
2019 south ritchey street · santa ana, caHfornia 92705 · (714) 558·82TI

CAL DATA 100 ENGINE
(P/N C81080180 AND C81080190)

TECHNICAL MANUAL
C21518008-XO

DOCUMENT C21518008
Revision XO
January 1975

. cal Data, MACROBUS, QUADBOARD and HEXBOARD are trademarks
of California Data Processors.

The inf orination herein is the property of California Data
Processors. Transmittal, receipt or possession of the in­
formation does not express, license or imply any rights to
use, sell or manufacture from this information and no re­
production or publication of it, in whole or in part shail
be made without written authorization from an officer of° .. ;·~--.
the above finn. · ·.· ., , ..

·~ ... ·

© copyri'ght 1975 california data processors .$15 ;oo
i.·. r. _1,'

REVISIONS

Revision Date Approval Description

XO 3-75 Preliminary

The revision history of each page in this document is indicated below:

Page

i
ii
iii
1-1
1-2
1-3
1-4
2-1
2-2
2-3
2-4
2-5·
2-6
2-7
2-8
2-9
2-10
3-1
3-2
3-3
3-4
4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10:·
4-<U
4"."'"t2
4-1,3

•.',•·
'.,,..

Revision

XO

v
v

v

.,.

v
v
v
v
v

Page

4-14
4-15
5-1
5-2
5-3
5-4
5-5
5.:...6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19
5-20
5-21
5-22
5-23
5-24
5-25
5-26
5-27
5-28
5-29
5-30
5-F.
5-32

Revision

XO

v
v
v
I/

v
v~

v
•/
v
v'

Revision

Page XO

5-33 v
5-34 \/

5-35 v
5-36 v
5-37 v
5-38 V"

5-39 v
5-40 v
5-41 I/

5-42 ,_.,.,..

5-43 v
5-44 v
5-45 v
5-46 v
5-47 v
6-1 v
A-1 v
A-2 v
A-3 v
B-1 v
C-1 v
C-2 v
C-3 v
C-4 v

C-5 v

C-6 \.."

C-7 v
C-8 v

..

C~l518008-XO

SECTION 1: INTRODUCTION

1.1
1.2

SCOPE.
DOCUMENTATION. • .
1.2.1 Publications
1.2.2 Engineering Drawings . • .•.
1.2.3 Abbreviations and Conventions ..

SECTION 2: DESCRIPTION

2.1
2.2

2.3

2.4
2.5

OVERVIEW
SYSTEM ORGANIZATION. .
2.2.1 Engine .
2.2.2 Microbus•..
2.2.3 MACROBUS Channel Adapter
2.2.4 Macropanel •..
2.2.5 Microconsole
2.2.6 Magnetic Core Memory .
2.2.7 Peripheral Devices •.
FIRMWARE DEVELOPMENT AIDS ..
2.3.1 Alterable Control Memory .
2.3.2 Support Software •
FEATURES . . • •
SPECIFICATIONS

SECTION 3: PHYSICAL DESCRIPTION

3.1
3.2

SYSTEM HARDWARE ..
ENGINE BOARDS.

SECTION 4: ENGINE

4.1
4.2

4.3

FUNCTIONAL DESCRIPTION
CONTROL SECTION•.
4.2.1 Control Memory (CM) •......
4.2.2 Location Counter (CC).
4.2.3 Microcommand Register (CR)
4.2.4 Control Stack (CS)
4.2.5 Loop Counter (LC) .•.
DATA SECTION
4.3.1 File Registers (FR).
4.3.2 Operand Buses (AB, BB)
4.3.3 Arithmetic/Logic Unit (AU)

··4. 3. 4 AU Shift Elements (SX) and Shift Register (XR) :'. .•
.4.3;.5 M 1:3US (MB) •
4.3.6 Microcondition Codes
4.3.7 Microstatus Register (MS) ..

, " 4. 3.8· Word and B~te Operations . . • . . .

C21.5180QS~XO

CONTENTS

. . :

l"".'l
1-1
1-1
1-1
1-3

2-1
2-1
2-1
2-1
2-1
2-4
2-4
2-4
2-4
2-5
2-5
2-5
2-5
2-7

3-1
3-3

4-1
4-5
4-5
4-7
4-8
4-9
4_:9,~

4,~9

4~~1
~-11
4-11
4-12

\ J ~

4.:-;-12
4:..12
4-13 ·,
4-14

SECTION 5: MICROCOMMANDS

5.1
5.2

5.3

5.4

5.5

GENERAL. • • . • . •
MICROCOMMAND CLASSES • • . . • • . • • •
5.2.1 Logical and Arithmetic Classes •
5. 2. 2 Special Class. . • • • • .
LOGICAL MICROCOMMANDS ••.
5.3.l Emulate (Optional)
5.3.2 Sign Extend A ••••.
5.3.3 Move A ••.
5. 3 • 4 Move B . • . .
5.3.5 Complement A
5.3.6 Complement B .
5.3.7 AND A, B .
5.3.8 AND A, B .
5.3.9 AND A, B .••••
5.3.10 Not OR ..
5.3.11 OR A, B. •
5.3.12 OR A, ~••.
5.3.13 OR X, B
5.3.14 Not AND .. .
5.3.15 Exclusive OR
5.3.16 Coincidence ..
ARITHMETIC MICROCOMMANDS . • . • .
5 • 4 . 1 Add A, B . . • . . . • . •
5.4.2 Subtract A, B •.
5.4.3 Add Carry ...
5.4.4 Subtract Carry .
5.4.5 Increase A ..
5.4.6 Decrease A ...
5.4.7 Add A Masked .
SPECIAL MICROCOMMANDS ••
5.5.1 Shift. • • •..

5.5.2
5.5.3
5.5.4
5.5.5
5.5.6

?"
_5. 5r7

5.5.1.1 Single-Precision Shifts.
Multiply Step. •
Divide Step. • . . • • . .
Test Bit ..•....••
Modify Macrostatus (Optional).
Conditional Memory Access (Optional) . . • .
Decode (Optional) •......•.•.

.(

SECTION';6:'·; MAINTENANCE

6.1
6.2
6.3

ii

· . GENERAL. . . :~ . • . •
PREVENTIVE MAINTENANCE . .
CORRECTIVE ··MAINTENANCE .

5-1
5-1
5-1
5-4
5-4
5-8
5-8
5-9
5-9
5-9
5-9
5-10
5-10
5-10
5-10
5-11
5-11
5-11
5-11
5-12
5-12
5-12
5-14
5-14
5-15
5-15
5-16
5-17
5-1..S
5-19
5-20
5-21.
5-34
5-39
5-43
5-43
5-45
5-46

6-1
6-1
6-1

APPENDICES

APPENDIX A: ENGINE ARITHMETIC

A.l
A.2
A.3

NUMBER REPRESENTATION ••
ADDITION •••
SUBTRACTION.

APPENDIX B: FIXED MEMORY ASSIGNMENTS

APPENDIX C: CONNECTOR PIN ASSIGNMENTS

Table

1-1
2-1
4-1
5-1
5-2
5-3
5-4
B-1
C-1
c....:2
C-3
c-4
C-5 .·
c-6·.-:·
C-7u··
c-a:".

Figure

1-1
2-1

2-2
'3-1

"~-2
4·".'"~

TABLES

Title

Abbreviations . • • • • • • • • • • •
Cal Data 1 Computer Specifications ••••
Microstatus Register Bit Definitions.
Cal Data 100 Engine Microcommand Summary.
Microcondition Codes for Logical Microcommands. • ••••
Microcondition Codes for Arithmetic Microcommands •
SO-Field Shift Specification. • • • • • • • • •
Interrupt Vectors • • • • • • . • • •
Connector A Pin Assignments, MACROBUS •
Connector B Pin Ass.ignments, MACROBUS
Connector C Pin Assignments • • • • • • • • • • • • • • •
Connector D Pin Assignments • • • • • •
Connector E Pin Assignments •
Connector F Pin Ass.ignments
Connector Jl Pin Assignments.
Connector J2 Pin Assignments.

ILLUSTRATIONS

Title

. . -·~ . .

Relationship of Publications to Cal Data 1 System Elements. • • • • • •
Cal Data 1 Computer System with Memory Ma~agement Unit, 128K
Words of Cal Data 16Kl6 (850-ns) Core Memory and Serial I/O
Control;Ler. • . • . • • • • . • • • • • • • • • • • • • .., ..• :.;•·.~·.-··.

Cal Data 1 Computer System Organization • • • • • • • • • ". • • · •
Cal Data 1 Computer with Boards Installed (Fan Panel is She~ DQWn) · ·•
Cal Data 100 Engine Board Configuration • • • • •
Cal Data 100 Engine Block Diagram • • • •

A-1
A-2
A-3

1-4
2-7
4-13
5-5
5-7
5-13
5-20
B-1
C-1
C-2
C-3
C-4
c-s
C-6
c-7
C-8

1-2

2-2
2-3
3-2
3-4

·4-2
14-2
4~3
;4..;4·

Cal Data 100 Engine .Interface with the Microbus
Cal Data 100 Engine Control Section Block Diagram • ~ • ·•

•• r;t4-4
.···.X<..:~-6

·s····.1, .. :: ' -.J..·1
' . ' ~ .

Cal Data 100 Engine Data Section Block Diagram. • • • • • • ••
Microcommand Formats. • • • • • . • • • • • • • •

c2isiaooa-xo ·
.. . ·····~

,• . ;;. .
'4:-,£.Q::
5-~· ·.

iii

SECTION 1
INTRODUCTION

1.1 SCOPE

This manual provides the information needed to understand and maintain
the Cal Data 100 Engine, part numbers C81080180 and C81080190, when
used with the drawing package provided. The information in this
manual is for the use of a skilled technician familiar with standard
test equipment, solid-state logic theory, common maintenance
practices and standard troubleshooting techniques. A basic knowledge
of design principles and circuits used in small computers is assumed,
hence no tutorial material of this kind is included.

As a stand-alone publication, this manual has a good functional and
physical description of the Cal Data 100 Engine, providing the
information needed to understand the capabilities and features of
the computer and to plan a system using it. The maintenance coverage
of this manual is commensurate with the prerequisite skills and
knowledge of the defined user, characteristics of the product and
maintainability requirements established by Cal Data. ·

1.2 DOCUMENTATION

1. 2.1

1. 2. 2

This manual describes the engine of a Cal Data computer system that is
equipped with a MACROBUS Channel Adapter (part number C81080300)
and an Emulate Board (part number C81080210).

The following paragraphs define publications and conventions that
support this manual.

Publications

Figure 1-1 illustrates the relationship between Cal Data system elements
and technical publications. Controlled copies of publications,
provided in accordance with the terms of the purchase contract~ are
kept current for the life of the product.

Engineering Drawings

For maintenance purposes, this manual is supported by a drawing package
that contains schematic diagrams, assembly drawings and other required
engineering drawings. The drawing package is updated with the
latest revision of each drawing.

1-1

PUBLICATIONS SYSTEM HARDWARE
r
I TM TO DP IM UM Q)

x

x

x

x

x
x
x

x

x

x

x

x
x
x

NOTES:

x

x

x

x

x
x
x

x

x

x

- POWER SUPPLY

18 SMALL I/0 BOARD
17 MEMORY OR I/0 BOARD
16 I/0 BOARD
15 MEMORY OR I/0 BOARD

14 MEMORY OR I/0 BOARD

...._MEMORY ~ 13 MEMORY OR I/0 BOARD
-

12 MEMORY OR I/O BOARD

I/0 BOARD)(l l
OR OPTION MEMORY OR I/0 BOARD
.

10 MEMORY OR I/0 BOARD

9 MEMORY OR I/O BOARD

I

8 MEMORY OR 1/0 BOARD OR OPTION

7 MEMORY OR 1/0 BOARD OR OPTION

6 OPTION
.l>-5 ~1-----< EMULATE BOARD - ~ Io

*

1--------------------c 4 ENGINE BOARD 1 ; 8' o -- 3 ENGINE BOARD 2 .._ I q o
.... ~i------< 2 MACROBUS CHANNEL ADAPTER - ":) C'>O

-- 1 MACROPANEL -3 ltO

\. ..J

x -- Computer·System -
x ~1------- Engine Microprogramming

TM = Technical _Manual
A Standard 18-Slot Backplane is Shown

• . '.~ '\, ~ : I

CD TO = Theory of Operation .:'.
DP = Ehgi neeri ng Drawing Package: ... ~.' ·,,.
IM = Installation .Manual * = MACROBUS Tenninat'6t· 1Qr

1

Extension Cable
JA, '' · UM = User Manual

Figure 1-1.. Relationship of Publications to Ca~:Data·l System Elements

.. ..
1-2 c21s1aooa.:..xo

1. 2. 3 Abbreviations and Conventions

C21518008-XO

Tallle 1-1 lists the abbreviations foun.d in this manual. Conventions
used in the text of this manual include:

a. Equipment panel nomenclature is reproduced in
all upper-case characters.

b. The proper names of instructions, microcommands
and signals are capitalized.

c. ZERO and ONE are used to express binary logic
"O" and "l" states, respectively.

d. Hexadecimal numbers are preceded by a dollar sign
for easy identification.

e. A colon is used to indicate a range of bits. For
example, the range of address bits Al2 to A03 is
written Al2:A03.

1-3

Table 1-1. ·Abbreviations

Abbreviation

Cal Data

CPU

MCA
I/O
LFC
RAM
ROM
PROM

MSI
LSI
MMU
LED
ACM
DMA
CM

cc

CR
cs
SC
LC
MB

FR
AB
BB
AU
sx
PS

LR
RR
IR
XR
ER
EIA
c

.v

z

n

p

d

1-4

Meaning

California Data
Processors

central processi.ng unit
(engine)

MACROBUS Channel Adapter
input/output
Line-Frequency Clock
random-access memory
read-only memory
progrannnable read-only

memory
medium-scale integration
large-scale integration
Memory Management Unit
light emitting diode
Alterable Control Memory
direct memory access
control memory
microcommand location

counter
microcommand register
control stack
stack counter
loop counter
M bus (data destination

bus)*
file register

' A-operand bus*
B-operand bus*
arithmetic/logic unit
AU shift elements
processor (macro)status

register
stack-limit register
data-read register
instruction register
shift.register
emulate decode register
emulate instruction address
carry out

microcondition code
overflow

microcondition code
zero data-value

(microcondition) code
negative ;~data-value

(mic~o-cQndi tion) code
positive Ciata-value

(microcondition) code
odd data-value

(microcondition) code

Abbreviation

MS
L

v

z

N

p

D

cps
cpm
lpm
K

max
min
A
ac
de
nns
v
ns ...
Hz
oc
cm

Meaning

microstatus register
MS register

link bit
MS register

overflow bit
MS register

zero data-value bit
MS register

negative data-value bit
MS register positive

data-value bit
MS register odd data-

value bit
characters per second
cards per minute
l~nes per minute
l,024(address or

memory locations)
maximum
minimum
ampere
alternating current
direct current
root-mean-square
volt
nanosecond
hertz
degrees celsius
centimeter

* = part of the main Microbus

c21s1aoooa.:..xo·

SECTION 2
DESCRIPTION

2. 1 OVERVIEW

The Cal Data 1 Computer (Figure 2-1) is a high-speed microprogrannned
digital computer designed for application in a wide variety of computing
and control applications. Microprogrannning, combined with a powerful ·
and flexible hardware architecture, centering around the Cal Data 100
Engine and Microbus, permits the basic computer to be fully optimized to
a specific application. The Cal Data 100 Engine is designed primarily
for efficient, high-speed emulation of general-purpose computer archi­
tectures. It can also be applied as a direct function processor by im­
plementation of problem-oriented microprograms.

2.2 SYSTEM ORGANIZATION

2.2.1

2.2.2

The overall system organization is shown in Figure 2-2. The system
consists of a set of hardware and software elements that can be utilized
in a wide variety of applications. A brief description of the elements
of the computer system is given below. Details are given in other sec­
tions of this manual and in supporting manuals.

Engine

The central element of the system is the ~ngine (CPU), divided into con-.
trol and data sections, and controlled by microprogram sequences (firm­
ware) stored in a control memory. By changing the contents of control
memory, the entire operation of the system can be altered. An emulation
system is implemented by placing appropriate firmware in control memory,
causing the CPU to operate like the computer being emulated.

The control and data sections contain the internal arithmetic/logic cir­
cuits, data paths, registers, control logic and timing circuitry of the
machine. The CPU communicates with the rest of the system via the
Microbus.

Microbus

The Microbus is a universal bus that is the main connnunication and con­
trol channel of the system. The Microbus transmits data and control in­
formation between the CPU and all elements of the system.

The Microbus can be conditioned by one or more I/O channel adapters to
interface with a wide variety of I/O devices obeying specific interface
rules. The primary I/O channel adapter o~ the Cal Data 1 system is the
Cal Data 1 MACROBUS Channel Adapter.

MACROBUS Chagnel Adapter
~ ·~

The MACROBUS Channel .Adapter (MCA) provides data, address and control
circuitry for parallel I/O operations in the system. The McA frees the

·c21s1aooa-xo 2-1

Figure 2-1. Cal Data 1 Computer System with Memory Management Unit, 128K Words·.
of Cal D~.!:a 16KX16 (850-ns) Core Memory and Serial I/O Controller

! .

2-2 : C21518008-X.Q>

MACRO BUS
TERMINATOR:

MACRO PANEL

MACR~BUS
CHANNEL ADAPTE

.,.__ ____ M ____ __.

