
Compiler

Reference Manual

Release 3.13.2



Catalina C Compiler Reference Manual

Table of Contents
WHAT IS CATALINA?                                                                                                                                            .......................................................................................................................................  5

STATUS                                                                                                                                                   ...............................................................................................................................................  5  
FEATURES                                                                                                                                                ............................................................................................................................................  5  
CATALINA IS ANSI C COMPLIANT                                                                                                                ...........................................................................................................  5  
CATALINA RUNS ON WINDOWS, LINUX AND OSX                                                                                           .......................................................................................  6  
CATALINA SUPPORTS MULTIPLE PROPELLER PLATFORMS                                                                                 ............................................................................  6  
CATALINA SUPPORTS C PROGRAMS UP TO 16MB                                                                                          ......................................................................................  9  
CATALINA IS FREE!                                                                                                                                  ..............................................................................................................................  10  

But what does all this really mean?                                                                                                                 ............................................................................................................  12

INSTALLING CATALINA                                                                                                                                     .................................................................................................................................  13

OVERVIEW                                                                                                                                             .........................................................................................................................................  13  
CATALINA DIRECTORY STRUCTURE                                                                                                            ........................................................................................................  13  

USING CATALINA                                                                                                                                                 .............................................................................................................................................  15

USING THE CATALINA COMPILER                                                                                                               ...........................................................................................................  15  
CATALINA ENVIRONMENT VARIABLES                                                                                                         .....................................................................................................  17  
USING LCC DIRECTLY                                                                                                                               ...........................................................................................................................  19  
USING THE CATALINA BINDER                                                                                                                   ...............................................................................................................  20  
USING THE PAYLOAD LOADER                                                                                                                   ...............................................................................................................  21  
BUILDING THE PAYLOAD LOADER UTILITIES                                                                                                 .............................................................................................  28  

CATALINA SUPPORT FOR THE PROPELLER                                                                                               ...........................................................................................  30

SPIN/PASM ASSEMBLER SUPPORT                                                                                                         .....................................................................................................  30  
FLOATING POINT SUPPORT                                                                                                                       ...................................................................................................................  30  
HMI SUPPORT                                                                                                                                       ...................................................................................................................................  31  

Keyboard functions                                                                                                                                           .......................................................................................................................................  32
Mouse functions                                                                                                                                                ............................................................................................................................................  33
Screen functions                                                                                                                                               ...........................................................................................................................................  34
Utility functions                                                                                                                                                ............................................................................................................................................  36

CGI (COMPUTER GRAPHICS INTERFACE) SUPPORT                                                                                     .................................................................................  37  
VGI (VIRTUAL GRAPHICS INTERFACE) SUPPORT                                                                                         .....................................................................................  42  
MULTI-THREAD AND MULTI-COG SUPPORT                                                                                                 .............................................................................................  43  

Fundamental Thread Functions                                                                                                                       ...................................................................................................................  44
Additional Thread Utility Functions                                                                                                                ............................................................................................................  46

PLUGIN SUPPORT                                                                                                                                    ................................................................................................................................  47  
Cog functions                                                                                                                                                    ................................................................................................................................................  48
Special Register Access                                                                                                                                    ................................................................................................................................  52
Registry, Plugin and Service functions                                                                                                             .........................................................................................................  53

DEBUGGER SUPPORT                                                                                                                              ..........................................................................................................................  58  
BlackCat and BlackBox Support                                                                                                                      ..................................................................................................................  58
POD Support                                                                                                                                                    ...............................................................................................................................................  58

Compiling programs for debugging with POD                                                                                                            ........................................................................................................  58
Using POD                                                                                                                                                                  ..............................................................................................................................................................  60

SD CARD SUPPORT                                                                                                                                ............................................................................................................................  61  
FILE SYSTEM SUPPORT                                                                                                                           .......................................................................................................................  62  
SERIAL DEVICE SUPPORT                                                                                                                         .....................................................................................................................  66  

The tty library (libtty)                                                                                                                                       ...................................................................................................................................  67
The tty256 library (libtty256)                                                                                                                           .......................................................................................................................  69
The 4 port Serial library (libserial4)                                                                                                                ............................................................................................................  69

SOUND SUPPORT                                                                                                                                    ................................................................................................................................  71  
SPI/I2C SUPPORT                                                                                                                                  ..............................................................................................................................  73  
SUPPORT FOR OTHER OUTPUT FORMATS                                                                                                   ...............................................................................................  76  

Copyright 2013 Ross Higson Page 2 of 158



Catalina C Compiler Reference Manual

SPI FLASH AND CACHE SUPPORT                                                                                                             .........................................................................................................  76  

CATALINA TARGETS                                                                                                                                           .......................................................................................................................................  78

DEFAULT TARGET CONFIGURATION OPTIONS                                                                                              ..........................................................................................  79  
LMM SUPPORT                                                                                                                                      .................................................................................................................................  83  
CMM SUPPORT                                                                                                                                      .................................................................................................................................  84  
XMM SUPPORT                                                                                                                                      ..................................................................................................................................  84  
SPECIFYING THE MEMORY MODEL                                                                                                             .........................................................................................................  85  
EMM SUPPORT                                                                                                                                      ..................................................................................................................................  89  
SMM SUPPORT                                                                                                                                      ..................................................................................................................................  90  
CATALINA COG USAGE                                                                                                                            ........................................................................................................................  90  
SUPPORTING MULTIPLE PROPELLER PLATFORMS                                                                                          ......................................................................................  91  
TARGET PACKAGES                                                                                                                                 .............................................................................................................................  91  

The standard target package (target)                                                                                                               ...........................................................................................................  91
The basic target package                                                                                                                                  ..............................................................................................................................  92
The minimal target package                                                                                                                             .........................................................................................................................  93

USING PASM WITH CATALINA                                                                                                                        ....................................................................................................................  94

USING THE PASM FUNCTION                                                                                                                   ...............................................................................................................  94  
LOAD THE PASM PROGRAM AT INITIALIZATION TIME                                                                                     .................................................................................  95  
CONVERT THE PASM PROGRAM INTO A CATALINA PLUGIN                                                                           .......................................................................  95  
LOAD A COMPILED PASM PROGRAM INTO A COG                                                                                        ....................................................................................  95  
WRITING AN LMM PASM FUNCTION THAT CAN BE CALLED DIRECTLY FROM C                                                ............................................  96  
PRECAUTIONS WHEN USING LMM PASM WITH THE CATALINA OPTIMIZER                                                      ..................................................  97  

MULTI-COG SUPPORT                                                                                                                                        ....................................................................................................................................  97

MULTI-CPU SUPPORT                                                                                                                                         .....................................................................................................................................  99

PROXY DEVICES                                                                                                                                   ...............................................................................................................................  100  
Generic_Proxy_Server                                                                                                                                   ...............................................................................................................................  100

RESETTING AND/OR LOADING ANOTHER PROP                                                                                           .......................................................................................  102  
Catalina_XMM_SD_Loader                                                                                                                          ......................................................................................................................  102
Generic_SIO_Loader                                                                                                                                     .................................................................................................................................  103
CPU_n_Boot                                                                                                                                                  ..............................................................................................................................................  103
CPU_n_Reset                                                                                                                                                 .............................................................................................................................................  103
Multi-CPU Examples                                                                                                                                     .................................................................................................................................  103

CUSTOMIZING CATALINA                                                                                                                              ..........................................................................................................................  104

CUSTOMIZED PLATFORMS                                                                                                                       ...................................................................................................................  104  
CUSTOMIZED TARGETS AND TARGET PACKAGES                                                                                       ...................................................................................  105  
USING EXISTING PARALLAX DRIVERS                                                                                                       ...................................................................................................  106  

Use a Spin object unmodified                                                                                                                         .....................................................................................................................  106
Use only the PASM portion of the driver                                                                                                       ...................................................................................................  107

BUILDING CATALINA                                                                                                                                       ...................................................................................................................................  109

BUILDING CATALINA UNDER WINDOWS                                                                                                     .................................................................................................  109  
BUILDING CATALINA UNDER LINUX                                                                                                           .......................................................................................................  110  
BUILDING CATALINA UNDER  OSX                                                                                                           .......................................................................................................  110  

CATALINA TECHNICAL NOTES                                                                                                                     .................................................................................................................  111

A NOTE ABOUT BINDING AND LIBRARY MANAGEMENT                                                                                ............................................................................  111  
A NOTE ABOUT THE CATALINA LIBRARIES                                                                                                 .............................................................................................  113  
A NOTE ABOUT LMM STARTUP & MEMORY MANAGEMENT                                                                        ....................................................................  115  
A NOTE ABOUT POD AND EMM/XMM                                                                                                   ...............................................................................................  117  
A NOTE ABOUT CATALINA CODE SIZES                                                                                                    ................................................................................................  118  

Copyright 2013 Ross Higson Page 3 of 158



Catalina C Compiler Reference Manual

A NOTE ABOUT CATALINA SYMBOLS VS C SYMBOLS                                                                                   ...............................................................................  121  
A NOTE ABOUT THE CATALINA LOADER PROTOCOL                                                                                   ...............................................................................  123  

CATALINA DEVELOPMENT                                                                                                                            ........................................................................................................................  125

REPORTING BUGS                                                                                                                                 .............................................................................................................................  125  
IF YOU WANT TO HELP DEVELOP CATALINA                                                                                                ............................................................................................  125  
OKAY, BUT WHY IS IT CALLED “CATALINA”?                                                                                               ...........................................................................................  125  
ACKNOWLEDGMENTS                                                                                                                             .........................................................................................................................  126  

THE CURRENT CATALINA RELEASE                                                                                                           .......................................................................................................  128

WHAT’S NEW IN THIS RELEASE?                                                                                                              ..........................................................................................................  128  
Release 3.13.2:                                                                                                                                               ...........................................................................................................................................  128
Release 3.13:                                                                                                                                                  ..............................................................................................................................................  128
Previous Releases:                                                                                                                                         .....................................................................................................................................  129

WHAT’S DUE IN THE NEXT RELEASE?                                                                                                       ...................................................................................................  129  

CATALINA INTERNALS                                                                                                                                    ................................................................................................................................  131

A DESCRIPTION OF THE LMM AND XMM KERNELS                                                                                   ...............................................................................  131  
A DESCRIPTION OF THE CATALINA VIRTUAL MACHINE                                                                                ............................................................................  133  

Registers                                                                                                                                                         .....................................................................................................................................................  133
Primitives                                                                                                                                                        ....................................................................................................................................................  135
Kernel Memory Models                                                                                                                                  ..............................................................................................................................  138
Unsupported PASM                                                                                                                                        ....................................................................................................................................  139
Object and Image Formats                                                                                                                             .........................................................................................................................  139
Catalina Calling Conventions                                                                                                                        ....................................................................................................................  141

A DESCRIPTION OF THE STANDARD CATALINA XMM API                                                                           .......................................................................  142  
The XMM API cache access functions                                                                                                           .......................................................................................................  142
The XMM API direct access functions                                                                                                           .......................................................................................................  143
The XMM API flash access functions                                                                                                             .........................................................................................................  145

A DESCRIPTION OF THE CATALINA ADDRESSING MODES                                                                            ........................................................................  147  
A DESCRIPTION OF THE CATALINA IMAGE FORMAT                                                                                    ................................................................................  149  
A DESCRIPTION OF THE GENERIC SD LOADER                                                                                         .....................................................................................  153  
A DESCRIPTION OF THE PROXY DEVICE PROTOCOL                                                                                   ...............................................................................  156  

SD_Init – enable (initialize) the SD card                                                                                                       ...................................................................................................  157
SD_Read – read a sector from the SD card                                                                                                   ...............................................................................................  157
SD_Write – write a sector to the SD card                                                                                                      ..................................................................................................  157
SD_ByteIO – write a byte to the SD card                                                                                                       ...................................................................................................  157
SD_StopIO – disable (tristate) the SD card                                                                                                   ...............................................................................................  158
KB_Reset – reset the keyboard (clear any buffered keys)                                                                              ..........................................................................  158
KB_Data – read a character of keyboard data                                                                                              ..........................................................................................  158
MS_Data – read mouse data                                                                                                                          ......................................................................................................................  158
TV_Data – write screen data                                                                                                                          ......................................................................................................................  158

Copyright 2013 Ross Higson Page 4 of 158



Catalina C Compiler Reference Manual

What is Catalina?
Catalina is a FREE ANSI C compiler for the Parallax Propeller. It can be downloaded
from SourceForge at http://catalina-c.sourceforge.net/ 

Status

Release 3.13.2 is a complete release of Catalina. It contains significant new features
over previous releases. For a complete list of enhancements since the least release,
see the section later in this document titled What’s new in this release?

Catalina is  fairly light  on documentation.  There is  this document (which contains
technical details about Catalina) and also several tutorial documents which describe
how to use various parts of Catalina – but all the documents currently assume a fair
degree of familiarity with the Propeller, and also some degree of familiarity with the C
language. There are also README files in various directories. 

However,  since  Catalina  is  an  ANSI  compliant  C  compiler,  most  existing
documentation  on  the  C  language  and  the  standard  C  libraries  is  applicable  to
Catalina – this document therefore concentrates on those aspects of Catalina that
are unique, such as its Propeller-specific features.

This means you can begin programming in C  without reading this manual at all –
start  with the tutorial  guides, such as  Getting Started with Catalina,  or  Getting
Started with CodeBlocks,  and come back to this  guide to find out  more about
Catalina.

Features
 ANSI C compliant (C89, with some C99 features);

 Floating point support (32 bit IEEE 754);

 Complete C89 library including file system support (with some C99 functions);

 Full debugger support (source code and/or assembly level debugging);

 Multiple platform support – supports ANY Propeller platform;

 Multiple OS support - Win32 and Linux binaries are provided. OSX is also
supported, but Catalina has to be compiled from source;

 Support for C programs larger than 32k;

 Support for the Code::Blocks Integrated Development Environment.

 FREE!

Catalina is ANSI C compliant
Catalina  is  based on  the  widely  used,  ANSI  compliant  “Little  C Compiler”  ( lcc).
Catalina adds a new code generator back-end to lcc specifically to generate code for
the Parallax Propeller. 

Copyright 2013 Ross Higson Page 5 of 158

http://catalina-c.sourceforge.net/


Catalina C Compiler Reference Manual

Catalina  is  C89  compliant,  with  some  C99  features  (such  as  supporting  //  for
comments).

A  C89  compatible  C  library  is  provided.  This  library  is  based  on  the  venerable
Amsterdam Compiler Kit library. Some C99 compliant components (e.g. stdint.h and
sdtype.h)  are  included,  and various other  portable  C99 libraries  are  available  if
additional C99 support is required1.

Catalina supports full 32 bit floating point, compliant with both ANSI C and IEEE 754.

For further details on lcc see http://www.cs.princeton.edu/software/lcc/. 

For further details on the Parallax Propeller see http://www.parallax.com.

For further details on the Amsterdam Compiler Kit see http://tack.sourceforge.net/. 

For further details on the Code::Blocks IDE see http://www.codeblocks.org/ 

Catalina runs on Windows, Linux and OSX
lcc has been ported to many platforms, and any platform that supports lcc can also
support  Catalina,  since  the  remaining  portions  of  Catalina  can  themselves  be
compiled with lcc. 

Binary releases are supplied for  both Windows and Linux platforms.  All  Catalina
source code is supplied, to simplify porting Catalina to other platforms – e.g. Catalina
can be built from source to run on OSX.

Catalina supports multiple Propeller platforms 
Catalina uses the concepts of platforms, targets and target packages to define the C
program execution environment. Each target package supports one or more  targets
on one or more Propeller hardware platforms (or one or more different configurations
of the same  platform). 

Each target defines the memory model and load option to be used for the program,
and also initializes the hardware and software environment in which the program is
to execute (e.g. to specify that real-time clock support, SD card drivers, or floating
point packages need to be loaded). 

Each target typically supports a set of options that can be specified at compile time
to include or exclude various components, or to configure them (e.g. to tell the TV
driver whether to use NTSC or PAL mode).

The  targets essentially provide Catalina C programs with  a hardware abstraction
layer,  which means the programs can often be made entirely independent of the
environment in which they execute.

Catalina compiles C programs into LMM PASM (i.e. Large Memory Model Propeller
Assembler)  files  which  are  not target-specific.  Then  the  Catalina  kernel,  the
necessary device drivers, and any other platform specific code required for the target

1 For  example,  and  implementation  of  the  C99  snprintf functions  is  available  here:
http://www.ijs.si/software/snprintf/

Copyright 2013 Ross Higson Page 6 of 158

http://www.codeblocks.org/
http://tack.sourceforge.net/
http://www.parallax.com/
http://www.cs.princeton.edu/software/lcc/
http://www.ijs.si/software/snprintf/


Catalina C Compiler Reference Manual

are  bundled  into  a  single  target-specific  file,  which  is  also  compiled  and  finally
combined with the compiled C program. 

Catalina provides several target packages, each in a separate sub-directory:

target This is the default  Catalina target package. It  supports many
Propeller platforms, all memory models, all load options, and all
plugins2.

basic This is a smaller target package. It supports only one Propeller
platform (which must be configured by the user) and a limited
set of plugins. However, it supports all memory models and all
load options.

minimal This  is  a  very  trivial  target  package.  It  supports  only  one
Propeller platform (which must be configured by the user), one
plugin, one memory model and one load option. The purpose of
this package is mainly to provide a very simple environment to
illustrate how to create new Catalina plugins.

The default target package (i.e. target) is flexible enough to accommodate nearly all
the possible hardware configurations of all the supported Propeller platforms. 

The base platforms currently supported are:

 The Parallax DEMO board

 The Parallax QUICKSTART board (including the Human Interface Board add-on)

 The HYDRA

 The HYBRID

 The TRIBLADEPROP (all CPUs)

 The RAMBLADE

 The RAMBLADE3

 The MORPHEUS (all CPUs)

 The DRACBLADE

 The ASC (Arduino Shield Compatible)

 The C3 (Credit Card Computer)

 The PP (Propeller Platform)

 CUSTOM boards (by default configured for the Parallax QuickStart board)

Catalina also supports various XMM “add-on” boards that can be added to any base
platform. The add-on boards currently supported are:

 The HX512

2 Plugins are described later in this document. For the present, just think of them like drivers for 
particular devices – e.g. to communicate with a screen or keyboard.

Copyright 2013 Ross Higson Page 7 of 158



Catalina C Compiler Reference Manual

 The SUPERQUAD

 The RAMPAGE 

 The RP2 (RamPage 2)

 The Parallax PMC (Propeller Memory Card)

Each  platform  or  add-on  board  supported  by  the  package  has  a  corresponding
symbol reserved for it (e.g. HYDRA) that can be specified on the command line via
the  -C option (command line options are described later in this document). More
details  on  the  standard  targets  and  their  configuration  options  are  given  in  the
Catalina Targets section later in this document.

New symbols  can be created for  other Propeller-based platforms,  or  for  unusual
configurations  of  the  above  platforms  -  see  the  HMI  Support and  Customized
Targets sections later in this document. 

The  CUSTOM platform  is  the  default  platform,  used  unless  another  platform  is
specified on the command line (more on how to do this later). The CUSTOM platform
comes preconfigured to be suitable for a Propeller with a 5Mhz clock, and with  serial
input  and output  available.  This  makes the  CUSTOM platform suitable  for  many
Propeller boards, including the Parallax QuickStart board and the various Gadget
Gangster boards. The CUSTOM target is easily modified if none of the predefined
platforms is suitable.

Unless otherwise  specified,  the remainder  of  document assumes that  the default
Catalina target package (i.e. target) and the CUSTOM platform are in use.

Copyright 2013 Ross Higson Page 8 of 158



Catalina C Compiler Reference Manual

Catalina supports C programs up to 16Mb
Catalina uses the  Large Memory Model (LMM) mode of the Parallax Propeller to
support programs up to 32Kb on any Propeller platform.

Catalina also introduces a new Compact Memory Model (CMM), which can also be
used on any propeller platform, and typically halves code sizes when compared with
LMM mode.

It is sometimes said that C – or in fact any LMM-based compiler - generates code
sizes too large to be useful on the propeller – but not with Catalina, and especially
not with Catalina and CMM. For more details (and an example) of just how useful
CMM can be in reducing program code sizes, see the section later in this document
called A Note about  Catalina Code Sizes.  This  section demonstrates how a C
“hello, world” type program can take as few as 125 bytes.

However,  no matter  how efficient the compiler,  sometimes a program is just  too
large to fit  in 32Kb – so Catalina also provides  External Memory Model (XMM)
support for programs larger than 32Kb on suitable platforms. XMM support allows
Catalina to support program sizes up to 16Mb on Propellers equipped with suitable
hardware.

The main advantage of LMM programs is that they execute many times faster than
Spin programs. CMM programs tend to execute more slowly than LMM programs,
but are still faster than Spin programs. XMM programs may also execute faster than
Spin – it depends on the memory architecture used.

LMM C programs are not executed directly on a “bare metal” Propeller – instead, an
LMM kernel is first loaded into one or more of the Propeller cogs and these cogs can
then execute LMM programs. However, LMM is not “interpreted” in the same way as
SPIN – the LMM binary opcodes are true Propeller opcodes – the main difference
between an LMM program and a PASM program is that for PASM programs the
program code is stored in cog RAM, while for LMM programs the program code is
stored in  Hub RAM. This means LMM programs are somewhat  slower than cog
programs  -  but  they  are  significantly  faster than  SPIN  programs,  and  can  be
significantly larger than pure PASM programs (which are limited to 496 instructions).

CMM programs are executed using a kernel that is a hybrid between an interpreted
Spin-type kernel and an LMM kernel.

XMM programs are similar to LMM programs except that the program code is stored
in external RAM – i.e. RAM provided by additional hardware external to the Propeller
chip. This may be Parallel SRAM or Serial Peripheral Interface (SPI) RAM or Flash.

Catalina provides a Standard Target Package which includes support for CMM and
LMM programs on all platforms3, and also support for XMM programs on platforms
with suitable external memory hardware. 

3 Note that there are other implementations of LMM for the Propeller, but they are not compatible
with the Catalina LMM Kernel.

Copyright 2013 Ross Higson Page 9 of 158



Catalina C Compiler Reference Manual

Currently,  Catalina supports using the HYDRA XTREME HX512 SRAM card4 for
XMM  programs  on  both  the  HYDRA and  the  HYBRID  platforms.  Catalina  also
supports  using  SRAM  installed  on  the  RAMBLADE,  the  RAMBLADE3.  the
TRIBLADEPROP (both on CPU #1 and CPU #2), MORPHEUS (CPU #1 and #2), or
the  DRACBLADE  for XMM programs. Finally, Catalina also supports using SRAM
and FLASH on the MORPHEUS (CPU #1), HX512, C3, SUPERQUAD, RAMPAGE,
RAMPAGE2 and  PMC XMM  add-on  boards  for  XMM  programs.  Other  XMM
hardware may be supported in future releases.

Catalina is Free!
Catalina is derived from various sources, and so various license conditions apply to
different parts of it. However, all components are essentially “free” in that they can be
used for any purpose, modified in any way, and re-released - provided such releases
comply with the appropriate license conditions. 

For  example,  some parts  of  Catalina  incorporate  (or  are  derived  from)  Parallax
software  (e.g.  the  Catalina  Human  Machine  Interface  device  drivers)  and  are
distributed under the MIT license (for details, see the individual source files).

lcc itself (apart from the Catalina Code Generator) is covered by a separate “fair
use” license. See the file CPYRIGHT in the directory  source\lcc included in each
source distribution of Catalina. One of the terms of that license is that developers of
products that use lcc must request that all bug reports on their product be reported
to them – so see the Reporting Bugs section later in this document.

The  Catalina  Target  Package  (i.e.  the  components  of  Catalina  that  end  up
incorporated  into  applications  compiled  with  Catalina,  such  as  the  kernel)  is
distributed under the terms of the GNU Lesser General Public License (GLPGL),
plus the following special exceptions:

 Use  of  the  Catalina  Binder  (or  any  other  tool)  to  combine  application
components  with  Catalina  Target  Package  (CTP)  components  does  not
constitute a derivative work and does not require the author to provide source
code  for  the  application,  or  provide  the  ability  for  users  to  link  their
applications against a user-supplied version of the CTP.

However, if you link the application to a modified version of the CTP, then the
changes  to  the  CTP  must  be  provided  under  the  terms  of  the  LGPL  in
sections 1, 2, and 4.

 You do not have to provide a copy of the CTP license with applications that
incorporate the CTP, nor  do you have to  identify the CTP license in your
program or documentation as required by section 6 of the LGPL. However,
applications must still  identify their use of the CTP. The following example
statement can be included in user documentation to satisfy this requirement:

4 To use the full 512Kb of RAM available on the HX512 SRAM card requires the installation of Eric
Moyer’s  firmware  modifications.  A  copy  of  the  firmware  is  included  in  the  Catalina  utilities
directory, and is also available at http://forums.parallax.com/forums/default.aspx?f=33&m=196587

Copyright 2013 Ross Higson Page 10 of 158

http://forums.parallax.com/forums/default.aspx?f=33&m=196587


Catalina C Compiler Reference Manual

[application] incorporates components provided as part of the Catalina C
Compiler for the Parallax Propeller.

Each of the affected CTP components contains the following license details:
'-------------------------------------------------------------------------
'
'    Copyright 2009 Ross Higson
'
'    The portion of this file identified as the LMM Kernel is part of the 
'    Catalina Target Package.
'
'    The Catalina Target Package is free software: you can redistribute 
'    it and/or modify it under the terms of the GNU Lesser General Public 
'    License as published by the Free Software Foundation, either version 
'    3 of the License, or (at your option) any later version.
'
'    The Catalina Target Package is distributed in the hope that it will
'    be useful, but WITHOUT ANY WARRANTY; without even the implied warranty
'    of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  
'    See the GNU Lesser General Public License for more details.
'
'    You should have received a copy of the GNU Lesser General Public 
'    License along with the Catalina Target Package.  If not, see 
'    <http://www.gnu.org/licenses/>.
'
'-------------------------------------------------------------------------

The exceptions are stated in the README file included in each CTP. A full copy of
the LGPL is in the file called COPYING.LESSER, included with each of the target
packages distributed with Catalina. 

The other significant parts of Catalina – i.e. the Catalina Code Generator and the
Catalina Binder - are distributed under the terms of the GNU General Public License
(GPL). 

Each of these components contains the following license details:
'-------------------------------------------------------------------------
'
'    Copyright 2009 Ross Higson
'
'    This file is part of Catalina.
'
'    Catalina is free software: you can redistribute it and/or modify
'    it under the terms of the GNU General Public License as published by
'    the Free Software Foundation, either version 3 of the License, or
'    (at your option) any later version.
'
'    Catalina is distributed in the hope that it will be useful,
'    but WITHOUT ANY WARRANTY; without even the implied warranty of
'    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
'    GNU General Public License for more details.
'
'    You should have received a copy of the GNU General Public License
'    along with Catalina.  If not, see <http://www.gnu.org/licenses/>.
'
'-------------------------------------------------------------------------

A full copy of the GPL is included with all distributions, in the file called COPYING. 

Copyright 2013 Ross Higson Page 11 of 158



Catalina C Compiler Reference Manual

For  more  information  about  the  GPL  or  the  LGPL,  refer  to  that  file  or  visit
http://www.gnu.org/licenses. 

But what does all this really mean? 
All that stuff in the previous section basically means you can use Catalina - for any
purpose - completely free of charge. 

