
A Set List Generator for a DJ Summary

David Ogle I

Summary

The overall aim of the project was to develop a fully tested system that would automatically generate a set

list for a DJ. The major challenge was to capture the knowledge of the DJ, and use this knowledge in

generating a set list.

In tackling t he problem I met with the DJ, which resulted in a series of system requirements. These

requirements stated exactly what was required by the system. After ensuring the proposed solution was

feasible my next step was to research which system development methodology would be the most

appropriate to use in providing a solution. A DSDM methodology was selected on the grounds that my end

user wanted to take an active part in the development of the system.

The design of the database followed a traditional data modelling approach. This involved developing an E-R

model, and using this to map to a logical, fully normalised database design. The development of the system

involved the use of Microsoft Access and VBA (Visual Basic for Applications).

It was identified that there were two possible approaches to generating set lists. One approach used hard-

rules; the other used a ‘weightings’ approach. Both approaches were implemented using VBA. The end user

was heavily involved once implementation was complete. He was required to analyse both approaches, and

select the approach that produced the best results. An in-depth discussion of the two approaches is included

in the report.

After the best approach to generating a set list had been determined the system as a whole was fully tested.

A user manual was provided to ensure the end user could effectively use the system.

Finally, the system was reviewed to see whether the system I built matched up with the initial requirements

we set. The review also involved assessing whether the system would actually be of any real use to the end

user in the future.

A Set List Generator for a DJ Acknowledgements

David Ogle II

Acknowledgements

I would like to acknowledge the help of the following people in the completion of the project:

Stuart Roberts, my project supervisor, for the help and support he has given me throughout the course of the

project.

Simon Peterson, my end user, for providing me with the opportunity to undertake this project. I am very

grateful for the time and effort he has contributed.

A Set List Generator for a DJ Contents

David Ogle III

Contents

I - SUMMARY

II – ACKNOWLEDGEMENTS

CHAPTER 1 – INTRODUCTION ..1

1.1 AIM OF THE PROJECT..1

1.2 OVERVIEW OF CURRENT PROBLEM..1

1.3 PROJECT OBJECTIVES...1

1.4 PROJECT DELIVERABLES ..2

1.5 SELECTION OF A SYSTEM DEVELOPMENT METHODOLOGY...3

CHAPTER 2 – ANALYSIS ..5

2.1 SYSTEM REQUIREMENTS..5

2.1.1 Functional Requirements...5

2.1.2 Non-functional Requirements..5

2.2 SELECTION OF TOOLS FOR DEVELOPMENT...5

2.3 EXISTING SYSTEMS...6

2.4 CONSTRAINTS...6

2.4.1 Time...6

2.4.2 Cost..6

CHAPTER 3 – SYSTEM DESIGN..7

3.1 DATA MODELLING..7

3.1.1 Overview..7

3.1.2 E-R Diagram..7

3.2 LOGICAL DATABASE DESIGN...8

3.2.1 Mapping from E-R Model to Logical Database Design..8

3.3 NORMALISATION...10

3.4 INTEGRITY CONSTRAINTS...11

3.5 HUMAN COMPUTER INTERACTION...12

3.5.1 Overview..12

3.5.2 Interface Design...12

CHAPTER 4 – IMPLEMENTATION ...15

4.1 DATABASE IMPLEMENTATION ..15

4.1.1 Schema Implementation...15

4.1.2 Relationship Building...15

4.1.3 SQL Queries...16

4.1.4 Reports...18

A Set List Generator for a DJ Contents

David Ogle IV

4.1.5 Input Validation...18

4.1.6 Compaction..19

4.2 INTERFACE IMPLEMENTATION..19

4.3 SET LIST GENERATION ...20

4.4 MANIPULATING THE SET LIST ..20

4.5 NEIGHBOURING TRACKS ..21

4.5.1 Defining Neighbouring Tracks..21

4.5.2 Displaying Neighbouring Tracks...22

4.6 GIVING VARIETY TO THE SET LISTS...22

4.7 CUSTOMISED WEIGHT SETTINGS..22

4.8 EVOLUTION OF USER REQUIREMENTS..23

CHAPTER 5 – COMPARISON OF TWO PRIORITISING ALGORITHMS ..27

5.1 OVERVIEW ..27

5.1.1 Hard-Rule Approach..27

5.1.2 Soft-Rule ‘Weighting’ Approach..30

5.2 RELATIVE MERITS OF THE TWO APPROACHES...34

5.3 ROLE OF THE END USER...35

5.3.1 Fine-Tuning...35

5.3.2 End User Feedback..35

CHAPTER 6 – TESTING ...36

6.1 TESTING THE SYSTEM...36

6.1.1 Testing the Interface..36

6.1.2 Testing the Set List Generator...37

6.2 USER ACCEPTANCE TESTING..43

CHAPTER 7 – EVALUATION AND FUTURE DEVELOPMENTS..44

7.1 SYSTEM EVALUATION ..44

7.2 FUTURE ENHANCEMENTS...45

REFERENCES ..46

APPENDIX A - PROJECT REFLECTION

APPENDIX B - PROJECT SCHEDULE

APPENDIX C - DATA DICTIONARY

APPENDIX D - DATABASE RELATIONSHIP DIAGRAM

APPENDIX E - SYSTEM INTERFACE

APPENDIX F - HARD-RULE CONSTRAINTS

APPENDIX G - WEIGHTINGS FUNCTIONS

A Set List Generator for a DJ Contents

David Ogle V

APPENDIX H - SET LIST REPORT

APPENDIX I - SYSTEM TESTING

APPENDIX J - USER ACCEPTANCE TESTING

APPENDIX K - USER MANUAL

A Set List Generator for a DJ Introduction

David Ogle 1

Chapter 1 – Introduction

1.1 Aim of the Project

The overall project aim is to capture the knowledge of a DJ using IT, and use this knowledge to automate the

process of generating a set list.

1.2 Overview of Current Problem

My end user is a part-time DJ. He has identified problems with his current way of working. At present

searching for a specific track from his collection of records is done manually, rooting through his many

boxes of records until he comes across the track he is looking for. This can prove time consuming. He is

looking for a system that will allow him to search for any track in his entire collection, allowing him to

identify where that track physically lies.

The major problem he is experiencing is preparing a set list before a gig. He currently drafts a rough list of

tracks on paper, choosing the tracks almost randomly from those he can remember. He has found drawbacks

with this method of preparation. Firstly, tracks are sometimes played after tracks of a completely different

speed, leading to difficulties when trying to mix the two tracks together. Secondly, many good tracks from

his collection are getting neglected, due to him not being able to either find them or remember them.

Thirdly, the amount of tracks he selects doesn’t usually fit in with the duration of the set. This leads to either

filling the set with random tracks that don’t fit in well with the style of the set, or having to leave out popular

tracks if he runs out of time. To solve these problems a system is required that would generate a set list of

tracks, using a series of rules that the DJ himself would use when deciding which tracks should be played

after each other.

1.3 Project Objectives

I set the following objectives for my project:

1. Investigate system requirements

When developing any system it is extremely important to get a clear view of the problem, and obtain the

exact requirements of the system to be put in place. I will need to conduct organised meetings with my end

user to collect the required information.

2. Select tools for development of the system

Once the system requirements are clear the most suitable tools for developing the system can be selected. I

need to ensure that the end user will have the software required to run any system I develop.

A Set List Generator for a DJ Introduction

David Ogle 2

3. Cost the system

It is important to cost any system before development, to ensure that the proposed system is actually

economically feasible.

4. Design and implement a system for storing tracks and generating a set list. A user manual should

be included

This is the main task in the project: providing a system to solve the problems covered in section 1.2. To

ensure that my end user, and any possible future users can effectively use the system I create, it is important

that I develop a user manual.

5. Design and compare two different prioritising algorithms for use i n set list generation

After discussion with my project supervisor we identified two different approaches to generating a set list.

One uses ‘hard-rules’ to make track selections, the other ‘soft-rules’. My objective is to implement the two

different approaches, and use the end user to select the better of the two approaches. I will be discussing the

relative merits of the two approaches.

1.4 Project Deliverables

Below is an outline of the deliverables for this project:

1. Working System

I identified a set of minimum requirements for system I was to develop. The system should:

a) Allow the details of records and the tracks from those records to be stored. This should provide for data

input, deletion and update.

b) Search for specific tracks or records.

c) Generate a set list of duration given by the user.

A user-friendly interface should be developed for the system.

2. User Manual

To ensure that my end user, and any possible future users can effectively use the system I will be creating a

user manual. This will explain the system in terms that non-technical users can understand, and will cover

every aspect of the system.

3. Report

This report describes each stage that was completed during the development of the system, and details the

processes and procedures that were used to successfully complete the project.

A Set List Generator for a DJ Introduction

David Ogle 3

1.5 Selection of a System Development Methodology

A system development methodology is “a collection of procedures, techniques, tools, and documentation

aids which will help the system developers in their efforts to implement a new IS. A methodology will

consist of phases, themselves consisting of sub-phases, which will guide the systems developers in their

choice of the techniques that might be appropriate at each stage of the project and also help them plan,

manage, control and evaluate IS projects.” (Lau, L and McCormack, J, 2000) I have researched a number of

system development methodologies to decide which would be the most appropriate for conducting my

project.

The Waterfall Model breaks down the development process into a series of stages, logically ordering the

stages. The methodology requires you complete each stage in order: feasibility study, systems investigation,

analysis, design, implementation, review and maintenance. This methodology has been criticised for being

too rigid, making it difficult to respond to changing user needs, as users do not play an active part in the

development. It is suggested that this methodology often leads to user dissatisfaction, as it doesn’t give users

the opportunity to see the system until is has been completed.

More recent methodologies attempt to address such problems. Rapid Application Development (RAD)

“addresses the need to develop information systems quickly. It is not based upon the traditional life cycle,

but adopts an evolutionary/prototyping approach.” (Avison, D and Fitzgerald, G, 1995) A framework for

RAD has been developed called Dynamic Systems Development Method (DSDM). DSDM is based on

nine principles. Some of these include:

§ Active user involvement is imperative.

§ DSDM teams must be empowered to make decisions.

§ Iterative and incremental development is necessary to converge on an accurate business solution.

(Lau, L and McCormack, J, 2000)

A major advantage of the DSDM approach is the flexibility it provides. Changes to user requirements can be

responded to quickly, ensuring the end product matches what the user actually wants. As my end user wants

to take an active part in the development of the system DSDM is the obvious choice. User involvement

throughout the development process ensures users are not left with a system they don’t want. The success of

the system is also put in the hands of the user as well as the developer.

A Set List Generator for a DJ Introduction

David Ogle 4

The 5 phases of DSDM are feasibility study, business study, functional model iteration, system design and

build iteration, and implementation. The following diagram illustrates these 5 phases:

Fig 1.1

Fig 1.1 shows that DSDM is an iterative approach: continual refinement of the system using the end user.

My end user will be involved throughout the development of the system, and will be given the power to

make decisions.

Functional Model
Iteration

Agree Plan

Review
Prototype

Create
Functional
Prototype

Identify
Functional
Prototype

Design & Build
Iteration

Identify Design
Prototypes

Create Design
Prototype

Agree
Plan

Review
Design

Prototype

Implementation

Implement

User Approval &
User Guidelines

Review
Business

Train
Users

Feasibility

Business Study

A Set List Generator for a DJ Analysis

David Ogle 5

Chapter 2 – Analysis

2.1 System Requirements

In meeting with my end user I have obtained a series of requirements for the system, both functional and

non-functional.

2.1.1 Functional Requirements

The functional requirements state what activities the system must perform:

1.1 The system shall record the details of every record. These details include the record number, title, and

label.

1.2 The system shall record the details of every track. These details include the record the track appears on,

title, artist, mix, side, style, BPM (beats per minute), mood, popularity, whether the track can start a set, and

whether the track can finish a set.

1.3 The system shall allow the details of a record or track to be updated.

1.4 The system shall allow records or individual tracks to be deleted from the system.

1.5 The system shall allow the details of any record or track to be retrieved.

1.6 The system shall generate a set list from the tracks in the system.

1.7 The system shall use selections made by the user to generate the set list. These selections include the

duration of the set, and a starting style.

1.8 The system shall provide several alternative tracks to the tracks on the set list.

1.9 The system shall allow a track on the set list to be replaced by a track on the alternative list.

1.10 The system shall allow a track on the set list to be replaced by any track in the system.

1.11 The system shall provide the generated set list in a printable form.

2.1.2 Non-functional Requirements

The non-functional requirements cover usability and performance issues:

1.1 The system shall have a user-friendly interface, allowing users with only limited computing experience to

effectively use the system.

1.2 The system shall include documentation on how to use the system.

2.2 Selection of Tools for Development

From studying the system requirements I decided that a Relational Database Management System (RDBMS)

was the most suitable software to use. There were several RDBMS to consider, including MS Access, SQL

Server and Oracle. Microsoft Access was the obvious choice to use, as firstly, my end user has it installed on

A Set List Generator for a DJ Analysis

David Ogle 6

his computer, and secondly, the database will be relatively small, so therefore the large-scale functionality

that SQL Server and Oracle provide are not required. Visual Basic for Applications (VBA) is a ‘cut-down’

version of Visual Basic to use in conjunction with Microsoft Access. I will be using VBA to implement the

functionality that cannot be achieved simply using Microsoft Access.

2.3 Existing Systems

I found a program on the Web called Song Librarian 2.0 (downloaded from

http://www.hitsquad.com/smm/programs/The_Song_Librarian/). This program is similar to my proposed

system in that it allows tracks to be added and searched for. The major flaws I found with this system are the

options aren’t presented to you in a logical order. For example, to add an artist and style to a track you have

to keep jumping to different places in the system, which is both time consuming and confusing. The

interface is also cluttered, which again causes confusion. I will ensure that the interface I develop does not

suffer the same pitfalls.

2.4 Constraints

2.4.1 Time

To ensure that my system was implemented, tested and installed, along with a user manual within the time

constraint set, I developed a project schedule by which to organise my time. This can be seen in Appendix

B. This process of creating deadlines within the overall project deadline is known as timeboxing. It is a

feature of the DSDM methodology I am using to develop my system.

2.4.2 Cost

The only costs I encountered were possible data input costs, as my end user has the required software

(Microsoft Access) installed on his computer. I am planning on inputting roughly 50 records into the system,

which will amount to roughly 150 tracks, for testing purposes. After estimation of input time, and cost to

employ a data input clerk to input the remaining records, I arrived at a total of £45. The end user has

informed me he is planning on inputting the remaining records himself. This means there will be no cost for

the system.