MEMORY-­
MANAGEMENT

_!l_N!L __

ENGINE
BOARD 1

ENGINE
BOARD 2

R

t

J c
A

R
0
B
u
s

1.,..,-1

EMULATE
BOARD

-----M-------11_ ____ A ____ __.

MICROBUS

----,
MICROCONSOLE _j.

------,

SPECIAL I
FUNCTIONS _j -----

lt"o~HANNa I
ADAPTER #N _j
-,-,--­

L.-1
1/0 CHANNEL #N

. COMMUNICATION
·CHANNEL AND
INTERNAL CONTROL

·~OTE: -- =Optional

c
R
0 B ----.. ---11
u-------11
s

MACROBUS
TERMINATOR

'.f igJ;~ 2-2. Cal Data 1 Computer System Organ~zation

C2151800S-XO

SERIAL 1/0
CHANNEL t

5E°RIAL l/o-i_J
CONTROLLER _j

MEMORY

PERIPHERAL
CONTROLLER

•
•
•

PERIPHERAL
CONTROLLER

------,
SYSTEM I
INTERFACES _J ----

2.2.4

2.2.5

2.2.6

2.2.7

central Microbus for very-high-speed communication between the CPU and
other Microbus devices, and can permit I/O channel devices to communicate
directly with each other, independently of the CPU.

Macropanel

A Macropanel, representing the control panel of a general-purpose com­
puter, is often provided in an emulation application. The Macropanel is
serviced by the CPU as an I/O device interfacing with the MACROBUS.
Special support firmware is provided for the Macropanel. The primary
Macropanel for the Cal Data 1 system is the Cal Data 1 Macropanel.

Microconsole

A Microconsole is available to provide microlevel control and display
for checking out and debugging firmware, and also for various mainten­
ance and troubleshooting procedures. The Microconsole consists of a
remotely mounted Micropanel and a plug-in Micropanel ~ontrol board that
permits the user to exercise direct control over· the CPU. Facilities
are provided to construct full microcommands, to display microcommands
and to execute microconunands on a single-step or "trap-mode" basis.
The Microconsole also contains 32 words of alterable control memory
that can substitute for equivalent blocks of CPU control memory.

The Microconsole can be used in conjunction with the Macropanel and is
useful for initial debugging of new firmware as well as for on-line
troubleshooting of computer hardware, but is usually not required in an
applied system configuration.

Magnetic Core Memory

Cal Data core meIOC>ry comprises modular blocks of SK (8,192) or lGK
16-bit words, each contained on a single circuit board. Each module
plugs directly into the MACROBUS and is treated as an I/O device in the
system. The maximmn normal system capacity is 128K words. Two identi­
cal modules can be interleaved to achieve an increased effective through­
put rate on the MACROBUS.

The MACROBUS can accommodate memory devices other than magnetic core,
such as semiconductor ROM or RAM modules.. The only requirement is that
such units obey MACROBUS use rules. Modules of varying size and speed
can be freely mixed with core memory. OMA-type MACROBUS devices may
communicate directly with memory.

Peripheral Devices

Peripheral device controllers and system interfaces are attached to the
MACROBUS as shown,; in Figure 2-2. The user can readily interface devices

·;."·.with'tthe MACROBQS .. 'Using simple design rules. Cal Data offers I/O channels
·· .. su~h as tne MACRbBUS with different structures as well as several. ~itandard
periph~r~l "sub'sy'stems to enhance user applications.' The subsyste~s ·. ·
offer~d 'to" support· normal progranuning and system development operations· ·

·are:

·c21s 1 aooa-xo

a. Paper Tape Reader. High-speed photoelectric reader, 300
characters per second, fanfold tape.

b. Paper Tape Punch. High-speed punch, 75 characters per
second, fanfold tape.

c. Card Reader. High-speed photoelectric card reader, 300
cards per minute with code conversion in the controller.

d. Line Printer. 80- or 132-column printer, 125 or 200
lines per minute.

e. Memory extensions.

2.3 FIRMWARE DEVELOPMENT AIDS

2.3.1

2.3.2

2 •. 4·

Cal Data offers specialized hardware and software elements to aid users
in developing custom firmware. These are briefly described below.

Alterable Control Memory

Alterable Control Memory (ACM) is a modular plug-in unit that contains
increments of 256 words of electrically alterable control memory. The
ACM also contains alterable elements associated with instruction emula­
tion and decoding.

With the ACM, a programmer can load or read the contents of control
memory directly and execute trial firmware code at normal processor
execution speeds. The ACM is particularly useful for dynamic system
tests where external real-time events must be considered to fully eval­
uate a firmware microprogram. The ACM is supported by a software oper­
ating system that permits the programmer to use a teleprinter to control
the system.

Support Software

The following software is available to support firmware development:
a. Symbolic Microassembler. This program is a complete

symbolic assembler that permits convenient coding and
listing of microprograms. It is written in Cal Data 135
emulator language and can be run on any Cal Data 135 or
compatible computer having the required memory con­
figuration.

b. ACM Software Operating System. This program is designed
to provide operational control over execution of firm­
ware in the ACM. It requires that the Cal Data 135
emulator be resident in control memory.

FEATURES

The Cal Data computer architecture combines general microprogranuning
capability with specialized optional features. to permit higp emu.lation

' . . ' ' ' ~ .
speeds with efficient control-memory space utilization. The~· meCnanical
design used prov~des full modularity, mounting ii.~xibi'l:i:t;:y' .and service
convenience. Cooling, power distribution arid dtllefr · crl.tlcal system re­
quirements are optimized for OEM applications~ Conser'7ati ve el.ectrical

"implementation ensures wide margins, readily available components and
reliable operation over a.wide environmental range. Subassemblies are

·c2151sooa:..xo.

..... .'Ir ,

;'2.~6.

des_igned for easy assembly and automated testi_ng, and the overall system
is structured for simple, straightforward manufactur~ng procedures.
Basic des_ign features of the Cal Data computer system are:

• 48-bit microconunand word length
• Parallel execution of multiple functions per microcommand
• 165-ns microcommand execution time
• 16-bit data word length
• 16 multipurpose file registers (16 bits each)
• Nine additional registers accessible by microcozmnand
• 16-level hardware pushdown stack
• Microcommand sequence repeat loop counter
• Optional high-speed emulation instruction decode, function

generation and interrupt-response hardware.
• Bit, byte and word manipulations
• 256- to 4096-word control memory using bipolar ROM or PROM devices
• Power-failure/restart circuitry and line-frequency clock included

in the computer
• Unique, control memory substitution provisions
• Optional Multiply, Divide, and single- and double-precision Shift

micro commands
• Hardware microprogram interrupts

Input/Output and Memory

• Universal asynchronous I/O channel with direct-memory-access
capability

• Four external priority interrupt levels
• 16-bit parallel· word or byte-mode transfers
• Automatic I/O channel delay time-out protection
• Optional asynchronous serial I/O channel
• BK-word (675-ns cycle, 275-ns access) and 16K-word (850-ns cycle,

300-ns access) core memory modules
e Interleaved data transfers between identical memory modules
• Optional extended addressing feature for addressable memory expan­

sion to 31K without memory management
• Expansion to 124K or 127K of directly addressable memory with

optional. Memory Management Unit

Microprogramming Aids

• Microconsole
• Alterable.Control-Memory and support software
• Symbolic . .Microassembler

Packaging, Pbwer and Environmental

• . 10~ inch coinputer chassis
~.-'•,. ,~;~>:P:finted-c;i.rcui t backplane

.. . •.-:;·.: ,,. ·;

with vertical board mounting from the top
with up to 13 spare slots for memory and

:> ... ·~:.~,(...Q~6P. .. 'l.t:ro.~ler boards
. •, .'Fd'ui:W';6ans" for high-volume, positive-pressure q.ir

· 'cih'cl:S~i~~·rwith provision for air filters ._·~ .. ,
Modulaf~ p0wer supply providing 36 A at +5 Vdc

flow throuqh the

•

c2151aoba!.~o :

• Low-noise internal power distribution and grounding system
• Convenient external I/O cabling
• Extension chassis available
• System designed to meet UL standards
• O to +5o0 c ambient operating temperature
• 10 to 90% relative humidity (without condensation)

Electrical and Electronic

• Bipolar TTL integrated circuits (multisourced)
• Extensive use of MSI and LSI
e Wide timing margins
• High noise immunity I/O drivers and receivers
• Single-phase clock
• Conservative component derating
• Metal can transistors and hermetically-sealed passive devices only

2.5 SPECIFICATIONS

.General specifications for the Cal Data 1 Computer are given in Table 2-1.

Table 2-1. Cal Data 1 Computer Specifications

. _': C2?5:1'8008~X6

Characteristic

TYPE

CONTROL
Microconunand length

Execution rate

Microcommand classes

Special operations

Conditional
skip/branch

Fixed control memory

. ·Alterable control
. _memory

Specification

High-speed microprogrammed digital com­
puter designed for efficient emulation
of general-purpose computer architectures
and for direct custom applications

48 bits

165 ns, min.; 330 ns if skip or branch
is made; clock rate is adjustable

8 arithmetic
16 logical
8 special

Special microcommands include double­
precision Shift, Multiply-Step and
Divide-Step ·

Each microcommand wi,th conditional skip
or branch capabilit:Y"r ~ests on either
current {dynamic) c.onditions or
on previous {static} conditions

Bipolar ROM or PROM; 4, 096.,.wqrds, max
- . ':L . ~ .~ ?:.'.:'._:f ... ·:'.:~y /

Bipolar RAM; 512 .wor~r ~·'..without .
auxiliary power; i,'s§6:tf;;d:ids· max ·with·.-· ..

• • '' l'." .; •. - '

auxiliary power. ,'°\?. ""·:·Y· :
' i(... ~ .. - j ··~

Table 2-1. (Continued)

Characteristic

Control memory stack

Emulation enhancement

Loop counter

Interrupts

PROCESSING
Word length

Arithmetic/logic

Registers

INPUT/OUTPUT (TYPICAL)
Type

~.·:.< I;)at·a
' :. '' ~--·

Specification

16-level hardware pushdown stack

Special emulation decode tables provide
automatic addresses to control memory
microroutines for high-speed program
execution

Eight-bit counter for single or multi­
instruction repeats

Multilevel priority-interrupt structure
provides automatic addresses to control
memory microroutines for internal and
external conditions

16 bits

Both word and byte operations are pro­
vided; fixed point, one's or two's
complement arithmetic; arithmetic
condition codes are carry (link) , over­
flow, negati:_ve, zero, positive, odd;
arithmetic~and logical shifts (multibit
using loop counter for repeats are
provided)

Eight or sixteen 16-bit multipurpose
files (FR)
Shift register (XR)
Microstatus register (MS)
Instruction register (IR)*
Decode Register (ER)*.
Processor (macrolevel) status register
(PS)*

Asynchronous bidirectional I/O channel
derived from the Microbus; requires I/O
channel adapter; handles communications
between CPU, memory and peripheral
elements

16 bits with byte capability

16 bits from Microbus (can be.extended
within I/O channel adapter);ieast­
significant bit is for ~yt{addressing

.. } i.,

*Part of emulation enhancement circuitry .,i ·1. '. ~. ,,.·,.
i/_:_.__ Y·

Table 2-1. (Continued)

'c21518008-Xff

Characteristic

I/O channel
priorities and
requests

Serial I/O channel

Memory

Memory expansion

Memory interleave

Line-frequency
clock

PACKAGING
Processor chassis

Connectors

Board size

POWER
AC input·

Specification

Four priority-request levels with
multiple requests per level;
nonprocessor request (NPR) level for
direct device-to-device transfers;
CPU can set its own priority to any
level except NPR

Serial I/O controller (option) for
rates up to 9600 baud; RS-232 or cur­
rent-loop interface

Magnetic core; SK or 16K words per
module; 16 bits per word

Typically, 124K words maximum; Memory
Management Unit (option) is required
above 32K

SK-word or 16K-word Cal Data core mem­
ory pairs can be interleaved for in­
creased throughput rate

50/60 Hz line clock

10~ inches (26.7 cm) high by 19 inches
(4S cm) wide by 24 inches (43 cm) deep;
rack-mounted (slides) or table-top;
vertical, top-loaded boards; contains
Macropanel, Engine, MCA plus slots for
memory and I/O controllers; internal
power supply; cooling fans; internal
power distribution

36-pin, 0.6 inch (1.5 cm) card inser­
tion depth; mounted on printed-circuit
backplane

S.9 by 15.7 inches (22.7 by 39.9 cm);
six connector positions (216 pins) on
long edge

j

115/20S/230 Vac, 50 or 60 Hg
. ·~'/·

• I ·~ • ~~'~·~\~),~~~<·•
Regulated: +5 Vdc, 36- A .:,' .

-15 Vdc, 12 ·.A.- .' · ..

2~10 "

Table 2-1. (Continued)

Characteristic

Power monitor

ENVIRONMENT
Temperature

Humidity

CIRCUITS
Integrated circuits

Discrete devices

Internal logic levels

I/O logic levels

MICROPROGRAMMING

SUPPORT HARDWARE
Microconsole

Alterable control
memory (ACM)

MICROPROG~ING

SUPPORT SOFTwARE/
FIRMWARE

Symbolic·· micro­
assembler '

ACM software
operating system

Specification

Unregulated: -22 Vdc, 1.5 A
+8 Vrms, 1.5 A

Power-failure/restart signals to CPU
for automatic shutdown and restart
operations

o0 to·+so0 c ambient temperature

10 to 90% relative, without condensa­
tion

Bipolar TTL; extensive MSI and LSI
usage

Metal-can transistors; hermetically
sealed components only

ZERO = 0 Vdc; ONE = +5 Vdc, nominal

ZERO = +3.4 Vdc, nominal; ONE = 0 Vdc

Provides direct control over Engine;
microcommand entry and display;
single-step and trap-mode micro­
comrnand execution

Modular 256-word increments of control
memory that can be loaded and read;
operates CPU at full execution speed

Symbolic assembler for microprogram
coding and documentation

Operating system used in conjunction
with ACM

SECTION 3
PHYSICAL DESCRIPTION

3.1 SYSTEM HARDWARE

C21518008-XO

All Cal Data Engine and system elements are modular and can be mounted
in a standard chassis (Figure 3-1) that occupies 10.5 inches (26.7 cm)
of a 19-inch (48-cm) RETMA rack. This modularity gives the user
maximum flexibility in system design and configuration.

The standard computer chassis dimensions are:
10.4 inches (26.5 cm) high
19.0 inches (48.3 cm) wide
24.0 inches (61.0 cm) deep

Hardware items included with the standard computer chassis are:
a. Chassis box with backplane
b. Top and bottom covers
c. Hinged fan panel and four fans
d. Chassis slides
e. Macropanel bezel and overlay

A power supply mounts at the rear of the chassis. The ac power cord
exits from a control panel accessible at the rear of the chassis. This
panel also has the ac line switch, fuses, convenience outlet (115 Vac
model only) and Macropanel lock switch.

The four fans provide horizontal, positive-pressure air flow across the
vertical computer boards and power supply. The fan panel is hinged
to permit moving the fans when boards are removed or installed.

System electronics are mounted on modular printed-circuit boards that
insert vertically through the top of the chassis into connectors
mounted on the backplane in the bottom of the chassis. The backplane
provides printed-circuit (and wire-wrap) connections between all
boards.

Device controller cables are generally connected at the top edge of I/O
boards by means of flat cable. These cables a¥e routed over the top
of the boards and exit via a cutout at the top'.. rear of the chassis.
A strain-relief clamp is provided. All standard Ca1:Data I/O
and memory boards have provision for this cable routing scheme. The
backplane contains up to 18 connector rows ~bo~rd slots).

The Macropanel is mounted on a printed circuit board that plugs into the
first connector row of the backplane. The Macropanel is covered by·':··an,
overlay held in place by the bezel. The bezel and over.l,ay ·are · · ·
removable.from the front when the chassis is install~d :i;n~~ ra9k.

3-il.

Figure 3-1. Cal Data 1 Computer with Boards Installed (Fan Panel is Shown Down)

3.2 ENGINE BOARDS

The Engine comprises two boards labeled Engine 1 (part number C81080180)
and Engine 2 (part number C81080190). Each Engine board (Figure 3-2)
is a hex-width board 15.7 by 8.9 inches (33.9 by 22.7 cm). Engine 1
nonnally plugs into slot 4 of the cal Data computer chassis.~ Engine 2
nonnally plugs into slot 3. The right-hand edge of each b~ard has
a 1.0 by 5.5 inch (2.5 by 14.0 cm) cutout as clearance for the side­
mounted cooling fans in the chassis.

There are six printed-circuit connectors (A to F) on the bottom edge of
each board, and two (Jl and J2) on the top edge. Connectors A.and B
interface with the MACROBUS. Connectors c to F, and Jl and J2 inter­
face with the main computer Microb.us~ , Connectors A to F are standard
backplane connectors. Connectors Jl and J2 plug into the two small
processor-interconnection boards.

There are no controls or adjustable elements on the Engine.

*Because· of tjl~ universal connections in the CPU area of the chassis, the Engine
.. boards . can op~~ate ; in any slot from 1 to 5.

· c21s1aooa.._..xo.

15.69"

Al A3o-------------------- Al

a J2 a a

COMPONENT SIDE

FVl FAl EVl EAl DVl DAl CVl CAl BVl

·®Solder Side = Bl to 830. Likewise with connector.J2 •

0.99"~

©
Jl

l-

an
an .
an 'd'

°' . ClO

BAl AVl CD AAl

. ·~@) so·l der Si de = AV2 to AA2. Likewise with connectors B to F.