It also means that Catalina can be used to create commercial applications for which
you can charge, without those applications having to be released under the GPL.
Acknowledging the use of the Catalina Target Package is usually as much as you
will need to do.

However, anyone intending to create such an application should read the previous
section in detail, and (particularly if you use the C89 library), you should also check
the licenses of each component of that library to make sure they are compatible with
the license under which your application is to be released.

Of course, an application that incorporates (in whole or part, modified or unmodified)
those parts of Catalina which are covered by the GPL (such as the Catalina Binder
or the Catalina Code Generator) must still itself be released under the GPL. This just
means you can’t take Catalina – either in whole or part – and sell it (or a derivative of
it) as your own work.

Copyright 2013 Ross Higson Page 12 of 158

http://www.gnu.org/licenses


Catalina C Compiler Reference Manual

Installing Catalina

Overview
On Windows, Catalina now comes with a “one touch” installer that installs both the
sources and binaries. It also installs both a command line shortcut to allow easy use
of Catalina from the command line, and Code::Blocks for those who prefer to use
an integrated development environment. 

If  you are using this installer, simply follow the instructions in the installer itself –
however, it is recommended that you read this section anyway, as it contains useful
information (e.g. on the directory structure that will be installed).

On Linux, you must use gzip/tar5 to extract the entire distribution into the folder in
which Catalina is to be installed – the standard location is /usr/local/lib/catalina.

Installing to a directory other then the standard location is possible, but it means that
some additional setup or options will need to be specified when using Catalina. 

Catalina Directory Structure
Wherever Catalina is installed, the directory structure should be something like:

Catalina
   |
   +--- basic
   |
   +--- bin
   |
   +--- catalyst
   |     |
   |     +--- bin
   |     +--- core
   |     +--- demo
   |     +--- ...
   |
   +--- compact_lib
   |     |
   |     +--- libc
   |     +--- libci
   |     +--- libcx
   |     +--- libcix
   |     +--- libm
   |     +--- libma
   |     +--- libmb
   |     +--- libtiny
   |     +--- libserial4
   |     +--- libgraphics
   |
   | +--- codeblocks
   |     |
   |     +--- ...
   |
   +--- demos
   |     |
   |     +--- benchmarks
   |     +--- debug
   |     +--- multicore
   |     +--- spinc
   |     +--- minimal
   |     +--- serial4
   |
   +--- include
   |     |
   |     +--- sys

5 Note that when using tar, the –p tar option should be specified to preserve file permissions.

Copyright 2013 Ross Higson Page 13 of 158



Catalina C Compiler Reference Manual

   |
   +--- lib
   |     |
   |     +--- libc
   |     +--- libci
   |     +--- libcx
   |     +--- libcix
   |     +--- libm
   |     +--- libma
   |     +--- libmb
   |     +--- libtiny
   |     +--- libserial4
   |     +--- libgraphics
   |
   +--- large_lib
   |     |
   |     +--- libc
   |     +--- libci
   |     +--- libcx
   |     +--- libcix
   |     +--- libm
   |     +--- libma
   |     +--- libmb
   |     +--- libtiny
   |     +--- libserial4
   |     +--- libgraphics
   |
   +--- minimal
   |
   +--- source
   |     |
   |     +--- catalina
   |     +--- lcc
   |     +--- lib
   |     +--- srecord
   |
   +--- target
   |
   +--- utilities

There may be more or less sub-directories to those shown, depending on which
parts of Catalina have been installed – but the bin, include, lib and target directories
are  the  minimum  required  to  use  Catalina  on  any  platform  (the  large_lib sub-
directory is only required for platforms with XMM support).

The  path  to  the  main  Catalina  directory  must  be  added  to  the  appropriate
environment variable (e.g. by modifying the PATH environment variable). 

A batch script to do this (use_catalina) is provided in the main Catalina directory.
Unless you modify your PATH variable to include the Catalina bin directory (or use
the Catalina Command Line shortcut) this command should be executed each time a
command shell is started. 

Under Windows the command to use is use_catalina. 

Under Linux the command to use is source use_catalina.

NOTE: You do not need to rebuild Catalina just to use it, even if you install Catalina
to a location other than the default - but if you ever do need to rebuild it then you
may need to modify various sources, make files and batch files – do a search for the
term “Program Files” and replace it appropriately. 

Copyright 2013 Ross Higson Page 14 of 158



Catalina C Compiler Reference Manual

Using Catalina
Even  though  Catalina  now  supports  the  Code::Blocks Integrated  Development
Environment (IDE), Catalina – like most compilers – is still primarily a command line
compiler, and it is recommended that you become at least slightly familiar with using
Catalina  from  the  command  line  even  if  you  intend  to  mostly  use  it  from  the
Code::Blocks IDE. 

This section contains a brief introduction to using Catalina – for a fuller tutorial-style
introduction  to  Catalina,  see the  document  Getting  Started with Catalina.  This
tutorial concentrates on the command line use of Catalina. A tutorial on using the
Code::Blocks IDE  with  Catalina  is  also  provided,  called  Getting  Started  with
CodeBlocks.

Using the Catalina Compiler
The  Catalina  Compiler  is  invoked  using  the  command  catalina from within  a
command shell – this command is a front end for the Little C Compiler (lcc), the Spin
Compiler  (spinakker),  and  the  Catalina  Binder  (catbind)  –  under  most
circumstances those programs don’t need to be invoked separately.

If you have installed Catalina to a non-standard location (C:\Program Files\Catalina
under Windows,  or /usr/local/lib/Catalina under Linux) then you will need to set the
LCCDIR environment variable to that location (this is described in more detail in the
section titled Catalina Environment Variables).

For example, under Windows you would say:

set LCCDIR=<path to Catalina>

Under Linux (if using the bash shell) you would say:

LCCDIR=<path to Catalina>; export LCCDIR

Then you can execute the  use_catalina batch file, which will do the rest of the
setup. Under Windows the command to use is:

use_catalina

Under Linux (if using the bash shell) the command to use is:

source use_catalina

Assuming this batch file has been executed, or another mechanism has been used
to  include  the  Catalina  bin  directory  in  the  current  path,  a  C  program  can  be
compiled using a command similar to:

catalina [files | options] …

For example:

catalina hello_world.c -lc

By default, Catalina compiles each C file specified on the command line to an LMM
PASM file, then includes additional files for any required library functions, combines
the results into a single file and then invokes  spinakker to assemble this file and
produce  a  binary  file.  Catalina  then  combines  this  compiled  program  with  the

Copyright 2013 Ross Higson Page 15 of 158



Catalina C Compiler Reference Manual

necessary  target  files  to  produce  the  final  binary  executable.  Catalina  can  also
reformat the final executable (e.g. to convert it to Intel hex records).

The following list describes all the command line options supported by the Catalina
Compiler:

-? or –h print this help (and exit)

-ah assemble using homespun

-as assemble using spinakker (this is the default)

-b generate a binary output file (this is the default)

-B width byte swap (used with -F, width = 2, 4, 8)

-c compile only (do not bind)

-d output diagnostic messages

-C symbol define Catalina symbol (e.g. -C HYDRA)

-D symbol define symbol (e.g. -D printf=tiny_printf)

-e generate an eeprom output file

-F format convert output to another format (e.g. -F Intel)

-g[level] generate debugging information (default level = 1)6

-I path path to include files (e.g. C:\Program Files\Catalina\include)

-l lib search library lib when binding

-k kill (suppress) the output of compilation statistics

-L pat path to libraries (e.g. C:\Program Files\Catalina\lib)

-M size maximum memory size (use with -x)

-o name name of output file (default is first file name)

-O[level] optimize code (default level = 1)7

-P addr address for Read-Write segments

-R addr address for Read-Only segments

-R size size of Read/Write segments

-S compile to assembly code (do not bind)

-t name name of dedicated target to use

6 When using the –g option a space cannot be included between the option and the parameter. For
example  –g is  valid,  and  –g3  is  valid – but  –g 3 is  not valid.  See the  BlackBox Reference
Manual for more information on using –g and –g3

7 When using the –O option a space cannot be included between the option and the parameter. For
example –O is valid, and –O2 is valid – but –O 2 is not valid. The Catalina Code Optimizer is not
included  with  the  free  version  of  Catalina.  If  you  have  purchased it  separately,  refer  to  the
Catalina Optimizer Reference Manual for details.

Copyright 2013 Ross Higson Page 16 of 158



Catalina C Compiler Reference Manual

-T path path to target files (e.g. C:\Program Files\Catalina\target)

-U symbol undefine symbol (e.g. -U DEFAULT)

-v verbose (output information messages)

-v -v very verbose (more information messages)

-W option option to pass directly to  lcc

-x layout use specified segment layout (layout = 0 .. 6, 8 .. 10)

-y generate listing file

Anything  not  recognized  as  one  of  the  above  options  is  passed  directly  to  lcc.
Typically, these are the names of one or more C files to be compiled – but they may
also be lcc options. 

The exit code from the command is zero on a successful compile, non-zero on error. 

As an example, a Catalina command to link with the standard C library, and generate
an eeprom output file and a listing might look like:

catalina hello_world.c –lc –e –y

More examples are given in the document Getting Started with Catalina.

In addition to the options described above, Catalina allows for customization of the
target  package  on  the  command  line  by  allowing  the  definition  of  symbols.  A
complete list of symbols recognized by the default target package is given in the
section titled  Default  Target Configuration Options.  These symbols are defined
using the -C option. For example, to select the high-resolution VGA driver from the
target package, you might use a command like:

catalina hello_world.c –lc -C HIRES_VGA

If  Catalina is  not  installed  into  the  expected directory,  then either  command line
options or environment variables can be used to tell Catalina where to find various
files and programs it needs. 

NOTE:  A  common  problem  is  to  use  the  incorrect  case  for  options.  Case  is
significant for all options to the Catalina Compiler, so –t is not the same as –T.

Catalina accepts long file names, but where used on the command line any file or
path names that contains spaces need to be quoted. For example:

catalina "C:\Program Files\Catalina\demos\hello_world.c" –lc –e –y

Catalina Environment Variables
The Catalina Compiler can also use the following environment variables:

CATALINA_DEFINE a list of symbols to define before the compilation

CATALINA_INCLUDE a list of paths to search for include files

CATALINA_LIBRARY the directory where libraries are located

CATALINA_TARGET the directory where target files are located

Copyright 2013 Ross Higson Page 17 of 158



Catalina C Compiler Reference Manual

CATALINA_TEMPDIR the directory lcc will use for temporary files

CATALINA_LCCOPT any options to be passed directly to  lcc

LCCDIR the directory various programs (not just  lcc) expect to
find other files needed during compilation

These variables are set using normal Windows or Linux commands. For example in
Windows, environment variables can be set using a command like:

set LCCDIR=C:\Program Files\my_catalina 

and cleared using a command like:

set LCCDIR=

or

unset LCCDIR

In Linux, the appropriate commands (if using the bash shell) to set an environment
variable would be a command like:

LCCDIR=/usr/me/my_catalina; export LCCDIR

and to clear it would be a command like:

unset LCCDIR

Catalina  also  provides  a  convenient  command  (catalina_env)  to  display  the
current value of the above environment variables.

In environment variables, path names do not usually need to be quoted even if they
contain spaces.

The CATALINA_DEFINE environment variable can be used to specify a list of symbols
that will be defined before invoking the compiler and/or binder. Multiple symbols can
be separated by a space, comma, semicolon or colon. The main purpose of this is to
define symbols that tell the target about the platform on which the programs are to
be run – this allows the target to correctly select the platform-specific features (such
as the pin definitions to use) and also the appropriate plugins and drivers to load. For
example, this variable might be set to TRIBLADEPROP:CPU_1 or to HYDRA or HYBRID

The  CATALINA_INCLUDE environment  variable  can  use  used  to  specify  where  the
compiler should look for include files. This may be a list of paths - on cygwin or linux
the entries in this list must be separated by a colon (':') while on Windows they must
be separated by a semicolon (';'). Any include paths specified on the command line
(i.e. via the -I option) are added to the beginning of this list (which means they will be
searched first - this can be used to effectively override any default paths, or paths set
using the environment variable).

the  CATALINA_LIBRARY environment  variable  tells  the  compiler  where  to  look  for
libraries. This variable should contain a single path or directory name. Note that
Catalina always looks in two locations for libraries - in the current directory, and in
the specified library directory. If the -L option is specified on the command line it will
override this environment variable. The compiler will  automatically add  \lib to the
library path for TINY and SMALL programs, \compact_lib for COMPACT programs,
and \large_lib for LARGE programs.

Copyright 2013 Ross Higson Page 18 of 158



Catalina C Compiler Reference Manual

The  CATALINA_TARGET environment variable tells the compiler where to look for the
target package. It should contain a single path or directory name. If the –T option is
specified on the command line it will override this environment variable.

The CATALINA_TEMPDIR environment variable tells all programs where to create any
temporary  files  needed  during  compilation.  It  should  contain  a  single  path  or
directory name.

The LCCDIR environment variable tells all programs (not just lcc!) where to find files
which are needed during the compilation process. It should contain a single path or
directory  (e.g.  C:\Program  Files\Catalina)  which  has  at  least  the  following  sub-
directories:

bin sub-directory for executable files

lib default  sub-directory  for  library  files  when  using  TINY  or
SMALL mode

compact_lib default  sub-directory for  library  files  when  using  COMPACT
mode

large_lib default sub-directory for library files when using LARGE mode

include default sub-directory for include files

target default sub-directory for target files

Note  that  the  default  library  and  target  paths  can  be  overridden  by  the
CATALINA_LIBRARY and CATALINA_TARGET environment variables. The default include
path can effectively be overridden by the  CATALINA_INLCUDE environment variable
since any paths specified there are searched before the default include path.

The  CATALINA_LCCOPT environment variable can be used to  specify  options to  be
passed straight to  lcc. The entire contents of this environment variable are simply
added to the  lcc command -  before any options generated by Catalina command.
Remember  that  the  options  must  be  lcc options  (i.e.  they  are  neither  catalina
options nor  catbind options) - but also remember that that it is possible to specify
binder  options to  lcc by prefixing  them with  –Wl -  i.e.  the  lcc option  –Wl–XXX
actually gets passed to the binder as option –XXX. 

NOTE: Use  the  CATALINA_LCCOPT feature  with  care.  It  is  possible  to  specify  lcc
options  which  will  cause  Catalina  to  generate  incorrect  code,  or  have  other
unexpected results. 

If in doubt about what lcc options are in effect, use the -v option to catalina to print
out the actual lcc command that will be executed.

Using lcc directly
Normally, lcc is invoked automatically as required by Catalina – but lcc can also be
called directly. lcc itself is quite well documented elsewhere – e.g. see the lcc Unix
man page located at http://www.cs.princeton.edu/software/lcc/doc/lcc.1.html. 

Copyright 2013 Ross Higson Page 19 of 158

http://www.cs.princeton.edu/software/lcc/doc/lcc.1.html


Catalina C Compiler Reference Manual

Also remember that you can use the –v flag to Catalina to see what options Catalina
itself uses when invoking lcc.

Note that the version of lcc provided with Catalina is intended specifically for use as
part  of  the  Catalina  Propeller  cross-compiler.  If  you  need  a  version  of  lcc for
compiling native C programs you should download the original  lcc sources from
http://www.cs.princeton.edu/software/lcc/ and compile them yourself (make sure to
use a separate directory to the one used by Catalina). 

Windows users could also try lcc-win32 (http://www.cs.virginia.edu/~lcc-win32). 

Using the Catalina Binder
Normally,  the  Catalina  Binder  (catbind)  is  invoked  automatically  as  required  by
catalina.  However,  there are occasions when it  may be useful to use the binder
separately. For example:

 To bind a Catalina LMM PASM program (e.g. if catalina was used with the –S
option,  or  to  rebind  a  previously  compiled  program to  a  new target).  For
example, to bind the LMM PASM file  file.s with  the math library and then
generate  an  eeprom  image  containing  the  result  named  test,  use  the
following command:

catbind file.s –lm -e –o test 

 To index a set of library files (which are just LMM PASM files that have been
compiled using Catalina but not yet bound). For example, to index all symbols
imported and exported by all LMM PASM files in the current directory,  and
then put the result in a file called catalina.index use the following command:

catbind –i –e *.s –o catalina.index

More examples are given in the document Getting Started with Catalina.

The following list describes all the command line options supported by the Catalina
Binder:

-? or –h print this helpful message (and exit)

-a no assembly (output bound source files only)

-ah assemble using homespun

-as assemble using spinakker (this is the default)

-B width endian byte swap 'width' bytes in output format (e.g. -S4)

-d output diagnostic messages (-d -d for even more messages)

-C symbol  #define 'symbol' before assembling the code

-e generate export list from input files

-f force (continue even if errors occur)

-F format use 'format' as the output format (e.g. -FIntel_Hex_16)

-i generate import list from input files

Copyright 2013 Ross Higson Page 20 of 158

http://www.cs.virginia.edu/~lcc-win32
http://www.cs.princeton.edu/software/lcc/


Catalina C Compiler Reference Manual

-k kill (suppress) the output of compilation statistics

-L path path to libraries (default is 'C:\Program Files\Catalina\lib\')

-l name search library named 'libname' when binding

-M size memory size to use (used with -x, default is 16M)

-o name output results (generate, bind or assemble) to file 'name'

-O[level] optimize code (default level = 1)8

-R size size of Read/Write segments

-T path path to target files (default is 'C:\Program Files\Catalina\target')

-t name use target 'name'

-u untidy mode – do not delete intermediate files

-U symbol do not #define 'symbol' before assembling the code

-v verbose (output information messages)

-v -v very verbose (more information messages)

-w opt pass option 'opt' to the assembler (e.g. -w-l, -w-b, -w-e)

-x layout use specified segment layout (layout = 0 .. 6)

-z ch specify separator char for path names (default is '\')

The exit code from the command is number of undefined/redefined symbols (-1 for
other errors).

NOTE:  A  common  problem  is  to  use  the  incorrect  case  for  options.  Case  is
significant for options to the Catalina Binder, so –t is not the same as –T.

Using the Payload Loader
Catalina  provides  a  loader  program  (called  payload)  that  can  be  used  to  load
Catalina  binaries  into  the  Propeller  from  a  PC.  The  Catalina  payload  loader  is
somewhat similar to the Parallax propellant program, but with the following Catalina-
specific features:

 It runs under both Linux and Windows;

 It can load Catalina XMM binaries9.

 It includes a built-in terminal emulator.

 It can load multiple files in succession, through multiple ports.
8 When using the –O option a space cannot be included between the option and the parameter. For

example –O is valid, and –O2 is valid – but –O 2 is not valid. The Catalina Code Optimizer is not
included  with  the  free  version  of  Catalina.  If  you  have  purchased it  separately,  refer  to  the
Catalina Optimizer Reference Manual for details.

9 Catalina  LMM binaries are indistinguishable from normal Propeller binaries, and can be loaded
using any  loader  program.  But  Catalina  XMM binaries  can  only  be  loaded using a  Catalina
specific loader

Copyright 2013 Ross Higson Page 21 of 158



Catalina C Compiler Reference Manual

 It can load programs on platforms where the normal serial port (on pins 30 & 31)
cannot be used when XMM is installed (such as the HYBRID or HYDRA).

At its simplest, payload is quite trivial to use. For example, to load program.binary,
the payload command might be as follows:

payload program

The above command will cause payload to search all the available serial ports for
the first one with a Propeller attached (by default it starts at port 1 and tries each
consecutive port in turn) and then load the specified program binary using the first
such port it finds. 

Note: if a .binary or .eeprom extension is not specified, .binary is assumed.

Note: under Linux it is important that the user using the loader has read/write access
to the port to be used – otherwise the loader will be unable to open the port and will
probably report that no propeller is connected. 

Payload commands can get more complex, because payload can be used to load
multiple files in succession. To see why this is desirable, first consider the Propeller
built-in loader capability – i.e. after reset, the Propeller will  respond to a program
being loaded via a serial port on pins 30 and 31. However, this built-in loader can
only be used to load programs into Hub RAM or EEPROM – it knows nothing about
any external XMM SRAM or FLASH that may be connected to the Propeller. To load
a program into XMM memory,  payload must first  load another loader – one that
knows how to use the XMM memory. A payload command to do this might look as
follows:

payload XMM my_xmm_program

The above command first loads XMM.binary, which is itself a loader that knows how
to load other files. This first binary is loaded using the built-in Propeller loader. When
this  program  is  started,  it  expects  a  second  file  (in  this  case
my_xmm_program.binary)  to  be  loaded  using  a  Catalina-specific  protocol  and  it
loads that program into XMM memory (and then starts it executing). Payload handles
both protocols seamlessly – in this case using the same serial port for both loads.

Even  more  complex  payload  commands  may  be  required  when  the  same  port
cannot be used to do both loads – e.g. when loading programs on platforms such as
the HYDRA or HYBRID (this is because the XMM RAM cannot be used at the same
time as the normal serial port). 

In such cases, the two-step load process is required, and the second load must also
use  a  different  port.  For  example,  to  load  an  XMM  program  on  a  HYBRID,  a
command similar to the following might be used:

payload –p 2 Hybrid_Mouse –s 9 my_xmm_program

The  above  command  will  first load  the  Hybrid_Mouse.binary program  into  the
Propeller using port 2, and  second will load the program my_xmm_program.binary
into the Propeller using port 9. 

If  the  ports  are  not  specified,  Payload  will  attempt  to  find  them  automatically.
However, this may take a long time, and if you have multiple propellers connected

Copyright 2013 Ross Higson Page 22 of 158



Catalina C Compiler Reference Manual

this process may find the wrong propeller. Also, some serial or USB devices may
cause the auto-detection process to fail. In such cases the ports should be specified
manually.  This  may  also  speed  up  the  load  process,  since  the  auto-detection
process  must  interrogate  each  port  in  turn  until  it  finds  the  one  that  responds
correctly.

The  Hybrid_Mouse.binary program used  in  the  example  above  is  similar  to  the
XMM.binary program used previously, except it expects to load a program using the
Propeller pins normally used for communicating with a serial  mouse. To use this
loader requires a simple cable to be constructed that plugs into the mouse port on
one end, and into a Prop Plug on the other, as follows:

This cable can be used in either a mouse or keyboard port, and is used in addition to
the normal serial connection to the Propeller via pins 30 and 31. This cable can be
used to  load  any program, but  is  specifically  intended to  be used to  load  XMM
programs, once a suitable loader (i.e. the Mouse Loader) has been loaded via the
normal  serial  connection.  After  the  XMM program has  been  loaded,  the  normal
keyboard or mouse can be replaced for normal program use. 

One generic and one specific loader are provided in the utilities directory for use with
the payload program:

Payload_Loader.spin This program can be used on any platform that allows the
use of the normal serial port to load XMM platforms (e.g.
the  DracBlade,  RamBlade,  Ramblade3,  TriBladeProp,
Morpheus,  C3, SuperQuad, RamPage, RamPage2  or
Propeller Memory Card). It is compiled automatically by
the  build_all batch  file  in  the  utilities  directory,  and
named as XMM.binary. If the compiled binary is specific
to  a  CPU  in  a  multi-CPU  system,  it  is  named
XMM_n.binary, where n is the CPU number. This loader
expects the second file to be loaded through the normal
serial  port,  and  does  not  require  the  use  of  a  special
cable.

Mouse_Loader.spin This program can be used on the Hydra and Hybrid to
load XMM programs. It is compiled automatically by the
build_all batch file in the utilities directory, and named as
either Hydra_Mouse.binary or Hybrid_Mouse.binary. Note
that these two platforms use different pins for the mouse

Copyright 2013 Ross Higson Page 23 of 158



Catalina C Compiler Reference Manual

port,  and  therefore  the  binaries  are  different  –  the
program  uses  the  pin  definitions  specified  in  the  file
Catalina_Common.spin,  and could also be compiled for
other platforms if required. A keyboard version could also
be created if required. This loader expects the second file
to be loaded using the mouse port, and requires the use
of a special cable like the one shown above. 

The loader  program binary  must  always  be specified  as  the  first  program to  be
loaded. The normal LMM or XMM program to be loaded is then specified as the
second file. 

Note that on multi-CPU platforms it may be desirable to do a three step load in order
to load multiple CPUs – e.g. the initial file might be a boot loader loaded into CPU 1
that (in turn) loads an embedded boot loader into CPU 2, and then configures itself
to act as a relay. The second file would be a program that CPU 1 simply relays to
CPU 2. After that load is complete, the CPU 1 loader reconfigures itself to accept a
third file which it loads into its own CPU. Payload can support this kind of multi-step
load process, although a suitable intermediate “relay” loader is not provided for any
platform.

Compiling the utilities for a platform can be done using the interactive batch file
build_utilities.  This  batch  file  accepts  no  parameters  –  it  prompts  for  all
required  information  (including  the  platform),  and  then  compiles  all  the  utilities
appropriate for the specified platform. See the section Building the Payload Loader
utilities (below).

Once the utilities directory has been compiled, the loaders can be copied to any
working directory for use with the payload loader, or into the Catalina bin directory to
save having to specify the path to the utility each time (this is done automatically by
the  build_utilities script  ).  This  means that  to  load an XMM program,  the
command can be as simple as:

payload XMM program

If it is necessary to use a particular loader (e.g. if you work with multiple Propeller
platforms), a script or batch file can be created that specifies the loader to use. For
example, to use the particular mouse port XMM loader designed for the Hydra, a file
called hydraload.bat might be created to contain the line:

payload Hydra_Mouse.binary $1 $2 $3 $4 $5

If  the  same  port  is  always  used,  this  parameter  could  also  be  included  in  the
command. Example scripts to simplify loading of XMM programs are provided in the
utilities directory (e.g.  xmm_payload) – modify them to suit your needs, and then
copy them to the bin directory - then you can load XMM programs as easily as non-
XMM programs.

The following list shows the options supported by Catalina Payload:  

-? or -h print a help message and exit (–v –h prints more help, such as a
list of supported serial port numbers)

Copyright 2013 Ross Higson Page 24 of 158



Catalina C Compiler Reference Manual

-a port find the ports to use automatically, starting at the specified port
(the default if no –a option is specified is to start at port 1)

-b baud   use  the  specified  baudrate  (the  default  is  115200,  which  is
suitable for both RS232 and USB ports)

-c cpu    cpu destination for the catalina upload (default is 1)

-d       diagnostic mode (-d again for more diagnostics)

-e       program the EEPROM with the loaded program and then start it
(otherwise the program is just loaded into RAM and started).

-i       start  an  interactive  terminal  emulator  once  the  program  is
loaded.

-f msec set interfile delay in milliseconds (default is 100)

-m max set maximum retry attempts (default is 5)

-n msec set sync timeout in milliseconds (default is 100)

-p port use the specified port for uploads (or just the first upload if -s is
also specified)

-q mode line mode (1=ignore CR,2=ignore LF,4=LF to CR,8=CR to LF)

-r msec set reset delay in milliseconds (default is 0)

-s port   switch  to  the  specified  port  for  the  second  and  subsequent
uploads

-t msec   set read timeout in milliseconds (default is 250)

-v verbose mode (also includes port numbers in the help message)

-w wait for a key press between each load – useful if you only have
one Prop Plug and need to swap it  to  the mouse port  cable
before proceeding with the second load

-x do catalina upload only (i.e. assume the boot loader has already
been loaded – e.g. it may be permanently loaded into EEPROM)

-z do two resets before the initial load (may be required on some
platforms)

Use the  –p and  –s  options to force payload to use a particular port  if  the auto-
detection is not working correctly (or if you have multiple Props connected and need
to force payload to use a particular port). 