A Set List Generator for a DJ System Design

David Ogle 7

Chapter 3 – System Design

3.1 Data Modelling

3.1.1 Overview

Data modelling is a technique for analysing the UoD (Universe of Discourse) and translating it into a

graphical model, which can then in turn be translated to the tables in a relational database. (Mott, P and

Roberts, S, 1998)

3.1.2 E-R Diagram

In E-R modelling everything in our UoD is modelled as an Entity, Relationship or Attribute. The E-R model

is very important as it forms the foundation from which the database is built. If the E-R diagram is wrong,

the resulting database will also be wrong. For my system I have identified the following entities: Label,

Record, Track , Neighbouring Track and Artist . From this I have developed the following E-R diagram:

Fig 3.1

A label may release many records. A record may contain many tracks. A track may have one or more

neighbouring tracks (a neighbouring track is a particular track that sounds good when played after that

track). A track may be a neighbouring tra ck of more than one track. Not every track will have a

neighbouring track. More than one artist may appear on a track . An artist may appear on more than one

track .

Label Record

Track Artist

 Releases

 Contains

Is Recorded by
Neighbouring

Track

Has a

A Set List Generator for a DJ System Design

David Ogle 8

3.2 Logical Database Design

3.2.1 Mapping from E -R Model to Logical Database Desig n

To map from the above E-R model to a series of relational tables I have needed to follow a series of rules.

Firstly, each entity-type maps onto a table scheme, with associated attributes taken from those of the entity-

type in the E-R model (primary keys are underlined):

Label(Label_ID, Label)

Record(Record_Number, Record_Title, Reuse)

Track (Track_ID, Track_Title, Mix, Side, Style, Speed, Popularity, Mood, Start_Set, Finish_Set,

CurrentPlaylist, Classic, LastPlayed, LastStart, LastFinish)

Artist (Artist_ID, Artist)

NeighbouringTrack(Track_ID, NeighbouringTrack_ID)

In the ‘Record’ table the primary key is the record number. The record number is a unique number the end

user sticks onto each record he buys. The higher the record number the newer the record.

For the style attribute in the ‘Track’ table the end user stated that each track in his collection could be

categorised as one of 5 styles: Big Beat, Dark, Jump Up, Nu Skool and Techno.

The speed attribute is an estimation of the tracks bpm (beats per minute): A(<120 bpm), B(120 -129 bpm),

C(130-139 bpm), D(140-149 bpm), E(150+ bpm).

The popularity is a number between 1 and 9, reflecting how popular that particular track is.

The mood is a number between 1 and 5. It reflects the stage at which a track is best played during a set (0 =

early stages of the set, 5 = late stages of the set).

A track on the current playlist is a track that you would regularly like to see appearing in the set lists. When

a track is input into the system it is automatically defined as being on the current playlist. When a track

starts to become outdated it can be taken off the current playlist, which means it will no longer appear on the

set lists. If you would still like the track to appear once in a while it can be defined as a classic track.

A Set List Generator for a DJ System Design

David Ogle 9

For the 1:M relationships, the primary key of the master table is posted in the related table.

i) Label releases Record

Label(Label_ID), Record(Label_ID)

ii) Record contains Track

Record(Record_Number), Track (Record_Number)

The M:N relationship -types map onto relationship schemes. The attributes of the relationship schemes are

the two primary keys of the entity-types participating in the relationship:

i) Track is recorded by Artist

Track (Track_ID), Artist (Artist_ID), Track Artist (Track_ID, Artist_ID)

ii) Track has a Neighbouring Track

Track (Track_ID), NeighbouringTrack(Track_ID, NeighbouringTrack_ID)

The ‘NeighbouringTrack’ table is a pairing of two tracks The Track_ID is the Track_ID of the first track in

the neighbouring relationship, NeighbouringTrack_ID the Track_ID of the second track. Both fields are

selected as the primary key. This means that each neighbouring relationship must be unique.

The resulting database schema was developed (primary keys are underlined, foreign keys are italicised):

Label(Label_ID, Label)

Record(Record_Number, Label_ID, Record_Title, Reuse)

Track (Track_ID, Record_Number, Track_Title, Mix, Side, Style, Speed, Popularity, Mood, Start_Set,

Finish_Set, CurrentPlaylist, Classic, LastPlayed, LastStart, LastFinish)

Artist (Artist_ID, Artist)

Track Artist (Artist_ID, Track_ID)

NeighbouringTrack(Track_ID, NeighbouringTrack_ID)

The data dictionary can be found in APPENDIX C.

A Set List Generator for a DJ System Design

David Ogle 10

3.3 Normalisation

Normalisation is an essential part of database design. Elmasri, R and Navathe, S (1999) state that the

purpose of normalisation is to (1) minimise data redundancy, and (2) minimise insertion, deletion, and

update anomalies. Data redundancy is said to occur when the same piece of data is held in more than one

place in a database, which can cause inconsistencies to occur. Insertion, deletion, and update anomalies can

lead to serious maintenance problems.

Functional Dependencies

For any relation, R, the set of attributes, {A1, …An} i s said to functionally determine an attribute B of R if

any two rows of R that have the same values for {A1, …An} MUST have the same value for B. (Roberts, S,

1999)

The following functional dependencies exist in my database:

Label

Label_ID à Label

The Label_ID is used to uniquely determine each label.

Record

Record_Number à Record_Title, Label_ID, Reuse

The record number is unique for each record, so therefore allows all attributes of the record to be identified.

For my model I am assuming that more than one record may have the same title. This means that from

knowing the title of a record you cannot determine the record number.

Track

Track_ID à Record_Number, Track_Title, Mix, Side, Style, Speed, Popularity, Mood, Start_Set,

Finish_Set, CurrentPlaylist, Classic, LastPlayed, LastStart, LastFinish

The Track_ID is used to uniquely determine each track in the system. The speed and mood attributes are

independent of each other, so from knowing the speed of a track you cannot determine the mood.

Track Artist

Track_ID à Artist_ID

A Set List Generator for a DJ System Design

David Ogle 11

Artist

Artist_ID à Artist

The Artist_ID is used to uniquely determine each artist.

NeighbouringTrack

No functional dependencies exist in the NeighbouringTrack relation as both attributes make up the primary

key:

NeighbouringTrack{Track_ID, NeighbouringTrack_ID}

Knowing a Track_ID does not necessarily give you the NeighbouringTrack_ID, as a track may have more

than one neighbouring track. Also, knowing a NeighbouringTrack_ID does not necessarily give you the

Track_ID, as a track may be a neighbouring track of more than one track.

For a relation to be in First Normal Form (1NF) no field may accept multi-valued entries. No field in my

database accepts multi-valued entries. Therefore 1NF is upheld.

A relation is in Boyce Codd Normal Form (BCNF) whenever there is a non-trivial dependency, A1, …An

à B for R, it is the case that {A1, …An} is a superkey for R.

(Roberts, S, 1999)

All the non-trivial dependencies I have displayed from my database conform to BCNF. In all relations a

single attribute determines all other attributes in the relation. Therefore I can conclude that my database is

fully normalised in BCNF.

3.4 Integrity Constraints

It is important to ensure that primary keys are properly and fully defined. The following two rules help to

ensure that primary and foreign keys are properly defined for each entity:

Entity Integrity : No attribute participating in the primary key of a base table is allowed to accept null

values. (Mott, P and Roberts, S, 1998)

Every primary key in the database has an auto-number data type, except record number, which is the primary

key in the record table. This means that whenever a new record is created, those auto-number fields are

automatically assigned a number, ensuring that they are never null. Validation checks will be made to ensure

the user can never leave the record number field blank when inputting a new record.

A Set List Generator for a DJ System Design

David Ogle 12

Referential Integrity : The foreign key of a table must be either equal to the value of the primary key in the

matching table, or be wholly null. (Mott, P and Roberts, S, 1998)

By defining relationships in Microsoft Access referential integrity can be upheld. This is discussed in depth

in section 4.1.2.

3.5 Human Computer Interaction

3.5.1 Overview

Human Computer Interaction (HCI) is defined as “the study of the interaction between people, computers

and tasks. It is principally concerned with understanding how people and computers can interactively carry

out tasks”. (Johnson, P, 1992) This is very relevant to my pr oject, as my end user only has limited

computing experience. The user interface I develop will determine how successful the final system will be.

I could develop an excellent underlying system, but if my end user has difficulty operating the system, the

system cannot be deemed a success.

It is important to consider any possible future users of the system when developing the user interface. It is

likely that any possible future users of my system will only have limited computing experience, like my end

user. I need to ensure that my system is usable by any computer novice in general, not just my end user.

3.5.2 Interface Design

The main purpose of a user interface is to hide the complexities of the underlying system, and make

navigation through the system as convenient as possible. As far as the user is concerned the interface is the

system. When designing the user interface a number of considerations must be taken into account:

Consistency

Consistency is a key factor in developing a successful user interface. It helps the user transfer familiar skills

to new situations, and increases the speed at which a user can get to grips with an interface. Consistency will

be achieved by maintaining the same layout and colour scheme, and ensuring the operation of the interface is

consistent throughout the interface.

Colour

Colours should be used that are easy to view and not harsh on the eyes. I have decided on a simple colour

scheme: a grey background with mainly black text.

A Set List Generator for a DJ System Design

David Ogle 13

Colour should be used in a way that is consistent with the expectations of your user. For example red is a

colour that is associated with warning. I will be using red to issue my user warnings. The simple grey

background will attract the user to such warnings when they appear on-screen.

Usability

The interface should aim to maximise the speed and ease at which operations can be carried out. The tab key

will be used to enable the user to scroll through the functions in a logical order. This will restrict the mouse

usage, which will increase the speed at which the user will be able to operate the system.

Horizontal scroll bars are inconvenient for users. Where possible I will try to present the information so that

the horizontal scroll bars are not required.

The ID fields that are solely used as primary keys for the tables in the database should not be displayed on

the user interface. The fields have no relevance to the users of the system, so should not be displayed.

Including ID fields on the interface is likely to confuse the user of the system.

Error Messages

Error messages are usually overlooked as an important part of interface design. Well-designed error

messages help to prevent the user getting frustrated with the system, and can aid learning of the system. I

feel that error messages should be split into two groups, and treated differently:

1) Error messages that appear as a result of the user making a mistake, for example, trying to save a record

number that already exists. In these cases the error message should inform the user what they did wrong,

without been insulting, for example: “The record number you selected is already in use. Please enter a unique

record number.”

2) Error messages to inform the user that the system could not fulfil a valid operation, for example, the

system not being able to find a suitable starting track for a set list. In these cases the error message should

apologise to the user, so they know it wasn’t something they did wrong, for example: “I’m sorry. There was

no suitable starting track.”

Interface Development

After initially sketching a few ideas for the interface, I developed a series of prototypes using Microsoft

Access that displayed how I thought the interface should look. Once the end user was happy with the

interface I began implementing the functionality.

The system interface can be seen in Appendix E.

A Set List Generator for a DJ System Design

David Ogle 14

Interface Navigation

After grouping together similar functions, I decided on the following hierarchical structure for the interface:

1. Input

1.1 Add New Record

1.1.1 Add Record

1.1.2 Add Track

1.1.3 Add Artist

1.2 Add Track to a Record

1.2.1 Find/Delete Record

1.2.2 Add Track

1.2.3 Add Artist

2. Search

2.1 Find Record

2.1.1 Find/Delete Record

2.1.2 Display Tracks

2.1.3 Update Track

2.2 Find Track

 2.2.1 Find/Delete Track

 2.2.2 Update Track

3. Generate Set

3.1 Generate Set List

4. Neighbouring Tracks

4.1 View Neighbouring Relationships

 4.1.1 View the Tracks having Neighbouring Tracks

 4.1.2 View/Delete the Neighbouring Relationship

A Set List Generator for a DJ Implementation

David Ogle 15

Chapter 4 – Implementation

4.1 Database Implementation

4.1.1 Schema Implementation

Each table was implemented using the table builder in Microsoft Access, following the schema decided in

the design stage (see section 3.2.1). Each table required a field name and data type. Data type examples

include text, auto-number, number, yes/no. After entering in the fields Microsoft Access made it easy to

define the primary keys I had previously designed: simply highlighting the specific field and clicking on the

primary key icon.

4.1.2 Relationship Building

After creating the tables my next step was to define the relationships between the tables I had previously

designed. Correctly defining relationships ensures referential integrity is upheld (see section 3.4 for a

definition). Microsoft Access p rovides an excellent utility for defining relationships. Each table is

displayed, and a relationship is defined between two tables by clicking on the primary key of one table, and

dragging this field to the foreign key of the related table.

Fig 4.1

Fig 4.1 shows the form that initially appeared after clicking on the primary key (Label_ID) in the Label

table, and dragging this field to the foreign key (Label_ID) in the Record table. Microsoft Access identifies

the relationship as a 1:M relationship. This is consistent with my E-R model (section 3.1.2).

A Set List Generator for a DJ Implementation

David Ogle 16

As part of the referential integrity checks there are two options:

1) Cascade Update Related Fields: Any time you change the primary key of a record in the primary table,

Microsoft Access automatically updates the primary key to the new value in all related records. This is not

relevant to those tables with auto-number primary keys, as auto-number primary keys cannot be changed.

The only table in the database not having an auto-number primary key is the ‘Record’ table. ‘Cascade

update related records’ is set for the relationship between the ‘Record’ table and the ‘Track’ table. This

ensures that if the record number changes, the record number stored for the tracks on the record will also be

updated.

2) Cascade Delete Related Records: Any time you delete records in the primary table, Microsoft Access

automatically deletes related records in the related table. This is set for the relationship between the

‘Record’ table and the ‘Track’ table to ensure that if a record is deleted, the tracks from the record are also

deleted. ‘Cascade delete related records’ is also set for the relationship between the ‘Track’ table and the

‘Track Artist’ table, as this ensures that if a track is deleted from the system the artist is removed from the

track. I did not set ‘cascade delete related records’ for the relationship between the ‘Label’ table and the

‘Record’ table, because if a label is deleted, the records produced by that record still exist, so therefore

shouldn’t be deleted.

