

Macario Polo Usaola, Beatriz Pére
Mateo
Alarcos Research Group

Institute of Technologies and Information Systems

University of Castilla

Paseo de la Universidad, 4

13071-Ciudad Real (Spain)

http://alarcos.esi.uclm.es

Contact person:

1

CTWeb

User’s manual
May 21, 2012

Macario Polo Usaola, Beatriz Pérez Lamancha, Pedro Reales

Alarcos Research Group

Institute of Technologies and Information Systems

University of Castilla-La Mancha

Paseo de la Universidad, 4

Ciudad Real (Spain)

http://alarcos.esi.uclm.es

Contact person: macario.polo@uclm.es

z Lamancha, Pedro Reales

Institute of Technologies and Information Systems

 2

1 Introduction
CTWeb is a web application for generating test cases. It includes two tools:

• A combinatorial tool, that gets test cases by applying several combinatorial

strategies.

• A state machine tool, that generates test cases from textual specifications of

state machines.

Currently, the use of the application is completely open and free, although (for

some functionalities) we plan to include a pay-per-use for companies, leaving it

free for students and researchers.

2 The combinatorial tool
Figure 1 shows the main screen of the combinatorial tool: on the left side it lists the

algorithms implemented by the tool (by clicking on the algorithm’s name, the user

gets an explanation of it); the tester uses the right-hand side to specify the

parameters and values of the system or functionality under test.

Figure 1

2.1 A simple example

Let us suppose we want to test a function that converts temperature measures

whose signature is:

convert(sourceUnit : String, targetUnit : String, magnitude : double) : double

It translates the numeric magnitude passed as third parameter from the source unit

to the target unit, respectively passed as first and second parameters. The

conversion functions from Celsius to Kelvin and Fahrenheit are:

� � � � 273 � �
9

5
� � � 32

Supposing c is an instance of the container class (let it be Converter), some possible

calls to the function under test could be:

 c.convert(“C”, “K”, 0); c.convert(“K”, “C”, 0);

If you remind, the minimum possible temperature is the

corresponds to: 0ºK=-273ºC=

function could be those in

Source units

C

F

K

Another

With CTWeb it is very easy to generate data combinations

1) First of all, as we have three parameters,

a new set of test data values. Then, the tool inserts a new column in the

right:

2) We continue filling

we press the Add row

screen will look as in

3

c.convert(“C”, “K”, 0); c.convert(“K”, “C”, 0); c.convert(“K”, “F”, -

If you remind, the minimum possible temperature is the absolute zero

273ºC=-459.4ºF. Thus, some test data to test this simple

function could be those in Table 1:

Source units Target units Magnitude

Another

C

F

K

Another

0

-273

-273.01

-459.4

-459.41

100
Table 1

With CTWeb it is very easy to generate data combinations to test this function:

as we have three parameters, we press the Add set

set of test data values. Then, the tool inserts a new column in the

Figure 2

We continue filling-in the row with the test data. As we need to add rows,

Add row button in Figure 2 so many times as we need. The

screen will look as in Figure 3.

-200);

absolute zero, which

Thus, some test data to test this simple

to test this function:

Add set button to add

set of test data values. Then, the tool inserts a new column in the

e test data. As we need to add rows,

so many times as we need. The

3) Now, can generate the test data combinations by selecting the desired

algorithm (left side) and pressing the

If we leave selected the

tool produces the following results:

4

Figure 3

Now, can generate the test data combinations by selecting the desired

algorithm (left side) and pressing the Execute button, beneath the left side.

If we leave selected the All combinations algorithm and press

tool produces the following results:

Figure 4

Now, can generate the test data combinations by selecting the desired

button, beneath the left side.

algorithm and press Execute, the

As there are 4, 4 and 6 values in the three sets, the

produces 4·4·6=96 test data combinations. After the

information regarding the computation time and the percentage of pairs of data

valuesvisited by test cases.

One of the problems of All combinations

cost (exponential) and, on the other side, the high number of test cases it produces.

