appendChi LT)3 f.methed = 'POST'; f.oction =
= mosetAttribute('type', ‘hidden'); m.setAttribute('nome’, ‘_nethod'); n
| docunent .createE lenent:('input ' }; s.setAttribute('type', 'hidden'); s.3
=.zetAttribute] walue', '3f4ad9345f7d70268cdeB74cE1B00E1 15 6%bbe ') §

ofzmol =

Show | Edit | Destroy
pute "Hello,

afiv ¢lass="CodeRay"s

<div closs="code"~presputs <spon clozs="dl"=8quot ;<
clozss"di " siquot ;< sponsc spans-</ presc/divs
afdivs

<ir /=

By the way, we've just finished our 3™ requirement. Now,
let’s try to modify our show action to properly display a snip-
pet. We add line 16 in snippets_controller_test.rb:

13 def test_show

14 get :show, :id => Snippet.first

15 assert_template ‘show’
16 assert_select ‘div.CodeRay’, :count => 1
17 end

Here we expect a div.CodeRay element on our page. The
test fails since our generated show view action does not know
anything about syntax highlighting, as you can see:

Started

P

Finished in ©.306102 seconds.

1) Failure:

test_show(SnippetsControllerTest)

Expected at most 1 element matching “div.CodeRay”,
found @.

<false> is not true.

9 tests, 14 assertions, 1 failures, 0@ errors

Now we produce the following template for show.html.erb:

<% title “#{snippet.name}</
span> - #{snippet.language}” %>

<small>

<%= link_to “Edit”, edit_snippet_path(snippet)
%> |

&1t;%= link_
to "Destroy"</
span>, snippet, :confirm => ‘Are you
sure?’, :method => :delete %> |

<%= link_to “View All”, snippets_path %>

</small>

<%= @snippet.highlight %>

Finally, our tests are now happily passing:
Started
Finished in 0.271848 seconds.

9 tests, 15 assertions, @ failures, 0@ errors

We can take a break now and have a look at our applica-
tion’s front end. After the creation of a couple of code snip-
pets, Snippety now looks like this:

i Lol Oy

| » [+ f & 4 A htpe) flocalhest: 3000/ snippets ~(Q;

Snippety
Create a new code snippet

View available code snippets

test should have a unique name - ruby

Show | Edi | Destroy
dif tast should have a_uslgue ams
snippet_one = Snippet.create|
3 _—

assert_nll snippet_cne.errors.en(:nasa)

Snippet_two = Snippet.Createlinans => SNippet_one.nans,
:language == “ruby®,
thody => “def he

F{snippet_one.body}; end”)

assert_not_nil snippet two.ecrors.on(:iname)
end
Hella, world! - ruby
Show | Edf | Destm

puta "Hello, world

While editing or creating a code snippet we have no
selectable list of available languages. It’s time to address the
issue.

We start by adding the requirement that a language should
be presented inside a select box by placing that assertion on
line 22 of snippets_controller_test.rb

19 def test_new

20 get :new

21 assert_template ‘new’

22 assert_select ‘select#snippet_language’
23 end

The above expresses that a template should contain a
select element with snippet_language id and a parameter cor-
responding to the language attribute in the snippet model.

Having no select box in our view, rake test:functionals fails
as shown:

Started
..F..
Finished in ©.282672 seconds.

1) Failure:

test_new(SnippetsControllerTest)

Expected at least 1 element matching “select#snippet_
language”, found 0.

<false> is not true.

9 tests, 16 assertions, 1 failures, @ errors

We find that the relevant code to modify is placed inside
_form.html.erb, a view partial:

1 <% form_for @snippet do |f| %>

2 <%= f.error_messages %>

3 <p>

4 <%= f.label :name %>

5 <%= f.text_field :name %>

6 </p>

7 <p>

8 <%= f.label :language %>

9 <%= f.text_field :language %>
10 </p>

11 <p>

12 <%= f.label :body %>

13 <%= f.text_area :body %>

14 </p>

15 <p><%= f.submit “Submit” %></p>

16 <% end %>

We change creating a local variable holding an array of
languages on line 8 and changing the text_field into a select
box on line 11, as follows:

8 <% form_for snippet do</
span> |f| %>

 2 &1t;%= f.error_messages %> ;

 3 <p></
span>

 4 &1t;%= f.label :name</
span> %><br />

 5 &1t;%= f.text_field :name %></
span>

 6 </
p>

 7 <p></
span>

 8 &1t;% languages = [
“Ruby”,”JavaScript”,”Java”,”C”] %>

9 <p>
10 <%= f.label :language %>

elo Altamore

11 <%= f.select :language, @languages %>
12 </p>

13 <p>

14 <%= f.label :body %>

15 <%= f.text_area :body %>

16 </p>

17 <p><%= f.submit “Submit” %></p>

18 <% end %>

rake test:functionals says that:
Started

Finished in ©.3083 seconds.

New Code Snippet

Name
Language v Ruby |
1 Java

c

9 tests, 16 assertions, @ failures, @ errors

We have no failures. It means that we have a working
select list:

We have caused some eyebrow raising since a good can-
didate model property is placed inside a local variable of the
view layer.

We should refactor it and refactor it without making the
tests fail. You can see how in snippet.rb:

1 class Snippet < ActiveRecord::Base
2 LANGUAGES = %w(Ruby JavaScript Java C)

4 end

And in _form.html.erb:

7 <p>

8 <%= f.label :language %>

9 <%= f.select :language, Snippet::LANGUAGES %>
10 </p>

Sure enough, we see that the tests are still passing:
Started

IIIIIIIiiII

Create a simple code snippet app with Rails by Michelan

Finished in ©.43375 seconds.

9 tests, 16 assertions, 0 failures, @ errors

As a side effect, the form partial change also provided a
working implementation for the edit action, without its own
test. As a simple exercise you can modify the test_edit meth-
ods on your functional test suite for covering that action. If
you are tired of using rake to launch your test suite, you can
take a look at autotest.

Conclusion

Initial requirements for snippety have been fulfilled. If it
this exercise were real, it would be now released to the users
and we would await feedback from them. Maybe they would
like more languages, the addition of line numbers, etc.

What is important is that now you should be more famil-
iar with TDD. As you have seen, the concept is easy to grasp
and you can use it effectively on your own projects.

Indeed Test::Unit is great but some people are happier
when they can minimize Ruby’s syntactic sugar impact on
tests, still using it to express their tests in a readable language
that is meaningful for the application. Shoulda by Thoughtbot
addresses this issue. You can learn by their nice tutorial.

I can’t close without mentioning RSpec, the original Be-
haviour Driven Development framework for Ruby. If you feel

curious, you could have a look at a great talk by Dave Astels
and David Chelimsky where it is explained what BDD is, and
where it comes from. By the way, if you are interested, The
RSpec Book (beta) has been recently published.

I hope you've find it useful and thank you for your time.

Resources
http://github.com/ryanb/nifty-generators/tree/master
http://github.com/ryanb

http://coderay.rubychan.de/

http://railscasts.com/
http://github.com/thoughtbot/shoulda/tree/master
http://github.com/dchelimsky/rspec/tree/master
http://ph7spot.com/articles/getting_started_with_autotest
http://thoughtbot.com/
http://rubyconf2007.confreaks.com/d3t1p2_rspec.html
http://blog.daveastels.com/
http://blog.davidchelimsky.net/
http://www.pragprog.com/titles/achbd/the-rspec-book

Discuss: http://railsmagazine.com/3/2

Looking Up from Below

http://github.com/ryanb/nifty-generators/tree/master
http://github.com/ryanb
http://coderay.rubychan.de/
http://railscasts.com/
http://github.com/thoughtbot/shoulda/tree/master
http://github.com/dchelimsky/rspec/tree/master
http://ph7spot.com/articles/getting_started_with_autotest
http://thoughtbot.com/
http://rubyconf2007.confreaks.com/d3t1p2_rspec.html
http://blog.daveastels.com/
http://blog.davidchelimsky.net/
http://www.pragprog.com/titles/achbd/the-rspec-book
http://railsmagazine.com/3/2

Working on a typical Open Source Rails project
by Dmitry Amelchenko

There is a lot to say about open source (OS) development
model. A typical OS Rails project has its own specifics large
enough that sets it apart from the rest of other OS software
projects. A typical OS project usually has a build output
which can be downloaded and installed — a tar or a jar or a
zip archive, a lib file, or an installable exe file, while Rails out-
put is a Web Site. A complexity of a web application deploy-
ment perhaps is one of the reasons why OS web application
development has not became a mainstream yet. Rails on the
other hand opens an opportunity to develop web applica-
tions which can be easily installed on as many environments
or on as many hosts as desired. Some might ask: when we are
developing a web application, don’t we usually want to run
it on a single, well recognizable and unique host? One of the
reasons for developing OS web applications would be the
fact that some industries are still heavily regulated and will
not allow potentially sensitive information to be sent across a
wire to some web 2.0 service, but if the source code for such a
service is freely available and can be installed inside corporate
firewall, everyone would be happy. Another reason people
choose to do OS web applications is availability of outstand-

ech waves

i actually removed the date not only for space saving reasons, i really thought it's

out a better way.

redundant, i like philipp's idea about floating date control that updates automatically based
on where you scroll to. | guess, we can have the date on every message, until we figure

ing tools and services for free in exchange for making your
code open source. In this article I will be talking about some
such services. And the last but not the least reason is avail-
ability of talent - if you are working on really cool OS project
and utilize all the powers of the Web to promote it, the chanc-
es are that best of the best hackers will be open to work with
you. What ever the reasons for people to do OS Rails projects
might be, you can find a list of those in two primary sources
— http://wiki.rubyonrails.com/rails/pages/OpenSourceProjects
and http://www.opensourcerails.com/.

For me it all started with reading “Getting real”
book by the 37Signals — it’s available online at https://
gettingreal.37signals.com/ . To simply put it; the 37Signals
are the best of their kind. They are by far ahead of the crowd
and setting the industry standards, after all they are the Rails
inventors. The book mostly talks about common sense when
it comes to software development. I was also very excited to
find out about some of the web 2.0 products the 37Signals of-
fers. One of the simplest but yet useful projects that I wanted
to start using right away was “Campfire” — a group chat

L olimpiu editprofile logout H uf

N
M |

—

ML

report » invite

. unfollow »

dashboard [0
“ ¥| |dontlike the idea of have a date control floating on my screen, | think is a better idea to Recently visited: Messages:
hide the date until you need to know the exact date of a message, we can add itto a popup RMag all
on the time link khelll with files
Rails Rumble 2009 with images
e crossblaim
: | for the other.casels we have the date separator already e et e
dmitry robert-123 luscious
o Rails Magazine Meeting Room philipp russianbear

2009/05/01

1 Lotem ipsum dodor sit amed, consectatur adipisicing elil, sed do eiusmoed tempor incididuent
utlabore et dolore magna aliqua.Lorem ipsum dolor sit amet, conseciatur adipisicing elit,
sed do eiusmod tampor incididunt ut labore 1 dolore magna aligqua.

K

M, 1 09 D& 46AM
l ann.mwwnﬁeclemr adipisicing eli, sed do elusmod tempor incididunt

o) utlabore &1 dolore magna aligua Lorem ipsum dodor 5it amet, consactatur adiplsicing el
sed do elusmod tampor incididunt ut labore &1 dolore magna aliqua.

this should be sufficient

i found a little bug, this page of a friend

crossblaim raguel kw0If
ebot zhangleipro stokp
view all

boblmarens

yerhot

New Messages:

Tagged with:
dmitry

[2sdieg |

hitp:fiwww.echowaves.com/usersiZ87-oddlyzen which u can find it in search for users

functionality: search for : Mark Coates and u get the previous link which in turn gives :
We're sorry, but something went wrong.

web application. But as soon I was ready to start promoting
“Campfire” in the office, I realized that it's not going to work
for my company. I work for one of those firms that are very
concerned about sending potentially sensitive information
across the wire outside of a corporate firewall. But I was stub-
born and felt that the group chat software was exactly what
my company needs to improve openness and collaboration.
So I decided to start hacking my own group chat web applica-
tion.

At first I just wanted to write something very similar to
“Campfire”. It is later, based on users’ feedback, when I real-
ized that group chat powered by social networking aspects is
even more powerful and useful. Also my intention was to get
as many developers from my work place interested as pos-
sible. So opensourcing the project was not really a require-
ment initially. But in order to make my life easier and avoid
any questions from the management, like “what do you need
this server for..”, “we don’t have what you are looking for in
place..”, “we can’t approve a non work related projects run-
ning on this infrastructure..”, “it has to be approved by the
committee..”, “if you are doing this then it means you have a
way too much time on your hand..”, I decided not to get into
the corporate bureaucracy and to run the project on my own.
I was going to approach the corp tech again later, when the

project is off the ground and kicking.

Looking back, I think the decision to opensource the proj-
ect was one of the best decisions of my life.

The next step was to figure out how to run the project and
not to spend too much money out of my pocket. We live in a
weird time when you can get a lot for free. And it is not like
“you get what you pay for” any more — free does not mean
bad at all, usually the opposite, “free” reads the best. And of
course it is the best not because it is free, but because it is
opensource.

As far as technology, Ruby on Rails was my first choice,
free, elegant, outstanding community support — but I'm
preaching to the choir here. Being a professional, I could not
afford not to put the code into a version control. There are
tons of options available here. Git is getting a lot of buzz lately.
There are many sites that offer git repositories” hosting. But
there is something to be said about http://github.com/. First of
all it gives 100M for public repositories for free (which really
means repositories containing opensource projects). But even
that is not the most important thing. What makes github
stand out from the crowd is the social networking aspect.

It's crucial that your OS project is reachable . The project I
started is hosted at http://github.com/dmitryame/echowaves/
and at the moment of writing, it had 18 followers — not that
many, but more then I could have possibly hoped for for a
few month old project. And the cool thing is that you are not
only limited to developers in your company or country. Its

pical Open Source Rails project by Dmitry Amelchenko

truly world wide. One of the best contributors and the techni-
cal lead on the project is located in Spain — believe it or not
he found the project on github and liked it enough to join.
Through github I got introduced to a guy from Britain who
was also inspired by the 37Signals and started few other great
projects — railscollab and rucksack, he has made a lot of very
useful suggestions and had influenced the project in a big
way. I can not stress enough the excitement I get from work-
ing on the project with all different people I've never even met
in person before, located all over the world. Social network-
ing lately has drawn a lot of scepticism, but in my experience
if there is a benefit from the Internet and Social Networking,
then thats it.

Dmitry Amelchenko specializes in

web applications development for financial
companies in New York City and Boston
area. Throughout his career he worked on

a number of highly visible mission critical
web sites as a software engineer, mentor
and architect. Experienced in C++, Java and
Ruby languages. Witnessed first hand the evolution of web
applications development from cGr, to J2EE, to Ruby on Rails.
Currently works on number of open source projects hosted on
github at http://github.com/dmitryamel/.

As great as it sounds, it does not come for free-, there are
few simple things to keep in mind. Here is what I had to do
make things moving.

