

AN-31
Application Note

750 Naples Street • San Francisco, CA 94112 • (415) 584-6360 • http://www.pumpkininc.com

created by Andrew E. Kalman on Oct 16, 2004 updated on Oct 17, 2004
All trademarks mentioned herein are properties of their respective companies.

Building a Salvo Application with
Keil's CARM C Compiler and
µVision IDE

Introduction
This Application Note explains how to use Keil's
(http://www.keil.com/) CARM compiler and µVision IDE to create
a multitasking Salvo application for microcontrollers with
embedded ARM7TDMI cores.

We will show you how to build the Salvo application contained in
\salvo\ex\ex1\main.c for a Philips (http://www.philips.com/)
LPC2129 using the Keil tools.

For more information on how to write a Salvo application, please
see the Salvo User Manual.

Before You Begin
If you have not already done so, install the CARM and µVision
tools. With the µVision IDE you will be able to run and debug this
application in the simulator or on real hardware (if available).

Related Documents
The following Salvo documents should be used in conjunction
with this manual when building Salvo applications with Keil's
CARM compiler and µVision IDE:

Salvo User Manual
Salvo Compiler Reference Manual RM-KCARM

http://www.keil.com/
http://www.philips.com/

 Application Note

2 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Creating and Configuring a New Project
Create a new µVision project using Project → New Project. In
the Create New Project window, navigate to your working
directory (in this case we've chosen c:\temp) and enter a name for
the project (we'll use myex1) in the File Name field:

Figure 1: Creating the New Project

Click on Save to continue. The Select Devices for Target
'Target 1' window appears. Under the CPU tab select and expand
Philips:

Figure 2: µVision Device Selection Window with Philips

LPC2129 Selected

Select LPC2129 and click on OK to continue. You'll be prompted
to copy and add target-specific startup code to the project. Select
Yes to continue:

Figure 3: Confirming Addition of Startup Code to Project

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

3

The Keil file Startup.s will be added to the project.

Preprocessor Options
Now let's setup the project's options for Salvo's pathnames, etc.
Choose Project → Options for Target 'Target 1' → C and
define any symbols you may need for your project in the
Preprocessor Symbols → Define area.1 In the Include Paths,
add \salvo\inc:

Figure 4: CARM C Options for Target

Note This project options screen is also used to select Thumb
mode or ARM mode. The CARM default is Thumb mode.

Click on OK to continue.

Groups
In order to manage your project effectively, we recommend that
you create a set of groups for your project. They are:

Listings
Salvo Configuration File
Salvo Help Files
Salvo Libraries
Salvo Sources
Sources

 Application Note

4 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

For each group, choose Project → Components, Environment
and Books, and under Project Components → Groups add and
(re-)order the new group names2, and select OK:

Figure 5: Creating a Group

When finished, your project window should look like this:

Figure 6: Project Window with Groups

Compiler Selection
Lastly, you'll need to configure this project for use with Keil's
CARM compiler. Choose Project → Components,
Environment and Books, and under Folders/Extensions →
Select ARM Development Tools select Use Keil ARM Tools.
Additionally, under Development Tools Folders, select Use
Settings from TOOLS.INI:

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

5

Figure 7: Selecting the CARM Compiler

Click on OK to finish configuring your project.

Adding your Source File(s) to the Project
Now it's time to add files to your project. Choose Project →
Components, Environment and Books, and under Project
Components → Groups select Sources. Click on Add Files,
navigate to your project's directory, select your main.c and Add,
then Close. Your Project Files window should look like this:

Figure 8: Adding Source Files to the Project

 Application Note

6 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

When finished, select OK, and your project window should look
like this:

Figure 9: Project Window with Project-Specific Source

Files

Adding Salvo-specific Files to the Project
Now it's time to add the Salvo files your project needs. Salvo
applications can be built by linking to precompiled Salvo libraries,
or with the Salvo source code files as nodes in your project.

Adding a Salvo Library
For a library build – e.g. what you would do when evaluating
Salvo via Salvo Lite – a fully-featured Thumb-mode little-endian
Salvo freeware library for the Philips LPC2129 (and all
microcontrollers based on the ARM7TDMI and related cores) is
sfkcarm4lt-a.lib.3 Choose Project → Components,
Environment and Books, and under Project Components →
Groups select Salvo Libraries. Click on Add Files, navigate to
the \salvo\lib\kcarm directory, select sfkcarm4lt-a.lib and
Add, then Close. Your Project Files window should look like
this:

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

7

Figure 10: Adding Salvo Libraries to the Project

When finished, select OK, and your project window should look
like this:

Figure 11: Project Window with Salvo Libraries

You can find more information on Salvo libraries in the Salvo
User Manual and in the Salvo Compiler Reference Manual RM-
KCARM..