The  -q option allows programs compiled for a particular line termination style (e.g
Windows style, which terminates all lines with both a CR and an LF) to be used in
the built-in interactive terminal (which assumes Linux style, which terminates all lines
with an LF only).

Copyright 2013 Ross Higson Page 25 of 158



Catalina C Compiler Reference Manual

NOTE: The –s option will  always be required when loading XMM programs on the
Hydra and Hybrid, otherwise the second load will be done using the same port as the
first load.

The various timing-related options are sometimes required (mostly under Linux) to
get the timing right when loading programs. For example, if you cannot get the first
file to load correctly, try using the  –r  option to force a delay between resetting the
propeller and beginning the load. If the first file loads correctly but not the second, try
pausing between loads using the –w option. If that works, use the –f option to find a
suitable delay time between loads. 

Note that under Linux, it may be necessary on some platforms to adjust the read
timeout using the -t command line option. For example:

payload hello_world –t 2000

The interactive terminal mode of payload is useful for programs that use the PC HMI
option. For example:

catalina othello.c -lc -C PC
payload -i othello

While  the  program  is  loading,  payload  will  display  its  normal  messages  –  i.e.
something like the following:

Since  -i  is  specifed,  once  the  program  has  finished  loading,  payload  will  enter
interactive terminal mode:

Copyright 2013 Ross Higson Page 26 of 158



Catalina C Compiler Reference Manual

The terminal emulation is quite simple, and supports a simple subset of VT100 style
terminal primitives. 

The following key sequences are accepted:

Reset ESC c

Home ESC [ H

Erase Line ESC [ K

Clear Screen ESC [ 2 J

Invisible Curs ESC [ 2 5 h

Visible Curs ESC [ 2 5 l

Invisible Curs ESC [ ? 2 5 h

Visible Curs ESC [ ? 2 5 l

Goto Row Col ESC [ <r> ; <c> H

The following key sequences are sent when the corresponding keys are pressed:

↑ ESC O A

↓ ESC O B

→ ESC O C

← ESC O D

HOME ESC O w

END ESC O q

HELP ESC O p

PREV ESC O y

NEXT ESC O s

These primitives are sufficient to use the payload terminal emulator to load and run
the vi text editor if that program is compiled to use the PC HMI option – vi is a full
screen text editor which is provided as one of the catalyst demo programs – see the
Catalyst User Manual for more details.

Copyright 2013 Ross Higson Page 27 of 158



Catalina C Compiler Reference Manual

Building the Payload Loader utilities
Payload is a very flexible loader, and is made even more flexible by it's multi-file load
capability. To build the load utilities to be used in multi-file loads, a  build_utilities
batch file is provided, which will interactively ask for details of your platform, and then
build some or all of the following utilities:

EEPROM.binary

SRAM.binary

FLASH.binary

MOUSE.binary

On Multi-CPU platforms, each will be appended by an _n to indicate the CPU it is
compiled for (e.g. SRAM_1.binary, SRAM_2.binary etc).

For historical reasons, one of the SRAM.binary or  FLASH.binary files will also be
copied to  XMM.binary –  depending  on  which  CPU and which  type  of  load you
specified as the default (i.e. SRAM or FLASH). 

These utilities allows payload to be used to load programs as follows (the following
assumes you have run the build_utilities batch file for your platform):

EEPROM.binary – TINY or CMM programs can be loaded to any 32kb EEPROM –
they  do  not  need  any  special  compile  commands.  XMM  programs  (SMALL  or
LARGE) can be loaded to EEPROMs of 64Kb or larger, provided they are compiled
with the -C EEPROM option. For example:

catalina othello.c -lci -C C3
payload EEPROM othello

Note that for TINY or CMM programs, the above command has the same effect as:

catalina othello.c -lci -C C3
payload -e othello

XMM programs (SMALL or LARGE) can be loaded into EEPROM if compiled with
the EEPROM command line option:

catalina othello.c -lci -C C3 -C SMALL -C EEPROM
payload EEPROM othello 

SRAM.binary –  XMM programs (SMALL or  LARGE) can be loaded directly  into
SRAM. For example:

catalina othello.c -lci -C C3 -C SMALL 
payload SRAM othello

MOUSE.binary –  on  the  Hydra  or  Hybrid,  loading  XMM  programs  (SMALL  or
LARGE) must be loaded via the mouse port, using the special mouse loader. For
example:

catalina othello.c -lci -C HYDRA -C SMALL 
payload MOUSE othello 

FLASH.binary –  on  platforms  with  Flash  RAM,  SMALL  XMM programs  can  be
loaded directly into Flash (LARGE programs can only be loaded into Flash if  the
platform also has some SRAM):

Copyright 2013 Ross Higson Page 28 of 158



Catalina C Compiler Reference Manual

catalina othello.c -lci -C C3 -C SMALL 
payload FLASH othello 

On  platforms  with  Flash  RAM,  the  build_utilities batch  file  also  builds  the
Flash_Boot.binary utility. This utility can be loaded to execute a program already
loaded  into  Flash  RAM.  If  you  want  this  program  to  execute  automatically  on
Propeller reboot, you can program it into EEPROM.

Finally, to retain compatibility with previous versions of Catalina, the build_utilities
batch file also creates XMM.binary – but this will now simply be a copy of the default
XMM loader (i.e.  either  SRAM.binary,  FLASH.binary,  MOUSE.binary).  Similarly,
on  the  Hydra or  Hybrid,  it  will  also  create  Hydra_Mouse.binary or
Hybrid_Mouse.binary – but the use of these files is deprecated.

Copyright 2013 Ross Higson Page 29 of 158



Catalina C Compiler Reference Manual

Catalina Support for the Propeller

SPIN/PASM Assembler Support
Catalina currently uses spinakker as its default SPIN/PASM assembler. Sources for
this  are included.  However,  A binary copy of  homespun is  also included in the
binary release of Catalina. Both spinakker and homespun allow a C program to be
turned into a binary or eeprom file using a single command. 

The -as and -ah Catalina command line options can be used to select spinakker or
himespun (respectively).

The version of homespun used must be 0.30 or greater.

Floating Point Support
Catalina provides several options for 32 bit IEEE 754 floating point support. 

The  fundamental  32  bit  floating  point  operations  (i.e.  addition,  subtraction,
multiplication, division, comparison and conversion between floats and other data
types)  are  built  into  the  default  Catalina  LMM  Kernel,  and  incur  no  additional
overhead  during  execution.  This  means  that  the  fundamental  floating  point
operations  are  as  fast  as  the  equivalent  PASM operations  (in  fact  they  are the
equivalent PASM operations).

For support of the standard C89 math library functions (sin, cos, tan, exp, pow etc),
Catalina provides options similar to those provided by the Parallax Float32 libraries:

 Float32_B  and Float32_A. All the math functions supported by Float32Full
are implemented using two cogs, with software emulation of other required
functions not implemented in Float32Full  (e.g. sinh, cosh tanh). This is the
best solution for programs that can spare two cogs. Requires that the libmb
library be used (i.e. use command line option –lmb).

 Float32_A.  All  the math functions supported by Float32A are implemented
using  one  cog,  with  software  emulation  of  other  required  functions  not
implemented by Float32A (e.g. log, exp, pow, sinh, cosh, tanh). This is a good
solution for programs that can only spare one cog. Requires that the  libma
library be used (i.e. use command line option –lma).

 Software.  All  the math functions are emulated in software. This is a good
solution for programs that cannot spare any cogs, but it may require more
RAM, and is also 3 to 4 times slower. Requires that the libm library be used
(i.e. use command line option –lm).

All options are transparent to the C program that uses them. The choice depends
mainly on how much RAM and how many spare cogs are available. 

Custom combinations can also be created as a plugin and used in a specific Catalina
target. 

Copyright 2013 Ross Higson Page 30 of 158



Catalina C Compiler Reference Manual

HMI Support
For platforms with keyboard and mouse inputs, and a VGA or TV output, various
HMI (Human Machine Interface) configurations are provided:

Built-in device support:

 Display

o High-resolution VGA (40x24 to 125x64 chars);

o Low resolution VGA (32x16 chars);

o High resolution TV (40x30 chars); 

o Low resolution TV (40x13 chars);

 Keyboard;

 Mouse.

Terminal emulator support 10:

 PC terminal emulator (supports using the PC display and keyboard);

 TTY terminal emulator (similar to PC, but uses one less cog and doesn't
support proxy drivers on multi-CPU systems);

 PROPTERMINAL 11 (supports using the PC display, keyboard and mouse
via the PropTerminal program).

The  HMI  configuration  used  by  a  Catalina  program is  determined  by  the  target
selected when building the program, as well as by command line options. Note that
not  all  configurations  are  supported  on  all  platforms.  For  example  the  Hybrid
supports only TV configurations, and Morpheus supports only high-resolution VGA
configurations. As far as possible, Catalina attempts to detect if an unsupported HMI
configuration is specified. 

In  this  version  of  Catalina,  all  the  different  HMI  options are  ANSI  complaint  (by
default) regarding how they handle characters on input and output. If it is necessary
to change this behavior, the following command line options can be used:

CR_ON_LF Translate CR to CR LF on output 

NO_CR_TO_LF Disable translation of CR to LF on input

NON_ANSI_HMI Disable ANSI compliance in HMI (revert to previous Catalina 
behavior)

More information on the HMI options supported by the standard targets is provided in
the Catalina Targets section later in this document. 

10 On some platforms, such as the Hybrid and Hydra, the serial or USB port cannot be used at the
same time as the SRAM or SD card.  This means that  on these platforms, terminal  emulator
support is only available to LMM programs that do not use the SD card.

11 For more information on PropTerminal, and to download a binary version, see the Insonix web
site http://www.insonix.ch/propeller/ (press the English flag for an English translation of the site!)

Copyright 2013 Ross Higson Page 31 of 158

http://www.insonix.ch/propeller/


Catalina C Compiler Reference Manual

Catalina also provides proxy HMI drivers, which on multi-CPU systems allows one
CPU to use the HMI devices physically connected to another CPU. This is further
described in the Multi-CPU System Support section later in this document.

Each  Catalina  target  defines  a  default  HMI  for  each  supported  platform,  with  a
standard set of options, and there are various command line options that can be
used to select  or configure the HMI for a particular program if  the default  is  not
appropriate. See the section Default Target Configuration Options for more detail.

The  choice  of  HMI  options  depends  largely  on  the  hardware  available  on  the
Propeller platform, and how much RAM is required for the C program. Additional
customized HMI configurations can be created if required.

If a particular platform does not have some of the HMI devices (or a particular C
program does not need them) then HMI configuration options can be used to specify
that  unnecessary  drivers  are  not  started.  However,  the  RAM used by  drivers  is
reclaimed anyway once they are loaded, and made available as heap and stack
space for the Catalina program (see the Startup and Memory Management section
later in this document) – so doing this may save cogs, but may not actually save any
RAM.

Most of the HMI functions are straightforward, and are typically very similar to the
equivalent  functions  provided  by  the  individual  underlying  screen,  keyboard  or
mouse drivers – which are often the Parallax standard drivers. See the individual
drivers for details. However, a few of the screen functions are added by the HMI
plugin itself, and may require a little more explanation:

All  the  different  HMI  options  provide  exactly  the  same  interface  to  Catalina  C
programs, using the standard C streams – i.e.  stdin,  stdout & stderr. C functions
are also provided for using the underlying HMI drivers more directly – these will be
familiar to many Propeller users.

Keyboard functions
int k_present();

This function returns one if a keyboard is detected, or zero otherwise.
Not supported (always returns one) on the PC, TTY, PROPTERMINAL
or proxy HMI drivers.

int k_get();

This function returns the next key from the keyboard, or zero if no key
is available. To check if a key is available before calling, use k_ready.
To wait for a key, use k_wait or k_new instead.

int k_wait();

This  function  returns  the  next  key  from the  keyboard.  If  no  key  is
currently available, it waits for the next key.

Copyright 2013 Ross Higson Page 32 of 158



Catalina C Compiler Reference Manual

int k_new();

This function deletes any keys stored in the keyboard buffer, then waits
for the next key.

int k_ready();

This function returns one if a key is available, or zero otherwise.

int k_clear();

This function clears any keys stored in the keyboard buffer but not yet
read.

int k_state(int key);

This function returns the state of the specified key (one if pressed, zero
if  not).  Not  supported  (always  returns  zero)  on  the  PC,  TTY,
PROPTERMINAL and proxy HMI drivers.

Mouse functions
int m_present();

This function returns one if  a mouse is detected, or zero otherwise.
Always  returns  one  on  the  PROPTERMINAL  HMI  drivers,  and  not
supported (returns zero) on the TTY and PC HMI drivers.

int m_button (unsigned long b);

This function returns the current state of mouse button b (0, 1 or 2).

int m_buttons();

This function returns the current state of all mouse buttons as a set of
bits.

int m_abs_x();

This function returns the current absolute x value of the mouse.

int m_abs_y();

This function returns the current absolute y value of the mouse.

int m_abs_z();

This function returns the current absolute z value of the mouse.

int m_delta_x();

This function returns the current delta x value of the mouse.

int m_delta_y();

This function returns the current delta y value of the mouse.

int m_delta_z();

This function returns the current delta z value of the mouse.

int m_reset();

This function resets the mouse, and sets the x,y,z values to zero.

Copyright 2013 Ross Higson Page 33 of 158



Catalina C Compiler Reference Manual

void m_bound_limits(int xmin, int ymin, int zmin, 
                    int xmax, int ymax, int zmax);

This function sets the minimum and maximum bounding limits for each
of the x, y and z axes.

void m_bound_scales (int xscale, int yscale, int zscale);

This function sets the bounding scales for each of the x, y and z axes.

void m_bound_preset (int xpreset, int ypreset, int zpreset);

This function sets the preset bound coordinates of the x, y and z axes.

int m_abs (int value);

This function is used internally.  It  is  made visible only because it  is
visible  in  the  standard  Parallax  mouse  drivers,  and  therefore  some
users of those drivers may have written programs that depend on it.

int m_limit (int i, int value);

This function is used internally.  It  is  made visible only because it  is
visible  in  the  standard  Parallax  mouse  drivers,  and  therefore  some
users of those drivers may have written programs that depend on it.

int m_bound (int i, int delta);

This function is used internally.  It  is  made visible only because it  is
visible  in  the  standard  Parallax  mouse  drivers,  and  therefore  some
users of those drivers may have written programs that depend on it.

int m_bound_x();

This function returns the current x bound of the mouse.

int m_bound_y();

This function returns the current y bound of the mouse.

int m_bound_z();

This function returns the current z bound of the mouse.

Screen functions
int t_geometry();

This function returns the screen geometry (as columns * 256 + rows).
Not supported (returns zero) for the TTY HMI driver.

int t_char(unsigned curs, unsigned ch);

This function writes a character to the current cursor location. Cursor 0
or 1 can be used.

int t_string(unsigned curs, char *str);

This  function  writes  a  zero  terminated  string  to  the  current  cursor
location. Cursor 0 or 1 can be used.

int t_integer(unsigned curs, int val);

Copyright 2013 Ross Higson Page 34 of 158



Catalina C Compiler Reference Manual

This function converts its signed integer argument to a string and writes
it to the current cursor location. Cursor 0 or 1 can be used.

int t_unsigned(unsigned curs, unsigned val);

This function converts its unsigned integer argument to a string and
writes it to the current cursor location. Cursor 0 or 1 can be used.

int t_float(unsigned curs, float val, int digits);

This function converts its floating point argument to a string and writes
it  to  the  current  cursor  location.  Cursor  0  or  1  can  be  used.  Not
supported when using libci or libcix

int t_hex(unsigned curs, unsigned val); 12

This function converts its unsigned integer argument to a hexadecimal
string (containing characters ‘0’ to ‘9’ and ‘A’ to ‘F’) and writes it to the
current cursor location. Cursor 0 or 1 can be used.

int t_bin(unsigned curs, unsigned val); 13

This function converts its unsigned integer argument to a binary string
(containing  only  characters  ‘0’  and  ‘1’)  and  writes  it  to  the  current
cursor location. Cursor 0 or 1 can be used.

int t_setpos(unsigned curs, unsigned cols, unsigned rows);

This function sets the position of a cursor – either cursor 0 or cursor 1.
The selected cursor is moved to the position specified (as column * 256
+ row).

int t_getpos(unsigned curs);

This function gets the position of a cursor – either cursor 0 or cursor 1.
Returns the current position of the selected cursor (as column * 256 +
row).

int t_mode(unsigned curs, unsigned mode);

This function sets the wrap/scroll and cursor modes of a cursor – either
cursor 0 or cursor 1. All the HMI drivers implement two independent
cursors. For all drivers except the high resolution VGA driver, the mode
of each cursor is a byte with bit values as follows:

bit 0: 0 – cursor invisible (cursor 1 only)

1 – cursor is a visible block (cursor 1 only)

bit 3: 0 – cursor wraps at end of screen

1 – screen scrolls end of screen

For these drivers cursor 0 is always invisible. For a visible cursor, use
cursor 1. Cursor 1 (when visible) is always a blinking block.

12  Currently not supported in all drivers due to space limitations.
13  Ditto.

Copyright 2013 Ross Higson Page 35 of 158



Catalina C Compiler Reference Manual

For the high resolution VGA driver, the mode of each cursor is a byte
with bit values as follows:

bits 0,1: 00 – cursor invisible

01 – cursor visible (unblinking)

10 – cursor visible (slow blink)

11 – cursor visible (fast blink)

bit 2: 0 – cursor is a block

1 – cursor is an underscore

bit 3: 0 – cursor wraps at end of screen

1 – screen scrolls end of screen

int t_scroll(unsigned count, unsigned first, unsigned last);

This function scrolls the screen up a specified number of  lines. The
parameter is the number of lines to scroll  * 65536 + the first row to
scroll * 256 + the last row to scroll.

int t_color(unsigned curs, unsigned color);

This function sets the screen color. For all HMI drivers except the high
resolution VGA driver, color is a number 0 to 7 that refers to an entry in
a color palette built in to the driver, and each character cell can have its
color set independently of the others. The new color is applied to any
new characters output to the screen – to apply the specified color to
the whole screen, you can clear the screen. 

For  the  high  resolution  VGA  driver,  color  works  differently  –  it  is
specified as a 16 bit number (as bg * 256 + fg) with each color being
specified as 8 bits with the bit values RRGGBB00 – i.e. 2 bits each for
red, green and blue. The color is applied to the whole row indicated by
the specified cursor (and only to that row – i.e. it does not apply if the
cursor is then moved to a new row).

Utility functions
int t_printf (char *fmt, ...);

This function works very much like the standard C function  printf. It
requires significantly less space, but it supports only a few formatting
options:

%c print a character

%d print an integer as a decimal number

%f print  a  floating  point  value.  The  f can  be  preceded  by  an
optional  “precision”  which  is  a  single  number  from  0  to  9
indicating the number of digits to follow the decimal point – for

Copyright 2013 Ross Higson Page 36 of 158



Catalina C Compiler Reference Manual

example  %3f prints  3  digits  after  the  decimal  point.  Not
supported when using libci.

%s print a string

%x print an integer as a hexadecimal number

Any other character is printed as it appears. For example:

  t_printf("char = %c\nstr = %s\nfloat = %3f\n", c, str, f);

CGI (Computer Graphics Interface) Support
Catalina provides a computer graphics plugin and C library equivalent to the Parallax
standard Graphics object. 

All that is required to use the computer graphics plugin is to link with the libgraphics
library.  The appropriate drivers will  be loaded automatically if  a Catalina program
uses this library.

For an example, go to the demos\graphics sub-directory and execute the build_all
script, specifying your platform. It will execute commands similar to:

catalina -lci -lgraphics graphics_demo.c -C NO_HMI

The NO_HMI option is generally required when using the graphics plugin because
some of  the normal HMI drivers conflict  with  the corresponding graphics drivers.
However,  if  your program uses HMI drivers that do not conflict  with the graphics
drivers (such as the  PC HMI drivers)  then these can be included along with  the
graphics drivers - provided there are enough free cogs.

The graphics plugin can be used in both LMM and XMM modes. 

The  basic  parameters  of  the  graphics  plugin,  such as  the  resolution,  are  set  in
Catalina_Common.spin:

X_TILES       = 16              ' Tiles are 16 by 16, so default X resolution is 256

Y_TILES       = 12              ' Tiles are 16 by 16, so default Y resolution is 192

The following symbols can be defined on the command line to modify the behavior of
the graphics plugin:

NO_INTERLACE Set the TV driver to NO_INTERLACE mode. In the
current  release,  only  the  TV  driver  is  supported.
VGA driver support will  be added in a subsequent
release.

NTSC Sets the TV driver to NTSC (rather than PAL) mode.

DOUBLE_BUFFER Allocates  two  graphics  buffers.  All  updates  are
performed  on  one  graphics  buffer,  which  is  then
copied to the display graphics buffer. This results in
smoother  (but  slower)  video.  However,  double
buffering requires significantly more Hub RAM than
single buffering.

Copyright 2013 Ross Higson Page 37 of 158



Catalina C Compiler Reference Manual

NO_HMI CGI drivers cannot generally be used in conjunction
with  the equivalent HMI drivers (e.g. for mouse or
keyboard). To avoid  this conflict, specify NO_HMI.

NO_KEYBOARD do not load the CGI keyboard driver.

NO_MOUSE do not load the CGI mouse driver.

For example:
catalina -lci -lgraphics graphics_demo.c -C NO_HMI -C DOUBLE_BUFFER

The graphics_demo.c program in the demos\graphics folder is a faithful copy of the
standard Parallax demo program, and includes examples of the use of most graphics
functions.

Many of the graphics functions take a pointer to a  g_var structure. This structure
should be allocated as a local variable to ensure that all variables are allocated in
Hub RAM, even when we are using the XMM memory model. Normally, programs do
not need to know the internal details of this structure – they simply allocate a local
instance (which ensures it is in Hub RAM) and then call the  g_setup function to
initialize it. For example:

main() {
  g_var gv;
  g_setup(&gv, 120, 80, 0);
  ...
}

Some of the graphics library functions are used to retrieve information about the
underlying CGI driver. These functions do not require a pointer to a g_var structure:

int cgi_x_tiles();

Get the value of X_TILES (X resolution in tiles of 16 pixels).

int cgi_y_tiles();

Get the value of Y_TILES (Y resolution in tiles of 16 pixels)

void *cgi_display_base();

Get address of underlying CGI display. Note that this is always a Hub
RAM address. The bitmap data will be:

(x_tiles * y_tiles) tiles, or

((x_tiles * y_tiles) * 16 * 16 * 2) / 8) bytes.

void *cgi_bitmap_base(int double_buffer); 

Get address of underlying CGI bitmap to draw on. We must tell this
function if we are double buffering. Note that this is always a Hub RAM
address. The bitmap data will be:

(x_tiles * y_tiles) tiles, or

((x_tiles * y_tiles) * 16 * 16 * 2) / 8) bytes.

void *cgi_screen_data(int double_buffer);

Copyright 2013 Ross Higson Page 38 of 158



Catalina C Compiler Reference Manual

Get address of underlying CGI screen data. We must tell this function if
we are double buffering. Note that this is always a Hub RAM address.
You  must  provide  x  and  y  size.  The  screen  data  will  be  (x_tiles  *
y_tiles) words.

void *cgi_color_data(int double_buffer);

Get address of underlying CGI color data. We must tell this function if
we are double buffering. Note that this is always a Hub RAM address.
You must provide x and y size. The colors data will always be 64 longs

The  remaining  graphics  library  functions  emulate  the  operations  of  the  standard
Parallax graphics object. These functions all require a pointer to a g_var structure:

void g_setup(g_var *gv, int x_org, int y_org, int double_buffer);

Set bitmap parameters:

x_org relative-x center pixel

y_org relative-y center pixel

double_buffer true if double buffering

void g_clear(g_var *gv);

Clear ether the display (if not double buffering), or the double buffer
bitmap (if double buffering).

void g_copy(g_var *gv, void *bitmap_base);

Copy either the specified bitmap, or (if NULL) the double buffer bitmap
to the display (use for flicker-free display).

void g_color(g_var *gv, int color); 

Set pixel color to two-bit pattern:

color color code in bits[1..0]

void g_width(g_var *gv, int width);

Set pixel width. Actual width is w[3..0] + 1:

width 0..15 for round pixels, 16..31 for square pixels

void g_colorwidth(g_var *gv, int color, int width);

Set pixel color and width.

color color code in bits[1..0]

width 0..15 for round pixels, 16..31 for square pixels

void g_plot(g_var *gv, int x, int y);

Plot point:

x, y endpoint

void g_line(g_var *gv, int x, int y);

Draw a line to point:

x, y endpoint

Copyright 2013 Ross Higson Page 39 of 158



Catalina C Compiler Reference Manual

void g_arc(g_var *gv, int x, int y, int xr, int yr, int angle, int
anglestep, int steps, int arcmode);

Draw an arc:

x, y center of arc

xr, yr radii of arc

angle initial angle in bits[12..0] (0..$1FFF = 
0°..359.956°)

anglestep angle step in bits[12..0]

steps number of steps (0 just leaves (x,y) at initial arc 
position)

arcmode 0: plot point(s)

1: line to point(s)

2: line between points

3: line from point(s) to center

void g_vec(g_var *gv, int x, int y, int vecscale, int vecanglevoid *
vecdef_ptr);

Draw a vector sprite:

x, y center of vector sprite

vecscale scale of vector sprite ($100 = 1x)

vecangle rotation angle of vector sprite in bits[12..0]

vecdef_ptr address of vector sprite definition

The Vector sprite layout in memory is as follows:
  word $8000|$4000+angle    'vector mode + 13-bit angle 
                               '(mode: $4000=plot, $8000=line)
  word length                  'vector length
  ...                          'more vectors
  ...
  word 0                       'end of definition

void g_vecarc(g_var *gv, int x, int y, int xr, int yr, int angle, int
vecscale, int vecangle, void * vecdef_ptr);

Draw a vector sprite at an arc position:

x, y center of arc

xr, yr radii of arc

angle angle in bits[12..0] (0..$1FFF = 0°..359.956°)

vecscale scale of vector sprite ($100 = 1x)

vecangle rotation angle of vector sprite in bits[12..0]

vecdef_ptr address of vector sprite definition   

Copyright 2013 Ross Higson Page 40 of 158



Catalina C Compiler Reference Manual

void g_pix(g_var *gv, int x, int y, int pixrot, void *pixdef_ptr);

Draw a pixel sprite:

x, y center of vector sprite

pixrot 0: 0°, 1: 90°, 2: 180°, 3: 270°, +4: mirror

pixdef_ptr address of pixel sprite definition

The Pixel sprite layout in memory is as follows:
   word    'word align, express dimensions and center, define pixels
   byte    xwords, ywords, xorigin, yorigin
   word    %%xxxxxxxx,%%xxxxxxxx
   word    %%xxxxxxxx,%%xxxxxxxx
   word    %%xxxxxxxx,%%xxxxxxxx

   ...
void g_pixarc(g_var *gv, int x, int y, int xr, int yr, int angle, int

pixrot, void *pixdef_ptr);

Draw a pixel sprite at an arc position:

x, y center of arc

xr, yr radii of arc

angle angle in bits[12..0] (0..$1FFF = 0°..359.956°)

pixrot 0: 0°, 1: 90°, 2: 180°, 3: 270°, +4: mirror

pixdef_ptr address of pixel sprite definition

void g_text(g_var *gv, int x, int y, void *string_ptr);

Draw text:

x, y text  position  (see  g_textmode()  for  sizing  and
justification)

string_ptr address  of  zero-terminated  string  (it  may  be
necessary to call finish immediately afterwards to
prevent  subsequent  code  from  clobbering  the
string as it is being drawn

void g_textarc(g_var *gv, int x, int y, int xr, int yr, int angle,
void *string_ptr);

Draw text at an arc position:

x, y center of arc

xr, yr radii of arc

angle angle in bits[12..0] (0..$1FFF = 0°..359.956°)

string_ptr address  of  zero-terminated  string  (it  may  be
necessary to call finish immediately afterwards to
prevent  subsequent  code  from  clobbering  the
string as it is being drawn

Copyright 2013 Ross Higson Page 41 of 158



Catalina C Compiler Reference Manual

void g_textmode(g_var *gv, int x_scale, int y_scale, int spacing, int
justification);

Set text size and justification:

x_scale x character scale, should be 1+

y_scale y character scale, should be 1+

spacing character spacing, 6 is normal

justification bits[1..0]: 0..3 = left, center, right, left 
bits[3..2]: 0..3 = bottom, center, top, bottom

void g_box(g_var *gv, int x, int y, int box_width, int box_height);

Draw a box with round/square corners, according to pixel width

x,y box left, box bottom

void g_quad(g_var *gv, int x1, int y1, int x2, int y2, int x3, int y3,
int x4, int y4);

Draw  a  solid  quadrilateral.  Vertices  must  be  ordered  clockwise  or
counter-clockwise.

x1, y1 .. x4, y4 vertices of the quadrilateral

void g_tri(g_var *gv, int x1, int y1, int x2, int y2, int x3, int y3);

Draw a solid triangle.

x1, y1 .. x3, y3 vertices of the triangle

void g_finish();

Wait for any current graphics command to finish. Use this to insure that
it is safe to manually manipulate the bitmap

There are also a full set of mouse functions in this library - these are functionally
equivalent to the normal Catalina (or Parallax) mouse functions already described (in
the section title  Mouse functions) except they are prefixed by gm_ instead of  m_
(e.g.  gm_abs_x()).  Note  that  programs MUST use  the  graphics  versions  of  the
mouse functions if you use the graphics library, not the HMI versions. Also, programs
must be sure to call one of the two functions  gm_reset() or  gm_present() before
calling any other mouse function, since they automatically initialize the driver (and
the other functions do not). 