'NOTES:.: .

· :, ·. Figure 3-2. Cal Data 100 Engine Board Configuration

.·.· 3-4' ···c2i.s1eooa-xo

' 4.1 FUNCTIONAL DESCRIPTION

SECTION 4
ENGINE

Figure 4-1 is a block diagram of the Cal Data 100 Engine, showing three
main functional sections: control, data and MCA. The control section
contains the control memory, emulation enhancement circuitry (if
needed) and timing circuits that control the sequence of operations
performed. Emulation enhancement circuitry is provided only when a
computer configuration requires the speed or special capabilities of
the added circuitry. The data section contains the arithmetic/logic,
gating and busing elements that perform data transfers and manipula­
tions. The basic control and data sections together are referred to as
the Engine or CPU. The main communication path in the.computer is
the ~:t:_QQ!!s, used for parallel transfers of information and control
signals between the CPU and all functional system elements. The
microbus comprises the A-operand bus (AB) , th.~_ B=_qperand bus (lm) ,
the ~-p-~_(MB) and other- li"IleS--(Appenaix A)~- The Engine and all
~ '----
external devices, including memory, Macropanel and peripherals
communicate with the Microbus. The relationship of the Microbus and
Engine logic is illsutrated in.Figure 4-2. Certain Microbus functions
can be perfonned by the MCA for common I/O devices, allowing the
Microbus to attend to higher-speed units. Devices on the MACROBUS
can communicate with the CPU and directly with other devices, depending
on their design. The MCA is shown in Figure 4-1 because of its
important function of conditioning the Microbus for use by the mass of
common peripheral devices.

A basic MACROBUS device is the magnetic core memory, which is generally
required in any system. Cal Data core memory modules are available in
8K- and 16K-word increments and can be added directly to the MACROBUS
up to a typical maximum of 128K words*.

Semiconductor memory can be interchanged with core in any speed/
capacity mix. The CPU addresses memory locations like any other _I/O
devices.

Two types of control panels are available: a Macropanel that is
adapted to a particular emulation and permits the ope11ator to control
the system at the emulated level of operation, and a Microconsole that
permits control and display at the microlevel and is useful for firmware
development, hardware maintenance and troubleshoo~ng. The Macropanel
is treated as an I/O device. Special interpretive_firmware services the
functions of the Macropanel.

*Maximum memory·c~pacity.of the basic system is 32K words. A Cal Data Memory
Managerttent Unit-is required for expansion beyond this capacity.

: C21518008-XO,· :

M

B
u
s

'I\
I SC

NOTE: ~ = AB (A-OPERAND BUS) SOURCES.

FR

AU

Figure 4-1. Cal Data 100 Engine Block Diagram

BB

IE cc

CM
CR

INTERRUPT
LOGIC

SELECTOR CONTROL
___ SECTIO_N -~

DATA
SECTION

(continued)

'C21518008-XO

. ..

@

EMULATE
TABLES

M _______ ___,.A

c

M

B
u
s

B "4--- ----+---r----11-.. SELECT
GATES

R
0
B

I
I

~'
AR II DR to

---- ---
AL DL

I

Figure 4-1. . (Continued)

.. ;

C215180b8-:XO

ID MS >~ -it-YL
(PARTIAL) -tt-p-

MACROBUS

u
. ,<I'.,,..,,_ s

I[" fYlt1"~t//.r.' .• ~4 .. !.i._v,:..

p s ;::t.J-/'.·

MACROBUS
CONTROL
LOGIC

CONTROL SECTION
EMULATION ENHANCEMENT

MACRO BUS
CHANNEL ADAPTER
(NOT PART OF ENGINE)

MACROBUS ·\'"
PRIORITY
OGIC

4-3

i,i.,.,,.
'.ii·,~ .. er •

·piqure 4-2.

, ,. -- ... 'l'.7;:/ d'-G ,'rs)
--:.r "f,. . . _. ----'I

If CS::~;~~...._,......... ... I 1d

BB

t·t~

INTERRUPT
LOGIC

BB
~...........,....,.___,.,...,....,..._-+-_..,. ONE

AB

·,e---t---~F1J..c... A.ca

FR

cc
P. f,Il
1~l-·X-c:rrl
C--1'-''·H~

sx

*Control and timing sign.als are ,di.stributed
to all functional areas o~ the·.::E~gjne .. ·

':·'·· .. -... ~~:.-'~·.:.~~;!:: ..

Cal Data 100 Engine Interface with the Microbus

.···:'.'.

4.2 CONTROL SECTION

A block diagram of the control section is shown in Figure 4-3. Control
is organized around the control memory (CM), which stores the micro­
programs to be executed. Microcommands are 48 bits in length. Normal
CM'capacity is from 256 to 4,096 words (48 bits each).

A 12-bit location counter (CC) addresses CM and advances on each clock
step unless altered by a sequenc~ cha._nge. Microconunands read from CM
are held in a microcommand register (CR) during execution. The micro­
commands read from CM can be .. m0dified prior to input to CR for execu­
tion. Microcommands can also be entered manually into CR and executed
from the Microconsole (not shown).

A 16-level control stack (CS) is provided to permit the contents of CC
to be saved and restored under microprogram control. This permits
automatic nesting of microroutines and microprogram interrupts, giving
increased speed and ~~ space efficiency. Th~-- --~ys_tem contains a unique
f~~~!3-.tY __ tha1: _permit~ def:>ign~ted are~s of_CM_to. .. l.?~.-"Pc;t_c;l}_~g_'~--~~QI.Il_ ~~=-
ilia~CM .. or __ from ____ tlle ___ ~-~~C?~~~sole •. This is a highly useful feature,
since nonalterable storage elements are generally used to implement CM.

An eight-bit loop counter (LC) is provided to permit single microcom­
mands or entire sequences to be repeated a specified number of times.
This feature enhances execution speed of iterative loops.

A special feature of the Cal Data 100 Engine is emulation enhancement
circuitry, located on a separate Emulate Board. This circuitry provides:

a. Automatic table-generated addresses :to CC to steer the micro­
program directly to specific emulation microroutines, by-passing
lengthy processing to decode instruction codes and addressing
modes

b. Automatic interrupt microroutine location entry to CC
c. Automatic table-generated modifiers to microcommands read from ·

CM
d. Automatic modification of processor status conditions for the

emulated instruction
e. Direct designation of word or byte-mode operations

Emulation-related features are described in a separ.ate emulation user
manual, available for each computer m~del.

4.2.1 Control Memory (CM)

C21518008-X0°

The control memory is a high-speed, random-access unit. Three device
implementations can be used:

a. Read-only memory (ROM). These bipolar semiconductor devices
are organized on chips of four by 256 (or f~ur by 512) bit·5·: .. ;
Twelve such devices implement each 256-word (or 512-~ord) CM~
page. The code pattern in each chip is permanently inscribea
during the factory manufacturing process and cannot b'e altered.
~OM is used for high-volume' production of fully debugged firm­
ware.

~
I

°'

~

< ()'

' tv
, ... I-"
. l11

........
. 00

0
0
00
I
x
0

~

'° s=
t;
Cl)

~
I
w .
()
p.i
......

0
p.i
rt
p.i

......
0
0

l:Ij
!:1,

t.Q
!:1
Cl)

()
0
!:1
rt.
t;
0
......

c:n
Cl)
()

rt
0

. !:1

tJj
......
0
()

.· 7;"'

~ ...
p.i

t.Q
t;
·~

M

B
u
s

LOOP
COUNTER
(LC) CCll :CCOO

MACROBUS INTERRUPT
INTERRUPT
PRIORITY
LOGIC

MCA

STACK
COUNTER
(SC)

CONTROL
STACK
(CS)

INTERRUPT
ENTRY
TABLE (ROM)

CSll: CSOO

MBll :MBOO

EIA07:
EIAOO

MICROCOMMAND
LOCATION
COUNTER
(CC)

CRll :"----..........
CROO

CCll:CCOO

CONTROL
MEMORY
(CM)

CM47:CMOO

EMULATE INSTRUCTION EIA08: EIAOO
--

11 0NE 11

EMULATION
ADDRESS

ENHANCEMENT SELECTED CM47:CMOO MICROCOMMAND
CIRCUITRY 1---:~~-------1~ REG I ST ER

CM BITS (CR)

Note:

~ = provides signals to
the A-operand bus
(see figure 4-4).

SELECTOR
CR15:
CROO

BB15:
BBOO DATA

SECTION
.._ ____

CR47:
CROO TIMING

AND
CONTROL

CM47:CMOO

INTERNAL TIMING
........_~ AND CONTROL

SIGNALS ·

b. Programmable read-only memory (PROM). These bipolar semi­
conductor devices are organized on chips of four by 256 bits,
pin- and speed-compatible with the equivalent ROM. The code
pattern in each device is electrically and permanently in­
scribed by a portable programming device. ~M_is_used_fo~

development and_J_ield..debugging .. _of .. firmware and also for low-
'Verlline production firmware packages.

c. Alterable Control Memory (ACM). The Cal Data AOvl is a complete,
modular control memory that can be installed in the computer in
addition to or in place of ROM and PROM devices. It is imple­
mented with bipolar random-access memory devices that can be
electrically altered (read/write). When installed in the com­
puter, ACM can be loaded and read via the MACROBUS using I/O
microconnnands. The ACM can then take control of the CPU for
execution of ACM firmware at real-time processor speeds. The
ACM is most useful for initial and on-line checkout of new firm­
ware prior to conversion to ROM or PROM devices.

The normal maximum capacity of CM is 4K words* when ROM or PROM devices
are used. Although each microconunand is 48 bits in length, the CM ad­
dressing structure of the microcormnand limits direct access to 2K words;
however, a paging scheme between 2K-word blocks permits convenient ac­
cess anywhere within 4K words.

Auxiliary Control Memory. It is often desirable to alter the contents
of CM, either temporarily or permanently. When nonalterable devices
are used, the usual requirement is replacement of the existing devices.
The Cal Data loq Engine incorporates circuitry that permits either one
or two 32-word blocks of auxiliary memory in. the Microconsole to func­
tionally replace designated 32-word blocks in CM. This enables
"patching" for corrections, additions or deletions from existing firm­
ware, temporary overlay for diagnostic and troubleshooting operations,
etc.

4.2.2 Location Counter {CC)

The location counter is a 12-bit binary counter/register that points to
the location in CM of the next rnicroconunand to be executed. The micro­
program sequence can be altered conditionally or unconditionally as
specified by the programmer and the state of the system. A sequence
change is made by loading CC from one of the following sources:

a. CR for programme~ branches
b. M bus for compu_ted branches
c. The current CS,register
d. A vector from the emulation enhancement circuitry
e. An interrupt v,ector

CC normally advances sequentially to the· next location through all.4K
locations in CM, including the wrap-around transition from 4,095 to O, ..
unless the normal sequence is altered.

*Auxiliary ·power. is· 'required above 512 words.

C21518008-XO 4-7

4.2.3

4-8

CC modifiers from CR and the emulation enhancement circuitry are 11 bits
long, permitting branches to occur from these sources within only a 2K­
word area. The most significant bit of CC is unaltered for such
branches. To branch to a location outside a 2K-word area, the program­
mer must execute a microcomrnand that transfers a full 12-bit branch ad­
dress via MB. Interrupt vectors are to only the first 256 CM locations
(i.e., the four most-significant cc bits are forced to ZERO).

Certain conditions cause an automatic reset of CC to location O (a cor­
responding microstatus bit is set for each condition) :

a. A catastrophic system error
b. A power-up sequence

The contents of CC can be read by microcomrnand via AB. For systems
that do not contain an implemented CS, this provides a means of saving
a return location in CM. ·

Microcommand Register (CR)

The 48-bit CR stores the current microcommand read from CM for execution.
The'microcomrnand from CM can be modified prior to entry into CR by a
function specified by the special decode circuitry on the Emulate Boar~.
CR can also be loaded from the Microconsole to permit direct operator
control of internal functions. The least-significant 11 bits of CR ·
modify CC when a branch operation is specified by the microcommand in
CR.

Microcornrnand Sequencing and Timing. The basic clock cycle is 165 ns
(adjustable) and, ordinarily, a microcommand is read from CM and 'exe­
cuted on each cycle. There is a one-clock delay between the time CC
addresses a word in CM and the time that the microcomrnand is transferred
to CR for execution. For this reason, when the·n~i:-rnal CC counting se­
quence is modified, two clock cycles are required to a~cess the micro­
cornmand at the branch location and transfer it to CR~ Furthermore, the
microcomrnand accessed at the time CC is modified is transferred to CR
even though a branch is being made. Whether or not this "extra" micro­
comrnand is executed can be specified by the programmer. The following
sequence illustrates the operation:

Time cc CR Operation

T-1 X. (X-1) I

T. X+l no Branch to Y specified
_'J:'+l y (X1:_1) Microcomrnand at X+l can be executed
T+2 Y+l (Y) Micro command at branch location

In addition to sequence modification, the programmer can specify· that
. t~e succ~edin·g microconunand be skipped. · In this case, the succeeding
microc~~and is· transferred to CR, but execution is inhibited. Th~s

action. is not considered to be a sequence change since CC continues
normal sequential counting. .

The output of CR is decoded to generate the timing and control signals
used throughout the computer.

c21~1aooa~xo· . ~ ' ' . .

4.2.4

4.2.5

Depending on the microcommand, the least-significant 16 bits of CR can
be gated via BB into AU. Alternately, a literal "one" value can be'."'
placed on BB.

Control Stack (CS)

cs contains 16 12-bit registers. that are accessed via the four-bit up/
down stack 'counter (SC)·. When a CC "save" is specified by a micro­
command, 'the contents ,of CC are transferred to CS. The contents of CC
are always one greater than the location of the microcommand specifying
the save •. Likewise, a microcommand can specify a return operation that
transfers the contents of the current CS location to cc. The return
microcommand can simultaneously transfer the (incremented) contents of
cc to the cs register that contained the return address. Incrementing
and decrementing of SC can be specified independently of the save and
return functions. CS permits convenient implementation of re-entrant
and multi level subroutin.es-at-:the._mi_9rq_:t_~e.l.. Any microcommand branch
condition can specify a save operatIOn with an automatic return to the
calling sequence using a Return microconnnand.

SC co.unts up from zero, modulo 16, and "rolls over" the boundary in
either direction. There ~§_)]._<? __ !_~4J.ccition given for a._ stack ove.rflow.
It is the pro_g;:aIT1Iller' s .:r;esponsibili ty to maintain the stack within

-l-i1n.t-t:s:-- .. -------·- -·
--~··---···

. The contents of CS (current location) can be read by microcommand;
.however, Cp cannot be directly loade4 and SC is not directly accessible
to the microprogram. The contents of CS, therefore, cannot be saved in
the event of a power interruptiqn. It is mandatory that provision be
made to execute all returns in ·cs within the" time available for power
interruption. Since several milliseconds are available, this imposes
no practical restriction on the use of the stack~

Loop Counter (LC)

A powerful feature of the Cal Data Engine is the eight-bit LC that per­
mits a single microcommand or a group of microcommands to be automati­
cally repeated up to 256 times. LC is loaded via MB and can be read
with a microcommand. In a repeat sequence, LC can be tested for a zero ' :, ' ..
or nonzero condition by any microcommand in the sequence.;1 ... with a branch
operation executed if the condition is met. LC is decreni~nt~d each time
it is tested. Individual microcommands can also be repeated the number
of times specified by LC.

4.3 DATA SECTION

:.~21.s1aoaa~xo

A block diagram of the data section is shown in.Figure 4-4. The ~ata
section contains the basic arithmetic, logic and busing elements of the
Engine required. for manipulation and transfer of da~a throughout .:t;:he
computer.

4-9'

1-:tj
~ l-I
.....
0 ~

~
I'
~ .
()
Ill
t:1
Ill
rt
Ill

.....
0
0

ttj
::s

l.Q
::s
ct>

~
rt
Ill

Cf)

ct>
()

§
rt
0,
::s
tD
.....
0
()
X"

t:1
Ill . l.Q

. 11
Ill a

M

B
u
s

MB15:MBOO
MS
LOGIC

MICROSTATUS
REGISTER
(MS)

MS06:MSOO

.FILE
REGISTERS
(FR)

CONTROL
SECTION

ARITHMETIC/ AU SHIFT
LOGIC UNIT ELEMENTS
(AU) AU15: (SX)

~-----AUOO L...-____ __.

BB15:BBOO

MB15:MBOO

M BUS

SHIFT
BITS

SHIFT
REGISTER
(XR)

MB15:MBOO

by a shaded triangle in the lower-right corner of SAMPLE
*These sources are identified on all block diagrams~

each block providing signals to the A-operand bus:

M

B
u
s

4.3.l

4.3.2

4.3.3

The data section utilizes 16-bit parallel data paths and operational
elements. Provision is made for byte-mode operations. The general file­
register (FR). structure provides either eight or 16 general-purpose
registers directly addressable by each microcommand. The output of any
FR can be selected as either the A- or B-operand input to the arithmetic/
logic unit (AU), and the results of the operation are routed via MB to
many destinations (including FR) within the Engine.

Dynamic condition codes indicating conditions of the operational results
Ce .• g., overflow, n.egative, etc.) are. generated for each microcommand
executed. These conditions can be saved as static status bits. Either
the static or the current dynamic conditions can be tested by any micro­
command.