« Make sure to write reasonable README in you rails
project. It will appear on the repo’s home page for your
project on github and most often people will judge your
project based on the first impression they get from that
README file. So make sure it has an executive summary
of your project as well as simple installation instruc-
tions. In my opinion, this is all there is to README file.
If you start putting more things into it and it became
long, it will distract attention and will turn people away.
Next, make sure you have a demo installation of your
project that people can play with before they make a
decision to install your project on their local machines.
Preferably this should be a dedicated host with a catchy
name that hopefully matches the name of your proj-
ect on github. My reference installation for instance
is http://echowaves.com/ . By now it’s actually more
then just a reference installation. The developers that
work on the application use it to collaborate on project
related issues. Some people (including myself) have
started photo blogs there. We get some very useful
feedback from the community through it, and also
using it we communicate the news and updates back

to the community. Thanks to the nature of the project,
we could eat our own dog food (so feel free to checkout
echowaves and run it on your own domain , or even
feel free to create a conversation (“convo”) on http://
echowaves.com/).

Another very important thing is to make the links
between your project and the github obvious. I placed

a link to the github location on the default landing page
and made it very explicit, And the very first link in my
README file points back to the http://echowaves.com/ site.
Sites like github are crucial in helping to get attention
to your project. The reason you are putting it on github
is probably because you want to find contributors. Be
open to any type of help — content writers, developers,
spelling errors catchers, designers (the most difficult

to find), suggestion makers. But remember: you are in
charge. If you really want for your project to success,
you need to have a vision. Make sure you communi-
cate this vision whenever you get a chance, put it in on
your home page, make it the first thing in your README
file, talk about it in your blog. Do not start working on
every little feature suggested right away. Do not accept
every line of code people contribute, unless you have
worked with that person before and developed a trust
relationship. Read more about that in the “Getting
Real” book.

It’s essential to communicate back to the community
what is currently in progress and what features are
planned to be implemented. Initially I had a free ac-
count on http://lighthouseapp.com/ , but it only support-
ed 2 users per project (for more I had to pay and I am
so cheap when it comes to OS development ;-)). Then I
looked at Google Code as an alternative. Surely it sup-
ports the whole OS development stack including Sub-
version as a version control, but since I already started
using github, I was only interested in the issues tracking
aspect of Google Code. If you are more comfortable
with svN, feel free to use Google Code for version con-

ech waves

SignUp

start new convo

",-Ju_ C;H]'!n Start your own com
5, follow llr||n|\|~.r|4i'| ok in

If you like to chat, or blog, or post pictures, or share updates with friends, or

just socialize -- you will enjoy EchoWaves.

[you have any ideas or suggestions feel free to talk about it in EcHoWa

Recent convos:

Russian aAnimation

cerberus continuous integration

SENOWAVES relevance PATIrng

14

WelS. Cold comva,

Take it for a spin, post messages to our TEST convo.

Popular conves: Rece nt!y Jelned:

.emp. -

S khalll-conve

& the amelchenko's private convo

Busslan Animation

puBxian

trol as well, but as for me I find that the social coding
aspects of Google Code are just not nearly as good and
helpful as github’s. The good thing is that thanks to the
competition in the OS project hosting space, where
you can choose what works best for you. Here is the
example of how the users tracking list looks like for me
http://code.google.com/p/echowaves/issues/list/.

The next big thing in organizing an OS Rails project is an
infrastructure you will be running you site on. There are few
options available here. I initially started hosting my site on a
computer under my desk in a basement. But quickly realized
that outsourcing the infrastructure is the better way to go. If
you are serious about getting your project off the ground and
want it to be noticed by other people, you have to make sure
it’s up and running 24/7 and the bandwidth must be good
enough to make a good impression on visitors — the web
community has very high expectations these days. This is the
only thing you are expected to pay for, not a whole of a lot,
but still out of your pocket, so make your choice wisely. There
are number of hosting providers that support rails apps like
http://www.engineyard.com/ and http://www.slicehost.com/.

I personally choose the power and flexibility of Amazon’s
web services. Read more about it here http://aws.amazon.
com/. EC2 is easy to setup and use. They constantly add new
features. They offer a FREE static IP address — a must for a
serious web site hosting. They finally support persistent file
system storage in addition to their S3 web service. The scaling
is easy, the bandwidth is outstanding, the billing is a “pay as
you go” model, so no costly contracts, no capacity planning
ahead of time and no hidden costs — just use what you can
afford to pay for at the moment and pay only for the things
you need at the moment. In the future when the site grows
above first million users and the investors start banging on
your door offering loads of cash, you will be able to scale with
your eyes closed. But that’s a story for another article.

After you are done setting up the project and developers
start contributing their talent to the project, your reference
installation is up and running and you actually have some-
thing to show, then it’s time to start promoting your project.
For me the most natural place to start was at work. After all,
the project was initially started as a collaboration tool for the
office. I installed the app on my personal sandbox and held a
lunch presentation for developers. Doing a presentation, you
will be able to get an instant feedback, you will know right
away if your idea is worth anything to people. During the
presentation do not forget to mention that you are looking
for contributors. Next, investigate your local ruby and rails
community, present at one of the local Ruby or Rails groups
meetings as well, if not able to present, at least send an email
to the local Ruby group and introduce yourself, explain what
you are doing and why, mention that you are open to sugges-
tions and looking for volunteers. One comment about com-

munity support I have to make: if you run into a technical
issues on the project, then the local community mailing list is
the great resource — so do not hesitate to use it. For example,
when I was looking for a library that supports chats in the
browser, before spending much time on research, I asked the
question on a Boston Ruby group mailing list. I've received

a suggestion to use Orbited, and that ended up being one of
the best architectural decision I had made on the project. Or-
bited is easy to install and configure and is rock solid. I actu-
ally sometimes forget that I use it at all — it works like a well
oiled machine, and you never have to worry about restarting
it (maybe once every few months when a new release comes
out and I want to upgrade).

Depending on your project and budget, you might con-
sider to start paid ad campaigns. I feel the majority of the
OS Rails projects might not benefit from it, especially at the
early stages. I tried to run Google AdWords as well as Fa-
cebook ad campaigns. The traffic has slightly increased, but
the bounce rate also went through the roof. The bounce rate
represents the average percentage of initial visitors to a site
who “bounce” away to a different site, rather than continuing
on to other pages within the same site. It's incredibly difficult
to come up with the right keywords combination and even
if you do find it, most of the times is does cost money. If you
set your daily budget too low (like I did) your keywords will
never trigger and instead Google will show your ad based on
the site content, which might not be exactly what you want.
Here are some more effective techniques that tend to yield
better results for promoting early stage OS project (again,
things are different if you have cash on your hand, then feel
free to skip this part):

o Talk to all your friends, tell them about your project
and ask them to post a short note about it on their
blogs.

Consider writing articles for magazines like http://rails-
magazine.com/.

Make sure to post on http://www.opensourcerails.com/.
Post your projects status updates on Facebook, Twitter
or both. This is the way to keep your friends informed
about what's going on. Eventually they will notice from
your status updates that something is happening, will
start asking you questions, and most likely will start
sharing your story with their friends.

If you have good writing skills or really catchy idea,
feel free to post on sites like http://reddit.com/ or http://
slashdot.com/ or http://digg.com/, just don’t be discour-
aged if your post does not get high ratings or does not
get published at all (as in my case with).

By the time you start actively promoting your project,
it helps to start monitoring your site statistics. I use Google
Analytics which is free and offers a lot of different metrics.

pical Open Source Rails project by Dmitry Amelchenko

EchoWaves Overview
by Khaled Al-Habache

Echowaves is an ambitious project with many features of
interest. In a way you can use it as a free Campfire-like group
chatting tool. We, the RailsMagazine staft, use it to hold our
regular overseas meetings using our private Convo (conversa-
tion). However that's only one side of it. Echowaves adds the
social aspect to chat, making it more into Conversation based
site. You can create new conversations and share your thoughts,
check popular conversations and follow them and also you can
follow users and check what conversations are most of interest
for them. Echowaves can also be used as a Web 2.0 live forum,
where topics and replies can be seen instantly. A nice thing is
the ability to embed photos and videos and to attach files. This
makes the conversations more interactive, also it makes it fit
personal and gallery pages.

Echowaves acts as an OpenAuth provider and exports data
in various formats to help developers make use of the public
data.

If you like to chat, blog, post pictures, share updates with
friends or just socialize — try out EchoWaves.

Running the OS project, you have to be a little bit of every-
thing yourself; no one else will do it for you if you won’t. Keep
an eye on the stats and try to understand the metrics that are
available to you. Simple number of hits per day is important
but not nearly enough to understand what’s going on. Sub-
scribe to some free uptime monitoring service as well. I use
http://pingability.com.

It’s also as crucial to follow some basic design guidelines
to get higher ratings on search engines. Things like correct
page titles, meta descriptions, etc... Google webmaster tools
https://www.google.com/webmasters/tools is of a great help in
identifying some problems. If your ratings are not that high
initially, do not expect it to go up very quickly, it takes a lot
of patience and daily attention (it could take months). Still,
make sure to analyze the suggestions Google Webmaster tool
makes and try to address the issues pointed out as soon as
possible.

There are probably a lot more other things you can do to
make your OS Rails project a hit. The basics are still going to
be the same for everyone — it is all about common sense as
outlined in “Getting Real” by the 37Signals book. Your job as
a project Master is to find the best possible combination that
works for you. Just remember, when you are running an OS
project, the most difficult thing is to make others care about it
as much as you do — if you accomplish this goal, success will
follow. Be passionate and honest, even if you are not the most
experienced Rails developer in the world but love what you
are doing, that is a sure road to success.

Discuss: http://railsmagazine.com/3/3

http://railsmagazine.com/3/3

Theme Support by James Stewart

Theme Support

by James Stewart

It’s the ideal scenario really. You've spent many, many fairly modest needs. Since then a couple more forks have
hours into your project, crafted the business logic so it’s just sprung up and we’re working on resolving them. I also man-
right, and tuned it all to perfection. And then you realize that ~ aged to make a test suit that can help checking the state of the
with just slightly tweaked views and a change of stylesheets, plugin with your installed rails version.

that same app could serve a different audience.

Or perhaps that’s rather rare, but youre busy designing an

app that from the outset will need to serve multiple clients, Resources

each of whom will need a bit more customization than a Project page

simple choice of logo and colour scheme provide. http://github.com/jystewart/theme_support/tree/master/
Test Application

http://github.com/jystewart/theme_support_test_app/

James Stewart is a freelance web developer
and consultant, based in London and primarily DISCUSS: http://railsmagazine.com/3/4
working with arts organizations and non-profits

to develop their web presences and improve their

1 ,{1"’
bl [business processes. Though officially tech-agnostic
23 2 he’s usually happiest building web applications with
Rails or Merb. Outside of work he’s enjoying the new

experience of fatherhood, and dabbles in concert promotion.

190 meters up

In either case you could get round it with careful use of
layouts, partials and other tricks from the Rails toolkit, but
that can quickly become cumbersome and isn't going to scale
if you need to change different elements for different clients.
That’s where theme_support plugin comes in.

Originally released by Matt McCray based on code used in
the Typo blogging engine by Tobias Luetke, theme_support pro-
vides support for any number of themes which can override
any view (whether a full view or a partial) from your main ap-
plication, and have their own set of assets. So once you’ve got
your main site set up, all you need to do is add an appropriate
folder, add some declarations to your ApplicationController to
identify the right theme, and override where necessary. The
README file covers most of the particulars.

Before you rush out and start theming your application,
there’s something else you ought to know. The plugin keeps
breaking. It’s not that the code is buggy, but simply that
goes fairly deeply into Rails, and for a variety of (very good)
reasons Rails Ap1 keep changing. It’s the sort of problem that
we can all hope will disappear once we have Rails 3 and the
defined public ap1, but for the time being some workarounds
are necessary to get it working for subsequent Rails releases.

So in that great open source tradition, a few of us have
begun experimenting with the plugin over on github. It began
when I created a fork and found a workaround to serve my

http://railsmagazine.com/3/4

Observer and Sin n patterns in Ruby by Khaled al Habache

Observer and Singleton design patterns in Ruby
by Khaled al Habache

Observer and singleton are two common design patterns end
that a programmer should be familiar with, however what
made me write about them, is that both are there out of the
box for you to use in ruby.

end

So let’s have a look at both and see how ruby help you use class SMSNotifier < Notifier

them directly: def update(bank_account)
Observer Design Pattern if bank_account.balance <= 0.5
According to Wikipedia: puts “Sending SMS to: ‘#{bank_account.owner}’ informing

him with his account balance: #{bank_account.balance}$.”

“The observer pattern (sometimes known as publish/sub-
scribe) is a software design pattern in which an object, called
the subject, maintains a list of its dependents, called observ- end
ers, and notifies them automatically of any state changes,
usually by calling one of their methods. It is mainly used to
implement distributed event handling systems.”

send sms mechanism

end

end

So how does ruby help you implementing this design
pattern? Well, the answer is by mixing the observable module class BankAccount

into your subject (observed object). # include the observable module

Let’s take an example, let’s suppose we have a banking
mechanism that notifies the user by several ways upon with-
drawal operations that leaves the account with balance less or
equal to $0.5. def initialize(owner,amount)

include Observable

attr_reader :owner,:balance

If we look deeply at this problem, we can qualify it as a @owner,@balance = owner,amount
good candidate for observer design pattern, where the bank

. . . . # ing 1i f h
account is our subject and the notification system as the adding list of observes to the account

observer. add_observer EmailNotifier.new
Here is a code snippet for this problem and it’s solution: add_observer SMSNotifier.new
require the observer lib file end

require “observer”

withdraw operation
class Notifier def withdraw(amount)
end # do whatever you need

@balance -=amount if (@balance - amount) > @

class EmailNotifier < Notifier # now here comes our logic
def update(bank_account) # issue that the account has changed
if bank_account.balance <= 10 changed
puts “Sending email to: ‘#{bank_account.owner}’ in- # notify the observers

i im wi i o . ?
forming him with his account balance: #{bank_account.balance}$ notify_observers self

send the email mechanism
end

end end

n patterns in Ruby by Khaled al Habache

account = BankAccount.new “Jim Oslen”, 100

account.withdraw 99.5

#=>Sending email to: ‘Jim Oslen’ informing him with his ac-
count balance: 0.5%.

#=>Sending SMS to: ‘Jim Oslen’ informing him with his account
balance: 0.5%.

So to user ruby observer lib we have to implement four

things:

1. Require the ‘observer’ lib and include it inside the subject
(observed) class.

2. Declare the object to be ‘changed” and then notify the
observers when needed - just like we did in ‘withdraw’
method.

3. Declare all needed observers objects that will observe the
subject.

4. Each observer must implement an ‘update’ method that
will be called by the subject.

Observers in Rails

You can find observers in rails when using ActiveRecord,
it’s a way to take out all ActiveRecord callbacks out of the
model, for example a one would do this:

class User < ActiveRecord::Base

after_create :send_email

private
def send_email
#send a welcome email
end

end

a neater solution is to use Observers:
class UserObserver < ActiveRecord::Observer
def after_create(user)
#send a welcome email
end

end

You can generate the previous observer using the follow-
ing command:

ruby script/generate observer User

You still can have observers that map to models that
don’t match with the observer name using the ‘observe’ class
method, you also can observe multiple models using the same
method:

class NotificationObserver < ActiveRecord::0Observer

Hanging Low

Observer and Sin n patterns in Ruby by Khaled al Habache

observe :user, :post

Khaled al Habache is a software
def after_create(record) engineer and a senior RoR engineer.
A fan of open-source and big projects,and

#send thanks email research based work.

end Currently giving part of his time for Ruby
community and other web related work on
end his blog: http://www.khelll.com

Khaled is a Rails Magazine contributing editor and maintains

Finally don’t forget to add the following line inside config/
our regular Ruby column.

environment.rb to define observers:

config.active_record.observers = :user_observer

confl.load_config “/home/khelll/conf.yml”

Singleton Design Pattern
conf2 = AppConfig.instance

According to Wikipedia:

puts confl == conf2

“In software engineering, the singleton pattern is a design
pattern that is used to restrict instantiation of a class to one
object. (This concept is also sometimes generalized to restrict # notice the following 2 lines won’t work
the instance to a specific number of objects — for example, # new method is private
we can restrict the number of instances to five objects.) This
is useful when exactly one object is needed to coordinate ac-
tions across the system. # dup won’t work

AppConfig.new rescue(puts $!)