Read the README.Graphics file in the demos\graphics directory for more details.

VGI (Virtual Graphics Interface) Support
Catalina provides a virtual graphics plugin and C library that is largely compatible
with the graphics library described in the previous section. The  Virtual (or  VGA or
Vector) Graphics plugin is intended for use on high resolution VGA displays. 

All  that is required to use the plugin is to link with  the  libvgraphics  library.  The
appropriate  drivers  will  be  loaded  automatically  if  a  Catalina  program uses  this
library.

Copyright 2013 Ross Higson Page 42 of 158



Catalina C Compiler Reference Manual

For an example, go to the demos\vgraphics sub-directory and execute the build_all
script, specifying your platform. It will execute commands similar to:

catalina -lci -lvgraphics graphics_demo.c -C NO_HMI

The  NO_HMI option is  generally required when using the virtual  graphics library
because some of the normal HMI drivers conflict with the graphics drivers. However,
if your program uses HMI drivers that do not conflict with the graphics drivers (such
as the PC HMI drivers) then these can be included along with the graphics drivers -
provided there are enough free cogs.  

The virtual graphics library can be used in LMM, CMM and XMM modes (although
the performance in XMM mode is very slow!).

The main differences between the virtual graphics library and the graphics library is
in the way the library is initialized – the g_setup, g_copy and g_move functions are
different, and there is an additional g_db_setup function to set up double buffering.
Refer  to  the  header  file  catalina_vgraphics.h for  more  details,  or  study  the
differences in the graphics_demo.c program given in the demos\vgraphics folder.

The following command line options can be used to modify the behavior of the virtual
graphics plugin:

NO_KEYBOARD do not load the vgraphics keyboard driver

NO_MOUSE do not load the vgraphics mouse driver

VGA_640 resolution is 640 x 480. This is the default.

VGA_800  resolution is 800 x 600.

VGA_1024 resolution is 1024 x 768.

VGA_1152 resolution is 1152 x 864.

VGA_2_COLOR color depth is 1 bit (2 colors).

VGA_4_COLOR color depth is 2 bits (4 colors).

DOUBLE_BUFFER enable double buffering (smoother graphics).

For example:
catalina -lci -lvgraphics graphics_demo.c -C NO_HMI -C VGA_800

Read the README.graphics file in the demos\vgraphics directory for more details.

Multi-Thread and Multi-Cog Support
Catalina provides a multithreading library, similar to the POSIX pthreads library. To
use  this  library,  simply  compile  your  program  with  the  libthreads  library.  The
multithreading version of the kernel will be included automatically.

For  an  example,  go  to  the  demos\multithread sub-directory  and  execute  the
build_all script, specifying your platform. It will execute commands similar to:

catalina -lci -lthreads dining_philosophers.c 

In  the current  release,  multithreading is  only  supported in  the special  “threaded”
version of the CMM and LMM kernels (which are selected automatically when a

Copyright 2013 Ross Higson Page 43 of 158



Catalina C Compiler Reference Manual

program is linked with the  libthreads library). Multithreading may be added to the
XMM kernel in a later release.

Each thread is simply a C function with a prototype that looks like a C main function
- i.e.:

int function(int argc, char *argv[]);

When the thread is started, the  argc and  argv parameters can be provided, and
when the thread terminates, it can return an int value. A typedef for a pointer to such
a function is also provided:

typedef int (* _thread)(int argc, char *argv[]);

This typedef is used in the _thread_init function. It is defined in the header file
catalina_threads.h

In addition to multiple threads executing on the same cog, Catalina also provides the
ability to run C programs (including multi-threaded C programs) on multiple cogs.
See the section on Multi-Cog Support for more details.

Fundamental Thread Functions
The fundamental thread library functions are defined in catalina_threads.h. They are
as follows:

int _thread_get_lock();

Get the cog lock allocated to the kernel for context switching. See the
explanation  of  _thread_set_lock  for  details  on  when  this  function  is
required.

void _thread_set_lock(int lock);

Set  the  cog  lock  the  multi-threading  kernel  will  use  for  context
switching.  If  there  are  multiple  multi-threading  kernels  started,  it  is
important  that  they  all  use  the  same  cog  lock  to  prevent  context
switching contention.

Initially, each multi-threading kernel will use cog lock 7 - but the kernel
does not reserve this lock via  _locknew, so a new cog lock should
usually  be  reserved  using  _locknew and  then  set   using
_thread_lock_set before the kernel starts any threads). 

This can be done very simply by:

_thread_set_lock(_locknew());

Because the initial  cog lock is not reserved, it  does not need to be
returned  using  _lockret -  but  if  another  lock  is  used  and  it
subsequently needs to be changed, the following sequence  must be
used:

1. get the current cog lock via _thread_get_lock

2. reserve a new cog lock via _locknew

3. set  the  new  cog  lock  in  all multi-threading  kernels  via
_thread_set_lock

Copyright 2013 Ross Higson Page 44 of 158



Catalina C Compiler Reference Manual

4. release the current cog lock via _lockret

int _thread_ticks(void * thread_id, int ticks);

Update  the  tick  count  of  the  specified  thread.  Each  tick  is
approximately 100 microseconds, and the thread will execute for this
many ticks before a context switch (unless something occurs - such as
a call to _thread_yield - which makes the thread switch earlier.

A thread can update its own tick count, but the change will  not take
effect until the next context switch.

void * _thread_id();

Return the unique non-zero thread id of the current thread.

void * _thread_start(_thread PC, void * SP, int argc, char *argv);

Start  a  new  thread.  The  SP  must  point  to  the  top  of  at  least
THREAD_BLOCK_SIZE longs.  These longs are  used as the thread
block. The RAM below this is then used as the stack of the thread. 

Returns the (non-zero) thread id on success, or 0 on failure.

void * _thread_stop(void * thread_id);

Stop a thread executing. 

Returns the non-zero thread id if the thread was found and stopped, or
0 if not.

void * _thread_join(void * thread_id, int * result);

Wait for a thread to complete and fetch its return value. Note that this
function does not return until the thread has stopped.

Returns the non-zero thread id if the thread was found, or 0 if not. Also
returns zero if you attempt to join your own thread, or the thread you
are trying to join gets terminated.

void * _thread_check(void * thread_id);

Check if the specified thread is currently executing.

Returns the non-zero thread id if the thread is executing, or 0 if not.

void _thread_yield();

Yield the cog to another thread. This is typically called instead of "busy
waiting" when a thread discovers it has no more work to do, and must
wait for another thread, or for an external event.

 int _thread_init_lock_pool (void * pool, int size, int lock);

Initialize a block of Hub RAM as a pool of locks. This function should
be called once (and only once) for each pool. The pool must be (size +
5) bytes of Hub RAM, and must be long aligned. 

If the initialization succeeds, 0 is returned.

int _thread_locknew(void * pool);

Allocate a free lock from a lock pool.  Note that the pool must have
previously been initialized using  _thread_init_lock_pool. The id

Copyright 2013 Ross Higson Page 45 of 158



Catalina C Compiler Reference Manual

of the next unused lock in the pool is returned on success (1 .. size),
and the lock is cleared. 

If no more locks are available, -1 is returned.

int _thread_lockclr(void * pool, int lockid);

Clear the specified lock (1 .. size) in the specified lock pool. The lock
pool  must  have  been  initialized  using  _thread_init_lock_pool,
and  the  lock  must  have  previously  been  allocated  using
_thread_locknew or an error is returned.

The previous value of  the lock (0  or  1)  is  returned.  On error,  -1  is
returned.

int _thread_lockret(void * pool, int lockid);

Return a lock (1 .. size) to the specified lock pool. The lock pool must
have been initialized using _thread_init_lock_pool, and the lock
must have previously been allocated using  _thread_locknew or an
error is returned. 

On success, 0 is returned. On error, -1 is returned.

int _thread_lockset(void * pool, int lockid);

Set the specified lock (1 .. size) in the specified lock pool. The lock pool
must have been initialized using _thread_init_lock_pool, and the
lock must have previously been allocated using _thread_locknew or
an error is returned.

The previous value of  the lock (0  or  1)  is  returned.  On error,  -1  is
returned. To check that the lock was not already set, test for a return
value of 0.

int _thread_affinity(void *thread_id)

Return  the  affinity  status  of  the  specified  thread  (can  be  used  to
determine both the current affinity,  and also the current state of any
outstanding affinity request).

int _thread_affinity_stop(void *thread_id)

Stop the specified thread, which may have a different affinity from the
calling thread. 

Returns an error if an affinity command is already set for the specified
thread.

int _thread_affinity_change(void *thread_id, int affinity)

Request a change of affinity for the specified thread. Check the affinity
of the thread later to see if the change has taken effect.

Additional Thread Utility Functions
Some additional thread library functions are defined in thread_utilities.h They are as
follows:

int _thread_cog(_thread func, unsigned long *stack, int argc, char
*argv[]);

Copyright 2013 Ross Higson Page 46 of 158



Catalina C Compiler Reference Manual

Start a new multi-threaded kernel on a new cog, and have it initially run
the specified thread.

int _thread_integer(int lock, int num);

This function is just the equivalent of the HMI function t_integer, but it
uses a lock to ensure that only one such function can access the HMI
plugin at once - this makes these functions more suitable for use when
multiple threads are executing.

int _thread_unsigned(int lock, unsigned num);

As above, for t_unsigned.

int _thread_string(int lock, char *str);

As above, for t_string.

int _thread_char(int lock, char ch);

As above, for t_char.

int _thread_hex(int lock, unsigned num);

As above, for t_hex.

int _thread_bin(int lock, unsigned num);

As above, for t_bin.

int _thread_printf(int lock, char *str, ...);

As above, for t_printf.

void randomize();

While not specific to threads, this function is useful - it initializes the
random number generator (using  srand) based on the current clock
value.

int  random(int max);

While  not  specific  to  threads,  this  function  is  useful  -  it  returns  a
random number from 0 to MAX - 1.

Read the README file in the demo\multithread directory for more details.

Plugin Support
Catalina was designed to be open and extendable. It provides a standard interface to
PASM programs running in a cog by defining a common “plugin” interface to these
programs. 

A “plugin” is just a SPIN object that contains a PASM program which runs on a cog –
and which  is  registered with  the  Catalina  Kernel.  Once registered,  the  functions
provided by the plugin can be invoked from within a Catalina C program. 

A plugin is typically a device driver, but is not limited to that. Catalina uses plugins
internally in various ways. For example:

 All keyboard/mouse/screen access is via various HMI plugins. These plugins
acts as wrappers for other drivers. The wrapper not only provides a uniform
means of accessing different Parallax drivers, it adds many functions that do
not  exist  in  the  underlying  drivers  –  such  as  screen  scrolling  and  cursor
support;

Copyright 2013 Ross Higson Page 47 of 158



Catalina C Compiler Reference Manual

 The Float32Full and Float32A functions are accessed by turning the standard
Float32A  and  Float32Full  cog  programs  into  the  plugins  Float32_A and
Float32_B.

 Real-Time Clock support is implemented as an CLOCK plugin.

 Gamepad support is implemented as a GAMEPAD plugin.

Existing cog programs can often be used “as is” in conjunction with Catalina if no
access is required to them from the Catalina program – just add the appropriate
SPIN objects into a new customized target (see the  Customized Targets section
later in this document) and then build the Catalina program for that target.

Cog functions
Catalina provides C functions that mimic the Parallax operations used for managing
cogs, interacting with  locks,  waiting for various conditions, or interacting with  the
special cog registers. Catalina also provides  direct access to the Propeller special
registers, which is described in the next section (and which may be more familiar to
existing Spin programmers).

The following functions are defined in the include file catalina_cog.h:

unsigned _clockfreq();

This function returns the current clock frequency, as found in the long
at hub RAM address 0. 

unsigned _clockmode();

This function returns the current clock mode, as found in the byte at
hub RAM address 4. To assist in decoding the returned values, see the
symbols defined in the include file.

unsigned _clockinit(unsigned mode, unsigned freq);

This  function  can be  used to  set  both  the  current  clock  mode  and
frequency. To assist in specifying clock mode values, see the symbols
defined in the include file.

int _cogid();

This  function returns the cog id  (0  ..  7)  of  the  cog in  which  this  C
program is executing.

int _coginit(int par, int addr, int cogid);

This function starts an arbitrary PASM program in a new cog. The par
and  addr parameters must be given as  long addresses (which can
easily be done by dividing the normal byte addresses by 4). The cogid
parameter can be a specific cog, or the special value ANY_COG. The
addr parameter must be in Hub RAM.

int _coginit_C(void func(void), unsigned long *stack);

This  function  starts  a  C  void  function  in  a  new  cog.  The  stack
parameter must point to the end of an array of longs that will be used

Copyright 2013 Ross Higson Page 48 of 158



Catalina C Compiler Reference Manual

for the  function's program stack. The C function and the stack must be
in Hub RAM. The C function will be started in a new cog.

int _coginit_Spin(void *code, void *data, void *stack, int start, int
offs);

This function starts a Spin program in a new cog. The code, data, and
stack  parameters point to arrays containing the compiled Spin object
code, the Spin programs var segment, and sufficient stack space to
execute the Spin program. The content of these arrays, and the start
and offs  parameters are typically populated using the output of  the
Catalina spinc utility when it is invoked with the -c flag. The code, data
and  stack  arrays  must  be  in  Hub  RAM.  The  Spin  program will  be
executed in a new cog.

int _cogstop(int cogid);

This function stops the specified cog.

int _locknew();

This function checks out and returns the next available lock (0 .. 7), or
returns -1 if no locks are available.

int _lockclr(int lockid);

This function clears the lock, and returns the previous value of the lock.

int _lockret(int lockid);

This function returns the specified lock to the pool of available locks.

int _lockset(int lockid);

This function sets the lock, and returns the previous value of the lock.

int _waitcnt(unsigned count);

This  function  performs a  waitcnt instruction,  waiting  for  the  system
counter to reach the specified count.

int _waitvid(unsigned colors, unsigned pixels);

This function performs a waitvid instruction, sending the specified data
to the video circuitry. Note that while this is supported, it is very unlikely
that  a  C program could  execute  waitvid  instructions  fast  enough to
implement  a  video  driver.  However,  the  waitvid  instruction  is
sometimes used for other purposes.

int _waitpeq(unsigned mask, unsigned result, int a_or_b);

This function executes a waitpeq instruction, waiting for the specified
register (a or b) to not equal the specified result. Use the values INA or
INB to specify the register.

int _waitpne(unsigned mask, unsigned result, int a_or_b);

Copyright 2013 Ross Higson Page 49 of 158



Catalina C Compiler Reference Manual

This function executes a waitpne instruction, waiting for the specified
register (a or b) to not equal the specified result. Use the values INA or
INB to specify the register.

unsigned _cnt()

This function returns the current value of the system counter.

unsigned _ina()

This function returns the current value of the INA register.

unsigned _inb()

This function returns the current value of the INB register.

unsigned _dira(unsigned mask, unsigned direction);

This function sets the current value of the DIRA register. The mask can
be used to specify the bits in the register  that will be affected.

The function returns the original  value of  DIRA,  so to  determine its
current value without changing it, specify both a mask and direction of
zero.

unsigned _dirb(unsigned mask, unsigned direction);

This function sets the current value of the DIRB register. The mask can
be used to specify the bits in the register that will be affected.

The function returns the original  value of  DIRB,  so to  determine its
current value without changing it, specify both a mask and direction of
zero.

unsigned _outa(unsigned mask, unsigned output);

This function sets the current value of the  OUTA register. The mask
can be used to specify the bits in the register that will be affected.

The function returns the original value of  OUTA,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _outb(unsigned mask, unsigned output);

This function sets the current value of the  OUTB register. The mask
can be used to specify the bits in the register that will be affected.

The function returns the original value of  OUTB,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _ctra(unsigned mask, unsigned control);

This function sets the current value of the  CTRA register. The mask
can be used to specify the bits  in the register that  will  be affected.
There  are  definitions  and macros to  help  set  the  values of  the  the
counter control bits in the file catalina_cog.h 

Copyright 2013 Ross Higson Page 50 of 158



Catalina C Compiler Reference Manual

The function returns the original value of  CTRA,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _ctrb(unsigned mask, unsigned control);

This function sets the current value of the  CTRB register. The mask
can be used to specify the bits  in the register that  will  be affected.
There  are  definitions  and macros to  help  set  the  values of  the  the
counter control bits in the file catalina_cog.h 

The function returns the original value of  CTRB,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _frqa(unsigned mask, unsigned frequency);

This function sets the current value of the  FRQA register. The mask
can be used to specify the bits in the register that will be affected. The
meaning of the frequency bits depends on the setting of the  CTRA
register.

The function returns the original value of  FRQA,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _frqb(unsigned mask, unsigned frequency);

This function sets the current value of the  FRQB register. The mask
can be used to specify the bits in the register that will be affected. The
meaning of the frequency bits depends on the setting of the  CTRB
register.

The function returns the original value of  FRQB,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _phsa(unsigned mask, unsigned phase);

This function sets the current value of the  PHSA register. The mask
can be used to specify the bits in the register that will be affected. 

The function returns the original value of  PHSA,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _phsb(unsigned mask, unsigned phase);

This function sets the current value of the  PHSB register. The mask
can be used to specify the bits in the register that will be affected. 

The function returns the original value of  PHSB,  so to determine its
current value without changing it, specify both a mask and output of
zero.

Copyright 2013 Ross Higson Page 51 of 158



Catalina C Compiler Reference Manual

unsigned _vcfg(unsigned mask, unsigned config);

This function sets the current value of the  VCFG register. The mask
can be used to specify the bits in the register that will be affected. 

The function returns the original value of  VCFG,  so to determine its
current value without changing it, specify both a mask and output of
zero.

unsigned _vscl(unsigned mask, unsigned scale);

This function sets the current value of the  VSCL register. The mask
can be used to specify the bits in the register that will be affected. 

The function returns the original value of  VSCL,  so to determine its
current value without changing it, specify both a mask and output of
zero.

Catalina also provides two macros that can simplify the use of locks. Once a lock
has  been  allocated  –  e.g.  via  a  statement  such  as  lock  =  _locknew() then  the
following macros can be used:

ACQUIRE(lock)

This macro causes the program to loop until it successfully acquires
the specified lock. 

RELEASE(lock)

This macro causes the program release the specified lock. 

Note that for users who intend porting code between Catalina and other Propeller C
compilers, there is a header file called  catalina_icc.h which “wraps” the Catalina
specific cog function syntax within macros that can be easily redefined. This allows
portable C code to be written. This file currently supports the Catalina and the ICC
compilers, and may support other future compilers – see the file for more details. 

Special Register Access
Some of  the  functions  described  in  the  previous  section  provide  access  to  the
Propeller's special registers (INA, DIRA etc). However, direct access is also provided
simply by declaring the register names as extern volatile. This can be conveniently
done  by  include  the  file  propeller.h,  which  contains  (among  other  things)  the
following definitions:

extern volatile const unsigned PAR;
extern volatile const unsigned CNT;
extern volatile const unsigned INA;
extern volatile const unsigned INB;
extern volatile unsigned OUTA;
extern volatile unsigned OUTB;
extern volatile unsigned DIRA;
extern volatile unsigned DIRB;
extern volatile unsigned CTRA;
extern volatile unsigned CTRB;
extern volatile unsigned FRQA;

Copyright 2013 Ross Higson Page 52 of 158



Catalina C Compiler Reference Manual

extern volatile unsigned FRQB;
extern volatile unsigned PHSA;
extern volatile unsigned PHSB;
extern volatile unsigned VCFG;
extern volatile unsigned VSCL;

Once these names are declared as shown above (or  propeller.h is included) the
register names can be used like any other C variable in any C expression, without
being  further  defined,  and  they  will  represent  the  appropriate  special  propeller
register. For example:

DIRA = 0xff000000 | INA;
OUTA |= 1
if (CNT == 0) ...
while ((INA & 0x00100000) == 0) ...
... etc ...

Note that if the special register names are  not  declared as  external volatile, the
names can be used as normal C variable names (of course, they will  need to be
declared the same way as any other C variable).

In  addition  to  making  the  special  propeller  registers  directly  accessible,  the  file
propeller.h also includes catalina_cog.h, and then provides the following definitions
which redefine the functions declared in that file to make them more closely emulate
the equivalent functions found in Spin:

#define COGID _cogid()
#define COGSTOP(cog) _cogstop(cog)
#define COGINIT(val) _coginit(((val) & 0xFFFC0000)>>18,

((val) & 0x3FFF0)>>4, (val) & 0xF)
#define LOCKNEW _locknew(lock)
#define LOCKCLR(lock) _lockclr(lock)
#define LOCKSET(lock) _lockset(lock)
#define LOCKRET(lock) _lockret(lock)
#define WAITCNT(count,ticks) {_waitcnt(count);count += (ticks);}
#define WAITVID(colors, pixels) _waitvid(colors, pixels)
#define WAITPNE(mask, pins) _waitpne(mask, pins, 0)
#define WAITPEQ(mask, pins) _waitpeq(mask, pins, 0)
#define CLKFREQ _clockfreq()
#define CLKMODE _clockmode()
#define CLKSET(mode, frequency) _clockinit(mode, frequency)

Finally, propeller.h also defines the following convenient macros:

#define WAIT(ticks) _waitcnt((ticks) + _cnt())
#define msleep(millisecs) WAIT((millisecs)*(_clockfreq()/1000))
#define sleep(seconds) WAIT((seconds)*_clockfreq())

Registry, Plugin and Service functions
Catalina provides functions for interacting with  the registry that is used to record
which  plugins are currently loaded,  to  provide default  communications blocks for
each plugin, and to invoke the functions implemented by those plugins.

These functions are defined in the include file catalina_plugin.h. The functions are
divided into three logical layers:

• Layer 1 – basic registry setup 

Copyright 2013 Ross Higson Page 53 of 158



Catalina C Compiler Reference Manual

• Layer 2 – plugin-based requests

• Layer 3 – service-based requests

The following Layer 1 functions are provided:

unsigned _registry();

This function returns the address of the registry. This is required to be
passed to a cog when starting a dynamic kernel to execute C code on
that cog.

void _register_plugin(int cog_id, int plugin_type);

This function can be used to register that a plugin of a specified type is
running on a particular cog. Plugins must be registered before requests
can be sent to them.

void _unregister_plugin(int cog_id);

This function can be used to unregister a plugin.

Plugin types 0 to 127 are reserved for various basic Catalina plugins (see the file
catalina_plugin.h for a complete list of those currently allocated), but plugin types
128 to 254 are free for users to define for their own purposes.

The following Layer 1 macros are provided to simplify access to the registry:

REGISTRY_ENTRY(c)

This macro returns the registry entry for cog c. The parameter should
be from 0 and 7 – any other value will return an undefined result. The
result is an unsigned value.

REGISTERED_TYPE(c)

This  macro  returns  the  registered  type  for  cog  c.  The  parameter
should be from 0 and 7 – any other value will  return an undefined
result. The result is an unsigned value.

REQUEST_BLOCK(c)

This macro returns a pointer to the request block reserved for cog c.
The parameter should be from 0 and 7 – any other value will return an
undefined result. The request block structure pointed to is defined as:

typedef struct {
   unsigned int request;
   unsigned int response;
} request_t;

The following Layer 2 functions are provided:

int _locate_plugin(int plugin_type);

This function can be used to find a cog on which a plugin type is 
executing. Note that if there is more than one plugin of a specified type 
executing, only the first will be found.

int _short_plugin_request (long plugin_type, long code, long param);

Copyright 2013 Ross Higson Page 54 of 158



Catalina C Compiler Reference Manual

This  function  can  be  used  to  send  a  “short”  request  to  a  plugin
specified by type  (e.g.  LMM_HMI).  See the include file  for  a  list  of
plugin  types.  Short  requests  have  a  code  and  up  to  24  bits  of
parameter. Note that the meaning of the code and the parameters is
plugin-dependent, and also that different plugin types may require short
or long requests to be used for specific request codes.

int _long_plugin_request (long plugin_type, long code, long param);

This function can be used to send a “long” request to a plugin specified
by type (e.g. LMM_HMI). See the include file for a list of plugin types.
This type of long request has a code and one 32 bit of parameter. Note
that the meaning of the code and the parameter is plugin-dependent,
and also that different plugin types may require short or long requests
to be used for specific request codes.

int _long_plugin_request_2 (long plugin_type, 
                            long code, 
                            long par1,
                            long par2);

This function can be used to send a “long” request to a plugin specified
by type (e.g. LMM_HMI). See the include file for a list of plugin types.
This type or long request has a code and two 32 bit parameters. Note
that the meaning of the code and the parameters is plugin-dependent,
and also that different plugin types may require short or long requests
to be used to for specific request codes.

float _float_request(long plugin_type, long code, float a, float b);

This function can be used to send a “long” request to a plugin specified
by type (e.g. LMM_HMI). See the include file for a list of plugin types.
This type of long request has a code and  two 32 bit  floating point
values  as  parameters.  Note  that  the  meaning  of  the  code  and  the
parameters is  plugin-dependent,  and also that  different  plugin types
may require short or long requests to be used to for specific request
codes.