File Registers (FR)

FRs provide general-purpose storage within the data section. Either
eight or 16 FRs (labeled FRO to FRlS) of 16 bits each can be implemented.
The FRs permit the following simultaneous operations to be performed:

a. Any two FRs can be specified as the A- and B-operand sources
to AU

b. The FR selected as the A-operand source can also be specified
as a destination register

c. Any FR can be specified as a destination register for MB

Operand Buses (AB, BB)

Operands are transferred to AU via AB and BB, part of the Microbus.
All microcormnands executed by the CPU involve the use of information on
one or both of these buses.

AB sources can be selected from any one of the FRs or from one of 11
other operational registers in the computer. There are five unused AB
source addresses, of which two are reserved for user-defined functions.

The BB source can be:
a. Any one of the FRs
b. The least-significant 16 bits of the current micrqcommand

contained in CR
c. A literal "one" value

The second BB source listed above represents a l6-bit literal value con­
tained in the microcommand.

Arithmetic/Logic Unit (AU)

AU is a 16-bit parallel element that performs arithme,tic (Appendix A)
and logical functions on two variables inp~t via AB ·and' BB with the link
(L) status bit from the microstatus register (MS) used conditionally as
a carry input for addition and subtraction operations. A carry output
(c) , resulting from AU operations, can be tested as conditional skip or
branch condition and can also be stored in MS (in the L bit) as a static
. status condition·.

.. ·C21518008-Xp 4-11

4.3.4

4.3.5

4.3.6

Each microcommand specifies, either implicitly or explicitly, the AU
operation to be performed and the use of the L input. A total of 15
logical and eight arithmetic functions are implemented.

AU Shift Elements (SX) and Shift Register (XR)

SX is a set of gates that can be used in conjunction with shift register
XR for shifting an AU operand. The following can be performed:

a. Left shift one bit
b. ~ght shift one bit (l.ogi.cal or arithmetic)
c. swap more-s.igni.ficant and less-s.ignificant bytes
d. Swap more-s.ignificant and less-s_ignificant halves of the

less-s_ignif icant byte

For shift operations, the L bit in MS is normally used as the shift
carry-in and c is the bit shifted out of SX. This carry bit can be
saved as L for the next AU operation.

Provision is made for both single- and double-length shifts, either of
which can be logically open, closed or arithmetic. Double-le_ngth shifts
are performed in conjection with XR, which is a 16-bit shift register.
In this case, the L input and c output are dependent on.the direction of
the shift. For left shifts, sx holds the more-significant 16-bit word.
For right shifts, XR holds the more-significant word.

Shifts are performed by using shift operation codes in microcommands.
Because the A operand is always used in the.shift, AU performs a "copy"
AB operation. Shift microconunands must specify the type of shift to be
performed and the carry input function.

Multibit shifts can be performed by the use of LC by setting up a shift
count and repeating the microcommand. This permits execution of shifts
of all types to be performed in one clock step per bit shifted.

M Bus (MB)

MB., .a part of the Microbus, receives the resultant output from an AU or
shift operation and provides the transfer path to all internal computer
destinations. Each microcommand specifies a destination address to one
MB location. In addition, by setting one bit of the microcommand, the
AU result· · C'a~ be tr an sf erred to the AB source.

Microcondition Codes

For·each operation performed by .the AU or shift gates, a set of condition
codes .is.dynamically generated, describing the result. These are:

a..' ··::carry-d~t:;;:.(c). The carry-out is generated a~ the arithmetic
carry fqr.an add operation, the borrow for a subtract operation

'.or .the shift carry-out for a shift operation. .·. '
b. OV~rflow (v) • . Overflow is generated for add, subtract or: .shift

operat~ohs •. · The conditions under which overflow oc,curs ,::·depends
on the ··operation.-

c2is1a·ooa-xo

4.3.7

c. Zero (z). The zero condition exists when all bits of the result
are ZERO.

d. Negative (n). The negative condition exists when the most­
significant bit of the result (shifted, if applicable) is ONE.

e. Positive (p). The positive condition exists when the result
is· greater than zero (not zero and not negative).

f. Odd (d). The odd condition exists when the least-significant
bit of the result is ONE.

The last four conditions are referred to as data value codes and are
generated from the value of the AU result on MB.

A microcommand can specify dynamic conditional testing of the micro­
condition codes generated as the result of an operation, and the condi­
tional test can cause a skip of the next microconnnand or a branch to a
new microprogram location. This capability saves considerable time over
machine designs that require conditional testing to be performed on the
condition generated by a previous operation.

Microstatus Register '(MS)

The six dynamic condition codes can be saved as static microstatus bits
in MS. Each microcommand can specify separate storing of the carry/
overflow and the four data value codes in MS. These static microstatus
conditions (instead of the dynamic microcondition codes) can.then be
·tested by microcommands for conditional skips or branches.

MS is 16 bits in length. In addition to the six microcondition codes,
other status bit~ are stored in this.register. The contents of MS can
be read via AB and can be loaded as a destination via MB. The complete
set of status bits contained in MS is defined in Table 4-1.

Table 4~1. Microstatus Register Bit Definitions

MS Bit Symbol Name Description

00 L Link Stored state of dynamic carry-
out (c) of AU or shift gates

01 v Overflow Stored state of dynamic arith-
me tic or ... s~;i.J;t overf iow (v)

: ;·'t·,. ',\.,.1-.

'•

02 z Zero Stored state of zero (z) data
value code

03 N Negative Stored s~ate of negative (n)
data ·'.value co,t.1~ .

. .. ~~ r.~ .
.,.

04 p Positive store~ state o~ positive (p)
;, data vc;tlue· code

''(.. \ ..
05 D Odd .. Stored:» state of odd (d) data

value · 'C'ode

15 to~06 Special use, depending on . "

... ,.
emulation

: _.·r· ,. L. .I ,, ,._,,'
• ~ 4

..

..

. '
. c21s1aooa-xo·

4.3.8 Word and Byte Operations

The AU and shift elements of the CPU handle 16 bits and, therefore, exe­
cute full .word operations. The'.·CPU is also des.igned to operate on bytes
(half words), if so specified by a microconnuand. The byte mode can be
designated as unconditional or conditional. In the conditional case, a
byte-mode operation is performed only if the emulation circuitry indi­
. cates that the instruction being emulated is a byte-mode instruction.

The Engine has the capability of transferring either words or bytes on
the MACROBUS. For arithmetic and logical byte operations involving AU,
the specified operation is performed on the full 16-bit A and B operands.
Since microcondition codes are generated on only the less-significant
byte (bits 07 to 00) of the result, the bytes to be manipulated must be
right-justified. Carry bits propagated out.of the less-significant byte
can af feet the results in the more-significant byte,. A byte operation
with a file register (FR) as a destination does not modify the most­
significant byte of the specified FR. A register destination, however,
reflects the full 16-bit .result. For example, consider addition of the
following two right-justified bytes:

A 00000000 10110110 (-74)

+B 00000000 11101011 (-21)

(00000001)10100001 (-95)

Microcondition codes are generated from the less-significant byte as
follows:

c = 1, v = O, z = O, n = 1, p = O, d = 1.

The result for byte-mode operations is interpreted for the less-signifi­
cant byte only. In many cases, it is desirable to extend the sigi:i of
the less-significant byte across the entire word (e.g., where word and
byte arithmetic operations are mixed). A microcommand is provided that
will insert the state of the microstatus L bit into the most-significant
eight bits of a word. Thus, if the state of the c bit from the previous
example is saved as L, the "sign-extended" result is:

1111111101000001

This can be generated by execution of the Sign Extend microcornmand.

The CPU has an extensive complement of Shift microcommands that includes
arithmetic as well as logical open and closed forms, both single- and
double precision .(double-length shifts involve XR) •

For byte-shift operations, shifting is performed on only the less-signi~
ficant byte. The more-significant byte remains unchanged. The carry ·
input and microcondi tion codes are associated with the less-s.ignificant
byte. Examples are:

921518008-XQ

, C21518008-XO ..

a. Byte mode, open left shift:
A = 00000011 10101101 L
R ~ 00000011 · 0101101L

(c) 1

c = 1, v = 1, z = 0, n = O, p = 1, d • L.

Note that L is the shift carry input and that the carry-out
is the most-significant bit of the less-significant byte.

b. Byte mode, open right shift:
A = 00000011 L 10101111
R = 00000011 Ll010111 l(c)

c = 1, v = L, z = 0, n • L, p • L d = 1.

'4'.""15

SECTION 5
MICROCOMMANDS

5.1 GENERAL

Microconnnands generate the control signals that enable all internal
operations of the Engine. There are no suboperations performed. All
functions specified by a microco:mmand are executed simultaneously within
a single clock step, with the following exceptions:

a. When the microprogram execution sequence is altered, one addi­
tional clock step is required to execute the branch operation.

b. A MACROBUS access delay inhibits microcommand exe9ution until
a synchronizing I/O response is received.

A CPU clock period is 165 nanoseconds and all microconunands are executed
within an integer multiple of that period.

The CPU incorporates a 48-bit microcommand word to perform all operations
in the machine. The microcommand structure pennits simultaneous exe­
cution of many parallel functions specified in each microcommand to
achieve exceptionally fast emulation of general-purpose computer opera­
tions.

The structure of the microcommands provides considerable flexibility in
organizing a particular microprogram to maintain high effective execu­
tion rates with economical use of control memory space.

5.2 MICROCOMMAND CLASSES

5 ~·.2 .• 1

The three classes of microconunands are:
a. Logical
b. Arithmetic
c. Special

Every microconunand, regardless of class, has the ability to specify a
conditional or unconditional branch or skip operation. Since the format
of the microconunands differs, depending on whether a branch or skip is
specified, the microcommands in each class can be considered to be one
of two types:

a. Branch type
b. Skip type

Figure 5-1 shows the formats for the classes and types of microcommands
executed by the CPU. The format for the logical and arithnetic classes
is identical. The general characteristics of each class and type are
defined below.

Logical and Arithmetic Classes

·As· the name implies, the logical and arithmetic classes of microcommands ;
perform logical and arithmetic functions of one or two variables, as
specified 'hYi .. the microconunand. The specific logical or arithmetic ·

: .. ·•,\,

-~ c21s1adoa.:..xo

LOGICAL AND ARITHMETIC CLASSES

Branch Type

47 42 41 37 36 -'-.. -32 29 24 23 20 19 16 15 01 SB I OP I DN I NX I AO I MC I MX I BO

Skip Type

11 SB OP DN NX AO MC MX

SPECIAL CLASS

Branch Type

01 SB
OP DN I NX I AO MC MX so

Skip Type

l_S SB
OP DN I NX I AO MC MX so

SB = branch condition code (bit 47 specifies microconunand type)

OP = basic operation performed by the microcommand t

12 11

I

J-

DN = destination address of result from the arithmetic/logic unit (AU)

NX = special control functions

AO = source address of A operand to AU..

MC = microcondition code specification (dispositions)

MX = special control functions

BO = source address of B operand to AU

. SO = spec~al operation control functions

BF = branch.address or auxiliary control functions

LL = literal· value

FN = auxiliary control functions

Microcommand Fonnats

00

BF I

LL

BF

FN

·c,21s10000;.:~o

operation i.s deJ!ined by. the OJ? field. A total of 16 l.ogj.cal and e.ight
a:ritlunetic opera,ti.ons a,:r:e i~le.IQented. The same set of· operations is
performed ~egardless of whether a branch- or skip-type microcommand is
used.

The logical or arithmetic branch-type microconunand permits the program­
mer to specify that a conditional or unconditional branch to a new pro­
gram location can occur based on the results of executing the current
microcommand (or on results previously stored).

In this type of microconnnand, both an A and B operand to AU are specified.
The destination of the resulti_ng operation is also specified. Arithmetic
condition codes resulting from the microcommand execution can be saved or
ignored.

If a branch condition is specified, an 11-bit branch address is provided
that alters the microprogram sequence if the branch condition is met. A
control bit is also provided that can cause the next CM address to be
pushed into CS before the branch is made. This permits the microprogram
to later execute an automatic return to the microprogram.sequence via CS.

It is not necessary to specify a branch condition, even though the micro­
command is a branch type. If no branch condition is specified, an aux­
iliary set of control functions can be specified that are performed
simultaneously with execution of the basic logical or arithmetic oper­
ation.

The remaining fields.of the branch-type microconnnand provide special
control functions that can modify execution and content of the next
microcommand in sequence. The operations performed by these fields are
common to all microcommands, regardless of class and type.

Skip-Type

The logical or arithmetic skip-type microconnnand performs the same basic
operations as the branch type. The differences in the skip-type micro­
conunands are:

a. Instead of a branch condition, a condition is specified under
which exe·ctttion of the microconnnand at .the next CM location can
be inhibited (skipped). The CM address sequence itself is not
altered.

b. The B-operand source and branch address are replaced by a 16-
bi t literal value. This value is used directly as the B
operand for those logical and arithmetic operations that in­
volve a B-operand input to AU.

c. Because of the space reserved for· a literal value (whether .or
not one is required) , the auxiliary control functions defin'ed
for the branch-type microconnnand cannot be specified.

All other operations of a skip-type microcommand are identical to the
·corresp6n~ing branch-type microconnnand.

C2151B008-XO s-3

5.2.2 Special Class

The special class of mi.crocommands provides . functions that af feet spe­
cialized control and other operations required of the computer. Some 0£
these microconunands involve the use of AU. The operation performed is
specified by the OP field. A total of seven special operations are im­
plemented.

Branch-Type

The special branch-type microcommand permits the progrannner to specify a
conditional or unconditional branch just as for the logical or arith­
metic branch type. And, in the same way, either a branch address or a
set of auxiliary control functions can be specified, depending on whether
or not a branch condition is specified by the microconnnand.

Skip-Type

The special skip-type microcommand is the same as the branch type and
specifies the same operations, except that:

a. Instead of a branch condition, a condition is specified under
which execution of the microcommand at the next CM location can
be inhibited (skipped). The CM address sequence itself is not
altered.

b. Since a branch address cannot be specified by this type of micro­
command and since a B operand is never used, the space reserved
for these is used to specify a set of auxiliary control func­
tions.

5.3 LOGICAL MICROCOMMANDS

5-4

The following paragraphs present a description of each logical micro­
command. A summary of all the basic microconnnands executed by the CPU is
given in Table 5-1.

The description of each microcommand includes the nmemonic; hexadecimal
OP-field code; symbolic notation describing its operation, where appli­
cable; a description of the function performed; and examples or other
comments to clarify the description.

C21518008-x;O ·.

T~le 5-1.

Mnemonic

EML
SXA
MVA
MVB
OCA
OCB
AND
NOB
NOA
NOR
ORI
ORB
ORA
NANO
XOR
COI

ADD
SUB
ADC
SBC
INC
DEC
MSA
-

SHF
MUS
DVS
TSB
MMS
CMA
CMB
DCD

cns1aooa~xo

Cal Data 100 Engine Microcormnand Sunmlary

OP Field
(Hexadecimal)

00
01
02
03
04
05
06
07
08
09
OA
OB
oc
OD
OE
OF

10
11
12
13
14
15
16
17

18
19
lA
lB
lC
lD
lE
lF

Name

LOGICAL

Emulate (optional)
Sign Extend A
Move A
Move B
Complement A
Complement B
AND A, B
AND A, B'
AND Jr, B
Not OR
OR A, B
OR A, B'
OR Jr, B
Not AND
Exclusive OR
Coincidence

ARITHMETIC

Add, A, B
Subtract A, B
Add carry
Subtract carry ..
Increase ·A·
Decrease A
Add A Masked
(reserved)

SPECIAL

Shift
Multiply Step
Divide Step
Test Bit
Modify Macrostatus (optional)
Conditional Memory Access, A operand (.optional)
Conditional Memory Access, B operand
Decode (optional)

5-5·

·S-6

The following symbols are used (in addition to many defined in Table
1-1):

11 = absolute value of

() = contents of

() = Boolean complement

n = Boolean AND

U = Boolean OR

E9 = Boolean exclusive OR

= = equal to

< = less than

> = greater than or equal to

-:/ = not equal to

+ = arithmetic addition (two's complement)

= arithmetic subtraction (two's complemen~)

x = .arithmetic mul tiplicatio.n

. = arithmetic division

A = A operand to AU (from A-operand source specified by the
microcommand)

An = nth bit of A

.Aa:An • A bit.· m to n

B = B operand to AU (from B-operand source specified by the
microcommand)

R = result (word on MB)

RM = more-significant byte of R

RL · = less-signficant byte of R

DN = destination location (specified by the microcommand)

CIN = carry input

~ = replaces

The logical microcommands listed in Table 5-1 can be e~ecuted in either
the word or byte mode. With one exception (SXA) ,; :·~~{_;'operation is per­
formed on the full pair of operand words in Au· atjd_.::.t?fe·. 16-bit result is
transferred to the destination via MB.

.·.c;:21s1aooa-xo

Microcondition codes are determined on the full word in the word mode
and on the less-significant byte in the byte mode. This is illustrated
below:

AU AU

15 00 15 08 07 00

R RM RL

\) '--.,-----I
"" Microcondition Microcondition

Code Test Code Test

The microcondition codes for all logical-class microcommands are given
in Table 5-2.

All logical microcommands are standard except Emulate (EML), which is
optional. The main purpose of EML is for very rapid emulation decoding
of instruction operation codes and control fi~lds. The procedure is
to store the instruction in IR. EML then initiates translation of the
contents of IR into a CM branch address generated from a table of values.
The address directs the microprogram to the proper microroutine in CM
for-the emulation of each instruction. The emulate table is specifi­
cally programmed for each computer to be emulated. The decoding opera­
tion performed by EML can be accomplished by other methods using only
standard microcommands, but at the cost of time and CM space. For this
reason, the need to implement EML depends on the specific application.