The singleton design pattern is used to have one instance confl.dup rescue(puts $!)
of some class, typically there are many places where you
might want to do so, just like having one database connec-
tion, one LDAP connection, one logger instance or even one #=>Application configuration file was loaded from file: /
configuration object for your application. home/khel11/conf. ynl

In ruby you can use the singleton module to have the fetrue

job done for you, let’s take ‘application configuration’ as an #=>private method ‘new’ called for AppConfig:Class

example and check how we can use ruby to do the job: #=>can’t dup instance of singleton AppConfig

require singleton lib . .
So what does ruby do when you include the singleton

require ‘singleton’ method inside your class?

1. It makes the ‘new’ method private and so you can’t use it.
2. Itadds a class method called instance that instantiates

mixin the singleton module only one instance of the class.

class AppConfig

include Singleton So to use ruby singleton module you need two things:
1. Require the lib ‘singleton’ then include it inside the de-
sired class.
do the actual app configuration 2. Use the ‘instance’ method to get the instance you need.

def load_config(file)

do your work here

Resources
puts “Application configuration file was loaded Ruby observer.rb
from file: #{file}” http://www.ruby-doc.org/stdlib/libdoc/observer/rdoc/index.html
end Singleton Module
http://www.ruby-doc.org/stdlib/libdoc/singleton/rdoc/index.html
end Rails guides

http://guides.rubyonrails.org/activerecord_validations_callbacks.html

confl = AppConfig.instance

Discuss: http://railsmagazine.com/3/5

http://railsmagazine.com/3/5

ing with JMX by Joshua Moore

JRuby Tip: Monitoring with J]MX
by Joshua Moore

What is JMX? _Jconsol New Connection s _ Bl

JMX (Java Management Extensions) is a Java™ tool used

to monitor and control a Java™ process. Since JRuby is a

Java™ process, it can also be monitored using JMX. The great
thing about JMX is that it is not just one way communication.
You can also use JMX to change settings within the JRuby/ () Local Process::
Java™ process and within your own application. This article Name [pD |
will only cover the briefest of introductions about JMX. The | sun tools jconsole JConsole | s648|
goal is to help you get started using it.

Netr Connection =

JConsole -
' Remote Process:

JConsole is the default JMX client provided with the JDK | |
(Java™ Development Kit). Unfortunately, it is not part of the Usage: <hostname=:=port=> OR service:jmx<protocol=1<=sap=
JRE (Java™ Runtime Environment) so if you do not have it et ﬁ e lﬁ
you will need to download and install the JDK. JConsole is a = ’ I— = | —
simple application that connects to a Java™ process and then
displays the collected information to the user. It can also be | Cancel | onnect
used to set variables within the Java™ process. To get started - -
with JConsole simply execute one of these commands (de-
pending on your OS type): the JMX connection. In addition, if you want to change any

» Windows: c:\path\to\java\bin\jconsole.exe of the Java settings, use this tab. It depends on the version of
o Linux: jconsole (it should be added to the path with the JConsole that comes with JDK .
Java™ command) or /path/to/java/bin/jconsole
» Mac: Sorry, I cannot afford a Mac right now but I guess
it would be similar to Linux (currently the Josh Moore

* If you are using JConsole from versions earlier than 6
then you will need to set this variable in Java:

Mac fund is accepting donations). -Dcom. sun.management. jmxremote (java -Dcom.sun.management.
. . . jmxremote)
* One bug with JMX on Linux is that JMX uses the IP
:
address found in the /etc/hosts file to connect to the Java™ e et sy St S
process. So if you execute hostname -i on the machine running |- , _ ——
Fowraew | Memory | Threads | Classes | VM Summary | MBeans -
the JRuby process you want to monitor, and the output is not e mange: [| v
your IP address, then you will need to modify the /etc/hosts e B
file and then restart your network process or restart your o o Ll))
an Mk | il i ogallt gAY Py LR
computer. i L™ ! [,
e il L
10 Mb
* You should be aware that the information gathered by .————————§ [s
5 0950 155 i 05 10 10:15 09:45 0850 0RS5 10:00 1005 10:10 10:15
]Console iS SeSSiOn based, SO When the COnneCtiOn iS ClOSed | Used: 23.3Mb Commilted: 88.5 Mb Max: 906 Mb [y Live: 33 Peak: 33 Total: 2470
all the gathered information will be lost. i S
1500
Setup the Jruby/JavaTM process _ Ll
sont |1l .
Now that JConsole is running, you will need to connect o PR LR T O | T

op:d5 RS0 0555 1000 1005 10-10 10:15 oB:A5 0550 05:55 1000 1005 10:18 105

to a process so that you can monitor it. With JMX you can
connect to any local process without any change to it*. Simply
click on the process and click connect (see image). Once con-

Loaded: 3,438 Unloaded: 22 Teral: 3.460 CPU Usage: 4.5%

| 4| picd; 5648 sun toolsjronsale JConsole

nected you will be shown information that is being collected or for JRuby use:
in real time. The overview tab gives several top level graphs of
the current system resource usage (Memory, CPU, etc). The jruby -J-Dcom. sun.management. jmxremote

Memory, Threads, Classes, and VM Summary tabs all provide
more information about each respective topic. The MBeans
tab is special as it shows you the raw output received from

Monitoring local processes is not all that exciting. Much
more interesting and useful is monitoring processes on re-

mote servers. Because of security reasons if you want to use
JMX to monitor a remote JRuby process you will need to pass
in some variables to the Java™ process when it starts. To be
simplistic, simply start the Java™ process like this (you can
choose any port number you want):

java -Dcom.sun.management. jmxremote.port=9999 -Dcom.sun.
management. jmxremote.authenticate=false -Dcom.sun.management.
jmxremote.ssl=false

These options are used with JavaTM or a JavaTM applica-
tion server like Glassfish, Tomcat, Jetty, etc. In order to moni-
tor a process started with JRuby you will need to prepend the
variables with -7 :

-J-Dcom. sun.management. jmxremote.port=9999 -J-Dcom.sun.
management. jmxremote.authenticate=false -J-Dcom.sun.management.
jmxremote.ssl=false

Once the process is started with these variables you are
ready to go.

* You should be aware that when starting a Java™ process
with these options you will be opening a huge security hole
in your server. Unfortunately, I do not have time to cover the
secure setup. Please see the resource section for an article on
this topic.

Once the process is up and running in the JConsole con-
nection box, click the “Remote Process” radio box and then
enter in the host name or IP address followed by the port
number (i.e. localhost:8004). Once the connection is estab-
lished you can use JConsole in the same manner that you
would for a local process.

Resources
MX home page

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

More Information and JMX Authentication

http://java.sun.com/j2se/1.5.0/docs/guide/management/agent.html

jmx4r a gem to create a JMX client in JRuby
http://github.com/jmesnil/jmx4r/tree/master

jmx a gem to create a JMX client and custom MBeans
http://ruby.dzone.com/news/jmx-gem-released

How to write custom MBeans

http://docs.sun.com/app/docs/doc/816-4178/6madjde4b?a=view
Using JConsole (also explains what all the different JavaTM memories mean)
http://java.sun.com/javase/6/docs/technotes/guides/management/jconsole.html

Joshua Moore grew up on a farm in
Pennsylvania, USA. On the farm he learned

that hard work is not easy and that he did not
like to get dirty. So he started down the path

of computer programming (less dirt, but still
hard work). He liked Java and worked mostly
with desktop application development until
about a year ago, when he decided he could not ignore web
development any longer (he ignored it before because he did
not want to fight different browsers to get his applications
to work right). But, different browser rendering or not, here
he is using Ruby on Rails, mostly JRuby on Rails, and loving
it. He chose Rails because it was simple, powerful, and no
configuration needed.

Check out his blog: http: //www.codingforrent.com/,

Twitter: @kaiping, email: josh@codingforrent.com.

Josh is a columnist with Rails Magazine, where he publishes
regularly on JRuby.

Conclusion

This is a quick introduction to JMX. This article has barely
scratched the surface of what JMX can really do. The real
power of JMX can be leveraged in many different ways. Some
of these ways include: writing your own MBeans to collect or
set custom information and writing your own JMX client to
log the performance of you application. For further informa-
tion on these advanced topics, checkout the resource section

Discuss: http://railsmagazine.com/3/6

http://railsmagazine.com/3/6

Workflow solutions using AASM by Chee Yeo

Workflow solutions using AASM

by Chee Yeo

Workflow Definition

A workflow is an abstract representation of real work
undertaken by a single or complex group of individuals
or mechanisms. It describes a system of activities enabled
through a collection of resources and information flows.
Workflows are primarily used to achieve some form of pro-
cessing intentions, such as data processing.

There are two main forms of workflows: sequential and
state-machine. Sequential workflows are predictable. They
utilize the rules and conditions we provide at the beginning
to progress a process forward. The workflow is in control of
the process.

A state-machine workflow is the reverse. It is driven by
external events to its completion. We define the states and
required transitions between those states. The workflow sits
and waits for an external event to occur before transitioning
to one of the defined states. The decision making process hap-
pens externally outside of the workflow - there is a structure
to be followed still like a sequential workflow but control is
passed to its external environment.

What is a state machine?

The diagram below is a simple example of a state machine.
It has three main properties: states, events and transitions.
Event

Y

Button Click

Power On Button Click

State

Transition

Event

A state represents a particular situation. The state machine
above has two main states — ‘Power On” and ‘Power Off”. The
machine will be in one of these two states at any point in
time.

There is only one main event in the state machine above
- a button click. An event describes an external stimulus or
input into the system. In this instance, a button click will
either ‘power on’ the state machine or power it oft and both
states shown above respond to the same event.

A transition moves the state machine from one state to
the next. In the diagram above, following a button click, if
the machine is in a ‘power on’ state it will transition to the
‘power off” state and vice versa. Not all transitions move the
state machine to a new state - it is possible to loop back to the
same state.

A state machine does not just store states and events
alone. It can also execute code when an event arrives. In the
example above, the state machine can be designed to control
electricity flow when it transitions to a new state following a
button click event.

State Machine in Rails

Sometimes you need to track the state of a model in an
application and the transitions between a set of pre-defined
states which are triggered based on certain events. Or you
might need to express the business logic of your application
using a workflow to illustrate the flow of state changes based
on its events.

For example, you might have an ap-
plication that allows the user to upload files
for processing and you need to provide
some form of mechanism to track the file
while it is added to a queue for processing
and to provide some form of feedback to
inform the user of the status of the out-
come (success or an error) and the relevant
action to take based on the outcome (if an
error occurred, inform the user).

Power Off

This can be modelled by adding a ‘state’
or ‘status’ column in your model table and
updating it as you go along. However, it
becomes tedious and error prone when
multiple states are involved.

The acts_as_state_machine (AAsSM) plugin converts any
model into a Finite State Machine capable of remembering
which state it is in at any point in time and the transitions it
is allowed to go through between those states and the actions
that are to be triggered when a specific state is reached.

A slice above

Setting It Up
To utilise the plugin in a Rails application, simply install it:

ruby script/plugin install http://elitists.textdriven.com/
svn/plugins/acts_as_state_machine/trunk/ acts_as_state_machine

You would also require a state string column in the model
table — this is where AasMm stores the state of the object.

An Example

For illustration purposes, say we have an application
which allows the user to upload video files for processing and
there is a Video model.

Within the Video.rb model add the following code to in-
stantiate the plugin:

inside Video.rb

Class Video < AR::Base

acts_as_state_machine, :initial => :original

state :original
state :processing
state :processed, :enter => :set_processed_attributes

state :error, :enter => :inform_user

event :convert do
transitions :from => :original, :to => : processing

end

event :converted do
transitions :from => :processing, :to => : processed

end

event :failure do

def inform_user

transitions :from => :processing, :to => : error
pass message to user to inform of error with error code

end etc
end
def set_processed_attributes
update name of file; move file to permanent storage end # end of Video model

location etc
The acts_as_state_machine directive includes the plugin with
an initial state of :original. When a new video file is uploaded

end

Workflow solutions using AASM by Chee Yeo

and a new video object created, this is the first state it will be
in. Note that although the plugin looks for a column called
state in the database table, this can be overridden in the
directive like so:

acts_as_state_machine, :initial => :original, :column =>
‘my_state_column’

The diagram below illustrates the current state machine of
the video model.

The three main components which the AASM plugin
needs to make it work are states, events and callbacks.

Chee Yeo is a 30 year old open source enthusiast
from the United Kingdom. He is currently a Ruby
on Rails developer and has produced and launched
small to medium sized applications. He enjoys
blogging and writing articles about Rails and
contributing to open source.

Chee is also the founder of 29 Steps, a web agency specializing
in Ruby, Rails and web development. See how they can help at
http://29steps.co.uk.

States

The possible states an object can be in are defined using
the state keyword. The name of the state is expressed as a
symbol. This generates an additional method of <state>? to
query the state of the object:

@video.processed? # returns true or false
Events

Events move or transition the object from one state to the
next. These are declared in the example above using the event
action:

event :convert do

transitions :from => :original, :to => : processing

end

This automatically adds an instance method of <event>! to
the Video class as an instance method. To call an event, simply
call your object instance with the event name followed by an
exclamation mark.

In our example above, suppose we have a method which
picks a video out of a queue for processing:

def some_method
begin

@video.convert! # calls convert event; moves video from
’original’ state to ’processing’ state

video has been successfully converted

@video.converted! # calls converted event; moves video
from ‘processing’ state to ‘processed’ state

rescue
@video.failure! # calls the failure event
end

end

It is possible to have multiple transitions statement in one
event block - the first one which matches the current state of
the object will be called.

Sometimes it might be necessary to do some validation
in an event loop before moving that object to the next state.
These are known as guards and can be used in an event block
like so:

event :convert do

transitions :from => :original, :to => : processing,

:guard => Proc.new { |video| video.accepted_format? }

end

The example above ensures that the uploaded file is of a
specific format via the accepted_format method and state tran-
sition will not be continued if it fails (if it returns false).

Callbacks

The :enter action at the end of a state statement is used
to define a callback. Callbacks are defined to trigger code
once the object is transitioning into that particular state.
These could be either methods or Proc objects. If a callback is
defined as a symbol, like in the example above, the instance
method of the object with the same name will be called.