For the ‘NeighbouringTrack’ table I needed to define two relationships, one between Track_ID in the

‘Track’ table and Track_ID in the ‘NeighbouringTrack’ table, and one between Track_ID in the ‘Track’

table and NeighbouringTrack_ID in the ‘NeighbouringTrack’ table. ‘Cascade delete related records’ is set

for both these relationships to ensure that if either track from a neighbouring relationship is deleted, the

neighbouring relationship is also deleted.

A graphical representation of the relationships can be seen in Appendix D.

4.1.3 SQL Queries

SQL (Structured Query Language) is a relational data language. I have used SQL extensively in the

development of my system. Firstly, I have used SQL INSERT statements for tasks such as saving details to

the database, and inserting tracks into the set list. The following example shows the SQL INSERT statement

used to save the details of a new record to the system:

DoCmd.RunSQL ("INSERT INTO Record(Record_Number, Record_Title, Label_ID, Reuse)

VALUES(Record_Number, Title, Label, Reuse);")

The VALUES are the text box values entered by the user.

A Set List Generator for a DJ Implementation

David Ogle 17

Secondly, SQL UPDATE statements are used for tasks such as updating the last played date of tracks, and

updating track details. The following example shows the SQL UPDATE statement used to update the last

played date of tracks on a set list:

DoCmd.RunSQL ("UPDATE Track SET LastPlayed = GigDate WHERE Track_ID =

forms!setList.Track_ID;")

The GigDate is the date entered by the user.

Thirdly, SQL DELETE statements are used for tasks such as deleting records and tracks from the system,

and for emptying the set list. The following example shows the SQL DELETE statement used to delete a

track from the system:

DoCmd.RunSQL ("DELETE FROM Trac k WHERE Track_ID = TrackID.value;")

SQL SELECT statements are used throughout the system to retrieve specific data. Examples from the

system include:

a) Find the highest record number currently in the system. This is required for displaying the value to the

user on the ‘Add Record’ form.

SELECT Max(Record.Record_Number) + 1 AS MaxOfRecord_Number FROM Record;

b) Find all the classic tracks that haven’t been played in the last two weeks, and aren’t currently on the set

list:

SELECT Record.Record_Number , Record.Record_Title, Record.Reuse, Track.Track_ID,

 Track.Track_Title, Track.Mix, Track.Style, Track.Speed, Track.Mood,

 Track.CurrentPlaylist, Track.Popularity, Track.Selected,

 Track.LastPlayed, Track.Classic

FROM ((Label INNER JOIN Record ON Lab el.Label_ID = Record.Label_ID)

 INNER JOIN Track ON Record.Record_Number = Track.Record_Number)

 INNER JOIN (Artist INNER JOIN [Track Artist] ON

 Artist.Artist_ID = [Track Artist].Artist_ID) ON Track.Track_ID = [Track

 Artist].Track_ID

WHERE (((Track. Selected)=No) AND ((Track.Classic)=Yes) AND ((Date() -

 [Track].[LastPlayed])>14))

ORDER BY Track.Popularity DESC, Record.Record_Number DESC, Track.LastPlayed;

A Set List Generator for a DJ Implementation

David Ogle 18

c) Display all distinct track titles in the system. This is used as a control source for the track title combo-box

on the search form.

SELECT DISTINCT Track.Track_Title FROM Track ORDER BY Track.Track_Title;

4.1.4 Reports

Functional requirement 1.11 states that the system shall provide the generated set list in a printable form. To

achieve this I created a report to display the set list in a clear format. This report can be seen in Appendix H.

4.1.5 Input Validation

It is essential that users cannot input invalid data into the system. Validation mechanisms have been put in

place to ensure that the user cannot:

a) Input an incorrect data type . For example, if you attempt to enter text into the ‘Record Number’ field

on the ‘Add Record’ form an error message appears informing the user they have entered an incorrect data

type. This is achieved by setting the Format attribute on the properties of the text box.

b) Leave fields null that require a value . For example, failing to enter a ‘Record Title’ on the ‘Add

Record’ form produces an error message. This is achieved using VBA. Before the code executes the SQL

INSERT statement, checks are made to see whether any fields have been left null.

c) Enter a non-unique value for a primary key. For example, attempting to enter a ‘Record Number’ that

already exists produces an error message (Fig 4.2). This is achieved by creating a recordset of all the records

currently in the system using VBA, and searching through the recordset to see whether the record number

selected by the user already exists. If so the error message is called.

Fig 4.2

A Set List Generator for a DJ Implementation

David Ogle 19

4.1.6 Compaction

Generating a set list involves inserting tracks into a temporary table, and then deleting the tracks from this

table before generating a new set list. As tracks are deleted from the temporary table on a regular basis, the

database becomes fragmented and uses disk space inefficiently. Compacting a database rearranges how the

file is stored on disk, minimising the fragmentation, and increasing the performance. I will be giving

instructions on how to compact the database in the user manual.

4.2 Interface Implementation

Microsoft Access provides an excellent facility for developing user-friendly interfaces. Starting with blank

forms I built the interface using controls provided by Microsoft Access. These controls include text boxes,

combo-boxes, check boxes, and command buttons. Text boxes are used to obtain data input. Combo-

boxes provide a way to display the user with possible values for an attribute, requiring the user to select a

value from the combo box. This is an excellent form of data validation. For example, a combo-box is used

to obtain a style value by providing a list of the five possible styles. This ensures that the value obtained is

valid, as only a style from the combo-box is accepted (Fig 4.3).

Fig 4.3

Check boxes are used on several occasions to obtain a yes/no response. For example, when inputting a track,

check boxes are used to obtain whether that track is a suitable starting or finishing track. If so, the relevant

box is simply checked (Fig 4.4).

Fig 4.4

Command buttons are used on every form, providing the user with an excellent way to navigate through the

interface. VBA code is executed when a button is clicked, performing tasks such as opening forms.

A Set List Generator for a DJ Implementation

David Ogle 20

4.3 Set List Generation

The basis for generating a set list involves prioritising each track in the system (explained in section 5), and

then inserting the most appropriate track into the set list. The set list obviously needs to be stored

somewhere. I decided to create a temporary table, where the tracks could be inserted and stored until another

set list was generated. This table was named ‘setTemp’.

To generate a set list the user is required to enter the duration and a starting style. The most appropriate

starting track is selected and inserted into the set list, and then the tracks are prioritised, with the most

appropriate track being selected and inserted, and so on until the duration is filled. The most appropriate

finishing track is then selected and inserted into the set list. My end user estimated that each track would be

played for roughly 4 minutes. The prioritising and inserting is executed within a while loop, which is

repeated until the required duration is achieved. To insert a track into the set list an SQL INSERT INTO

statement is used, inserting the track details into the temporary table ‘setTemp’. The following is a

simplified example, showing how the Track_ID, and Track_Title of the most appropriate track would be

inserted into the table setTemp:

DoCmd.RunSQL(“INSERT INTO setTemp(Track_ID, Track_Title) VALUES(Track_ID,

Track_Title);”)

4.4 Manipulating the Set List

After writing the code for generating a set list I came across the problem of being able to manipulate the set

list. Specifically my end user identified he would need to be able to:

i) Add tracks to the set list.

To insert a track into the set list the user selects the track from a search screen, and then selects the position

they want the track moving to by clicking on the insert button next to that position. Firstly, the position

numbers are updated. For example, if you currently have 6 tracks on the set list and you want to insert track

X at position 3, the tracks with position numbers 3 and above i.e. 3, 4, 5, and 6, all have their position

numbers increased by 1. Track X is then inserted into setTemp using an SQL INSERT statement, and

allocated position number 3. New records are always inserted at the end of the table so the position numbers

would now appear 1, 2, 4, 5, 6, 7, 3. When displaying the set list i.e. setTemp, to the user, the table is

ordered by the position number. This displays the tracks in the correct order (1, 2, 3, 4, 5, 6, 7).

ii) Change a tracks position on the set list.

To change a tracks position the user double-clicks on the position of that track. The user then selects the

position they want the track moving to by clicking on the insert button next that position. Firstly, the

positions are updated. For example, if you have 6 tracks on the set list and you want to move track Y from

A Set List Generator for a DJ Implementation

David Ogle 21

position 2 to position 4, the tracks with position numbers greater than 2 all have their position numbers

decreased by 1. The positions now appear 1, 2, 2, 3, 4, 5, 6. Track Y is then deleted from setTemp using

an SQL DELETE statement. This leaves the order 1, 2, 3, 4, 5. We now need to update the positions again.

The tracks with position numbers 4 and above i.e. 4 and 5, have their position numbers increased by 1,

giving 1, 2, 3, 5, 6. Track Y is then inserted into setTemp using an SQL INSERT statement, and allocated

position number 4, giving 1, 2, 3, 5, 6, 4. As I mentioned previously, the set list i.e. setTemp, is ordered by

the position number. This displays the tracks in the correct order (1, 2, 3, 4, 5, 6).

iii) Delete tracks from the set list.

This involves deleting the track from the system using an SQL DELETE statement, and then decreasing the

position numbers of those tracks with greater position numbers.

4.5 Neighbouring Tracks

4.5.1 Defining Neighbouring Tracks

Neighbouring tracks are defined as two tracks that sound good when played together, in the form ‘track X

should follow track Y in a set’. Full consideration was put into the best way a user could define neighbouring

tracks. I decided that neighbouring tracks should be able to be defined on the form that displays the

generated set lists. Using VBA I implemented this functionality as follows: The user double-clicks on the

Track Title of the first track in the neighbouring relationship. The Track_ID of this track is sent to a hidden

text box on the form. The user then double-clicks on the Track Title of the second track in the neighbouring

relationship. The Track_ID of this track is sent to another hidden text box on the form. The user is then

asked to confirm that they want the neighbouring relationship saving, and then the Track_ID of each track is

inserted in the ‘NeighbouringTrack’ table:

DoCmd.RunSQL ("INSERT INTO NeighbouringTrack(Track_ID, NeighbouringTrack_ID)

VALUES(Track1.Value, Track2.value);")

Validation checks are in place to ensure that you cannot define a track as a neighbouring track of itself.

Neighbouring tracks can also be defined on the ‘Find Track’ form, allowing the user to define any two tracks

in the entire system as neighbouring tracks.

A Set List Generator for a DJ Implementation

David Ogle 22

The neighbouring tracks functionality helps to capture the knowledge of the DJ. When a neighbouring track

is inserted into the set list the constraints are overridden, because defining a neighbouring track is in-effect

like saying “regardless of the two tracks style, speed, mood etc. it works well when the two tracks are played

together”.

4.5.2 Displaying Neighbouring Tracks

If a track on the set list has a neighbouring track that is not on the set list, the neighbouring track is displayed

on the form, along with the position of the track it neighbours. The user can then simply double-click on the

position of the track it neighbours, and it will be automatically inserted into the set list in the correct position.

4.6 Giving Variety to the Set Lists

The end user has emphasised that he doesn’t want a tracks neighbouring track to be played in every set list

generated, as this wouldn’t provide the variety he is looking for. He would never play exactly the same set

week after week.

To provide this variety I have used random number generation, whereby the code generates a random

number between 1 and 20, and executes a certain section of code depending on the number that is generated:

A) Between 1 and 10: Insert the most appropriate track from the current playlist.

B) Between 11 and 19: Insert a neighbouring track of the previous track, if the previous track has a

neighbouring track.

C) 20: Insert the most appropriate classic track.

My end user has expressed that he wouldn’t play a classic track early on in a set. The code never selects a

classic track within the first 30 minutes.

4.7 Customised Weight Settings

The second approach to generating a set list (discussed in detail in chapter 5) involved prioritising tracks by

multiplying attributes with carefully chosen parameters. Fig 5.2 shows a section of the SQL query that was

used to prioritise the tracks. The parameters are shown in bold. The values of these parameters are very

important, as they manipulate how much weight is applied to each constraint. I spent a good deal of time

with my end user fine-tuning these parameter values so that they generated the best possible set lists. We

identified that the parameter values we had arrived upon should be used as default each time, but the user

should also be able to alter the parameter values as required, thus providing the flexibility to define different

types of set each time.

A Set List Generator for a DJ Implementation

David Ogle 23

My design decision was to implement a form that allowed the user to easily and accurately adjust these

parameters. I decided to implement the form as a control panel, with a series of sliding bars for each

constraint (Fig 4.5). This form works well because it displays visually how much weight each constraint

carries. I could have simply implemented this form using a series a text boxes, allowing to type in values for

each constraint, but that wouldn’t have been as visually effective.

Fig 4.5

The sliding bars are ActiveX controls (Microsoft Slider Control, Version 5.0). When the user moves a

sliding bar and clicks on the Save Settings button, the value of the text box to the right of the sliding bar is

updated to reflect the new position of the sliding bar. The values from these text boxes are used in the code

when set list is generated. The following code example shows how the mood value from form Fig 4.5 would

be used:

moodParam = Forms!weightSettings!moodSliderValue.Value

This would assign the variable moodParam a value of 800.

The Default Settings button resets the text box values and sliding bars to the values we decided upon.

4.8 Evolution of User Requirements

As the DSDM methodology I was using emphasises user involvement, the user requirements changed on a

regular basis as a result of the meetings I had with my end user. Several changes were made to the system

after I presented it to the end user. Firstly, he identified that the system allowed several tracks from the same

record to be included on the same set list. This is not what was wanted. He informed me that he would play

more than one track from only a few of the records in his collection on the same set list, and he wanted this

A Set List Generator for a DJ Implementation

David Ogle 24

capturing by the system. We decided upon adding an attribute to the ‘Record’ table called Re-use. This

attribute was given a yes/no data type. Re-use is set to yes when inputting a record, if the record contains

tracks that could appear on the same set list. If more than one track from a re-useable record is selected on

the same set list, the system notifies the user (Fig 4.6).

Fig 4.6

Checking whether any records are re-used involves taking a count of the number of tracks and distinct record

numbers on the set list. If the number of distinct record numbers is less than the number of tracks it shows

that a record has been re-used.

Each track had a mood attribute attached to it, which was a value between 1 and 5. This was an attribute

suggested by the end user, defined as how ‘heavy’ the track was. The rules for generating a set list currently

ignored the mood constraint. This meant that the resulting set lists generated had the mood jumping around

completely randomly, for example, a track with mood 1 would sometimes follow a track with mood 5. My

end user decided that he wasn’t happy with the current definition of the mood attribute. Collectively we re-

defined mood. The mood now reflects where in a set a track is most suited to appear. For example, tracks

that are most suited to appearing at the start of a set are assigned mood 1, those that would be played in the

middle of the set are assigned mood 3, and those that would be played near the end of a set are assigned

mood 5.