 Application Note

8 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Adding Salvo's mem.c
Salvo library builds also require Salvo's mem.c source file as part
of each project. Choose Project → Components, Environment
and Books, and under Project Components → Groups select
Salvo Sources. Click on Add Files, navigate to the \salvo\src
directory, select mem.c and Add, then Close. Your Project Files
window should look like this:

Figure 12: Adding Salvo's mem.c to the Project

When finished, select OK, and your project window should look
like this:

Figure 13: Project Window with Salvo Libraries

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

9

The salvocfg.h Header File
You will also need a salvocfg.h file for this project. To use the
library selected in Figure 10, your salvocfg.h should contain
only:

#define OSUSE_LIBRARY TRUE
#define OSLIBRARY_TYPE OSF
#define OSLIBRARY_CONFIG OSA
#define OSEVENTS 1
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 0
#define OSTASKS 3

Listing 1: Example salvocfg.h for a Salvo Lite Library
Build

Note The settings above are for this particular example project.
The settings for your projects will vary depending on which
libraries you use, how many tasks and events are in your
application, etc.

For your convenience, you'll want your project's salvocfg.h to
be easily accessible. Choose Project → Components,
Environment and Books, and under Project Components →
Groups select Salvo Configuration File. Click on Add Files,
navigate to your project's directory, select salvocfg.h and Add,
then Close. Your Project Files window should look like this:

Figure 14: Adding the Configuration File to the Project

 Application Note

10 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

When finished, select OK, and your project window should look
like this:

Figure 15: Project Window for a Library Build

Tip The advantage of placing the various project files in the
groups shown above is that you can quickly navigate to them and
open them for editing, etc.

Proceed to Building the Project, below.

Adding Salvo Source Files

If you have a Salvo Pro distribution, you can do a source code
build instead of a library build. The application in
\salvo\ex\ex1\main.c contains calls to the following Salvo user
services:

OS_Delay() OSInit()
OS_WaitBinSem() OSSignalBinSem()
OSCreateBinSem() OSSched()
OSCreateTask() OSTimer()
OSEi()

You must add the Salvo source files that contain these user
services, as well as those that contain internal Salvo services, to
your project. The Reference chapter of the Salvo User Manual lists
the source file for each user service. Internal services are in other
Salvo source files. For this project, the complete list is:

binsem.c mem.c
delay.c portkcarm.s
event.c qins.c
idle.c sched.c
init.c timer.c
inittask.c wdtctrl.c
intctrl.c

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

11

To add these files to your project, choose Project →
Components, Environment and Books, and under Project
Components → Groups select Salvo Sources. Click on Add
Files, navigate to the \salvo\src directory, select the files listed
above and Add, then Close. Your Project Files window should
look like this:

Figure 16: Adding Salvo Source Files to the Project

When finished, select OK, and your project window should look
like this:

Figure 17: Project Window for a Source-Code Build

 Application Note

12 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

The salvocfg.h Header File
You will also need a salvocfg.h file for this project.
Configuration files for source code builds are quite different from
those for library builds (see Listing 1, above). For a source code
build, the salvocfg.h for this project contains only:

#define OSENABLE_IDLING_HOOK TRUE
#define OSENABLE_BINARY_SEMAPHORES TRUE
#define OSEVENTS 1
#define OSEVENT_FLAGS 0
#define OSMESSAGE_QUEUES 0
#define OSTASKS 3

Listing 2: salvocfg.h for a Source Code Build

Note The settings above are for this particular example project.
The settings for your projects will vary depending on which
configurations you use, how many tasks and events are in your
application, etc.

Building the Project
For a successful compile, your project must also include a header
file (e.g. #include <LPC21xx.h>) for the particular chip you are
using. Normally, this is included in each of your source files (e.g.
main.c), or in a header file that's included in each of your source
files (e.g. main.h).

With everything in place, you can now build the project using
Project → Build Target or Project → Rebuild all target files.
The build results can be seen in the Build window:

Build target 'Target 1'
compiling mem.c...
assembling Startup.s...
compiling main.c...
linking...
Program Size: data=1259 const=24 code=2204
"myex1" - 0 Error(s), 0 Warning(s).