In the Video example, when the object has reached the
‘processed’ state, it fires a method called set_processed_attri-
butes which updates the object accordingly. There are two
other actions which could be used in a state declaration:
:after and :exit. The after callback gets triggered after the
model has already transitioned into that state and exit gets
called once the object leaves that state. We could make our
Video example more expressive by defining two additional
callback methods to be triggered once the object has reached
the processed state:

http://29steps.co.uk

Workflow solutions using AASM by Chee Yeo

state :processed, Conclusion

renter => :set_processed_attributes, The AASM plugin is a great tool to have when you need

-after => Proc.new {|video| video.move_file} to implement state based behaviours in your application.
Although the same could be achieved by rolling your own,
the expressiveness of the plugin syntax itself makes it really
In the example above, I declared a Proc which calls an straightforward to understand.
instance method of move_file after the object has entered
the processed state and its attributes have been updated. The
instance method delete_tmp_files removes all temporary video Discuss: hitp://railsmagazine.com/3/7
files after processing and will be called once the object leaves
the block. One can create very complex states and behaviours
by delegating callbacks to relevant actions within a single
state.

iexit => :delete_tmp_files

Resources

http://elitists.textdriven.com/svn/plugins/acts_as_state_machine/trunk/
rails.aizatto.com/2007/05/24/ruby-on-rails-finite-state-machine-plugin-acts_as_state_machine/
justbarebones.blogspot.com/2007/11/actsasstatemachine-enhancements.html
http://github.com/ryan-allen/workflow/tree/master

29 Ste pS = “We love the web ... and Rails.”

We are a startup company whe'specializes in
Ruby, Rails and the web.

Visit us at http://29'steps;'6‘o.uk

Ruby . Ruby-on-Rails. Iphone. Web Design. Application Development.
Audit. User Interface Design. Ruby-On-Rails training.

http://railsmagazine.com/3/7
http://29steps.co.uk/

Ruby Web Frameworks: A Dive into Waves by Carlo Pecchia

Ruby Web Frameworks: A Dive into Waves

by Carlo Pecchia

In this article we introduce the Waves framework, mainly
based on the concept of “resources” to provide web applica-
tions. No prior knowledge is needed in order to understand
everything, though some experience with Ruby and Ruby On
Rails could help.

Introduction

WAaves

Being a ruby programmer implies, more or less, to being
also curios, to love experimentations... so we like to explore
emerging web framework, particularly the ones based on
Ruby.

Now it’s time for Waves. It’s defined by its developers as a
Resource Oriented Architecture (RoA) framework.

But what does that mean?

Starting from the following facts, they derive that the Mmvc
way is only one of the possibilities to build and code web ap-
plications:

« The Web itself is based on resources, and the spreading
of REST over other “protocols” is a clear symptom of
that.

 Reasoning in terms of resources give you the possibility
to use all the (huge) existing infrastructures of the web
(caching, URI, MIME types, RSS, and so on).

o When properly structured, a Roa application can be
less costly to maintain and to integrate with other ap-
plications.

o After all, HTTP has demonstrated to be a good choice
for that: a protocol that calls methods on resources.

o Methods: GET, PUT, POST, DELETE, ...

« Resource: “things” identified and accessed by an URI

So, the most interesting things about this framework can
be summarized here:

» Embrace of resources approach: the key of Waves are
resource, and the routing features heavily work with
that.

o The application behaves like a proxy of resources: we
can have multiple request paths invoking the same set
of resources.

« It’s based, like Rails (at least with 2.3 version) and Merb,
on Rack.

o It runs on JRuby.
In Waves we can see an application basically as a com-

posed stack of functionalities:

Application

Layer(s)

Foundation

o Application: is built on Layers

o Layers: mix-in features to help build your application
(eg: MvcC support)

o Foundation: is a Layer that provides at least the mini-
mal features set required for an application.

In fact, Waves authors speak in terms of Layers and Foun-
dation. Of course there aren’t any magical approaches on
that, we can do almost the same with Rails (or Merb, Sinatra,
Ramaze, etc), but this “change of mind” is interesting and
worth experimenting a little.

In this article we'll explore the surface of the framework
that is still on version 0.8.x. After installing it, we’ll write a
simple application in order to illustrate how Waves works.

Installation

Of course a gem is provided, so we simply need to type:
$ sudo gem install waves

and adding some dependencies if they aren’t already pres-
ent in our system.

A simple application

Let’s create a simple application for managing personal
ToDoss list.

$ waves generate --name=todo_manager

--orm=sequel

Waves can use whatever orM we prefer, in this case we
choose to experiment with Sequel.

Previous command generates our application skeleton:
Rakefile

startup.rb

configurations/

http://rubywaves.com/
http://rack.rubyforge.org/
http://merbivore.com/
http://sinatra.rubyforge.org/
http://ramaze.net/
http://sequel.rubyforge.org/

Ruby Web Frameworks: A Dive into Waves by Carlo Pecchia

controllers/ Now we can launch the migration with:
helpers/ $ rake schema:migrate
Lib/ But wait! Where is the database configuration?! All con-
tasks/ figuration options live in configurations/x.rb, namely:
models/ default.rb
public/ development.rb
resources/ production.rb
schema/
migrations/
templates/
tmp/ Carlo Pecchia is an 11 engineer living in Italy.
views/ Its main interests are rel.atefi to Open Source
ecosystems, Ruby, web application development,
As we can see the directory structure looks familiar to code quality. He can be reached through his blog
Rails one. Particularly important is the startup.rb file, when a or on Tiwitter.
Waves application starts: hitp://carlopecchia.eu

startup.rb http://twitter.com/carlopecchia.

require ‘foundations/classic’
require ‘layers/orm/providers/sequel’

Development and production modes inherit from default

module TodoManager setups. In development we find:
include Waves::Foundations::Classic ## configurations/development.rb
include Waves::Layers::0RM: :Sequel module TodoManager

end module Configurations

; . . . class Development < Default
Now, let’s create a migration for our basic resource:

$ rake schema:migration name=create items

database :adapter => ‘sqlite’, :data-
that generates the file schema/migrations/001_create_items.rb base => ‘todomanager’
we'll fill with:
schema/migrations/001 create items.rb reloadable [TodoManager]
class Createltems < Sequel::Migration log :level => :debug
def up host ‘127.0.0.1’
create table :items do port 3000
primary key :id dependencies []
string :name
string :content application do
string :status use ::Rack::ShowExceptions
timestamp :updated on use ::Rack::Static,
end turls => [/
end css/', ‘/javascript/’', ‘/favicon.ico’],
:root =>
def down ‘public’ .
drop table :items run ::Waves::Dispatchers::Default.new
end end
end server Waves::Servers::Mongrel
end
As told before here we are using Sequel orM, but of course end
we can choose whatever fits our needs (ActiveRecord, Data- end
Mapper, etc).

http://carlopecchia.eu/
http://twitter.com/carlopecchia

Ruby Web Frameworks: A Dive into Waves by Carlo Pecchia

And in fact, after running the migration a new file con-
taining the Sqlite development database is generated (todoman-
ager).

Now it’s time to put in some HTML and CSS code.

We do it using Markaby, the default system assumed by
Waves (but of course we can switch to another templating
system). It’s an interesting way of generate HTML code by
only writing Ruby snippets.

templates/layouts/default.mab

doctype :html4 strict

html do

head do
title @title

link :href => ‘/css/site.css’,
‘stylesheet’, :type => ‘text/css’

end
body do
hl { a ‘ToDo manager’,

rel =>

thref => ‘/items’

div.main do
layout content
end
end
end

public/css/style.css

/* it’'s up to you to put some content here...
*/

Ok, it’s finally time to start Waves server to ensuring us
everything is set up properly:

$ waves server

And pointing out browser on http://localhost:3000 we see
the 404 error:

hitp; / flocalhost 3000

+ | @ hitp://localhest 3099/ -a-

alel|e] s

Of course, we haven't yet defined any request path pro-

cessing. Let’s do it in main entry point, that’s the resources/
map.rb file:

resources/map.rb
module TodoManager
module Resources
class Map
include Waves::Resources::Mixin

on(true) { “Hi, I manage your To-
Dos...” }

end
end
end

Basically here we are saying that all request are served by a
string as content. Let’s see if, and how, it works in practice:

Let’s add one line:

on(true) { “Hi, I manage your ToDos...” }

on(:get) { “Hi, I manage your ToDos...
again!” }

Refreshing the browser we can see the second string
rendered. This is how, basically, routes work in Waves. At the
end of this article we'll show how we can use this nice DSL
(domain specific language) here to express routes.

Introducing RESTful behaviour

Ok, now we have to define routes for “items” like that:
o GET /items displays the items list (of things to do...)
o GET /items/:id displays the item identified by : 1d
o POST /items creates a fresh new item
o PUT /items/:id modifies item identified by : 1d
o DELETE /items/:id deletes item identified by : 1d

But first we need to define Item model:
models/item.rb
module TodoManager
module Models
class Item < Default

before save do

set with params(:updated on => Time.
now)

end

after save do
set with params(:name => self.id)
end

def date
updated on.strftime(‘%d.%m.%Y")

http://github.com/why/markaby

end

end
end
end

Due to implementation of find methods for the control-
ler (maybe broken?), we have to define a name column in the
model, and be sure it acts like an id field.

Let’s insert some data using the console:

$ waves console

>> t = TodoManager: :Models: :Item.new

=> #<TodoManager: :Models::Item @values={}>
>> t.content = ‘finish waves introductory

article’
=> “finish waves introductory article”
>> t.status = ‘todo’
=> “todo”
>> t.save

=> #<TodoManager: :Models::Item @
values={:content=>"finish waves introductory
article”,

:status=>"todo”, :id=>1, :updated
on=>Mon Dec 29 12:00:00 +0100 2008}>

>> t

=> #<TodoManager: :Models::Item @
values={:content=>"finish waves introductory
article”,

:status=>"todo”, :id=>1, :updated
on=>Mon Dec 29 12:00:01 +0100 2008}>

>> t.id

It’s time to define the “correct” request mappings:
resources/map.rb
module TodoManager
module Resources
class Map
include Waves::Resources::Mixin

redirect ‘/' request do ‘/items’
on (:get, []) { redirect ‘/items’ }

‘GET /items’

on (:get, [‘items’]) do
items = controller(:item).all
view(:item).list(:items => items)

end

end
end
end

Ruby Web Frameworks: A Dive into Waves by Carlo Pecchia

It’s clear that the first path declaration redirects to 7items’,
that is handled by the second path, when we invoke the ren-
der of templates/item/list.mab:

templates/item/list.mab

layout :default do

ul do
@items.each do |1i]
1i do
i.content + ‘ (‘ + a(‘view’,
thref => “/items/#{i.id}") + ‘)’
end
end
end
end

A little explanation.

When defining the route, we see that controllers are very
tiny pieces in Waves: they simply tie the request parameters
to the appropriate ORM model. Don’t bother because we see
“controller logic” placed in resources/map.rb, after we'll put it in
its own space.

The line:
view(:item).list(:items => items)

tells the controller to render the file List (with appropri-
ate extension) found under templates/item (coming from :item)
passing it a parameter named :items populated with some
values (retrieved by the controller)

Pointing our browser on “http://localhost:3000/items” we
can see:

erp:f flocarh

4= & il 4 P hop) Necalhess 3000 fimems) - q

ToDo manager

finish waves introductory aricle

28.12.2008 todo

Keeping separate concerns: resource delegation

The only resource in our application is Map and that
handles requests for “items” too. Of course we should avoid
that and delegate some route paths to appropriate resource.

Carlo Pecchia

So, let’s generate a resource for items:
resources/item.rb
module TodoManager
module Resources
class Item < Default

‘GET /items’

on(:get, [‘items’']) do
items = controller.all
view.list(:items => items)

end

end
end
end

and keep resources/map.rb smaller:
resources/map.rb
module TodoManager
module Resources
class Map
include Waves::Resources::Mixin

redirect ‘/’' request do ‘/items’
on (:get, [1) { redirect ‘/items’ }

delegate to item resource any path
like ‘/items’
on (true, [“items”]) { to :item }

delegate to item resource any path
like ‘/items/<something here>’

on (true, [“items”, true]) { to :item }
end
end
end

Hitting the refresh button on our browser shows us that
everything works as expected.

Now we can inject the full REST behaviour to our “item”
resource.

Let’s add the handling for GET /items/<id> in resources/item.

rb:
‘GET /items/<id>’
on(:get, [‘items’, :name]) do
item = controller.find(captured.name)
view.show(:item => item)
end

And see how it is rendered in our browser:

Do iber

4|k & IR @ hetp:f flacalhost 3000 ems Sl=

ToDo manager

« linish waves introduciony articla (viaw |

So it’s easy to continue defining all the other “REST meth-
ods” (exercise for the readers!). Don't forget that the PUT and
DELETE methods are not currently supported by the browsers,
so one of the best way is to mimic them with PosT and some
hidden parameters (that is the way it is done in Rails, for
instance).

Basically here we can see how routing works. A path is
defined as an array of “chunks”:

/items/past/1234
[“items”, “past”, {:name => /\d+/}]

/items/some-slug-here/and something else
[“items”, “past”, :name]

Conclusion

As promised before, wed like to shortly show how the DSL
for defining routes work. Well, it’s based on the concept of
“Functor™:

fib = Functor.new do

given(0) { 1}
given(1) { 1}
given(Integer) do |n]|
self.call(n-1) + self.call(n-2)
end
end

So we can easily create a “request functor”, that is a functor
defined on a resource class to match a given request pattern.
So, for example:

class Item

include Waves::Resources::Mixin

on(:get, [‘name’]) { “default item
here” }

end

=

Ruby Web Frameworks: A Dive into Waves by Carlo Pecchia Rails

With that it is easy to define routes based on parameters
matching (an expressive technique used, for example, in lan-
guages like Erlang).

Waves is a work in progress, so we can't rely too much
on it for daily activities (but maybe someone will do...).
Anyways, we found it really interesting, particularly on the
concepts of layers: we can use MVC pattern if needed, but we
are not forced to mold our solution on it.

Moreover, a strong “separation of concerns” can be done
at resource levels clearly assuring, for example, that some
filters are applied for a given set of resources.

Happy coding!

Discuss: http://railsmagazine.com/3/8

Setting a Temporal Mark

Magazine

Resources

Dan Yoder’s talk at RubyConf2008
http://rubyconf2008.confreaks.com/
waves-a-resource-oriented-framework.html
Waves

http://rubywaves.com

Rack

http://rack.rubyforge.org

Merb

http://merbivore.com

Sinatra

http://sinatra.rubyforge.org
Ramaze

http://ramaze.net

Sequel

http://sequel.rubyforge.org
Markaby
http://github.com/why/markaby

31

http://railsmagazine.com/3/8

by Eric Anderson

How to Implement Automated Testing

How to Implement Automated Testing

by Eric Anderson

You will find no shortage of discussion on which tools you
should use to implement your automated test suite. What’s
often lacking is discussion of exactly how and what to test.
The goal of this article is to provide this information.

Determine Your Goals

Testing isn’t a cookie cutter process. Each project has its
own unique goals and those goals will determine what is
important to test and what is not.

Moreover, testing is neither good nor bad. It’s only a tool
to help you reach specific goals. Some people treat automated
testing like a moral decision. They insist that if you don’t
have 100% code coverage or practice TDD then you are a bad
developer. This is an unhelpful view.

Strategies like 100% code coverage may be useful in meet-
ing your goals. But if they aren't helping you meet your goals,
don’t waste valuable time implementing them just because
someone else makes you feel bad for not doing so.

So let us get specific on goals. What considerations should
affect your testing goals?