After mood was re-defined my end user wanted a mood constraint to be applied to the process of generating

a set list. We came up with the idea of developing mood templates for different types of set. These mood

templates would control the mood at each stage of the set. We decided upon the following four set types:

Background: The mood randomly fluctuates between 1 and 5.

Bangin’: The mood starts at 1 and gradually builds up to 5. The speed gradually increases.

Chilled: The mood stays between 1 and 2.

Club: The mood randomly fluctuates between 2 and 4.

A Set List Generator for a DJ Implementation

David Ogle 25

The most challenging set type to implement was the Bangin’ set. This is the most common set my end user

plays. In this type of set the mood to starts off at 1 and gradually builds up to 5 near the end of the set. He

sketched me a graph of mood against time to illustrate this. The added complication with this template is the

graph needs to be altered for different length sets so that the set always peaks at the correct time. Working

with my end user we developed accurate graphs for 4 different length sets: 60-minute, 120-minute, 180-

minute, 240-minute.

Fig 4.7 shows the graphs for a) 60-minute set, b) 240-minute set. The x-axis interprets set duration as track

numbers, assuming each track is played for 4 minutes.

a)

0 - 60 Minutes

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Track

M
oo

d

b)

0 - 240 Minutes

1

2

3

4

5

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

Track

M
oo

d

Fig 4.7

I converted each of the 4 graphs into 4 arrays. Each value in the array reflects the mood that number track

should be i.e. track n should have a mood corresponding to the nth entry in the array. These arrays are

displayed in Fig 4.8. DurationSelect is the duration the user specifies. If you look at the first array on line 2

i.e. the array that will be used if the duration is less than 60 minutes, you will see that the first track in the set

needs to have mood 1, the second track 2, third track 2, fourth 3, and so on.

A Set List Generator for a DJ Implementation

David Ogle 26

If Du rationSelect <= 60 Then

 BanginArray = Array(1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5)

ElseIf DurationSelect > 60 And DurationSelect <= 120 Then

 BanginArray = Array(1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

ElseIf DurationSelect > 120 And DurationSelect <= 180 Then

 BanginArray = Array(1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4,

4, 4, 4, 4, 5)

ElseIf DurationSelect > 18 0 Then

 BanginArray = Array(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3,

3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,

5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5)

End If

Fig 4.8

The array is selected each time according to the length of the set (as defined by DurationSelect). This

ensures that the set always peaks at the correct point.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 27

Chapter 5 – Comparison of Two Prioritising Algorithms

5.1 Overview

The process of generating a set list involves selecting a track, and then assessing all the other tracks in the

system to find the most appropriate track to be played next. This process obviously requires a mechanism

for prioritising the tracks in the system. I identified two possible approaches to doing this, a hard-rule

approach, and a soft-rule “weightings” approach. My task was to implement both approaches, and then

assess which approach produced the best results.

5.1.1 Hard-Rule Approach

This approach to generating a set list involves applying constraints to all tracks in the system. The purpose

of these constraints is to find all the tracks in the system that are suitable to be played after the most recently

selected track. Those tracks that are deemed suitable are then prioritised to find the single most appropriate

track. This track is then inserted into the set list, and the process repeated: the constraints are applied using

the newly inserted track, and the remaining tracks are prioritised. This approach is hard-ruled as those tracks

that don’t pass the constraints are completely ruled out of being played.

Constraints

The following constraints were developed with help from the end user:

Style Constraint: In the system every track is allocated one of five possible styles: Big Beat, Dark, Jump

Up, Nu Skool, or Techno. The style constraint says which styles can follow which other styles. For

example, if a track has been selected with a Dark style, the next track can only have a Dark, Techno, or Nu

Skool style. Tracks not having these styles i.e. those having a Big Beat or Jump Up style are completely

rejected. This constraint is applied to ensure that two tracks having styles that don’t mix well together are

not selected together in a set list.

Mood Constraint: Section 4.8 explained how 4 set types were identified: Background, Bangin’, Chilled, and

Club. These four set types state what kind of mood constraint should be applied. For example, the Chilled

set type says that the mood must stay between 1 and 2. When using a Chilled set type, every track that does

not have a mood value of 1 or 2 is automatically rejected. The Bangin’ set type says exactly what mood each

track should be. This is captured in a series of arrays. For example, if the user has selected to play a 60-

minute set, and the first 5 tracks had been selected by the system, the next track (track 6) must have mood a

mood value 4 (this is taken from the first array in Fig 4.8). Tracks without mood 4 are completely rejected

regardless of their style and speed.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 28

Speed Constraint: In the system every track is allocated one of five possible speeds. A(<120 bpm), B(120-

129 bpm), C(130-139 bpm), D(140-149bpm), E(150+ bpm). The speed constraint says which speeds can

follow which other speeds. The speed constraint that is used depends on the set type that has been selected.

For a Bangin’ set the speed must gradually increase. For example, if a track has been selected with a B

speed, the next track can only have a B, or C speed. Tracks without these speeds are completely rejected.

For the other three set types the speed can also decrease. For example, if a track has been selected with a B

speed, the next track can have an A, B, or C speed.

The complete constraints can be seen in Appendix F.

Prioritisation

After the constraints have been applied, the remaining appropriate tracks are prioritised to leave the single

most appropriate track. Firstly, the tracks are ordered by popularity, with the highest popularity first. The

user defines the popularity of a track when initially entering the track into the system. If there is more than

one track with the same popularity, those tracks are ordered by the record number, with the highest record

number first. This means that the track from the most recent record would be played before the other tracks.

This gives priority to the newer tracks in his collection. This means that although the actual popularity value

of a track is never automatically decreased, the popularity of a track is indirectly decreased with the addition

of newer tracks to the system.

If there is still no single best track i.e. there is more than one track with the same popularity and record

number that has passed the constraints, the tracks are ordered by the last played date, with latest last played

date first. The last played date of a track is updated automatically when the track is on a set list, and the user

‘confirms’ the set list will be played. The user ‘confirms’ a set list will be played by simply clicking on a

button that executes an UPDATE SQL statement, updating the last played date.

This prioritisation was easy to achieve by adding the following ORDER BY clause at the end of the SQL

query:

ORDER BY Track.Popularity DESC, Record.Record_Number DESC, Track.LastPlayed;

In the unlikely circumstance that there is still no single best track after ordering by the last played date, the

track is selected according to how the software orders the tracks.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 29

Example

The following example will help to explain exactly how the constraints are applied: Track X is the first track

inserted into the set list:

 Style Speed Mood Popularity Record No Last Played

Track X Big Beat A 2 8 34 1/3/01

The user has selected a Chilled set type. This means that the mood must stay between 1 and 2. The most

appropriate track must be selected from the following 10 tracks:

 Style Speed Mood Popularity Record No Last Played

Track A Nu Skool A 1 8 23 1/3/01

Track B Big Beat D 2 9 34 23/3/01

Track C Techno A 1 6 12 2/12/00

Track D Nu Skool B 4 7 35 1/3/01

Track E Dark A 2 5 11 16/12/00

Track F Dark D 5 7 22 1/3/01

Track G Nu Skool C 2 6 32 2/12/00

Track H Big Beat A 2 8 45 1/3/01

Track I Jump Up A 1 7 21 1/3/01

Track J Big Beat B 1 8 17 23/3/01

The shaded tracks (tracks B - G) were rejected when the constraints were applied. The values that violated

the constraints are displayed in bold. Tracks C, E and F were rejected due to violating the style constraint.

Tracks B, F and G all violated the speed constraint. These three tracks were all too fast to follow track X.

Tracks A, H, I and J remained after the constraints had been enforced:

 Style Speed Mood Popularity Record No Last Played

Track A Nu Skool A 1 8 23 1/3/01

Track H Big Beat A 2 8 45 1/3/01

Track I Jump Up A 1 7 21 1/3/01

Track J Big Beat B 1 8 45 23/3/01

These tracks were firstly ordered by popularity. Track I was rejected as the other three tracks all had higher

popularity values. As all three tracks had popularity values of 8, they were ordered by the record number to

find the most recent track. Tracks A and J had the highest record number, 45. This means the two tracks are

from the same record. To select the better of these two tracks they were ordered by the last played date.

Track H would be selected to follow track X, as this track had the latest last played date of the two.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 30

5.1.2 Soft -Rule ‘Weighting’ Approach

This approach to generating a set list orders all tracks in the system by multiplying track attributes with

carefully chosen parameters. I needed to write functions to give the attributes style, speed and mood

numerical values. These functions compare how suitable a tracks style, speed, and mood is given the style,

speed, and mood of the track that has just been selected.

The following code shows part of the style function (styleOK), where x is the style of the current track, and y

is the style of the track being compared:

Function styleOK(x As String, y As String) As Double

If x = "Big Beat" And y = "Big Beat" Then

 styleOK = 0.8

ElseIf x = "Big Beat" And y = "Dark" Then

 styleOK = 0.3

ElseIf x = "Big Beat" And y = "Jump Up" Then

 styleOK = 0.7

ElseIf x = "Big Beat" And y = "Nu Skool" Then

 styleOK = 0.4

ElseIf x = "Big Beat" And y = "Techno" Then

 styleOK = 0.3

.

.

Fig 5.1

Please note: This section of the function only shows the values that are assigned if the current style is Big

Beat. The complete function assigns values for all styles in the system.

The speed function (speedOK) for a Bangin’ set works in a similar way: assigning values between 0 and 1

given a tracks speed and a current track speed. For example, if the current speed is B, 0.1 is returned with A,

1 with B, 1 with C, 0.2 with D and 0.1 with E. A separate mood function had to be developed for each set

type, as different values need to be assigned to different moods depending on the set type that has been

selected. The complete style, speed and mood functions can be seen in Appendix G.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 31

After defining the functions, the next step was to write a formula that would assign each track with a value,

thus allowing the tracks to be ranked. Using the weighted sum approach I devised the following formula:

(moodParam * Mood) + (styleParam * Style) + (speedParam * Speed) + (popularityParam * Popularity) +

(recordnumParam * Record_Number) + (lastplayedParam * Date()-LastPlayed)

The moodParam and styleParam etc. are the parameters that will be used. Obviously, each parameter will

be assigned a value. For the mood, style and speed, the functions previously explained will be used.

Date() is a function that returns today’s date. Subtracting the last played date from the current date gives the

number of day’s difference.

The following SQL query (Fig 5.2) uses the formula. As you can see the formula has been translated into

SQL along with the functions, and put in the ORDER BY clause of the statement. The DESC at the end of

the statement orders the tracks in descending order. After computation, the highest scoring track i.e. the

most appropriate track, is found at the top.

SELECT *

FROM nextTrack

ORDER BY

('" & moodParam & "' * banginMood('" & arrayValue & "', Mood)) +

('" & speedParam & "' * speedOK('" & previousSpeed & "', Speed)) +

('" & styleParam & "' * styleOK('" & previousStyle & "', Style)) +

('" & popularityParam & "' * popularity) +

('" & recordnumParam & "' * Record_Number) +

('" & lastplayedParam & "' * (Date() - LastPlayed)) DESC;

Fig 5.2

This approach to generating a set list is soft-ruled as no track is ever completely ruled out of being played.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 32

Example

Using the example from before I will show how the ‘weightings’ approach is applied. Track X is the first

track inserted into the set list:

 Style Speed Mood Popularity Record No Last Played

Track X Big Beat A 2 8 34 1/3/01

The user has selected a Chilled set type. The most appropriate track must be selected from the following 10

tracks:

 Style Speed Mood Popularity Record No Last Played

Track A Nu Skool A 1 8 23 1/3/01

Track B Big Beat D 2 9 34 23/3/01

Track C Techno A 1 6 12 2/12/00

Track D Nu Skool B 4 7 35 1/3/01

Track E Dark A 2 5 11 16/12/00

Track F Dark D 5 7 22 1/3/01

Track G Nu Skool C 2 6 32 2/12/00

Track H Big Beat A 2 8 45 1/3/01

Track I Jump Up A 1 7 21 1/3/01

Track J Big Beat B 1 8 45 23/3/01

The following parameter values will be used for this example:

 moodParam styleParam speedParam popularityParam recordnumParam lastplayedParam

Value 800 800 400 20 10 1

For this example the Date() function would return ‘5/4/01’.

Using the SQL query (Fig 5.2) and functions (Appendix I), a value can be computed for each of the 10

tracks, given track X. For track A the weighted sum would return the following value:

(800 * 1) + (800 * 1) + (400 * 0.4) + (20 * 8) + (10 * 23) + (1 * 35) = 2185

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 33

The remaining 9 tracks were computed as above. The following table shows the values that were returned

for each track:

 Style Speed Mood Popularity Record No Last Played Total

Track A 160 800 800 160 230 35 2185

Track B 320 80 800 180 340 13 1733

Track C 120 800 800 120 120 124 2084

Track D 160 800 0 140 350 35 1485

Track E 120 800 800 100 110 110 2040

Track F 120 80 -800 140 220 35 -205

Track G 160 160 800 120 320 124 1684

Track H 320 800 800 160 450 35 2565

Track I 280 800 800 140 210 35 2265

Track J 320 800 800 160 450 13 2543

The tracks are ranked as follows:

 Value

Rank 1 Track H 2565

Rank 2 Track J 2543

Rank 3 Track I 2265

Rank 4 Track A 2185

Rank 5 Track C 2084

Rank 6 Track E 2040

Rank 7 Track B 1733

Rank 8 Track G 1684

Rank 9 Track D 1485

Rank 10 Track F -205

Track H would be selected to follow track X using the soft-ruled ‘weighting’ approach. The only four

tracks that were left after the constraints were enforced using the hard-ruled approach were tracks A, H, I and

J. These four tracks are all ranked in the top 4 using the ‘weightings’ approach. Both approaches selected

track H as the most appropriate track to follow track X.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 34

5.2 Relative Merits of the Two Approaches

The ‘weightings’ approach allows the user to attach much more accurate values to preferences for the next

track given a current track. If you look at Fig 5.1 you can see that, for example, if the current track has a Big

Beat style, the most preferred style to follow would be Big Beat (reflected by the 0.8 value), followed by

Jump Up (0.7), followed by Nu Skool (0.4), and so on. This accuracy is not possible using the hard-ruled

approach. With that approach, if the current track has a Big Beat style, constraints are applied to say that the

next track must either have a Big Beat style, Jump Up style, or Nu Skool style. Preferences for style are not

stated. Tracks having a Dark or Techno style are completely rejected. Fig 5.1 shows that this is not the case

using the weightings approach. Tracks with Dark or Techno styles are assigned 0.3, making them unlikely to

appear, but still possible.