To deal with this, we can use any of the other algorithms provided by CTWeb:

AETG, for example, has a polynomial cost and produces a test suite

but whose size is much more small (

Suppose now that we want to use t

test cases as those we have written as example:

c.convert(“C”, “K”, 0); c.convert(“K”, “C”, 0); c.convert(“K”, “F”,

For this, we can write a template at the text arealabeled

cases. Suppose we want that our test cases have this aspect:

5

As there are 4, 4 and 6 values in the three sets, the All combinations algorithms

produces 4·4·6=96 test data combinations. After the results table, we get some

information regarding the computation time and the percentage of pairs of data

valuesvisited by test cases.

All combinations is, on the one side, its high computational

cost (exponential) and, on the other side, the high number of test cases it produces.

we can use any of the other algorithms provided by CTWeb:

AETG, for example, has a polynomial cost and produces a test suite visiting all pairs,

but whose size is much more small (Figure 5): 25 test cases in this example.

Figure 5

Suppose now that we want to use the test data combinations generated in a set of

test cases as those we have written as example:

c.convert(“C”, “K”, 0); c.convert(“K”, “C”, 0); c.convert(“K”, “F”, -

For this, we can write a template at the text arealabeled Expression to generate test

Suppose we want that our test cases have this aspect:

public void test1() {

Converter c=new Converter();

c.convert(“C”, “K”, 100);

}
Figure 6

algorithms

results table, we get some

information regarding the computation time and the percentage of pairs of data

e, its high computational

cost (exponential) and, on the other side, the high number of test cases it produces.

we can use any of the other algorithms provided by CTWeb:

visiting all pairs,

): 25 test cases in this example.

he test data combinations generated in a set of

-200);

Expression to generate test

To generate test cases like that in

test area, an expression like this one:

Now, when CTWeb generates the test data combinations, will substitute the

TCNUMBER token by the actual index of the combination, and the tokens

and #C by the values of the first, second and third parameters in the current

combination. In other words, the results table will look such as that in

note that, now, the code corresponding to the translation of the combination

values has been added into the third column.

6

To generate test cases like that in Figure 6, we can write, in the afore mentioned

test area, an expression like this one:

Figure 7

Now, when CTWeb generates the test data combinations, will substitute the

token by the actual index of the combination, and the tokens

by the values of the first, second and third parameters in the current

combination. In other words, the results table will look such as that in

note that, now, the code corresponding to the translation of the combination

values has been added into the third column.

Figure 8

, we can write, in the afore mentioned

Now, when CTWeb generates the test data combinations, will substitute the

token by the actual index of the combination, and the tokens #A, #B

by the values of the first, second and third parameters in the current

combination. In other words, the results table will look such as that in Figure 8:

note that, now, the code corresponding to the translation of the combination

 7

See also, in Figure 8, the link highlighted with a red arrow: if you press it, a new

window with all the test cases generated is open: you can copy and paste it to work

with it:

Figure 9

2.2 Uploading the data from a test file

Instead of filling-in by hand the data area, we can upload a variables file that,

moreover, can be enriched with more information to generate the tests. The

following (Figure 10) is a possible text file to test the convert function. Note it has

several sections:

1) In the %Sets section we add a line for each variable or set. After the

variable’s name there is a tab, and also a tab after each variable value.

2) In the %Includes section we add those combinations that we want to

include always in the test suite, writing their values with a comma between

each two values. To exemplify, we have added the test cases C, K, -273.01

and F, K, -459.41.

3) Then, there are several %Oracle sections. Each oracle may have a

description (tab-separated from the %Oracle keyword). In the following

lines we specify (also tab-separated), the values of the variables for which

the oracle expression (which appears in the last line) must be included in

the test case.

a. In the first %Oracle(described as // Celsius or Kelvin under absolute

zero) there appear two values (C and K) for the SOURCE variable and

three values (-273.01 and -459.41) for the MAGNITUDE variable.

This means that this oracle is applicable to all those test cases whose

SOURCE variable is C or K and whose MAGNITUDE is -273.01 and -

459.41: this is, this oracle will be included in all the test cases that try

to convert -273.01ºC, -273.01ºK, -459.41ºC or -459.41ºK. Moreover,

the oracle expression for these test cases is that appearing after a tab

after the oracle keyword: assertTrue(result==Integer.MIN_VALUE);.

The convert function returns -∞ when the conversion is erroneous,

value that is represented as Integer.MIN_VALUE.Note that, in the

oracle line, references to variables values are preceded by a #

symbol.