Table 5-2. Microcondition Codes for Logical Microcommands.

Microcondition Definition

Code Word Mode Byte Mode

c ~~ontrolled by the MC ~~ontrolled by the MC
v field of the microcommand field of the microcommand
z 1 if R=O; 0 otherwise 1 if RL=O; 0 other~ise
n 1 if Rl5=1; 0 otherwise 1 if R07=1; 0 otheiw~~e
p 1 if" R>O; 0 otherwise 1 if RL>O; o otherwis~
d 1 if ROO=l; 0 otherwise 1 if ROO=l; 0 otherwis'e

C21518008~XO 5-7;

5.3.l

5.3.2

5-8

Emulate (Optional)

Mnemonic: EML $00

Operation: R = A
R +{DN)

(emulation table)+{CC), unless higher-priority CC
modification occurs

Description: ·The A operand is transferred to the destination. The

Sign Extend A

Mnemonic:
Operation:

Description:

Example:

contents of IR are translated into a branch address
(emulate instruction address, EIA) to CC using an
emulate table on the ~ulate Board. If a higher­
priori ty CC modification occurs concurrent with the
microcommand, the EIA is ignored. All microcommand
fields are effective as def~ned, except that the BO
field is ignored, since no B operand is used.

SXA $01
Word mode

R=A
. R +(DN)

Byte mode

RM =(N)U Al5:A08
RL = A07 :AOO
RM, RL+{DN)

In the word mode, the A operand is transferred to the
destination.

In the byte mode, the state of the negative microstatus
bit, N, is extended to the more-significant byte of the
A operand. The contents of the less-significant byte
of the A operand are unmodified. The result is trans­
ferred to the destination.

Perform a byte mode add on A and B and store the result
in. the A-operand location, then extend the sign of the
byte result.

A 00000000 10110100
+B 00000000 11101100

R 00000001 10100000

(-76)
(-20)
(-96)

The microcondition codes generated are:
1 =·1, v = O, z = O, n = 11 p = O, d = O

SXA:
· A 00000001 10100000
U(N) 11111111

R 11111111 10100000
~ '--..,,----/

RM RL

C215iB008-XO

5.3.3 Move A

Mnemonic:

Operation:

Description:

5.3.4 Move B

Mnemonic:

Operation:

Description:

5.3.5 Complement A

Mnemonic:

Operation:

Description:

Example:

5.3.6 Complement B

Mnemonic:

Operation:

Description:

C21518008'."'"XO

MVA $02

R = A
R -~ (DN)

The A operand is transferred unmodified to the
destination.

MVB $03

R = B
R --. (DN)

The B operand
1
is transferred unmodified to the

destination.

OCA $04

R = A
R ~(DN)

The logical or one's complement of the A operand is
transferred to the destination.

A
R

Binary
0110110100101100
1001001011010011

OCB $05

R = B"
R -.(DN)

Octal
066454
111323

Hexadecimal
6D2C
9203

The logical or one's complement of the B operand
is transferred to the destination •.

5-9

5.3.7 AND A, B

Mnemonic:

Operation:

Description:

5.3.8 AND A, B'

Mnemonic:

Operation:

Description:

5.3.9 AND A, B

Mnemonic:

Operation:

Description:

5.3.10 Not OR

Mnemonic:

Operation:

Description:

s-io

AND $06

R = An B
R --. (DN)

The logical AND of the A and B operands is transferred to
the destination.

NDB $07

The logical comptement of the B operand is ANDed with
the A operand and the result is transferred to the
destination.

NDA $08

R = An B
R --.. (DN)

The logical complement of the A operand. is ANDed
with the B operand and the resµlt is transferred
to the destination.

NOR $09

R = AU B
R ~ (DN)

The logical NOR of the A and B operands is transferred
to the destination.

c21s1aooa-x6

5.3.11 OR A, B

Mnemonic:

Operation:

Description:

5.3.12 OR A, B

Mnemonic:

Operation:

Description:

5.3.13 OR A, B

Mnemonic:

Operation:

Description:

5.3.14 Not AND

Mnemonic:

Operation:

Description:

C21518008-}{0

ORI $0A

R = AU B
R ~(DN)

The logical OR of the A and B operands is transferred
to the destination.

ORB $OB

R = A U B"
R ~ (DN)

The logical complement of the B operand is ORed with the
A operand and the result is transferred to the destination.

ORA $0C

R = Jr U B
R __.. (DN)

The logical complement of the A operand is ORed with
the B operand and the result is transferred to the
destination.

NAND $00

R = An B
R ~ (DN)

The logical NANO of the A and B operands is transferred
to the destination.

5-11

5.3.15 Exclusive OR

Mnemonic:

Operation:

Description:

5.3.16 Coincidence

Mnemonic:

Operation:

Description:

XOR $OE

R·=A (!) B
R _. (DN)

The logical exclusive OR of the A and B operands is
transferred to the destination. The exclusive OR by
definition is:

A (f) B= [A n BJ u [x n B]

COT $OF

R=A eR
R __,. (Dm

The complement of the logical exclusive OR of the A and
B operands is transferred to the destination. This is
the coincidence function:

A (f) B= [An B] u (An BJ
5.4 ARITHMETIC MICROCOMMANDS

The arithmetic microcommands are 1 i.sted ir: TabL=- 5-1.
microcomma~ds in this class.

't'l: ::! e are eight

The CPU performs both binary addition and subtraction (as opposed to
complementary addition). Negative numbers are. assumed to be represented
as two's complements of positive numbers (although one's complement
arithmetic can be performed, since the progrannner has independent con­
trol of the carry and borrow inputs to AU). A complete description of
binary arithmetic operations in the CPU is given in Appendix A. The
carry and overflow microcondition codes differ for the addition and
subtraction operations, as does the us(~ of the rarry-in t?nn. The data
value microcondition codes (z, n, p and d) are the same for addition and
subtraction and depend, only on the value.of the arithmetic result.

Arithmetic.operations .can be executed in either the word or byte mode.
In either mode, . th~.· specified operation is performed on the full pair of
operand words in At.L: .·.The 16-bit result is transferred to the destina­
tion via MB. The midrocondi tion codes are de.termined on the full word
in the word mode ari~··,on. t}?-e less-significant byte in the byte mode (see
illustration in sulis:ectiori 5 •. :i) • The microcondi tion codes for addition
and subtraction operations are defined in.Table 5-3.

Table 5-3. Microcondition Codes for Arithmetic Microcammands

Micro Definition
Condition Arithmetic Word Mode Byte Mode
Code Opena.tion

c Addition [AlS n Rl.5 J u [Bl5 n Rl.5 J [A07 n R07] u [B07 n R07 J
U (AlS n Bl5] U (A07 n B07] ·

Subtraction [AlS n R15] u [A15 n Bl5] [A07 n R17] ~A07 n B07]
U (Bl5 n R15] u(ao1 n Ro7

v Addition [Als n a15 n Rls] ~A07 n B07 n RD7]
n [A1s n sis n ns] [Ao7 n B0'7 n Ro1 J

Subtraction [AlS n BlS n Rl.tl_ (Ao7 n Bo1 n RozL
U(Al5 n Bl5 n RlS] u [A07 n B07 n R07]

z Addition or 1 if R = O; 1 if RL = 0;

Subtraction 0 otherwise 0 otherwise

n Addition or 1 if RlS = 1; 1 if R07 =. l;

Subtraction O otherwise 0 otherwise

p Addition or 1 if R > 0; 1 if RL > 0;

Subtraction 0 otherwise 0 otherwise

d Addition or 1 if ROO = l; 1 if ROO = l;
...

Subtraction 0 otherwise 0 otherwise

. ~1518008,-XO 5'-13

5.4.1

5.4.2

5....:14

Add A, B

Mnemonic:

Operation:

Description:

Micro­
condi tion
Codes:

Example:

Subtract A, B

ADD $10

R=A+B+cIN
R __.... (DN)

The A and B operands and the value of CIN designated by
the MC field are added arithmetically and the result is
transferred to the destination.

Addition (Table 5-3).

Add A and B and increment the result:
A= +27,435 = 0110101100101011

+B = - 1,747 = 1111100100101101
+CIN = +l = 0000000000000001

R = +25,689 =l 0110010001011001

l .. c

The microcondition codes generated are:
c = 1, v = O, z = O, n = O, p = 1, d = 1

Mnemonic: SUB $11

Operation: R=A-B-CIN
R __.(ON)

Description: The B operand and the value of CIN designated by the
MC field are subtracted from the A operand and the
.result is transferred to the destination.

Micro- Subtraction (Table 5-3).
condition
Codes:

Example: Subtract B from A and decrement the result:
A·= -444 = 1111111001000100

-B = -(-1,747) = - 1111100100101101
-CIN = -(+l) = - 0000000000000001

R = ' . +l, 392 = 0 0000010100010110

Le
This operation produces a one's complement result when
the result is negative, since CIN is specified as a ONE.

The microcondition codes generated are:
c = O, v = O, z = O, n = 0, p = 1, d = O

c2°1518008-XO

5.4.3 Add Carry

Mnemonic:

Operation:

Description:

Micro­
condi tion
Codes:

5.4.4 Subtract Carry

Mnemonic:

Operation:

Destination:

Micro­
condi tion
Codes:

C215180.Q8.~'XO

ADC $12

R=A+cIN
R --.(ON)

The value of CIN designated by the MC field is added
to the A operand and the result is transferred to the
destination.

Addition (Table 5-3).

SBC $13

R=A-CIN
R __.(ON)

The value of CIN designated by the MC field is subtracted
from the A operand and the result is transferred to the
destination.

Subtraction (Table 5-3).

s:-rs

5.4.5

5-16

Increase A

Mnemonic:

Ope:r;:ation:

Description:

Micro­
condi tion
Codes:

Examples:

INC $14

R=A+l+cIN
R ---.(DN)

The value one and the value of CIN des_ignated ·by the
MC field are added to the A operand and the result is
transferred to the destination. If CIN is ONE, the
A operand is increased by two; otherwise, it is
increased by one.

Addition (Table 5-3),

Increase the A operand by two if MC designates CIN as
ONE; increase by one otherwise:

A = +7817 = 0001111010001001
+l = +l = 0000000000000001

+CIN = 0 = 0000000000000000
R = +7818 = 0001111010001010

The microcondition codes generated are:
c = O, v = 0, z = O, n = 0, p = l, d = 0

Another example, where overflow is affected:
A= +32,766 = 0111111111111110

+l = +l = 0000000000000001
+CIN·= +l = 0000000000000001

R = +32,768 = 1000000000000000

The microcondition codes generated are:
c = O, v = 1, z = O, n = 1, p = 0, d = 0

C215l.8008-XO

5.4.6 Decrease A

C21518008-XO

Mnemonic:

Operation:

Description:

Micro­
condi tion
Codes:

Example:

DEC $15

R=A-1-CIN
R __. (DN)

The quantity one and the value of CIN designated by the
MC field are subtracted from the A operand and the
result is transferred to the destination. If CIN is ONE,
the A operand is decreased by two; otherwise, it is
decreased by one.

Subtraction (Table 5-3).

Decrease the A operand by two if the L microstatus bit
is set; decrease by one otherwise:

a. If (L) = 1:
A= +l =

-1 = -(+l) =
CIN = -(+l) =

R = -(+l) =

0000000000000001
- 0000000000000001.
- 0000000000000001
1 1111111111111111

l_.c
The microcondition codes generated are:

c = 1 (borrow), v = O, z = O, n = 1,
p = o, d = 1

h. If (L) = 0:
A= +l =

-1 = -(+l) =
CIN = -0 =

R = 0 =

0000000000000001
- 0000000000000001
- 0000000000000000

0000000000000000

The microcondition codes generated are:
C = 0 I V = 0 I Z = 1, n = 0 I p = (f~\·$i 1 = Q

5-17,

5.4.7

5~18

Add A Masked

Mnemonic:

Operation:

Description:

Micro­
condi tion
Codes:

Example:

MSA $16

R=A+ [A RB] +cIN
R __. (DN)

The logical AND of the A and B operands is added to
the A operand and to the value of CIN designated by
the MC field, and the result is transferred to the
destination.

Addition (Table 5-3).

Add the absolute value of the less-significant byte of
A to the A operand:

A = -110 = 1111111110010010
B = mask = 0000000001111111

An B = +18 = 0000000000010010
+A =+(-110) = 1111111110010010

+CIN = +O = 0000000000000000
R = · -92 = 1111111110100100

The microcondition codes generated are:
c = O, v = O, z = O, n = 1, p = O, d = 0

'C21518008-XO

5.5 SPECIAL MICROCOMMANDS

G.21s1aooa~xo

The seven special microcommands listed in Table 5-1 provide a powerful
extension of the basic logical and arithmetic microcommands. Four of
these are standard and have general application in all emulation micro­
programs. Three microcommands are defined as optional, since they must
be tailored to a particular emulation system. The hardware elements
that implement the optional microconnnands are modularized to permit them
to be either omitted or redefined without affecting the basic hardware
of the Engine.

Microcondition codes generated for the special microconnnands are
generally identical to those defined for the arithmetic microconunands,
with major exceptions. The overall uses and limitations of the special
microcommands are described in the following paragraphs.

5-19.

5.5.1 Shift

The Shift microconnnand provides complete flexibility for single-length
shifts involving only the A operand and AU, and double-length shifts
involving AU and XR. Shifts can be left or right, logical or
arithmetic, open or closed. While the basic microconnnand shifts only
a single bit, multibit shifts can be performed by repeating the micro­
command using LC.

Mnemonic:

Microconnnand
Type:

Description:

Table 5-4.

SHF $18

Special branch or special skip.

The SO field specifies the type and direction of shift
as shown in Table 5-4. For a single-precision (16-bit)
shift, the A operand is shifted one place left or right
and the result is transferred to the destination. For
a double-precision (32-bit) shift, the A operand and the
contents of XR are shifted one place left or right with
a linked carry between the two words. The shifted AU
result is transferred to the destination and the
shifted XR result remains in XR. The shift operation
is performed in the word mode unless a byte operation
is specified by the FN field.

Using the special skip-type format for the shift can
lead to possible conflict between a double-length shift
specification in the SO field ~d an XR shift specif ica­
tion in the FN field. If such.a conflicting specifica­
tion is made, the SO field control is effective and the
FN field control is ignored.

SO-Field Shift Specification

so Field Bits
15 14 13 12 Shift Operation

0 0 x x swap halves
0 1 x x shift left, logical
1 0 x x shift right, logical
1 1 x x shift right, arithmetic
x x 0 x single precision
x x ·1 x double precision
x x x 0. open shift
x x x l\ closed shift

C1l518008-XO

5.5.1.1 Single-Precision Shifts.

Single-precision shifts involve only AU shift elements operating on
the A operand.

Swap Halves (Word or Byte).

Operation: a. Word mode :
Rl5 :R08=A07 :AOO
R07:ROO=Al5:A08
R .. (DN)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

;C21!)18008-XO

AM AL

I ~ I E I

b. Byte mode:
Rl5: R08=Al5 :AOS
R07:R04=A03:AOO
R03 :ROO=A07 :A04
R · .. (DN)

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

AM AL

5-21

Description:

Micro-
condition
Codes:

5....:22

For word swaps, the more-significant and less-significant
bytes of the A operand are swapped and the result is
transferred to the destination.

For byte swaps, the more-significant and less-significant
halves of the less-significant byte of the A operand are
swapped and the result is transferred to the less-
signif icant byte of the destination. The more-significant
byte of the A operand is transferred, unchanged, to the
more-significant byte of the destination.

a. Word mode: b. Byte Mode:
c = AlS c = A07
v = AlS e Al4 v= A07 <3' A06
z = 1 if R=O; z = 1 if RL=O

0 otherwise 0 otherwise
n = 1 if RlS=l; n = 1 if R07=1;

0 otherwise 0 otherwise
p = 1 if R>O; p = 1 if RL>O;

0 otherwise 0 otherwise
d = 1 if ROO=l; d = 1 if ROO=l;

0 otherwise 0 otherwise

·C21518008-:-XO

Logical 0pen Left Shift (Word or Byte).

Operation:

Description:

Micro-
condition
Codes:

. C2!'51,8008-XO

a. Word mode :

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

c --i A 1-- CIN

b. Byte mode:

15 14 13 12 11 10 09 08

I AM I
c ..

r 07 06 05 0~03 02 01 OOr- CIN

For word shifts, the A operand is shifted left one bit.
The value of CIN designated by the MC field is shifted
into bit 00. The bit shifted out of bit 15 is the shift
carry out. The result is transferred to the destination.

Byte shifts are the same as word shifts, except that the
shift is on the less-significant byte only. The carry
bit is shifted out of bit 07. The more-significant
byte is unmodified. The resulting word is transferred
to the destination.

a. Word·Mode: b. Byte mode:
c = AlS c = A07
v = Al5 (!) Al4 v = A07 (!) A06
z = 1 if R=O; z = 1 if RL=O;

0 otherwise· 0 otherwise
n = 1 if RlS=l; n = 1 if R07=1;

0 otherwise 0 otherwise
p = 1 if R>O; p = 1 if RL>O;

0 otherwise 0 otherwise
d = 1 if ROO=l; d = 1 if ROO=l;

0 otherwise 0 otherwise

·5-23

Logical Closed Left Shift (Word or Byte).