The following Layer 3 functions are provided:

int _short_service (long svc, long param);

This  function  can  be  used  to  send  a  “short”  request  for  a  specific
service (e.g. SVC_T_CHAR). See the include file for a list of services.
Short requests have a code and up to 24 bits of parameter. Note that
the  meaning  of  the  parameter  is  service-dependent,  and  also  that
different services may require short or long requests to be used.

int _long_service (long svc, long param);

This function can be used to send a “long” request for a specific service
(e.g. SVC_RTC_SETFREQ). See the include file for a list of services.
Long requests have a code and up to 32 bits of parameter. Note that

Copyright 2013 Ross Higson Page 55 of 158



Catalina C Compiler Reference Manual

the  meaning  of  the  parameter  is  service-dependent,  and  also  that
different services may require short or long requests to be used.

int _long_service_2 (long svc, long par1, long par2);

This function can be used to send a “long” request for a specific service
(e.g.  SVC_SD_READ). See the include file for a list of services. This
type or long request has a code and two 32 bit parameters. Note that
the meaning of the parameters is service-dependent.

float _float_service(long svc, float a, float b);

This function can be used to send a “long” request for a specific service
by  type  (e.g.  SVC_FLOAT_ADD).  See  the  include  file  for  a  list  of
plugin types.  This  type  of  long request  has a code and  two 32 bit
floating point values as parameters.  Note  that  the meaning of  the
parameters is service-dependent.

The following Layer 3 macros are provided to simplify access to the service registry:

SERVICE_ENTRY(s)

This  macro  returns  the  registry  entry  for  service  s.  The  parameter
should  be  from  1  to  SVC_MAX  –  any  other  value  will  return  an
undefined result. The result is an unsigned short value.

SERVICE_COG(s)

This  macro returns the cog containing  the  plugin  which  implements
service s.  The parameter should be from 1 to SVC_MAX – any other
value will return an undefined result. The result is an unsigned value. A
value of 0xF indicates the service is not currently implemented by any
loaded plugin.

SERVIC_LOCK(s)

This  macro  returns  the  lock  that  must  be  successfully  set  to  gain
access to service s.  The parameter should be from 1 to SVC_MAX –
any  other  value  will  return  an  undefined  result.  The  result  is  an
unsigned value. A value of 0xF indicates the service is not currently
implemented by any loaded plugin.

SERVICE_CODE(s)

This macro returns the request that will be sent to the plugin to request 
service s.  The parameter should be from 1 to SVC_MAX  – any other 
value will return an undefined result. The result is an unsigned value. A
value of 0x00 indicates the service is not currently implemented by any 
loaded plugin.

The following miscellaneous utility function are provided:

char *_plugin_name(int type)

This function returns a pointer to a human-readable  name for the 
plugin type. For example “Real-Time Clock” or “Gamepad”.

Copyright 2013 Ross Higson Page 56 of 158



Catalina C Compiler Reference Manual

Note that the same basic plugin functions can generally be requested using either
layer 2 or layer 3 requests. The advantage of using layer 3 requests is that layer 3
implements contention control (necessary if  you have multiple threads or multiple
cogs executing C programs), that you do not need to know the plugin type to request
a service (i.e. allowing the same service to be implemented by different plugins in
different targets), and also that layer 3 access is slightly faster. 

Services 1 to 64 are predefined to to mean various basic Catalina services (see the
file catalina_plugin.h for a complete list), but services 65 .. 96 are free for users to
define for their own purposes.

AN IMPORTANT NOTE ABOUT REGISTRY ACCESS:  When accessing
the registry, any addresses used in the registry, or in a plugin or service
request,  must  be  HUB RAM addresses.  This  is  because  plugins  are
normally implemented as Spin/PASM programs that have  no access to
XMM RAM. For example, if a service requires a parameter that represents
an address where the plugin expects to find data to process, the address
must be in Hub RAM. If the data is actually located in XMM RAM, it must
be copied to Hub RAM before the service request.

Copyright 2013 Ross Higson Page 57 of 158



Catalina C Compiler Reference Manual

Debugger Support
Catalina now provides support for three different debuggers:

 BlackCat – a source level debugger with a Graphical User Interface. Currently,
BlackCat runs only under Windows. BlackCat was separately developed by Bob
Anderson. BlackBox is not open source, but a binary version (Windows only) is
included with Catalina.

 BlackBox – a source level debugger with a command Iine interface. BlackBox
runs under both Linux or Windows, and is included with Catalina.

 POD – an assembly language debugger. Runs under both Linux or Windows

Note that POD is an assembly level debugger, while the others are source level
debuggers.  POD can  be  used  to  disassemble  programs,  and  also  examine  the
execution of programs within the Catalina kernel, while the others can only be used
to view the C code being executed. While it is technically possible to use POD in
conjunction with one of the other debuggers, this is not recommended since each
debugger consumes a cog and also some RAM space – which means there wouldn’t
be much left for the actual program!

BlackCat and BlackBox Support
Both BlackCat and BlackBox support are enabled using the –g (or –g3) command-
line option, or by using the Debug target in Code::Blocks.

For information about BlackBox, see the document  BlackBox Reference Manual,
and the tutorial document Getting Started with BlackBox.

For  information  about  BlackCat,  see the  help  file  in  the  program itself,  and the
tutorial document Getting Started with BlackCat.

POD Support
Catalina comes with special debug targets intended to be used with the Propeller
On-chip Debugger (POD). For information about  POD, see the Parallax discussion
forums  –  e.g.   http://forums.parallax.com/showthread.php?92924-UPDATED-
Propeller-On-chip-Debugger). 

Compiling programs for debugging with POD

To  build  a  debugging  version  of  your  program,  simply  use  the  pod  target.  For
example:

catalina file.c -t pod

The debug targets add the  POD runtime components to the Catalina Kernel.  To
access  POD,  the  PropTerminal program must  be  used.  PropTerminal can  be
downloaded from http://insonix.ch/propeller/). Binary files produced by Catalina can
be loaded directly from the PropTerminal program. Set the size of the screen to 30
rows by 40 columns (by editing the PropTerminal.ini file).

Copyright 2013 Ross Higson Page 58 of 158

http://insonix.ch/propeller/


Catalina C Compiler Reference Manual

PropTerminal is a Windows executable, but be used under Linux with the  Wine
Windows emulator (see  http://www.winehq.org/). However, configuring Wine under
Linux is very system-dependent, and is beyond the scope of this document

Some limitations apply when using POD, which is quite resource hungry:

 POD requires some space in the Catalina Kernel, so the debug target makes
space by moving the  basic  floating  point  operations out  to  the  Float32_A
plugin – this means floating point  programs will  execute somewhat  slower
when using POD. 

 POD requires a cog, so the standard debug target loads the Fload32A plugin.
If floating point support is not required, use a target that does not load any
floating point, or use the target configuration options to disable floating point.

 POD is a SPIN program, and requires quite a lot of Hub RAM (about 12Kb) so
large Catalina programs may have to be broken into parts when debugging.

 POD cannot be used to debug Catalina programs that use  malloc – this is
because the Catalina implementation of malloc assumes it will have access to
all RAM space not used by Catalina itself – and this includes the VAR space
used by POD. 

 POD cannot  use used with  XMM programs -  use  BlackCat or  BlackBox
instead. See the section XMM Support for more details on XMM programs, or
the document  Getting Started with BlackCat or the  BlackBox Reference
Manual.

Since it has to be embedded within the Catalina Kernel, a special version of POD is
included – this is a customized version which is “aware” of the Catalina Kernel, the
special Kernel registers, and also has support for LMM programs. This can simplify
debugging Catalina programs. 

POD is  automatically  included  with  a  Catalina  program when  one  of  the  debug
targets is specified (e.g. using the option -t pod to Catalina). Note that POD is not a
source level debugger,  so when debugging a Catalina program, it  will  usually be
necessary  to  produce  a  listing  of  the  actual  LMM  PASM  code  (which  can  be
generated by using the Catalina command-line option –y 14

The debug targets use a special version of the Catalina Kernel that makes space for
POD by moving the "native" support for the basic floating point operations (normally
included  in  the  Kernel)  out  to  be  handled  by  a  plugin.  This  means  that  when
debugging programs that use ANY floating point operations (not just the math library
functions) your Catalina programs MUST be compiled with the -lma option to Catalina
rather than the -lm option.

To save space (and also because the program being debugged often needs the HMI
devices itself) all the pod target assumes the use of serial communications for all

14 Note  that  the  addresses  used  in  POD are  the  actual  addresses,  which  may not  match  the
addresses given  in  the listing –  the listing shows  address in  the  binary  image,  which  is  not
necessarily the same as the address at which the Catalina program will load and execute. 

Copyright 2013 Ross Higson Page 59 of 158

http://www.winehq.org/


Catalina C Compiler Reference Manual

communications between the user and POD. This is why it is necessary to use an
external serial application (i.e. PropTerminal) when debugging.

Using POD

This document is not intended to be either a POD tutorial or a debugging tutorial. It
only  describes  the  features  that  have  been  added  to  POD  specifically  support
Catalina LMM PASM programs. These are:

 When displaying  memory,  CTRL+PAGEUP and  CTRL+PAGEDOWN have
been  implemented  to  move  through  memory  a  section  at  a  time.  When
displaying hub RAM as longs, a section is 1024 longs, (or 4096 bytes). When
displaying cog RAM, or hub RAM as bytes, a section is 64 longs (256 bytes).

 When displaying an assembly view, CTRL+L is used to toggle POD between
LMM mode and COG mode. The two modes are as follows:

COG mode : In COG mode POD displays the cog RAM, with individual PASM
instructions disassembled. You can set breakpoints and/or single step through
individual kernel operations, including the fetching of each LMM instruction
from hub RAM. The only difference between this mode and standard POD is
that the LMM entry points in the kernel and the LMM registers are labeled
(this is for convenience only, since the disassembled PASM code does not
use these labels). For example, you may see code like:

    000 Z   mov    $001, #$001
    001     rdlong $002, $001 WZ
    002 NZ  add    $003, $002

LMM  mode  :  In  LMM mode  POD displays  the  hub  RAM,  with  individual
Catalina  LMM  PASM  instructions  disassembled.  You  can  set  breakpoints
ad/or single step through individual LMM functions, including the special LMM
instructions.  Instructions  that  represent  LMM instructions  are  shown  using
their LMM names. Parameters to these instructions are shown as simply 'long
<value>'. Each LMM instruction is disassembled to show the LMM registers it
uses (i.e. r0 … r23 and the special registers PC, SP, FP, RI, BC, BA, BZ). For
example, you may see code like:

    0000    NEWF
    0004    sub   SP, #4
    000C    LODL
    0010    long  $00001000
    0014    adds  r2, RI
    0018    mov   r0, r2
    001C    RETF

 POD always starts in COG mode, at the program entry point (which is COG
address 1). When you first switch to LMM mode, POD will display the Catalina
program entry point (C_main). In both COG and LMM modes you can single
step into (F5) or single step over (F6) individual instructions, set breakpoints
(SPACE or F9) and continue execution (F8). But note that single stepping

Copyright 2013 Ross Higson Page 60 of 158



Catalina C Compiler Reference Manual

into a special LMM instruction does not mean to enter COG mode - it means
enter an LMM subroutine if the LMM instruction is a CALL or CALI. 

 Note  that  in  LMM mode,  it  is  possible  to  align  the  start  of  the  assembly
language display with one of the LMM instruction parameters, and not with the
actual  LMM  instruction  itself  (e.g.  the  long  $00001000 shown  in  the
example  above,  rather  than  the  proceeding  LODL).  This  can  cause  the
assembly language to be decoded incorrectly.

 Whenever the program execution is paused, you can switch between LMM
and COG modes.  However,  the  results  of  single  stepping  in  both  modes
during the same debug session are sometimes unpredictable (a bug I have
yet  to find!).  Switching between LMM and COG mode to view memory or
registers is fine, but it is better to avoid single stepping in both modes in the
same debug session. Where possible single step in only one of the modes -
i.e. only in LMM or only in COG mode, but not both.

SD Card Support
If you have a Propeller platform that has an SD Card (such as the Hybrid), you can
use the SD Card in two ways:

 As a way of loading programs into the Propeller. Catalina provides a Generic
SD Card Loader that can be used for this purpose.

 As a file  system for  Catalina programs to  use15.  Catalina provides targets
specifically  for  this  purpose.  A description of  the  file  system functions are
given below in File System Support.

Note that the two uses are completely independent – a program may be loaded from
an SD Card but not thereafter access the SD Card at all,  or  a program may be
loaded from EEPROM or via serial I/O but then access the SD Card as a file system.
Of course, a single program may also do both.

Also, note that if you remove and re-insert the SD Card at any time, you will
need to restart any program that is using it.

More details and examples on using the SD Card are provided in the document
Getting Started with Catalina.

Catalina also provides proxy SD drivers, which on multi-CPU systems allows one
CPU to  use an SD device  physically  connected to  another  CPU.  This  is  further
described in the Multi-CPU System Support section later in this document.

15  Note that some platforms (such as the Hydra) cannot use the SD Card at the same time as other
hardware such as the SRAM card – this limits the usefulness of the SD Card as it can only be
used to load and execute LMM programs, not XMM programs (which require the Hydra Xtreme
SRAM card) - and LMM programs typically do not have enough space to load the SD Card file
system support.

Copyright 2013 Ross Higson Page 61 of 158



Catalina C Compiler Reference Manual

File System Support
If  you  have  a  Propeller  platform that  has an  SD or  Card  (such as  the  Hybrid),
Catalina provides full support for accessing FAT16 or FAT32 file systems on the SD
Card16.

To  enable  full  file  system  support,  simply  compile  a  program  with  one  of  the
“extended”  versions  of  the  standard  C  library  –  i.e.  libcx or  libcix.  The  default
version of the C library (libc) only supports I/O on stdin, stdout and stderr, whereas
the extended versions allows I/O on files as well. 

Catalina provides two sets of functions that can be used to access the file system:

1. The standard C library I/O functions described in the include file stdio.h (i.e.
fopen, fprintf, fscanf etc). 

Refer to any ANSI C language reference for details on the stdio functions –
Catalina provides a full  implementation of  all  functions documented in  the
ANSI C standard.

2. The Catalina file system functions described in the include file  catalina_fs.h.
These functions are designed to be more space efficient than the standard C
functions, and make it  possible to write  programs that can access the file
system on a Propeller that has only the standard 32k of Hub RAM. Using the
stdio functions generally requires XMM RAM. 

The Catalina file system functions provide both  managed and  unmanaged
functions for file I/O. The difference is how memory required for file control
blocks is managed. The “managed” calls are simpler to use, because they
allocate and manage internally the memory required for file control blocks –
the downside is that these programs also pull in the malloc functions from the
C library. This can incur a significant code size overhead on Propellers where
the only RAM available is the internal 32kb of Hub RAM. For programs that do
not  want  to  incur  this  overhead,  equivalent  “unamanaged”  functions  are
provided, which allow the use of statically allocated memory for file control
blocks  (note  that  if  there  is  no  “unmanaged”  equivalent  for  a  particular
function, the function can be for both managed and unmanaged files).

The functions provided are as follows:

int _mount(int unit, int pnum)

mount must be called (once) before any file system access. (unit and
pnum are normally left  as zero). Note that only SD cards WITH AN
MBR are supported.

int _unmount()

unmount  must  be  called  (once)  before  another  SD  card  can  be
mounted.

16 FAT12 file systems can also be supported, but this is disabled in the libraries provided to save
space (since FAT12 is rarely used any more).  Support  for FAT12 can be re-enabled, but  this
requires the Catalina library to be recompiled from source.

Copyright 2013 Ross Higson Page 62 of 158



Catalina C Compiler Reference Manual

int _create(const char *path, int mode)

create  and  open  a  new  managed  file  (managed  files  have  the
FILEINFO structure allocated and managed internally).  The file must
be closed using the managed close function (i.e.  _close). The mode
can be:

 0 - read only

 1 - write only

 2 - read and write

int _open(const char *path, int flags)

open a managed file and return the file number (managed files have
the  FILEINFO  structure  allocated  and  managed  internally  -  which
requires that malloc be used by the program). The file must be closed
using the managed close function (i.e. _close). The mode can be:

 0 - read only

 1 - write only

 2 - read and write

int _close(int d)

close  a  managed  file  (managed  files  have  the  FILEINFO  structure
allocated and managed internally).  The file must have been opened
using the managed open function (i.e. _open).

int _read(int d, char *buf, int nbytes)

read from a file.

int _write(int d, const char *buf, int nbytes)

write to a file.

off_t _lseek(int d, off_t offset, int whence)

seek (move) within a file. Whence can be:

0 – SEEK_SET (absolute position within the file)

1 – SEEK_CUR (relative to the current position within the file)

2 – SEEK_END (relative to the end of the file)

int _create_directory(const char *path)

create a new directory.  The path to the new directory must  already
exist  (i.e.  only the last element of  the path name is created) and a
directory must not already exist with that name.

Copyright 2013 Ross Higson Page 63 of 158



Catalina C Compiler Reference Manual

int _rename(const char *path, const char *newname)

rename a file from path to newname. The path is the complete path the
the original file, but the new name is only the file name component –
i.e. it should not contain the path again.

int _unlink(const char *path)

unlink (delete) a file.

int _create_unmanaged(const char *path, int mode, PFILEINFO fd)

create  and open a  new unmanaged file  and return  the  file  number
(unmanaged  files  require  a  pointer  to  a  FILEINFO  structure  to  be
provided). The file must be closed using the unmanaged close function
(i.e. _close_unmanaged). The mode can be:

 0 - read only

 1 - write only

 2 - read and write

int _open_unmanaged(const char *path, int flags, PFILEINFO fd)

open an unmanaged file and return the file number (unmanaged files
require a pointer to a FILEINFO structure to be provided). The file must
be  closed  using  the  unmanaged  close  function  (i.e.
_close_unmanaged). The mode can be:

 0 - read only

 1 - write only

 2 - read and write

int _close_unmanaged(int d)

close an unmanaged file using the file number. Files that were opened
unmanaged must be closed using the unmanaged close function (i.e.
_close_unamanged).

Note that it is possible to mix the various file access functions – in fact sometimes it
is  necessary  to  do  so.  For  example,  the  stdio functions  provide  no  means  of
unmounting a file  system if  it  becomes necessary to  change SD cards – so the
_unmount function  provided  can  be  used  for  this  purpose.   Similarly,  the  stdio
functions provide no way of creating a new directory – so the Catalina file system
library provides a _create_directory function that can be used.

Some important things to note about Catalina file system support:

• Catalina only supports DOS 8.3 style file names (i.e. not long file names).
Also, when specifying file names in the file functions, the 8 character name,
the “.”, and the extension should all be specified, but some of the functions
make  accessible  the  raw  FAT  directory  entries  where  11  characters  are
always  stored  in  each  entry,  with  each  of  the  8  character  name  and  3

Copyright 2013 Ross Higson Page 64 of 158



Catalina C Compiler Reference Manual

character extension components padded with trailing blanks and with no “.”
inserted  between  them  and  no  terminating  character.  To  display  a  more
“friendly” file name, it would be necessary to remove any trailing blanks and
insert the “.” character.

• Only FAT file systems with sector sizes of 512 bytes are supported. Some
FAT  file  systems  use  larger  sector  sizes  to  increase  the  supported  disk
capacity – such file systems (which can be created under some versions of
DOS and Windows) will be unusable under Catalina.

• The path separator is “/”  (even though FAT it  is  fundamentally a DOS file
system where it might be more common to use “\” as a path separator) – so
the following are valid directory names:

/

/dir

/dir1/dir2

The following are valid file names:

/my_file

/dir/xxx.txt

/dir1/dir2/xxx.bas

• When creating files or directories, the path must already exist up to the final
element – only  the final  element of  the file  or  path name can actually  be
created in each call. Of course, repeated calls can be used to create deeper
path  names –  e.g  to  create  a  file  with  path  “/a/b/c/xxx.txt”  in  a  blank file
system:

first create directory “/a”

then create directory “/a/b”

then create directory “/a/b/c”

then create file “/a/b/c/xxx.txt”

• There is no concept of “current directory”. If you want to refer to a file in a sub-
directory, you must always specify the path all the way from the root directory
(e.g. “/dir1/dir2/dir3/xxx.xxx”).  There is a limit  of  64 characters in any path
name – this can be increased by recompiling the Catalina library from source,
but this is not recommended as it increases the stack space required for all
file access functions..

• The line terminator is the UNIX line feed character, or “\n”. To create a file
with  DOS style  line termination,  it  would be necessary to  explicitly write  a
carriage return (“\r”) before each line terminator.

• No checking is done in file names for characters that may be invalid in FAT
file systems. This means it is possible to create files that would not be valid if

Copyright 2013 Ross Higson Page 65 of 158



Catalina C Compiler Reference Manual

the SD Card were to subsequently be used in a DOS or Windows system. For
instance, “\” is mistakenly used as the path separator to try and create a file
“xxx”  in  directory  “dir1”  by  calling  the  file  creation  function  with  the  path
“dir1\xxx”,  then  the  file  system  will  instead  create  a  file  with  the  name
“dir1\xxx” in the root directory - and this file may not be valid under MS-DOS
or Windows since it will include the character “\” (which is invalid in FAT file
systems).

• When renaming files, no check is made to see if a file with the new name
already exists – so it is possible to end up with two files of the same name in a
directory. If this is possible, check that the new name does not already exist
before renaming.

Serial Device Support
Catalina has many options for support for serial devices:

1. Use the PC HMI plugin, which configures a single serial port, normally on pins
30 & 31 and at 115200 baud. You use this option by adding  -C PC on the
command line, or selecting this HMI option in Code::Blocks. Access to this
single serial port is via the standard C stdio functions (e.g. getc, putc, scanf,
printf etc). To configure this port, you can edit the details in the appropriate
<platform>_DEF.inc file for your platform (e.g. HYDRA_DEF.inc). 

Because  it   is  specifically  designed  to  implement  various  HMI  specific
capabilities, using the PC HMI plugin as a serial option requires 3 cogs for 1
port, so it is mainly worthwhile if you want to access the serial port via stdio
(or you have a program that does so and do not want to change it).

2. Use the TTY HMI plugin, , which configures a single serial port, normally on
pins 30 & 31 and at 115200 baud. You use this option by adding -C TTY on
the command line, or selecting this HMI option in Code::Blocks. Access to this
single serial port is via the standard C stdio functions (e.g. getc, putc, scanf,
printf etc). To configure this port, you can edit the details in the appropriate
<platform>_DEF.inc file for your platform (e.g. HYDRA_DEF.inc). 

The TTY HMI option uses one less cog than the PC HMI option, but  still
requires two cogs – it is worthwhile if you want to access the serial port via
stdio (or you have a program that does so and do not want to change it).

3. Use the 4 port Serial library, which allows up to 4 serial ports using one cog,
on any pins. You use this option by adding -lserial4 on the command line, or
adding this library in Code::Blocks. This loads the 4 port serial plugin, and
links your program with the libserial4 library. Access to these serial ports are
via a special library functions, described below. To configure these ports, you
can edit the details in Extras.spin. This is the recommended way if you only
have one spare cog, or if you need multiple serial ports. 

Note that by default, the file  Extras.spin file configures only one serial port
(port 0) on pins 30 & 31 at 115200 baud.  These are the same pins as the PC
HMI normally uses, so if your propeller platform enables the PC HMI plugin by

Copyright 2013 Ross Higson Page 66 of 158



Catalina C Compiler Reference Manual

default, you will need to add the -C NO_HMI flag to use the serial port (or edit
Extras.spin to move the port to other pins). 

4. Use the  tty serial library, which allows access to a single high speed serial
port using one cog, on any pins. You use this option by adding -ltty on the
command line, or adding this library in Code::Blocks. This loads the tty plugin,
and links your program with the libtty library. Access to the serial ports are via
a special library functions, described below. To configure this port, you can
edit the details in Extras.spin. This is the recommended way if you only have
one spare cog, and need access to a high speed serial port.

Note that by default, the file Extras.spin file configures the tty serial port on
pins 30 & 31 at 115200 baud.  These are the same pins as the  PC HMI
normally uses, so if  your propeller platform enables the PC HMI plugin by
default, you will need to add the -C NO_HMI flag to use the tty serial port (or
edit Extras.spin to move the port to other pins). 

5. Use the tty256 serial library, which allows access to a single high speed serial
port using one cog, on any pins. The tty256 library is similar to the tty library,
except the serial plugin used supports 256 byte buffers for Tx and Rx, which
may be required for some serial applications. You use this option by adding
-ltty256 on the command line,  or adding this library in Code::Blocks.  This
loads the tty256  plugin,  and links  your  program with  the  libtty256 library.
Access to the serial ports are via a special library functions, described below.
To configure this port,  you can edit  the details in  Extras.spin.  This is the
recommended way if you only have one spare cog, and need access to a high
speed serial port that supports Tx and Rx buffers of 256 bytes.

Note that by default, the file Extras.spin file configures the tty256 serial port
on pins 30 & 31 at 115200 baud.  These are the same pins as the PC HMI
normally uses, so if  your propeller platform enables the PC HMI plugin by
default, you will need to add the -C NO_HMI flag to use the tty256 serial port
(or edit Extras.spin to move the port to other pins). 

You can combine several methods of adding serial capabilities, provided you have
sufficient  cogs  and  the  pin  configurations  used  by  the  various  serial  ports  don't
conflict. Or you can use another HMI option (e.g. TV, VGA) and the serial plugins
together.

The tty library (libtty)
Here  are  the  functions  implemented  in  libtty (also  described  in  the  include  file
catalina_tty.h). They are designed to be equivalent to the Spin functions defined in
the original Full Duplex Serial driver:

int tty_rxflush()

Flush the receive buffer until empty (discard any characters received).

int tty_rxcheck()

Copyright 2013 Ross Higson Page 67 of 158



Catalina C Compiler Reference Manual

Check if there are characters in the receive buffer – returns the byte, or
-1 if no characters are available. Does not wait.

int tty_rxtime(unsigned ms)

Wait up to ms milliseconds, or until a character is received. Returns -1
if no character was received in the specified time.

int tty_rx()

Read a byte from the receive buffer. If there are no character, wait until
a character is received.

int tty_tx(char txbyte)

Put a byte in the transmit buffer. If there is no space, in the buffer wait
until there is space.

int tty_txflush()

Wait until there are no characters in the transmit buffer (i.e. all bytes
have been sent).

void tty_str(char *stringptr)

Send a null-terminated string to the transmit buffer.

void tty_decl(int value, int digits, int flag)

Send a  signed  decimal  number.  This  function  is  not  usually  called
directly – instead, call dec, decf or decx (see below). The flag has the
following meaning:

0 print  only required characters (plus sign if  necessary).  Note that
digits should always be specified as 10 in this case.

1 right justify and space pad up number using digits characters (plus
sign if necessary).

2 right justify and zero pad number using digits characters (plus sign
if necessary).

void tty_hex(unsigned value, int digits)

Send the rightmost digits characters of the value in hexadecimal.

void tty_ihex(unsigned value, int digits)

Send  the  rightmost  digits characters  of  the  value  in  hexadecimal,
prefixed by a '$' character.

void tty_bin(unsigned value, int digits)

Send the rightmost digits characters of the value in binary.

void tty_ibin(unsigned value, int digits)

Send the rightmost digits characters of the value in binary, prefixed by
a '%' character.

