
Contents

Introduction...... 1

User Interface.. 2

2.1 Some general information about DEEM...... 2

2.2 File Menu.. 3

2.3 Edit Menu...... 3

2.3.1 Edit commands..... 4

2.3.2 Property Window...... 4

2.4 Insert Menu...... 8

2.5 Special Menu.. 8

2.6 Zoom Menu...... 9

2.7 Compute Menu...... 9

2.7.1 Parameters..... 9

2.7.2 Measures..... 10

2.7.3 Transient Analysis.... 12

2.8 ? Menu...... 13

How to create and solve a Model: an example..... 14

3.1 A working example..... 14

3.2 Creation of the graphical Model.... 14

3.3 Properties of places, transitions and arcs.... 15

3.4 Values of the parameters and studies.. 17

3.5 Definition of the measures.. 19

3.6 Transient analysis..... 20

Results and output files.. 21

4.1 The PhN files..... 21

4.2 The files created for each phase.. 24

4.3 The files created for each study..... 25

Transient Solver..... 27

5.1 The analytical technique..... 27

5.2 The solution algorithm...... 27

Appendix..... 29

Installation...... 29

Tool Oraganization and File Structure..... 29

Bibliography...... 30

Introduction

Many systems devoted to control and management of critical activities have to perform a
series of tasks that must be accomplished in sequence. Their operational life consists of
a sequence of non-overlapping periods, called phases. These systems are often called
Multiple-Phased Systems (MPS). They include several classes of systems that have
been object of active research during the last decades, such as those known as Phased
Mission Systems (PMS) and Scheduled Maintenance Systems (SMS). MPS are very
general, since their phases can be distinguished along a wide variety of differentiating
features.
• During a specific phase, an MPS is devoted to the execution of a particular set of

tasks, which may be different from the activities performed within other phases.
• The performance and dependability requirements of an MPS can be completely

different from one phase to another.
• During some phases the system may be subject to a particularly stressing

environment, thus experiencing dramatic increases in the failure rate of its
components.

• In order to accomplish its mission, a MPS may need to change its configuration
over time, to adopt the most suitable one with respect to the performance and
dependability requirements of the phase being currently executed, or simply to be
more resilient to a hazardous external environment.

• The successful completion of a phase, as well as the activities performed therein,
may bring a different benefit to the MPS with respect to that obtained with other
phases.

Many examples of MPS can be found in various application domains. Representative
examples are systems for the aided-guide of aircraft, whose mission-time is divided into
several phases such as take-off, cruise, landing, with completely different
requirements. A very important sub-class of MPS is represented be the so-called
Scheduled Maintenance Systems encountered in almost all the application domains
where an artefact is to be used for long time and is periodically subject to maintenance
actions. An SMS is easily formulated as a MPS considering that the system is run for a
number of operational phases, and then undergoes a maintenance phase.

DEEM (DEpendability Evaluation of Multiple-phased system) is a dependability
modeling and evaluation tool specifically tailored for MPS. This tool supports the
methodology proposed in [5, 6] for the dependability modeling tool and evaluation of
MPS. This methodology relies upon Deterministic and Stochastic Petri Nets (DSPN) as
a modeling tool and on Markov Regenerative Processes (MRGP) for the model
solution. Due to their high expressiveness, DSPN models are able to cope with
dynamic structure of MPS, and allow defining very concise models. DEEM models are
solved with a very simple and computationally efficient analytical solution technique
based on the separation of the MRGP underlying the DSPN of a MPS.

This manual is organized as follows. Chapter 2 describes the user interface, defining all
menus with their functionalities. Chapter 3 shows how to create a model in DEEM and
how to solve it. Chapter 4 specifies the files the results of the analysis are stored in, and
it describes how to interpret those files. Chapter 5 describes the specialized solution
algorithm implemented by DEEM. In Appendix all the steps to install DEEM are
shown.

User Interface

This chapter is a reference guide for the various options provided by the Graphical User
Interface of DEEM.

2.1 Some general information about DEEM

DEEM possesses a GUI inspired by [2] and realized using an X11 installation with
Motif runtime Libraries which the user employs to define his model of a MPS. DEEM
provides two logically separate parts to represent MPS models. One is the System Net
(SN), which represents the failure/repair behaviour of system components, the other is
the Phase Net (PhN), which represents the execution of the various phases. For this
reason, the working area is split in two fields as shown in Figure 2.1.

Figure 2.1: DEEM interface

The SN area may contain only exponentially distributed and immediate transitions,
whereas in the PhN area the transitions may be deterministic or immediate. In a PhN
model a token in a place represents the execution of a phase, and the firing of a
deterministic transition the beginning of the next phase. In general, the execution of a
phase is represented by each marking enabling only one deterministic transition.

DEEM employs the DSPN formalism [1] to model a MPS. DSPN extends Generalised
Stochastic Petri Nets and Stochastic Reward Nets, so to allow the exact modelling of
events with deterministic occurrence times.

Chapter 2: User Interface

3

According to this, the GUI uses the following objects to create a model:

• Places

• Transitions

• Arcs

Besides the introduction of deterministic transitions, DEEM makes available a set of
modeling features that significantly improve DSPN expressiveness:

- the firing rates of timed transitions may be specified through arbitrary marking-
dependent functions;

- these functions may be employed to include additional enabling conditions
(guards) to the specification of the transitions;

- rewards rates can be defined as arbitrary marking-dependent functions;

- arcs cardinalities may depend on the marking of the model.

To draw a correct PhN it is necessary that the reachability graph associated with the
PhN be a tree or an acyclic graph. Even if the behaviour of the system is represented by
a loop (after n phases the some phases are repeated), that is the only condition to draw a
correct PhN.

2.2 File Menu

The File Menu is used to create a new model, to open or close a model, to save the
created or modified model, to assign a name to the net and to quit DEEM.

File->New (or Ctrl-N) creates a new model. If a model is already opened, it is closed
(a confirmation box is shown) and a new net can be drawn.

File->Open (or Ctrl-L) opens a model from the directory deem_models.

File->Save (or Ctrl-S) saves in the current directory the opened model. The default
name for new models is "unnamed".

File->Save As… With this option, a new name can be assigned to a model. The file
is written in the directory deem_models. If a file with the same name exists in
deem_models, a warning massage (! File already exists! Overwrite it?) appears in a
window, and the choice to overwrite the file is given.

File->Close closes the drawn model.

File->Save Options permits an automatic backup by making on automatic save
every k steps (where k is a number).

File->Exit (or Ctrl-X) quits DEEM.

2.3 Edit Menu

The Edit Menu is used to undo or redo some actions, to refresh the window, to delete,
cut, copy, paste one or more objects, to define the properties of places, transitions and
arcs.

Chapter 2: User Interface

4

2.3.1 Edit commands

Edit->undo: (or Ctrl-U) removes, one by one, all the modifications to the model
made since the last saved model. The same command can be executed by clicking the

DEEM_button1 .

Edit->redo: restores the modifications removed by Edit->undo. The same command

can be executed by clicking DEEM_button .

Edit->Refresh (or Ctrl-R): refreshes the DEEM window.

To select an object click with the left button on it, and the following commands became
available:

Edit->Delete (or Ctrl-D): removes the selected object. The same command can be

executed by clicking the DEEM_button .

Edit->Copy Node (or Ctrl-E): copies the selected place.

Edit->Copy, Edit->Cut and Edit->Paste: to copy, cut and past the selected part
of the net.

Edit->properties (or Ctrl-O): open the property window associated with the selected
element. The property window of an object can also be opened by clicking with the
right button on it.

2.3.2 Property Window

A property window is associated with each element (place, transition or arc).

Figure 2.2: Property window associated with the place

The property window associated with a place (shown in Figure 2.2) contains the
following fields:

Ø Place Name: specifies the name of the place;

Ø # Token: defines the number of tokens that the place contains at the beginning
of the computation;

1 N.B.: in the following we will call DEEM_buttons all the buttons shown by the DEEM
interface in the working window.

Chapter 2: User Interface

5

Ø Capacity: specifies the maximum number of tokens that a place can have
during the computation.

Figure 2.3: Property window associated with the transition

The property window associated with the transitions (shown in Figure 2.3) contains the
following fields:

Ø Transition Name: specifies the name of the transition;

Ø Orientation: specifies the horizontal or vertical orientation of the transition;

Ø Transition Type: specifies the type of the transition. Transitions can be
immediate, (represented by a thin line), or timed, in this case they may have
exponentially distributed firing times, and they are represented by empty
rectangles, or deterministic firing times (only for PhN), represented by filled
rectangles. When a type is chosen, a new window appears to define in more
details the transition. If the immediate type is chosen, the new window allows to
specify the probability and priority associated with it. When a timed transition is
chosen instead the new window allows to define the firing rate of the transition.
The values can be constants or variables. To define a variable, the following
syntax has to be respected: VAR(variable_name);

Ø Rate Function: defines the firing rate of the transitions and can be an arbitrary
marking-dependent function;

Ø Enabling Function: defines the enabling condition, (or guard), of the
transition. It can be an arbitrary marking-dependent function;

Ø Copy from list to: adds the place selected from the list of all the places of the
net in the “Rate Function” field or in the “Enabling Function” field by clicking
the copy button.

Chapter 2: User Interface

6

In this window the Help button shows the syntax of the probability, rate and enabling
function.

The probability and rate function syntax is:

func -> ‘ (‘ func ‘)’

| arith_op1 func

| func arith_op2 func

| arith_opn ‘ (‘ func {‘ ,’ func ‘)’}

| IF ‘ (‘ predicate ‘) THEN (‘ func ‘)’ [‘ ELSE (‘ func ‘)’]

| number

| func_basic

| func_name

arith_op1 -> ‘ +’ | ‘ SQRT’

arith_op2 -> ‘ +’ | ‘ -‘ | ‘ *’ | ‘ /’ | ‘ %’ | ‘ ^’

arith_opn -> ‘ min’ | ‘ max’ | ‘ mean’

number -> digit{digit} [‘ .’ {digit}] [exponent]

| {digit} ‘ .’ Digit {digit} [exponent]

digit -> ‘ 0’ | … | ‘ 9’

exponent -> ‘ e’ [‘ +’|’ -‘] digit {digit}

func_basic ->

‘ mark(‘ place_name ‘)’ / number of Token in <place_name>

 | ‘ #(‘ place_name ‘)’ / “ “ “ “ “

 | ‘ VAR(‘ variable_name ‘)’ /declaration of variable <variable_name>

predicate -> ‘ (‘ predicate ‘)’

| ‘ NOT’ predicate

| predicate bool_arith predicate

| func compare func

| ‘ TRUE’

| ‘ FALSE’

bool_arith -> ‘ AND’ |‘ OR’ | ‘ EOR’ | ‘ NOR’ | ‘ NAND’

compare -> ‘ =’ | ‘ <>’ | ‘ >’ | ‘ <’ | ‘ >=’ | ‘ <=’

Chapter 2: User Interface

7

Same examples:

• VAR(λ)*mark(Place_2)

• IF ((mark(Place_1)<2)AND(mark(Place_2)=0)) THEN (VAR(µ))ELSE(0.001)

The Enabling Function syntax is:

enab -> predicate

predicate -> ‘ (‘ predicate ‘)’

| ‘ NOT’ predicate

| predicate bool_arith predicate

| func compare func

| ‘ TRUE’

| ‘ FALSE’

Same examples:

• mark(Place_2)>=1

• (mark(Place_1)=1) OR (mark(Place_3)<4)

The property window associated with the arcs (Figure 2.4) contains the following
fields:

Ø Place: specifies the name of the place the arc is attached to;

Ø Transition: specifies the name of the transition the arc is attached to;

Ø Type: specifies the type of the arc: input, output or inhibit;

Ø Weight: specifies the multiplicity of the arc;

Ø Multiplicity Function: defines the multiplicity of the arc as a function. It can
be a marking-dependent function (example: mark(place_name)).

Figure 2.4: Property window associated with the arc

Chapter 2: User Interface

8

If a multiplicity function is defined, the field weight is not considered and the
multiplicity of the arc is defined by this function.

2.4 Insert Menu

The Insert Menu is used to insert places, transitions or arcs.

Insert->Place (or Ctrl-P): draws a place in the DEEM window by clicking with the
left button in the desired position. The same command is executed by clicking the

DEEM_button .

Insert->Transition Horizontal (or Ctrl-H): draws in the DEEM window a
horizontal transition by clicking with the left button in the desired position. The same

command is executed by clicking the DEEM_button .

Insert->Transition Vertical (or Ctrl-V): draws in the DEEM window a vertical
transition by clicking with the left button in the desired position. The same command is

executed by clicking the DEEM_button .

Insert-> ARC (or Ctrl-A): draws an input, output or inhibit arc. To draw an input
arc, click with the left button on the starting place, then on the destination transition
with the right button. To draw an output arc, click with the left button on the starting
transition, then on the destination place with the right button. To draw an inhibit arc
(from a place to a transition) the property window associated with the arc has to be

opened. Input/output arcs can also be inserted clicking the DEEM_button , whereas

inhibit arcs can be inserted by clicking the DEEM_button .

2.5 Special Menu

The Special Menu is used to change the look of DEEM window or to move the net (or
part of it).

Special->View->Designer:

border: shows/hides the border of the PhN and SN area;

Node names: shows/hides the places name;

Place init Value: shows/hides the initial number of tokens of each place;

Place capacity: shows/hides the places capacity;

Trans Rate/Probability: shows/hides the transitions rate/probability;

Multiplicity Arc : shows/hides the arcs multiplicity;

Trans Priority : shows/hides the immediate transitions priority;

Panel: shows/hides the panel on the left side of the DEEM window;

Special->Net Size: defines the size of the DEEM window (default: (800x600));

Special->Move Net: opens a new window with 4 arrows to move the global net
(PhN and SN);

Chapter 2: User Interface

9

Special->Move Part of Net: moves the selected part of the net in the desired
position (chosen by left-clicking).

Special->Colors: allows to choose the combination of colours for places, transitions
etc… In the "Colour Groups" list, a set of pre-defined colour combinations is given.
After a combination is chosen (by left-clicking on it), it can be assigned clicking on (<-
). New combinations can be inserted in the list clicking on (->) and assigning them a
name. A combination can be deleted by selecting it and clicking the "delete" button.

Special->Project Report: allows to create the documentation of the MPS model
producing a LATEX file containing all model information.

2.6 Zoom Menu

The Zoom Menu is used to change the size of the global net by 25%, 50%, 75% or
100% (the original size);

2.7 Compute Menu

In Compute Menu is possible to set parameters, to define some measures of interest and
to activate the transient analysis.

2.7.1 Parameters

Compute->Parameters: opens a new window in which all the variables defined
within the model are shown. The variable Time is always present. When a variable is
inserted in the model, it is automatically added to the variable list (the field Name
showing the name of the variable and field Value the default “no_def”).

When a variable is removed from the model, it is automatically removed from the
variable list. A set of values for each variable represents a study. In the same window,
it is possible to create a new Study, open an old one (selected from a list of studies) that
becomes the current one, or remove a Study. The window shows the study list and the
values of the variables of the current study (Figure 2.5).

Figure 2.5: Parameters and studies window

Chapter 2: User Interface

10

The values of the variables can be specified in the following way:

value -> number / example λ = 0.01

 | range / example λ = [1,7,2] = 1,3,5,7 or λ = [1,8,*2] = 1,2,4,8

 | value_set / example λ = {0.0002, 0.009,0.002,0.09,0.02}

The first two values of range represent the interval of variability for the parameter λ; the
last value represents the incremental step (to be added or multiplied) to obtain the
intermediate values in the set. As a default the incremental step is added and it is
represented by a ‘+’ (or nothing) before the last value. For a multiplying incremental
step a ‘* ’ has to be put before the last value.

Each set of values of the variables (one numerical value for each variable) corresponds
to an experiment (evaluation run).

2.7.2 Measures

Compute->Measures: permits to define the measures. Measures are defined by a
Name, a reward function and an analysis type flag (“ist”, “cum” or “tim_av” for
instantaneous, cumulated and timed-averaged analysis respectively). The analysis type
flag is set clicking on the relative button. Composed measures also can be defined
through an expression composing the evaluated reward-based measures (refered with
the construct FUN), as showed at bottom in Figure 2.6.

Figure 2.6: Measures window

The syntax of Reward Functions is:

Reward_Function ->

 IF ‘ (‘ predicate ‘) THEN (‘ func ‘)’ [‘ ELSE (‘ func ‘)’]

 | IF ‘ (‘ impulse_predicate ‘) THEN (‘ impulse_func ‘)’

Chapter 2: User Interface

11

where the sintax of the func and impulse_func is:

func -> ‘ (‘ func ‘)’

| arith_op1 func

| func arith_op2 func

| arith_opn ‘ (‘ func {‘ ,’ func ‘)’}

| IF ‘ (‘ predicate ‘) THEN (‘ func ‘)’ [‘ ELSE (‘ func ‘)’]

| number

| func_basic

| func_name

impulse_func -> ‘ (‘ impulse_ func ‘)’

| arith_op1 impulse_func

| impulse_func arith_op2 impulse_func

| arith_opn ‘ (‘ impulse_func {‘ ,’ impulse_func ‘)’}

| number

| ‘ VAR(‘ variable_name ‘)’

arith_op1 -> ‘ +’ | ‘ SQRT’

arith_op2 -> ‘ +’ | ‘ -‘ | ‘ *’ | ‘ /’ | ‘ %’ | ‘ ^’

arith_opn -> ‘ min’ | ‘ max’ | ‘ mean’

number -> digit{digit} [‘ .’ {digit}] [exponent]

| {digit} ‘ .’ Digit {digit} [exponent]

digit -> ‘ 0’ | … | ‘ 9’

exponent -> ‘ e’ [‘ +’|’ -‘] digit {digit}

func_basic ->

 ‘ mark(‘ place_name ‘)’ /number of Token in <place_name>

| ‘ #(‘ place_name ‘)’ / “ “ “ “ “

bool_arith -> ‘ AND’ |‘ OR’ | ‘ EOR’ | ‘ NOR’ | ‘ NAND’

compare -> ‘ =’ | ‘ <>’ | ‘ >’ | ‘ <’ | ‘ >=’ | ‘ <=’

Chapter 2: User Interface

12

The syntax of predicate and impulse_predicate is:

predicate -> ‘ (‘ predicate ‘)’

| ‘ NOT’ predicate

| predicate bool_arith predicate

| func compare func

| ‘ TRUE’

| ‘ FALSE’

impulse_predicate -> ‘ fire (‘ trans_name ‘)’ 2

Some examples:

• IF (mark(Place_1)=1) THEN (mark(Place_2)) ELSE (1)

• IF ((mark(Place_1)>1) AND (mark(Place_2)=0)) THEN (1)

• IF (fire(Trans_1)) THEN (5)

As a future work, it will be given the possibility also to define some derived measures,
obtained as functions of the measures evaluated by the tool in phase of post-processing
(example: measures of performability or cost).

2.7.3 Transient Analysis

Compute->Transient Analysis: permits to enter the parameters for the transient
analysis (Figure 2.7).

Figure 2.7: Transient analysis window

2 Not yet implemented in the release 1.0.beta-15.

Chapter 2: User Interface

13

The field Epsilon represents the error tolerance, Maxiter the maximum number of
iterations that has to be considered by the transient solution method.

When Run in the Background mode is selected, graphic interface of DEEM can still
be used while the solver is running. In the Verbose mode, more information about the
solution is showed on the shell while the solver is running. In Computation Time
Info mode, information about the analysis times is produced.

Save State Distr mode permits to save in file netname.studyname.sdistro the state
distribution of the net at the end of the transient analysis. Load State Distr mode
permits to load from file netname.studyname.sdistri the state distribution of the net at
initial time of the transient analysis.

The field Current Study shows the study selected for the analysis and the field
Measure shows the measures that are calculated. The OK button makes the analysis to
start.

2.8 ? Menu

The ? Menu contains some information about DEEM (version, Xserver, Xclient, the
creator…). The figure 2.8 shown this window.

Figure 2.8 Information window of DEEM

How to create and solve a Model:
an example

This chapter describes how to create and solve a model with DEEM, by applying the
process to a real example of Scheduled Maintenance System (SMS) [3].

3.1 A working example

Consider a system equipped with two components. Component A is a primary unit
providing some functionality to the system, and component B acts as a backup unit for
component A. The system is equipped with a switching logic, so that when A fails, the
control of operation is immediately passed to B.

The system executes cyclically two different types of mission. Mission 1 encompasses
a single phase of fixed duration τ11 where Mission 2 is a two-phase mission, whose

phases have duration τ21 and τ22, respectively. The time to failure of component A is

exponentially distributed, with parameter λ1A during the mission of type 1, and

parameter λ2A during the mission of type 2, whereas the time to failure of component B

is constantly λB.

The following scheduled maintenance actions are undertaken during system lifetime:

• The system is subject to a complete maintenance check every 100 missions;

• Primary unit A is replaced at the end of each mission, if failed. After the
replacement, A takes again the role of primary unit;

• Backup unit B is subject to a partial check at the end of each α pairs of
missions.

After 100 missions, all the components are checked, and the system is restored to the
initial condition. We want to evaluate the Reliability R of the SMS defined as the not
occurrence of a failure in both A and B.

3.2 Creation of the graphical Model

To execute DEEM, write the command deem (the window in Figure 2.1 will then
appear). As already described in Chapter 2, the deem window for the model
representation is composed of two parts: the PhN window (up part) for the model of the
phases, and the SN window (low part) for the failure/repair model of the system
components. Using the graphical commands (Insert Menu, introduced in Chapter 2),
the models for the PhN and SN of our SMS running example can be constructed as
illustrated in Fig. 3.9.

Chapter 3: How to create and solve a Model: an example

15

Figure 3.9: A sketch of the SMS model

The PhN has 6 places, 5 transitions and arcs linking places and transitions. The SN has
5 places, 6 transitions and arcs that linking places and transitions. Default names to
places and transitions are automatically assigned by the tool. To save the model, click
on Save As… (File Menu, in Chapter 2).

3.3 Properties of places, transitions and arcs

Now, properties have to be assigned to each object (places, transitions and arcs).

ü For each place, open the property window (select the place and a) click on
Properties of the Edit Menu, or b) click with the right button of the mouse). Assign
name, number of tokens and capacity to the place. Click Apply to confirm.
Following the specifications of our SMS example, properties to the places of figure
3.9 are assigned as follows:

- Change the name Place_1 in P1. P1 represents the phase of Mission 1 and its
initial number of tokens is 1 (The global mission starts at place P1);

- Change the name Place_2 in Stop1. Stop1 is necessary because Mission 2 can
begin only if component A did not fail. If A failed, the system waits in Stop1 the
repair of this component;

- Change the names Place_3 and Place_4 in P2 and P3, respectively. These places
represent the two phases of Mission2;

- Change the name Place_5 in Stop2. Stop2 is necessary because Mission 1 can
begin only if component A and B did not fail. If A and B failed, the system
waits in Stop2 the repair of the component(s);

- Change the name Place_6 in Count. Count is the place that stores the number of
cycles executed;

- Change the name Place_7 in Aok. Aok represents the state healthy of component
A. Its initial number of tokens is 1 (at start time, the component is healthy);

Chapter 3: How to create and solve a Model: an example

16

- Change the name Place_8 in Afail. A token in Afail represents the failure of
component A;

- Change the name Place_9 in Bok. Bok represents the state healthy of component
B. It’s initial number of tokens is 1 (at start time, the component is healthy);

- Change the name Place_10 in Bfail. A token in Bfail represents the failure of
component B;

- Change the name Place_11 in repair_B. A token in repair_B indicates that
component B is under repair.

ü For each transition, open the property window (select the place and a) click on
Properties of the Edit Menu, or b) click with the right button of the mouse) and
assign the name to the transition. By clicking on Transition Type, the choice
between immediate or timed can be made. If immediate is selected, the firing
probability and, possibly, the priority have to be inserted. If timed is selected
instead, a new choice between Deterministic and Exponential has to be performed,
both requiring the insertion of the transition rate. Click Apply to confirm. The
probability/rate of firing can be marking-dependent; if this is the case, the field
“Rate Function” must be filled, using the appropriate syntax defined in Chapter 2. If
the firing of the transition is marking dependent, the field “Enabling Function” must
be filled too. Following the specifications of our SMS example, properties to the
transitions of figure 3.9 are assigned as follows:

- Trans_1: change the name in T1. T1 is a deterministic transition that model the
time (10 hours) needed for the system to perform the phase of mission 1. This
transition is enabled if the number of tokens in place Count is less than 50;

- Trans_2: change the name in Tstop1. Tstop1 is an immediate transition with
probability 1 and priority 1. It may be enabled only if the state of component A
is healthy. This condition is obtained by giving the greater priority to the
immediate transition (Yes_repair_A) that represents the repair of component A;

- Trans_3 and Trans _4: change those names in T2 and T3 respectively. They are
deterministic transitions that model the time (5 and 10 hours, respectively)
needed for the system to perform the two phases of Mission 2;

- Trans_5: change the name in Tcount. Tcount is an immediate transition with
probability 1 and priority 1. It may be enabled only if the state of component A
is healthy and it is the end of the (α*i)-th mission, i=1,.., 50/α;

- Trans_6: change the name in fA. fA is an exponential transition with firing time
equal to 0.001 (λ1A) if Mission 1 is the active mission, otherwise it is equal to

0.002 (λ2A). fA is enabled if the number of tokens in place Count is less than
50;

- Trans_7: change the name in Yes_repair_A. This transition represents the
scheduled maintenance action for component A, which is replaced at the end of
each mission, if failed. It is an immediate transition with probability 1 and
priority 2 (it must fire before transitions “Tstop1” and “Tcount”). Yes_repair_A
is enabled if: i) the place Bfail does not have tokens; ii) the number of tokens in
place Count is less than 50; and iii) it is the end of Mission 1 or 2;

- Trans_8: change the name in fB. fB is an exponential transition with firing time
λB. fB is enabled if the number of tokens in place Count is less than 50;

- Trans_9: change the name in yes_repair_B. This transition represents the
possible scheduled maintenance action for component B (backup unit B is
subject to a partial check at the end of each α pairs of missions). It is an
immediate transition with probability 1 and priority 2 (it must fire before
transitions “Tstop1” and “Tcount”). yes_repair_B is enabled if: i) the place Afail

Chapter 3: How to create and solve a Model: an example

17

does not have tokens, ii) it is the end of Mission 1 or 2, and iii) it is the end of
one of the α pairs of missions;

- Trans_10 and Trans_11: change those names in ok_repair and nok_repair,
respectively. ok_repair represents a successful repair action; it has a probability
equal to p. nok_repair represents the failure of the repair action; it has a
probability equal to 1-p. They are enabled only just before the starting of
Mission 1 (there are not tokens in places Stop1 and Stop2!).

The figure 3.10 shows an example of rate and enabling function. The rate of the
exponential transition is 0.001 if there is a token in place P1, otherwise it is 0.002.

Figure 3.10: Definition of rate and enabling function

ü If there are arcs with a multiplicity different from 1, the property window associated
with those arcs has to be opened (select the arc and a) click on Properties of the Edit
Menu, or b) click with the right button of the mouse). To set the multiplicity, the
field “Weight” can be filled with an integer number (for example 2) or, if the
multiplicity is marking-dependent, insert the appropriate function in the field
“Multiplicity Function” (for example mark(Place_1)). In this last case, the
multiplicity changes as a function of the number of tokens of the place(s) it depends
on. In the SMS example we are working on, all arcs have multiplicity 1.

The figure 3.11 shows the complete model obtained.

3.4 Values of the parameters and studies

To assign values to all the model parameters, select Parameters in Compute Menu. A
window will appear, listing all the variables included in the model with associated an
undefined value (no_def). Assignments to such variables may be performed through the
insertion of: i) a constant number (it is the case of λ1A and λ2A, whose values are 0.001
and 0.002), or ii) a set of values (e.g., {0.00001,0.001,0.0015,0.002,0.5}, or iii) a
range of values (e.g., [0.001,0.01,0.001], where the first two numbers represent the
extreme values assumed by the variable, and the third number is the step to be added or
multiplied to make the variable assume intermediate values in the range). If a

Chapter 3: How to create and solve a Model: an example

18

multiplicity of values is given, the variable assumes all the values in the set, and a
different transient analysis is performed for each of them.

Figure 3.11: SMS model

To create a study, click on New. Insert the name of the study and click Apply . Now,
assignments to the variables can be performed (as illustrated in Figs. 3.12a and 3.12b).

Figure 3.12a The window where insert the name of the new study

Chapter 3: How to create and solve a Model: an example

19

Figure 3.12b A definition of study

3.5 Definition of the measures

To define the measures to be evaluated, select Measures in Compute Menu. For each
measure, it is required the definition of: i) a name, ii) a reward function, and iii) the
analysis type flag (instantaneous, cumulated and timed-averaged analysis). In our
example, we are interested in evaluating the Reliability of the system. Therefore:

i) Reliability

ii) IF (mark(Afail)+mark(Bfail)<2) THEN (1) (at least one component
must be up!)

iii) click on “instantaneous”

It is possible to define several measures to be evaluated together in a study. Click on the
Apply button and a new row for inserting the name, reward function and analysis type
flag will appear below the previously defined measure(s). E.g., if the Unreliability
would have been of interest too, click on Apply and fill the new field with the
appropriate values, that is:

i) Unreliability

ii) IF (mark(Afail)+mark(Bfail)>=2) THEN (1) (both components A and B
are failed, thus leading to
the failure of the system)

iii) click on “instantaneous”

To confirm and close the Measure window, click on OK . The figure 3.13 shows how
the measures are defined.

Chapter 3: How to create and solve a Model: an example

20

Figure 3.13: Measures defined for the SMS model

3.6 Transient analysis

The model evaluation follows the above described steps. To evaluate a model, select
Transient Analysis in Compute Menu. The study under evaluation is the current
study, as defined in the parameters window. To start the analysis, click on OK . The
figure 3.14 shows an example.

Figure 3.14: Transient analysis for the study Study_1

Results and output files

The Transient analysis produces various types of files (with different extensions).
Some describe intermediate information useful for debugging a model or to trace the
evaluation process (they are the files .mc, and .rg), others contain numerical results of
the evaluation. This chapter lists and explains the output files of DEEM.

4.1 The PhN files

The Transient analysis creates two different PhN files.

• Filename_PhN.mc: describes the Markov Chain (MC) of the PhN. A part of this file
is shown below. “_nstates” represents the number of states of the model. “_order =
TOFROM” represents the type of order (arrive on state X if the current state is Y).
The MC is represented by “_matrix” with the following syntax: "destination_state,
origin_state:probability".

#***

*

DEEM Dependability Modelling and Evaluation *

Version 1.0, xx.xx.00 *

(C) 2000 by Institute CNUCE, CNR Ghezzano(Pisa) ITALY *

*

#***

This file was generated Tue Jun 27 12:57:22 2000

_firstindex = 0;

_nstates = 154;

_nentries = 153;

_order = _TOFROM;

_matrix =

0_0 ;

0_1 0_0:1.000000000000e+00;

0_2 0_1:1.000000000000e+00;

0_3 0_2:1.000000000000e+00;

0_4 0_3:1.000000000000e+00;

Chapter 4: Results and output files

22

• Filename_PhN.rg: describes the Reachability Graph (RG) of the PhN. Two parts of
these files are shown below. All places and transitions have associated an integer
number used in “reachset” and “reachgraph”. In reachset ‘0_4_t 1:1 5:1”
represents the marking of state 0_4_t. In this state there is a token within place 2
(P2) and a token within place 5 (Count). In reachgraph “0_1
0_0:6:1.000000e+00” means that state 0_1 can be reached from state 0_0 by the
firing of transition 6 (T1) which rate is 1.000000e+00.

#***

*

DEEM Dependability Modeling and Evaluation *

Version 1.0.beta-2 *

(C) 2000 by Istituto CNUCE, CNR Ghezzano(Pisa) ITALY *

*

#***

This file was generated Tue Jul 11 15:02:24 2000

_nplace = 11;

_ntrans = 11;

_places =

 0: P1;

 1: P2;

 2: P3;

 3: Aok;

 4: Afail;

 5: Count;

 6: Stop2;

 7: Bok;

 8: Bfail;

 9: Stop1;

 10: repair_B;

_transitions =

 0: Yes_repair_A;

 1: yes_repair_B;

Chapter 4: Results and output files

23

 2: Tcount;

 3: Tstop1;

 4: ok_repair;

 5: nok_repair;

 6: T1;

 7: T2;

 8: fA;

 9: T3;

 10: fB;

_ntanmark = 150;

_nabsmark = 1;

_nvanmark = 0;

_nvanloop = ??;

_nentries = 150;

_reachset =

 0_0_t 0:1;

 0_1_t 1:1;

 0_2_t 2:1;

 0_3_t 0:1 5:1;

 0_4_t 1:1 5:1;

 0_5_t 2:1 5:1;

 0_6_t 0:1 5:2;

Second part of file:

_reachgraph =

 0_0;

 0_1 0_0:6:1.000000e+00;

 0_2 0_1:7:1.000000e+00;

 0_3 0_2:9:1.000000e+00;

 0_4 0_3:6:1.000000e+00;

 0_5 0_4:7:1.000000e+00;

 0_6 0_5:9:1.000000e+00;

Chapter 4: Results and output files

24

4.2 The files created for each phase

The transient analysis creates three different files during the analysis.

• Filename.mc: describes the Markov Chain (MC). It has the same format of file .mc
of PhN.

• Filename.rg: describes the Reachability Graph (RG). It has the same format of file
.rg of PhN,

• Filename.trsolv: contains the state probability distribution at time t and average
probability to being in that state at time t. A part of this file is shown below.

#***

*

DEEM Dependability Modeling and Evaluation *

Version 1.0.beta-2 *

(C) 2000 by Istituto CNUCE, CNR Ghezzano(Pisa) ITALY *

*

#***

This file was generated Tue Jul 11 15:02:25 2000

----------> PHASE NUMBER : 0

STATE: PROBABILITY, EXPECTED TOTAL TIME (TIMEAVG);

--

_timepoint: 1.500000e+01

 0_1: 8.478937040879e-01, 9.218563388611e-01,

 0_2: 1.281427233714e-02, 6.757151638498e-03,

 0_3: 1.372182355086e-01, 7.068102093397e-02,

 0_4: 2.073788052551e-03, 7.054885648605e-04,

Chapter 4: Results and output files

25

4.3 The files created for each study

The last files that the transient analysis creates are the files of the defined studies (one
for each study).

• Filename.studyname.spreadsheet: contains the measures evaluated for the study
studyname, in a format which can be further elaborated by spreadsheet programs.

• Filename.studyname.gnuplot: contains the measures evaluated for the study
studyname, in a format which can be further elaborated by gnuplot .

It is possible to open the file Filename.studyname.spreadsheet using some spreadsheets
programs like EXCEL Microsoft for any graphical representation. An example of this
type of file is shown below.

#***

*

DEEM Dependability Modeling and Evaluation *

Version 1.0.beta-2 *

(C) 2000 by Istituto CNUCE, CNR Ghezzano (Pisa) ITALY *

*

#***

This file was generated Tue Jul 11 15:03:21 2000

STUDY_NAME: Study_3

STUDY_variables_setting:

Time 1.500000e+03

lb [0.0001,0.01,*10]

p 9.500000e-01

alfa {1,2,5}

REW_MEASURE_NAME: Reliability

PREDICATE: mark(Afail)+mark(Bfail)<2

REW_FUNCTION: 1

lb/alfa 1.000000e+00 2.000000e+00 5.000000e+00

Chapter 4: Results and output files

26

1.000000e-04 9.941818e-01 9.907599e-01 9.813445e-01

1.000000e-03 9.440268e-01 9.132017e-01 8.353453e-01

1.000000e-02 6.015980e-01 4.783397e-01 3.020994e-01

REW_MEASURE_NAME: Unreliability

PREDICATE: mark(Afail)+mark(Bfail)=2

REW_FUNCTION: 1

lb/alfa 1.000000e+00 2.000000e+00 5.000000e+00

1.000000e-04 5.818176e-03 9.240130e-03 1.865547e-02

1.000000e-03 5.597324e-02 8.679829e-02 1.646547e-01

1.000000e-02 3.984020e-01 5.216603e-01 6.979006e-01

Figure 4.14 shows the plot of the Reliability, generated by EXCEL Microsoft from the
output file of the DEEM transient analysis.

Figure 4.14: Reliability of the system

Transient Solver

DEEM provides a specific and efficient analytical solution for MPS models. This
chapter describes the DEEM’s solution algorithm.

5.1 The analytical technique

The specialised solution finds its ground by observing that the only deterministic
transitions in a DSPN model of a MPS are the phase duration, and that these transitions
are enabled one at a time. Thus, the marking process {M(t), t≥0} of the DSPN is a
Markov Regenerative Process (MRGP) [4] for which the firing times of the
deterministic transitions are indeed regeneration points. Moreover, the following
property holds of the DSPN model of a MPS:

Property 1: in every non-absorbing marking of the DSPN there is always one
deterministic transition enabled, which corresponds to the phase being currently
executed.

The general solution method for MRGP processes considers computing matrix V(t),
whose entry (m,m’) is the occupation probability of marking m’ at time t≥0 given the
initial marking m. Matrix V(t) is the solution to the generalised Markov renewal
equation V(t) = E(t) + K(t) * V(t), where K(t) and E(t) are the global and local kernel
matrices [4] and ‘*’ is the convolution operator. Instead of directly attacking the
solution of the generalised Markov renewal equation by numerical algorithms or
Laplace-Stiltjes transform, DEEM computes matrix V(t) according to the analytical
method, proposed in [5, 6].

5.2 The solution algorithm

The following equation:

V t e ei, j
Q

h

r

ph ph
Qph ph j() = 



=

−

+∏ τ δ

1

1

1∆ ,

allows to evaluate V(t) through the separate analysis of the various alternative paths
which compose the mission, and only requires the derivation of matrix exponentials

eQit, and ∆i,j , i,j = 1,2,...,n. which can be automatically obtained when the reachability
graph is generated. The solutions of the DSPN model is thus reduced to the cheaper
problem of solving a set of homogeneous, time-continuos smaller Markov chains.

To compute the dependability figures of the system, DEEM derives the probability
vector P t() of each marking in SN at time t. We can obtain P t() from the transient

probability matrix V t(), with the equation P t P V t() = ⋅0 (), where P0 is the initial

probability vector of the DSPN. To compute P t() and then the dependability figures of
the system, the solution engine of DEEM takes as input the DSPN model and its initial
probability vector P0, and performs the following algorithm:

Chapter 4: Results and output files

28

1. Builds RGP, the reachability graph of the PhN sub-model. This graph has exactly
one stable marking

r
mi for each phase i n= 1 2, ,..., the MPS may perform.

2. Call deem_solver(1
�

00, ,P).

The recursive algorithm of deem_solver(i P ti
init

i
init, ,) is:

 1. Builds the reachability graph RGS mi

r() of the whole DSPN model when marking

r
mi is the only one permitted for the PhN. From RGS mi

r() obtains the transition
rate matrix Qi of the continuous-time Markov chain describing the evolution of
the DSPN during the execution of phase i .

 2. If there are not phases next to phase i or t ti
init

i≤ + τ then derivate the transient

state probability vector P t P ei i
init Q t ti i

init

() = −() and return, else continue to step (3).

 3. Derivate the transient state probability vector P P ei i
init Qi i= τ .

 4. Builds the reachability graph

RGS m next mi i

r r
, ()() , where

next m m mi j jm

r r r() = { }1
,..., ,

of the whole DSPN model, when the initial marking of the PhN is
r
mi , and

transition ti
Det is the only deterministic one allowed to fire. Each marking

r
m jh

is

reachable from
r
mi through the firing of some istantaneous transition next the

firing of ti
Det .

 5. For each stable marking

r
m jh

 (phase jh) performs the following steps:

5.1. From

RGS m next mi i

r r
, ()() , obtains the branching probability matrix

∆ i jh,
for the transition from phase i to phase jh.

5.2. Derivate the initial state probability vector of the phase jh : P Pj
init

i i jh h
= ∆ , .

5.3. Call deem_solver(j P th j
init

i
init

ih
, , + τ).

In this solution algorithm DEEM evaluates the specific dependability measure of interest
for the MPS from Pi according to the standard computation algorithms.

The main computational cost of the DEEM solution algorithm is that required for the
transient solutions, steps (2) and (3), and the multiplications in step (5.2) of the
algorithm sketched in the previous section. Notice that the DEEM approach to generate
the required matrices ever requires to handle the entire state space of the MRGP
process.

Appendix

Installation

To use DEEM do the following:

- visit http://bonda.cnuce.cnr.it/DEEM to obtain the license file ".deemlicense"
and drop this file in your home directory

- unzip and untar the file "deem-releasenumber.bin.arch.tar.gz"

- set the environment variable DEEM_HOME to the path of the installation
directory of DEEM

- here is an example of lines that could be added to someone's .cshrc (assuming
use of C shell) to execute deem:

alias deem 'cd $DEEMHOME/deem_models;$DEEMHOME/bin/deem&'

setenv DEEM_HOME /where/is/DEEM

- to invoke DEEM run "deem" from the command line prompt

Please report any bugs to: silvano.chiaradonna@cnuce.cnr.it

Tool Oraganization and File Structure

This paragraph gives the organization of DEEM and its file structure (Figure A.1).

Parameters List
Studies List
PhN and SN Description
Reward Measures List
Composed Measures List

Graphical User InterfaceTransient Solver Report Generator

Initial States
Distribution

netname.studyname.distri

option: -L

netname.studyname.spreadsheet

Final States
Distribution

netname.studyname.distro

netname

option: -F

by command line

input/output flow: execute program: data file: executable program:

Evaluated Measures

netname.studyname.gnuplot

Evaluated Measures netname information
in LATEX format

by command line

netname.tex

open save

Figure A.1: Organization of DEEM and its file structure

Bibliography

[1] M. Ajmone Marsan and G. Chiola, "On Petri nets with deterministic and exponentially

distributed firing times," Lecture Notes in Computer Science, Vol. 266, pp. 132-145, 1987.

[2] S. Allmaier and S. Dalibor, "PANDA - Petri net analysis and design assistant," in Proc.

Performance TOOLS'97, Saint Malo, France, 1997.

[3] A. Bondavalli, I. Mura and K.S. Trivedi, "Dependability Modelling and Sensitivity Analysis of

Scheduled Maintenance Systems," in Proc. EDCC-3 European Dependable Computing

Conference, Prague, Czech Republic, 1999, pp. 7-23.

[4] H. Choi, V.G. Kulkarni and K.S. Trivedi, "Transient analysis of deterministic and stochastic

Petri nets," in Proc. 14th International Conference on Application and Theory of Petri Nets,

Chicago, IL, 1993, pp. 166-185.

[5] I. Mura and A. Bondavalli, "Markov Regenerative Stochastic Petri Nets to Model and Evaluate

the Dependability of Phased Missions," IEEE Transactions on Computers, to appear, Vol. pp.

2001.

[6] I. Mura, A. Bondavalli, X. Zang and K.S. Trivedi, "Dependability Modeling and Evaluation of

Phased Mission Systems: a DSPN Approach," in Proc. DCCA-7 Dependable Computing for

Critical Applications, San Jose, CA, 1999, pp. 319-337.