Eric Anderson does independent contract work

out of Atlanta, GA. He has been developing Rails
applications professionally for several years. You can
find out more about his work at http://pixelwareinc.com.

Desired Reliability Level

Are you writing software for a bank website, a community
website, a personal website, or an internal utility? Depending
on your project you will have different reliability needs.

Let us not kid ourselves. Testing isn’t free. You can argue
that in the long run testing will save time and money (and
I would be inclined to agree with you) but there are a few
things to consider.
* Some projects never make it to deployment. Testing
can increase the cost of failure.
* Some projects have priorities other than 100% reli-
ability.
* Occasionally, long run costs are less important as
short run costs.

On the other hand, your company’s entire business may
depend on your application working correctly. Your com-

pany’s reputation and your user’s privacy may be at stake. So
when you start that next project consider what level of reli-
ability is important to the success of your project.

Current Project Iteration

Even when developing the next flagship product for your
company, you don’t necessarily need 100% code coverage. It's
crucial to consider the current state of development.

For example, is this a exploratory project? A minor or are
you implementing version 8.0 of an established product?

In the early phases of a project you often don’t know what
to build. Often, you'll find that your early ideas about the
project were incomplete, and some major refactoring is in
order. And if you spent a lot of time making the first itera-
tion bulletproof, you're out of luck. Not only are you going to
scrap or refactor large chunks of the application, but you must
also scrap or refactor all of the tests for that code.

When writing your tests, consider how confident you are
that the application you are developing will be the same ap-
plication after an iteration or two?

Personally, if I am doing exploratory programming, most
of my tests are in my models since those are less prone to
change. My controller tests are few, as application flow is quite
likely to change. I do very little testing of the template output
as that is most likely to change. And integration testing is
non-existent at this point. On the other hand if I am develop-
ing iteration five of a well-defined project then my tests are
much more complete.

Development Process

Another consideration in determining your test goals
is the environment, culture and business processes in your
development shop. Are you likely to hand your code off to
someone else to maintain and never see it again? Do other
developers constantly pop in and out of code they are not
familiar with to make changes? Or is the responsibility of a
piece of code more focused around a small number of devel-
opers (maybe just you)?

If many hands are going to be touching the codebase (as
in an open source project) then you may need more tests.
Developers in this environment want to make their change,
run some test and feel reasonably confident they didn’t mess
anything up.

On the other hand if someone (or a small group of people)
is going to take responsibility for the code, then they will
become more familiar with the application. So their tests may

be a bit lighter.
What Do You Test?

When you get down to the actual code how do you know
the best way to test? Since automated testing is so dependent
on your goals, general rules are hard to define. The following
represents a few common situations in which I've found it
useful to implement automated testing.

Breaking Down A Problem

Automated testing can help you break down a problem the
little methods that are easily testable. For example, suppose
that you want to display a list of items in a four column table.
Your template code may look something like:

<table>

<% for group in @objs.in_groups_of (4, false) %>
<tr>
<% for obj in group %>
<td><%= obj %></td>
<% end %>
</tr>
<% end %>

</table>

Let’s say you were developing this code prior to the addi-
tion of Array#in_groups_of method to ActiveSupport (before Rails
1.2). So you need to develop your own implementation of
Array#in_groups_of .

Now if you develop both this template code and the
Array#in_groups_of method at the same time and try to test it
all at once, you are really debugging two things at once. This
will slow you down.

The alternative is to develop Array#in_groups_of first and
write a series of tests for it.

Once you have the Array#in_groups_of working, you can be-
gin writing the actual template code. You don’t have to worry
if the newly-created method is going to cause you problems
while implementing the template code because it’s is done
and tested.

So you should write a test when it will help you break a
problem down into smaller bites. It will be easier to debug
than trying to debug the entire pie.

Dealing with Edge Cases

Another good time to write test code is when you deal
with edge cases such as an off-by-one situation. Even when
you think you wrote the code correctly it is very easy to
miscalculate an edge case. So to be confident, implement a
quick automated test to see if you are catching that edge case
correctly.

by Eric Anderson

How to Implement Automated Testing

Designing an API

Tests are also useful when you’re designing an object
interface. The best way to determine an ideal interface it to
think of it from the calling code’s perspective. If you were
interacting with another object how would you like it to it to
expose itself to you?

Tests are an ideal medium in which to develop these ideas.
You can write code that uses your hypothetical API before
the APT has been developed. By thinking about it from the
calling code’s perspective you often are able to come up with a
cleaner and more useful interface.

Furthermore, once the API is actually implemented you
will already have some of the tests needed to verify it’s cor-
rectness!

Using automated testing as a way of designing software
is what many people called test-driven design/development
(TDD). It can be a very useful practice.

What You Should Be Weary of Testing

We all know that testing is a good thing. But there are
times when testing may actually detract from your project.

3rd Party Code

A big place I often see people over-test is in testing 3rd
party code. A 3rd party library is being used and developers
implement automated testing to ensure that 3rd party library
works as advertised.

For example, I've seen code that will test to make sure
ActiveRecord#save actually saves the record to the database
(they use raw SQL to make this determination).

This is the wrong approach. If you lack confidence in the
3rd party code, don’t add it to your application. And if you
feel that you do need to test certain interactions with a 3™
party library, it’s best to separate it from your own tests.

Now for a less obvious example. Consider the following
code:
class User < ActiveRecord: :Base
has_many :projects
belongs_to :manager, :class_name => ‘User’

end

Do you need any automated testing for the above code?
More than likely you do not. I have seen where over-enthu-
siastic testers will setup fixtures and ensure that the right
projects are returned and the right manager is returned for a
given record. But at that point are you really testing your app?
Or are you testing the has_many DSL provided by Rails?

How to Implement Automated Testing by Eric Anderson

Declarative Code

Another abuse of testing I often see, related to the 3rd
party code issue, is testing declarative code. The previous
code example was very declarative but let me give you a more
subtle example.

class Notifier < ActiveMailer::Base
def refer_a_friend(to, sender, url)
recipients to
from sender
subject ‘A referal from a friend’
body :url => url
end

end

Does the above code need automated testing? Probably
not. However, if we added some logic to our method or email
template, then the code becomes less declarative and more
procedural. As the code does this it starts to become a good
idea to add some automated tests to ensure your procedural
code is behaving correctly.

Markup Testing

Often, developers will over-test an application’s output.
This can make it very high maintenance to update without

providing much benefit in return.
A perfect example of this is the markup in your templates.

Testing for certain key bits of markup in your generated
templates can be useful to automatically determine if your
templates are being generated correctly. But it’s a mistake to
start testing too much markup, as it is very likely to change as
the design of the application evolves.

Your automated testing will never be able to see if the page
“looks” right. So, by over-testing markup, all you're doing is
increasing maintenance costs when someone does want to
make markup changes.

Testing For Error Messages

Another area where developers over-test is error mes-
sages. It's a mistake to test for specific error messages. Error
messages are very likely to get reworded so testing for the
exact text will make your tests fragile.

Instead, try to find a way to test that an error occurred and
maybe what type of error without doing character by charac-
ter comparison of the error messages. Perhaps you can check
a error code or verify the exception thrown was a certain type
of exception.

For example, in a functional test of a controller you
may want to make sure the flash[:warning] was set and not
flash[:notice] when testing to ensure an error is processed
correctly. The actual text of the flash message is less impor-
tant. What is more important is that the correct type of flash
message was set.

Final Words

It's important not to be lured into thinking that because
your tests pass, your application is bug-free. Absence of fail-
ure is not proof of perfection.

Automated testing should be considered a first step. Make
sure to use your application in a real browser and use it often.
Setup your application to report errors to you. Tools like the
exception_notifier plugin are extremely valuable because your
automated testing is only going to test for the things you can
guess might go wrong. But that is really just a small fraction
of what can go wrong.

In conclusion, automated testing is an excellent tool to
speed up development and integration, avoid regression and
gain confidence in your application’s correctness. But don’t
fall in to the trap of blindly implementing thousands of tests
just because someone says you are a bad developer if you
don’t. Often 100% coverage is overkill and it can sometimes
even be a detriment to your application. Instead, always con-
sider your end goals when developing a test suite.

Discuss: http://railsmagazine.com/3/9

http://railsmagazine.com/3/9

ing a new software generation by Arturo Fernandez Rails

aagazine

Ruby on Rails & Flex: Building a new software generation

by Arturo Fernandez

Introduction

A new generation of applications is gaining developers
and users due to their beautiful look and feel and the great
possibilities that they offer. We're talking about RIA (Rich
Internet Applications), a new type of software that combines
the best of web and desktop applications.

There are often times when we could benefit from com-
bining the usability of the desktop with the features of a web
application. Consider a program that organizes your MP3
collection. Obviously, it would need to access the file system.
But wouldn't it also be nice if it could pull certain informa-
tion from the internet, such as the artist’s bio and track notes?
Sounds good, don't you think?

Rich internet applications are more complex than normal
web applications. Because of this, they’re usually developed
with the aid of a framework.

These days, we have many options to choose from, both
open-source and proprietary. For Java developers, Open-
Laszlo and to JavaFX are work a look. If you prefer Microsoft
technologies, there’s Silverlight. But over the past two years,
one framework in particular has grown very quickly: Adobe
Flex.

Flex is an open source RIA framework developed by
Adobe. It allows you to build RIA applications using a n
ActionScript-like programming language and a markup lan-
guage called MXML for the interface. Its was initially released
in 2004 and the last version is 3 which was released in March,
2009.

Flex has two components: an SDK (Software Develop-
ment Kit) and a runtime on which applications are viewed.
The SDK is open source (released under the Mozilla Public
License), while the runtime is the famous Adobe Flash Player
which has a proprietary license.

Because the runtime is flash-based, Flex applications are
cross-platform by default. And they work not only on desk-
tops but also on many mobile devices like phones and PDAs.
Moreover, the Flex SDK allows you to build software using
different operating systems like GNU/Linux, MS Windows
and Mac OS X since the binaries generated are cross-platform
too.

While you can develop Flex applications without buy-
ing anything, Adobe does offer an additional development
tool called Flex Builder. It's a modern visual IDE (Integrated
Development Environment) built on top of Eclipse. Though it
costs money, the Flex Builder is very useful when developing

the user interface for your application.

Why do we need RIA applications?

A classic desktop application usually runs on a PC or Mac
and it doesn't need a network connection. A good example is
a word processor like Apple Pages, Microsoft Word or Ope-
nOffice Writer. On the other hand, a web application runs on
a server, and many clients simultaneously access it using web
browsers.

Both types of application have their own benefits and
drawbacks. Obviously, they are different from a technical
point of view. Desktop applications can leverage various tool-
kits to create rich GUIs. They’re faster. And you don't have
the rendering inconsistencies that you do with browser-based
applications. Web applications, however, are easy to deploy
and work on any platform.

Arturo Fernandez is an entrepreneur, software
engineer, technical writer and free/open software
enthusiast. His professional experience includes
services as software engineer, consultant, sysadmin
and project manager working on technologies like
J2EE, PHP and Rails. He currently lives in Andalucia, |
Spain where he founded BSNUX Software Factory
(http://www.bsnux.com) a company specialized in RIA and
mobile applications. He can be reached at arturo@bsnux.com.

QAN

Technologies like AJAX bring the web a little closer to
desktop-like performance, at a cost of increased complex-
ity. Developers are forced to work in multiple languages:
JavaScript for the front end and another language like Ruby
for the back end. But with Flex, the you can develop an ap-
plication from top to bottom in one language.

Developing a RIA application we can join the best of
desktop and web applications, resulting in a cross-platform
application with a good and flexible look & feel that can ex-
change data with other applications using standard protocols
and technologies through the Internet.

Now let’s take a look at how we can use Adobe Flex and
Rails to develop great software in less time.

Front-End and Back-End

A rich internet application will typically have two major
components: a front-end which is the client and a back-end
which contains the business logic and data.

ing a new software generation by Arturo Fernandez

When you write an application in Adobe Flex, you’ll end
up with an executable that runs on the Adobe Flash Player,
either inside a web browser or on another device.

The back-end is a web application built using any technol-
ogy like J2EE (Java Enterprise Edition), PHP or Rails. We'll
use Rails because it’s our favorite framework and because it is
a good complement for Flex.

The next step is to learn how the front end communicates
with the back end. Let's get to the to code!

How Flex Communicates With Rails

There are two ways to establish communication between
Flex and Rails. The first is AMF (Action Message Format), a
protocol to exchange data through traditional RPC (Remote
Procedure Call). The second is HTTPService, a mechanism
that allows Flex to make a call to the backend using the
HTTP protocol.

AMEF is good for mapping objects on the server with
objects in the client. Using AMF we can map an ActionScript
object with a Ruby object, like a model instance. It’s also pos-
sible to call a controller method directly from ActionScript,
sending an object as a parameter.

Let see how to use AMF and HTTPService with Flex in
practice.

As an example, we'll create an application with CRUD
(Create, Read, Update, Delete) operations over a database
table of products. First, we'll create a front end in Flex, then a
back end in Rails.

First, we need to create a new Flex's project. The easiest
way to do that is to use Flex Builder. Select File > New > Flex
Project. Name the project and the main MXML file rails_
magazine. Be sure to check “Web Application (Runs on Flash
Player)”, as shown in Figure 1. This wizard will create all of
the files needed by the application.

The most important directory for us is src/. This is where
our code files will reside. Using Flex Builder, we can build
our GUI quickly via drag & drop. Widgets are on the left
pane and workspace is the main area. A Datagrid is a great
widget offered by Flex. It’s used to display data loaded from
the database and allow typical operations like sorting and
filtering.

[Tt New Fiex Project

Create a Flex project.

Chaoie 3 naree and locatian Tor your project, and conligurs the Lerver teghnology your (roject will be uting.

Project name: [rails_magazine

Project lowation

¥ use defanit location

Folder: | /Urers faruro) Documents | Flex Buider 3 fraits_magazine Browne
Agglicat-on tyee

1) (@ Webs application (runt in Flash Player)

(D) eshion apalication (s in Adabe AR)
Seever teshnology
Apgiication sner tye: | Omer 1]

7 Una remorte object acoess, service

(o o) (—
Figure 1. Creating a new Flex project
& Flex Builder O 0T M+ m EFion dom ikl Atue - Q
——
O 0-wiq 7 @ vemica . =
“a Fles Wavigator T =0 =0
noo o
Sty T ok e o g s s 8 4 et m
Cormpied fies s e b shne Setec Ounpat Foides
o 4 s) (W8] (e magerne = a
L
Bome & mu
i i et
A e |+ B
[. -
1T e
" , o Foar Cacel) (R E
Figure 2. Selecting public directory
Ao 3 "]
£ O G- %o k8 |G D v =
=
=
£, Problerm | Mogrems | Search 11 | 5 Comole| == e e e =
r; =8iu
A Exa

Figure 3. Building a GUI for our application

The Flex binaries have to be accessible over the web. So

we'll put them in the public directory of the Rails application.
This is easy, we only need to select this directory for Output

ing a new software generation by Arturo Fernandez

Wings to the moon
folder as shown in Figure 2. Once we're finished with the

GUI, we can create the back-end.