Copyright 2013 Ross Higson Page 68 of 158



Catalina C Compiler Reference Manual

void tty_padchar(unsigned count, char txbyte)

Send count instances of the character txbyte.

The following useful macros are defined to assist in the use of the above functions:

tty_dec(value) 

Send a signed decimal string, up to 10 digits, plus a sign character if
required.

tty_decf(value, width)

Send a space-padded fixed width decimal string, in width digits, plus a
sign character if required. The width can be up to 10.

tty_decx(value, width)

Send a zero-padded fixed width decimal string, in width digits, plus a
sign character if required. The width can be up to 10.

tty_putc( txbyte)

Same as tty_tx

tty_newline(port) 

Send a newline character. By default, the newline is ASCII 10. If the C
symbol  TTY_CR_NEWLINE is defined, then the newline is ASCII 13.
The purpose of defining this symbol is to make this function work like
the Spin equivalent.

tty_strln(port, stringptr)

Send  a  zero  terminated  string  newline  character.  By  default,  the
newline is ASCII 10. If the C symbol  TTY_CR_NEWLINE is defined,
then the newline is ASCII 13. The purpose of defining this symbol is to
make this function work like the Spin equivalent.

tty_cls(port) 

Send a Form Feed character (ASCII 12).

tty_getc(port) 

Same as tty_rx.

The tty256 library (libtty256)
The functions implemented in  libtty256 are identical to those described above in
libtty (also described in the include file catalina_tty.h). 

The 4 port Serial library (libserial4)
Here are the functions implemented in  libserial4 (also described in the include file
catalina_serial4.h). They are designed to be equivalent to the Spin functions defined
in the original Spin version of the 4 port serial driver, and also to the libtty functions
described above. In all cases, the port number is a number in the range 0 .. 3:

Copyright 2013 Ross Higson Page 69 of 158



Catalina C Compiler Reference Manual

int s4_rxflush(unsigned port)

Flush the receive buffer until empty (discard any characters received).

int s4_rxcheck(unsigned port)

Check if there are characters in the receive buffer – returns the byte, or
-1 if no characters are available. Does not wait.

int s4_rxtime(unsigned port, unsigned ms)

Wait up to ms milliseconds, or until a character is received. Returns -1
if no character was received in the specified time.

int s4_rx(unsigned port)

Read a byte from the receive buffer. If there are no character, wait until
a character is received.

int s4_tx(unsigned port, char txbyte)

Put a byte in the transmit buffer. If there is no space, in the buffer wait
until there is space.

int s4_txflush(unsigned port)

Wait until there are no characters in the transmit buffer (i.e. all bytes
have been sent).

void s4_str(unsigned port, char *stringptr)

Send a null-terminated string to the transmit buffer.

void s4_decl(unsigned port, int value, int digits, int flag)

Send a  signed  decimal  number.  This  function  is  not  usually  called
directly – instead, call dec, decf or decx (see below). The flag has the
following meaning:

0 print  only required characters (plus sign if  necessary).  Note that
digits should always be specified as 10 in this case.

1 right justify and space pad up number using digits characters (plus
sign if necessary).

2 right justify and zero pad number using digits characters (plus sign
if necessary).

void s4_hex(unsigned port, unsigned value, int digits)

Send the rightmost digits characters of the value in hexadecimal.

void s4_ihex(unsigned port, unsigned value, int digits)

Send  the  rightmost  digits characters  of  the  value  in  hexadecimal,
prefixed by a '$' character.

void s4_bin(unsigned port, unsigned value, int digits)

Send the rightmost digits characters of the value in binary.

Copyright 2013 Ross Higson Page 70 of 158



Catalina C Compiler Reference Manual

void s4_ibin(unsigned port, unsigned value, int digits)

Send the rightmost digits characters of the value in binary, prefixed by
a '%' character.

void s4_padchar(unsigned port, unsigned count, char txbyte)

Send count instances of the character txbyte.

The following useful macros are defined to assist in the use of the above functions:

s4_dec(port, value) 

Send a signed decimal string, up to 10 digits, plus a sign character if
required.

s4_decf(port, value, width)

Send a space-padded fixed width decimal string, in width digits, plus a
sign character if required. The width can be up to 10.

s4_decx(port, value, width)

Send a zero-padded fixed width decimal string, in width digits, plus a
sign character if required. The width can be up to 10.

s4_putc(port, txbyte)

Same as s4_tx

s4_newline(port) 

Send a newline character. By default, the newline is ASCII 10. If the C
symbol  S4_CR_NEWLINE is  defined, then the newline is ASCII 13.
The purpose of defining this symbol is to make this function work like
the Spin equivalent.

s4_strln(port, stringptr)

Send  a  zero  terminated  string  newline  character.  By  default,  the
newline is  ASCII  10.  If  the C symbol  S4_CR_NEWLINE is  defined,
then the newline is ASCII 13. The purpose of defining this symbol is to
make this function work like the Spin equivalent.

s4_cls(port) 

Send a Form Feed character (ASCII 12).

s4_getc(port) 

Same as s4_rx.

Sound Support
Sound support is provided by a plugin based on Based on Nick Sabalausky's 22KHz,
16-bit,  6  Channels  Sound  Driver.  This  sound  driver  works  on  many  platforms,
includeing the  Hydra and  C3.  It  is  configured by setting the SOUND_PIN in the
platform definition file (e.g. C3_DEF.inc) 

Copyright 2013 Ross Higson Page 71 of 158



Catalina C Compiler Reference Manual

Here are the functions implemented in the  libsound  library (also described in the
include file catalina_sound.h):

extern void PlaySoundFM (int channel, 
                                              unsigned int shape, 
                                              unsigned int freq, 
                                              unsigned int duration,
                                              unsigned int volume, 
                                              unsigned int amp_env)

Starts  playing  a frequency modulation  sound.  If  a  sound is  already
playing, then the old sound stops and the new sound is played.

channel:  The channel on which to play the sound (0-5)

shape: The desired shape of the sound. Use any of the following
constants:  SHAPE_SINE,  SHAPE_SAWTOOTH,
SHAPE_SQUARE,  SHAPE_TRIANGLE,  SHAPE_NOISE
(see  catalina_sound.h). Do NOT send a  SHAPE_PCM_*
constant, use PlaySoundPCM() instead.

freq: The  desired  sound  frequency.  Can  be  a  number  or  a
NOTE_* constant  (see  catalina_sound.h).  A  value  of  0
leaves the frequency unchanged.

duration:  Either a 31-bit duration to play sound for a specific length
of  time,  or  (DURATION_INFINITE |  "31-bit  duration  of
amplitude  envelope")  to  play  until  StopSound,
ReleaseSound or  another  call  to  PlaySound is  called.
See  "Explanation  of  Envelopes  and  Duration"  in
catalina_sound.h for important details.

volume:    The  desired  volume  (1-255).  A  value  of  0  leaves  the
volume unchanged.

amp_env:   The amplitude envelope, specified as eight 4-bit nybbles
from $0 (0% of arg_volume, no sound) to $F (100% of
arg_volume,  full  volume),  to  be applied least  significant
nybble  first  and  most  significant  nybble  last.  Or,  use
NO_ENVELOPE to  not  use  an  envelope.  See
"Explanation  of  Envelopes  and  Duration"  in
catalina_sound.h for important details.

extern void PlaySoundPCM(int channel, 
                                                void *pcm_start, 
                                                void *pcm_end, 
                                                unsigned int volume)

Plays a signed 8-bit  11KHz PCM sound once. If  a sound is already
playing, then the old sound stops and the new sound is played.

channel:   The channel on which to play the sound (0-8)

Copyright 2013 Ross Higson Page 72 of 158



Catalina C Compiler Reference Manual

pcm_start: The address of the PCM buffer

pcm_end:   The address of the end of the PCM buffer

volume:    The desired volume (1-255)

amp_env:   The amplitude envelope, specified as eight 4-bit nybbles
from $0 (0% of arg_volume, no sound) to $F (100% of
arg_volume, full  volume), to be applied least  significant
nybble  first  and  most  significant  nybble  last.  Or,  use
NO_ENVELOPE to  not  use  an  envelope.  See
"Explanation  of  Envelopes  and  Duration"  in
catalina_sound.h for Important details.

extern void StopSound(int channel)

Stops playing a sound.

channel:  The channel to stop.

extern void ReleaseSound(int channel)

"Releases" an infinite duration sound - .i.e. starts the release portion of
the sound's amplitude envelope.

channel:  The channel to "release".

extern void SetFreq(int channel, unsigned int freq)

Changes the frequency of the playing sound. If called repeatedly, it can
be used to create a frequency sweep.

channel:  The channel to set the frequency of.

freq:     The  desired  sound  frequency.  Can  be  a  number  or  a
NOTE_* constant  (see  catalina_sound.h).  A  value  of  0
leaves the frequency unchanged.

extern void SetVolume(int channel, unsigned int volume)

Changes the volume of the playing sound. If called repeatedly, it can
be used to manually create an envelope.

channel:  The channel to set the volume of.

volume:   The  desired  volume  (1-255).  A  value  of  0  leaves  the
volume unchanged.

SPI/I2C Support
Simple SPI & I2C bus support is provided by a plugin is based on Mike Green's
sdspiFemto Spin object.  It  supports  both  an I2C and SPI  Bus.  The I2C bus is
intended for use in communicating with an EEPROM, and the SPI bus is intended for
use communicating with an SD Card. 

The EEPROM functions should  work on all Propellers, and the SD Card functions
should work  with  the  SD Cards on all  Propellers  except  the  C3 (which  requires

Copyright 2013 Ross Higson Page 73 of 158



Catalina C Compiler Reference Manual

additional select logic to select amongst various devices that share the SPI bus -
however, the existing Catalina SD Plugin supports the C3).

The library provides functions to read and write EEPROMs or SD Cards, and to boot
a program from and address in EEPROM, or from a sector on SD Card.

The following library routines are provided in libspi. These library routines allocate a
lock to prevent contention, so they are safe for use with a multithreading kernel:

extern int spi_bootEEPROM(unsigned int addr)

Load and run a program from EEPROM.

addr the  address  in  EEPROM  (use  the  EEPROM_ADDR
macro to encode the address – see catalina_spi.h)

NOTE: This function will return any lock allocated by the SPI code to
the pool of unused locks, but it is the caller's responsibility to ensure
that any OTHER locks checked out are returned before calling the boot
function – otherwise if the program being booted uses locks, it might
not be able to allocate one! 

extern int spi_readEEPROM(unsigned int addr, void *buffer, int count)

Read from EEPROM To buffer

addr   address in EEPROM (use the EEPROM_ADDR macro to
encode the address – see catalina_spi.h)

buffer buffer to read

count  count of bytes to read 

extern int spi_writeEEPROM(unsigned int addr, void *buffer, int count)

Write from buffer to EEPROM

addr   address in EEPROM (use the EEPROM_ADDR macro to
encode the address – see catalina_spi.h)

buffer buffer to write

count  count of bytes to write 

extern int spi_checkPresence(unsigned int addr)

Check there is an I2C bus and EEPROM at the specified address. Note
that  this  routine  cannot  distinguish  between  a  32Kx8  and  a  64Kx8
EEPROM since the 16th address bit is a "don't care" for the 32Kx8
devices.  

Return true if EEPROM present, false otherwise.

addr   address in EEPROM to check (use the EEPROM_ADDR
macro to encode the address – see catalina_spi.h)

extern int spi_writeWait(unsigned int addr)

Copyright 2013 Ross Higson Page 74 of 158



Catalina C Compiler Reference Manual

Wait for EEPROM Write to finish.

addr   address to check

Return true if EEPROM present, false otherwise.

extern int spi_initSDCard(int DO, int Clk, int DI, int CS)

Initialize SD Card

DO, Clk, DI, CS Pin numbers to use

extern int spi_stopSDCard(void)

Stop SD Card access

extern int spi_bootSDCard(unsigned int addr, int count)

Boot from an SD Card

addr the address on the SDCard.

count the count of bytes to load (must be at least 16)

NOTE: This function will return any lock allocated by the SPI code to
the pool of unused locks, but it is the caller's responsibility to ensure
that any OTHER locks checked out are returned before calling the boot
function – otherwise if the program being booted uses locks, it might
not be able to allocate one! 

extern int spi_readSDCard(unsigned int addr, void *buffer, int count)

Read from SDCard to buffer

addr   address on SDCard

buffer buffer to read

count  count of bytes to read 

extern int spi_writeSDCard(unsigned int addr, void *buffer, int count)

write from buffer to SDCard

addr   : address on SDCard

buffer : buffer to write

count  : count of bytes to write 

extern unsigned int spi_getControl(int i)

Get an unsigned int from the control block

i control block index             

extern void spi_setControl(int i, unsigned int value)

Set a value in the control block

i control block index

Copyright 2013 Ross Higson Page 75 of 158



Catalina C Compiler Reference Manual

value value to set

The  following  macros  are  provided  in  catalina_spi.h to  assist  in  constructing
EEPROM addresses:

EEPROM_ADDR(SCL_PIN, ADDR) 

Format an EEPROM address for use in the EEPROM functions such
as spi_readEEPROM() or spi_writeEEPROM()

SCL_PIN the number of  the I2C bus SCL pin (the SDA pin is
assumed to be SCL_PIN + 1)

ADDR The address (up to 19 bits) within the EEPROM.

Support for other Output Formats
Catalina normally generates either binary or eeprom output files – the same as are
produced  by  other  Propeller  compilers,  including  the  Parallax  Propeller  tool.
Typically, these formats are then loaded into EEPROM or onto an SD Card.

However,  to  support  applications  where  neither  EEPROM nor  SD Cards  are  an
option  for  loading  Catalina  programs,  Catalina  supports  generating  other  output
formats – such as Motorola S records or Intel Hex records – that can be used in
conjunction with other program loaders.

More details and examples on generating other output formats are provided in the
document Getting Started with Catalina.

SPI Flash and Cache Support
This version of Catalina supports loading and executing XMM programs from SPI
RAM and SPI Flash.

When using serial RAM such as SPI RAM or SPI Flash (which is the only XMM RAM
available on the  C3,  SuperQuad,  RamPage, RamPage2 and  Propeller Memory
Card boards) executing programs can be very slow. To speed this up, Catalina now
provides a  caching XMM driver.  This  driver  dedicates  a  portion  of  Hub RAM to
“cache”  the  contents  of  the  XMM  RAM,  so  that  the  XMM  RAM  need  only  be
consulted if the data is not already available in the much faster Hub RAM.

Although the caching driver can be used in conjunction with  any supported XMM
platform, it is mainly intended for platforms that use SPI RAM or SPI Flash. On those
platforms, it can speed up program execution by a factor of 10. While it can also
speed up program execution on other platforms with slow XMM RAM (such as the
DracBlade),  the  performance  improvement  is  less  dramatic.  On  some  XMM
platforms (such as the Hydra or Hybrid) it results in only a small improvement, and
on platforms with very fast XMM (such as the RamBlade) using the caching driver
can actually slow down performance.

On platforms with both SPI RAM and SPI Flash, the caching driver does not need to
be used to use only the SPI RAM – but it  must be used in order to use the SPI
Flash. 

Copyright 2013 Ross Higson Page 76 of 158



Catalina C Compiler Reference Manual

The caching XMM driver can be enabled by defining one of the following symbols on
the command line:

CACHED_1K use a 1k cache

CACHED_2K use a 2k cache

CACHED_4K use a 4k cache

CACHED_8K use a 8k cache

CACHED use a default size (8K) cache

For example:

catalina hello_world.c -lc -C CACHED

Note that the caching XMM driver requires sufficient free hub memory according to
the size of the cache, and also an extra cog. 

Since SPI Flash is non-volatile, it is possible to execute programs loaded into SPI
Flash  without  having  to  reload  them.  To  facilitate  this,  Catalina  provides  a
Flash_Boot utility, specifically designed to boot programs already loaded into SPI
Flash. Note that when compiling the  Flash_Boot utility,  need to specify ALL the
plugins you want - only plugins specified will be loaded. For example, if you want the
Flash_Boot program  to  load  an  SD driver,  a  CLOCK driver  and  use  the
HIRES_vGA HMI  but  not  load a mouse,  you  would  compile  the  utilities  using  a
command like:

build_all C3 CACHED SD CLOCK HIRES_VGA NO_MOUSE

To run a program loaded into SPI Flash on Propeller reset, you can program the
Flash_Boot binary into EEPROM. 

You can also recompile the  Flash_Boot program with different drivers - this might
(for example) enable you to run the program in SPI Flash with either a TV driver or a
VGA driver. 

Note that the program in Flash will  NOT be aware of whether or not the caching
driver is in use, or of the size of the cache. This means that the same program can
be easily executed with different cache sizes using different versions of Flash_Boot.

Copyright 2013 Ross Higson Page 77 of 158



Catalina C Compiler Reference Manual

Catalina Targets
A  Catalina  target is  a  SPIN  program  responsible  for  establishing  the  execution
environment  for  Catalina  programs.  The  precise  details  of  the  target  are  often
unknown  to  the  Catalina  program,  and may depend on the  underlying  Propeller
platform. For example, the same C program can be executed using different targets
– one target may use a TV as its display device, and another – even on the same
platform – may use the VGA display for the same purpose. Wrapping such details up
in a target gives Catalina programs an effective hardware abstraction layer.

This section describes the targets provided in the standard Catalina Target Package.
Nine such targets are provided – three for LMM programs, and two each for EMM,
SMM and XMM programs:

 The default LMM target (lmm_default).  Any program compiled with the  –x0
command line option (or without  any  –x  option) will  use this target unless
another target is explicitly specified using the –t command line option. 

 The POD debugger LMM target (lmm_debug). This target supports the POD
debugger. This target must be explicitly specified on the command line using
the –tdebug option.

 The BlackBox and BlackCat debugger LMM target (lmm_blackcat). This target
supports  both  the  BlackBox and BlackCat  debuggers.  This  target  is  used
whenever the –g or –g3 command line options are specified.

 The default  EMM target (emm_default).  Any TINY LMM program compiled
with the -C EEPROM command line symbol (or –x1) will use this target unless
another target is explicitly specified using the –t command line option. More
detail on EMM is given in the section EMM support below.

 The  BlackBox  and  BlackCat  debugger  EMM  target  (emm_blackcat). This
target  supports both the BlackBox and BlackCat debuggers.  This target  is
used  whenever  the  –g or  –g3 command  line  options  are  specified  (in
conjunction with -C EEPROM or the –x1 option).

 The default SMM target (smm_default).  Any program compiled with the  -C
SDCARD command line symbol (or  –x6) will use this target unless another
target is explicitly specified using the –t command line option. More detail on
SMM is given in the section SMM support below.

 The  BlackBox  and  BlackCat  debugger  SMM  target  (smm_blackcat). This
target  supports both the BlackBox and BlackCat debuggers.  This target  is
used  whenever  the  –g or  –g3 command  line  options  are  specified  (in
conjunction with with -C EEPROM or the –x6 option).

 The default XMM target (xmm_default).   Any program compiled with the  -C
SMALL or -C LARGE command line symbol (or the –x2 or –x5 options) will
use  this  target  unless  another  target  is  explicitly  specified  using  the  –t

Copyright 2013 Ross Higson Page 78 of 158



Catalina C Compiler Reference Manual

command  line  option.  More  detail  on  XMM  is  given  in  the  section  XMM
Support below.

 The  BlackBox  and  BlackCat  debugger  XMM  target  (xmm_blackcat). This
target  supports both the BlackBox and BlackCat debuggers.  This target  is
used  whenever  the  –g or  –g3 command  line  options  are  specified  (in
conjunction with -C SMALL or -C LARGE (or the –x2 or –x5 options).

Each target is a SPIN program loaded from the target directory, and compiled along
with the C program by Catalina. 

The configuration options supported by the targets in the standard Catalina Target
Package are given in the following section.

Default Target Configuration Options
The  standard  Catalina  Target  Package  supports  the  HYDRA,  the  HYBRID,  the
Parallax  DEMO board,  MORPHEUS, the  RAMBLADE,  the  RAMBLADE3.  the
TRIBLADEPROP,  the DRACBLADE, ASC, C3, PP  and  QUICKSTART boards. It
also supports XMM add-on board such as the SUPERQUAD, RAMPAGE, RP2 and
PMC boards. 

The  following  symbols  can  be  defined  on  the  command  line  to  affect  the
configuration of the default target package (note that some symbols only apply to
specific targets or memory modes):

HYDRA use HYDRA pin definitions, drivers and XMM functions

HYBRID use HYBRID pin definitions, drivers and XMM functions

DEMO use DEMO board pin definitions and drivers (this platform 
has no XMM support)

DRACBLADE use DRACBLADE pin definitions, drivers and XMM functions

RAMBLADE use RAMBLADE pin definitions, drivers and XMM functions

TRIBLADEPROP use TRIBLADEPROP pin definitions, drivers and XMM 
functions

MORPHEUS use MORPHEUS pin definitions, drivers and XMM functions

ASC use ASC board pin definitions and drivers (this platform has 
no XMM support)

C3 use C3 pin definitions, drivers and XMM functions

PP use PROPELLER PLATFORM pin definitions, drivers and 
XMM functions

QUICKSTART use QUICKSTART pin definitions, drivers and XMM 
functions

CUSTOM use a user-customized set of pin definitions, drivers and 
XMM functions (if applicable)

Copyright 2013 Ross Higson Page 79 of 158



Catalina C Compiler Reference Manual

HX512 use HX512 pin definitions, drivers and XMM functions

SUPERQUAD use SUPERQUAD pin definitions, drivers and XMM functions

RAMPAGE use RAMPAGE pin definitions, drivers and XMM functions

RP2 use RAMPAGE 2 pin definitions, drivers and XMM functions

PMC use PROPELLER MEMORY CARD pin definitions, drivers 
and XMM functions

CPU_1 on the TRIBLADEPROP, this means to use CPU #1 pin 
definitions and XMM functions – if not specified, CPU #2 
XMM functions are used by default

CPU_2 on the TRIBLADEPROP or MORPHEUS, this means to use 
CPU #2 pin definitions and XMM functions (this is also the 
default)

CPU_3 on the TRIBLADEPROP, this means to use CPU #3 pin 
definitions and devices.

COMPACT compile a CMM program (COMPACT memory model)

TINY compile an LMM program to use the TINY memory model

SMALL compile an XMM program to use the SMALL memory model

LARGE compile an XMM program to use the LARGE memory model

ALTERNATE use the alternate LMM Kernel (the alternate kernel is slightly 
smaller in size but does not include any floating point 
support).

SDCARD use the SDCARD two-phase loader

EEPROM use the EEPROM two-phase loader 

FLASH use an SPI FLASH loader

HIRES_VGA load a High Resolution VGA driver (not supported on the 
HYBRID, RAMBLADE or RAMBLADE3)

LORES_VGA load a Low Resolution VGA driver (not supported on the 
HYDRA, RAMBLADE, RAMBLADE3 or MORPHEUS)

VGA (same as LORES_VGA) 

HIRES_TV load a High Resolution TV driver (not supported on 
MORPHEUS, RAMBLADE or RAMBLADE3)

LORES_TV load a Low Resolution TV driver (not supported on 
MORPHEUS, RAMBLADE or RAMBLADE3)

TV (same as LORES_TV)

NTSC use NTSC mode (TV drivers only) 

Copyright 2013 Ross Higson Page 80 of 158



Catalina C Compiler Reference Manual

NO_INTERLACE use non-interlace mode (TV drivers only)

PC load a PC terminal emulator HMI plugin with screen and 
keyboard support

PROPTERMINAL load a PropTerminal HMI plugin with screen, keyboard and 
mouse support.

TTY load a simple serial HMI plugin with screen and keyboard 
support (no proxy support).

CR_ON_LF Translate CR to CR LF on output

NO_CR_TO_LF Disable translation of CR to LF on input

NON_ANSI_HMI Disable ANSI compliance in HMI (revert to prior behavior)

CLOCK load a Real-Time Clock plugin (or enable the RTC 
functionality in the SD plugin if it is loaded)

SD load the SD plugin (this is not usually required, since it is 
implied by the –lcx and –lcix options)

NO_FP do not load any Floating Point plugins (even if implied by 
other options)

NO_FLOAT same as NO_FP

NO_HMI do not load any HMI plugin (even if implied by other options)

NO_MOUSE do not start a mouse driver (even if one is loaded)

NO_KEYBOARD do not start a keyboard driver (even if one is loaded)

NO_SCREEN do not start a screen driver (even if one is loaded)

PROXY_SD See the Proxy Devices section later in this document

PROXY_SCREEN See the Proxy Devices section later in this document

PROXY_MOUSE See the Proxy Devices section later in this document

PROXY_KEYBOARD See the Proxy Devices section later in this document

CACHED_1K Use a 1K cache for XMM access

CACHED_2K Use a 2K cache for XMM access

CACHED_4K Use a 4K cache for XMM access

CACHED_8K Use a 8K cache for XMM access

CACHED Same as CACHED_8K

GAMEPAD Include the Gamepad driver

DISABLE_REBOOT Disable the automatic reboot if the program exits from the 
main() function – useful if you are using the TV or VGA driver

Copyright 2013 Ross Higson Page 81 of 158



Catalina C Compiler Reference Manual

and want the screen output to remain when the program 
exits.

Symbols are defined on the command line using the -C option. Multiple symbols can
be defined, but  -C  must be specified before each one. For example, to compile a
program for the Hybrid using a high-resolution TV driver in NTSC mode with clock
support you might use a command like:

catalina test_time.c –lc -C HYBRID -C HIRES_TV -C NTSC -C CLOCK

Because  using  multiple  symbols  to  specify  the  configuration  of  the  target  is  so
common,  there  is  a  better  way  to  specify  them  if  you  intend  using  the  same
configuration for many compilations – set the CATALINA_DEFINE environment variable,
as follows (under Windows):

set CATALINA_DEFINE=HYBRID HIRES_TV NTSC CLOCK

or as follows (under Linux if using the bash shell):

CATALINA_DEFINE=”HYBRID HIRES_TV NTSC CLOCK”; export CATALINA_DEFINE

Then a command such as:

catalina test_time.c –lc

has the same effect as specifying all  the symbols using  -C on the command line
(note  that  the  -C option  should  not  be  specified  for  symbols  defined  using  the
environment variable).

Note that you cannot specify the same symbol both in an environment variable and
on the command line – doing so will result in an error message to the effect that the
symbol is already defined.

Knowing what the current setting of the various Catalina environment variables is
can  be  very  important.  To  display  the  current  settings,  use  the  command
catalina_env – in the above case you might see output like:

CATALINA_DEFINE   = HYBRID HIRES_TV NTSC CLOCK
CATALINA_INCLUDE  = [default]
CATALINA_LIBRARY  = [default]
CATALINA_TARGET   = [default]
CATALINA_LCCOPT   = [default]
CATALINA_TEMPDIR  = [default]
LCCDIR            = [default]

To unset an environment variable, use a command such as:

unset CATALINA_TARGET

or (Windows only):

set CATALINA_TARGET=

Copyright 2013 Ross Higson Page 82 of 158



Catalina C Compiler Reference Manual

LMM Support 
All Propeller platforms are capable of using the Propeller in LMM (Large  Memory
Model) mode to support C programs of up to 32kb. Catalina provides an LMM Kernel
for executing such programs.