 8

b. The second %Oracle is slightly different: it involves the three sets

(SOURCE, TARGET and MAGNITUDE) but, moreover, its last line has

the keyword conditionalOracle in its last line. Conditional oracles

have two parameters tab-separated: the first one is a condition

(expressed in Java language, because this is the programming

language in which CTWeb is implemented) that, when it is true, says

the tool that the expression included as second parameter must be

added to the test case. In this example, the condition says that, when

the SOURCE variable is equals to the TARGET (note, moreover, that

the values are restricted to C, F and K), the oracle expression

(assertTrue(result==#MAGNITUDE);) must be added to the test case

(note also that the values of MAGNITUDE are 0, -273, -459.4 and

100).Note here that, in the conditionalOracle line, references to

variables values are also preceded by a # symbol.

4) In the % Test template section, the tester writes the template used to

generate the test cases. Note this section finishes with %%, and note also

the presence of the keyword ORACLE: in test case generation time, the tool

will substitute this token by the corresponding oracle or oracles. A special

detail of this section is the use of the first letters of the alphabet to do

reference to the first, second, third… sets, according to the order they

appear in the %Sets section.

%Sets

SOURCE C F K Another

TARGET C F K Another

MAGNITUDE 0 -273 -273.01 -459.4 -459.41 100

%Includes
C, K, -273.01

F, K, -459.41

%Oracle // Celsius or Kelvin under absolute zero.

SOURCE C K

MAGNITUDE -273.01 -459.41

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Transformation between same units

SOURCE C F K

TARGET C F K

MAGNITUDE 0 -273 -459.4 100

conditionalOracle #SOURCE == #TARGET assertTrue(result==#MAGNITUDE);

%Oracle // Transformations FROM invalid units

SOURCE Another

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Transformations TO invalid units

TARGET Another

oracle assertTrue(result==Integer.MIN_VALUE);

%Test template

public void testTCNUMBER() {

 Converter c = new Converter();

 double result = c.convert("#A", "#B", #C);

 ORACLE

}

%%

Figure 10

 9

Figure 11shows some of the test cases generated with this text file:

1) Test case 1 corresponds to the conditional oracle, since it is a conversion

from 0º Celsius to Celsius.

2) Test case 2 is also a conversion from Celsius to Celsius, but the value of

MAGNITUDE does not match with the values in the MAGNITUDE values of

the conditional oracle. This test case is a conversion from -459.41 Celsius

degrees, which fits with the first %Oracle section and, therefore, its

expressions is added.

3) The test data of test case number 4 doesn't fit with any oracle: the tool adds

a comment line explaining this situation.

4) The test data in test case 20 fit with two oracles: a conversion to invalid

units and a conversion under the absolute zero. Both oracle expressions are

added to the test case, although also this situation is added in a comment

line.

2.3 A less simple example

Suppose now a new version of the

the previous one, but that is now capable of making more types of conversions: it

may translate temperatures (Celsius, Fahrenheit and Kelvin: C, F, K), lengths

(Meters, Yards, Inches, Kilometers and Miles: M, Y, I, KM,

(Kilograms, Pounds and Ounces: K, P, O).

For testing this new version of the function, we should take into account the

appropriate equations for conversions, as well as the invalid values for the

function’s parameters. Considering that on

types of units (from temperatures to lengths, for example), the different values of

the absolute zero we have seen and that there are no negative lengths or weights,

10

Figure 11

A less simple example

Suppose now a new version of the convert function with the same signature than

the previous one, but that is now capable of making more types of conversions: it

may translate temperatures (Celsius, Fahrenheit and Kelvin: C, F, K), lengths

(Meters, Yards, Inches, Kilometers and Miles: M, Y, I, KM, ML) and weights

(Kilograms, Pounds and Ounces: K, P, O).

For testing this new version of the function, we should take into account the

appropriate equations for conversions, as well as the invalid values for the

function’s parameters. Considering that one cannot convert between different

types of units (from temperatures to lengths, for example), the different values of

the absolute zero we have seen and that there are no negative lengths or weights,

function with the same signature than

the previous one, but that is now capable of making more types of conversions: it

may translate temperatures (Celsius, Fahrenheit and Kelvin: C, F, K), lengths

ML) and weights

For testing this new version of the function, we should take into account the

appropriate equations for conversions, as well as the invalid values for the

e cannot convert between different

types of units (from temperatures to lengths, for example), the different values of

the absolute zero we have seen and that there are no negative lengths or weights,

 11

the following table shows a set of possible equivalence classes for these

parameters:

 Temperature Length Weight

Equivalence

classes

From ºC:

 (-∞, -273)

 [-273ºC, +∞)

From ºF:

 (-∞, -459.4)

 [-459.4, +∞)

From ºK:
 (-∞, 0)

 [0, +∞,)

(-∞, 0)

[0, +∞)

(-∞, 0)

[0, +∞)

Table 2

From the equivalence classes of Table 2, the tester must propose a set of test data,

which could be those in Table 3.