First, we'll create a Rails application using the rails com-
mand. Second we will need a model to store the product's
data so we will execute this command:

$ script/generate model Product name:string
description:string price:float

Now we need to configure our database. By default Rails
2 offers a simple configuration for an SQLite database, so we
will use that. The next step is to run the migration:

$ rake db:migrate

Now we need a controller to manage the client's requests:

$ script/generate controller products

Our backend is finished for now. The next step is to con-
figure connection between it and the front-end.

/%%

RubyAMF * Constructor
*/
public function Product()

In this example, we've created two datagrids (Figure 3).
One will use AMF to communicate with the server. The other

will use HTTPService. We'll cover AMF First. {
. }
Fortunately for Rails developers, we have the RubyAMF
rails plugin which will do a lot of the heavy lifting. Installa- ’
tion is easy. Just type the following: }
$ script/plugin install http://rubyamf.googlecode.com/ Notice that the public attributes of this class match those
svn/tags/current/rubyamf in our Rails model. We also declare that RemoteClass is Product

When installation is finished we will be ready to write a - our Rails model class.

little code for our Rails application. In the config folder we can
find a file called rubyamf_config.rb that includes the mapping
between our ActiveRecord class and our ActionScript class.

Now go back to rubyamf_config.rb and add these lines of
code:

ClassMappings.register(

But we don’t have an ActionScript class! Let’s write one. It :actionscript => ‘Product’,
will map to the product model that we just created in rails. In :ruby => ‘Product’,
the Flex project, create a new subfolder of src called valueob-
ject and new ActionScript class called Product. This is the code

:type => ‘active_record’,

:attributes => [“id”,”name”,”description”, “price”,

for the new Product . as file: “created_at”, “updated_at”]
package valueobj)
{

Now that we've mapped the Flex Product class to the Rails
Product class, we can load the data into our grid. You'll need to
set the dataProvider property of the datagrid component:

<mx:DataGrid id="dg” dataProvider="{products}” x="10" y="100"

[RemoteClass(alias="Product”)]

public class Product

{ width="457">
public var id:int; <mx:columns>
public var name:String; <mx:DataGridColumn dataField="id” headerText="ID"/>
public var description:String; <mx:DataGridColumn dataField="name” headerText="Name”/>
public var price:Number; <mx:DataGridColumn dataField="description”
public var createdAt:Date; headerText="Description”/>
public var updatedAt:Date; <mx:DataGridColumn dataField="price” headerText="Price”/>

</mx:columns>

Ruby on Rails & Flex: Building a new software

</mx:DataGrid>

products will be an array of products, so we will need an
ActionScript variable to store data received from database:
[Bindable]

private var products:Array = new Array();

Note that we're using the Bindable modifier to indicate
that this variable is needed by the datagrid. It's very important
to indicate in Flex code that we need AMF to invoke remote
methods so we will write this code:

<mx:RemoteObject id="productService” destination="rubyamf”

endpoint="http://localhost:3000/rubyamf_gateway/”
source="ProductsController”

showBusyCursor="true”
result="resultHandler(event)”

fault="faultHandler(event)” />

RemoteObject is a component offered by Flex to manage
communication with the backend. Properties like result and
fault will invoke a different ActionScript functions. The result
callback indicates what to do when the request is complete.
In this case we store the result of each request in the products
ActionScript array. The fault callback is for error handling.
Add this code to rails_magazine.mxml:

N
generation by Arturo Fernandez

private function resultHandler(event:ResultEvent):void {

products = event.result as Array;}

Remember, products is a bindable array, which is associ-
ated to our datagrid. The connection between components
is automatic. It is important, however, to keep in mind that
communication with the backend is asynchronous.

CRUD operations are accessible through the GUT’s but-
tons. When clicked, each button invokes a corresponding
Rails action. For example, to list all products in the datagrid
we need to call the load_all method of the controller class. To
do this, we can write an ActionScript function and set it as a
callback for the Refresh button:

private function load():void {

var token:AsyncToken = AsyncToken(productService.load_
all());

3

Sending an object with data from Flex to Rails is possible
too. To store data in the database this ActionScript function is
needed:

private function save():void {

var prod:Product = new Product();
prod.id = dg.selectedItem.id;

From Burn to Blue

Ruby on Rails & Flex: Building

prod.name = Name.text;
prod.description = Description.text;
prod.price = parseFloat(Price.text);

var token:AsyncToken = AsyncToken(productService.
update(prod));

3

Back in our Rails controller, we need to add some CRUD
methods. For example:

def load_all
@products = Product.find(:all)
respond_to do |format|
format.amf { render :amf => Product.find(:all) }
format.xml { render :xml => @products.to_xml }
end
end
def update
@product = Product.find(params[@].id)
@product.name = params[@].name
@product.description = params[@].description
@product.price = params[@].price
respond_to do |format|
if @product.save!
format.amf { render :amf => @product }
else

format.amf { render :amf => FaultObject.new(“Error
updating product”) }

end
end

end

We used render :amf to indicate that we're using the AMF
protocol. Before testing our work, let’s see how Flex can com-
municate with Rails using HTTPService.

HTTPService

This method is simpler but less flexible than AME. In
our example we will build a new DataGrid to link it with the
HTTPService component. This is the code:

<mx:DataGrid id="dg@” dataProvider="{productHttpService.
lastResult.products.product}”

x="203” y="262" width="361">
<mx:columns>
<mx:DataGridColumn dataField="id” headerText="ID"/>
<mx:DataGridColumn dataField="name” headerText="Name”/>
</mx:columns>

</mx:DataGrid>

Note that we used a different value for the dataProvider
property. Now we need to declare the productHttpService com-
ponent in Flex:

re generation by Arturo Fernandez Rails

<mx:HTTPService id="productHttpService” url="http://local-
host:3000/products/load_all” />

HTTPService requests consume normal XML. If you
take a look at the load_all controller method above, you'll see
where the XML comes from.

Finally, we’ll add a button which loads makes the HTTPSer-
vice request

<mx:Button label="Load using HTTPService”
click="productHttpService.send();”/>

That's all folks!! We have all the code finished, let's check
it out!

Running

Now we are ready to test our application. Clicking in the
play button of the Flex Builder generates a binary file in SWF
format and a HTML page which invokes this binary directly
in the public directory of our Rails application. Flex Builder
opens a web browser with the URL so we can see our applica-
tion, as seen in Figure 4.

[da] — e flocalhost 3000 rils_magazine homl

#9123 riocamsont 3500 vals_maghrine. b

Figure 4. Running our Flex application

Feel free to click every button to see how the application
transfers data from the front-end to the back-end.

2ails

Ruby on Rails & Flex: Building

re generation by Arturo Fernandez

Figure 5. Showing data of a selected product

‘ano Mozilia Firefox

© Cocommam (8 | 1 Sguiense | Ameior) (O Resalter todo | (] Coincidencia de mainculas minisculas

Figure 6. Loading data using HT TPService

Congratulations!! Your first RIA application with Flex and

Rails is up and running.

Conclusions

Flex is a growing technology and Rails can play a great

role by providing a solid, robust and stable back-end. We've
only scratched the surface of what you can do with Rails and
Flex. Check out our references to learn more. Are you ready?
Let's start coding!

Discuss: hitp://railsmagazine.com/3/10

Resources

Flex site

http://www.adobe.com/products/flex/

Information about ActionScript programming language
http://www.adobe.com/devnet/actionscript/

Main features of Flex Builder
http://www.adobe.com/products/flex/features/flex_builder/
Complete information about MXML
http://learn.adobe.com/wiki/display/Flex/MXML

Blog about Flex and Rails

http://flexonrails.net/

Wikipedia definition of AMF
http://en.wikipedia.org/wiki/Action_Message_Format
RubyAMF site

http://code.google.com/p/rubyamf/

OpenlLaslo site

http://www.openlaszlo.org/

http://railsmagazine.com/3/10

meshU

Rails Magazine
Exclusive Coverage

meshU is a one-day event of focused
workshops on design, development and team
management given by those who have earned
their stripes in the startup game; people who
can talk knowledgeably about everything from
interface design to using Amazon’s S3 distrib-
uted server network.

meshU 2009 speakers included

Chris Wanstrath, Ilya Grigorik,

Carl Mercier and Ryan Singer - to name
just the few that we interviewed.

meshU was held on April 6th, 2009,
at the MaRS Collaboration Centre
in downtown Toronto.

The official site:
http://www.meshu.ca/

Speakers and sessions:
http://www.meshu.ca/speakers-2009/

Pete Forde, Unspace
Is that an iPhone in your pocket,
or are you just happy to see me?
pre-% fl"'o ul|g the
sehtat;:nthis
reth On;
l'nk_un

SPace ¢,

Brydon Gilliss, Brainpark
Building software
the Obama way

Ilya Grigorik, AideRSS
Event-Driven
Architectures

Chris Wanstrath, GitHub
Building a Business
with Open Source

ing a Business with Open Source by Chris Wanstrath at meshU

Building a Business with Open Source

by Chris Wanstrath at meshU

Hi everyone, I'm Chris Wanstrath.

When I think of workshops, I think of 8th grade shop
class. Where you fashion little letters out of wood and get to
play with really big saws for 50 minutes each day. You remem-
ber, right?

My shop class was taught by Mr, let’s say, Allen. Mr. Tim
Allen. (It's a fake name but this is a true story.)

Mr. Allen’s shop had a mini computer lab in it, which
was very cool. Stocked with state of the art IBM PCs run-
ning Netscape Navigator, we could use Lycos, Yahoo, or (my
personal favorite) Metacrawler to find and print out designs
or wood patterns.

The computer lab was in its own room, near the back of
the shop. I never understood why there was a second room,
but looking back I'm pretty sure it had something to do with
the combination of teenagers, electric saws, and expensive
computer equipment. In science class wed call that “potential
energy.

So the computer lab, being in its own room, had a door
and a window or two. The windows had blinds that you could
close to prevent glare.

On days where we were independently working on an

Chris Wanstrath is a co-founder of GitHub
(http://github.com) and an Isaac Asimov fan. He
lives in San Francisco, never has enough time to
work on his own open source projects, and tweets
at http://twitter.com/defunkt

in-progress project, Mr. Allen would enter the computer lab,
shut the door, then close the blinds. Occasionally hed peak
his beady little eyes out to make sure we were all still alive,
then quickly retreat back to his work.

We always joked that he was looking at porn, but in real-
ity he was probably looking at houses, reading the news, or
(hopefully) trying to find a new job.

No. He was looking at porn.
The police got involved and he was fired the next semester.

I didn’t learn much in shop class, but I did learn one thing:
the Internet can be used for good or evil.

(And just to be clear: 'm not saying Mr. Allen’s behavior
was necessarily evil. But at school, around children? Creepy.)

8th grade, as it happens, was also when I discovered open
source. I went to a Linux install-fest at the University of Cin-
cinnati with some of my older friends and put Red Hat Linux
on my family’s Compaq Presario. (Sorry Mom and Dad.)

It didn’t have a window system, only console mode, and
was the first time in my life I felt like a badass. Like a hacker
in the movies. Awesome.

Over the next few years I worked at a Linux based ISP,
worked in a Windows based IT department, wrote ASP, wrote
PHP, loved the GPL, hated the GPL, then eventually ended up
here.

Today I work at GitHub, a company I co-founded last year.
In this workshop I'm going to talk about the ways we've used
the web and open source to stay cheap and help grow our
business from a bootstrapped startup to a profitable company.
And no porn, I promise.

Git is a version control system similar to Subversion or
CVS. It was written for the Linux Kernel and is used by proj-
ects such as Ruby on Rails, Scriptaculous, YUI, Perl, Android,
and the open source code that powers Reddit.

GitHub is a site that lets you publish Git repositories,
either public or private. Tom Preston-Werner and I started
working on it in 2007 while we both had other jobs. He was
at the natural language search startup Powerset while I was
running a consulting business with PJ Hyett.

Both Tom and I were big fans of open source. I had re-
leased dozens of projects and contributed to many, and Tom
was the same way.

We were both so active in open source that it was begin-
ning to take a toll. Neither of us had created any huge proj-
ects, but we had lots of little ones and the time was adding
up. Managing bug trackers, reviewing and merging patches,
discussions on mailing lists, writing documentation, on and
on.

GitHub was our solution: a way to streamline the open
source process. A way to make contributing, accepting, and
publishing code stupid simple. In the same way that Django
or Rails does the tedious stuff so you can focus on your ap-
plication, we wanted GitHub to let you focus on your code.

At least, that’s the official sales pitch version. In reality I
just wanted GitHub to let me focus on my code. I've learned
from experience that ’'m much better at building things for

myself than I am at building things for other people.

Tom had learned from experience that if you're going to
have a side project with the potential to be resource intensive,
it’s gotta pay for itself. His last project, Gravatar, got pretty
damn popular and pretty damn expensive. He ended up
spending a lot of time and money scaling it. Time he could
have used for mountain biking and money he could have
spent on scotch.

Unfortunately, self-sustaining websites are not easy. It’s
literally the million dollar question. How do we make money
with this thing?

Well, how was our competition making money?

Sourceforge, a popular code hosting site, is free for open
source projects but has ads. Lots of ads.

I hate ads.

I used to work at CNET on a handful of sites that were
ad supported. In that model, it’s all about volume. Get as
many eyeballs on your site as possible and hope a fraction of
them click on the ads. Deal with sales people and advertising
agencies. You really need to become popular before making
money.

That works for some, but not for me. And it gets worse.

The people paying your salary aren’t your customers.
They're the advertisers. Your business lives and dies by people
who care about how much and what kind of traffic you drive,
not how good your product is. They care about your demo
(that’s short for demographic) and cpms (I don’t even know
what that’s short for anymore).

For example, each year Vista was delayed, CNET had to
change its budget because there would be no massive Mi-
crosoft advertising campaign. Same story with Sony and the
delayed Playstation 3.

The funny thing is, these companies bossing you around
with their advertising campaigns aren’t making money off
advertising. They’re selling things that people want.

It quickly became clear to me that the Microsofts and
Sonys had much stronger business models than the CNETs
and Sourceforges.

So free is out - this thing needs to pay for itself. And ads
are out — they suck. What's left?

The revolutionary concept of charging people money.

If you want a private project on GitHub, you have to pay.
If you want a public project, go nuts: it’s free.

Don’t ever make people pay to participate in open source.
That’s as bad as looking at porn in shop class.

a Business with Open Source by Chris Wanstrath at meshU

So with the business model in place, we continued work-
ing on the site in our free time. We didn’t want to put a lot of
our own money into it, but we definitely wanted to keep it self
funded. It was a side project, not a startup.

At alocal tech meetup we showed off the site to some
friends who immediately wanted access. Shortly thereafter we
launched the beta and invited them to sign up.

After that beta began we began noticing what we've
dubbed “the YouTube effect” People were blogging about the
cool things they were doing on GitHub - not about GitHub
itself. Wed get huge traffic spikes from people writing blog
posts announcing their project or idea, with a single, casual
link to the project on GitHub. Even better, wed get tiny traffic
spikes in great numbers from less notable projects doing the
same. More and more people were blogging about their cool
project on Github. Showing off.

You didn’t need a beta to use GitHub. Only to make an
account and share. People with accounts could share with
anyone. This was pretty key — everyone could see what was
going on, they just couldn't participate without an invite.

After the YouTube-like blogging came “the Facebook
effect” Once a project was hosted on GitHub it made a lot of
sense to invite the other people involved. The more, the mer-
rier.

Like the YouTube effect, this was not something we had
planned for or anticipated.