A major benefit of the ‘weightings’ approach is it can be fine -tuned to reflect how much weight each

constraint should carry. This provides the user with much more flexibility, allowing him to generate

different sets according to the weights used. The hard-rule approach cannot be tuned.

Another advantage of the ‘weightings’ approach is it always ensures the set list is filled according to the

duration specified. This is not the case with the hard-rule approach. For example, track X is inserted into the

set list. Track X has a Dark style and D speed. The hard-rule approach states that the next track must have a

Dark, Techno or Nu Skool style, and a D or E speed. There is a track in the system that fits this (this track

has mood 3). But, the user has selected a Bangin’ set type, meaning that the mood of the next track must be

4. This now means there is no track in the system that passes all three constraints. This would produce a

message informing the user that the system has been unable to fill the set list with enough tracks.

With the ‘weightings’ approach, although a track may not strictly pass all constraints defined in the hard-rule

approach, the most appropriate track is always computed. This is better under most circumstances, as it does

not leave the user with incomplete set lists, although the hard-rule approach does always ensure that two

incompatible tracks are never played together.

The weightings approach reflects much more closely how humans think. For example, in reality if track Y is

perfect to follow track X, apart the fact that the two tracks styles do not match according to the style

constraint, they would still be played together. The other track attributes ‘out-weigh’ the fact that the two

styles may not be ideally matched. This is how the ‘weightings’ approach works. The hard-rule approach

would simply reject track Y, and search for another track.

The overall project aim was to capture the knowledge of my end user using IT, and use this knowledge to

automate the process of generating a set list. The ‘weightings’ approach is more successful at achieving this

aim.

A Set List Generator for a DJ Comparison of Two Prioritising Algorithms

David Ogle 35

5.3 Role of the End User

After implementing and testing the two approaches the role of the end user was to assess which of the two

approaches produced the best results. This involved getting the end user to generate a series of sets using

each approach. He spent a good deal of time playing some of these sets, to see how the tracks were mixing

together.

5.3.1 Fine-Tuning

To ensure that the end user was getting the best from the ‘weightings’ approach I spent a good deal of time

with him fine-tuning the settings. This is explained in section 4.7.

I have implemented a weight settings control form, which gives the user flexibility, allowing him to alter the

settings as he wishes (Fig 4.5). This form allows him to return to the default settings we decided upon, any

time he wishes.

5.3.2 End User Feedback

After using both approaches my end user has decided that the ‘weightings’ approach is the better of the two

approaches. Firstly, he preferred that the ‘weightings’ approach always gave a complete set list. The hard-

rule approach sometimes leaves the set list incomplete, if none of the tracks in the system pass the

constraints, requiring the user to add tracks to the set list. He was also impressed with the settings control

form, as it gives him much more control over the type of set he generates each time.

Overall he identified that the ‘weightings’ approach was including a greater proportion of his better tracks in

the set lists it generated.

A Set List Generator for a DJ Testing

David Ogle 36

Chapter 6 – Testing

6.1 Testing the System

Testing is essential to ensure every part of the system is functioning correctly. The system has been tested

throughout its development i.e. as a new function was added to the system it was tested to ensure it was

working correctly. Now the system is complete, the system needs to be tested as a whole.

6.1.1 Testing the Interface

The interface allows the user to enter data into the system, and search for specific data. The forms need to be

thoroughly tested to ensure invalid data cannot be accepted by the system, and everything is working as

required. The following checks were made:

1) The data accepted by a field was valid. This involved attempting to enter invalid data into each field to

ensure it could not be accepted. For example, trying to enter text into a date field. I found that no field

would accept invalid data.

2) The fields won’t accept null values. I firstly attempted to save a null Label on the ‘Add Label’ sub-form.

I found that the actually system tried to save the null value, causing an uninformative error message to be

produced by Microsoft Access. After looking at the code I realised what I had done wrong. I currently set

the default value for the field to “”, which gave the appearance of a blank field. In the code I then checked to

see if the field value was “”. If so an error message was produced. I realised that this is fine if the user goes

straight to the Save Label button. The problem comes when the user enters a label, deletes the label, and

then attempts to save the label, because the “” would be deleted. To solve this problem I removed the default

value, and used the IsNull function to check for a null value. This now works correctly. I needed to make

this same update on all the other forms used for data input.

After updating the code, no field would accept a null value. When attempting to save a null value the system

produces an informative error message informing the user they cannot leave any fields blank.

3) The primary key fields won’t accept non-unique values. I firstly needed to ensure I couldn’t save a non-

unique Record Number to the ‘Record’ table. After attempti ng to enter a Record Number that already

existed the system produced an error message.

I also needed to ensure that a non-unique neighbouring relationship wouldn’t be saved to the system. After

attempting to re-define a neighbouring relationship that already existed, the system didn’t detect it, causing

an uninformative error message being produced by Microsoft Access complaining about key violations. I

needed to detect for this so an informative message could be produced to the user in future.

A Set List Generator for a DJ Testing

David Ogle 37

To achieve this I altered the code so it would search for the proposed neighbouring relationship, before

attempting to save it to the system. If the neighbouring relationship already exists an error message is now

produced. I also made this alteration on the Generate Set List form.

4) The command buttons all work as required. I clicked on every command button in the system and

observed whether they were working as expected. I found that every command button in the system was

working correctly.

5) The search facilities find the correct data. I needed to test each of the search combo-boxes to ensure they

filtered the data correctly. Every search combo-box in the system filtered the data correctly.

6) The data displayed to the user cannot be edited. It is important that the user cannot edit the data that is

being displayed to them, for example on the search screens. I attempted to edit every field, and found that

some of the fields could actually be edited. To solve this I altered the properties of each field that could be

edited.

The complete testing results can be seen in Appendix I.

6.1.2 Testing the Set List Generator

The set list generator needed to be fully tested to ensure every aspect of the generation process was working

correctly. The following were tested:

The most appropriate starting tracks were getting selected

The first step in the set list generation process is to select the most appropriate starting track . The most

appropriate starting track differs for the set type selected, so I tested each set type in turn. For testing I

entered the following 4 tracks into the system, and generated a set list for each set type. The popularity

value and last start date assigned for each of the four tracks were exactly the same. This means the track

with the higher record number would be given preference over another track also having a suitable mood.

 Start Set Mood Record No

Track 1 Yes 1 56

Track 2 Yes 1 57

Track 3 Yes 2 58

Track 4 Yes 3 59

Bangin’: This set requires the starting track to have mood 1. Track 2 was selected. ✔

Chilled: This set requires the starting track to have mood 1 or 2. Track 3 was selected. ✔

Club: This set requires the starting track to have mood between 2 and 4. Track 4 was selected. ✔

A Set List Generator for a DJ Testing

David Ogle 38

Background: This set requires the starting track to have any mood. Track 4 was selected. ✔

The start track selected for each set type was as expected.

The most appropriate finishing tracks were getting selected

To test the most appropriate finishing tracks were getting selected my plan was to generate a 30-minute set,

and analyse whether the most appropriate track had been selected to finish the set. To make this easier I set

all tracks in the system to Finish Set = ‘No’, and then entered the following four tracks into the system. The

style, speed and popularity values, and finish date assigned for each of the four tracks were exactly the same.

I assigned the tracks low popularity values to ensure they were not selected before the end of the set. I again

tested each set type in turn.

 Finish Set Mood Record No

Track 1 Yes 1 56

Track 2 Yes 2 57

Track 3 Yes 3 58

Track 4 Yes 4 59

Bangin’: The finishing track would preferably have mood 4. Track 4 was selected. ✔

Chilled: The finishing track would preferably have mood 1 or 2. Track 2 was selected. ✔

Club: The finishing track would preferably have a mood between 2 and 4. Track 4 was selected. ✔

Background: The finishing track could have any mood. Track 4 was selected. ✔

The finishing track selected for each set type was as expected.

The starting style feature works

The starting style feature allows the user to select the style they want the starting track to be. I generated a

series of set lists, changing the starting style each time. The starting track had the required style in each case.

The correct number of tracks is selected according to the duration selected

I estimated that a 30-minute set should include 8 tracks. I generated a 30-minute, and it included 8 tracks.

The weight settings affect the set generation in the correct way

Each constraint contributes different weights to the prioritisation of tracks. To ensure each constraint was

functioning correctly I tested each one separately. I achieved this by lowering every other constraint to 0 on

the Custom Weight Settings form, meaning they contributed nothing to the prioritisation, and increasing the

constraint I was testing to 1000. I then generated a 40-minute set and observed whether the tracks selected

correctly followed the constraint I was enforcing.

A Set List Generator for a DJ Testing

David Ogle 39

Mood

The mood is selected according to the set type selected by the user, so I tested each set type individually:

Bangin’: The mood of each track fit perfectly with the array for a 40-minute set. ✔

Chilled: The mood remained between 1 and 2 throughout. ✔

Club: The mood remained between 2 and 4 throughout. ✔

Background: Any mood was selected. ✔

Speed

After selecting a Bangin’ set, the speed of the set gradually increased. ✔ For the other three set types the

speed always either gradually increased or decreased. ✔

Style

I set the style of the starting track to be Dark. In selecting the next track to follow, the style function gives

the highest values to those tracks also with a Dark style. Every track in the 40-minute set I generated had a

Dark style. ✔

Popularity

To make this easier I decreased the popularity value of all tracks in the system to 1. I then added 8 tracks,

and assigned a higher popularity value to each new track I added. The tracks with the highest popularity

were selected first. ✔

Last Played

I altered the last played dates of several tracks on the set list and generated a 30-minute set. The tracks with

the latest last played date were selected first. ✔

Record Number

I generated a 30-minute set, and the tracks from the highest records were selected first. ✔

The most appropriate track was selected each time

I needed to ensure the track being selected each time was actually the most appropriate. To test this my plan

was to generate a 30-minute set, and then analyse the entire set list to ensure the most appropriate track was

selected each time. To make this easier I lowered the popularity values of all the tracks in the system. I then

entered 8 new tracks into the system, and gave the tracks high popularity values. From the style, speed and

mood etc. I assigned to each track, I was able to predict the order in which the tracks would appear on the set

list. I generated a 30-minute set using the Bangin’ set type. The tracks appeared in the order I had predicted.

The report for the generated set list can be seen in Appendix I.

A Set List Generator for a DJ Testing

David Ogle 40

The random number generation was working

To give variety to the set lists the code generates a random number between 1 and 20, and executes a certain

section of code depending on the number that is generated:

A) Between 1 and 10: Insert the most appropriate track from the current playlist.

B) Between 11 and 19: Insert a neighbouring track of the previous track, if the previous track has a

neighbouring track.

C) 20: Insert the most appropriate classic track.

To test this was working correctly I updated the code so that a message box would appear each time and

inform me which of the three sections of code had been accessed. I generated 5 60-minute sets, and recorded

the results:

 1 2 3 4 5 Total %

A 11 13 13 12 12 61 54

B 14 7 8 8 11 48 42

C 0 0 2 2 0 4 4

Totals 25 20 23 22 23 113 100

In theory, A has a 50% probability of occurring, B 45% probability and C 5% probability. The results I

obtained are very close to these expected results.

The neighbouring tracks feature was working

To test whether the neighbouring tracks feature was working correctly I generated a 30-minute set, and

analysed each of the 8 tracks to see if they had a neighbouring track. If so, I then checked to see whether the

neighbouring track had been either included on the set list, or included on the currently un -selected

neighbouring track list. Of the 8 tracks on the set list I found 2 had neighbouring tracks:

Track 2 had 2 neighbouring tracks. 1 was inserted as a neighbouring track i.e. as track 3, and the other

appeared on the currently un-selected neighbouring track list. ✔

Track 5 had 1 neighbouring track. This track was inserted as a neighbouring track i.e. as track 6. ✔

A Set List Generator for a DJ Testing

David Ogle 41

The classic track feature was working

As the probability of a classic track appearing is low, I altered the random number generation to highly

increase the probability of a classic track appearing. This allowed me to better test the following:

a) A classic track is never included in the first 30 minutes of a set.

In the series of 60-minute sets I generated a classic track never appeared within the first 30 minutes. ✔

b) Classic tracks are never played straight after each other.

There was never a case where two classic tracks were played straight after each other. ✔

c) The include classic check box was working.

The Include Classic Tracks checkbox allows the user to define whether they want classic tracks including in

the set list. To test this I unchecked the box, and generated a series of 60-minute sets. No classic tracks were

ever included. ✔

The re -use feature was working

The theory behind the Re-Use attribute attached to each record is, if Re-Use is set to ‘No’, when a track from

that record has been selected for the set list, no other track from that record can be selected. If Re-Use is set

to ‘Yes’, when a track from the record has been selected for the set list, other tracks from that record can also

be selected. This effect is achieved by running an SQL UPDATE query when a track has been inserted into

the set list, to set the Selected value to ‘Yes’ on all other tracks from the record if Re-Use is set to ‘No’ on

their record.

To test the re-use feature was working I generated a 60-minute set. I observed it wasn’t working correctly,

as sometimes more than one track from a record having Re-Use set to ‘No’ was been included on the same

set list. After debugging I realised the SQL UPDATE query was wrong:

UPDATE Track SET Selected = yes WHERE Record_Number = RecordNumberBox.value AND

Reuse = no;

The problem was, the query didn’t join the ‘Track’ table with the ‘Record’ table, and therefore had no way of

knowing whether the track was from a record that couldn’t be reused.

The following is the updated query:

UPDATE Track INNER JOIN record ON Track.Re cord_Number = Record.Record_Number

SET Selected = yes WHERE Record.Record_Number = RecordNumberBox.value AND

Record.Reuse = no;

A Set List Generator for a DJ Testing

David Ogle 42

I repeated the testing after updating the query, and found it was working correctly.