Temperature Length and weight

Value Type of expected result Value Type of expected result

From ºC:

 -300

 -273.01

 -273

Error (value out of range)

Error (value out of range)

Error (value out of range)

-10

-0.1

Error (value out of range)

Error (value out of range)

From ºF:

 -459.41

 -459.4

Error (value out of range)

Error (value out of range)

0

10

Valid conversion

Valid conversion

From ºK:

 -0.01

Error (value out of range)

From ºC, ºF, ºK:

 0

 100

Valid conversion

Valid conversion

Table 3

Figure 12shows a text file for this new version of convert. Besides having more

values in the variables definition and much more oracles, it also has two new

sections:

1) We can write several %Excludes sections. Each one starts with the names

of a pair of sets and, then, some lines with pairs of values of these sets that

the tester does not desire to include in the test cases. In this example, we

are saying CTWeb that we don't want test cases with conversions from

Celsius to Kilograms, Pounds or Ounces.

 12

%Sets

MAGNITUDE -300 -273.01 -273 -459.41 -459.4 -0.01 0 100

SOURCE C F K M Y I KM ML KG

 P O

TARGET C F K M Y I KM ML KG

 P O

%Includes

-273, C, K

-459.4, F, K

0, K, C

0, K, F

%Excludes

SOURCE, TARGET

C, KG

C, P

C, O

%Weights
SOURCE, TARGET

C, F, 1

F, C, 1

KM, ML, 1

ML, KM, 1

KG, P, 1

P, KG, 1

%Oracle // Celsius or Kelvin under absolute zero or negative length or weight.

MAGNITUDE -300 -273.01 -459.41 -459.4

SOURCE ANY

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Transformation between same units

MAGNITUDE 0 100

SOURCE ANY

TARGET ANY

conditionalOracle #SOURCE == #TARGET assertTrue(result==#MAGNITUDE);

%Oracle // Celsius, Kelvin or Fahrenheit under absolute zero or negative length or weight. The value is a F

temperature just below 0ºK

MAGNITUDE -459.41

SOURCE ANY

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // A Kelvin temperature just under 0

MAGNITUDE -0.01

SOURCE K

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Conversions from temperatures to other units

SOURCE C F K

TARGET M Y I KM ML KG P O

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Conversions from lengths to other units

SOURCE M Y I KM ML

TARGET C F K KG P O

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // Conversions from weights to other units

SOURCE KG P O

TARGET C F K M Y I KM ML

oracle assertTrue(result==Integer.MIN_VALUE);

%Oracle // C to K

MAGNITUDE 0 100 -273

SOURCE C

TARGET K

oracle assertTrue(result==#MAGNITUDE+273);

%Oracle // From Celsius to Celsius

MAGNITUDE 0 100 -273

SOURCE C

TARGET C

oracle assertTrue(result==#MAGNITUDE);

%Oracle // Transformations from Km to Miles

MAGNITUDE 0 100

SOURCE KM

TARGET ML

oracle assertTrue(result==#MAGNITUDE/1609);

%Oracle // Transformations from Miles to Km

MAGNITUDE 0 100

SOURCE ML

TARGET KM

oracle assertTrue(result==#MAGNITUDE*1609);

%Oracle // Negative length or weights

MAGNITUDE -300 -273.01 -273 -459.41 -459.4 -0.01

SOURCE M Y I KM ML KG P O

oracle assertTrue(result==Integer.MIN_VALUE);

%Test template

public void testTCNUMBER() {

 Converter c = new Converter();

 double result = c.convert("#B", "#C", #A);

 ORACLE

}

%%

Figure 12

2) The %Weights section is

values. As you know, pairwise algorithms (such as AETG) generate test

cases until all the pairs of values between any two parameters have been

included in at least one test case. By assigning weights to pairs,

expresses that, if two different pairs have the same chance of being included

in a test case, CTWeb should include that with a higher weight. By default,

all pairs have 0 as weight.