The memory model used for LMM support is fairly simple, with all program code and
data held in Hub RAM, and no real need to differentiate between code and data. To
support XMM programs is more complex. To do this, Catalina divides each program
into 4 program segments:

Code : a read-only segment containing program code
Cnst : a read-only segment containing constant data
Init : a read/write segment containing static data
Data : a read/write segment containing dynamic data

This type of segmentation is fairly standard to all compilers (although for historical
reasons some use different segment names, such as Text instead of Cnst, or BSS
instead of  Data).  The Catalina Binder separates out  and groups together  all  the
different items of code and data according to the segments they belong to. 

By default (i.e. if no specific command line options specify the contrary),  Catalina
compiles programs as LMM program with the Catalina LMM Kernel and all segments
combined into 32k (this is the TINY memory model). These programs can run on any
Propeller.

Copyright 2013 Ross Higson Page 83 of 158



Catalina C Compiler Reference Manual

CMM Support 
All Propeller platforms are capable of using the Propeller in CMM (Compact Memory
Model) mode to support C programs of up to 32kb. Catalina provides a CMM Kernel
for executing such programs.

The memory model used for CMM support is fairly simple, with all program code and
data held in Hub RAM, and no real need to differentiate between code and data. To
do this, Catalina divides each program into 4 program segments:

Code : a read-only segment containing program code
Cnst : a read-only segment containing constant data
Init : a read/write segment containing static data
Data : a read/write segment containing dynamic data

The Compact Memory Model is a hybrid kernel – it uses some LMM techniques, and
some techniques that make it more like the Parallax Spin kernel – this is what allows
it  to generate code sizes that  are often less than  half  the equivalent  LMM code
sizes. The tradeoff is that CMM programs are slower than LMM programs (although
still faster than Spin).

XMM Support
Catalina  also  provides  XMM  (eXternal  Memory  Model)  support  for  executing  C
programs larger than 32kb – but this requires a Propeller equipped with additional
RAM hardware. 

XMM programs use the same program segment definitions as LMM programs - i.e:

Code : a read-only segment containing program code
Cnst : a read-only segment containing constant data
Init : a read/write segment containing static data
Data : a read/write segment containing dynamic data

Catalina provides an XMM Kernel for executing such programs, which knows how to
make use of the external RAM. The Catalina XMM Kernel supports programs where
the  Code segment is located in (and executed from) external RAM but the other
segments  are  located  in  Hub  RAM (this  is  the  SMALL memory  model)  as  well
programs where the Code, Cnst, Init and Data segments are all located in external
RAM (this is the  LARGE memory model). The Catalina XMM Loader arranges the
segments in Hub RAM and XMM RAM before the program execution commences. 

To load a Catalina XMM program, the XMM loader has to know where to get to the
program segments from in the first place. One version of the XMM Loader supports
loading from EEPROM – i.e. it knows how to move segments from EEPROM to HUB
RAM, and from HUB RAM to XMM RAM. There is  another  version of  the XMM
Loader that supports loading from XMM to Hub RAM (this is used when loading an
XMM program from SD Card, or via a serial connection to another Propeller). 

Copyright 2013 Ross Higson Page 84 of 158



Catalina C Compiler Reference Manual

Specifying the Memory Model
There are several Catalina command-line options that affect the layout of memory
segments, the memory model, and the kernel to be used.

Early versions of Catalina used a single option (-x) to specify the memory layout, the
memory model and the loader to be used:

-x XMM memory layout, kernel addressing mode, and loader. This option is
used to specify how the four program segments are arranged in memory,
which kernel to use, the addressing mode the kernel should use, and also
determine which loader must be used to load the program. While there are
many possible  arrangements  of  the four  program segments,  only  a  few
currently have any use. These are:

-x0 segments are arranged as Code, Cnst, Init, Data and the LMM kernel
is used with the TINY addressing mode. This is the default mode.

-x1 segments are arranged as Code, Cnst, Init, Data and the LMM kernel
is used with the  TINY addressing mode. This mode is used for EMM
programs (see the section on EMM Support below).

-x2 segments are arranged as Cnst, Init, Data, Code and the XMM Kernel
is used with the SMALL address mode.

-x3 segments are arranged as Init, Data, Code, Cnst and the XMM Kernel
is used with the  LARGE address mode. This mode is intended to be
used when the Init and Data segments are to be placed in SPI RAM,
and the Code and Cnst segment are to be placed in SPI Flash. 

-x4 segments are arranged as Cnst, Init, Data, Code and the XMM Kernel
is used with the  SMALL address mode. This mode is intended to be
used when the Code segment is to be placed in SPI Flash.

-x5 segments are arranged as Code, Cnst, Init, Data and the XMM Kernel
is used with the LARGE address mode.

-x6 segments are arranged as Code, Cnst, Init, Data and the LMM kernel
is used with the  TINY addressing mode. This mode is used for SMM
programs (see the section on SMM Support below).

-x8 segments are arranged as Code, Cnst, Init, Data and the CMM kernel
is used with the  COMPACT addressing mode. This mode is used for
CMM programs (see the section on CMM Support above).

The Catalina Binder chooses a target (including the memory model and loader to
use, and also the kernel to use) based on the selected layout. 

The  -x option is still  supported, but the kernel and addressing mode can now be
specified more easily by defining the symbols COMPACT, TINY, SMALL or LARGE,
and the memory layout and loader to use can be specified by defining the symbols
SDCARD,  FLASH or  EEPROM on the command line (using the  -C  command line
option). 

Copyright 2013 Ross Higson Page 85 of 158



Catalina C Compiler Reference Manual

The meaning of each of these symbols is as follows:

TINY The  default  for  Catalina  is  to  produce  TINY  LMM  programs.  These
programs can be up to  32kb in  size.  This  model  corresponds to  the
normal Parallax mode used for SPIN or PASM programs.

TINY programs can be programmed into EEPROM, or loaded using
any program loader, including the Parallax Propeller Tool, the Parallax
Propellant loader,  Catalina’s  Catalyst SD  card  loader,  or  Catalina’s
Payload serial loader. 

SMALL On platforms that have external memory available, Catalina can produce
SMALL XMM programs. These programs can have code segments up to
16Mb in XMM RAM, but all data segments, the stack and the heap space
must fit into the normal Propeller 32kb of Hub RAM. 

SMALL programs can be loaded into EEPROM, or they can be loaded
with Catalyst or Payload.

LARGE On platforms that have external memory available, Catalina can produce
LARGE  XMM  programs.  These  programs  can  have  code  and  data
segments and heap space up to a total of 16Mb in XMM RAM – the 32kb
Hub RAM is used only for stack space. 

LARGE programs can be loaded into EEPROM, or they can be loaded
with Catalyst or Payload.

COMPACT Produce a CMM program. These programs can be up to 32kb in size.
Currently COMPACT programs can only be loaded serially.

See the section  A Description of the Catalina Addressing Modes later in this
document  for  more  details  on  the  TINY,  COMPACT.  SMALL and  LARGE
addressing modes. 

EEPROM TINY programs do not need any special processing to be executed from
EEPROM, but there is a special Catalina target that allows them to be
loaded in two phases, allowing such program to make more effective use
of  the  Propeller  Hub  RAM.  For  SMALL  or  LARGE  programs  to  be
executed from EEPROM, they must be compiled with a special Catalina
target  that  knows how to load the  XMM portion of  the  program from
EEPROM to XMM RAM. The “special” Catalina targets are loaded into
the  first 32K  of  the  EEPROM.  The  program  is  then  loaded  into  the
EEPROM starting at 32kb. The target loads all the plugins and drivers,
and then loads the Catalina C program for execution – the advantage of
using the special target (even for TINY programs) is that provided you
have an EEPROM of at least 64Kb connected to your propeller, the C
program code does not need to share the same 32kb space as the target
code – allowing for larger C programs to be loaded and executed (see
the section entitled EMM Support for more details).

SDCARD TINY, SMALL and LARGE programs do not need any special processing
to be able to be loaded by Catalyst – but for TINY programs there is a

Copyright 2013 Ross Higson Page 86 of 158



Catalina C Compiler Reference Manual

special target that that allows them to be loaded in two phases, allowing
such program to make more effective use of the Propeller Hub RAM.
Like the special EEPROM loader, the SDCARD loader divides programs
into several sections – the first 32kb contains the target, which sets up
the execution environment for the program (by loading all the plugins and
drivers etc). Then the  second 32kb of the file contains the application
program. Finally, the actual kernel is loaded from the last 2kb of the file.
This means all program files compiled with the SDCARD loader option
are exactly 66kb in size (see the section entitled SMM Support for more
details).

FLASH SMALL and LARGE programs that are to be executed out of SPI Flash
RAM require a special load process, and so they must also use a special
Catalina target. Both the Catalyst and the Payload loaders know how to
load and run FLASH programs. Note that using FLASH requires the use
of the caching SPI driver,  so one of  the cache options must  also be
specified (see the section titled SPI Flash and Cache Support).

The following command-line options can also affect the memory layout, and can be
used with either method of specifying the memory layout   (the  -x method or the
symbol definition method):

-M XMM image size. This option is used to specify the maximum size of the
resulting program image. If not specified, the default is 64Gb. 

-P Read/Write Segment Address. This option is used in conjunction with the –
x3 and –x4 options to specify the address to start the Read/Write segments
(e.g.  the data segment).  This  option is  useful  on platforms (such as the
MORPHEUS CPU 1 or the C3) which support the use of a combination of
SPI RAM (read/write) and SPI Flash (read-only) as XMM RAM. Note that on
all currently supported platforms that use SPI Flash, this is set automatically
to the starting address of the SPI Flash, so there is usually no need to set
this.

 -R Read-Only Segment Address. This option is used in conjunction with the –
x3 and –x4 options to specify the address to start the Read-Only segments
(e.g. the code segments). This option is useful on platforms (such as the
MORPHEUS CPU 1 or the C3) which support the use of a combination of
SPI RAM (read/write) and SPI Flash (read-only) as XMM RAM. Note that on
all currently supported platforms that use SPI RAM, this is set automatically
to the starting address of the SPI RAM so there is usually no need to set
this.

The following examples show both the –x method and the symbol definition method
for specifying the memory mode/layout/kernel/loader. The following commands are
equivalent:

catalina test.c –x1
catalina test.c -C EEPROM
catalina test.c -C TINY -C EEPROM

Copyright 2013 Ross Higson Page 87 of 158



Catalina C Compiler Reference Manual

Note that in general you shouldn’t mix the two methods – i.e. specifying –x1 and -C
EEPROM in the same command will result in a compilation error, since the symbol
EEPROM will end up being defined twice. 

Similarly, are following commands are equivalent:

catalina test.c –x6
catalina test.c -C SDCARD
catalina test.c -C TINY -C SDCARD

Again, note that you shouldn’t  mix the two methods – i.e. specifying  –x6 and -C
SDCARD in the same command will result in a compilation error, since the symbol
SDCARD will end up being defined twice.

Similarly, are following commands are equivalent:

catalina test.c –x4
catalina test.c -C SMALL -C FLASH

as are the following:

catalina test.c –x2
catalina test.c -C SMALL

and the following (note that EEPROM is supported by both methods when specifying
XMM programs – this is a special case):

catalina test.c –x5 -C EEPROM
catalina test.c -C LARGE -C EEPROM

The  following  is  a  summary  of  the  relationship  between  the  two  methods  of
specifying the memory modes, kernel and loader (you don't need to know this unless
you need to migrate from using one method to using the other):

The –x0,  –x1 and –x6 layouts all use the TINY mode, and can be executed
by  the  Catalina  LMM Kernel.  –x0 and  –x1 layouts  are  supported  all  on
platforms  (with  or  without  XMM  hardware),  and  –x6 is  supported  on  all
platforms with  an  SD card.  -x1  means use the  EEPROM loader,  and  -x6
means to use the SDCARD loader.

The –x2 layout uses the SMALL memory model, and the –x5 layout uses the
LARGE memory model. These layouts can only be executed by the Catalina
XMM Kernel,  and  require  platforms  with  XMM  hardware.  These  layouts
require  Read/Write XMM  RAM,  and  use  the  XMM  LMM  Loader  unless
EEPROM is defined, in which case they use the XMM EEPROM Loader.

The–x3, layout uses the LARGE mode, and the –x4 layout uses the SMALL
mode. These layouts can only be executed by the Catalina XMM Kernel, and
require  platforms  with  XMM  hardware.  These  layouts  are  intended  for
platforms  with  Read-Only  XMM RAM,  such  as  the  SPI  Flash  on  the  C3,
SuperQuad, RamPage or RamPage 2. These layouts use the FLASH Loader,
and are equivalent to defining the symbol FLASH  in conjunction with the
LARGE and SMALL symbol. The Flash XMM Loader is used in these cases.

Copyright 2013 Ross Higson Page 88 of 158



Catalina C Compiler Reference Manual

EMM Support
EMM programs are similar to TINY LMM programs, but use a special EMM Loader.
The EMM Loader is  designed to load  TINY LMM programs from above address
$8000 in an external EEPROM into Hub RAM. Other than this, EMM is very similar
to LMM, and uses the same Kernel. EMM programs use their own set of target files.

Note that  there  is  also a special  EEPROM loader  option for  SMALL and
LARGE XMM programs – this is not quite the same as an EMM program
even  though  both  are  enabled  by  defining  the  EEPROM symbol  –  if  the
program is a TINY LMM program this means it will use the emm target and
the LMM EEPROM loader,  whereas if  the program is an XMM program it
uses the xmm target and the XMM EEPROM loader option.

To understand the advantage of compiling C programs as EMM programs, consider
the hello_world.c program. When compiled using the default LMM target (and using
the  libci library), this simple program occupies around 15Kb of Hub RAM. Most of
this RAM space is occupied by the C library code required to support the program,
but a significant portion is also occupied by the LMM target and various plugins
required to run it. Even so, this would appear to make the Propeller almost unusable
for real C programs. However,  when the same program is compiled as an EMM
program, the C program code occupies only 7Kb – this means that if we compile it as
an EMM program, then even after loading the stdio printf functions (which are quite
memory hungry) there is still  another 25Kb available for C programs.

In summary,  the advantage of EMM over the normal LMM mode is that larger C
programs can be constructed - even without requiring XMM RAM. While the program
can still only be 32k, it does not have to share that 32k space with the target and
plugin code. However,  EMM programs require an external EEPROM of 64Kb (or
larger).

To request Catalina use the EMM loader for a TINY LMM program, specify the -x1
option to the Catalina Compiler or Binder, or define the symbol  EEPROM on the
command line when compiling a normal TINY LMM program. When this option is
specified, the Catalina Binder uses a new set of targets, prefixed by emm_. Currently
one  default  EMM  target  (called  emm_default)  and  one  debug  target,  (called
emm_debug) are provided.

Note that XMM programs can also be compiled with the symbol  EEPROM
defined  .  This  uses  the  normal  xmm  targets  (called  xmm_default  and
xmm_debug) but specifies the XMM EEPROM loader option be used.

Further  advantages  for  EMM mode are  expected  to  be  achieved  in  subsequent
Catalina releases, due to the replacement of some of the basic C library functions
with  ‘plugin’  based  equivalents  –  now  that  the  EMM  loader  is  available,  these
functions will no longer need to consume Hub RAM at run time.

Copyright 2013 Ross Higson Page 89 of 158



Catalina C Compiler Reference Manual

SMM Support
SMM programs are similar to TINY LMM programs, but use a special SMM Loader.
The SMM Loader is designed to load TINY LMM programs from an SD Card Hub
RAM. Other than this, SMM is very similar to LMM, and uses the same Kernel. 

The  advantage  of  compiling  C  programs  as  SMM  programs  is  similar  to  the
advantage of compiling them as EMM programs – i.e. the SMM Loader is a two-
phase loader, which allows more of the Hub RAM (up to 31kb) to be used for C
program code.

SMM programs must  be  loaded  from an  SD Card,  using  the  Catalyst program
loader.

To request Catalina use the SMM loader,  specify the  –x6 option to the Catalina
Compiler or Binder, or define the symbol SDCARD on the command line. When this
option is specified, the Catalina Binder uses a new set of targets, prefixed by smm_. 

Currently one default SMM target (called smm_default) and one debug target, (called
smm_debug) are provided.

Catalina Cog Usage
The number of cogs used by a Catalina program depends on the target, and the
plugins and drivers loaded by that target. 

To figure out how many cogs are required, the following table is provided:

Plugin/Driver Name Cogs
Any HMI plugin + 1
LoRes TV driver + 1
HiRes  TV driver + 1
LoRes VGA driver + 1
HiRes VGA driver + 2 / + 3 17

Mouse driver + 1
Keyboard driver + 1
Float32_A + 1
Float32_B (and Float32_A) + 2
Real-Time Clock + 0 / + 1 18

SD Card + 1
Caching SPI XMM driver + 1
Gamepad plugin + 1
Sound plugin + 1
SPI plugin + 1
CGI Graphics plugin + 2

17 Currently +3 on Morpheus,  which  requires a special  version of  the Hi-Resolution VGA driver
(provided)

18 The Real-Time Clock does only uses an extra cog if the SD Card plugin is not enabled – if both 
the SD and CLOCK plugins are both loaded, then the SD plugin is used for both functions, so the 
clock does not occupy an extra cog.

Copyright 2013 Ross Higson Page 90 of 158



Catalina C Compiler Reference Manual

VGI Graphics plugin + 5
Kernel (CMM, LMM, or XMM) + 1

Examination of the table above will show that it is relatively easy to specify options to
the standard targets that would exceed the 8 cog limit – doing so will cause one or
more plugins or drivers to fail to load - and most likely “hang” the C program when it
attempts to use the plugin that failed to load.

The Kernel cog is always used to execute Catalina C code, but Catalina can also run
C code on any cog not used for other purposes - for more details, see the Multi-Cog
Support section (below).

It is of course possible to create new dedicated targets that load different drivers,
such as a combined keyboard/mouse driver that takes only one cog. The standard
set of targets, drivers and plugins provided are intended to be functionally rich, but
they do not necessarily make the most efficient use of the available cogs.

Supporting multiple Propeller platforms
A single target package can provide support for multiple Catalina platforms. This is
done by using conditional compilation in the various target files.

To support a new platform there are two options:

 Create a new target directory specifically for the new platform. 

 Add the new platform into the existing target directory by including appropriate
conditionally compiled sections to the existing target files.

In practice, it may be best to do both – i,e. to start out with a copy of the existing
target files in a new target directory,  modifying them as required to get the new
platform working – and then integrate the results into the standard target directory
using appropriate conditional compilation flags.

The Catalina compiler expects the default target package to be called target, but a
target directory can be called anything, and referenced by using the  -T option to
Catalina.

Compiling for a platform supported in the standard target directory uses commands
such as:

catalina hello_world.c –lc

When compiling for a platform supported in a different target directory, the equivalent
command would be something like:

catalina hello_world.c -lc –T”C:\Program Files\Catalina\My_Target”

Target Packages

The standard target package (target)
The  default Target Package (in sub-directory  target) can be used with any of the
supported Propeller base platforms (i.e. HYDRA, HYBRID, C3 etc). It also includes

Copyright 2013 Ross Higson Page 91 of 158



Catalina C Compiler Reference Manual

the default  CUSTOM platform, which is suitable for nearly any Propeller equipped
with a 5Mhz crystal. 

The  default  target  platform  also  supports  XMM  add-on  cards,  such  as  the
RAMPAGE and RAMPAGE2, SUPERQUAD or PMC (Propeller Memory Card),

Note that the user configurable parts are separated out into “include” files, depending
on whether the files are for a base platform board, or an add-on board:   

For a base platform (XXX) that has no XMM RAM, there are three files:

      XXX_DEF.inc       general pin and clock definitions for the platform

      XXX_CFG.inc       plugin configuration options for the platform

      XXX_HMI.inc       HMI options supported by the platform

For an XMM RAM add-on board (YYY), there are three different files:

      YYY_XMM.inc       XMM API functions for the add-on board

      YYY_XMM_DEF.inc   XMM pin and memory definitions for the add-on board

      YYY_XMM_CFG.inc   XMM plugin configuration options for the add-on board

For a base platform (ZZZ) that also has built-in XMM RAM, there will be six files:

      ZZZ_DEF.inc       general pin and clock definitions for the platform

      ZZZ_CFG.inc       plugin configuration options for the platform

      ZZZ_HMI.inc       HMI options supported by the platform

      ZZZ_XMM.inc       XMM API functions

      ZZZ_XMM_DEF.inc   XMM pin and memory definitions

      ZZZ_XMM_CFG.inc   XMM plugin configuration options 

This package includes targets for  LMM and XMM programs. It includes support for
the alternate, threaded and dynamically loadable LMM kernels.

This package supports the normal Parallax Serial loader, as well as the SDCARD,
EEPROM and FLASH program loaders. 

This package supports the BlackCat/BlackBox debuggers, plus the POD debugger.

This package supports all Catalina plugins. For each target, it automatically includes
the SD card and floating point  plugins as required to support  the library options
selected, as well as various other plugins that can be manually specified (such as
the Clock or various HMI plugins).

This target package is intended for general-purpose use.

The basic target package
The basic Catalina Target Package (in sub-directory basic) provides support for only
one single Propeller platform. However, the user configurable parts are separated
out into the following “include” files for convenience:

Copyright 2013 Ross Higson Page 92 of 158



Catalina C Compiler Reference Manual

Custom_DEF.inc general pin and clock definitions for the platform

Custom_CFG.inc plugin configuration options for the platform

Custom_XMM.inc XMM support functions for the platform (if applicable)

This package includes targets for  LMM and XMM programs. It includes support for
the alternate, threaded and dynamically loadable LMM kernels.

This package supports the normal Parallax Serial loader, as well as the SDCARD,
EEPROM and FLASH program loaders. 

This  package  supports  the  BlackCat/BlackBox  debuggers,  but  not  the  POD
debugger.

This  package  supports  a  subset  of  the  Catalina  plugins.  For  each  target,  it
automatically includes the SD card and floating point plugins as required to support
the library options selected, but no other plugins (specifically, it does not support any
HMI plugins for keyboard, screen or mouse support). If these or other plugins are
required, they can be added manually.

This target package is intended for users to create a dedicated target for a specific
application or platform.

The minimal target package
The minimal  Catalina Target Package (in sub-directory minimal) is an intentionally
“minimalist”  target  package.  It  provides  support  for  only  one  single Propeller
platform. However, the user configurable parts are separated out into the following
“include” file for convenience:

Custom_DEF.inc general pin and clock definitions for the platform

Custom_CFG.inc plugin configuration options for the platform

This package supports only LMM programs.

This package supports only the normal Parallax Serial loader. 

This package does not support any debuggers.

This package supports only one custom plugin.

The purpose of this package is primarily educational. For more information on its
use, refer to the document Getting Started with Plugins.

Copyright 2013 Ross Higson Page 93 of 158



Catalina C Compiler Reference Manual

Using PASM with Catalina
The Catalina compiler conforms to the ANSI C standard. This standard does not
define a specific keyword (or function, or technique) for the inclusion of code written
in assembly language in a C program. 

However, it is possible to incorporate PASM assembly language code into Catalina
C programs, using at least four different techniques:

1. Using the PASM function to include PASM instructions 'inline' with C code.

2. Write a target that loads the PASM program during initialization.

3. Convert  the  PASM  program  into  a  Catalina  plugin and  load  it  during
initialization (as is done for the various HMI drivers, the floating point libraries,
and the SD card and clock drivers).

4. Load the compiled binary version of a PASM program into a spare cog from
within the C program (using the _coginit function).

5. Write a subroutine in LMM PASM and call it from the C program in the same
way that any C function is called. 

Each of these techniques is described in more detail below.

Using the PASM function
Catalina defines a PASM function that can be used for including PASM instructions
inline with C code. The prototype for this function (defined in propeller.h) is:

extern void PASM(const char *code);

However, there is no actual PASM function body. Instead, when it sees a call to this
function, the compiler inserts the  string literal given as argument (it  cannot be a
variable) into the assembly language output, to be compiled by the PASM compiler. 

For example, the following program will toggle the Propeller's P0 output every 500
milliseconds:

#include <propeller.h>
void main() {  
   PASM("or dira, #1");      // set bit 0 as output
   while(1) {
      msleep(500);
      PASM("xor outa, #1");  // toggle bit 0
   }
}

For more details and examples, examine the file  test_inline_pasm.c in the  demos
folder. Note that there are constraints on the PASM that can be used in conjunction
with C via this technique, since both the C code and the 'inline' PASM is executed
within an LMM virtual machine. For details on these constraints, see the section later
in this document entitled A Description of the Catalina Virtual Machine.

Copyright 2013 Ross Higson Page 94 of 158



Catalina C Compiler Reference Manual

Load the PASM program at initialization time
Each  Catalina  target  is  a  normal  SPIN  program  whose  job  is  to  establish  the
execution  environment  for  the  Catalina  C  program.  However,  this  program  can
execute any PASM or SPIN code, including loading PASM programs into cogs to be
run in parallel with the C program. Of course, the PASM program must not read or
write to Hub RAM except under well defined circumstances - e.g. by only writing to
an area of high RAM that Catalina reserves for this purpose.

For an example of this technique, see the Catalina_Cogstore.spin program. 

This  is  a  normal  PASM program started  by various Catalina targets  to  assist  in
decoding command-line arguments passed to the program. In this particular case the
PASM program is stopped again once its work is completed - but it could be left
running if  necessary.  Examples of the latter include the various  blackcat targets
(e.g. lmm_blackcat.spin).

This technique is not discussed any further in this document.

Convert the PASM program into a Catalina plugin
Plugins are  a very  versatile  solution since they can interact  with  the Catalina  C
program at run time - but they can be complex to develop and can also be expensive
in resources (since they cannot  be  loaded and unloaded on demand -  they are
expected  to  be  loaded  once and then  remain  running  for  the  duration  of  the  C
program). 

However, plugins are the best solution when the PASM program and the C program
are  required  to  interact  since  there  is  a  well-defined  interface  that  supports
communication between a C program and any plugins that  have been loaded to
support it.

There are many examples provided in the Catalina  target directory. Most standard
Parallax drivers can be easily converted into plugins. 

This technique is not discussed any further in this document.

Load a compiled PASM program into a cog
Catalina provides a  _coginit function that works in a very similar manner to the
corresponding SPIN or PASM  coginit operations - i.e. it is used to load a binary
PASM program into a cog for execution. 

A tool to assist in converting a PASM binary into a form suitable for loading from C is
provided - this tool is called spinc. It is provided in both source and executable form.
Thanks go to Steve Densen for developing this useful tool!

A specific example of using spinc is provided, called test_spinc.c. To build it, use the
build_all batch file provided. E.g:

build_all HYDRA

This batch file does the following commands:

a) compiles the flash_led.spin PASM program (to produce flash_led.binary):

Copyright 2013 Ross Higson Page 95 of 158



Catalina C Compiler Reference Manual

   spinakker -p -a flash_led.spin -b

b) converts the flash_led.binary to a C include file:

   spinc flash_led.binary > flash_led_array.h

c) compiles a C program which loads the resulting binary using _coginit:

   catalina -lc -I. test_spinc.c

Examine each of the files mentioned above for more detail. 

NOTE: Even though you specify your platform when
building, you may still need to modify the clock speed
and pin numbers defined in the file flash_led.spin to
make it work correctly on your platform.

To load and execute the resulting program, simply type:

payload test_spinc

Writing an LMM PASM function that can be called directly from C
A Catalina C program can call a PASM function directly. However, the PASM must
be specially written to allow it to be executed by the LMM Kernel.

