Connecting a Company’s Verification
Methodology to Standard Concepts of
UVM

Frank Poppen Marco Trunzer Jan-Hendrik Oetjens

OFFIS Institute Robert Bosch GmbH Robert Bosch GmbH

for Information Technology

Tel.: +49(441)9722-230 Tel. +49(7121)35-2981 Tel.: +49(7121)35-4684
frank.poppen@offis.de Marco.Trunzer@de.bosch.com Jan-Hendrik.Oetjens@de.bosch.com
ABSTRACT

Over the last decades, intelligent electronics in heterogeneous systems improved all aspects of
everyone’s daily life. An advantage a modern civilization cannot ignore. The increasing complexity of
the electronic components though, makes us dependent on solving a growing design verification
challenge. Especially knowing, that safety relevant functionality as in automotive driving is part of
this development. Standardized as well as proprietary concepts, languages and tools line up for the
task [6]. Unfortunately, there is no such thing as one size fits all in this. Verification engineers need to
choose and combine what fits best for the company, the design-team and application domain. They
create company’s verification strategies with deep roots into the design process. Changes to the
strategy need to be done carefully and incrementally to ensure continued productivity.

Based on VHDL in the past, our IFS verification methodology was also implemented in SystemC (SC)
[2] and covers Analog Mixed-Signal (AMS) [1] [4], and Matlab/Simulink [3] today. In this work we
proceed with concepts of UVM [9] and show how UVM components are instantiable in our SC test
environment to verify designs specified in VHDL (-AMS), SystemC (-AMS), Verilog (-AMS) or any
language a mixed-language simulation environment exists for. Our work does not depend on
proprietary technology, but is applicable to any SC based environment.

1. Introduction

Automotive electronic today shows a constant increase in performance, number of subsystems and
their interoperability to compose most complex heterogeneous systems. Guaranteeing properties of
safety, sustainability and comfort is a challenge, which requires consistent verification of quality
along every stage of the development process. At the level of integrated circuit design EDA industry
promotes the Universal Verification Methodology (UVM) [9]. Such relatively new standards need to
find their way into, often in-house, verification concepts that have been out long before UVM and
SystemVerilog (SV). Those concepts distinguish themselves from standard concepts in that they are
more tailored to relevant use scenarios and efficient usage in special contexts. Unfortunately, when
using non-standard verification methodologies, one cannot access and profit from the vast amount
of resources available like third party verification Intellectual Property (IP) and skilled human
resources. On the other hand switching completely to UVM as a standard method means dispensing
the already available in-house verification IP and the benefits of a tailored solution. Because of that
even when there are good reasons to stay with an in-house verification methodology, it becomes
necessary to interface to standard methodologies. So like already stated in [1], an evolution of the
verification method is more desirable than a radical revolution.

The methodology named IFS (“Integrated Functional verification Script environment”) was
continuously enhanced from VHDL with VHDL-AMS [1] to SC [2], Matlab/Simulink [3] and now further
on to SV and UVM. Major aspects of the test bench architecture as defined by IFS can also be found
in the established standard UVM that has its roots in the Open Verification Methodology (OVM) and
the Verification Methodology Manual (VMM). Figure 1 matches basic concepts of both approaches

that are directly comparable. With removed details of UVM'’s concepts, the IFS approach is less
complex and simple to apply. Moreover, with VHDL AMS the IFS methodology already includes
analog/mixed signal (AMS) simulation at no additional cost including constraint-random capabilities.
After an afternoon introduction (analog) designers and system integrators are able to use test
benches and create command files for own test cases. All stakeholders in the development process,
digital designer, analog designer, verification engineer and system engineer, make use of the same,
simple IFS command language to create (self-checking) test cases.

Matching Concepts of Two Very Similar Methodologies

UVM Environment IFS Controller
UVM Agent IFS Test Bench Module (TBM)
UVM Sequence IFS Command File (CF)
UVM Sequence Item IFS TBM Command

CF (Command File)

TBM
Command

Test

AE’"t Fp— sc_main Controller
Virtual ﬂ
k] S N S
5 || sequencer | . v 3 —‘ Driver >
CThe o
-8 [WA %
o ‘-.'_ DUV TRM
= :
5 o \ [. TBM)
7] —— Monitor (Test Bench Module) (Test Bench Module)
Conitsurati s Driver =l (Bus Functional Model) (Bus Functional Model)
onfiguration 3
a) State of the art UVM approach b) Existing SystemC-based approach

Figure 1: Juxtaposition of a) UVM and b) IFS.

We utilized a bus arbiter test case (Chapter 2) as design under verification (DUV) inside an IFS
simulation environment with bus master and bus slave Test Bench Modules (TBM) (Chapter 3). In the
architecture of our experiment (Chapter 4) bus masters were successfully replaced by UVM agents
and fully simulated in a holistic test bench simulation using Mentor Graphics Questa and Cadence
Incisive (Chapter 5). The document concludes in Chapter 6.

2. Bus Arbiter Example as Test Case

We chose a switched bus arbiter implementation as a test case for this work. It connects a
configurable number of bus masters with a configurable number of memory bus slaves for read or
write accesses (refer to Figure 2). The design is simple enough to be understandable within short
time and allows quick implementation with little risk of introducing bugs. We used it for several
mixed-language simulations evaluations in the past and it is now available in VHDL, Verilog and SC
together with matching models of masters, slaves and test bench setups. In the scope of this work,
we completed this collection with a UVM/SV test environment.

clk rst
U S
gnt = |
rreq bus arbiter rreq 4 I —
wre wreq 4
slave N add? 9"Q ,_addr master 4 |
‘. wdata =Y 10— ’_wdats o
’, rdata !, rdata)
" ack *ack
;]]2 ~ ARAR]
| Y- ¥

slave /3 -0 E master
7

.) ——— | GE]
B —
slave % -0 | - % master g
P e — —

Figure 2: Switched bus arbiter example as DUV for the experiment of this work.

3. Integrated Functional Verification Script Environment and Bus-
Arbiter Example

A first introduction into Integrated Functional Verification Script Environment (IFS) is to be found in

[1] and [2]. IFS is tailored to the domain of automotive electronics system design and specifically

satisfies the needs of engineers and system integrators for efficient test implementation. IFS is a SC-

based library that compiles and simulates with any simulator complying with the IEEE 1666 SystemC

standard. Figure 3 depicts the setup of the bus arbiter example in an IFS environment.

CF (Command File)

TBM 1

Command]

h 4
é[Controller s ssssssnans s g
i slavel masteri| :
b - _ - .
: execNextCmd bus arbiter execNextCmd
i slave2 master2| i
> > > .
execNextCmd (VHDL execNextCmd
i slave3 or master3| i
S O el vy o @ ™
: execNextCmd or execNextCmd :
2 oL Aot

execNextCmd execNextCmd

Figure 3: IFS simulation environment for a bus arbiter test bench.

In a mixed-language simulation environment the DUV’s implementation could be any language like
VHDL, Verilog, or SystemC, as long as the DUV'’s interfaces are hooked up to IFS Test Bench Modules
(TBM). A TBM acts as Bus Functional Model (BFM) and generates stimuli for the DUV. All TBMs are
derived from the class IFS_ModuleBase which itself is derived from sc_module. Therefore, a
TBM is a SC module enriched by predefined IFS commands (print <texts,
wait <time|events, sync <TBMlists, reportlevel <severitys,
notify <events>, assign <envVars, quit, and other). TBM developers need to implement
the BFM part of the behavior by user-defined commands and register them with the IFS controller at
runtime. User defined commands are callable from the command file (CF) the same way as
predefined commands. Scheduled in parallel by the simulation kernel, the TBMs each execute an
endless loop in which they request the next command from the IFS controller’s CF. Execution is
suspended on wait or sync. TBMs terminate on reaching the last command or if the quit command is
issued explicitly. The concept allows the quick modification of test runs by exchanging or modifying
the CF. SC code of test bench and TBM remains unchanged between different test runs removing
recompilation and re-elaboration from the verification process.

Additionally, TBMs in VHDL and VHDL-AMS are supported. They are automatically connected to the
SC IFS controller by no more than specifying a uniqgue TBM command name (for CF) and a unique
TBM ID number. It is even possible to describe the test bench structure and interconnection in any
HDL by using the standard mixed-language capabilities of the simulators.

The left listing demonstrates a simple CF using predefined commands, as well as user defined TBM
commands (Set Offset, Set I Wait, Write and Read) of four bus masters accessing four
memory slave modules through the DUV. The right shows a simulation run with OSCI reference
simulator.

CLK PERIOD 10 ns SystemC 2.3.0-ASI --- Nov 29 2013 14:57:17

CLK RESET 0 12 Copyright (c) 1996-2012 by all Contributors,
ALL RIGHTS RESERVED
ALL SYNC ALL INFO (0 s) Loading script: 'control.cmd'
INFO (0 s) Finished loading
SL1 print "Config slave 1!" [CLK,0 s] activate system clock of 10 ns
SL1 Set_Offset 300 [CLK,0 s] reset gets active
SL1 Set_I Wait 100 [CLK,120 ns] reset gets passiv
SL2 print "Config slave 2!" INFO (120 ns) [SL1l] Config slave 1!
SL2 Set_Offset 200 [SL1,120 ns] set slave offset = 300
SL2 Set_I Wait 99 [SL1,120 ns] set int_wait_cycles = 100
SL3 print "Config slave 3!" INFO (120 ns) [SL2] Config slave 2!
SL3 Set_Offset 100 [SL2,120 ns] set slave_offset = 200
SL3 Set_I Wait 47 [SL2,120 ns] set int_wait_cycles = 99
SL4 print "Config slave 4!" INFO (120 ns) [SL3] Config slave 3!
SL4 Set_Offset 0 [SL3,120 ns] set slave offset = 100
SL4 Set I Wait 69 [SL3,120 ns] set int wait_cycles = 47
INFO (120 ns) [SL4] Config slave 4!
ALL SYNC ALL [SL4,120 ns] set slave offset = 0
[SL4,120 ns] set int_wait_cycles = 69
#loop 4 [MS1,130 ns] Write (Address: 0, Value: 100)
ALL SYNC ALL [SL4,140 ns] Write (Address: 0, Value: 100)
MS1 Write $(100*#i) $(100+#i) [SL4,210 ns] Read (Address: 0, Value: 100)
MS1 Read $(100*#i) $(100+#i) [MS1,220 ns] Read (Address: 0, Value: 100)
#eol [MS1,270 ns] Write (Address: 100, Value: 101)
[SL3,280 ns] Write (Address: 100, Value: 101)
ALL SYNC ALL [SL3,350 ns] Read (Address: 100, Value: 101)
[MS1,360 ns] Read (Address: 100, Value: 101)
SL1 print "End Of Test Script" [MS1,410 ns] Write (Address: 200, Value: 102)
[SL2,420 ns] Write (Address: 200, Value: 102)
ALL QUIT [SL2,490 ns] Read (Address: 200, Value: 102)
[MS1,500 ns] Read (Address: 200, Value: 102)
[MS1,550 ns] Write (Address: 300, Value: 103)
[SL1,560 ns] Write (Address: 300, Value: 103)
[SL1,630 ns] Read (Address: 300, Value: 103)
[MS1,640 ns] Read (Address: 300, Value: 103)

INFO (640 ns) [SL1l] End Of Test Script

INFO (640 ns) SIMULATION END FROM COMMAND FILE
INFO (640 ns) Exiting simulation.

Info: /OSCI/SystemC: Simulation stopped by user.
INFO (640 ns) Report:

INFO (640 ns) Encountered errors: 0

INFO (640 ns) Encountered warnings: 0

4. Architecture of the Experiment

Even though TLM and UVM concepts are not bound to a certain design language per se, they are
practically not available in all flavors languages. SV is the choice of implementation for UVYM. SC is yet
missing out on UVM concepts, but literature shows work in progress [7]. The similarities of the IFS
and UVM concepts (Figure 1) suggested a common basis for an interchangeable use. To proof the
assumption in an experiment, we needed to connect SC/IFS and SV/UVM. The Verification Academy
offers UVM Connect to interconnect the two: “UVMC is an open-source UVM/OVM-based library
that provides TLM1 and TLM2 connectivity and object passing between SC and SV UVM/OVM models
and components. It also provides a UVM Command API for accessing and controlling UVM simulation
from SC (or C or C++). UVM Connect allows you to reuse your SC architectural models as reference
models in UVM/OVM verification and/or reuse SV UVM/OVM agents to verify models in SC.” [8]

We demonstrate here that the UVMC API is applicable in the substitution of an IFS TBM by an UVM
agent in a mixed-language simulation that combines SC including SCV and SV/UVM. This way we
open the door to make a full evolutionary inclusion of state of the art UVM verification IP in the well-
established IFS flow including its link to AMS simulation.

A TBM directly correlates to the functionality of an UVM agent. Both act as transactor between test
bench and DUV and translate messages/commands to bit wiggles. For complex IP it can become
quite cumbersome to create a verified TBM. When IP comes with a UVM test environment, TBM
reimplementation is redundant effort, if we could reuse the delivered UVM agents instead. In the
remainder of this chapter, we show how this is achieved. The presented concept does not rely on the
IFS library. It is generally applicable for SC test benches.

UVM Connect (UVMC) makes use of the SV Direct Programming Interface (DPI) and enables the
communication of a SC model with a UVM model. Both language models are compiled separately and
co-exist in parallel in a mixed-language simulator environment. It is possible to exchange TLM

messages between the two, as well as exchange control commands (compare with Figure 4). This is
the intended use of UVMC between SC and SV.

G) R S
TLM1
SC M SV cla E
¥|Instance |Design unit | Desig
S R = ‘ sC_main sC_main Schdo
TLM2 +r ol producer producer Schdo
SC |[—— S\ o) sC_main sC_tnain ScThr
(= j sy_main sy_main(fast) Modu
------ J #INITIAL#5E sv_main(fast) Proce
UvMm — I @ #INITIAL#ED sv_main(fast) Proce
SC Command > sy Wl st st vIPac
C&C++ -l wem_pkg uvm_pkg VIPac
+-ml uvmc_pkg uvme_pkg VIPac

Figure 4: UVMC as link for TLM and commands between SC and SV (source: UVMC documentation).

Unfortunately, this is not ideal for the use case of this work. We need a standalone UVM agent
without UVM environment to replace a TBM inside SC. The abstraction level of the DUV model is
register transfer level (RTL) and does not implement TLM ports. The agent should communicate to
the DUV via its UVM driver at signal level, and not via TLM. We therefore use the option to
instantiate a foreign language module from a SC wrapper instead. The methodology is described in
the mixed language simulators’ user guide ([10] and [11]) and has two advantages. Firstly, the agent’s
driver receives full pin level access to the DUV’s interface. Secondly, the test bench architecture is
defined in the SC source code only. If we change the test bench configuration of the bus arbiter for
more masters, only the SC sc_main needs to be modified to hook up additional wrapper modules.
Each wrapper instantiates the required UVM code by itself. The verification engineer does not need
to touch or even know UVM/SV source code.

UVMC/TLM

avel wrapper |sc_port

SystemVerilog module

i target_socket |Wrapper UVM Connector
ave =I- g uvm_root
o - C init(){objection} || _i_|‘t

UVM Agent _+_,j ubus_example_thd

7| Instance

bus flnallse(){objectlon}
5 execNextCmd] :
slave2| |arbiter T UVM UVM - ml
" o -) > driver sequencer - gl WUVMC_B_INITIATOR_SOCKET_FO..
T A
esmaster! © « — - sc_main

=8 bus_arhiter_th
=-m M1

UVM
monitor

ave aster2 € i
fols e asie2 O -
e>rmaster3 C «- CF

i I TBM
.............. controller [|esesesmmnd read()

Figure 5: SC instantiating UVM in wrapper module using the foreign module interface.

Right side of Figure 5 shows a screenshot of an UVM agent instantiated inside SC using the
elaborate foreign module (hdl name) functionality of Mentor Questa. SC and UVM are
interweaved with bare signal access between the two. The left side of Figure 5 shows the
implemented architecture of the experiment. A wrapper TBM derived from the class
IFS ModuleBase acts just like any other TBM with predefined commands and next command
execution loop, but fulfills three additional objectives. Firstly, the UVM agent is instantiated in the
constructor of the wrapper (yellow rectangle). Instantiation implementation is proprietary to the
chosen multi-language simulation environment. We evaluated Mentor Graphics’ Questa simulator
(sc_foreign module [10]) and Cadence’s Incisive (ncsc foreign module [11]) with
success. Secondly, the wrapper implements a method to utilize UVMC’s command API to set an
objection for the UVM run phase. The objection is mandatory as otherwise the UVM simulation of
the single UVM agent would terminate right after start because of missing sequences and sequence
items. Thirdly, the wrapper implements commands that are twins to the UVM agent’s processable
sequence items. The following is a brief outline on the modus operandi:

Start simulator, elaborate SC and SV is instantiated inside SC.

run 0 starts execution of the SV phases build, connect and the run phase.

SC wrapper sets objection for the run phase. SV will not leave run phase until removed.

run all executes all TBMs’ execute-next-command loops. Wrapper receives user defined

command call from IFS controller’s CF.

e Worapper calls implementation method of user defined IFS command. Method creates and
sends TLM message via UVMC.

e Wrapper UVM connector is a UVM component derived from the UVM monitor class. It
receives the TLM message and creates an according sequence item. The sequence item is
forwarded through the UVM sequencer to the UVM driver.

e UVM Driver applies signal events to DUV’s interface. IFS command finished execution.

Execute-next-command repeats until quit or last command is reached. Wrapper removes

UVM run-phase objection by call to wrapper’s finalize method. Simulation ends.

The agent’s original code for sequencer, driver and monitor remains unchanged. The IFS wrapper is
fully reusable for future use in different environment configurations. It is fully transparent to the IFS
test developer who will not get into contact with UVM code behind the TBM wrapper.

5. Report of Simulation Run

We evaluated our approach with two tool setups. The first setup consist of Mentor Graphics Questa
10.1c, UVM 1.1b and UVMC v2.2. The second setup utilized Cadence Incisive 13.10-s005 We believe
that any setup complying with IEEE 1666 SC and IEEE 1800 SV should work. For example, the author
of [5] does not report issues in using UVMC with Synopsys VCS.

The following is a full simulation run of SC/IFS instantiating a SV/UVM agent inside a TBM wrapper
and connecting the two using UVMC. We removed repeating lines, blank lines and lines with little
information to shorten the trace. Lines 1 to 11 document the elaboration phase.

1: irun(64): 13.10-s005: (c) Copyright 1995-2013 Cadence Design Systems, Inc.

2: Loading snapshot worklib.bus_arbiter tb:sc_module Done

3: *xkkkxkxxkk* foreign module master::CTOR(): Elaborating foreign module: sv_uvm master

4: *kkkkkkkkkk* wrap uvm _master::CTOR() : Connecting TLM port

5: Connecting an SC-side proxy chan for ‘'bus_arbiter tb.MSl.port_10' with lookup string
'sc_wrap MS1' for later connection with SV

6: INFO (0 s) [bus_arbiter tb.MS1] Registered module 'bus_arbiter tb.MS1'

7: . (also MS2 to MS4)

8: INFO (0 s) [bus_arbiter tb.SL1l] Registered module 'bus_arbiter tb.SL1'

9: . (also SL2 to SL4)

10: INFO (0 s) [bus_arbiter tb.CLK] Registered module 'bus_arbiter_ tb.CLK'

11: INFO (0 s) Loading script: 'control.cmd'

Run of simulation starts in line 12, where UVM begins to traverse through its simulation phases build,
connect and finally entering the main run phase with line 23. Connecting the TLM ports between SC
and UVM is established in two steps. Firstly, ports are created and labeled with a lookup string (SC
line 5 above, UVM line 22 below).

12: ncsim> run

13 s e e e e e e e ———— -

14: CDNS-UVM-1.1d (13.10-s005)

15: (C) 2007-2013 Mentor, Cadence, Synopsys, Cypress Semiconductor

B I i il

17: UVM_INFO ../tb_uvm/uvm_master module.sv(57) @ 0: reporter [sv_uvm_master] Kok ok ok ok ok Kk k
sv_uvm _master: Initialising instance sc_wrap_MS1 and its virtual interface.

18 s — -

19: TUVMC-2.2

20: (C) 2009-2012 Mentor Graphics Corporation

D R

22: Registering SV-side 'sc_wrap MS1l.ifs monitor.in' and lookup string 'sc wrap MS1' for later
connection with SC

23: UVM_INFO @ 0 ns: reporter [RNTST] Running test ...

The run phase starts and the wrapper raises an objection for the UVM run phase (line 24). UVMC
connects the SC and UVM TLM ports by referring to their label (line 25). In line 31 the execute-next-
command-loop receives a Ms1 write 100 98 user-defined command from the IFS controller’s CF and
the wrapper’s write method creates and sends a proper TLM message. In line 32, the wrapper UVM

connector receives the TLM message and creates a sequence item 33. The UVM agent’s driver
consumes the sequence item and applies according signal events to the DUV (line 34). The SC slave
TBM responds to the signal events (line 35).

24: kkkkkkkkkkkkk wrap uvm _master::initialiseModule(): Raising objection for UVM phase 'run'!

25: Connected SC-side 'bus_arbiter tb.MSl.port 10' to SV-side 'sc_wrap MS1l.ifs monitor.in'

26: UVM_INFO ../tb_uvm/ubus_example _master seq pkg.sv(134) @ 0 ns:
sc_wrap MS1l.sequencer@@master memory seq [master memory seqg] master memory seq starting...

27: [bus_arbiter_ tb.CLK,100 ns] reset gets passiv

28: [bus_arbiter_ tb.SL1,100 ns] set slave_offset = 300

29: ... (configuring SL1 to SL4)

30: UVM_INFO ../tb_uvm/ubus_master driver pkg.sv(89) @ 110 ns: sc_wrap_MS1.driver
[ubus_master driver] **k*kxk*k%** ybus_master driver::get_and drive(): Waiting for Item on
seq_item port!

31: kkkkkkxkkxk%% yrap uvm master::Write(): Sending payload '{cmd:2 parameters:100 98} to MS1.socket
at time 150

32: UVM_INFO ../tb_uvm/ifs command monitor pkg.sv(75) @ 150 ns: sc_wrap MS1l.ifs monitor
[ifs_command monitor] KKK KA KKK ifs_command monitor::b_transport () : SC-TLM communication
received: cmd - 00000002, parameters - '{"100", "98"}

33: UVM_INFO ../tb_uvm/ifs_command monitor pkg.sv(116) @ 150 ns: sc_wrap MS1l.ifs_monitor
[ifs_command monitor] ********* jfg command monitor::peek(): Informing driver to drive cmd-
2, addr- 100, data- 98!

34: UVM_INFO ../tb_uvm/ubus_master driver pkg.sv(91) @ 150 ns: sc_wrap_MS1l.driver
[ubus_master_ driver] Kok ok ok ok Kk ok ubus_master_driver::get_and drive(): Received Item on
seq_item port!

35: [bus_arbiter tb.SL3,190 ns] Write (Address: 100, Value: 98)

36: UVM_INFO ../tb_uvm/ubus_master monitor pkg.sv(173) @ 195 ns: sc_wrap_MSl.monitor

[ubus_master monitor] collect data phase.

The UVM agent’s monitor listens on the signal events between UVM agent and DUV, and recognizes
a correct write transaction (lines 37 to 47).

37: UVM_INFO ../tb_uvm/ubus_master monitor pkg.sv(137) @ 195 ns: sc_wrap_MS1l.monitor
[sc_wrap_ MSl.monitor] Master transfer collected :

38 mm et m oo oo oo—o—ooo—--oo-

39: wubus_transfer inst ubus_transfer - @6690

40: read_write ubus_read_write_enum 32 WRITE

41: addr integral 32 'he4

42: data integral 32 'he2

43: master string 11 sc_wrap_MS1

44 : slave string 0 nn

45: begin_time time 64 180 ns

46: end_time time 64 195 ns

L R e it

Lines 48 to 51 demonstrate that the other TBM masters operate in parallel just as well issuing write
commands that are answered by the TBM slaves.

48: [bus_arbiter tb.MS2,820 ns] Write (Address: 16, Value: 32)
49: [bus_arbiter tb.SL4,830 ns] Write (Address: 16, Value: 32)
50: [bus_arbiter_tb.MS4,1010 ns] Write (Address: 100, Value: 98)
51: [bus_arbiter tb.SL3,1020 ns] Write (Address: 100, Value: 98)

On reaching the quit command the run-phase objection is being dropped (line 54) and the
simulation terminates.

52: INFO (2030 ns) SIMULATION END FROM COMMAND FILE

53: INFO (2030 ns) Exiting simulation.

54: kkxkkkkk*x wrap uvm _master::finaliseModule(): Dropping objection for UVM phase 'run'!
55: SC simulation stopped by user.

56: SystemC : SystemC stopped at time 2030

57: ncsim> exit

6. Conclusions

We show that it is possible to instantiate an UVM agent inside a SC test bench and control it to
generate signal events for a DUV in a SC test environment. Our objective was to reuse external UVM
verification IP in our SC-based IFS test environment. The introduced approach is independent from
the IFS library and therefore generic and applicable for any SC-based test environment. We have to
admit though, that the complex interference between SV, UVM, UVMC, SC and IFS, opens a wide
potential for unclear behavior and bugs. Instantiating single UVM components outside a UVM
environment and using UVMC on top is not the intended use case by design of these technologies.

Documentation in this corner use case is slim and sometimes trial and error was the only solution to
solve unclear error messages.

There is hope from the charter of the Accellera Multi Language Working Group (MLWG) “to create a
standard and functional reference for interoperability of multi-language verification environments
and components.” The MLWG realizes that VIP integration and interoperability problems are
encountered frequently and not only between SC and SV as also stated in [6]. Standardization is
mandatory and should contribute to our future work on this topic.

The result of this work is practically applicable. The standards for SV/DPI and SC are mature enough
to issue no portability problems between the two simulation environments we used. As literature [5]
suggests that UVMC works with other simulation environments, too, it is expectable that our
approach will work here as well.

For future work, it is of interest to turn our approach upside down and instantiate an IFS TBM as
UVM agent inside an UVM test bench. From the gained experience, we believe this to be a feasible
approach.

Acknowledgements: This work has been funded by the German Federal Ministry for Education and
Research (Bundesministerium fiir Bildung und Forschung, BMBF) under the grant 011S13022 (project
EffektiV). The content of this publication lies within the responsibility of the authors.

[1] P.Jores, P. Borthen, R. Dolling, H.-W. Groth, T. Halfmann, S. Kern, M. Lampp, M. Olbrich, M.
Pfost, R. Popp, D. Pronath, P. Rotter, S. Steinhorst, G. Wachutka, Y. Wang and S. Weber,
“Verifikation analoger Schaltungen (Kurztitel: VeronA)”, Schlussbericht zur BMBF-
Forderinitiative IKT2020, 2009.

[2] R. Lissel and J. Gerlach, “Introducing new verification methods into a company's design
flow: an industrial user's point of view”, DATE 2007.

[3] K. Hylla, J.-H. Oetjens and W. Nebel, “Using SystemC for an Extended MATLAB/Simulink
Verification Flow”, FDL 2008.

[4] R. Gorgen, H. Kleen, J.-H. Oetjens, P. Jores and W. Nebel, “SystemC Based Verification of
Complex Heterogeneous Systems”, Cyber-Physical Systems — Enabling Multi-Nature
Systems, CPMNS 2012.

[5] T. Leitner, A. Harapanahalli and O. Bell, “Boosting VP and RTL verification by leveraging a
reusable UVM environment”, SNUG Germany 2014.

[6] J.-H. Oetjens, N. Bannow, M. Becker, O. Bringmann, A. Burger, M. Chaari, S. Chakraborty, R.
Drechsler, W. Ecker, K. Grittner, T. Kruse, C. Kuznik, H. M. Le, A. Mauderer, W. Miiller, D.
Maller-Gritschneder, F. Poppen, H. Post, S. Reiter, W. Rosenstiel, S. Roth, U. Schlichtmann,
A. von Schwerin, B.-A. Tabacaru and A. Viehl, “Safety Evaluation of Automotive Electronics
Using Virtual Prototypes: State of the Art and Research Challenges”, Proceedings of the
51th Design Automation Conference (DAC) 2014, San Francisco, CA, USA.

[7] M. Barnasconi, F. Pecheux and T. Vortler, “Advancing System-Level Verification using UVM
in SystemC”, Design and Verification Conference, DVCon 2014.

[8] Adam Erickson, “Introducing UvM Connect”, at
https://verificationacademy.com/sessions/introduction-uvm-connect.

[9] Accellera, “Universal Verification Methodology (UVM) 1.1 User’s Guide”, May 18, 2011.
[10] Mentor, “Questa® SIM User’s Manual Including Support for Questa SV/AFV”, 2012.
[11] Cadence, “SystemC Simulation User Guide”, 2012.