The warnings appear at the correct time

The system should provide the following warnings:

No Starting Track

This warning appears to inform the user there was no suitable starting track. To test this was working I

ensured there was no suitable starting track, and then generated a set. The system firstly provided a message

box, and then the warning appeared on-screen. ✔

Duration less than specified

This warning appears to inform the user the specified duration could not be filled. To test this I generated a

500-minute set. The system firstly provided a message box, and then the warning appeared on-screen. ✔

No Finishing Track

This warning appears to inform the user there was no suitable finishing track. To test this was working I

ensured there was no suitable finishing track, and then generated a set. The system firstly provided a

message box, and then the warning appeared on-screen. ✔

Record(s) Re-used

This warning appears to inform the user more than one track from the same record is included on the set list.

To test this warning was working correctly I generated a 60-minute set, and went through the set list to see

whether the same record appeared more than once. A record appeared twice, and the warning appeared on-

screen. ✔ I then generated a 30-minute set, and noticed that no record had been re-used. On this occasion

the warning was not produced. ✔

The last played date was updated correctly

When a user selects to accept a set list, the Last Played date of each track on the set list should be updated to

the Gig Date entered. The Last Start date of the starting track, and the Last Finish date of the finishing track

should also be updated. To test this I generated a 30-minute set, clicked on the Accept Set List button, and

checked the dates of the tracks on the set list. All dates had been updated as required. ✔

Results of System Testing

I can conclude that every aspect of the system has been thoroughly tested. The user cannot enter invalid

data, and the set list generator is now working as required. All errors detected during testing have been

rectified.

A Set List Generator for a DJ Testing

David Ogle 43

6.2 User Acceptance Testing

User acceptance testing is an essential activity that should be undertaken to ensure the user is getting what

they actually wanted from the system. This involved getting the end user to test the system against the

system requirements we set. The results of this testing can be seen in Appendix J. They show the system I

have developed provides the functionality required by the user.

A Set List Generator for a DJ Evaluation & Future Developments

David Ogle 44

Chapter 7 – Evaluation and Future Dev elopments

7.1 System Evaluation

Overall, I believe I have developed a system that is fundamentally correct and user-friendly. The overall aim

for the project was “to capture the knowledge of a DJ using IT, and use this knowledge to automate the

process of generating a set list”. I firmly believe this aim has been achieved. The first challenge was to

devise a knowledge capture model. I came up with two such models, a hard-rule model and a weightings

model. The next challenge was to use these models to actually capture the knowledge of the DJ. Both

models successfully achieved this. The weightings model became the preferred model after fine-tuning the

weights with the DJ, producing set lists very similar to set lists the DJ would prepare.

The user acceptance testing confirmed that all functional and non-functional requirements have been met.

The end user has tested the user interface. He found it very useable, and was able to successfully enter a

number of records into the system. The DSDM methodology ensured the user was actively involved in the

development of the system. This gave me the flexibility to deal with the changing system requirements

throughout the course of the project, ensuring the end product was what the end user actually wanted.

A limiting factor for most systems is data input. In the system I have developed, each track must have

accurate values for its attributes, such as mood and style, in order to accurately capture that the end users

knowledge. It could be time consuming for the end user to ensure that all tracks in the system are defined

accurately. Another restriction with the system is the user has to manually remove the tracks he doesn’t want

appearing on the set lists, from the current playlist. This could again be time consuming. A major reason for

developing the system was to save the end user time; yet having to spend time keeping a system up-to date

creates work in itself!

Only about a third of my end users records are currently stored in the system. The system is currently

generating the kind of set lists he is looking for, but after entering all records from the collection there is no

guarantee that the system will continue to be as successful. He is optimistic that the system will be of real

use to him, but only time will tell. He will definitely continue to use the input and retrieval section of the

system, as it allows him to keep an accurate track of all the records in his collection.

He did raise an important point: the system could never fully determine the tracks that are played during a

set, as many other factors come into it in reality. For example, the crowd’s reaction to certain tracks may

mean that tracks other than the ones planned on the set list should be played. Playing a DJ set could never be

fully automated!

A Set List Generator for a DJ Evaluation & Future Developments

David Ogle 45

7.2 Future Enhancements

There are a number of features I would like to add to my current system, if time permitted.

Firstly, I would add a graph feature to the system, whereby the user would be presented with a blank graph

of mood against time, and would be able to draw a custom graph for a set. This would determine the mood

of the tracks selected, and give the user maximum flexibility to generate the exact set they are looking to

play.

It would also be nice to provide full on-line help, which would be specific to the area of the system the user

is currently having problems with. The user manual I developed is useful, but users generally prefer on-line

help as opposed to reading a manual.

In my mid-project report I stated the following objective should be completed if time permitted:

Design and implement a system that will extract specific records from a long list of newly released records,

using keywords.

The lists of newly released records are sent to my end user via e-mail each month as text files, and give

information such as the label and artist of the new records to be released. Unfortunately, I didn’t have time

to provide a solution to this problem, but given more time it would provide me with an excellent opportunity

to link the system I have developed with the key word searching of the text files. The search criteria could

be taken from the database, and used in the search. For example, software could be written to find if any of

the label’s stored in the database are found in the text file.

In response to the data input problem, a possible enhancement would be to use auto-analysis software, which

could for example, be trained to identify a tracks speed and style. Such software could be used when

inputting a new record into the system. This would somewhat reduce the data input required by the user of

the system.

A Set List Generator for a DJ References

David Ogle 46

References

Avison, D and Fitzgerald, G , Information Systems Development: Methodologies, Techniques and Tools,

Second Edition, McGraw-Hill, 1995

Elmasri, R and Navathe, S, Fundamentals of Database Systems: Third Edition, Addison-Wesley, 1999

Gaskell, R, A WWW Real Ale Guide to Leeds, 1998

Johnson, P, Human Computer Interaction: psychology, task analysis and software engineering, McGraw-

Hill Book Company, 1992

Lau, L and McCormack, J , IN22 (Fourth Generation Languages and Prototyping) Notes, School of

Computing, University of Leeds, 2000

Linscott, G, A User-Friendly Information System and Web Site for Armour Services Ltd, 1999

Mott, P and Roberts , S, DB11 (Introduction to Databases) Notes, School of Computing, University of

Leeds, 1998

Roberts, S, DB21 (Database Principles and Practice) Notes, School of Computing, University of Leeds,

1999

Sutcliffe, S, An Online Mortgage Quotation and Application System, 1999

On-Line Resources

Microsoft Corporation, http://www.microsoft.com

(last visit: 6/12/2000)

Song Librarian 2.0, http://www.hitsquad.com/smm/programs/The_Song_Librarian/

(last visit: 9/11/2000)

A Set List Generator for a DJ Appendix A

David Ogle

Appendix A – Project Reflection

The project proved to be challenging at times, but overall it proved to be both an enjoyable and interesting

experience. I have fulfilled all objectives of this project I initially set out to achieve, within the deadline I

was given. I am personally very pleased with the final system I have developed, and am hopeful it will be

put to some use.

I have gained a number of valuable skills through the course of the project, both technical and non-technical,

that I will be able to put to use in my future career. Technical skills include database design, Microsoft

Access, SQL, Visual Basic, and technical report writing. Non-technical skills cover things such as time

management, and conducting meetings.

I was pleased with my selection of tools to develop the system. Microsoft Access proved to be a very useful

tool for prototyping. I found I could quickly develop an interface using the controls provided by the

software, such as command buttons and combo boxes, and later add functionality using VBA.

As my user was also very busy it made it quite difficult to find time for meetings, as he obviously had more

important priorities than my system. This meant that when we did get chance to meet it was essential that

the meeting was planned fully beforehand, to ensure I obtained everything from the meeting I required.

The main criticism I have of the way I developed the system was my failure to comment the code during

implementation. This meant that when revisiting the code months later I sometimes found it difficult to

understand what the code was actually doing, or why I had chosen to do it a particular way. I eventually

managed to comment the code, but I could have saved myself a lot of effort by commenting as I was coding.

A Set List Generator for a DJ Appendix B

David Ogle

Appendix B – Project Sc hedule

A Set List Generator for a DJ Appendix C

David Ogle

Appendix C – Data Dictionary

Label

Field Name Data Type Description
Label_ID AutoNumber Primary key, unique label identifier
Label Text Name of the label

Record

Field Name Data Type Description
Record_Number Number Primary key, unique number given to each record
Record_Title Text Title of the record
Label_ID Number Foreign key from the ‘Label’ table
Reuse Yes/No Can more then one track from the record be selected on

the same set list?

Track

Field Name Data Type Description
Track_ID AutoNumber Primary key, unique track identifier
Record_Number Number Foreign key from the ‘Record’ table
Track_Title Text Title of the track
Mix Text Mix of the track
Side Text The side of the record the track is on
Style Text The style of the track
Speed Text An estimated speed of the track in BPM
Popularity Number A number between 1 and 9 reflecting how popular the

track is
Mood Number A number between 1 and 5 reflecting the stage in the

set where the track is best played (1 = start of set, 5 =
end of set)

Start_Set Yes/No Would the track ever start a set?
Finish_Set Yes/No Would the track ever finish a set?
CurrentPlaylist Yes/No Is the track on the current playlist? Tracks on the

current playlist can be selected for each set list
generated

Classic Yes/No Is the track a classic? A classic track can be selected
once in a while

LastPlayed Date/Time When was the track last played?
LastStart Date/Time When did the track last start a set?
LastFinish Date/Time When did the track last finish a set?
Selected Yes/No Is the track currently on the set list?

Artist

Field Name Data Type Description
Artist_ID AutoNumber Primary key, unique artist identifier
Artist Text Name of the artist

Track Artist

Field Name Data Type Description
Artist_ID Number Primary key from the ‘Artist’ table
Track_ID Number Primary key from the ‘Track’ table

A Set List Generator for a DJ Appendix C

David Ogle

NeighbouringTrack

Field Name Data Type Description
Track_ID Number Primary key, first track in the neighbouring

relationship
NeighbouringTrack_ID Number Primary key, second track in the neighbouring

relationship

A Set List Generator for a DJ Appendix D

David Ogle

Appendix D – Database Relationship Diagram

The ‘Track’ table appears twice on the diagram. This is to ensure referential integrity is upheld between both

tracks in the ‘NeighbouringTrack’ table.

A Set List Generator for a DJ Appendix F

David Ogle

Appendix E – System Interface

A Set List Generator for a DJ Appendix F

David Ogle

Appendix F – Hard-Rule Constraints

Style Constraint

Style Follow-on Style
Dark Dark
Dark Nu Skool
Dark Techno
Big Beat Big Beat
Big Beat Jump Up
Big Beat Nu Skool
Jump Up Big Beat
Jump Up Jump Up
Jump Up Nu Skool
Nu Skool Dark
Nu Skool Big Beat
Nu Skool Jump Up
Nu Skool Nu Skool
Nu Skool Techno
Techno Dark
Techno Nu Skool
Techno Techno