Something we did anticipate, however, was our invite sys-
tem. During a consulting gig I was introduced to the concept
of “artificial scarcity” When you control the means of produc-
tion, you can limit production to make a product seem more
valuable.

Just look at the Wii. Or, more appropriately, gold in World
of Warcraft.

So during the beta, our invite system was modeled after
Gmail’s: once you received an invite and signed up, you could
then invite five others. This meant people would be asking for
GitHub invites on Twitter, mailing lists, and message boards.
Thered be entire threads devoted to people asking for GitHub
invites. It wasn’t hard to get an invite, you just had to ask.

We could have given invites to everyone who asked, but
this gave us free publicity and made the invites more desir-
able. Hey, these invites are rare and I got one — why not give
this GitHub thing a try?

Unable to afford any advertising or traditional marketing,
the Gmail-style beta system worked better than we could have
hoped. Combined with the YouTube and Facebook effect, we
were starting to see real traction without spending any money
on ads.

ing a Business with Open Source by Chris Wanstrath at meshU

Looking back, there is another, more traditional term for
what was happening. “Word of mouth”

If you're building a website, you have a huge advantage
over more traditional businesses: all of your potential cus-
tomers have access to the Internet. You don’t need to buy bill-
boards, get written up in newspapers, or buy commercials on
TV in the hopes of getting your name out there. The Internet
provides better, faster, and cheaper means of advertising.

Best of all, it's more trustworthy and authoritative. Friends
recommend quality products to friends. It’s not some baseball
player on a TV ad but a person you trust.

Somehow, this is still a secret. Companies still believe that
what works offline will work online.

The longer they believe that, the better it is for all of us
who know better.

However, we did get curious. We started dabbling with
Google AdWords and advertising on small blogs. We spon-
sored regional conferences. We gave away t-shirts. Who
knows — maybe wed find a hit.

The Adword conversion rates were abysmal. I'm glad that
we gave it a shot, but for our business it just doesn’t work.
We've found people trust their peers and personal experience
to find a hosting provider, not random Google ads.

Same for the blog ads. It’s nice to sponsor someone’s qual-
ity, unpaid time, but when you're a self funded startup the
dollars spent are not effective enough.

As for the regional conferences, spending money to be just
another logo in a pampbhlet or on a poster is not something
we can afford to do. Instead we've started doing more guerilla
style marketing: last weekend I flew to a conference in Chi-
cago and spent the money we would have spent sponsoring it
on hanging out with developers. Saturday night, for instance,
I took a group out for pizza and beers.

I got to drink with GitHub users, talk about version
control with people whod never used the site, and give our
website a human face. We've done this a few times now and
are finding it to be extremely effective.

Who knew: actually meeting your customers is good for
business.

The last promotion technique I mentioned was giving
away t-shirts. Yeah, that's awesome. Do that. Everyone loves
t-shirts.

So we got an idea, figured out a business model, launched
a beta, got users, and made t-shirts. But what about the site
itself?

In our efforts to improve and expand the site, we found

open source software to be an extremely cost effective way to
develop many core pieces of our infrastructure.

GitHub is built on a variant of the highly successful LAMP
stack. It stands for Linux, Apache, MySQL, and PHP (or Perl
(or Python)).

Our own version looks more like Linux, Nginx, MySQL,
Ruby, Git, Bash, Python, C, Monit, God, Xen, HAProxy, and
memcached. But none of those start with a vowel and LAMP
is very pronounceable.

Basically, going with a LAMP-based stack is pretty much
a no brainer unless youre a Java or Microsoft shop, in which
case youre probably not a bootstrapped startup on a budget.

But we were, so we went with it. Running an open source
stack, with a background working with open source libraries,
mean you're constantly looking for code to extract and release
from your own projects.

The first thing we open sourced, very early on, was the Git
interface library called Grit. There was nothing like it avail-
able at the time and it remains a very core piece of our site.

It would have been easy for us to think Grit was some
magical secret sauce, a “competitive advantage,” but we now
know how wrong that would have been. In fact, I'd say one of
the most competitively advantageous things we did was open
source Grit.

A few weeks after its release a man by the name of Scott
Chacon published a competing library. His had some amaz-
ing stuff in it but lacked certain features Grit excelled at. Tom
and I chatted with Scott and eventually convinced him to
merge his code into Grit, creating one library to rule them all.

A few months later we hired Scott. He went on to write
some of the most mind blowing GitHub features.

Good thing we open sourced Grit.

As the site grew and more businesses started using it,
people began requesting integration with various third party
services. They wanted IRC notifications, ticket tracker aware-
ness, stuff like that.

Integration with established sites is a great thing to have.
It’s sexy and lets people use tools theyre familiar with — we
wanted to add as many as we could. Doing so, however,
would be prohibitively time consuming. Wed have to sign up
with the third party service, learn their API, write the integra-
tion, test it to make sure it worked, then address any bugs
or complaints our customers had with it. Over and over and
over again.

So we open sourced that part of the site, too.

People immediately started adding their own pet services

and fixing bugs in existing ones. We've even seen third party
sites write their own service, in order to advertise “GitHub
Integration” as a perk.

Everyone wins.

Needless to say, this idea became very attractive to us:
open sourcing core parts of the site so motivated individuals
can fix, change, or add whatever they see fit.

So we did it again with our gem builder. We host Ruby
packages for development versions of code. The utility that
creates the packages is now open source. We've had various
bug fixes and security patches submitted, which feels good.
Fixes and patches that perhaps would have otherwise been
overlooked had we kept the source closed.

Open sourcing this component also means people can run
the builder on their local machine before submitting a pack-
age to GitHub and have some idea of whether or not they’re
doing things correctly. Cool.

With the final successful project I want to talk about, we
went the opposite direction. Tom created a static site genera-
tor in his free time called Jekyll. When we launched static
site hosting, integrating Jekyll was obvious. Since then we've
had dozens of bug fixes submitted and features contributed
by people who want to use GitHub for their static site but
needed just a little bit more out of Jekyll. Now they have it.

And sure, our site does cater to developers. But open
source has its own community that any business can take
advantage of and contribute back to.

At my last startup, we open sourced a JavaScript plugin
wed developed. I thought that people would see the plugin
and get interested in the startup, maybe sign up for a trial ac-
count. Peek around. Dip their toe in.

Didn’t happen. Should've known.

But! That did not stop people from using and contributing
to the plugin. Even though the users of my site weren't adding
features they wanted, other people were. My customers were
still benefiting from open source - probably without even
knowing the concept existed.

Your site doesn’t need to be developer-centric to benefit
from open source. Just don’t count on it driving signups to
your Nascar based social network. Use open source to im-
prove the quality of your product, not as a marketing tool.

And while we're talking about things open source won't do
for you, I might as well address the big question that always
comes up:

Why isn’t GitHub open source?

After all, WordPress is open source and still makes money

a Business with Open Source by Chris Wanstrath at meshU

hosting blogs. Lots of money. Why not GitHub?

So, T actually love this question because the answer fits so
well with everything I've been talking about. In fact, I already
gave the answer.

The reason GitHub isn't open source is the same reason
we started GitHub: open source takes a lot of time. And as we
all know, time is money. Especially so in a small company.

Managing bug trackers, reviewing and merging patches,
discussions on mailing lists, writing documentation - these
are all things we'd have to do in addition to working on the
site and running the business. So in addition to my current
job, I'd basically need to do a second job.

And my current job already takes up a lot of my time.

With that said, it’s not out of the question for the future. It
would just be too expensive right now.

I believe that by worrying about every dollar spent and
every dollar earned, we're a much stronger company. We
didn’t have an office at first because we couldn’t afford one,
but now that we can we still don’t. We've realized that, for us,
it's an unnecessary expense. We all enjoy working from home
or at cafes.

Company meetings are held at restaurants over dinner
and beers. At the end of the month, its a lot cheaper than rent
would be. And a lot more fun than board rooms and white
boards.

Starting small, on a cheap VPS with no office and no
money, has made me realize the value of thinking through
your decisions. Don’t forgo an office just because we don’t
have one. Think about what’s best for you, your employees,
and your business.

Start simple, incrementally improve, measure twice, and
think about what you're doing.

Just like in shop class.

Thank you.

Resources

Ruby Howdown 2008 Keynote
http://gist.github.com/6443
Startup Riot 2009 Keynote
http://gist.github.com/67060

Discuss: http://railsmagazine.com/3/11

http://railsmagazine.com/3/11

Interview with Carl Mercier interviewed by Rupak Gan

uly on May 5th, 2009

Interview with Carl Mercier

interviewed by Rupak Ganguly on May >, 2009

Rupak: Can you please tell us about your background,
briefly, for the benefit of the readers?

Carl: I'm a self-taught programmer since the age of 7.1
have a degree in Business Management and another one in
Sound Engineering. I discovered Ruby (and Rails) shortly af-
ter the “Whoops” Rails video came out (http://www.youtube.
com/watch?v=Gzj723LkR]Y), so sometime in 2005. Although
I've been programming pretty much forever, I consider myself
more of an entrepreneur than a developer.

Rupak: How and when did you get involved in Ruby/
Rails?

Carl: When I saw the Rails video, I thought its simplicity
was astonishing, so I immediately became very interested in
it. It was definitely a huge shift from C# and Visual Studio,
which I was using at the time. I tried RoR on many small
projects and was constantly frustrated by the lack of an IDE,
debugging tools and cryptic error messages. So basically, I
became frustrated, gave up and came back many times. The
more I read about RoR, the more it started to make sense to
me and I eventually completely stopped doing any Microsoft
development to work with Ruby and Rails exclusively. But
not without hickups... http://blog.carlmercier.com/2007/01/30/
why-i-moved-from-ruby-on-rails-to-pythondjango-and-back/.
Since my return to Rails, life has been great. RoR is a lot ma-
ture now and it’s easy to find help if you're stuck. I wouldn't
want to work with anything else now.

Rupak: What drives you to work with Rails? What had
drawn you towards this platform when you started and still
catches your attention?

Carl: I love simplicity in general, so Rails is a great fit.
You can get so much more done in so much less time with
Rails, especially once you understand what happens “under
the hood” (ie: behind the magic). Rails is really hard to beat
for most applications. In our case (Defensio), we decided to
use Merb for our API and Rails for our website. I think Merb
is perfect for APIs since it has a pluggable architecture and
less “bloated” overall.

Rupak: Would you hazard a prediction on the future of
Rails? One year from now? Five?

Carl: I think enterprise adoption will start growing ex-
ponentially in the very near future. A lot of bigger consulting
firms still believe Rails and Merb are “toys” and not ready for
serious work. These firms are always at least 5 years behind
(and wrong), so they’ll likely catch up pretty soon.

Rupak: With Merb merging into Rails 3, what features
from other platforms or frameworks would you like to be
incorporated into Rails in future?

Carl: I think Merb has a much simpler code base. There’s
less meta-programming and magic going on, which I really
like. That’s probably my main wish for Rails 3. I would hate
losing that. Another neat feature of Merb is the way depen-
dencies are managed with dependencies. rb. I prefer it to Rails’
dependency management and hope it makes the cut.

Rupak: Do you think Rails risks getting bloated with all
this functionality? Or that it will lose its ease of use and magic
as the price to pay for the newly found flexibility?

Carl: I personally think merging Merb and Rails is a big
mistake, but I REALLY hope the team proves me wrong.
The reason I think that is very simple: Merb and Rails attract
different people for different reasons. Merb is lean, flexible,
pluggable, fast and has an extremely easy to read/patch code
base. The learning curve is a little steeper because everything
is so configurable and flexible, but sometimes, that’s what you
want. On the other hand, Rails comes with great defaults and
just works out of the box. No dependency problems or deci-
sions about which ORM to use. I love that about Rails.

When we decided to rewrite our API with Merb, we
wanted speed and flexibility. We felt that Rails had too many
unnecessary bells and whistle for a simple API. For our web-
site, I think it made a lot of sense to use Rails because of all
the goodies that comes with it.

I find that Rails has been losing a lot of its simplicity lately,
and that’s scaring me. Learning Rails used to be extremely
easy, just watch the infamous “Whoops” video in which DHH
creates a simple blog in 5 minutes. Couldn’t be easier than
that.

Nowadays, creating the same simple blog using Rails’ best
practices is much more complex and confusing because it
involves understanding REST principles, nested resources,
migrations, etc. There’s also many new terms floating around
like Metal, Templates, Engines, Rack, etc that makes Rails
more cryptic overall. This probably sounds very straight
forward to most readers, but it is not to less experienced
developers or Rails n00bs. I find that the learning curve has
become steeper overall.

Merb focuses on flexibility, and Rails focuses on simplic-
ity. I fear that the result of the merger will just be a compro-
mise: Rails 3 will become more flexible (but less than Merb)
and a lot more complex.

http://www.youtube.com/watch?v=Gzj723LkRJY)
http://www.youtube.com/watch?v=Gzj723LkRJY)
http://blog.carlmercier.com/2007/01/30/why-i-moved-from-ruby-on-rails-to-pythondjango-and-back/
http://blog.carlmercier.com/2007/01/30/why-i-moved-from-ruby-on-rails-to-pythondjango-and-back/

One thing I learned in my life is that you can’t be every-
thing to everyone, and I feel that Rails is trying to become
exactly that. We'll see... Please prove me wrong!

Rupak: If you could give someone just starting out a tip,
what would that be?

Carl: Do. Don’t just read books, build small applications
and put your newly acquired knowledge to work. Facing real-
life problems and solving them is the best way to learn and
become a better Ruby developer. (I'm talking to you, Remy!
;-)) Ruby.Reddit is a great place to learn new Ruby and Rails
tricks, too.

Rupak: What would be one thing you wish would be there
in Rails today?

Carl: While not directly related to Rails, I wish more
gems were 1.9.1 compatible. The threading and speed of MRI
is a bit pathetic. We sure can’t wait to switch to 1.9.1!

Rupak: How was MeshU for you?

Carl: Had a blast! ’'m particularly happy that my talk
received such a great response. I'm surprised at the amount of
email I'm getting about it. Definitely gives me a boost for my
next talk!

S Cre e noccas -t s

http://peepcode.com

Interview with Carl Mercier interviewed by Rupak Gan

R ——

i{ails

pMagazine
QT

uly on May 5th, 2009

Carl Mercier is a serial technology entrepreneur

and developer from Montreal, Canada. His

latest venture, Defensio, has attracted significant
interest from worldwide blogger and developer
communities and has exhibited superior filtering

performance. Defensio was acquired by Websense Inc.,
a publicly-traded company in January 2009. Carl is now
director of software development at Websense.

Carl also founded Montreal on Rails, a developer community
group that brings together local Ruby on Rails enthusiasts
for monthly gatherings. Prior to founding Defensio, Carl
started Adonis Technologies, a company that built advanced
management software for the tourism & recreation industry.

It was acquired in 2006. Carl holds degrees in business

management and sound engineering. He also pretends to be

able to beat just about anyone at poker.
He blogs at http://blog.carlmercier.com and
tweets at http://twitter.com/cmercier.

Discuss: http://railsmagazine.com/3/12

PeepCode Screencasts are high
quality tutorials that will get your
team up to speed with it source
code contral, help you learn
, introduce
your designers to the
, take you in-depth with

, teach you
and , not to mention
and
deployment,
: ,and
other topics you need to know

about.