Listing 3: Salvo Lite Library Build Results

This example uses a total of 1259 bytes of RAM in the data space
(see Note below), 24 bytes in the const space, and 2204 bytes of
ROM in the code space.

Note The data space total shown in Listing 3 includes all stacks
in the application. In this example, the default Startup.s file has
allocated a total of 0x490 (1168) bytes to the Undefined,
Supervisor, Abort, Fast Interrupt, Interrupt and User/System Mode
stacks. Therefore in this example, the project-specific RAM size

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

13

(including the RAM used by Salvo) is 1259-1168 = 91 bytes of
RAM.

Note The µVision projects supplied in the Salvo for ARM
distributions contain additional help files in each project's Salvo
Help Files group.

Viewing Salvo Documentation
Salvo documentation is available directly from within µVision's
project window. Simply select the Books tab and expand the Tool
User's Guide group:

Figure 18: Salvo Documentation in Project Window's

Books Tab

 Application Note

14 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Testing the Application
You can test and debug this application using the µVision
debugger and its simulator, a Flash programming utility, or the
optional ULINK JTAG interface

Simulator
Choose Project → Options for Target 'Target 1' → Debug and
select Use Simulator.

Figure 19: Selecting the Simulator

Select OK to continue. Choose Debug → Start/Stop Debug
Session → Go and the Salvo application will begin executing in
the simulator. When code execution is interrupted via Stop
Running, the debugger will locate the PC at the current
instruction. If that instruction is in user or Salvo source code, the
debugger will stop within C source code. Otherwise it will stop and
display disassembly.

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

15

Within the simulator you can view peripherals and registers, watch
variables of interest, single-step in C or assembly, set breakpoints,
etc:

Figure 20: Single-stepping in the Simulator

Note µVision supports debugging at the source code level. Only
applications built from the Salvo source code enable you to step
through Salvo services (e.g. OSCreateBinSem()) at the source
code level. Regardless of how you build your Salvo application,
you can always step through your own C and assembly code in the
µVision debugger.

Flash Download
Application code can be downloaded to target hardware using
external tools (e.g. the Philips LPC2000 Flash Utility) or via Keil's
ULINK ARM debugger.

 Application Note

16 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Flash Utilities
For use with Flash utilities, you'll need to force µVision to
generate a HEX file. Choose Project → Options for Target
'Target 1' → Output and select Create HEX File:

Figure 21: Generating a HEX file

Select OK to continue. Rebuild the application. Launch the Flash
utility, and navigate to your project's .hex output file to select the
file for downloading:

Figure 22: Downloading the HEX file via a Flash Utility

Download the .hex file to your target. You'll probably have to
manually reset the target to begin execution.

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

17

You can also launch the flash utility directly from within µVision.
Choose Project → Options for Target 'Target 1' → Utilities and
select Use External Tool for Flash Programming.

Figure 23: Integrating a Flash Programming Utility into

µVision

Select OK to continue. With the Command line properly
configured, you can download via the Flash utility simply by
choosing Flash → Download.

ULINK
Keil's ULINK ARM debugger provides the ability to debug on real
hardware over a JTAG port. Choose Project → Options for
Target 'Target 1' → Utilities and select ULINK ARM Debugger
under the Use Target Driver for Flash Programming pull-down.
You'll probably want to select Update Target before Debugging
to streamline your debugging sessions.

 Application Note

18 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Figure 24: Single-stepping with ULINK

Troubleshooting

Compiler Error: Can't Open File …
Failure to add the \salvo\inc path to the C compiler's include
paths will cause the following compiler error:

Build target 'Target 1'
compiling mem.c...
C:\salvo\src\mem.c(30): error C318: can't open file
'salvo.h'

Listing 4: Compiler Error due to Missing Salvo Include
Path

See Preprocessor Options above for how to add the Salvo include
path to the project's C compiler options.

Failure to have a salvocfg.h configuration file in the project's
directory will cause the following compiler error:

assembling Startup.s...
compiling main.c...
\SALVO\INC\SALVO.H(98): error C318: can't open file
'salvocfg.h'
\SALVO\INC\SALVO.H(130): error C320: salvo.h:
salvocfg.h: OSTASKS undefined -- aborting.

Listing 5: Compiler Error due to Missing salvocfg.h
Configuration File

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

19

See The salvocfg.h Header Fileabove for how to add the Salvo
configuration file to the project.