Bangin’ Speed Constraint

Speed Follow-on Speed
A A
A B
B B
B C
C C
C D
D D
D E
E E

Normal Speed Constraint

Speed Follow-on Speed
A A
A B
B A
B B
B C
C B
C C
C D
D C
D D
D E
E D
E E

A Set List Generator for a DJ Appendix G

David Ogle

Appendix G – Weightings Functions

Style Function

If x = "Big Beat" And y = "Big Beat" Then
 styleOK = 0.8

ElseIf x = "Big Beat" And y = "Dark" Then
 styleOK = 0.3

ElseIf x = "Big Beat" And y = "Jump Up" Then
 styleOK = 0.7

ElseIf x = "Big Beat" And y = "Nu Skool" Then
 styleOK = 0.4

ElseIf x = "Big Beat" And y = "Techno" Then
 styleOK = 0.3

ElseIf x = "Dark" And y = "Big Beat" Then
 styleOK = 0.4

ElseIf x = "Dark" And y = "Dark" Then
 styleOK = 0.9

ElseIf x = "Dark" And y = "Jump Up" Then
 style OK = 0.7

ElseIf x = "Dark" And y = "Nu Skool" Then
 styleOK = 0.7

ElseIf x = "Dark" And y = "Techno" Then
 styleOK = 0.5

ElseIf x = "Jump Up" And y = "Big Beat" Then
 styleOK = 0.5

ElseIf x = "Jump Up" And y = "Dark" Then
 styleOK = 0. 5

ElseIf x = "Jump Up" And y = "Jump Up" Then
 styleOK = 0.8

ElseIf x = "Jump Up" And y = "Nu Skool" Then
 styleOK = 0.6

ElseIf x = "Jump Up" And y = "Techno" Then
 styleOK = 0.3

ElseIf x = "Nu Skool" And y = "Big Beat" Then
 styleOK = 0.6

ElseIf x = "Nu Skool" And y = "Dark" Then
 styleOK = 0.5

ElseIf x = "Nu Skool" And y = "Jump Up" Then
 styleOK = 0.8

ElseIf x = "Nu Skool" And y = "Nu Skool" Then
 styleOK = 0.9

ElseIf x = "Nu Skool" And y = "Techno" Then
 styleOK = 0. 3

ElseIf x = "Techno" And y = "Big Beat" Then
 styleOK = 0.8

ElseIf x = "Techno" And y = "Dark" Then

A Set List Generator for a DJ Appendix G

David Ogle

 styleOK = 0.7

ElseIf x = "Techno" And y = "Jump Up" Then
 styleOK = 0.3

ElseIf x = "Techno" And y = "Nu Skool" Then
 styleOK = 0.6

El seIf x = "Techno" And y = "Techno" Then
 styleOK = 0.8

End If
End Function

Bangin’ Speed Function

Function speedOK(x As String, y As String) As Double

If x = "A" And y = "A" Then
 speedOK = 1

ElseIf x = "A" And y = "B" Then
 speedOK = 1

ElseIf x = "A" And y = "C" Then
 speedOK = 0.2

ElseIf x = "A" And y = "D" Then
 speedOK = 0.1

ElseIf x = "A" And y = "E" Then
 speedOK = 0

ElseIf x = "B" And y = "A" Then
 speedOK = 0.1

ElseIf x = "B" And y = "B" Then
 speedOK = 1

ElseIf x = "B" And y = "C" Then
 speedOK = 1

ElseIf x = "B" And y = "D" Then
 speedOK = 0.2

ElseIf x = "B" And y = "E" Then
 speedOK = 0.1

ElseIf x = "C" And y = "A" Then
 speedOK = 0

ElseIf x = "C" And y = "B" Then
 speedOK = 0.1

ElseIf x = "C" And y = "C" Then
 speedOK = 1

ElseIf x = "C" And y = "D" Then
 speedOK = 1

ElseIf x = "C" And y = "E" Then
 speedOK = 0.2

ElseIf x = "D" And y = "A" Then
 speedOK = 0

A Set List Generator for a DJ Appendix G

David Ogle

ElseIf x = "D" And y = "B" Then
 speedOK = 0

ElseIf x = "D" And y = "C" Then
 speedOK = 0.1

ElseIf x = "D" And y = "D" Then
 speedOK = 1

ElseIf x = "D" And y = "E" Then
 speedOK = 1

ElseIf x = "E" And y = "A" Then
 speedOK = 0

ElseIf x = "E" And y = "B" Then
 speedOK = 0

Els eIf x = "E" And y = "C" Then
 speedOK = 0.1

ElseIf x = "E" And y = "D" Then
 speedOK = 0.2

ElseIf x = "E" And y = "E" Then
 speedOK = 1

End If
End Function

Normal Speed Function

Function normalSpeedOK(x As String, y As String) As Double

If x = "A" And y = "A" Then
 normalSpeedOK = 1

ElseIf x = "A" And y = "B" Then
 normalSpeedOK = 1

ElseIf x = "A" And y = "C" Then
 normalSpeedOK = 0.2

ElseIf x = "A" And y = "D" Then
 normalSpeedOK = 0.1

ElseIf x = "A" And y = "E" Then
 normalSpeedOK = 0

ElseIf x = "B" And y = "A" Then
 normalSpeedOK = 1

ElseIf x = "B" And y = "B" Then
 normalSpeedOK = 1

ElseIf x = "B" And y = "C" Then
 normalSpeedOK = 1

ElseIf x = "B" And y = "D" Then
 normalSpeedOK = 0.2

ElseI f x = "B" And y = "E" Then
 normalSpeedOK = 0.1

ElseIf x = "C" And y = "A" Then
 normalSpeedOK = 0.1

A Set List Generator for a DJ Appendix G

David Ogle

ElseIf x = "C" And y = "B" Then
 normalSpeedOK = 1

ElseIf x = "C" And y = "C" Then
 normalSpeedOK = 1

ElseIf x = "C" And y = "D" Then
 normalSpeedOK = 1

ElseIf x = "C" And y = "E" Then
 normalSpeedOK = 0.2

ElseIf x = "D" And y = "A" Then
 normalSpeedOK = 0

ElseIf x = "D" And y = "B" Then
 normalSpeedOK = 0.1

ElseIf x = "D" And y = "C" Then
 normalSpeedOK = 1

Else If x = "D" And y = "D" Then
 normalSpeedOK = 1

ElseIf x = "D" And y = "E" Then
 normalSpeedOK = 1

ElseIf x = "E" And y = "A" Then
 normalSpeedOK = 0

ElseIf x = "E" And y = "B" Then
 normalSpeedOK = 0.1

ElseIf x = "E" And y = "C" Then
 normalSpeedOK = 0.2

ElseIf x = "E" And y = "D" Then
 normalSpeedOK = 1

ElseIf x = "E" And y = "E" Then
 normalSpeedOK = 1

End If
End Function

Bangin’ Mood Function

Function banginMood(x, y) As Double

If x = "1" And y = "1" Then
 banginMo od = 1

ElseIf x = "1" And y = "2" Then
 banginMood = 0.2

ElseIf x = "1" And y = "3" Then
 banginMood = 0

ElseIf x = "1" And y = "4" Then
 banginMood = 0

ElseIf x = "1" And y = "5" Then
 banginMood = 0

ElseIf x = "2" And y = "1" Then
 b anginMood = 0

A Set List Generator for a DJ Appendix G

David Ogle

ElseIf x = "2" And y = "2" Then
 banginMood = 1

ElseIf x = "2" And y = "3" Then
 banginMood = 0.2

ElseIf x = "2" And y = "4" Then
 banginMood = 0

ElseIf x = "2" And y = "5" Then
 banginMood = 0

ElseIf x = "3" And y = "1" The n
 banginMood = 0

ElseIf x = "3" And y = "2" Then
 banginMood = 0

ElseIf x = "3" And y = "3" Then
 banginMood = 1

ElseIf x = "3" And y = "4" Then
 banginMood = 0.2

ElseIf x = "3" And y = "5" Then
 banginMood = 0

ElseIf x = "4" And y = "1" Then
 banginMood = 0

ElseIf x = "4" And y = "2" Then
 banginMood = 0

ElseIf x = "4" And y = "3" Then
 banginMood = 0

ElseIf x = "4" And y = "4" Then
 banginMood = 1

ElseIf x = "4" And y = "5" Then
 banginMood = 0.2

ElseIf x = "5" A nd y = "1" Then
 banginMood = 0

ElseIf x = "5" And y = "2" Then
 banginMood = 0

ElseIf x = "5" And y = "3" Then
 banginMood = 0

ElseIf x = "5" And y = "4" Then
 banginMood = 0.1

ElseIf x = "5" And y = "5" Then
 banginMood = 1

End If
End Function

Chilled Mood Function

Function chilledMood(x) As Double

If x = "1" Then
 chilledMood = 1

A Set List Generator for a DJ Appendix G

David Ogle

ElseIf x = "2" Then
 chilledMood = 1

ElseIf x = "3" Then
 chilledMood = 0.5

ElseIf x = "4" Then
 chilledMood = 0

ElseIf x = "5" T hen
 chilledMood = - 1

End If
End Function

Club Mood Function

Function clubMood(x As Integer) As Double

If x = "1" Then
 clubMood = 0

ElseIf x = "2" Then
 clubMood = 1

ElseIf x = "3" Then
 clubMood = 1

ElseIf x = "4" Then
 clubMoo d = 1

ElseIf x = "5" Then
 clubMood = 0

End If
End Function

A Set List Generator for a DJ Appendix H

David Ogle

Appendix H – Set List Report

A Set List Generator for a DJ Appendix I

David Ogle

Appendix I – System Testing

Main Menu

Action Expected Result Actual Result
Click on the Input New
Record button.

The Add Record form will be opened. As expected.

Click on the Add Track to a
Record button.

The Find Record Extra form will be opened. As expected.

Click on the Find Record
button.

The Find Record form will be opened. As expected.

Click on the Find / Update
Track button.

The Find Track form will be opened. As expected.

Click on the Generate Set
List button.

The Generate Set List form will be opened.

The Custom Weight Settings form will be
opened, but made invisible.

As expected.

As expected.

Click on the View
Neighbouring Tracks button.

The Display Neighbouring Tracks form will be
opened.

As expected.

Click on the Exit Application
button.

The application will be closed. As expected.

Add Record

Action Expected Result Actual Result
On form-open. The value in the Record Number field will be the

value of the maximum record number in the
system + 1.

As expected.

Click on the Add New Label
button.

The Add Label sub-form will be made visible,
and the caption on the button will change to
Cancel.

All controls not on the sub-form will be
disabled.

As expected.

As expected.

Click on the Cancel button. The Add Label sub-form will be made invisible,
and the caption on the button will change back
to Add New Label.

All controls not on the sub-form will be re-
enabled.

As expected.

As expected.

Enter a Label on the Add
Label sub-form, and click on
the Cancel button.

The label will not be saved to the system. As expected.

Click on the Save Label
button without entering a
label.

An error message will be produced. As expected.

Enter a label, delete the
label, and then click on the
Save Label button.

An error message will be produced. The system didn’t detect
the field had been left
null, and attempted to
save a null label to the
system, causing an
error. See comments for
a detailed explanation
and solution.

A Set List Generator for a DJ Appendix I

David Ogle

Enter a Label on the Add
Label sub-form, and click on
the Save Label button.

The label will be saved to the system. This label
will now appear in the Label combo-box on the
Add Record form.

As expected.

Enter a Label that isn’t a
value in the combo-box.

An error message will be produced. As expected.

Select a Label from the
combo-box.

The value will be accepted. As expected.

Enter text into the Record
Number field.

An error message will be produced. As expected.

Enter a unique Record
Number, leave the Title field
blank and click on the Save
Record button.

An error message will be produced. As expected.

Enter a Record Number that
already exists and click on
the Save Record button.

An error message will be produced. As expected.

Enter a valid Label, Record
Number and Title and click
on the Save Record button

The record will be saved to the system, and the
Add Track form will be opened displaying the
Title and Record Number of the record.

The Add Record form will be made invisible.

As expected.

As expected.

Click on the Cancel button. The Add Record form will be closed, and no
record will be saved to the system. You will be
returned to the Main Menu.

As expected.

Comments
To ensure a null value could not be accepted in the Add Label sub-form I set the default value to “”, which
gave the appearance of a blank field. In the code I then checked to see if the field value was “”. If so an
error message was produced. After testing I have realised that this is fine if the user goes straight to the Save
Label button. The problem comes when the user enters a label, deletes the label, and then attempts to save
the label, because the “” would be deleted. To solve this problem I removed the default value, and used the
IsNull function to check for a null value. This now works correctly. I have made the same update on all
the other forms used for data input.

Add Track

Action Expected Result Actual Result
On form-open. The title of record will be set as the Title default,

and the Mix default will be “ORIGINAL”.
As expected.

Enter a value that doesn’t
exist in a combo-box.

An error message will be produced. As expected.

Select valid values from
each combo-box.

They will be accepted. As expected.

Select a valid Speed. The speed in BPM will be displayed next to the
combo-box.

As expected.

Attempt to leave each field
blank, and click on the save
button.

An error message will be produced. As expected.

Enter valid values into each
field and click on the Save
button.

The track will be saved to the system, and the
Add Artist form will be opened displaying the
Title of the track.

The Add Track form will be made invisible.

As expected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Click on the Cancel button. The Add Track form and Add Record form will
be closed, and the track will not be saved to the
system.

As expected.

Add Artist

Action Expected Result Actual Result
Click on the Add New Artist
button.

The Add Artist sub-form will be made visible,
and the caption on the button will change to
Cancel.

All controls not on the sub-form will be
disabled.

As expected.

Click on the Cancel button. The Add Artist sub-form will be made invisible,
and the caption on the button will change back
to Add New Artist.

All controls not on the sub-form will be re-
enabled.

As expected.

As expected.

Enter an Artist on the Add
Label sub-form, and click on
the Cancel button.

The artist will not be saved to the system. As expected.

Click on the Save Artist
button without entering an
artist.

An error message will be produced. As expected.

Enter an Artist on the Add
Artist sub-form, and click on
the Save Artist button.

The artist will be saved to the system. This artist
will now appear in the Artist combo-box on the
Add Artist form.

As expected.

Enter an Artist that isn’t a
value in the combo-box.

An error message will be produced. As expected.

Select an Artist from the
combo-box and click on the
Add Additional Artist button.

The artist will be saved to the track, and artist
combo-box will be cleared and given the focus.

As expected.

Select an Artist from the
combo-box and click on the
Save Artist to Track button.

The artist will be saved to the track, and the Add
Artist, and Add Track forms will be closed.

The Add Record form will remain, with all fields
disabled.

The Add New Record button will be visible.

As expected.

As expected.

As expected.

Click on the Cancel button. No artist will be saved to the track.

The track will be deleted from the system, as
every track must have an artist.

The Add Artist and Add Track forms will be
closed.

The Add Record form will remain, with all fields
disabled. The Add New Record button will
appear.

As expected.

As expected.

As expected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Add Record (a fter a track has been saved to a record)

Action Expected Result Actual Result
On return to form. The Add New Label button is invisible.

The Label, Record Number, Title, and Re-use
fields are not enabled.

The Add New Record button is visible.

As expected.

The Re-use field was
still enabled, so I
corrected the code.

As expected.

Click on the Add Track
button.

The Add Track form will be opened.

The Add Record form will be made invisible.

As expected.

As expected.

Click on the Cancel button. The Add Record form will be closed, and you
will be returned to the Main Menu.

As expected.

Find Record Extra

Action Expected Result Actual Result
Select an option from any
combo-box.

The Display All Records button will become
visible.

As expected.

Select an option from the
Title combo-box.

The records will be filtered according to the title
selected.

As expected.

Select an option from the
Label combo-box.

The records will be filtered according to the
label selected.

As expected.

Select an option from the Re-
use combo-box.

The records will be filtered according to the
selection.

As expected.

Click on the Display All
Records button.

All records will be displayed, and the combo-
boxes will be cleared.

As expected.

Attempt to update the
Record Number.

An update will not be allowed. As expected.

Attempt to update the
Record Title.

An update will not be allowed. As expected.

Attempt to update the Label. An update will not be allowed. As expected.
Click on the Re-use field. If it is currently unselected it will become

selected, and if it is currently selected it will
become unselected.

As expected.

Click on the Delete button. The system will ask for confirmation.

If the selection is ‘no’ the confirmation box will
simply close.

If the selection is ‘yes’ that record, and any
associated tracks will be deleted from the
system.

As expected.

As expected.

As expected.

After deletion the Find
Record form was
opened. After looking
at the code I realised I
had made reference to
the wrong form, so I
corrected it.

A Set List Generator for a DJ Appendix I

David Ogle

Double-Click on the Record
Title.

The Add Track Extra form will be opened
displaying the Title and Record Number of the
record.

The Find Record Extra form will be made
invisible.

As expected.

As expected.

Click on the Exit button. The Find Record Extra form will be closed, and
you will be returned to the Main Menu.

As expected.

Add Track Extra

Action Expected Result Actual Result
On form-open. The title of record will be set as the Title default,

and the Mix default will be “ORIGINAL”.
As expected.

Enter a value that doesn’t
exist in a combo-box.

An error message will be produced. As expected.

Select valid values from
each combo-box.

They will be accepted. As expected.

Select a valid Speed. The speed in BPM will be displayed next to the
combo-box.

As expected.

Attempt to leave each field
blank, and click on the Save
button.

An error message will be produced. As expected.

Enter valid values into each
field and click on the Save
button.

The track will be saved to the system, and the
Add Artist Extra form will be opened displaying
the Title of the track.

The Add Track Extra form will be made
invisible.

As expected.

As expected.

Click on the Cancel button. The Add Track Extra form will be closed, and
the track will not be saved to the system. You
will be returned to the Find Record Extra form.

As expected.

Add Artist Extra

Action Expected Result Actual Result
Click on the Add New Artist
button.

The Add Artist sub-form will be made visible,
and the caption on the button will change to
Cancel.

All controls not on the sub-form will be
disabled.

As expected.

Click on the Cancel button. The Add Artist sub-form will be made invisible,
and the caption on the button will change back
to Add New Artist.

All controls not on the sub-form will be re-
enabled.

As expected.

As expected.

Enter an Artist on the Add
Label sub-form, and click on
the Cancel button.

The artist will not be saved to the system. As expected.

Click on the Save Artist
button without entering an
artist.

An error message will be produced. As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Enter an Artist on the Add
Artist sub-form, and click on
the Save Artist button.

The artist will be saved to the system. This artist
will now appear in the Artist combo-box on the
Add Artist Extra form.

As expected.

Enter an Artist that isn’t a
value in the combo-box.

An error message will be produced. As expected.

Select an Artist from the
combo-box and click on the
Add Additional Artist button.

The artist will be saved to the track, and artist
combo-box will be cleared and given the focus.

As expected.

Select an Artist from the
combo-box and click on the
Save Artist to Track button.

The artist will be saved to the track, and the Add
Artist Extra, and Add Track Extra forms will be
closed.

The Find Record Extra form will remain.

As expected.

As expected.

Click on the Cancel button. No artist will be saved to the track.

The track will be deleted from the system, as
every track must have an artist.

The Add Artist Extra and Add Track Extra forms
will be closed.

The Find Record Extra form will remain.

As expected.

As expected.

As expected.

As expected.

Find Record

Action Expected Result Actual Result
Select an option from any
combo-box.

The Display All Records button will become
visible.

As expected.

Select an option from the
Title combo-box.

The records will be filtered according to the title
selected.

As expected.

Select an option from the
Label combo-box.

The records will be filtered according to the
label selected.

As expected.

Select an option from the Re-
use combo-box.

The records will be filtered according to the
selection.

As expected.

Click on the Display All
Records button.

All records will be displayed, and the combo-
boxes will be cleared.

As expected.

Attempt to update the
Record Number.

An update will not be allowed. The Record Number
could be updated, so I
changed the field
property.

Attempt to update the
Record Title.

An update will not be allowed. As expected.

Attempt to update the Label. An update will not be allowed. As expected.
Click on the Re-use field. If it is currently unselected it will become

selected, and if it is currently selected it will
become unselected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Click on the Delete button. The system will ask for confirmation.

If the selection is ‘no’ the confirmation box will
simply close.

If the selection is ‘yes’ that record, and any
associated tracks will be deleted from the
system.

As expected.

As expected.

As expected.

Double-Click on the Record
Title.

The Find Track will be opened, displaying all
tracks from the record.

All search combo-boxes will be disabled.

The Find Record form will be made invisible.

As expected.

As expected.

As expected.

Click on the Exit button. The Find Record form will be closed, and you
will be returned to the Main Menu.

As expected.

Find Track

Action Expected Result Actual Result
Select an option from any
combo-box.

The Display All Tracks button will become
visible.

As expected.

Select valid values from
each search combo-box.

They data will be filtered accordingly. As expected.

Click on the Display All
Tracks button.

All records will be displayed, and the combo-
boxes will be cleared.

As expected.

Attempt to update all fields
on the form.

It will be prevented. The Mix field could be
updated, so I changed
the field properties.

Click on the Current Playlist
field.

If it is currently unselected it will become
selected, and if it is currently selected it will
remain selected.

As expected.

Click on the Classic field. If it is currently unselected it will become
selected, and the Current Playlist field will
become unselected.

If it is currently selected it will become
unselected.

As expected.

As expected.

Click on the Start Set field. If it is currently unselected it will become
selected, and if it is currently selected it will
become unselected.

As expected.

Click on the Finish Set field. If it is currently unselected it will become
selected, and if it is currently selected it will
become unselected.

As expected.

Click on the Delete button. The system will ask for confirmation.

If the selection is ‘no’ the confirmation box will
close.

If the selection is ‘yes’ that track will be deleted
from the system.

As expected.

As expected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Double-Click on the Track
Title.

The Update Track form will be opened,
displaying the details of that track.

The Find Track form will be made invisible.

As expected.

Double-Click on the Mix of
two different tracks.

The details of the two tracks will be displayed at
the bottom of the screen.

The system will ask to confirm whether you
want the two tracks saving as neighbouring
tracks.

If the selection is ‘no’ the confirmation box will
close, and the area displaying the details of the
two tracks will be cleared.

If the selection is ‘yes’ the tracks will be saved
as neighbouring tracks.

As expected.

As expected.

As expected.

As expected.

Double-Click twice on the
Mix of the same track.

An error message will produced, informing the
user they have selected the same track twice.

As expected.

Attempt to define the same
neighbouring relationship
twice.

An error message will be produced. The system did not
detect this and tried to
save it to the system,
causing an error. See
comments for a detailed
explanation and
solution.

Click on the Exit button. The Find Track form will be closed.

If you arrived from the Find Record form you
will be returned to that form, if you arrived from
the Main Menu you will be returned there.

As expected.

As expected.

Comments
The system didn’t detect when I tried to save a neighbouring relationship to the system that already existed.
This meant that the neighbouring relationship wasn’t saved to the system due to key violations. I needed to
detect for this so an informative message could be produced to the user. To achieve this I altered the code so
it would search for the proposed neighbouring relationship, before attempting to save it to the system. If it
already exists an error message is produced. This alteration also needed to be made on the Generate Set List
form.

Update Track

Action Expected Result Actual Result
Enter a value that doesn’t
exist in a combo-box.

An error message will be produced. As expected.

Select valid values from
each combo-box.

They will be accepted. As expected.

Select a valid Speed. The speed in BPM will be displayed next to the
combo-box.

This did not appear, so I
implemented the feature.

Attempt to leave each field
blank, and click on the
Update button.

An error message will be produced. As expected.

Enter valid values into each
field and click on the Update
button.

The track will be updated, and the Update Track
form will be closed. The Find Track form will
remain.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Click on the Exit button. The track will not be updated, and the Update
Track form will be closed. The Find Track form
will remain.

As expected.

Generate Set List

Action Expected Result Actual Result
Enter a value that doesn’t
exist in the Set Type combo-
box.

An error message will be produced. As expected.

Enter a value that doesn’t
exist in the Starting Style
combo-box.

An error message will be produced. As expected.

Select valid values from
each combo-box.

They will be accepted. As expected.

Attempt to leave each option
field blank, and click on the
Generate Set button.

An error message will be produced. As expected.

Enter text into the Duration
field.

An error message will be produced. As expected.

Enter text or number into the
Gig Date field.

An error message will be produced. As expected.

Click on the Include Classic
Tracks field.

If it is currently unselected it will become
selected, and if it is currently selected it will
become unselected.

As expected.

Enter valid values into each
field and click on the
Generate Set button.

A set will be generated.

The option fields, Generate Set button and
Weight Settings button will be disabled.

The Accept Set List, Add Track to List, Add
Classic to List buttons will be enabled.

As expected.

As expected.

As expected.

Attempt to update all fields
on the form.

It will be prevented. On the set list the Style,
Speed and Mood fields
could be updated, so I
changed the field
properties.

Click on the Weight Settings
button.

The Custom Weight Settings form will be made
visible.

The Generate Set List form will be made
invisible.

As expected.

As expected.

Click on the Define New Set
button.

The set list will be cleared.

The fields and buttons will be enabled and
disabled as required.

As expected.

As expected.

Click on the Add Track to
List button.

The Find Track for Set List form will be opened.

The Generate Set List form will be made
invisible.

As expected.

As expected.

Click on the Add Classic to
List button.

The Find Classic for Set List form will be
opened.

The Generate Set List form will be made
invisible.

As expected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Click on the Insert button
without selecting a track to
insert.

An error message will be produced. As expected.

Double-Click on the Track
Title on the neighbouring
track list.

The details of the track will be displayed at the
bottom of the form.

As expected.

Click on the Insert button
after selecting a track to
insert.

The track will be inserted into the set list at the
correct position.

The positions will be updated correctly.

The track count will be updated correctly.

As expected.

As expected.

As expected.

Click on the Insert as
finishing track button after
selecting a track to insert.

The track will be inserted into the set list at the
end of the set list.

The positions will be updated correctly.

The track count will be updated correctly.

As expected.

As expected.

As expected.

Double-Click on the Pos
field.

The details of the track will be displayed at the
bottom of the form.

As expected.

Click on the Insert as
finishing track button after
double-clicking on the Pos
field.

An error message will be produced. As expected.

Click on the Insert button
after double-clicking on the
Pos field.

The system will ask to confirm whether you
want to move the track.

If the selection is ‘no’ the confirmation box will
close, and the track will remain where it is.

If the selection is ‘yes’ the track will be removed
from its current position and moved to the new
position.

The positions will be updated correctly.

As expected.

As expected.

As expected.

As expected.

Click on the Remove button. The system will ask to confirm whether you
want the track removing from the set list.

If the selection is ‘no’ the confirmation box will
close, and the track will remain on the set list.

If the selection is ‘yes’ the track will be removed
from the set list.

The positions will be updated correctly.

The track count will be updated correctly.

As expected.

As expected.

As expected.

As expected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Double-Click on the
Neighbour field on the
neighbouring tracks list.

The track will be inserted into the set list at the
correct position. The N box will be checked.

The positions will be updated correctly.

The track count will be updated correctly.

The neighbouring track count will be updated
correctly.

As expected.

As expected.

As expected.

As expected.

Double-Click on the Track
Title of two different tracks.

The details of the two tracks will be displayed at
the bottom of the screen.

The system will ask to confirm whether you
want the two tracks saving as neighbouring
tracks.

If the selection is ‘no’ the confirmation box will
close, and the area displaying the details of the
two tracks will be cleared.

If the selection is ‘yes’ the tracks will be saved
as neighbouring tracks.

As expected.

As expected.

As expected.

As expected.

Double-Click twice on the
Mix of the same track.

An error message will produced, informing the
user they have selected the same track twice.

As expected.

Attempt to define the same
neighbouring relationship
twice.

An error message will be produced. As expected.

Click on the Accept Set List
button.

The Set List report will be opened, displaying
the correct data.

As expected.

Click on the Exit button. The set list will be cleared.

The Generate Set List and Custom Weight
Settings forms will be closed, returning you to
the Main Menu.

As expected.

As expected.

Find Track for Set List

Action Expected Result Actual Result
Select an option from any
combo-box.

The Display All Tracks button will become
visible.

As expected.

Select valid values from
each search combo-box.

They data will be filtered accordingly. As expected.

Click on the Display All
Tracks button.

All records will be displayed, and the combo-
boxes will be cleared.

As expected.

Click on the Start Set field. If it is currently unselected it will become
selected, and if it is currently selected it will
become unselected.

As expected.

Click on the Finish Set field. If it is currently unselected it will become
selected, and if it is currently selected it will
become unselected.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Attempt to update all fields
on the form.

It will be prevented. The Mix and Popularity
fields could be updated,
so I changed the field
properties.

Double-Click on the Track
Title.

The Find Track for Set List form will be closed,
and the Generate Set List form will be made
visible.

The track details will be displayed at the bottom
of the Generate Set List form.

As expected.

As expected.

Click on the Exit button. The Find Track for Set List form will be closed,
and the Generate Set List form will be made
visible.

As expected.

Find Classic for Set List

Action Expected Result Actual Result
Select an option from any
combo-box.

The Display All Tracks button will become
visible.

As expected.

Select valid values from
each search combo-box.

They data will be filtered accordingly. As expected.

Click on the Display All
Tracks button.

All records will be displayed, and the combo-
boxes will be cleared.

As expected.

Click on the Start Set field. An update will not be allowed. As expected.
Click on the Finish Set field. An update will not be allowed. As expected.
Attempt to update all fields
on the form.

It will be prevented. The Mix and Popularity
fields could be updated,
so I changed the field
properties.

Double-Click on the Track
Title.

The Find Classic for Set List form will be
closed, and the Generate Set List form will be
made visible.

The track details will be displayed at the bottom
of the Generate Set List form.

As expected.

As expected.

Click on the Exit button. The Find Classic for Set List form will be
closed, and the Generate Set List form will be
made visible.

As expected.

Custom Weight Settings

Action Expected Result Actual Result
Move the slider for each
constraint, and click on the
Save Settings button.

The values to the right of the sliding bars will be
updated according to the new positions of the
sliders.

As expected.

Click on the Default Settings
button.

The sliding bars will return to their default
positions, and the values will be set to their
default values.

As expected.

Click on the Back button The Custom Weight Settings form become
invisible, and the Generate Set List form will be
made visible.

As expected.

A Set List Generator for a DJ Appendix I

David Ogle

Display Neighbouring Tracks

Action Expected Result Actual Result
Attempt to update all fields
on the form.

It will be prevented. As expected.

Double-Click on the Track
Title.

The Neighbouring Tracks form will be opened,
displaying the correct neighbouring track.

The Display Neighbouring Tracks form will be
made invisible.

As expected.

As expected.

Click on the Exit button. The form will be closed, returning you to the
Main Menu.

As expected.

Neighbouring Tracks

Action Expected Result Actual Result
Attempt to update all fields
on the form.

It will be prevented. As expected.

Click on the Delete
Neighbouring Relationship
button.

The system will ask to confirm whether you
want the neighbouring relationship deleted.

If the selection is ‘no’ the confirmation box will
close, and the neighbouring relationship will not
be deleted.

If the selection is ‘yes’ the neighbouring
relationship will be deleted from the system.
The Neighbouring Tracks form will be closed,
and the Display Neighbouring Tracks form will
be made visible.

As expected.

As expected.

As expected.

Click on the Exit button. The Neighbouring Tracks form will be closed,
and the Display Neighbouring Tracks form will
be made visible.

As expected.

A Set List Generator for a DJ Appendix K

David Ogle

Appendix J – User Acceptance Testing

 Yes No

Can you record the details of a record (record number, title, and label)?

Can you record the details of a track (the record the track appears on, title,

artist, mix, side, style, BPM (beats per minute), mood, popularity, whether

the track can start a set, and whether the track can finish a set)?

Can you update the details of a track?

Can you delete records or individual tracks from the system?

Can you search for the details of any record or track?

Can you generate a set list from the tracks in the system?

Does the system use selections made by you in generating the set list?

Does the system provide several alternative tracks to the tracks on the set

list?

Does the system allow a track on the set list to be replaced by a track on the

alternative list?

Does the system allow a track on the set list to be replaced by any track in

the system?

Is the generated set list provided in a printable form?

Does the system have a user-friendly interface?

Does the system include documentation on how to use the system?