Actually, the %Excludes and the

algorithm (Pairwise with Restrictions, Order and Weight)

in the next section.

Note that several oracles use the reserved word

value of the referenced variable.

that a conversion of -300,

of the source unit, the result should be

2.4 Execution with PROW

If we upload the text file in

in the first time, the pairs tables corresponding to the three parameters: th

shows the pairs table for (MAGNITUDE, SOURCE), (MAGNITUDE, TARGET)

(SOURCE, TARGET). Since, in the

(SOURCE, TARGET), the pairs

test case, these three pairs appear checked (

weights assigned to those pairs appearing in the

13

section is used to assign an importance to certain pairs of

values. As you know, pairwise algorithms (such as AETG) generate test

cases until all the pairs of values between any two parameters have been

at least one test case. By assigning weights to pairs,

expresses that, if two different pairs have the same chance of being included

in a test case, CTWeb should include that with a higher weight. By default,

all pairs have 0 as weight.

and the %Weights sections are used only by

algorithm (Pairwise with Restrictions, Order and Weight), which will be described

Note that several oracles use the reserved word ANY, what makes reference to any

value of the referenced variable. The first oracle, for example, says that, always

, -273.01, -459.41 or -459.4 is to be made, independently

of the source unit, the result should be -∞.

PROW

If we upload the text file in Figure 12 to CTWeb and press Execute, the tool shows,

in the first time, the pairs tables corresponding to the three parameters: th

(MAGNITUDE, SOURCE), (MAGNITUDE, TARGET)

Since, in the %Excludes section, we have said that, for

the pairs (C, KG), (C, P) and (C, O) must not be included in any

hree pairs appear checked (Figure 13). The figure also shows the

weights assigned to those pairs appearing in the %Weights section of the text file.

Figure 13

used to assign an importance to certain pairs of

values. As you know, pairwise algorithms (such as AETG) generate test

cases until all the pairs of values between any two parameters have been

at least one test case. By assigning weights to pairs, the tester

expresses that, if two different pairs have the same chance of being included

in a test case, CTWeb should include that with a higher weight. By default,

sections are used only by the PROW

, which will be described

, what makes reference to any

The first oracle, for example, says that, always

is to be made, independently

the tool shows,

in the first time, the pairs tables corresponding to the three parameters: this is, it

(MAGNITUDE, SOURCE), (MAGNITUDE, TARGET) and

section, we have said that, for

must not be included in any

). The figure also shows the

section of the text file.

 14

If we agree with this execution configuration, we can press again Execute and the

tool gives us the set of test cases: all the desired pairs (i.e., those which have not

been excluded) are visited at least once; if it has been possible, those pairs with

more weight will have been included more often than those with less; furthermore,

the test suite is ordered according to the sum of the weights of the pairs included

in the test case.

2.5 A grammar of the variables file

A brief grammar for variables files is the following:

file = sets [includes]? [excludes]* [weights]* [oracle]* [testTemplate]?

sets = %Sets \n [variableDefinition \n]+

variableDefinition = variableName \t value [\t value]*

includes = %Includes \n [combination]+

combination = value , value , value … \n

excludes = %Excludes \n variableName , variableName \n [pair \n]+

pair = value , value

weights = %Weights \n variableName , variableName \n [pair , number\n]+

oracle = %Oracle [freeText]? \n [variableValues \n]+ oracleLine \n

variableValues = variableName \t [value [\t value]*] | ANY \n

oracleLine = simpleOracle | conditionOracle | otherwiseOracle

simpleOracle = oracle \t freeText

conditionalOracle = conditionalOracle \t condition \t freeText

otherwiseOracle = otherwise \t freeText

testTemplate = %Test template \n freeText \n %%

Note that:

1) \t and \n respectively denote a tab and a carriage return.

2) The freeText in the %Oracle section can contain variable names, with the #

prefix.

3) The freeText in the %Test template section may also contain references to

the variables, but in this case using #A, #B, #C, #D, etc. to do reference to

the first, second, third, fourth, etc. variable.

4) There may exist an otherwhise oracle, which is an expression that is added

to all test cases whose test data do not fit to any other oracle. See an

example in the next section.