Linker Error: Unresolved Externals …

Missing mem.c
Failure to add \salvo\src\mem.c to the project will cause the
following linker error:

Build target 'Target 1'
assembling Startup.s...
compiling main.c...
linking...
*** WARNING L23: UNRESOLVED EXTERNAL SYMBOLS
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSecbArea
 ADDRESS: 000001A4H
[SNIP]
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSframeP
 ADDRESS: 000006F0H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OScTcbP
 ADDRESS: 000006FEH
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OScTcbP
 ADDRESS: 0000072CH
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSdelayQP
 ADDRESS: 00000774H
Program Size: data=1168 const=16 code=2088
Target not created

Listing 6: Linker Error due to Missing Salvo mem.c

Note The unresolved externals in Listing 6 reference Salvo's
global variables. Their names begin with a lower-case letter and
are prefixed by OS, e.g. OScTcbP.

See The salvocfg.h Header File above for how to add Salvo's
mem.c file to your project.

 Application Note

20 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Missing Library
Failure to add a Salvo library (in library builds) or the appropriate
Salvo source file(s) (in source-code builds) to the project will
cause the following linker error:

Build target 'Target 1'
compiling mem.c...
assembling Startup.s...
compiling main.c...
linking...
*** WARNING L23: UNRESOLVED EXTERNAL SYMBOLS
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSDelay?T
 ADDRESS: 00000190H
[SNIP]
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSCreateBinSem?T
 ADDRESS: 000002B4H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSEnableInts?T
 ADDRESS: 000002BEH
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSSched?T
 ADDRESS: 000002C8H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSTimer?A
 ADDRESS: 00000338H
Program Size: data=1259 const=24 code=864
Target not created

Listing 7: Linker Error due to Missing Salvo Library

Note The unresolved externals in Listing 7 reference services in
Salvo's API. Their names begin with an upper-case letter and are
prefixed by OS, e.g. OSTimer(). The ?T after the function name
indicates that the unresolved external is a Thumb-mode function.

See Adding a Salvo Library and Adding Salvo Source Files, above,
for how to ensure that the linker can find the Salvo services
referenced in the application.

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

21

Thumb-vs-ARM Mode Mismatch
Failure to ensure that all components in a project are built in the
same CPU mode (Thumb or ARM) will cause the following linker
error:

Build target 'Target 1'
compiling mem.c...
assembling Startup.s...
compiling main.c...
linking...
*** WARNING L23: UNRESOLVED EXTERNAL SYMBOLS
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSDelay?A
 ADDRESS: 000001D0H
[SNIP]
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSCreateBinSem?A
 ADDRESS: 000003B0H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSEnableInts?A
 ADDRESS: 000003C0H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSSched?A
 ADDRESS: 000003D0H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSTimer?A
 ADDRESS: 0000042CH
Program Size: data=1259 const=24 code=1108
Target not created

Listing 8: Linker Error due to Missing Salvo Library

In Listing 8, the project was built in ARM mode, but the Salvo
library used only supports Thumb mode. As a result of this
mismatch, the linker looked for but could not find Salvo services in
ARM mode (hence the ?A's above).

Salvo libraries for Keil's CARM C compiler are available in pure
Thumb, pure ARM, and mixed-mode versions. You must ensure
that when using pure Thumb or pure ARM versions, all of the files
in the project are compiled using the same mode.

See Preprocessor Options above for how to set Thumb or ARM
mode. See the Salvo Compiler Reference Manual RM-KCARM for
more information on Salvo libraries for Keil's CARM C compiler.

 Application Note

22 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Linker Error: Data Types Different …
In a library build, adding a library to a project that does not
conform to the configuration options in the project's salvocfg.h
will cause the following linker error:

Build target 'Target 1'
compiling mem.c...
assembling Startup.s...
compiling main.c...
linking...
*** WARNING L25: DATA TYPES DIFFERENT
 SYMBOL: OSeligQP
 MODULE: C:\salvo\lib\kcarm\sfkcarm4lt-m.lib (init)
 DEFINED: .\mem.obj (mem)
*** WARNING L25: DATA TYPES DIFFERENT
 SYMBOL: OScTcbP
 MODULE: C:\salvo\lib\kcarm\sfkcarm4lt-m.lib (init)
 DEFINED: .\mem.obj (mem)
[SNIP]
*** WARNING L23: UNRESOLVED EXTERNAL SYMBOLS
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSDelay?T
 ADDRESS: 00000190H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSWaitBinSem?T
 ADDRESS: 000001B6H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSDelay?T
 ADDRESS: 000001EAH
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSSignalBinSem?T
 ADDRESS: 00000204H
*** ERROR L128: REFERENCE MADE TO UNRESOLVED EXTERNAL
 SYMBOL: OSCreateBinSem?T
 ADDRESS: 0000028CH
Program Size: data=1259 const=24 code=1268
Target not created

Listing 9: Linker Error due to Wrong Salvo Library

In Listing 9, the project called for the Salvo library
sfkcarm4lt-a.lib, but the project contained the library
sfkcarm4lt-m.lib. As a result of this mismatch, various data
types are different, and some required Salvo services were not
found.

See the Salvo Compiler Reference Manual RM-KCARM for more
information on Salvo libraries for Keil's CARM C compiler.

 Application Note

AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

23

Application Crashes

After Changing Processor Type
Remember to #include the appropriate header file for your ARM7
microcontroller (see Building the Project, above). A common cause
for such crashes is a difference in interrupt vector locations or
definitions between two members of a processor family. Mainline
code may work correctly, but the application will crash if interrupt
vectors are not in the right locations.

When Interrupts are Enabled
Salvo libraries and \salvo\src\intctrl.c contain dummy
versions of the user control functions OSDisableInts(),
OSEnableInts(), OSRestoreInts() and OSSaveInts(). If your
application uses interrupts, you must create your own user control
functions to ensure that Salvo's critical sections are protected from
interrupts. See the Salvo Compiler Reference Manual RM-KCARM
for more information on interrupt control.

Also ensure that (if present) you've defined the default interrupt
vector for your target's Vectored Interrupt Controller (VIC).
Failure to define this vector as a dummy ISR may lead to
instability due to spurious interrupts.

When the Watchdog is Enabled
Salvo libraries and \salvo\src\wdtctrl.c contain a dummy
versions of the user control function OSClrWdt(). If your
application enables the watchdog and you want Salvo to clear the
watchdog, you must create your own user control function to
ensure that the watchdog timer is cleared. See the Salvo Compiler
Reference Manual RM-KCARM for more information on the
watchdog timer.

Example Projects
Example projects for Keil's CARM C compiler can be found in the
\salvo\tut\tu1-6\sysag directories. The include path for each
of these projects includes \salvo\tut\tu1\sysag and each
project defines the SYSAG ymbol.

 Application Note

24 AN-31 Building a Salvo Application with Keil's CARM C Compiler and µVision IDE

Complete Salvo Lite library-build projects are contained in the
project files \salvo\tut\tu1-6\sysag\tu1-6lite.*. These
projects also define the MAKE_WITH_FREE_LIB symbol.

Complete Salvo LE library-build projects are contained in the
project files \salvo\tut\tu1-6\sysag\tu1-6le.*. These
projects also define the MAKE_WITH_STD_LIB symbol.

Complete Salvo Pro source-code-build projects are contained in
the project files \salvo\tut\tu1-6\sysag\tu1-6pro.*. These
projects also define the MAKE_WITH_SOURCE symbol.

1 The Salvo Lite project ex1lite, upon which this example is based, supports a

wide variety of targets and compilers. For use with µVision and the CARM
compiler, it requires the SYSAG and MAKE_WITH_FREE_LIB defined symbols.
When you write your own projects using your own source code, you may not
require any symbols.

2 Groups can be renamed in this window.
3 This Salvo Lite library contains all of Salvo's basic functionality. The

corresponding Salvo LE and Pro library is slkcarm4lt-a.lib.

	Building a Salvo Application with Keil's CARM C Compiler and µVision IDE
	Introduction
	Before You Begin
	Related Documents
	Creating and Configuring a New Project
	Preprocessor Options
	Groups
	Compiler Selection

	Adding your Source File(s) to the Project
	Adding Salvo-specific Files to the Project
	Adding a Salvo Library
	Adding Salvo's mem.c
	The salvocfg.h Header File
	Adding Salvo Source Files
	The salvocfg.h Header File

	Building the Project
	Viewing Salvo Documentation
	Testing the Application
	Simulator
	Flash Download
	Flash Utilities

	ULINK

	Troubleshooting
	Compiler Error: Can't Open File …
	Linker Error: Unresolved Externals …
	Missing mem.c
	Missing Library
	Thumb-vs-ARM Mode Mismatch

	Linker Error: Data Types Different …
	Application Crashes
	After Changing Processor Type
	When Interrupts are Enabled
	When the Watchdog is Enabled

	Example Projects