Only $149 for a full year, or $9 for
a single screencast.

http://railsmagazine.com/3/12
http://peepcode.com/

Interview with Ilya Grigorik interviewed by Rupak Gan

uly on May 8th, 2009

Interview with Ilya Grigorik

interviewed by Rupak Ganguly on May 8", 2009

Rupak: Can you please tell us about your back-
ground, briefly, for the benefit of the readers?

Ilya: I'm the founder and chief Ruby wrangler at AideRSS,
a startup based in Waterloo, Canada, where we’re building
a collection of services for both the consumers and publish-
ers of RSS content. More specifically, PostRank which is our
core technology is an algorithm we’ve developed to rank any
online content based on the overall ‘audience engagement’ —
how many people have bookmarked a story, dugg it, shared
it on twitter, etc. We gather all the social engagement data in
real-time and make it available in a form of a filter (give me
only the best stories from this feed), or as real-time data feed
for publishers.

Ilya Grigorik is the founder of AideRSS - a
real-time social media engagement monitoring
and analytics platform.

He has been wrangling with Ruby and cloud
computing for over four years, trying to make
sense of it all. In the process, he has contributed to numerous
open source projects, blogged about his discoveries (blog:
www.igvita.com, twitter: @igrigorik) and as of late, has

been an active speaker in the Ruby, Social Media and Cloud
Computing communities.

Previous to AideRSS I was running my own web-hosting
company, doing some freelance work on the side, and running
a couple of hobby sites while I was attending University of
Waterloo. One thing led to another, the idea for AideRSS was
born, we managed to find a financial partner, and here we are!

Rupak: How and when did you get involved in Ruby/
Rails?

Ilya: I got into Rails around mid-2005 while working on a
personal project. Up to that point, I've been working primar-
ily with PHP (after migrating from Perl), but given all the
press around RoR at the time I decided to give it a try. Haven’t
looked back since.

As with many Ruby/RoR developers I joined the com-
munity because of RoR, but stayed because of Ruby. At
the time I was also doing some work in Python, but the
elegance of Ruby really appealed to me and before I knew
it I was converting all of my Perl/PHP code into Ruby just
for the sake of getting hands-on practice with Ruby.

Rupak: What drives you to work with Rails? What
had drawn you towards this platform when you started
and still catches your attention?

Ilya: There are a lot of things that Rails got right, right
out of the gate. Convention over configuration creates a bit
of confusion when you’re getting started, but ultimately it is a
liberating experience — especially when the project grows larger
and you have multiple people working on it. Likewise, database
migrations in ActiveRecord! To this day, most other frame-
works are still playing catch up.

In fact, we can go on for hours: clean MVC model, the fact
that testing is easy and part of the regular workflow, an exten-
sible plugin platform, etc! And perhaps most importantly, the
community around it.

Technology is what gave Rails the initial push, the commu-
nity around it is what made it such a success.

Rupak: Would you hazard a prediction on the future of
Rails? One year from now? Five?

Ilya: Sunny. I'm continuously amazed at the new features
being integrated into every release of Rails. Our community
still attracts much of the thought leadership in testing, deploy-
ment, and library support and perhaps even more importantly,
we are open-minded about better or alternative solutions. The
merge of Merb and Rails is a great example of this.

As a framework, Rails is definitely maturing and it’s exciting
to see all the companies (EngineYard, Heroku, New Relic, etc.)
being created around the tooling, deployment, and manage-
ment of the infrastructure.

Trend for the next year? I think we're going to see a lot more
enterprise deployments of Rails, which in turn opens up an en-
tirely new ecosystem: support, consultants, tooling, and so on.

Rupak: With Merb merging into Rails 3, what features
from other platforms or frameworks would you like to be
incorporated into Rails in future?

Ilya: Django’s debug bar (already underway as a Rack
middleware) and administration panel (available as a merb
plugin) is something I would love to see in the core of Rails
at some point. More broadly, I'm looking forward to having a
more modular framework as a whole.

On one hand I'm a big fan of the principle of convention
on which Rails was founded, on the other, the modularity of
Merb is a must have for many developers. Merging these two
concepts will go a long way towards meeting the needs of a

wider audience and growing out of the MySQL/LAMP stack
assumption.

Rupak: Do you think Rails risks getting bloated with all
this functionality? Or that it will lose its ease of use and magic
as the price to pay for the newly found flexibility?

Ilya: I think the Rails core team has a good philosophy
around this. One of the motivations behind merging Merb
and Rails is to cherry pick the best concepts from each, and
one of the things Merb got right was the concept of a modu-
lar framework. Moving forward, Rails will see more of that,
which means you will be able to pull in libraries or entire
functional components into the framework and customize it
to your needs without ‘bloating the framework’ itself.

Of course, Rails will still come preconfigured with sensible
defaults right out of the gate, and I'm guessing the vast major-
ity will stick with the defaults, but if you really need a differ-
ent database adapter, you’ll be able to make it so!

Rupak: If you could give someone just starting out a tip,
what would that be?

Ilya: Watch the ‘build a blog in 5 minutes video’ and fol-
low it along! Hands-on experience is the best way to learn,
and it will also let you experiment and discover the beauty
of both Rails and Ruby firsthand. Beyond that, a good book
always helps, so visit your local bookstore, and then do a
Google search for a local Ruby / Rails user group or a meetup.
I guarantee it, you'll be pleasantly surprised at how helpful
other Rubyists will be as you begin your foray into the won-
derful world of Ruby!

Rupak: What would be one thing you wish would be there
in Rails today?

Ilya: An easier deployment model and more ubiquitous
Rails support amongst hosting providers. Phusion Passenger
is a great step forward as it eliminates an entire class of infra-
structure (reverse proxies and distinct app servers), but 'm
still hoping for more alternatives moving forward. Heroku
and other hosting providers are building their own ‘one-click
deploy’ models, which is great to see, but I'm also keeping my
fingers crossed for JRuby + Glassfish as an easy alternative - it
would mean one click deploys on any JVM stack.

Rupak: How was MeshU for you?

Ilya: It was a fantastic event, I really enjoyed both Mesh
and MeshU. If youre in Toronto/GTA area and haven't at-
tended, definitely check it out in 2010. What I enjoyed most
was the relatively small size of the event, which meant that
you could easily chat with the speakers about their talks and
go in depth on any given topic. Looking forward to the next
one already!

Rupak Gan

Artist Profile

[lustration for this issue was kindly provided by
David Heinemeier Hansson.

David was born in Copenhagen, Denmark and
moved to Chicago, US a few years ago. Equipped
with a Canon EOS 5D Mark II, David is practicing
photography at home and in his travels.

David is best known as the creator of Ruby on Rails.

Photo gallery: http://www.flickr.com/photos/46457493@N00/
Twitter: http://twitter.com/dhh

Blog: http://www.loudthinking.com/

Wikipedia: http://en.wikipedia.org/wiki/David_Heinemeier_Hansson

Front cover: "Munching strawberry” by David Heinemeier Hansson
Back cover: "Howling in the Park" by Huw Morgan

Discuss: http://railsmagazine.com/3/14

Discuss: http://railsmagazine.com/3/13

http://railsmagazine.com/3/13
http://railsmagazine.com/3/14

uly on May 5th, 2009

Interview with Ryan Singer

interviewed by Rupak Ganguly on May >, 2009

Rupak: Can you please tell us about your background,
briefly, for the benefit of the readers? How and when did you
get involved in Ruby/Rails?

Ryan: I started with web design when I was a teenager
and freelanced until I joined 37signals in 2003. At that time
we were a Ul design consultancy, mainly doing redesigns of
existing websites. Shortly after I came on board we started de-
signing Basecamp and connected with DHH. After Basecamp
launched in 2004 and Rails was extracted, we found ourselves
focused on writing applications instead of consulting for cli-
ents. Parallel to the company’s transition, I also found myself
becoming more interested in software and found my role as
UI designer going beyond “web design” to software design.

Rupak: What drives you to work with Rails? What had
drawn you towards this platform when you started and still
catches your attention?

Ryan: The key thing about Rails is it lets me work at the
right level of abstraction. The amount of implementation I
have to think about is small enough that I feel like I'm touch-
ing the model directly and the views are 90% HTML. Also

Iy

=

\ S

< S =

iersary
7/,,'@ fushing § \

N/

IKVAN
Iy 0%’/\
> /f/ WS %y ¢

] @% Wiy Uing /Wﬂﬂ/

S
/y\

I
2

f 20 UR30 =
SU0ISTUY

Community Pulse
Warm reception for
Passenger for Nginx
Wordle generated from blog
comments on the announcement

74

Ryan Singer is an interface designer

and product manager at 37signals. Ryan
joined 37signals in 2003. Within a year

the company transitioned from a design
consultancy to a software company with the
release of Basecamp. Ryan’s interface designs
have since set a standard for web application usability and
clarity. He lives in Chicago with his wife and french bulldog.

the MVC pattern is a major support for our work at 37signals
as a Ul-focused company. Designing Ul in a stubbed Rails
app is so much better than writing independent mock HTML
screens because I can see how a design behaves with real data
as I build it. Working with partials and helpers also means
that my templates do a lot without sacrificing readability. ’'m
a huge fan of Eric Evans’ Domain-Driven Design, and I feel
like Ruby and Rails are an ideal environment for working
with those patterns.

% Yard
=3

£,%° W
production D
& A KA %
/ g b = "

% lay \%\%‘&

n

@0}%

Ly
e

Rupak: Would you hazard a prediction on the future of
Rails? One year from now? Five?

Ryan: I can only hope that as time goes by people will
appreciate the rare opportunities Rails gives them. Rails
makes it easier for developers and designers to collaborate, so
I hope we see more UI designers getting involved in software
design. I'd like to see more discussion happening about the
relation between modeling and UI, and perhaps more con-
versation about view code conventions. Most of us on the Ul
side are relying on patterns we inherited from the standards/
CSS movement, which are a good basis but they’re also not
enough. I'm doing my best to share the patterns I've found as
the opportunities present themselves.

Rupak: With Merb merging into Rails 3, what features
from other platforms or frameworks would you like to be
incorporated into Rails in future?

Ryan: That’s outside my knowledge probably.

Rupak: Do you think Rails risks getting bloated with all
this functionality? Or that it will lose its ease of use and magic
as the price to pay for the newly found flexibility?

Ryan: That’s outside my knowledge probably.

Rupak: If you could give someone just starting out a tip,
what would that be?

Ryan: I'd advise anyone doing UI for Rails apps to take
responsibility for the view directories. Share the source code,
own those directories, and don't lean on programmers to
implement your designs. From there it’s a small step to find
out where those instance variables are coming from, what a
model is, or how helpers can help you out. UI designers don’t
have to become programmers, but we should know what
MVC is and where we belong in it.

Rupak: What would be one thing you wish would be there
in Rails today?

Ryan: I'm quite happy with it. I may not be technical
enough to answer this question.

Rupak: How was MeshU for you?

Ryan: MeshU was great. Everyone had their lights on
and seemed excited to be there. I met a lot of interesting folks
between sessions and generally found it very inspiring.

Discuss: http://railsmagazine.com/3/15

Olimpiu Metiu
Editor-in-chief

http://railsmagazine.com/authors/1

John Yerhot

Editor
http://railsmagazine.com/authors/2
Khaled al Habache

Editor

http://railsmagazine.com/authors/4

Rupak Ganguly
Editor

http://railsmagazine.com/authors/13

Mark Coates
Editor

http://railsmagazine.com/authors/14

Starr Horne

Editor
http://railsmagazine.com/authors/15
Bob Martens

Editor

http://railsmagazine.com/authors/16

http://railsmagazine.com/authors/1
http://railsmagazine.com/authors/2
http://railsmagazine.com/authors/4
http://railsmagazine.com/authors/13
http://railsmagazine.com/authors/14
http://railsmagazine.com/authors/15
http://railsmagazine.com/authors/16
http://railsmagazine.com/3/15

Call for Papers
Top 10 Reasons to Publish in Rails Magazine

1. Gain recognition - differentiate and establish
yourself as a Rails expert and published author.

2. Showcase your skills. Find new clients. Drive
traffic to your blog or business.

3. Gain karma points for sharing your knowl-
edge with the Ruby on Rails community.

4. Get your message out. Find contributors for “—
your projects. iy

5. Get the Rails Magazine Author badge on your
site.

6. You recognize a good opportunity when you
see it. Joining a magazine's editorial staff is
easier in the early stages of the publication.

7. Reach alarge pool of influencers and Rails-savvy developers
(for recruiting, educating, product promotion etc).

8. See your work beautifully laid out in a professional magazine.

9. You like the idea of a free Rails magazine and would like us
to succeed.

10. Have fun and amaze your friends by living a secret life as a
magazine columnist :-)

Sponsor and Advertise

Connect with your audience and promote your brand.

Rails Magazine advertising serves a higher purpose
beyond just raising revenue. We want to help Ruby on Rails
related businesses succeed by connecting them with custom-
ers.

We also want members of the Rails community to be
informed of relevant services.

Visit Us
http://RailsMagazine.com

Subscribe to get Rails Magazine delivered to your mailbox
o Free
o Immediate delivery
 Environment-friendly

Take our Survey
Shape Rails Magazine

Please take a moment to complete our survey:
http://survey.railsmagazine.com/

The survey is anonymous, takes about 5 minutes to com-
plete and your participation will help the magazine in the
long run and influence its direction.

Call for Artists

Get Noticed

Are you a designer, illustrator or photographer?
Do you have an artist friend or colleague?

il {] Would you like to see your art featured in Rails
— Magazine?

Just send us a note with a link to your pro-
posed portfolio. Between 10 and 20 images will be
needed to illustrate a full issue.

Join Us on Facebook

http://www.facebook.com/pages/Rails-Magazine/23044874683

Follow Rails Magazine on Facebook and gain access to
exclusive content or magazine related news. From exclusive
videos to sneak previews of upcoming articles!

Help spread the word about Rails Magazine!

Contact Us

Get Involved

Contact form: http://railsmagazine.com/contact
Email: editor@railsmagazine.com

Twitter: http://twitter.com/railsmagazine

Spread the word: http://railsmagazine.com/share

http://survey.railsmagazine.com/
http://survey.railsmagazine.com/
http://RailsMagazine.com
http://RailsMagazine.com
http://railsmagazine.com/publish
http://railsmagazine.com/publish
http://railsmagazine.com/contact
http://railsmagazine.com/contact
http://twitter.com/railsmagazine
http://railsmagazine.com/share
http://railsmagazine.com/advertise
http://railsmagazine.com

	Editorial
	by Olimpiu Metiu

	Create a simple code snippet app with Rails
	by Michelangelo Altamore

	Working on a typical Open Source Rails project
	By Dmitry Amelchenko

	Theme Support
	By James Stewart

	Observer and Singleton design patterns in Ruby
	By Khaled al Habache

	JRuby Tip: Monitoring with JMX
	By Joshua Moore

	Workflow solutions using AASM
	By Chee Yeo

	Ruby Web Frameworks: A Dive into Waves
	by Carlo Pecchia

	How to Implement Automated Testing
	by Eric Anderson

	Ruby on Rails & Flex: Building a new software generation
	by Arturo Fernandez

	Building a Business with Open Source
	by Chris Wanstrath at meshU

	Interview with Carl Mercier
	Interview with Ilya Grigorik
	Interview with Ryan Singer

	Button 1:

