United States Patent [

000 5 L

(111 Patent Number: 5,553,271

Hile et al. 451 Date of Patent: Sep. 3, 1996
[54] AUTO-DETECT SYSTEM AND METHOD 5,097,528 3/1992 Gursahaney et al.cecevnrenene 379/67
FOR DATA COMMUNICATION 5222081 6/1993 Lewis et al. coooen.... e 3751117
5,274,679 12/1993 Abe et al. ...cvviiiienivenininininne 3751117
[75] Inventors: John K. Hile, Monroe; Michael R.
Ward, Ann Arbor, both of Mich. OTHER PUBLICATIONS
HyperAccess, Communications Software For Windows,
[73] Assignee: Hilgraeve Incorporated, Monroe, User’s Manual Hilgraeve, Inc. 1993, written and produced
Mich. by Mahler Associates, Inc., Ann Arbor, Michigan.
Primary Examiner—Kevin J. Teska
2 . No.: 4 . , .
(21] Appl. No.: 273,481 Assistant Examiner—Russell W. Frejd
[22] Filed: Jul. 11, 1994 Attorney, Agent, or Firm—Harness, Dickey & Pierce
[51] Int. CL® GO6F 9/455 [57] ABSTRACT
[ggl ;JSldle Search 340/172.5: 33;15/250%0 A method and system which is adapted to receive a data
(58] Field of Searc 370194 2357435 379 /67- 395/500 stream, and test a series of multiple-bit sequences from this
: ? ’ data stream against a plurality of different character forming
(56] References Cited criteria until both of the following events have occurred.
Specifically, a predetermined number of the multiple-bit
U.S. PATENT DOCUMENTS sequences must be received and tested, and a predetermined
mix of multiple-bit sequences satisfying at least two of the
3,863,226 171975 Rybum 340/172.5 cha.racter forming Criteria must be received aIld tested. ()nce
3,891,974 6/1975 Coulter et al. 340/172.5
4077.058 2/1978 A both of these events have occurred, then a data word format
,077, ppell et al. ..ot 364/200 . X . .
4316283 2/1982 Ulug 370/94 is determined from the results of this testing, and the
4,425,664 1/1984 Sherman et al.oeooeorovveveen, 375/8 computer is configured to interpret and output characters
4,604,686 8/1986 Reiter et al. 364/200 from the data stream in accordance with this data word
4,635275 1/1987 BOrg €l al. ..ccovereererncnrsnescsnessens 375/8 format setting. The characters interpreted from the data
4,680,781 7/1987 Amundson et al. ...ooccoerrercrrnenne 375/8 stream are also tested against a plurality of terminal emu-
4,715,044 12/1987 Gartner 375/8 lation criteria until a character sequence has been detected
5,012,489 4/1991 Burton et al.cecovieecrrrroneeresenns 375/8 which is indicative of only one emulation standard.
5,021,949 6/1991 Morten et al. 364/200
5,031,207 7/1991 Hesdahl et al. ...ccoooeeermrencecnne. 379/93
5,034,598 7/1991 Polandcoeeveererneusssinsenns 235/435 11 Claims, 7 Drawing Sheets
16
J/-J
/ B 28
10 40 18
14 J
S
[cooo}—tsz
32

42

U.S. Patent Sep. 3, 1996 Sheet 1 of 7 5,553,271
r38
24 20 26 16
(o550 —

210
f

REMOVE CHAR

RECORD ERROR CAN »

BEGIN RECEIVE
REFILL
200
RECEIVE AS| J

8—N—1

206
_»/READ COMM PORT|S
208
YES

COMM ERRORS
?

216\ l

TERMINAL EMULATION
ANALYZE

218 4
PASS DATA
L\TO EMULATOR

IS 212

AUTO-DETECT ON AND
CARRIER RCVD.
?

YES 214
AUTO-DETECT

ANALYZED

U.S. Patent

21

“ (

Sep. 3, 1996 Sheet 2 of 7 5,553,271

BEGIN
AUTO-DETECT
ANALYZE

-300

IS
AUTO-DETECT ALREADY

RUNNING
?

START AUTO-DETECT
AND INITIALIZE ALL
COUNTERS TO ZERO

J

302

306
(

STOP
AUTO-DETECT

ANY
FRAMING ERRORS

NO

308
[

ADD SAMPLE SIZE

TO ADTOTAL
®-
GET NEXT _;310
CHARACTER
FROM SAMPLE

312

IS

THERE AN ODD

OF BITS IN LEAST SIGN.

7 BITS OF CHAR
?

YES

INCREMENT
NO ADMIX
MEMBER

318

U.S. Patent Sep. 3, 1996 Sheet 3 of 7 5,553,271

314

IS

THERE AN 0ODD
OF BITS USING 8

YES

320
BITS
2 f
INCREMENT
NO nAD701
MEMBER

316

IS
MOST SIGN BIT.
OF THE CHARACTER

Al
?

YES

{322

INCREMENT
NO ADHIGHBITS
MEMBER
324
® CHECKED
ALL CHARS
?
326
HAVE
ENOUGH CHARS NO

BEEN RECEIVED AND ODD/EVEN

MIX SUFFICIENT 328
?

C

SET MOST SIGN.
YES BIT OF ALL
CHARACTERS TO O

Fig—3B

U.S. Patent Sep. 3, 1996

330

IS

nAD701=0
?

YES

f332

SET COMMUNICATION
PARAMETERS TO 7el

nAD701=nADTOTAL
?

NO

Sheet 4 of 7

5,553,271

336
(

SET COMMUNICATION
PARAMETERS TO 7ol

338
X

SET COMMUNICATION
PARAMETERS TO 8nl

340
j

STOP AUTO-DETECT AND CONFIGURE PROGRAM
FOR DETECTED PROTOCAL

Fig-—SC

U.S. Patent Sep. 3, 1996

IS

NO ADMIX > O AND

Sheet 5 of 7

5,553,271

342
e

ADMIX < ADTOTAL
?
344
IS
AD701= YES
ADTOy l 348
?
SET
NO ADBESTGUESS=
AD_701
346
IS
YES
nAD701=0
" v
SET
NO ADBESTGUESS=
AD_7E1
354
252
Y vy
nADBESTGUESS= SET
nADBESTGUESS=
AD_DONT_KNOW o ook
Y
Fig—3D

U.S. Patent Sep. 3, 1996 Sheet 6 of 7 5,553,271

BEGIN .
AUTO-DETEC
356 \ OUTPUT

IS
AUTO-DETECT ALREADY

RUNNING
?

START AUTO-DETECT
AND INITIALIZE ALL
COUNTERS TO ZERO

360

YES {._/

GWITCH DECISION BASED UPON VALUE OF nADBESTGUES§

374
l 362 l 366 l 370 l
CASE —J CASE J CASE J CASE
AD_8N1 AD_7E1 AD_701 AD_DONT_KNOW
/368 f 372 376
Y Y (
CONVERT CONVERT ALTERNATELY
CHARACTERS CHARACTERS TOGGLE
TO 7etl TO 7el PARITY BIT

PASS DATA TO COMM PORT SELECTED

364J

U.S. Patent

Sep. 3, 1996 Sheet 7 of 7

216

\

YES

BEGIN
TERMINAL ANALYZE

400

IS
THE EMULATOR LOCKED
IN?

NO

404

IS
THIS AN ANSI ONLY

YES

5,553,271

SEQUENCE?

NO

410

ANOTHER

UNIQUE EMULATOR YES

SEQUENCE?

NO

412

\

THRESHOLD

LOCK INTO ANSI
?

YES

LOCK IN
EMULATOR TYPE
DETECTED

NO

/

PROCESS COMMAND/CONTROL CODE

406

\

408
Fig—4

5,553,271

1

AUTO-DETECT SYSTEM AND METHOD
FOR DATA COMMUNICATION

BACKGROUND OF THE INVENTION

The present invention generally relates to data commu-
nication, and particularly to a system and method for auto-
matically detecting and responding to the transmission set-
tings used by a data communication transmitter. More
specifically, the present invention is designed to automati-
cally configure both the word format interpreter, as well as
automatically select the type of terminal needed to be
emulated at the data communication receiver.

Anyone who has ever spent much time with a computer
knows that installing just about anything new can be both a
frustrating and time consuming experience. Even when all
of the hardware and software is properly installed, the
addition of a new capability can present yet another chal-
lenge to the user. For example, something as simple as
calling a new telephone number with a computer is not as
easy as it sounds. With normal voice telephone communi-
cation, only a telephone number is needed to initiate a
telephone call, and absolutely nothing is needed to answer
an incoming call. However, this is not the case with com-
puter-to-computer telecommunication or other forms of
serial communication between computers. In order for two
computers to communicate effectively, each of them must be
able to understand the codes that the other is transmitting,
whether these codes represent text, control or screen char-
acters. Even a person’s ability to understand a spoken word,
such as “Hello”, depends upon a knowledge of the English
language. In other words, the mere act of providing a
computer with the telephone number of another computer
will not guarantee that either computer will be able to
understand even a single character of text from the other.
Rather, various disparate communication settings must be
properly configured in order for two computers to commu-
nicate through a modem or other data stream interface.

Unfortunately, the configuration of a computer’s commu-
nication settings is possibly one of the least understood
aspects of using a computer. For example, while most people
have a general understanding that “baund rate” is somehow a
measure of communication speed, relatively few people
fully appreciate what this measurement means or realize that
the effective baud rate can be considerably different than the
rating of the modem itself. Additionally, the user is usually
confronted with determining several interrelated settings for
interpreting a computer “word” which are less than intuitive,
such as parity, the number of data bits and the number of
stop bits. For example, the parity setting could be configured
with one of the following choices: none, even, odd, mark or
space. In contrast, the number of data bits could alternatively
be configured with numbers such as 8, 7, 6, or 5, depending
upon the choice made for the parity setting. Likewise, the
number of stop bits could alteratively be configured with
numbers such as 1, 1.5 or 2, depending upon the choices
already made for the other two settings.

Furthermore, computers generally communicate with
each other as though they were a specific type of standard
“terminal” that would be connected to a particular host
computer, even though only the smallest of micro-computers
are involved in the communication. Generally speaking, a
computer terminal includes at 2 minimum a keyboard for
entering information from the host computer, and a display,
such as a CRT (cathode ray tube), for viewing information
from the host computer. The technique of simulating the

10

15

20

25

30

40

45

50

55

60

65

2

operation of a computer terminal is called terminal emula-
tion, and it is needed in order to convey non-text character
codes between computers. For example, screen codes are
needed in order to propetly display text and graphics, such
as wrapping text onto the next line of the monitor or screen
when the line of text would otherwise extend beyond the
fight edge of the screen. Control codes are also used to
execute a command, such as “break” to interrupt commu-
nication between the computers. There are various types of
terminal standards currently in use, such as ANSI, VT100,
TTY and IBM3278, and each of these terminals have their
own complete set of key code meanings and display
sequences.

Unless all of this information has already been pro-
grammed into a computer, it will be up to the computer user
to intelligently enter this information into his/her computer
for each telephone number or computer system that the user
needs or desires to conduct a communication session. In
light of the fact that there is a multitude of commercial,
vendor support and private bulletin board services available
to a computer user today, the user may have to repeat the
process of configuring the communication settings quite a
number of times without really having a reasonable under-
standing of the underlying process. In other words, one of
the more important aspects of computer operation today, that
is the ability to communicate with other computers, still
remains a repetitive and relatively obscure procedure.

Accordingly, it is a principal objective of the present
invention to provide a method and system for automatically
detecting the data communication settings being used by
another computer, and automatically configuring the data
communication settings to this computer, without necessar-
ily having any advance knowledge of the computer other
than a telephone number or interface address.

It is another objective of the present invention to provide
an auto-detect method and system which is capable of
detecting both the transmission word format and the termi-
nal standard being employed without requiring any user
intervention or pre-arranged communication protocol or
handshaking procedure.

It is a further objective of the present invention to provide
an auto-detect method and system which is independent of
the data being transmitted or the specific modem sets or
interfaces being employed.

It is an additional objective of the present invention to
provide an auto-detect method and system which is capable
of turning itself off, as well as checking for line noise and
reinitialization requests.

SUMMARY OF THE INVENTION

To achieve the foregoing objectives, the present invention
provides a method and system which is adapted to receive a
data stream, and test a series of multiple-bit sequences from
this data stream against a plurality of different character
forming criteria until both of the following events have
occurred. Specifically, a predetermined number of the mul-
tiple-bit sequences must be received and tested, and a
predetermined mix of multiple-bit sequences satisfying at
least two of the character forming criteria must be received
and tested. Once both of these events have occurred, then a
data word format is determined from the results of this
testing, and the computer is configured to interpret charac-
ters from the data stream in accordance with this data word
format setting.

The present invention is also adapted to test the characters
interpreted from the data stream against a plurality of

5,553,271

3

terminal emulation criteria until a character sequence has
been detected which is indicative of only one terminal
emulation standard. In this regard, a multiple-level state
machine is advantageously employed to facilitate a rapid
and reliable determination of the emulation mode that
should be employed for the current communication session.

Additional features and advantages of the present inven-
tion will become more fully apparent from a reading of the
detailed description of the preferred embodiment and the
accompanying drawings in which:

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic representation of the auto-detect
data communication system according to the present inven-
tion.

FIG. 2 is an overall flow chart of the auto-detect com-
munication method according to the present invention.

FIGS. 3A-3E represent a set of flow chart diagrams which
illustrate the Auto-Detect Analyze method depicted in FIG.
2 and an Auto-Detect Output method in connection there-
with.

FIG. 4 is a block diagram which illustrates the Terminal
Analyze method depicted in FIG. 2.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENTS

Referring to FIG. 1, a diagrammatic representation of the
auto-detect data communication system 10 according to the
present invention is shown. In this regard, FIG. 1 illustrates
two types of data communication between a transmitting
computer 12 and a receiving computer 14. While computer
12 is labeled as the transmitting computer and computer 14
is labeled as the receiving computer, it should be understood
that both of these computers will be transmitting and receiv-
ing data during a communication session. Thus, the trans-
mitting label attached to computer 12 is used to signify the
computer which is sending a data stream which the receiving
computer 14 needs to be able to interpret in real time. While
the present invention is described in connection with the use
of a serial data stream, it should be appreciated that the
present invention may be used with other forms of data
streams, such as parallel data streams. The present invention
is further described in connection with an asynchronous
form of data transmission, it should also be understood that
the present invention may be adapted for use with synchro-
nous forms of data transmission.

The first type of data communication illustrated in FIG. 1
is one in which a conventional telephone system is used as
the data transmission carrier or facility. In this case, the
telephone system is represented by one or more public
switching stations, such as switching stations 16 and 18.
Additionally, each of the computers 12-14 will generally
require its own communication interface device for convert-
ing the binary-based signals used by a computer to the type
of signal needed for transmission on a telephone network,
such as an analog-based signal. Accordingly, FIG. 1 shows
the use of a modem (modulator/demodulator) by each of the
computers 12-14 as the communication interface device. In
this regard, the modem 20 provides the interface between the
transmitting computer 12 and the switching station 16, while
the modem 22 provides the interface between the receiving
computer 14 and the switching station 18, However, it
should be appreciated that the present invention is not
dependent upon the type or model of interface, and that other
suitable communication interface devices may be employed,

10

15

20

25

30

35

45

50

55

60

65

4

such as an Integrated Services Digital Network (ISDN)
terminal adapter. Similarly, it should be appreciated that the
present invention is not dependent upon the particular trans-
mission medium being employed for the communication
session. Accordingly, the medium of communication is
generically illustrated in FIG. 1, between the various
devices, such as the communication line 26 between the
modem 20 and the switching station 16. These communi-
cation lines 24-32 may be used to represent any suitable
communication medium, such as copper wire, fiber-optic
cable, radio waves and so forth.

FIG. 1 also shows a second form of data communication,
namely data communication which is more directly between
the transmitting computer 12 and the receiving computer 14.
In this case, the computers 12-14 could be connected
together over a local area network or to each other’s serial
communication ports. To illustrate these types of connec-
tions, FIG. 1 includes a communication line 34 between the
transmitting computer 12 and the receiving computer 14.
However, in a multiple-CPU or multiple-threaded process-
ing environment, it should be understood that the transmit-
ting computer 12 and the receiving computer 14 conld also
be part of the same physical computer entity.

In any event, the transmitting computer 12 and the receiv-
ing computer 14 should include the hardware components
which are typically included in commercially available
computer systems or work stations. For example, the com-
puters 12-14 should both be equipped with a mother board
having a CPU (Central Processing Unit) and sufficient
randomly accessible memory (e.g., RAM or Flash memory)
to run the computer programs needed by the computer, a
storage device (e.g., hard disk drive 36), a monitor or flat
panel display (e.g., monitor 38 and display panel 40), and a
keyboard or other input device (e.g., keyboard 42). Again,
however, it should be understood that the present invention
is not limited to any specific set of computer hardware
components, and that the present invention may be used with
a variety of computer entities which are otherwise capable of
transmitting and receiving data signals between other com-
puter entities. For example, the present invention could be
integrated into the operation of a modem, as opposed to
employing the processing capability of the computers
12-14. In other words, the modems 20-22 could be con-
structed to perform the auto-detect methods according to the
present invention. The modems could then either identify the
proper communication settings for their respective comput-
ers or perform the necessary signal conversions so that the
modems always use a predetermined pattern of communi-
cation settings with their respective computers. On the other
hand, the functionality provided by the modems 20-22
could also be integrated into their respective computers as
well.

Referring to FIG. 2, an overall flow chart of the auto-
detect communication method according to the present
invention is shown. In this regard, it should be pointed out
that this method may form part of a comprehensive high-
performance communication program, such as HyperAC-
CESS® for Windows or HyperACCESS®/5 (for DOS or
IBM OS/2®). Each of these exemplary communication
software products are commercially available from the
Hilgraeve, Inc., Monroe Mich. While the present invention
may be implemented in part through software, it should be
understood that a hardware only implementation may also
be provided in the appropriate application. For example, a
set of interconnected logic gates could be provided to filter
desired information from the data stream being received, and
counters provided to increment or otherwise record the

5,553,271

5

results of the filtering action. An additional set of logic gates
or a set of comparators could then be employed to make the
communication setting determinations after a sufficient
number of signals from the data stream have been tested to
produce a reliable determination, as will be more fully
described below.

FIG. 2 shows that the auto-detect communication method
may advantageously form part of a Receive Refill routine
200, which is in turn part of a larger communication
program. The Receive Refill routine is called when the
buffer used to receive data is empty in order to refill it. This
routine assumes that data is being received and it needs to be
processed. In other words, for example, a communication
session has been initiated between computers 12-14, and the
receiving computer 14 must now interpret the information
being conveyed in the data stream sent by the transmitting
computer 12. This communication session could be initiated
by the receiving computer 14, once the user has entered the
telephone number (or interface address) into the communi-
cation program responsible for handling this communication
session. In order to minimize the interaction of the user with
the initial setup procedure for the communication session,
the communication program could be programmed to use
the baud rate negotiated by the modem 22 and always turn
on the Auto-Detect feature as hereinafter described in detail.

The first step in the Receive Refill routine 200 is to check
if the Auto-Detect feature is currently turned on or otherwise
enabled (diamond 202). If the answer is Yes, then the
communication port of the receiving computer 14 will
employ a predetermined word format, which preferably is a
word format which does not lose any data if it is incorrect
(block 204). In this regard, the currently preferred word
format is “8n1”, which stands for eight bits per character, no
parity, and one stop bit. In other words, the communication
port will be configured to interpret the initial data received
in a way which provides the highest probability of being
correct. In this regard, it should be understood that there is
no parity bit in this word format which could be stripped off
as not being part of the data sequence. In the event that the
answer to diamond 202 is No, then the Receive Refill routine
202 will proceed directly to reading the communication port
(block 206). In this case, the computer 14 will employ the
communication settings which have either been set manually
by the user or set automatically as a result of the present
invention.

Next, the Receive Refill routine will check for the pres-
ence of communication errors (diamond 208). In one form
of the present invention, the Read Comm block 206 is a
function which will return a value based upon whether or not
the rcading procedure was successful. If hardware or soft-
ware problems outside of the scope of this invention prevent
onc or more characters from being read accurately from the
data stream, then the Receive Refill routine will respond by
recording the error and removing the data word character
from further processing (block 210). In one form of the
present invention, the various routines of the auto-detect
communication method could be constructed in the “C”
programming language and compiled for the Microsoft
Windows environment. In such a case, certain functions
available in the Microsoft Windows API may be employed,
such as “ReadComm” for reading a pre-specified number of
characters from a prespecified communication port and
copying these characters into a pre-specified buffer, and
“GetCommError” for specifying the error code returned
from the ReadCorem function. However, it should be appre-
ciated that other suitable functions and operating environ-
ments could be utilized in the appropriate application.

10

25

30

40

45

50

55

60

65

6

Assuming that no communication errors were encoun-
tered, then the Receive Refill routine will check to see if the
Auto-Detect feature is still turned on and the carrier is
connected (diamond 212). If the answer is Yes, then the
Receive Refill routine will call the Auto-Detect Analyze
routine 214 in accordance with the present invention. If the
answer is No, then the Receive Refill routine will proceed to
the Terminal Emulation Analyze routine 216. The Auto-
Detect Analyze routine 214 is designed to detect the type of
data word format being used by the transmitting computer
12 for character coding, and configure the communication
port to this format. Similarly, the Terminal Emulation Ana-
lyze routine 216 is designed to detect the type of terminal
that the transmitting computer 12 is emulating, and to lock
in the receiving computer 14 to this type of terminal emu-
lation. Once both the data word format and terminal emu-
lation settings have been configured, then the data read from
the communication port is passed on to the emulator portion
of the communication program for further processing (block
218). For example, the emilator software will be responsible
for responding to the terminal control codes received from
the transmitting computer 12. While this terminal emulation
responsibility may be as simple as sending properly inter-
preted characters to the display panel 40, there are a variety
of control codes which do not necessarily effect or change
what the user sees on the display panel 40.

In order to have a better appreciation for how the present
invention detects the type of word format being used by the
transmitting computer 12, the three most commonly used
word formats used for asynchronous serial data communi-
cation will be discussed first. These word formats are
referred to herein as “8n1”, “7ol” and “7el”. As discussed
above, “8nl1” stands for eight bits per character, no parity
and one stop bit. Similarly, “701” stands for seven bits per
character, odd parity and one stop bit. Finally, “7el” stands
for seven bits per character, even parity and one stop bit.
From this brief description, it should be apparent that all
three of these word formats have one stop bit as a common
setting. However, it should also be noted that all three of
these formats also employ a total of ten bits per data word.
These three formats are illustrated in Table 1 below using the
example of a simple transmission of the English word
“Hello” to the receiving computer. Accordingly, Table 1
shows the coding used for each of the letters in the word
“Hello”, as well as the coding for the “Enter” key on the
keyboard of the transmitting computer 12. Each of these
codes are based upon the American Standard Code for
Information Interchange (“ASCII”), which is commonly
used to store text. Letters, numbers, and special characters
(3, #, % and so forth) are represented by different sequences
of binary 1’s and 0’s which consist of seven data bits per
character. While the use of seven bits per character permits
atotal of 128 different characters, there is an extended ASCII
character set which is used for graphics and other special
characters. The extended ASCII character set is based upon
eight bits per character, and it enables another 128 different
characters to be represented in code for a total of 256
possible characters. The 8nl word format is based upon the
extended ASCII character set, while the other two word
formats are based upon the seven bits per character ASCII
character set.

In light of the fact that an asynchronous transmission
protocol is used with the 8n1, 701 and 7el word formats, the
word format itself must contain the information necessary to
apprise another computer entity as to where the code begins
and ends. Accordingly, each of these three word formats
include a start bit and a stop bit. By convention, the start bit

5,553,271

7

is always a binary 0 and the stop bit is always a binary 1. In
the 8n1 example, the word format consists of the start bit, the
extended ASCII code and the stop bit, as shown in Table 1.
In contrast, the other two word formats include the provision
of a “parity” bit which is interposed between the stop bit and
the most significant bit of the seven bit per character ASCII
code. The parity bit is added by the transmitting computer 12
as a standard technique enabling transmission errors to be
detected at the receiving computer 14. The added parity bit

5

8

In a serial transmission scheme, the data words are
transmitted sequentially, as illustrated in Table 2. Table 2
illustrates how each of the data words would be transmitted
under each of the word formats described above. In this
regard, it should be pointed out that there are not necessarily
spaces or pauses between data words when they are being
transmitted.

TABLE 2

Enter

Example of Alternate Serial Transmission Parameters

[¢] 1 1 e H

1000011010
1100011010
1000011010

1111011110
1011011110
1011011110

1111011000
1011011000
1011011000

1111011000
1011011000
1011011000

1111001010
1011001010
1011001010

1110010000 7ol
1010010000 7el
1010010000 8nl

makes the sum of binary one bits in the data word either an
odd number (for odd parity) or an even number (for even
parity), without including the start or stop bits.

While the present invention is described in connection
with examples of using word formats having ten bits per data
word, it should be appreciated that the present invention
could be suitably modified to detect communication settings
which employ a greater or lesser number of bits per char-
acter. Similarly, the present invention is not limited to the
use of ASCII coding in order to perform its detection
functions, and other suitable coding techniques could be
used in the appropriate application.

pprop: pp. TABLE

20

From an examination of Table 2, it should be appreciated
that there can be many instances when the data words are
identical even though two different word formats are being
employed. For example, the data words for the English word
“Hello” are the same for both the 7el and 8nl word formats.
Accordingly, if the data words for “Hello” were transmitted,
the receiving computer 14 would have a rather difficult time
discerning which data word format was being used. Simi-
larly, the data word for the “Enter” key is the same for both
the 701 and 8nl word formats. In light of the fact that the

7ol Setting Example

0dd
Parity
Bit

Most
Sign 6th Sth 4th
Bit Bit Bit Bit

3rd
Bit

2nd
Bit

Stop

Character Bit

Least
Sign.
Bit

Start
Bit

1
1
1 1
1
1
1

[R SN
=
O ©
COoOTCOoOO O
e e O
—m e e e O
O—OOoOO0O

——, DO~ O

CODOOO

7el Setting Example

Most
Sign 6th Sth 4th
Bit Bit Bit Bit

Even
Parity
Bit

3rd
Bit

2nd
Bit

Stop

Character Bit

Least
Sign.
Bit

Start
Bit

— OO0 OO C

1
1
1
1
1
1

[Y S -
O rt e
COOCOOO
= b e D
=]
O~ OQOOO0Q

—_—_—_0 0~ O

COOOOC

8nl Setting Example

Most
Sign
Bit

7th 6th 5th 4th
Bit Bit Bit Bit

3rd
Bit

2nd
Bit

Stop

Character Bit

Least
Sign.
Bit

Start
Bit

COoOCcCOoOOO
O -
OO
COO0OOO
[
— = O
OO OO

1
1
1
1 1
1
1

——O O O

SO0 OO

65

communication program in the receiving computer 14 may

5,553,271

9

not have any advance information as to which characters
will be transmitted first from the transmitting computer 12,
the need exists for the auto-detect communication method
according to the present invention in order to reliably detect

10

data word (or character) being processed, as represented by
diamonds 312-316. The first test is to see if there is an odd
number of bits in the least significant seven bits of the
character (diamond 312). If the answer is Yes, then the

the data word format being used as quickly as possible, so 5 ADMix member of the data structure will be incremented by
that the information being transmitted is properly interpreted ~ one (block 318). The second test is to see if there is an odd
at the receiving computer 14. number of bits using all eight bits of the character (diamond
Referring to FIGS. 3A-3D, a set of flow chart diagrams 314). If the answer is Yes, then the AD701 member of the
which illustrate the AutoDetect Analyze method according data structure will be incremented by one (block 320). The
to the present invention is shown. The initial step in this 1o third test is to see if the most significant bit of the character
method is a check to see if the Auto-Detect feature is already ~ is a binary 1 (diamond 316). If the answer is Yes, then the
running (diamond 300). If this is the first time that the ADHighBits member of the data structure will be incre-
Auto-Detect Analyze method 214 has been called for the ~ mented by one (block 322).
current communication session, then the Auto-Detect engine Once these three tests have been conducted, then a check
will be initialized (block 302). This initialization resets a ;5 Wwill be made to see if all of the data words read from the
predetermined data structure to an initial condition. This communication port have been processed (diamond 324).
data structure includes a set of counters (which are initial- =~ Assuming that the answer is No, then the Auto-Detect
ized to zero), and a set of flag values, as follows: Analyze method 214 will return to block 310 in order to
obtain the next data word. The results of these three tests on
o0 the example of using the English word “Hello” followed by
ﬁgg’.“‘l for the total number of data words processed the “Enter” key are shown in Tables 3A—3C for each of the
ix for the number of data words having odd K N .
parity using the least significant seven bits identified word formats. For example, in the case of the 701
AD70l for the number of data words having odd word format, the answer to the first test is No for each letter
. parity using all eight bits of the data word in the English word “Hello”, and Yes for the “Enter” key.
ADHighBits f;); t:hlc;itn;x;?ber of data words having the 25 Accordingly, the value of ADMix is 0 until the “Enter” key
FramingErrors for the number of framing errors encountered is processed, in which case ADMix contains the value of 1.
ADRunning a flag indicative of whether the Auto-Detect In contrast, the answer to the second test is Yes for letter in
method is currently enabled the English word “Hello”, as well as for the “Enter” key.
ADLastChar a flag indicative of whether the same Accordingly, the value of AD701 increments by 1 as each of
character is being transmitted again
ADToggleParity a flag indicative of which way to toggle 3p these data words are processed.
the parity bit
ADReconfigure a flag indicative of there being enough TABLE 3A
data to make a word format determination
ADBestGuess a value indicative of which word format has “7o1” Example
been selected on an interim basis
for output transmissions 35 Enter 3} 1 1 e H
Once the Auto-Detect Analyze method 214 has been initial- é: §:§ 50 - ;,l:s 2 - ;,l:s ;) . ;; é’ N ;eos f) ;:s %IT
ized, a check will be made for the presence of any framing 5-no S5-yes 4-yes 3-yes 2-yes 1l-yes HB
errors (diamond 304). A flaming error in this context rep-
resents a failure to detect the stop bit. Accordingly, the 40
existence of flaming errors may indicate that the wrong baud TABLE 3B
rate has been set or that an unusual communication setting —
has been encountered. In any event, it would not be effective Tel” Bxample
to continue the Auto-Detect Analyze method 214 until the Enter o 1 1 e H
flaming error condition is corrected. Accordingly, the Auto- 45
Detect Analyze method 214 will be stopped (blocked 306). l-yes O-no O0-mo O-mo O-no 0-no mix
While a visual indication of the problem could be sent to the 9-mo 0-no 0-mo 0-no 0-mo O-mo 7ol
. p " 1- yes 0-no 0-no 0-no 0-no 0-no HB
user’s display screen, an effort to automatically correct the
problem and resume the Auto-Detect Analyze method 214
could also be developed. 50
Assuming that there are no framing errors, then the TABLE 3C
sample size will be added to the ADTotal value in the data “gnl1” Example
structure (block 308). This sample size will be the total
number of data words read from the communication port in Enter ° ! ! © H
block 206 of FIG. 2. In this regard, it should be appreciated 55 1.yes 0-mo 0-n0 0-no 0-no O-mo Mix
that if the Auto-Detect Analyze method 214 is still running l-yes 0-mo 0O-no O-no O0-no O-no 7ol
the next time that the Receive Refill routine 200 is called, 0-no 0-mo 0-no O0-no O-mo 0-no HB
then the ADTotal value will represent that total number of
data words from any and all of the previous instances in the The next step in the Auto-Detect Analyze method 214 is
current communication session that the AutoDetect Analyze 60 to determine if enough data words have been received and
method 214 has been run, including the present instance. the mix between even/odd numbers of bits is such that the
The next data word, will then be obtained from the buffer type of data word format being used may be reliably
in memory where the received data words are temporarily detected (diamond 326). In this regard, it should be appre-
being stored (block 310). In the first instance, block 310 will ciated from the discussion of Table 2 that many data words
be used to obtain the first data word which has been read 65 may qualify as legitimate data words under more than one

from the communication port of the receiving computer 14.
A series of three tests will then be performed on the present

format. Accordingly, a sufficient number of data words need
to be processed in order to achieve a high probability of

5,553,271

11

successfully detecting the data word format being used.
However, the mere number of data words processed is in and
of itself not a reliable indicator, because, a string of data
words could conceivably all have the same potential parity.
Accordingly, a mix of even and odd parity candidates is
needed in order to be sure that an accurate determination can
be made without operator interaction. In one form of the
present invention, the number of data words processed is
preferably on the order of 15 to 20, and the mix between
odd/even parity candidates is preferably on the order of 8.
While diamond 326 is shown to follow diamond 324 in FIG.
3B, it should be appreciated that the order could readily be
reversed depending upon the number of data words already
processed. Similarly, the order of the tests described above
could readily be changed, and further tests could be added
in order to handle other possible data word types. In the
event that the answer to diamond 326 is No, then the most
significant bit of all of the data words will be set to zero in
order to turn any graphic characters into text to minimize
potential confusion to the user (block 328).

Once both conditions of diamond 326 have been satisfied,
then the Auto-Detect Analyze method 214 will proceed to
determining the data word format used by the transmitting
computer 12. Using the three data word formats discussed
above as an example, the data word format may be deter-
mined from an analysis of just the AD701 and ADTotal
member values. Specifically, if the value of AD701 is equal
to zero (diamond 330), then this means that the 7el format
is most probably being used, and the communication param-
eters will be set to 7el (block 332). Similarly, if the value of
AD701 is equal to ADTotal (diamond 334), then this means
that the 701 format is most probably being used, and the
communication parameters will be set to 701 (block 334). If
the answer to both of the diamonds 330 and 334 is No, then
this means that neither the 70l or 7el word formats are
being used. Accordingly, for purposes of this example, the
communication parameters will be set to 8n1 (block 338).
However, a check could also be made to see if the ADHigh-
Bits value was equal to ADTotal. In such a case, it is possible
that the data word format could be a less frequently used
format, such as 7mark1, and additional tests may be required
to include less frequently encountered data word formats.
Finally, the Auto-Detect Analyze method 214 will be
stopped, and the communication port will be configured for
the detected data word type (block 340). This particular data
word type will also be stored as part of the configuration for
this computer telephone number or address, so that subse-
quent communication sessions will not need to invoke the
Auto-Detect Analyze method 214.

Referring to FIG. 3D, an additional portion to the Auto-
Detect Analyze method 214 is shown. In this regard, this
additional portion is directed to making an interim “best
guess” determination of the word format until sufficient data
has been received to make a final determination, as shown
in FIG. 3C. The flow chart of FIG. 3D may be inserted into
the flow chart of FIG. 3B between diamonds 324 and 326
when an interim word format decision would be beneficial.
For example, an interim word format decision would be
beneficial if a message needs to be sent from the receiving
computer 14 to the transmitting computer 12 before a final
determination has been made, as will be described in con-
nection with FIG. 3E. The key to being able to make an
interim decision occurs when at least two data words have
been received with different potential parity settings. This is
illustrated by diamond 342 which determines if ADMix is
greater than zero, and less than ADTotal. Under these
conditions, at least one data word has been received with the

10

15

20

25

30

35

40

45

50

55

60

65

12

potential for even parity and at least one data word has been
received with the potential for odd parity.

As soon as there are candidate characters for both even
and odd parity, a tentative word format decision is imme-
diately possible. This decision making process is illustrated
by diamonds 344 and 346. Specifically, diamond 344 checks
to see if the number of data words received with odd parity
potential is equal to the total number of data words received,
then means that the 701 format is most probably being used.
Accordingly, the ADBestGuess value in the data structure
will be set to AD__701, which is an integer value represent-
ing the 701 word format (block 348). Similarly, diamond
346 checks to see if the number of data words received with
odd parity potential is equal to zero, then means that the 7el
format is most probably being used. Accordingly, the
ADBestGuess value 'in the data structure will be set to
AD_ 7E1, which is an integer value representing the 7el
word format (block 350). In the event that the answers to
both diamonds 344-346 are NO, then the ADBestGuess
value in the data structure will be set to AD_8N1, which is
an integer value representing the 8nl word format (block
352). Prior to the time that blocks 348-352 are employed to
set the value for ADBestGuess, the value for ADBestGuess
is set to AD_DONT__KNOW, which is a neutral default
value. This possible value for ADBestGuess is represented
by block 354.

From the above, it should be appreciated that the 7el
word format may be ruled out by any character with an odd
number of binary one bits. Similarly, the 701 word format
may be ruled out by any character with an even number of
binary one bits. In contrast, the 8n1 word format is not ruled
out until a final determination can be made. As soon as the
first data word is received, it is possible to rule out either the
701 or 7el word formats. As long as the data has not proved
to be the 8hi word format, it is ambiguously the 8n1 word
format or one of the 7-bit combinations. However, it is
possible to eliminate both of the 7-bit combinations in as few
as two data words. For example, with a carriage return
character CR and a line feed character LF, it is possible to
determine if either of the 7-bit combinations are being used.
This is because each of these two characters effectively rules
out one of the three choices, leaving only the 8nl word
format. Using the CR-LF example, it may be assumed that
the following two data words are received as hex codes
0x0D and 0x0A. The 0x0D is legal as an 8nl character or
as a 7ol character, but not a 7el character. Similarly, the
0X0A is legal as an 8nl character or as a 7el character, but
not a 701 character.

Turning now to FIG. 3E, a flow chart is shown which
illustrates the Auto-Detect Output method 356 according to
the present invention. This method takes advantage of the
interim determination made in FIG. 3D to send data to the
transmitting computer 12. As in the case of the Auto-Detect
Analzye method 214, the Auto-Detect Output method 356
begins with a check to see if the Auto-Detect method is
already running (diamond 358). Assuming that the answer is
YES, then a decision will be made as to which word format
should be used to send data to the transmitting computer 12
based upon the value of the ADBestGuess value (decision
block 360). As illustrated in FIG. 3E, a switch/case state-
ment combination is preferably employed. However, it
should be understood that other suitable processing tech-
niques also may be employed.

In the case that the ADBestGuess value has been set to
AD__8N1 (block 362), then no action has to taken other than
to pass the data to the communication port, as the data has
already been treated as being in the 8nl word format.

5,553,271

13

However, in the case that ADBestGuess value has been set
to AD_7E1 (block 366), then the data words will be
converted to the 7el format (block 368). Similarly, in the
case that ADBestGuess value has been set to AD_701
(block 370), then the data words will be converted to the 701
format (block 372). In contrast, in the case that
ADBestGuess value is still at its default value AD__DONT_
KNOW (block 374), then the parity bit will be toggled every
other time, as long as the same single character is being sent
to the transmitting computer 12. This is done to give the best
possible chance of responding to the transmitting computer
12 with data that it expects.

Referring to FIG. 4, a flow chart which illustrates the
Terminal Analyze method 216 is shown. This method relies
upon the use of a state machine to determine the type of
terminal mode being used by the transmitting computer 12.
In one form of the present invention, each terminal emulator
is provided with its own state table. A small portion of the
one of the tables employed in the state machine is set forth
below:

/I State 0

{0, 0x01, 0x01, nothing }

{0, TEST(", OxFF, std graphic}

{1, ESC, ESC, nothing}

{0, TEXT("), TEXT(' "), tabn}

{0, TEXT([r]"), TEXT([r]"), carriage return}

// State 1

{2, TEXT([), TEXT([", ANSI_Pn_Clr}

{0, TEXT(D", TEXT(D"), ANSI_IND}

{0, TEXT(E), TEXT(E"), ANSI_NEL}

{0, TEXT(H), TEXT(H"), ANSI_HTS}

{2, TEXT(Y"), TEXT('Y"), emuAutoNothingVT52}
/I VT52 Terminal sequence detected

{3, TEXT(8"), TEXT('8"), emnuAutoSaveCursorVT100}
// VT100 Terminal sequence detected

I/ State 2

{0, TEXT(p), TEXT(p), emuAutoNothingAnsi}

{0, TEXT('s", TEXT('s"), emuAutoSaveCurAnsi}

{0, TEXT(q), TEXT(q), emuAutoNothingVT100}

{5, TEXT(:), TEXT(:), ANSI_PN}

/I State 3

{3, 0x00 OxFF, emuStdChkZmdm}

// State 4

{4, 0x00, OxFF, nothing}

I State 5

{0, TEXT(2), TEXT(2), emuAutoPnAnsi}

{0, TEXT(S5"), TEXT('S", emuAutoPnAnsi}

{0, TEXT(p", TEXT(p), emuAutoNothingVT100}

The first field in this state table indicates the next state in the
table to examine. Accordingly, a “0” in this field means that
the machine should stay in the lowest or O state, while a “3”
in this field means that the machine should proceed to the
third state. The next two fields in the table indicate the range
of characters that may be matched in terms of their character
or ASCII code value. The last field in the table identifies a
function that should be called. For example, the field value
“emuAutoNothingVT52” means that a VT52 terminal con-
trol sequence has been detected, and function being called
will enable the VT52 emulation mode to be locked in and the
control sequence to be executed. In contrast, the field value
“ANSI_IND” means that a sequence has been detected
which is common to both an ANSI terminal and one or more
other types of terminal modes. However, the function being
called will execute the sequence as though it were an ANSI
terminal.

Turning now specifically to FIG. 4, the first step of the
Terminal Emulation Analyze method 216 is a check to see
if the emulator mode has already been locked in (diamond
400). If the answer is Yes, then the method will proceed
immediately to processing the command, text or control

10

15

20

25

30

35

45

50

55

60

65

14

code read from the communication port (block 402). Oth-
erwise, the method will proceed into the state machine
discussed above. In one form of the present invention, the
state table is preferably constructed to check for an ANSI
only sequence first (diamond 404). For example, many
ANSI only sequences begin with the Escape key followed
the left square bracket key, such as “ESC [3; 5 m” for setting
the foreground and background colors of the display. If an
ANSI only sequence is detected by traversing the state table
discussed above, then the method will call the function
which will lock in the emulation mode detected and execute
the control sequence being processed (block 408). Other-
wise, the method will continue traversing the state table in
order to detect other unique emulation mode sequences
(diamond 410). Lastly, if an emulation mode was not
detected, a threshold evaluation will be done to check for the
number of logins or times that the Terminal Emulation
Analyze routine 214 was called (diamond 412). If the
number of detecting attempts exceeds a predetermined
value, then the most widely used terminal mode will be
locked in as a default.

The present invention has been described in an illustrative
manner. In this regard, it is evident that those skilled in the
art once given the benefit of the foregoing disclosure, may
now make modifications to the specific embodiments
described herein without departing from the spirit of the
present invention. Such modifications are to be considered
within the scope of the present invention which is limited
solely by the scope and spirit of the appended claims.

What is claimed is:

1. A method of automatically configuring the communi-
cation settings of a computer to interpret a data stream
without requiring any advance knowledge of the word
format used to transmit said data stream or the information
contained in said data stream, comprising the steps of:

defining a first word format wherein a unit of information
is represented by a plurality of bits, the most significant
bit being a parity bit of a first polarity;

defining a second word format wherein a unit of infor-
mation is represented by a plurality of bits, the most
significant bit being a parity bit of a second polarity;.

defining a third word format wherein a unit of information
is represented by a plurality of bits, the most significant
bit having no parity bit significance;

receiving said data stream by said computer;

testing a series of multiple-bit sequences from said data
stream against said first, second and third defined word
formats until a predetermined number of said multiple-
bit sequences have been received and tested and a
predetermined mix of multiple-bit sequences satisfying
at least two of said defined word formats have been
received and tested;

determining a data word format setting from the results of

said testing step; and

configuring said computer to interpret said data stream in

accordance with said data word format setting.

2. The invention according to claim 1, further including
the step of testing characters interpreted from said data
stream against a plurality of terminal emulation criteria until
a character sequence has been detected which is indicative
of only one terminal emulation standard.

3. A system for automatically configuring the communi-
cation settings of a computer to interpret a data stream
without requiring any advance knowledge of the word
format used to transmit said data stream or the information
contained in said data stream, comprising:

5,553,271

interface means for receiving a data stream;

first processing means for defining a first word format
wherein a unit of information is represented by a
plurality of bits, the most significant bit being a parity
bit of a first polarity, said first processing means also
defining a second word format wherein a unit of
information is represented by a plurality of bits, the
most significant bit being a parity bit of a second
polarity, said first processing means also defining a
third word format wherein a unit of information is
represented by a plurality of bits, the most significant
bit having no parity bit significance;
second processing means for testing a series of multiple-
bit sequences from said data stream against said first,
second and third defined word formats until a prede-
termined number of said multiple-bit sequences have
been received and tested and a predetermined mix of
multiple-bit sequences satisfying at least two of said
defined word formats have been received and tested;

third processing means for determining a data word
format setting from the results of said second process-
ing means; and

storage means for configuring said computer to interpret

said data stream in accordance with said data word
format setting.

4. The invention according to claim 3, further including
fourth processing means for testing characters interpreted
from said data stream against a plurality of terminal emu-
lation criteria until a character sequence has been detected
which is indicative of only one terminal emulation standard.

5. The invention according to claim 4, wherein said fourth
processing means includes a state machine which includes a
plurality of levels for determining when a character
sequence has been detected which is indicative of only one
terminal emulation standard.

6. The invention according to claim 3, wherein said data
stream is a serial data stream, which has been received from
another computer.

7. The invention according to claim 6, wherein said
interface means includes a modem and a buffer for tempo-
rarily holding said data stream until all of said testing has
been completed.

8. A method of automatically configuring the communi-
cation settings of a computer to interpret a data stream
without requiring any advance knowledge of the word
format used to transmit said data stream or the information
contained in said data stream, comprising the steps of:

receiving said data stream by said computer;

defining a first word format wherein a unit of information

is represented by a plurality of bits, the most significant
bit being a parity bit of a first polarity;
defining a second word format wherein a unit of infor-
mation is represented by a plurality of bits, the most
significant bit being a parity bit of a second polarity;

defining a third word format wherein a unit of information
is represented by a plurality of bits, the most significant
bit having no parity bit significance;

testing a series of multiple-bit sequences form said data

stream against at least one of said first, second and third
defined word formats;

determining at least an interim data word format setting
from the results of said testing step after at least two
multiple-bit sequences have been received which have
potential for meeting two of said defined word formats;
and

5

15

25

30

35

40

45

50

60

65

16

causing said computer to transmit data streams in accor-

dance with said interim data word format setting.

9. A method of automatically configuring the communi-
cation settings of a computer to emulate one of a plurality of
computer terminal types without requiring any advance
knowledge of the communication settings used to transmit
data or the information contained in said data, comprising
the steps of:

receiving a data stream by said computer;

interpreting the presence of characters from multiple-bit
sequences in said data stream;

processing combinations of said interpreted characters
through a state machine having a plurality of different
table levels that progress toward the identification of a
unique emulation mode;

causing said computer to execute combinations of said
interpreted characters which satisfy one of a plurality of
emulation modes that satisfy said combinations until a
unique emulation mode has been determined;

determining a unique emulation mode from the results of
said processing step; and
causing said computer to lock in said determined emula-
tion mode.
10. The invention according to claim 1, wherein step of
determining a data word format setting from the results of
said testing step includes:

(a) reading a unit from the data stream and testing a most
significant bit against remaining bits to determine
which of the first and second word formats is not
satisfied by the unit and storing data recording that the
word format was not satisfied by the unit;

(b) repeating step (a) for successive units until conditions
exercising both first and second word formats have
occurred and until a predetermined number of units has
been read and tested;

(c) after conditions exercising both first and second word
formats have occurred and after a predetermined num-
ber of units has been read and tested, determining the
stream to be one of said word formats as follows;

(d) determining the data stream to be of the third word
format if said first and second word formats were
recorded as not satisfied in step (a);

(e) determining the data stream to be of the first word
format if only said second word format was recorded as
not satisfied in step (a);

(f) determining the stream to be of the second word format
if only said first word format was recorded as not
satisfied in step (a).

11. The invention according to claim 3, wherein said third
processing means determines a data word format setting .
from the results of said testing step by:

(a) reading a unit from the data stream and testing a most
significant bit against remaining bits to determine
which of the first and second word formats is not
satisfied by the unit and storing data recording that the
word format was not satisfied by the unit;

(b) repeating step (a) for successive units until conditions
exercising both first and second word formats have
occurred and until a predetermined number of units has
been read and tested;

(c) after conditions exercising both first and second word
formats have occurred and after a predetermined num-
ber of units has been read and tested, determining the
stream to be one of said word formats as follows;

5,553,271

17 18
(d) determining the data stream to be of the third word (f) determining the stream to be of the second word format
format if said first and second word formats were if only said first word format was recorded as not

recorded as not satisfied in step (a);

(e) determining the data stream to be of the first word
format if only said second word format was recorded as 5
not satisficd in step (a);

satisfied in step (a).