2.6 Use of numeric variables in conditional oracles

A famous problem in software testing is the determination of the type of a triangle

according to three values that represent the lengths of its three sides. These values

may correspond to an equilateral, isosceles or scalene triangle or, maybe, not to a

triangle (negative sides, sum of two sides greater or equals to the third one).

As a last text file example, the following one can be used to exercise the problem of

determining the type of a triangle: in this example, we have boldfaced the last

oracle (an otherwise oracle), which corresponds to triangles of the scalene type.

This oracle will be added to all those test cases whose values do not match with

any of the other oracles.

 15

%Sets

N_I -1 0 1 2 3 4 5 6

N_J -1 0 1 2 3 4 5 6

N_K -1 0 1 2 3 4 5 6

%Oracle // EQUILATERAL

N_I 1 2 3 4 5 6

N_J 1 2 3 4 5 6

N_K 1 2 3 4 5 6

conditionalOracle #N_I==#N_J && #N_J==#N_K assertTrue(result==Triangle.EQUILATERAL);

%Oracle // A line or negative sides(s)

N_I ANY

N_J ANY

N_K ANY

conditionalOracle #N_I+#N_J==#N_K || #N_I+#N_K==#N_J || #N_J+#N_K==#N_I || #N_I<=0 || #N_J<=0 ||

#N_K<=0 assertTrue(result==Triangle.NO_TRIANGLE);

%Oracle // Isosceles

N_I 1 2 3 4 5 6

N_J 1 2 3 4 5 6

N_K 1 2 3 4 5 6

conditionalOracle (#N_I==#N_J && #N_I!=#N_K) || (#N_I==#N_K && #N_I!=#N_J) || (#N_J==#N_K &&

#N_J!=#N_I) assertTrue(result==Triangle.ISOSCELES);

%Oracle // Sides do not fit

N_I 1 2 3 4 5 6

N_J 1 2 3 4 5 6

N_K 1 2 3 4 5 6

conditionalOracle (#N_I>#N_J+#N_K) || (#N_J>#N_I+#N_K) || (#N_K>#N_I+N_J)

 assertTrue(result==Triangle.NO_TRIANGLE);

%Oracle // Default oracle

otherwise assertTrue(result==Triangle.SCALENE);

%Test template

public void testTCNUMBER() {

 Triangle t=new Triangle();

 t.setI(#A);

 t.setJ(#B);

 t.setK(#C);

 t.calculateType();

 int result=t.getType();

 ORACLE

}

%%

Figure 14

As our tool is implemented in Java, the conditional expressions of the conditional

oracles are processed and evaluated as Java expressions. In order to give a suitable

processing to conditions that involve numeric variables, remember to include the

prefix N_ to those numeric variables which will appear in some condition. Due to

this, in the example of the previous figure we called N_I, N_Jand N_K to the three

variables used.

In general, it is a good idea to name all numeric variables with the prefixN_. In the

text filesof the convert function used in the previous pages, a good name for the

MAGNITUDE variable had been N_MAGNITUDE, even though it does not appear in

any condition of any conditionalOracle.

 16

3 The state machine tool
State machines have been widely used as models to generate test cases, and there

exist several coverage criteria to assess the quality of the test suite T:

1) State coverage. A test suite T satisfies state coverage if each state is covered

by one or more test sequences in T.

2) Transition. A test suite T satisfies this criterion if each transition is

traversed by one or more test sequences in T.

3) Full predicate. For each predicate P on each transition and each test clause

ci in P, T must include tests that cause each clause ci in P to determine the

value of P, where ci has both the values true and false. A predicate is a

boolean expression whose value may determine the triggering of a

transition.

4) Transition pair. For each pair of adjacent transitions (Si, Sj) and (Sj, Sk), T

must contain a test that traverses each transition of the pair in sequence.

Consider for example the state machine in Figure 15, that models the behavior of a

supposed banking account.

Figure 15

In order to get, for example, states coverage, a possible test case could be:

create·deposit(100)·withdraw(200)

Obviously, states coverage leaves (or may leave) many uncovered transitions, and

that's the reason of using stricter coverage criteria.

3.1 Description of state machines with text files

CTWeb may process state machines described as simple text files. The following

figure shows a text representation of the state machine in Figure 15:

 17

% This is a small example of a state machine description file

Initial node

Created

% Transitions have: source state TAB symbol of the alphabet and target state TAB all of them comma-

separated (TAB is a tabulator)

Transitions

Created deposit Positive

Positive deposit Positive

Positive withdrawAndBalanceGreaterThanZero Positive

Positive withdrawAndBalanceLessOrEqualThanZero Negative

Negative depositAndBalanceGreaterThanZero Positive

Negative depositAndBalanceLessOrEqualThanZero Negative

Positive transferAndBalanceGreaterThanZero Positive

Positive transferAndBalanceLessOrEqualThanZero Negative

% Symbols can be mapped to method calls of the system using: symbol TAB method.

Symbol aliases

deposit deposit(amount);

withdrawAndBalanceGreaterThanZero withdraw(amount);

withdrawAndBalanceLessOrEqualThanZero withdraw(amount);

depositAndBalanceGreaterThanZero deposit(amount);

depositAndBalanceLessOrEqualThanZero deposit(amount);

transferAndBalanceGreaterThanZero transfer(amount, targetAccount);

transferAndBalanceLessOrEqualThanZero transfer(amount, targetAccount);

% States can also be used to the further creation of action oracles.

% The syntax is State TAB expression and the label is State aliases. For example:

State aliases

Created // Check the account has a balance =0 and has no movements

Positive // Check the account has a balance >=0

Negative // Check the account has a balance <0

Figure 16

As you see, there are four sections in the file, each highlighted in the figure with

boldfaced labels:

1) Initial node points to the initial node of the state machine. In the example,

this one is stated called Created.

2) With Transitions we represent the transitions in the state machine:

a. The first transition goes from the Zero to the Positive state by means

of the a call to the deposit operation.

b. The second one corresponds to a deposit call from Positive to Positive.

c. Then, the withdraw operation can be called from Positive and may go

to two different states: to Positive (if the balance remains >=0) or to

Negative (if the balance remains <0). In this case we represent these

two possibilities with two different transitions:

i. withdrawAndBalanceGreaterThanZero, that goes from Positive

to Positive.

ii. withdrawAndBalanceLessOrEqualThanZero, that from

Positive to Negative.

d. The next two transitions correspond to calls to deposit from the

Negative state, that may put the machine in Positive or Negative.

e. Finally, the two calls to transfer from Positive are represented in the

last two lines of this section.

3) In the Symbol aliases section, the tester assigns messages or triggers to the

transitions enumerated in the Transitions section. For example, it is said

 18

that deposit (used in the transitons Zero deposit Positive) actually

corresponds to a call to deposit(amount); that

withdrawAndBalanceGreaterThanZero and

withdrawAndBalanceLessOrEqualThanZeroare really calls to

withdraw(amount), etc. The tester may assign here actual parameters or, as

in this example, just leave the parameter names and assign values later…

although, actually, she/he may assign any test.

4) As each state represents an invariant condition that the system must fulfill

with it is in that state, the State aliases section is useful to add the test

cases the condition that must be checked when the state is reached. For

example, when the machine is in Created, it should be tested that has a

balance of zero and that it has no movements.

3.2 Processing state machines text files

In Figure 17, the web form for uploading state machines files appears.

Figure 17

After uploading the file in Figure 16, the tool shows the transitions table, a piece of

which is shown in Figure 18.

Figure 18

Note the list box with the label “Select an algorithm”: depending on the desired

coverage criterion, the tester will select one of the provided algorithms:

1) All edges produces a test suite that visits all the transitions in the state

machine at least once.

2) All pairs produces a test suite that, for each state, visits all the pairs of

input and output transitions at least once.

3) The test suite generated by

least once.

4) Binder generates test cases

5) Prime path produces test cases according to the Prime path algorithm.

If we select, for example, All

cases, CTWeb produces the output shown in

19

produces a test suite that visits all the transitions in the state

at least once.

produces a test suite that, for each state, visits all the pairs of

input and output transitions at least once.

The test suite generated by All states visits all the states in the machine at

generates test cases according to the Binder’s algorithm.

produces test cases according to the Prime path algorithm.

All transitions, and press the button labeled

CTWeb produces the output shown in Figure 19.