Operation:

Description:

Micro-
condition
Codes:

a. Word mode :

15 14 13 12 11 10 09 08 07 06 05 04 03 02
01 00~

c .. A

b. Byte mode:

i1 .__5_.__1_4_.__1_3..._l_~ 1-1--l-0_.__0_9...._0_8, n 07 06 OS 0::3 02 01 00
1
.,.

c .. L
For word shifts, the A operand is shifted left one
bit. Bit 15 is the shift carry out and is also
shifted into bit 00. The result is transferred to
the destination. ·

Byte shifts are the same as word shifts, except that
the shift is on the less-significant byte only. The
carry bit is shifted out of bit 07. The more­
significant byte is unmodified. The resulting word
is transferred to the destination.

a. Word mode: b. Byte mode:
c.= AlS c = A07
v = Al5 E0 Al4 v = A07 (T) A06
z = 1 if R=O; z = 1 if RL=O;

O otherwise 0 otherwise
n = 1 if RlS=l; n = 1 if R07=1;

0 otherwise 0 otherwise
p = 1 if R>O; p = 1 if RL>O;

0 otherwise 0 otherwise
d= 1 if ROO=l; d = 1 if ROO=l;

0 otherwise 0 otherwise

C215180QSO::XQ

Logical Open Right Shift (Word or Byte).

Operation:

Description:

Micro-
condition
Codes:

C21518008,;_XO

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

crn----j A ~c

b. Byte mode:

115 14 13 1~11 10 09 _0_8_1_~ 07 06 05 o:i,oJ 02 01 oar c

CIN ·
For word shifts, the A operand is shifted one bit to
the right. The value of CIN designated by the MC
field is shifted into bit 15. The bit shifted out
of bit 00 is the shift carry out. The result is
transferred to the destination.

Byte shifts are,the same as word shifts, except that
the shift is on the less-significant byte only. The
value of CIN is shifted into bit 07. The more­
significant byte is unmodified. The resulting word
is transferred to the destination.

a. Word mode: '• b. Byte mode:
c = AOO c = AOO
v= Al5 <!) CIN v= A07 (!) CIN
z = 1 if R=O; z = 1 if RL=O;

0 otherwise 0 otherwise
n = 1 if RlS=l; n= 1 if R07=1;

0 otherwise 0 otherwise
p = 1 if R>O; p = 1 if RL>O;

0 otherwise 0 otherwise
d = 1 if ROO=l; d = 1 if ROO=l;

0 otherwise O otherwise

S.;..'25

'5-26

Logical Closed Right Shift (Word or Byte) :

Operation:

Description:

Micro-
condition
Codes:

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

d A

b. Byte mode:

15 14 13 12 11 10 09 08 r07

1

06

1

05 0:;3

1

02 01

1

00

1 I AM I
For word shifts, the A operand is shifted right one
bit. Bit 00 is the shift carry out and is also
shifted into bit 15. The result is transferred to
the destination.

Byte shifts are the same as word shifts, except that
the shift is on the less-significant byte only. The
carry bit is shifted into bit 07. The more-significant
byte is unmodified. The resulting word is transferred
to the destination.

Word mode: b. Byte mode: a.
'•

c = AOO c = AOO
v - Al5 e AOO v= A07 e AOO
z = l if R=O; z = 1 if RL=O;

0 otherwise 0 otherwise
n = 1 if RlS=l; n = 1 if R07=1;

0 otherwise 0 otherwise
p = 1 if R>O; p = l if RL>O;

0 otherwise 0 otherwise
d = 1 if ROO=l; d = l if ROO=l;

0 otherwise 0 otherwise

I

I

J
.. c

... c

C21518.008..;. xcf.

ci~st0000-xo

Arithmetic Open Right Shift (Word or Byte)_:

Operation:

Description:

Micro-
condition
Codes:

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

CIN ~' ·--·--- A I- c
(N) :---

b. Byte mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

r---1 --AM-~IN__,df AL ~c

(N)------'

For word shifts, the A operand is shifted right one
bit. The state of the N microstatus bit, ORed
with the value of CIN designated by the MC field,
is shifted into bit 15. Bit 00 is the shift carry out.
The result is transferred to the destination.

Byte shifts are the same as word shifts, except that the
shift is on the less-significant byte only. The value
of N ORed with CIN is shifted into bit 07. The more­
significant byte is unmodified. The resulting word
is transferred to the destination.

a. Word mode: b. Byte mode:
c = AOO c = AOO
v AlS (£) CIN U (N) v = A07 (!) CIN LJ (N)
z = 1 if R=O; z = 1 if RL=O;

0 otherwise 0 otherwise
n = 1 if RlS=l; n = 1 if R07=1;

0 otherwise 0 otherwise
p 1 if R>O; p = 1 if RL>O;

0 otherwise 0 otherwise
d= 1 if ROO =1; d = 1 if ROO=l;

O otherwise 0 otherwise

5-27

s-ia.

Arithmetic Closed Right Shift (Word or Byte).

Description: Same as logical closed right shift.

5.5.1.2 Double-Precision Shifts.
Double-precision shifts involve AU shift elements and XR. When a
double-precision shift is specified in the SO field, an XR shift
operation specified by the FN field is ignored.

Swap Halves (Word or Byte).

Description: Operation on the A operand and the microcondition codes
generated are the same as for single-precision swap.
The contents of XR are unmodified.

· c21s1aooa;..xo

C21518.Q08..;.xo· · ·

Logical 0pen Left Shift (Word or Byte).

Operation:

Description:

Micro-
condition
Codes:

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04·03 02 01 00

A

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

b. Byte mode:

c

15 14 13 12 11 10 09 08

I AM I
07 06 05 04 03 02 01 00

AL

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

For word shifts, the A oper~nd and the contents·of XR
ar~ shifted left one bit. The value of CIN designated
by the MC field is shifted into XR bit 00. The XR
bit 15 is shifted into the A-operand bit 00. A-operand
bit 15 is the shift carry out. The shifted A-operand
result is transferred to the destination. The shifted
XR result remains in XR.

Byte shifts are the same as word shifts, except that
the A-operand shift is on the less-significant byte
only. A-operand bit 07 is the shift carry out. The
more-significant byte is unmodified.

a. Word modes: b. Byte modes:

c = AlS c = A07
v= Al5 (!) Al4 v = A07 (!) A06
z = 1 if A=O; z = 1 if AL=O;

0 otherwise 0 otherwise
n = 1 if AlS=l; n = 1 if A07=1;

0 otherwise 0 otherwise
•{

p = 1 if A>O; p .=:= 1 if AL>O;
O otherwise 0 otherwise

d = 1 if XRlS=l; d; 1 if XR15=1;
0 otherwise O otherwise

... 5:--29 -

CIN

CIN

.. .' ~.~30

Logical Closed Left Shift (Word or Byte).

Operation:

Description:

Micro­
condi tion
Codes:

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A

15 14 13 12 11 10 09 08 07 06 OS 04 03 02 01 00

XR

b. Byte mode:

15 14 13 12 11 10 09 08

I AM I
c-----~~~~~~~~~~~~__.

07 06 05 04 03 02 01 00

AL

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

For word shifts, the A operand and the contents of XR
are shifted left one bit. XR bit 15 is shifted into
A-operand bit 00. A-operand bit 15 is the shift carry
out and is also shifted into XR bit 00. The shifted
A-operand result is transfe~red to the destination.
The shifted XR result remains in XR.

Byte shifts are the same as word shifts, except that
the A-operand shift is on the less-significant byte
only. A-operand bit 07 is the shift carry-out and
is also shifted into XR bit 00. The more-significant
byte is unmodified.

Same as logical open left shift.

C215~8008-XO

C21518008-.XO

Logical Open Right Shift (Word or Byte).

Operation: a. Word mode:

CIN

15 14 13 12 11 10 09 08 07 06 OS 04 03 02 01 00

XR

lS 14 13 12 11 10 09 08 07 06 OS 04 03 02 01 00

A

b. Byte mode:

CIN

lS 14 13 12 11 10 09 08 07 06 OS 04 03 02 01 00

Xlt

lS 14 13 12 11 10 09 08

I AM I
07 06.0S 04 03 02 01 00

AL

Description: For word shifts, the A operand and the contents of XR
are shifted right one bit. The state of CIN designated
by the MC field is shifted into XR bit lS. XR bit 00
is shifted into A-operand bi~ lS. A-operand bit 00

Micro­
condi tion
Codes:

is the shift carry out. The ·shifted A-operand result is
transferred to the destination. The shifted XR result
remains in XR.

Byte shifts are the same as word shifts, except that the
A-operand shift is on the less-significant byte only.
XR bit 00 is shifted into A-operand bit 07. The more­
significant byte is unmodified.

a. Word mode: b. Byte mode:

c = AOO c = AOO
v= XROO ~ AlS v = XROO (!) A07
z = 1 if A=O; z = 1 if AL=O;

0 otherwise 0 otherwise
n = 1 if XRlS=l; n= 1 if XRlS=l;

0 otherwise 0 otherwise
p = 1 if A>O; p ;:: 1 if AL>O;

= 0 otherwise 0 otherwise
d = 1 if AOO=l; d·= 1 if AOO=l;

0 otherwise :0 otherwise

c

c

·s~32 ..

Logical Closed Right Shift (Word or Byte).

Operation: a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A

b. Byte mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

15 14 13 12 11 10 09 08

I AM I
07 06 05 04 03 02 01 00

AL

Description: For word shifts, the A operand and the contents of XR
are shifted right one bit. XR bit 00 is shifted into
A-operand bit 15. A-operand bit 00 is the shift carry
out. The shifted A-operand is transferred to the . ,
destination. The shifted XR result remains in XR.

Micro­
condi tion
Codes:

Byte shifts are the same as word shifts, except that
the A-operand shift is on the less-significant byte
only. XR bit 00 is shifted into A-operand bit 07.
The more-significant byte is unmodified.

Same as logical open right shift.

c21si0oos-xo

.c21510000:..:.:xo

Arithmetic 0pen Right Shift (Word or Byte).

Operation:

CIN

CIN

Description:

Micro­
condi tion
Codes:

a. Word mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

XR

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

A

b. Byte mode:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

15 l~ 13 12 11 10 09 08

I AM I

XR

07 06 05 04 03 02 01 00

AL

For word shifts, the A operand and the contents of XR
are shifted right one bit. XR bit 15, ORed with the
state of CIN designated by the MC field, is shifted
into XR bit 15. XR bit 00 is shifted into A-operand
bit 15. A-operand result is transferred to the destina­
tion. The shifted XR result remains in XR.

Byte shifts are the same as word shifts, except that
the A-operand shift is on the less-significant byte
only. XR bit 00 is shifted into A-operand bit 07.
The more-significant byte is unmodified.

Same as logical open right shift.

_Arithmetic Closed Right Shift (Word or Byte).

Description: Same as logical closed right shift.

5'.'""33

c

c

5.5.2

5-34

Multiply Step

The MUS microcommand is a specialized version of the Shift microconunand
with an automatic iterative repeat that permits high-speed implementa­
tion of a Multiply instruction. The average execution time is 300 ns
per bit plus the additional time required to preformat the multiplier
and multiplicand, determine the sign of the product and fonnat the final
result. No additional hardware is required for the high-speed multiply
function, since all operations are implemented in control memory.

Mnemonic:

Microconunand
Type:

Description:

Registers
Used:

SO Field:

MUS $19

Special branch

The MUS microcomffiand provides a set of simultaneous add,
shift and test operations involving a register containing
the multiplier (MPR) plus XR, LC and the state of the
next MPR digit. The microconunand is automatically re­
peated until (LC)=O. For each ONE in MPR, a branch is
made to a microcommand that adds the multiplicand (MPD)
to XR. This permits complete execution of multiply steps
in one clock cycle for a ZEEO MPR digit and three clock
cycles for a ONE MPR digit. The MUS microcommand is used
for multiplication of two 16-bit operands with a resulting
32-bit product.

a. MPR in a register designated by the AO field of the
MUS microconunand. This register contains the more­
significant half of the product at the end of the
complete multiplication.

b. MCD in a register designated by a separate microcom­
mand that adds MCD to the partial product.

c. XR, which accumulates MCD additions to the partial
product and contains the less-significant half of the
product at the end of the complete multiplication.

d. LC, which counts the number of MUS iterations per­
formed.

e. The L microstatus bit, used to propagate carries from
the less-significant half to the more-significant
half of the partial product.

The SO field must be progrannned for a double-precision,
logical open lift shift (bits 15:12 = $6), as specified.
in the Shift microcommand description (Table 5-4).

C21518008-XO

Operation:

G2.:L5180Q8-XO

The following operations are executed simultaneously
by the MUS microcommand.

Entry

Shift left(XR);
XR carry to
shift gates

Add MPR+ (L) ;
shift sum left;
add XR carry

(LC)-l+(LC);
reset L

5-35

Procedure:

5-36

1. Convert MCD to a positive number:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

lol ~0 I
2. Convert MPR to a positive number, shift left and

test MPR relative to zero:

15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

• I MPR lol
3. Initial conditions:

(XR)=O
(L) =O
(LC)=lS (for a 16-bit multiplication)

4. Program MUS control fields as follows:
SB = $10 (dynamic branch < 0)
OP = $19 (MUS)
DN = MPR address
NX = $3 (inhibit next microconnnand, if branch)
AO = MPR address
MC = $6 (add and update L)
MX = $0 (no operation)
so = $6 (double-precision logical open left shift)
BF = MUS location minus one

The symbolic microassembler automatically sets up
all fields except DN and AO.

5. For the final double-length result, the MPR register
and XR must be shifted right one bit after the last
iteration. This can be performed using the standard
SHF microconnnand programmed for a double-precision
logical open right shift. The sign of the product
must also be determined and inserted.

c2 r51aooa:..·xo

· . ,C2.15180p8-XO

6. The basic microconnnand sequence is illustrated
below:

Shift MPR
and (XR)
right

Determine
and insert
sign

No

Yes

Entry

Execute
MUS

MCD+(XR)
+(XR);

c+(L)

Yes

Repeat MUS

5-37

.: :-5-38

Micro­
Condi tion
Codes:

Example:

c = AU shift carry
v = shift overflow
z = 1 if AU shift result =O; O otherwise
n = 1 if AU shift result most-significant bit = O;

0 otherwise
p = 1 if AU shift result > O; O otherwise
d = 1 if AU shift result least-significant bit = O;

0 otherwise

Multiply the following four-bit numbers (all registers
assumed to be four bits) :

MPR = 0101
MCD = 0111

MPR L

0100
\ 0010

product

XR

0110
0011./

LC

3

2

1

0

Explanation

Initial condition
Shift MPR left; test MPR<O
Add MCD to (XR)
Add (L) to MPR

Shift MPR and (XR) left

Add MCD to (XR)

Exit, (LC)=O

Shift MPR and (XR) right for final
product~·:

-'c21s1aooa~x_o

5.5.3 Divide Step

The DVS microcommand is a specialized version of the subtract operation
(conditional} with an automatic iterative repeat that permits high-
speed implementation of a Divide instruction. The fixed execution time
is two clock cycles per bit plus the time required to preformat the
divisor and dividend, check for overflow, determine the sign .of the
quotient and format the final result. No additional hardware is required
for the high-speed division, since all operations are implemented in
control me100ry.

Mnemonic: DVS $1A

Microcommand Special branch.
Type:

Operation: R = A + B + 1
If c=l, R+A

Description: The DVS microcommand executes a two's complement addition
of the divisor (DVR} to the more-significant word of a
double-precision dividend (DVD}. If a carry out is
generated by the addition, the result replaces the more­
significant word of DVD; otherwise DVD is unchanged.

Registers
Used:

Procedure:

The carry out must be saved in the L microstatus bit.
the microcommand is used in conjunction with a double­
length left shift of the A operand and XR on each
iteration, with the carry out saved in L shifted into XR.
DVS can be automatically repeated using LC. The result
is a single-length quotient with a single-length remainder.

a. DVD more-significant word (DVDM} in a file register
designated by the AO field of the DVS microcommand.
This register contains the remainder at the end of
the complete division operation.

b. DVD less-significant word (DVDL} in XR.
c. DVR in a register designated by the BO field of the

DVS microcommand. This register contains the
quotient at the end of the complete division
operation.

d. LC, which counts the number of iterations performed.
e. The L microstatus bit used to propagate quotient

bits into XR.

1. Convert DVD to a 31-bit positive number:

15 14 13 12 11 10 09 08. 07 06 05 04 03 02 01 00

K. D~~. ;::, I
XR

15 14 13 12 i1.10 09 08 01 06 .o5 o4 oi oi 01 oo

DVDL

A Operand

d1518bo'8~xo··· 5-39·

. 5-:-40

2. Convert DVR to a positive number:
15 14 13 12 11 10 09 08 07 06 05 04 03 02 01 00

joj DVR I
B operand

3. Test for DVR <2 X DVD. If true, set overflow
and exit.

4. If no overflow, shift DVD left and set initial
conditions:
(L)=O
(LC)=l5

5. Program DVS control fields as follows:
SB = $03 (branch if (LC)=O before decrementing)
OP = $1A (DVS)
DN = DVDL
NX = $1 (execute next microcommand, if branch)
AO = DVDM
MC = $5 (modify link status; CIN=l)
MX = $0 (no operation)
BO = DVR
BF = location of DVS

The symbolic microassembler automatically sets
up all fields except DN, AO and BO.

6. DVS is used in conjunction with a double-length
left shift on the A operand and XR, with L added
to XR.

7. The final double-length result must be left
shifted one bit after the f~al iteration. The
quotient is in XR and the remainder in the A­
operand source. The sign of the quotient is
determined and set separately •

'C21518008~XO

Shift DVD
left one bit;
CIN= (L)

Repeat DVS

C215·18Q08""'.'XO

8. The basic.microcommand sequence is illustrated
below:

No

Enttry

Shift DVDM

left one bit

DVDM+DVR+ 1;

test carry

Set(LC)=lS

Shift DVD
left one bit;
CIN=O

Execute DVS

Shift DVDL
left;
CIN= (L)

Insert sign

in quotie~.~.

Yes Divide Overflow

5-41;

Example:

5-42

Divide the following numbers (all registers are
assmned to be four bits):

DVD = 0011 0110
DVR = 0111

L DVDM DVDL(XR)

0 0011 0110

0 0110 1100

1001

1111

1101 1000

1001

LC

3

3

3

Explanation

Initial condition

Shift DVD left

Add DVR two's complement
(no DVD modify)
No overflow, continue

Shift DVD left

Add DVR two's complement

DVS

1
I

0110 /1000

110/ ooo!

2 Modify DVDM and test (LC) DVS

1
I

t

1001

0110 /0001

11007 001I

1001

0101

0101

'----'

0011

t
0111

'----'
Remainder Quotient

2 Shift DVD left and add (L)

1
DVS

1 Shift DVD left and add (L)

0 Exit, (LC)=O DVS

Shift DVDL left and add (L)

c21srnoa·a:.xo
,: ,

5.5.4

5.5.5

Test Bit

The TSB microcommand provides the ability to test and conditionally
branch on the state of a specified bit in the A operand. The microcom­
mand cannot be a skip type (the K bit, 47, is ignored) and the BF field
is always treated as a branch address. The SB field can also specify a
separate branch condition. If either the bit test or the SB-field condi­
tion is met, the branch occurs. This provides considerable fiexibility
in performing multiple test operations at high speed.

Mnemonic:

Microcommand
Type:

Description:

SB Field:

Micro­
condi tion
Codes:

TSB $1B

Special branch.

The A operand is transferred, unmodified, to the destina­
tion. The state of the A-operand bit specified by the SO
field is tested. If the bit test condition is met (as
specified by the T bit, 43) a branch is made to the loca­
tion given in the BF field. The SB field can specify an
additional branch condition. If either the bit test or
the SB condition is met, the branch occurs.

a. The K bit (47) is ignored.
b. The T bit (43) specifies the ONE or ZERO state of

both the bit test and the SB-field test (i.e., both
must test the same state).

c. The SB-field test conditions are given below. The
normal unconditional branch condition is treated as
a.no-branch. This no-branch must be progrannned if
only the bit test condition is to be tested.

SB Field
Code Test Condition

$0 loop count equals zero
$1 carry
$2 overflow
$3 zero
$4 negative
$5 positive
$6 odd
$7 unconditional branch

(treated as no-branch in TSB)

During the execution of TSB, AU is set to copy AB onto
MB, leading to unpredictable (generally meaningless)
microcondition codes.

Modify Macrostatus (Optional)·

When emulation enhancement circuitry is included, the CPU contains, in
addition to the microlevel status in MS, a processor status register (PS).
that stores macrolevel conditions, including link, overflow, negative;.', , ·,

.' · C~lSJ~.008-XO 5-43,

5-44

and zero as well as other information on the states of the emulated com­
puter. These status conditions are generated at intermediate times by
the emulation microroutines and must be transferred to PS by microcom­
mand. Since PS update can differ for many types of instructions being
emulated, the update function can add an excessive nmnber of microcom­
mands to the emulation microroutines.

To provide fast PS update, the emulate table can be progrannned to gener­
ate a set of PS-update control bits that are specific to the instruction
contained in IR. When the MMS microconunand is executed, the PS-update
control bits steer the contents of MB directly to the proper PS location.
In this way, the microprogram generates proper values for each emulated
instruction using only one clock step.

Since each emulated computer requires a different treatment of PS values,
the emulate table associated with MMS is unique. In some cases, MMS is
not needed at all to meet overall emulation speed objectives. For this
reason, MMS is considered an optional microconunand that can be omitted
or tailored for a specific emulation task.

Mnemonic:

Microconunand
Type:

Description:

PS Update
Function

No change

Reset

Set

Condi-
tional

MMS $1C

Special branch or special skip.

The A operand is transferred to the destination. Any or
all of the least-significant four bits of the A operand
can also be transferred to the corresponding least-signi­
ficant four bits of PS, if specified by the microcommand.
The contents of IR are translated into a set of update
functions that specify a modification of the least-signi­
f icant four bits of PS. The update functions are con­
tained in the emulate table. The update functions that
can be specified individually for PS bits 03:00 are:

PS Bit
PS03 PS02 PSOl PSOO

(PS03)+(PS03) (PS02) + (PS02) (PSOl)+ (PSOl) (PSOO) +(PSOO)

O+(PS03) O+(PS02) O+(PSOl) O+(PSOO)

l+(PS03) l+(PS02) l+(PSOl) l+(PSOO)

A03+(PS03) A02+(PS02) AOl+(PSOl) AOO+(PSOO)

The update functions permit each PS bit to be left una1·--.
tered, unconditionally reset, unconditionally set or modi~,_
fied by the contents of the corresponding four bits of the
A operand, which is routed via MB. If MS is selecte~. as''

C2i5a8'008-xO·: .

Micro­
condi tion
Codes:

the A-operand source, the MMS microconunand can transfer
the L, V, N and Z microstatus bits directly to PS.

During the execution of MMS, AU is set to copy AB onto
MB, leading to unpredictable (generally meaningless)
microcondition codes.

5.5.6 Conditional Memory Access (Optional)

- ' . ~ -. \

For emulation of a set of instructions involving one or more operands,
it is usually desirable to read some operands from memory in a read/
restore mode and others in a read/modify/write mode. The read/restore
mode is associated with operands that are not modified by the instruc­
tion. Examples are:

a. Load (memory to hardware register)
b. Add (memory to hardware register)
c. Compare (memory with hardware register)

For high emulation speed, the address mode and operand fetch operations
are generally executed before the specific operation is determined, so
the memory access mode is not known at the time the operand fetch cycle
is initiated. If a read/restore mode is used in all cases, an extra
memory cycle is required to write the modified operand. ·use of a read/
modify/write operation saves both memory and CPU time.

CMA

The CMA microconunand uses the emulate table to generate a control signal
that specifies whether the memory access to the A-operand is to be read/
restore or read/modify/write. This is determined by the contents of IR,
which holds the current instruction being emulated. Since the table is
unique for each emulation, and in some cases may not be required, the
CMA microconunand is considered optional.

Mnemonic:

Microconunand
Type:

Description:

Micro­
condition
Codes:

CMA $10

Special skip or special branch

The A operand is transferred to the destination. The CMA
microcommand automatically generates either a memory read/
restore or a memory read/modify/write operation on the
MACROBUS. The type of operation is determined by the
state of the conditional memory access control bit from
the emulate table. The location of the memory word is
specified by the contents of the A-operand source. The
operation is perfonned in the word or byte mode, depending
on the state of the I/O byte control bit from the emulate
table. The word (or byte)· read.from memory is stored in
RR when received.

During the execution of CMA, AU is set to copy AB onto
MB, leading to unpredictable (generally meaningless)
microcondition codes.

c215isoos-'xo · 5-45.

5.5.7

,. 5-46

Programming:

CMB

In a special skip-type microcommand, the FN field can
generally designate a memory access operation; however,
an FN field memory access operation is overridden by
the conditional memory access operation specified by the
OP field.

The CMB microcommand performs the same functions for the B operand as
CMA performs for the A operand.

Mnemonic: CMB $1E

Decode (Optional)

In emulation microroutines, it is desirable to have a means to modify
specific bit fields in a given microcommand, based on the particular
instruction being emulated. For example, an add and a subtract micro­
routine may differ only in that the operands are added or subtracted.
By modifying the OP field of the arithmetic microconnnand, a common
routine can be used. Another example is accessing a particular FR
based on a field in the microconnnand. The DCD microconnnand pennits this
type of operation to be accomplished directly through use of a decode
table that modifies specified bits in the microcommand following the
DCD microconnnand. The table is set up for the specific emulation and,
in some cases, may not be needed. For this reason, the DCD is considered
an optional microconnnand.

Mnemonic:

Micro command
Type

Description:

DCD $1F

Speci.al skip or special branch

A zero word is placed on MB. The DCD microconnnand
selects a 16-bit modifier from the decode table. This
word modifies a specified set of bits in the least­
significant 16 bits of the next microcommand read from
control memory (prior to execution). The modifier and
bit fields to be modified are selected using the AO and
BO fields of DCD and the contents of the emulate decode
register (ER) •

The AO and BO fields of DCD are used as follows:
a. Bits 28 and 27 of the AO field select one of

four groups of four bits each in ER. The ER
bit group selected is taken as the least-significant
four bits of an eight-bit address to the decode table.

b. Bits 26 to 24 of the AO field select one of eight
possible field modification patterns for the next.
microcommand read from CM.

c. The BO field is taken as the most-significant four'
bits of the eight-bit address to the decode tabie.
The 16-bi t modifier word fetched f rem the dec~de ... · ·
table is ANDed with the least-significant 16 bits.
in the next microcommand read from CM before.it is
transferred to CR for execution.

:c21s1aoo.a-xo

Micro­
condi tion
Codes:

C21518008-XO

During the execution of DCD, AU is set to copy AB onto
MB, leadi.ng to unpredictable (generally meaningless)
microcondition codes.

5-47

SECTION 6
MAINTENANCE

6.1 GENERAL

This section describes preventive and corrective maintenance procedures
that apply to the Engine. In general, corrective maintenance is limited
to isolation of a fault to a specific Engine board, followed by replace­
ment of the board. Troubleshooting may then be used to verify that the
suspected board is malfunctioning and to help diagnose the specific
problem. Repair should be conducted at the factory or by an authorized
Cal Data representative.

6.2 PREVENTIVE MAINTENANCE

The Engine is a reliable solid-state device designed to perform con­
tinuously for many years without degredation. Preventive maintenance
consists of performing the following tasks every six months:

a. Inspect the boards for damaged wires or components, or
other obvious defects.

b. Using a low-pressure source of air (75 psi one foot from
the board or 5 kg/cm2 30 cm from the board), blow off
accumulated dust and foreign matter.

c. Check the +5 Vdc input to the Engine. It should be within
±5 percent.

Another aspect of preventive maintenance is proper handling of the unit.
The following points should be observed:

a. Always be sure that system power is OFF before installing or
removing any board.

b. Install each board with the component side toward the front
of the chassis. Check each board for proper orientation before
attempting to install it. Because the connectors are keyed,
excessive force applied to a reversed board can result in
connector damage. Make sure that the board is completely and
evenly seated.

c. Insert and remove each board slowly and carefully so that it
does not make contact with adjacent boards.

d. Never use components as finger grips; use the grip areas at the
corners of the board.

e. To prevent oxides from forming on the gold plating, do not
touch connector pins.

CORRECTIVE MAINTENANCE

.CllS18008-XO

Repair of the Engine in the field is not recommended. If a malfunction
is detected, replace the board with a spare known to be operating properly
and return the malfunctioning board for repair to California Data
Processors or an authorized representative.

6-1

APPENDIX A
ENGINE ARITHMETIC

A.1 NUMBER REPRESENTATION

In the Cal Data Engine, the AU is implemented to perform both addition
and subtraction internally {as opposed to complement addition for the
subtraction function). Hence, the dynamic arithmetic condition codes
generated {carry out and overflow) and the function of the carry in
{CIN) to the AU depend on whether addition or subtraction is per­
formed. Arithmetic operations assume the use of the two's complement
representation for negative numbers in the computer, with the state
of the most-significant bit representing the sign of the number. The
16-bit single-precision number range of the computer is therefore:

Binary

0111111111111111

0000000000000001
0000000000000000
1111111111111111

1000000000000000

Hex

7FFF

0001
0000
FFFF

8000

Decimal

2
15 - 1 = 32,767

-15
2

1
0

-1

..
= -32,768

To form the two's complement of a binary number, perform:

- lxl= x + 1
where X is the logical {or one's) complement of the binary number.
For example:

x = 5 = 0101

X = 1010 {one's complement)

+l =+0001
-X = 1011 {two's complement)

A.2 ADDITION

C21,518008-X<i.
\ ' ~ ' '

If all negative numbers are represented in two's complement form, then
the result of any addition generates the proper result, regardless of
the sign of the two operands.

.A~l

A-2.

Examples:
(+4) = 0100 (-4) = 1100

+(+2) = +oOlO +(.;.2) = +1110
=(+6) = 0110 =(-6) =© 1010

(+4) = 0100 (-4) = 1100
+(-2) = +1110 +(+2) = +0010
=(+2) =© 0010 =(-2) = 1110

The notation
11(S)11

indicates that a carry output is generated by AU.
This carry out is generally of no significance in addition unless
the two operands represent something other than the most-significant
bits of a multiple-precision set of numbers. In such a case, the
carry out bit can be saved as the link (L) bit and added to the
next most-significant set of bits when the next step of the multiple­
prec1s1on addition is performed. For example, suppose that the
following two eight-bit numbers are added using a four-bit adder:

(+44) = 0100 1100
+(-23) = +1110 1001

© ooooj 0101

Add link = +0001
= (+21) = 0001 0101

In the previous example, none of the additions resulted in an arith­
metic overflow (i.e., all results are within the maximum number range
possible, which for the four-bit numbers is 27-1 <range< 2-7). An
overflow occurs if two positive numbers are added with a sum greater
than seven:

(+5) = 0101
+(+4) = 0100
=(-7) = 1001 (overflow)

The negative seven is an incorrect result, and the overflow is deter­
mined by a change of sign to negative when the two positive operands
are added. A carry out is not generated.

The carry and overflow condition orders for addition are determined
in the CPU by:

c = [AlS n RlS] u [BlS n RlS] u [AlS n Bl5]

v = (A15 n BlS fl ru] U (AfS n Bls n RlS]

where AlS., BlS and RlS are the most-significant bits· of the A operand,
B operand and result, respectively. The c and v microcondition codes
can be stored in the microstatus regist.er (MS). L and V bits, respec­
tively, using the MC field of the microconnnand.

In the CPU, the carry input (CIN) to AU can also be specified by.·
the MC field of the microcommand. The states can be progrannned as:

CIN = 1, CIN = 0 or CIN = (L).

-~ C21518008-XO ·

The ADD microconnnand is A+B+cIN, where CIN is the carry in under MC
field control. Thus, it is possible to add the fixed constants ONE
or ZERO to the result, or to add the state of the L bit (which can
contain the carry propagation for multiple-precision addition, for
example).

A.3 SUBTRACTION

The CPU performs true binary subtraction as well as addition. This
provides considerably greater flexibility in implementing the arithmetic
microconnnands than would the usual use of complement addition.

Examples:
(+4) = 0100 (-4) 1100

-(+2) -0010 -(-2) -1110
=(+2) 0010 =(-2) =© 1110

(+4) = 0100 (-4) 1100
-(-2} = -1110 -(+2} = -0010
=(+6) =© 0110 = (-6) 1010

The notation
11@ 11

in this case indicates that a borrow output is
generated by the subtractor. The borrow out is of significance only
if the two operands represent something other than the most-signifi­
cant bits of a multiple-precision set of numbers. In such a case,
the borrow-out bit can be saved as the link (L) bit and then subtracted
from the result of subtracting the next-most-significant bits. For
example, suppose that the following two eight-bit numbers are subtracted
using a four-bit ·subtractor:

(+60) = 0011 1100
-(+30) = -00015 1110

0010 1110
Subtraction Link = -0001

=(+30) 0001 1110

Overflow results from subtraction, as from addition, when the result
is outside the range of the number system (27-1 < result<2-7 for a
four-bit range). The borrow and overflow condition codes for
subtraction are determined in the CPU by:

c = [AlS n BlS] u [AlS n RlS] u [BlS n RlS]

v = [AlS n BlS n RlS] u [AlS n BlS n RlS J
The borrow is designated as c in the computer. The microcondition
codes.can be stored in the microstatus register Land V bits,
respectively, using the MC field of the ~icrocommand.

In the CPU, the borrow input (also CIN) to AU can also be specified
by the MC field of the·microcorranand. The states can be programmed as:

CIN = 1, CIN = 0 or CIN = (L).

The SUB microcommand is A-B-CIN, where CIN is the borrow in under
MC field control.

C2l!5:l80087.-XO,··
'.. ~ 'f ' •. ' •. • ·1 . ·~~

!':-3

. C2l518.008-XO

APPENDIX B
FIXED MEMORY ASSIGNMENTS

System interrupt vectors (two worrls per vector) are given in Table B-1.
Only those vectors used by the Cal Data computer and standard options
are given. Other vector locations are reserved. Users should observe
these assignments if full software compatibility is to be retained.

Table B-1. Interrupt Vectors

Octal Address

000
004
010
014
024
034
060
064
070
074
100
200
244
250
254
300

Use

Reserved
I/O channel time-out error
Reserved instruction vector
Debug trap vector
Power-failure trap vector
"Trap" trap vector
Serial channel in (BR4)
Serial channel out (BR4)
High-speed reader (BR4)
High-speed punch (BR4)
Line-Frequency Clock (BR6)
Line printer (BR4)
Floating-point error
Memory-management abort
Macropanel interrupt
Start of floating vectors

B-1

()
N
t-1
U1
t-1
a:>
0
0,
a:>

: I
,:><;.
.0

()
I

t-1

:-~· ;. ;~: ;

Signal Pin Pin Signal ·Name,, Name
?).: ·~ ·~= ... ~.~~. : ·~ ... ~

·~i~Ifiaiize · •BUS INIT-L Al A2 +5V +5 Vdc
Interrupt •BUS INTR-L Bl B2 GND Ground
Data 00 •BUS DOO-L Cl C2 GND Ground
Data 02 *BUS D02-L Dl D2 *BUS DOl-L Data 01
Data 04 *BUS D04-L El E2 *BUS D03-L Data 03
Data 06 •BUS D06-L Fl F2 •BUS DOS-L Data 05
Data 08 •BUS D08-L Gl H2 "'BUS D07-L Data 07
Data 10 •BUS DlO-L Jl J2 •BUS D09-L Data 09
Data 12 •BUS 012-L Kl K2 "1BUS Dll-L Data 11
Data 14 .y. BUS Dl4-L Ll L2 •BUS Dl3-L Data 13
Parity Bit Low *BUS PA-L Ml M2 •BUS D15-L. Data 15
Ground GND Nl N2 ~BUS PB-L Parity Bit High
Ground GND Pl P2 •BUS BBSY-L Bus Busy
Ground GND Rl R2 •BUS SACK-L Selection Acknowledgement
Ground GND Sl S2 •BUS NPR-L Nonprocessor Request
Ground GND Tl T2 •BUS BR7-L Bus Request 7
Nonprocessor Grant •BUS NPG-H Ul U2 ~sus BR6-L Bus Request 6
Bus Grant 7 .y. BUS BG7-H Vl V2 GND Ground

* These signals are assigned on the backplane but are not used on this assembly.

()

g
::s
Cl>
0
rt
0
t1

)I

tO
::s
)I
(JJ
rn

l.Q

~
::s
rt
rn .. 0

0
z
z
111
0
.....
0
::0
-c -z
J>
(/) J>
~ -a
C) -0 z ,,,
s: z
111C z­
-1 ><
U> ·o

(')
I

f\J

(')
. f\J
........
. Ul

.......
00.
0
0
CX>
I

::<
o.

Name Signal Pin Pin Signal Name

Bus Grant 6 "'BUS BG6-H Al A2 +sv +5 Vdc
Bus Grant 5 •BUS BGS-H Bl B2 GND Ground
Bus Request 5 "'BUS BRS-L Cl C2 GND Ground
Ground GND Dl 02 *BUS BR4-L Bus Request 4
Ground GND El E2 *BUS BG4-H Bus Grant 4
AC Low . -tsBUS ACLO-L Fl F2 *BUS DCLO-L DC Low
Address 01 .\LBUS AOl-L Hl H2 *BUS AOO-L Address 00
Address 03 •BUS A03-L Jl J2 *BUS A02-L Address 02
Address 05 *BUS AOS-L Kl K2 *BUS A04-L Address 04
Address 07 *BUS A07-L Ll L2 *BUS A06-L Address 06
Address 09 *BUS A09-L Ml M2 *BUS A08-L Address 08
Address 11 *BUS All-L Nl N2 *BUS AlO-L Address 10
Address 13 *BUS Al3-L Pl l?2 *BUS Al2-L Address 12
Address 15 ·•BUS AlS-L Rl R2 *BUS Al4-L Address 14
Address 17 *BUS Al7-L Sl S2 *BUS Al6-L Address 16
Ground GND Tl T2 *BUS Cl-L Control l
Slave Synchronization *BUS SSYN-L Ul U2 ·*BUS CO-L Control 0
Master Synchronization *BUS MSYN-L Vl V2 GND Ground

* These signals are assigned on the backplane but are not used on this assembly.

()
I
w

0

°\ ~-' ~-
Name Signal Pin Pin Signal Nrune

M Bus 00 MBOOO-L Al A2 +SV +5 Vdc
M Bus 01 MBOOl-L B2 B2 * -lSV -15 Vdc
M Bus 02 MB002-L Cl C2 GND Ground
M Bus 03 MB003-L Dl 02 MB004-L M Bus 04
M Bus 05 MBOOS-L El E2 MBOOG-L M Bus 06
M Bus 07 MB007-L Fl F2 MB008-L M Bus 08
M Bus 09 MB009-L Hl H2 .MBOlO-L M Bus 10
M Bus 11 MBOll-L Jl J2 MB012-L M Bus 12
M Bus 13 MB013-L Kl K2 MB014-L M Bus 14
M Bus 15 MB015-L Ll L2 ABOOO-H A Bus 00
A Bus 01 ABOOl-H Ml M2 AB002-H A Bus 02
A Bus 03 AB003-H Nl N2 AB004-H A Bus 04
A Bus 05 ABOOS-H Pl P2 AB006-H A Bus 06
A Bus 07 AB007-H Rl R2 AB008-H A Bus 08
A Bus 09 AB009-H Sl S2 ABOlO-H A Bus 10
Ground GND Tl T2 ABOll-H A Bus 11
A Bus 13 AB013-H Ul U2 AB012-H A Bus 12
A Bus 15 ABOlS-H Vl V2 AB014-H A Bus 14

* These signals are assigned on the backplane but are not used on this assembly.

1-3

~
CD

()
I

w .
()
0 g
ct>
n
rt"
0
11

()

t'd
I-'·
::s
:Jll
C/l
C/l

i" ::s
rt"
C/l

()
I
~

Name Signal Pin Pin Signal Name

Power Failure Interrupt 2 PFINT-H Al A2 +5V +5 Vdc
Halt Interrupt 2 HLINT-H Bl B2 *-lSV -15 Vdc
Data Switch 16 * DS16-H Cl C2 GND Ground
Data Switch 17 *DS17-H Dl D2 •LTCL-L Line-Frequency Clock
Virtual Address * VIRTAD-H El E2 *PBBSY-L Processor Bus Busy
ContrOl·Count 00 2 CCOOO-L Fl F2 *HALTP-L Panel Halt
Control Count 01 2 CCOOl-L Hl H2 •MSRlS-L Microstatus Register 15
Control Count 02 2 CC002-L Jl J2 RESET-L Reset
Control Count 03 2 CC003-L Kl K2 *BUS BG7-IN Bus Grant 7 In
Conb:ol ·count 04 2 CC004-L Ll L2 *BUS BG7-0UT Bus Grant 7 out
Control Count 05 2 CCOOS-L Ml M2 *BUS BGG-IN Bus Grant 6 In
Control Count 06 2 CC006-L Nl N2 °*BUS BG6-0UT Bus Grant 6 Out
Control Count 07 2 CC007-L Pl P2 *BUS BGS-IN Bus Grant 5 In
Control Count 08 2 CC008-L Rl R2 *BUS BGS-OUT Bus Grant 5 out
Control Count 09 · 2 CC009-L Sl S2 *BUS BG4-IN Bus Grant 4 In
Ground GND Tl T2 *BUS BG4-0UT Bus Grant 4 out
Control Count 10 2 CCOlO-L Ul U2 •BUS NPG-IN Nonprocessor Grant In
Control Count 11 2 CCOll-L Vl V2 *BUS NPG-OUT Nonprocessor Grant Out

* These signals are assigned on the backplane but are not used on this assembly.
2 = Signal used only on Engine 2.

()
0 ::s ::s m
0
rt
0
11

0

"d
::s

~
tn

l
::s
rt
tn

0
N
~.
lJ1
·i-:-i
OJ
0
0

. OJ
I

:x:
0

()
I

U1

. . -

Name Signal Pin Pin ·signal Name

Control Memory 00 CMOOO-H Al A2 +sv +S Vdc
Control Memory 01 CMOOl-H Bl B2 * -lSV -15 Vdc
Control Memory 02 CM002-H Cl C2 GND Ground
Control Memory 03 CM003-H Dl 02 CM004-H Control Memory 04
Control Memory 05 CMOOS-H El E2 CM006-H Control Memory 06
Control Memory 07 CM007-H Fl F2 1 EMINH-L Emulate Inhibit
Control Memory 09 CM009-H Hl H2 CM008-H Control Meroory 08
Control Memory 11 CMOll-H Jl J2 CMOlO-H Control Memory 10
Decode Address 00 2 DADOO-H Kl K2 CM012-H Control Memory 12
Control Memory 13 CM013-H Ll L2 CM014-H Control Memory 14
Control Memory 15 CM015-H Ml M2 2 DADOl-H Decode Address 01
Control Memory 17 2 CMOl 7-H Nl N2 2 CM016-H Control Memory 16
Control Memory 19 2 CM019-H Pl P2 2 CM018-H Control Memory 18
Switch Register 0 * SRO-L Rl R2 CM020-H Control Memory 20
Control Memory 21 CM021-H Sl S2 CM022-H Control Memory 22
Ground GND Tl T2 CM024-H Control Memory 24.
Control Memory 23 CM023-H Ul U2 CM026-H Control Memory 26
Control Memory 25 CM025-H Vl V2 CM027-H Control Memory 27

* These signals are assigned on the backplane but are not used on this assembly.
1 Signal used only on Engine 1.
2 = Signal·used only on Engine 2.

t-3 g.
1--'
ct>

()
I

U1

()
0
::s
::s
ct>
0
rt
0
t1
tij

tti
::s
:ti'
tll
tll
~

§
ct>
::s
rt
tll

()
I

°'

(')
l\J
t-:-':.
·.UJ
·P.
CX>
0
0
CX> .

. I.
>:•
0

Name Signal Pin Pin Signal Name

Control Memor:y 28 CM028-H Al A2 +5v +5 Vdc
Control Memory 29 CM029-H Bl B2 * -15V -15 Vdc
Control Memory 31 2 CM031-H Cl C2 GND Ground
Control· Memory 31 2 CM030-H Dl D2 CM032-H Control Memory 32
Control Memory 33 CM033-H El E2 CM034-H Control Memory 34
Contrpl Memory 35 CM035-H Fl F2 2 DAD02-H Decode Address 02
Control Memory 37 CM037-H Hl H2 CM036-H Control Memory 36
Control Memory 39 CM039-H Jl J2 CM038-H Control Memory 38
Instructi,9n Repeat IRPTE-L Kl K2 CM040-H Control Memory 40
control Memory 41 CM041-H Ll L2 CM042-H Control Memory 42
Control Memory 43 CM043-H Ml M2 2 CPEN-L Control Panel Enable
Control Memory 45 CM045-H Nl N2 CM044-H Control Memory 44
Control Memory 47 CM047-H Pl P2 CM046-H Control Memory 46
Decode Address 03 2 DAD03-H Rl R2 2 ACMSL-L Alterable Control Memory

Reserved Sl 52 2 AUXRM-L Auxiliary ROM Select
Ground GND Tl T2 IRINH-L Instruction Inhibit

Reserved Ul U2 IWAIT-L Instruction Wait
System Clock SYSCK-L Vl V2 GND Ground

*These signals are assigned on the backplane but are not used on this assembly
2 = Signal used only on Engine 2.

Select

t-3

~
.......
CD

()
I

(J'\ .
()
0
::s
::s
CD
n
rt
0
ti

"zJ

"ti
::s
)'
en
en
'° ~
::s
rt en

()
I

.-....]

..
Name Signal Pin Pin Signal Name

Skip. SKIPP-L lA lB * EMAOO-H Emulate Address 00
AR Write Enable 2 ARWEN-L 2A 2B * EMAOl-H Emulate Address 01
Stack Limit Write Enable 2 SLWEN-L 3A 3B * EMA02-H Emulate Address 02
Slave Synchronization Error * SSYER-H 4A 4B * EMA03-H Emulate Address 03
Double Slave Synchronization * DSYER-H SA SB * EMA04-H Emulate Address 04

Error
Load Special Function * LDSPF-H GA·. GB * EMAOS-H Emulate Address OS
Fatal Interrupt FINTP-L 7A 7B * EMAOG-H Emulate Address OG
Special Function SPFNC-H SA SB * EMA07-H Emulate Address 07
Panel Halt * HALTP-L 9A 9B Reserved

Reserved lOA lOB PSSEL-L Program Status Select
Carry 1 CARRY-H llA llB Reserved

Reserved_ 12A 12B Reserved
Address Error * ADERR-H 13A 13B Reserved
Program Status 03 * PS003-L 14A 14B Reserved

Reserved lSA lSB 2 XD007-L Inhibit Destination File 0 to 7
Reserved 16A lGB 2 XD81S-L Inhibit Destination File 8 to 15
Reserved 17A 17B 2 XB815-L Inhibit B-Field File 8 to 15

Control Count Write Enable CCWEN-H l8A l8B 2 XB007-L Inhibit B-Field File O to 7
Static Condition STATIC-L 19A 19B LITRL-L Literal
Master Synchronization * MSYN-H 20A 20B PLUSl-L Plus 1
Special Function 04 1 SPF04-L 21A 21B 2 PSWEN-L Processor Status Write Enable
B Bus Inhibit 1 BBINH-L 22A 22B 2 IRWEN-L IR Write Enable
B Bus 01- BBOOl-H 23A 23B BBOOO-H B Bus 00
B Bus 03 BB003-H 24A 24B BB002-H B Bus 02
B Bus 05 I-

BBOOS-H 25A 25B BB004-H B Bus 04
. '

B)us 01·.> BB007-H 26A 26B BBOOG-H B Bus OG
B.Bus :a~.> BB009-H 27A 27B BB008-H B Bus OS
B BUS· n BBOll-H 28A 28B BBOlO-H B Bus 10
B_·aus !}_ BB013-H 29A ~9B BB012-H B Bus 12
B ·sus 15 BB015-H 30A 30B BB014-H B Bus 14

*These _si~nals are assigned on the small processor interconnection board but are not used on this assembly.
1 Signal used only on Engine 1.
2 = Signal used only 6n Engine 2.

()
0 ::s ::s
" 0
rt
0
t1

~
. I-'

t'[j
::s
)I
en
en

f
::s
rt en

()
I

CD Name Signal Pin Pin Signal Name

Load CC Register LOADC-L lA lB Reserved
Bus ·Request * BREQ-H 2A 2B MINTP-L Microinterrupt

_ Bus~.Gr~t * BGRNT-L 3A 3B BYTDA-L Byte Data
Bns'Gtant Enable * BGEN-H 4A 4B Reserved
Memdry'-.Management Inhibit * MMINH-L SA SB * MARLD-H Management Address Load

oiita. .Inhibit * DAINH-L GA GB 2 CCCEN-H CC Count Enable

. - special·. Function 7 1 SPF07-L 7A 7B 1 SPRlA-L Special Register lA
·. -Special Function 5 1 SPFOS-L 8A SB 1 SPR19-L Special Register 19

Spedal Function 6]. SPFOG-L 9A 9B 1 SPRlB-L Special Register lB
-~pecial Function Decode * SPFNC-H lOA lOB i MLTPY-L Multiply
Inhibit B Field * INHBF-L llA llB 1 ENSPF-H Enable Special Function
Emulate EMLAT-H 12A 12B 1 CR008-H Microcommand Register 08
Power Failure * PFAIL-L 13A 13B Reserved
AU Car.:':'y In 1 AUCIN-L 14A 14B Reserved
Write * WRITE-L lSA !SB 2 FILE6-H File 6
IR Read * IRERD-H 16A 16B 2 XA815-L Inhibit A-Field File 8 to 15
Interrupt * INTR-H 17A 17B 2 XA007-L Inhibit A-Field ·File 0 to 7
MeITTory Management co * MMCO-L 18A 18B 2 RSTRA-L Restore A
Memory Management Cl * MMCl-L 19A 19B * YELLW-L Yellow
Microcommand Register 07 2 CR007-H 20A 20B 1 BYTMD-L Byte Mode
Stack Limit Interrupt 1 SLINT-H 21A 21B 1 MSOOG-H Microstatus Register 06
DR Write Enable 2 DRWEN-L 22A 22B 2 RRWEN-L RR Write Enable
Emulate Instruction Address 01 2 EIAOOl-H 23A 23B 2 EIAOOO-H Emulate Instruction Address 00
Emulate ·Ins true tion Address 03 2 EIA003-H 24A 24B 2 EIA002-H Emulate Instruction Address 02
Emulate Instruction Address 05 2 EIAOOS-H 2SA 25B 2 EIA004-H Emulate Instruction Address 04
Emulate Instruction Address 07 2 EIA007-H 26A 26B 2 EIA006-H Emulate Instruction Address 06
Emulate Instruction Address 09 * EIA009-H 27A 27B 2 EIA008-H Emulate Instruction Address 08
Emulate Instruction Address 11 * EIAOll-H 28A 28B * EIAOlO-H Emulate Instruction Address 10
Emulate Instruction Address 13 * EIA013-H 29A 29B * EIA012-H Emulate Instruction Address 12
Emulate Instruction Address 15 * EIA015-H 30A 30B ,,. EIA014-H Emulate Instruction Address 14

*These signals are assigned on the small processor interconnection board but are not used on this assembly.
1 Signal used only on Engine 1.
2 = Signal used only on Engine 2.

	0001
	0002
	0003
	0004
	001
	002
	003
	004
	1-01
	1-02
	1-03
	1-04
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	3-01
	3-02
	3-03
	3-04
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	5-34
	5-35
	5-36
	5-37
	5-38
	5-39
	5-40
	5-41
	5-42
	5-43
	5-44
	5-45
	5-46
	5-47
	5-48
	6-01
	6-02
	A-01
	A-02
	A-03
	A-04
	B-01
	B-02
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	C-08