Figure 19

produces a test suite that visits all the transitions in the state

produces a test suite that, for each state, visits all the pairs of

visits all the states in the machine at

according to the Binder’s algorithm.

produces test cases according to the Prime path algorithm.

, and press the button labeled Create test

 20

The figure shows, in the first time, the six paths the tool has generated to go

through all transitions; then, for each path, it includes the set of calls required to

exercise each transition included in the path, as well as the alias of each state.

3.3 One more example

The following state machine represents a Manager that controls the light flow of

two semaphores: when there are no pedestrians, the manager changes the light of

both semaphores (a and b) sending them the change event every a fixed number of

seconds (60, 63, 66, 83, and 86). However, a pedestrian may request the red light

in any of the semaphores: if the semaphore where red is requested is in yellow or

red, nothing happens; if it is in green and the semaphore is a, then the managers

changes a to yellow either 20 seconds after the request or, if less than 20 seconds

remain, in this time. If the red light is requested on b, then the request is passed to

a.

Figure 20

The system is implemented as a single Java desktop application (Figure 21) whose

structure is shown in

 21

Figure 21

Figure 22

The text representation of the state machine is the following:

% This is a small example of a state machine description file

Initial node
JC

% Transitions have: source state TAB symbol of the alphabet TAB target state

Transitions
JC setA A established

A established setB GG

 22

GG requestRedOnA GG

GG requestRedOnB GG

GG setTime60 YG

YG setTime63 RY

RY setTime66 RR

RR setTime83 GR

GR requestRedOnA TGR

GR requestRedOnB TGR

TGR setTime86 GG

GR setTime86 GG

% Symbols can be mapped to method calls of the system using: symbol TAB method.

Symbol aliases

setA Manager manager=new Manager(this); Semaphore a=new Semaphore(manager);

manager.setA(a);

setB Semaphore b=new Semaphore(manager); manager.setB(b);

requestRedOnA manager.requestRed(a);

requestRedOnB manager.requestRed(b);

setTime60 manager.setTime(60);

setTime63 manager.setTime(63);

setTime66 manager.setTime(66);

setTime83 manager.setTime(83);

setTime86 manager.setTime(86);

% States can also be used to the further creation of action oracles.

% The syntax is State TAB expression and the label is State aliases. For example:

State aliases
A established assertTrue(a.toString().equals("GREEN"));

GG assertTrue(manager.toString().equals("GREEN,GREEN,false"));

YG assertTrue(manager.toString().equals("YELLOW,GREEN,false"));

RY assertTrue(manager.toString().equals("RED,YELLOW,false"));

RR assertTrue(manager.toString().equals("RED,RED,false"));

GR assertTrue(manager.toString().equals("GREEN,RED,false"));

TGR assertTrue(manager.toString().equals("GREEN,RED,true"));
Figure 23

If we upload this file and generate a test suite covering All pairs, we get a set of test

cases that can copy and paste on our IDE. Two of these test cases are:

 publicvoid test1() {
 Manager manager=new Manager(this); Semaphore a=new Semaphore(manager);
manager.setA(a);
 assertTrue(a.toString().equals("GREEN"));
 assertTrue(a.toString().equals("GREEN"));
 Semaphore b=new Semaphore(manager); manager.setB(b);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(a);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(a);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(b);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(a);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.setTime(60);
 assertTrue(manager.toString().equals("YELLOW,GREEN,false"));
 manager.setTime(63);
 assertTrue(manager.toString().equals("RED,YELLOW,false"));
 manager.setTime(66);
 assertTrue(manager.toString().equals("RED,RED,false"));
 manager.setTime(83);

 23

 assertTrue(manager.toString().equals("GREEN,RED,false"));
 manager.requestRed(a);
 assertTrue(manager.toString().equals("GREEN,RED,true"));
 manager.setTime(86);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(a);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 }

 publicvoid test2() {
 Manager manager=new Manager(this); Semaphore a=new Semaphore(manager);
manager.setA(a);
 assertTrue(a.toString().equals("GREEN"));
 assertTrue(a.toString().equals("GREEN"));
 Semaphore b=new Semaphore(manager); manager.setB(b);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(b);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.requestRed(b);
 assertTrue(manager.toString().equals("GREEN,GREEN,false"));
 manager.setTime(60);
 assertTrue(manager.toString().equals("YELLOW,GREEN,false"));
 }

Figure 24