LMM PASM (i.e.  PASM intended to  be  executed by the  LMM Kernel)  is  slightly
different to pure PASM (i.e. PASM intended to be executed directly by a cog). While
many  LMM  PASM  instructions  are  identical  to  pure  PASM,  some  pure  PASM
instructions cannot be executed within the kernel. Instead, they must be replaced by
LMM equivalents known as primitives.

A good example of this is the PASM jmp instruction. If this instruction were executed
within the LMM kernel, the program would jump to the corresponding location within
the kernel itself, not the desired location in the PASM program. So Instead of using
jmp, a new LMM PASM primitive (called JMPA) is provided.

In pure PASM, a jmp instruction might look as follows:

   loop jmp #loop    ' loop forever

In LMM PASM, this would have to be replaced by the following:

   loop jmp #JMPA    ' loop ...
        long @loop   ' ... forever

More information on the pure PASM instructions that need to be replaced by LMM
PASM primitives are given in A Description of the Catalina Virtual Machine (later
in this document). 

A full working example of this technique is provided in the demos/spinc directory. It is
called test_pasm. To build it, use the build_all batch file provided - e.g:

build_all HYDRA

This batch file executes the following command:

catalina -lc test_pasm.c flash_led.obj 

The file  flash_led.obj is the LMM PASM program - giving it the .obj extension tells
Catalina that it is not a C file that needs to be compiled - it is a PASM file that is
ready to be bound. In fact, all Catalina obj files are LMM PASM programs and can

Copyright 2013 Ross Higson Page 96 of 158



Catalina C Compiler Reference Manual

be viewed with any text editor. Examine both flash_led.obj and test_pasm.c for more
details. 

NOTE: Even though you specify your platform when
building,  you  may  still  need  to  modify  the  clock
speed  and  pin  numbers  defined  in  the  file
flash_led.obj  to  make  it  work  correctly  on  your
platform.

To load and execute the resulting program, simply type:

payload test_pasm

Precautions when using LMM PASM with the Catalina Optimizer
If you plan to write LMM PASM functions that are called from C, and also use the
Catalina Optimizer, be aware that there are some additional precautions that must
be taken in the hand-written LMM PASM. This is because of the inlining function of
the optimizer:

1. Every subroutine must contain exactly one, RETN or RETF instruction, and it
must be at the end of the function. If you need to exit earlier, instead use a
jump to the common exit point at the end of the function. This technique will
be familiar to most PASM programmers because of the way the PASM CALL
instruction works) For example:

my_pasm_routine
        cmp r0, #0 wz         ‘ if r0 = 0
        jmp #BR_Z             ‘ ... then ...
        long @my_common_exit  ‘ ... exit
        sub r0, #1            ‘ otherwise decrement r0
my_common_exit
        jmp #RETN

2. Do not use “local” symbol  names (i.e. symbols that start with ‘:’) within an
LMM PASM function unless you are sure that the resulting code will not end
up  with  two  identical  local  symbol  names within  the  same  function  if  the
function is inlined. If in doubt, simply avoid local symbols altogether and use
global symbols instead.

Multi-Cog Support
Catalina  supports  running  C  code  on  all  available  cogs.  When a  C  program is
started, it is being executed within the cog running the kernel. However, a new kernel
can be loaded and run on any available cog, executing a C function.

The C function to be executed should meet the following criteria:

 It  must  be  executed  by  the  CMM or  LMM  kernel.  Executing  XMM code  on
multiple cogs is not currently supported due to the limitations of XMM hardware
on most platforms. Also, combining the execution of XMM and LMM code in the
one Propeller is not currently supported, so executing C programs on multiple
cogs is only possible for CMM or LMM programs.

Copyright 2013 Ross Higson Page 97 of 158



Catalina C Compiler Reference Manual

 It  must be declared as a void function with  no arguments.  All  communication
between C functions running on different cogs must be done via global variables.

 It must be allocated a dedicated stack. 

 It  should  use locks  (where  necessary)  to  prevent  contention  when  accessing
global  variables,  or  library  functions.  The  nature  of  the  Propeller  means  that
accesses to basic data types (char, int, long, float, pointers, etc) are atomic and
do not require locks – but access to more complex data types (e.g. structures,
linked lists etc) may need to be protected. Also, calls to library functions which
access such complex data types (e.g. malloc) will also need to be protected.

 It should never return. If the function needs to terminate it should use _cogstop
function. To determine its own cog id to stop, it can use the _cogid function.

For example:

void cog_function(void) {
   int me = _cogid();
   ...
   _cogstop(me);
}

Starting the program is done using the _coginit function to start a a special LMM
kernel, with initialization data that specifies the C function to be executed.

Since this process can be complex,  the details are often wrapped up in  a utility
function. An example of such a utility function is provided in the demos\multicog sub-
directory.  This directory contains complete working examples of various multi-cog
programs, but the most useful function it provided is defined in utilities.h:

int C_coginit(void func(), unsigned long *stack);

To use this function,  define sufficient stack space, then pass the address of  the
function to be started, and the address of the TOP of the stack space allocated for it.
The function returns the cog allocated to  the function or  -1  if  there is  any error
starting it. For example, to start the example cog_function defined above:

int cog
long cog_stack[100];
cog = C_coginit(&cog_function, &cog_stack[100]);

For more details on this process, see the implementation of C_coginit in utilities.c. 

For more details on the  spinc utility used by the examples, refer to the previous
section which described using PASM with Catalina.

Copyright 2013 Ross Higson Page 98 of 158



Catalina C Compiler Reference Manual

Multi-CPU Support
Catalina fully supports all CPUs in multi-CPU systems. Currently, there are two such
systems supported by Catalina:

TriBladeProp – this platform has 3 ‘blades’, each with one CPU:

 CPU #1 can have XMM RAM and keyboard, mouse and screen (TV or VGA)
devices attached.

 CPU #2 can have XMM RAM and an SD card attached.

 CPU #3 has no specific devices attached, and is intended for adding other
I/O.

CPU #2 can communicate serially with (and load programs into, or reset) CPU #1
and CPU #3.

Note that  CPU #1 and CPU #2 use slightly  different
implementations for their XMM RAM.

Morpheus – this platform has 2 CPUs:

 CPU #1 can have XMM RAM and a keyboard, mouse devices attached, as
well as an SD card.

 CPU #2 can have XMM RAM and a VGA screen attached.

CPU #1 can communicate serially with (and load programs into, or reset) CPU
#2.

Note that  CPU #1 and CPU #2 use slightly  different
implementations for their XMM RAM.

These systems can be complex to configure – not least of which because the normal
set of devices is often distributed amongst the various CPUs. Another complicating
factor  is  that  not  all  CPUs may  have  boot  EEPROMs attached  –  they  may  be
expecting to be loaded from another CPU.

Catalina supports multi-CPU systems in two ways:

1. Providing a set of drivers for “proxy” devices. These drivers allow programs
running  on  one  CPU to  have  access  to  a  device  (HMI  or  SD)  physically
connected to another CPU. The client CPU runs the proxy drivers and the
server CPU (i.e. the one with the actual physical devices) runs a special proxy
server  program  which  services  device  requests  from  the  client.  The
communication between the client and the server uses serial communications
between the Props. The proxy drivers are as close as possible in functionality
to the ordinary drivers, and can usually be used without any C code changes.
The main difference is that their performance will typically be slower because
the proxy driver has to communicate serially with the real driver running on
the other CPU to perform each driver function.

Copyright 2013 Ross Higson Page 99 of 158



Catalina C Compiler Reference Manual

2. Providing a set of utilities that allows one CPU to control another CPU – i.e. to
reset or load programs into that CPU. Programs can be loaded into RAM or
EEPROM (if the target CPU has a boot EEPROM attached). 

Proxy Devices
Using proxy devices always requires the execution of a server program on the CPU
that is physically connected to the actual devices. The devices that can be “proxied”
are:

 The SD Card

 The Screen

 The Keyboard

 The Mouse

Generic_Proxy_Server
A Generic_Proxy_Server program is provided that can be reconfigured to suit any
combination  of  proxy  devices.  Only  one  instance  of  the  program  needs  to  be
executed on a CPU – it acts as proxy for all the devices for which it is configured.

To use the proxy devices from a client CPU, all the normal Catalina command line
options  should  be  specified  (i.e.  as  if  all  the  devices  were  local)  but  there  are
additional options that can be specified to indicate that some devices are not local,
but will be provided via a proxy server:

PROXY_SD
PROXY_SCREEN
PROXY_MOUSE 
PROXY_KEYBOARD 

Foe example, suppose we have a multi-prop system where CPU #1 has a keyboard
and mouse (but no screen or SD card), and CPU #2 has a TV output and an SD
Card (but no keyboard or mouse). 

Then we might use commands similar to the following to compile a program intended
to run on CPU #1:

catalina prog_1.c –lcx -C CPU_1 -C TV -C PROXY_SD -C PROXY_SCREEN

This command tells Catalina to compile prog_1.c for execution on CPU #1 using real
drivers to access the local keyboard and mouse, but to use proxy drivers to access
the SD card and screen (since they are on another CPU). 

On  CPU  #2  we  then  run  an  instance  of  the  Generic_Proxy_Server  program,
configured to act as proxy for the screen (using the TV output) and the SD card
devices. 

However, the  Generic_Proxy_Server program is not a Catalina program – it is a
SPIN/PASM program that is compiled using spinakker:

spinakker -p -a Generic_Proxy_Server –o my_proxy –I..\target –b -C
CPU_2 -C TV -C NO_KEYBOARD -C NO_MOUSE

Copyright 2013 Ross Higson Page 100 of 158



Catalina C Compiler Reference Manual

These  commands  tell  spinakker to  generate  a  proxy  server  binary  (called
my_proxy.binary) suitable for use on CPU #2. It will include a TV screen driver and
an SD card driver, but no keyboard and no mouse driver (since those devices are
not present on this CPU). 

The only ‘special’ option required when configuring the proxy server is a new NO_SD
option, which must be specified to exclude the SD card driver on CPUs that do not
have this device (there is no equivalent Catalina command line option – the SD
driver is always included if you link with the –lcx library versus the –lc library). Other
than this, the configuration options used to configure the proxy server are the same
as those used for Catalina program (e.g. in the above case we used the  TV and
CPU_2 options). 

There are normally only one or two different proxy server configurations required in a
multi-CPU system, so the proxy server does not usually need to be recompiled for
each client –the same proxy server binary may be used for many clients. In some
cases, it is worthwhile including actual drivers in the proxy server even though they
are not often used. For example, if one CPU in a multi-CPU system only has an SD
card, we may choose to configure a proxy server for that CPU that also includes PC
drivers – that way, the same proxy could be used by any program requiring either a
PC connection, or just the SD Card. 

Proxying PC and PROPTERMINAL devices is also supported – but this at first may
appear a little confusing, since these devices are already a type of proxy device (i.e.
the actual devices are not directly connected to the CPU that uses them). When you
proxy a PC or PROPTERMINAL device from one CPU to another,  what  actually
happens is that serial request from the client to the PC (e.g. to output a character) is
proxied from the client CPU to the server CPU, and the server CPU then forwards
the request to the PC (and vice versa for the response). The most common reason
for re-proxying these devices is that by doing so you only need to have one serial
connection from the PC to the multi-CPU system – i.e. a proxy running on the CPU
with the serial connection to the PC can be used to allow another CPU in the multi-
CPU system to communicate with the PC as if it had its own serial connection. This
is  particularly  useful  in  systems  where  the  CPUs use  serial  pins  other  than the
normal  Propeller  SI  and  SO  pins  (which  would  otherwise  necessitate  special
hardware to communicate with the PC).

There are so many possible ways to proxy devices even in a simple 2-CPU system
that the best way to understand proxy devices is to try out a few cases – see the
document Getting Started with Catalina for a tutorial containing some examples. 

Note  that  the  behavior  of  programs  that  use  proxy  devices  is  undefined  if  the
configuration  specified  for  the  proxy  server  does  not  match  the  configuration
specified  for  the  client  programs  –  e.g.  in  the  example  given  above,  if  the
Generic_Proxy_Server program was actually connected to a local VGA display, but
the client was compiled expecting to use a  TV display,  then some of the screen
features may work  while  others may not  – the results are unpredictable as they
depends on the capabilities of each of the drivers involved.

Copyright 2013 Ross Higson Page 101 of 158



Catalina C Compiler Reference Manual

Resetting and/or Loading another Prop
Since some CPUs in a multi-CPU system may not even have EEPROMs installed,
utility programs are provided that can be used to load a program into either the RAM
or EEPROM of another CPU, or to remotely reset another CPU. These programs
takes advantage of the built-in boot load capabilities of the Propeller CPU, which are
sufficient to allow one blade to load a small SPIN (or LMM program) into another
CPU.  However  such  utilities  can  only  load  programs  that  have  been  previously
embedded into the loader program itself, and can only load programs into Hub RAM
- to load programs from the SD card, or to load programs into XMM RAM requires a
more sophisticated loader to be running on the 'master' CPU, and also requires a
companion loader program to be running on the 'slave' (destination) CPU.

Catalina therefore provides the Catalyst SD Loader program. Catalyst can be used in
conjunction with an SD Card adaptor to load either SPIN programs, or Catalina LMM
or XMM programs from the SD Card to the local CPU. It can also load programs via
serial  I/O to  other  CPUs.  Programs that  fit  into  31k (such as SPIN programs or
Catalina LMM programs) require no special handling to be loaded using this Loader,
but Catalina XMM programs have to be compiled differently depending on whether
they are intended to be loaded from the SD card - either directly or via Serial I/O to
another CPU - or from an EEPROM. The default is to compile programs ready to be
loaded from the  SD Card  or  serial  I/O.  Loading  from EEPROM requires  the  -C
EEPROM command line option to be specified.

To  support  the  serial  capabilities  of  the  Catalyst  Loader,  a  Generic  SIO Loader
program is also provided -  this  is a 'companion'  loader that must  be run on the
destination  CPU  to  support  the  serial  load  process.  There  are  several  ways  to
accomplish this - if the destination CPU has an EEPROM installed, the Generic SIO
Loader can be programmed into the EEPROM to always start on boot. If not, the
Generic SIO Loader can be downloaded from the PC. But the usual method if the
destination CPU has no EEPROM is to first use Catalyst Loader program to load a
special  program that  has the  Generic  SIO Loader  embedded within  it  using  the
Propeller's built in boot capabilities. Once the companion loader is running, any other
program can be downloaded to the CPU.

Catalina  provides  the  following  utility  programs to  support  loading programs into
various CPUs (in the Catalina\utilities sub-directory):

Catalina_XMM_SD_Loader
This program is used by the Catalyst SD Program Loader. Catalyst is designed to
run on a CPU with direct access to an SD card, and allows SPIN, LMM or XMM
programs to be loaded from the SD Card into either the local CPU, or into another
CPU. This program is a normal  SPIN/PASM program, but  it  can use any of the
Catalina HMI plugins for the user interface – including being used remotely using a
PC terminal emulator such as the Parallax Serial Terminal. 

Catalyst  knows  how  to  load  SPIN,  LMM  or  XMM  programs.  SPIN  and  LMM
programs require no special  treatment to be loaded this way but XMM programs
have to be compiled using special command line options. Also, the companion load

Copyright 2013 Ross Higson Page 102 of 158



Catalina C Compiler Reference Manual

program Generic_SIO_Loader must be running on the target CPU - see below for
more details on this.

Refer to the  Catalyst Reference Manual for more details on compiling, installing
and using Catalyst.

Generic_SIO_Loader
This  is  the  companion  loader  program that  must  be  running  on  a  CPU for  the
Generic SD Loader program to be able to load programs to that CPU. The easiest
way to make sure this program is running on the target CPU is to program it into the
EEPROM of the CPU - but if the CPU has no EEPROM, this program can also be
downloaded  from a  PC.  Or  it  can  be  downloaded  from another  CPU using  the
Generic SD Load program, by using the CPU_Boot programs (described below).

There will usually be a separate Generic_SIO_Loader_n.spin program (where n = 1,
2 or 3) for each CPU in a multi-CPU system that might need to be loaded from the
Prop with the SD card

CPU_n_Boot
This is a self contained boot load program that can be used to load the companion
loader onto the CPU. This program does not itself need to beloaded into the other
CPU (that would be a chicken and egg problem!) instead, it is loaded and executed
on the local  CPU using the  Catalyst  SD Loader -  when executed,  this program
reboots the other CPU and then uses the Propeller's built-in boot loading process to
load  the  Generic_SIO_Loader program into  that  CPU -  after  that,  the  Catalyst
program can be used again to load any arbitrary program into the remote CPU.

There will usually be a separate CPU_n_Boot_m.spin program (where n, m = 1, 2 or
3) for each CPU in a multi-CPU system that might need to be loaded from the Prop
with the SD card (which would normally run Catalyst).

CPU_n_Reset
This is a utility program that can be loaded into local CPU. When executed it simply
resets the remote CPU - this is a useful alternative to power-cycling the whole multi-
CPU system just because one CPU is not responding.

There will usually be a separate CPU_n_Reset_m.spin program (where n, m = 1, 2
or 3) for each CPU in a multi-CPU system that might need to be reset from the Prop
with the SD card (which would normally run Catalyst).

Multi-CPU Examples
The best way to understand loading CPUs in a multi-Prop system is to try out a few
cases – see the document  Getting Started with Catalina for a tutorial containing
some examples. 

Copyright 2013 Ross Higson Page 103 of 158



Catalina C Compiler Reference Manual

Customizing Catalina

Customized Platforms
Catalina allows new platforms to be supported very easily. Creating a new platform
gives you the opportunity to specify the pin and clock configurations, and also the
HMI options that the platform supports (e.g. whether it supports both TV and VGA
output, or only one of these, or neither).

Each platform has a symbol reserved for it (e.g. HYDRA). One symbol (CUSTOM) is
the default, and is intended to be suitable for nearly any Propeller with a 5Mhz clock. 

To modify  the  details  of  a  CUSTOM platform,  the  following  files  in  the  Catalina
standard target package (in the target sub-directory) need to be modified:

Custom_DEF.inc - specifies pin and clock configuration

Custom_CFG.inc - specifies plugin configuration options

Custom_HMI.inc - specifies the HMI supported option 

Custom_XMM.inc - specifies the XMM API

To use any platform except he CUSTOM platform, you define the symbol  on the
command line. While not necessary, it does no harm to define the symbol CUSTOM.
For example, the following two commands are equivalent:

catalina hello_world.c -lc

catalina hello_world.c -lc -C CUSTOM

If  you want  to add your own symbol (i.e.  instead of  CUSTOM) to support a new
platforms (or a variations of a platform – e.g. to support a different clock speed, I/O
configuration or XMM API) then the files  DEF.inc, CFG.inc, HMI.inc and  XMM.inc
can be modified to include the new platform name. 

For example, here is the relevant code from HMI.inc:

#ifdef HYDRA
#include "Hydra_HMI.inc"
#elseifdef HYBRID
#include "Hybrid_HMI.inc"
#elseifdef C3
#include "C3_HMI.inc"
#elseifdef TRIBLADEPROP
#include "TriBladeProp_HMI.inc"
#elseifdef RAMBLADE
#include "RamBlade_HMI.inc"
#elseifdef RAMBLADE3
#include "RamBlade3_HMI.inc"
#elseifdef MORPHEUS
#include "Morpheus_HMI.inc"
#elseifdef DEMO
#include "Demo_HMI.inc"
#elseifdef DRACBLADE
#include "DracBlade_HMI.inc"

Copyright 2013 Ross Higson Page 104 of 158



Catalina C Compiler Reference Manual

#elseifdef ASC
#include "ASC_HMI.inc"
#elseifdef PP
#include "PP_HMI.inc"
#elseifdef QUICSTART
#include "QuickStart_HMI.inc"
#elseifdef CUSTOM
#include "Custom_HMI.inc"
#else
' default is CUSTOM
#include "Custom_HMI.inc"
#endif

Simply add a new clause to the if  statement in each of the four files.  Your  new
platform will automatically be supported by all the targets in the target package.

The document Getting Started with Catalina has more details.

Customized Targets and Target Packages
Catalina  also  allows  the  creation  of  customized  targets,  and  also  entire  target
packages.  Creating  a  customized  target  package  for  Catalina  is  fairly  easy.  To
create  a  new  target  package,  simply  copy  and  rename  a  whole  existing  target
directory, then make any changes you want. 

New targets within a target package can be created by  copying and modifying the
files of an existing target. Note that new targets are normally required  only if you
need to define a new memory model, or perhaps need to support a very unusual
plugin, driver or initialization code (for instance, the POD debugger is supported by
defining a new target called  pod).  Normally,  a new target is  not required just to
support a new propeller platform (as described in the previous section).

Each targets is normally part  of  a target package, located in a specific directory
under the Catalina base directory. The target is specified when binding or compiling
by using the –t option to the Catalina Binder, or the Catalina Compiler. For example,
to use a target called my_target the commands might be: 

catbind my_file.s –t my_target [other_options]

or

catalina my_file.c –t mytarget [other_options]

To use targets in a different package, also use the –Tpath option to specify the path
to the target package. For example:

catalina my_file.c -T mypackage –t mytarget [other_options]

Each Catalina target consists of several files:

lmm_<name>.spin - and -

emm_<name>.spin - and -

smm_<name>.spin - and -

xmm_<name>.spin These Spin  files  are  the  first  file  executed  when  the
Catalina  program is  run.  There  is  one for  each of  the

Copyright 2013 Ross Higson Page 105 of 158



Catalina C Compiler Reference Manual

memory  models/load  options  currently  supported  by
Catalina. These files load the program and any plugins
required,  and  can  be  customized  to  load  other  cog
programs  if  required.  Then  they  invoke  the  required
loader and/or kernel.

catalina_<name>.s This  LMM  PASM  file  can  be  used  to  include  target-
specific PASM functions that need to be made available
to  the  Catalina  program.  Note  that  any such  functions
must adopt the Catalina calling conventions.

Note that the default target and standard target package do not need to be specified
when compiling or binding – they are used if no other target or package is specified.

Note that all targets get their hardware specific configuration data (such as the clock
frequency and I/O pin definitions) from the file called Catalina_Common.spin in the
appropriate  target sub-directory.  This file in turn includes various platform specific
files. This means that there is often only  one file that needs to be modified to add
support for a new Propeller platform to all targets.

Catalina now comes with three target packages. These are described in the section
called Catalina Targets. If you need to create a new customized target package for
a specific application or a specific Propeller platform, the basic target package would
usually be the best choice to start from. It omits much of the complex and esoteric
functionality, such as the many different types of HMI drivers, and the proxy drivers.
It would generally be easier to take the basic package and add a specific HMI driver,
than take the standard target package (i.e.  target) and remove all the unnecessary
ones.

Using existing Parallax Drivers
If there is an existing Parallax driver for a particular device or platform, chances are
that it can be used with Catalina without much trouble. 

There are now two different ways of doing this, described in the sections below.

Use a Spin object unmodified
You can use a Spin object  (such as one from the Parallax Object  Exchange, or
OBEX) as a Catalina plugin completely unmodified in many cases. If the driver does
not require any interaction with C, then it is simply a matter of loading and starting it.
If it requires interaction, it is normally quite simple to write a “wrapper” object (also in
Spin) that is responsible for the interaction – e.g. communicating via the registry.

To use such objects, you compile them to an object format using any normal Spin
compiler, then use the Catalina spinc utility to turn the objects into a form that can
be loaded by Catalina at run-time. For examples of using the spinc utility, see the
programs  in  the  demos\spinc directory.  That  directory  also  contains  a  complete
example of replacing the normal Catalina HMI plugin with two Spin objects taken
direct from the OBEX (a TV driver and a keyboard driver).

Copyright 2013 Ross Higson Page 106 of 158



Catalina C Compiler Reference Manual

The  main  restriction  on  the  Spin  objects  that  can  be  used  is  that  it  should  not
overwrite any fixed areas of memory outside the areas defined by its VAR blocks.
Some objects also write to their DAT blocks – this is fine provided it is only done
during initialization. 

The cost of using a Spin object as a plugin (rather than a PASM object, as described
in the next section) is that Spin objects will generally exhibit slower performance and
consume more hub RAM. However, if the driver is implemented largely, or entirely in
Spin then this is the only available option.

Use only the PASM portion of the driver
Existing Spin drivers that are implemented mostly in PASM (usually with just a few
Spin interface routines) can be turned into a Catalina PASM plugin with fairly minor
code changes. 

PASM plugins generally consume less resources, are faster, and are also easier to
interact with from C than the original Spin/PASM objects.

Catalina itself uses PASM only versions of the standard Parallax drivers for many of
its own plugins (e.g. the HMI plugins). 

Normally,  the  PASM  code  does  not  need  to  be  modified  very  much  -  the
modifications required are mostly to the Spin code, and consists of:

 Removing  the  unused  Spin  methods  (usually  everything  except  the  Start
method) – these are then generally replaced with C equivalents;

 Replacing any use of VAR blocks with a configurable data block (allocated by
Catalina) which is passed to the PASM code on initialization;

 Using the registry for any necessary interaction with Catalina.

The Catalina HMI, Floating point, and SD card plugins give examples of the types of
modifications required. 

A fully-worked example is the game pad driver (new with release 3.0). This driver
was derived from Spin/PASM driver provided for the Hydra. The code modifications
required  to  convert  the  original  Hydra  driver  (i.e.  gamepad_drv_001.spin)  to  a
Catalina Plugin (i.e. Catalina_Gamepad.spin) have been highlighted in the modified
version to make it easy to understand.

In this case, the standard C library also contains a couple of functions to simplify the
use of the driver (these are defined in catalina_gamepad.h) but these are completely
trivial functions that just “wrap” the standard C function used to access the registry
(e.g. _short_plugin_request).

Copyright 2013 Ross Higson Page 107 of 158



Catalina C Compiler Reference Manual

Loading and starting such additional plugins has been made much simpler since all
target files in the Catalina standard target package now include a Spin file called
Extras.spin – this means that you only need to modify a single file to add a new
plugin to all targets in the package. Examine Extras.spin to see how the game pad
plugin  was  added,  and  also  how  it  has  been  associated  with  the  GAMEPAD
command line symbol.

The game pad plugin can be demonstrated by the program test_gamepad.c (note –
this program has only been tested on the Hydra!):

catalina -lci test_gamepad.c -C GAMEPAD

Copyright 2013 Ross Higson Page 108 of 158



Catalina C Compiler Reference Manual

Building Catalina
There are currently no detailed instructions on how to do this, but there are various
README and NOTES files in the source sub-directories. 

To build Catalina you will require (at least) a working ANSI compliant C compiler –
gcc is the recommended compiler on all platforms because it is the one used to build
the binary releases (although theoretically other compilers, such as lcc itself, can be
used).  

The binary distributions of Catalina are built using gcc 3.4.5 under Win32 (Windows
XP), and gcc 4.1.2 under Linux (Debian 4.2.1 or Fedora 12). Most other versions of
gcc should also work. 

Under Linux, you will also need the bison and flex utilities.

Under  Windows,  the  MinGW installation  of  gcc  is  recommended  (see
http://www.mingw.org/). You will also need to install the bison and flex utilities (also
available in the MingW site) as well as the MSYS package (to get various command
line tools such as cp and rm). If you use the automated installer for MinGW, please
be sure to install  make  - this is an optional component you can select during the
installation process.

Building Catalina under Windows
Here is a brief summary of the steps that are needed to build Catalina from the
Windows source distribution (note that the order of the steps is important). These
instructions assume Catalina is installed in the default location for Windows systems
(i.e. C:\Program Files\Catalina\source\catalina):

1. Log  in  as  a  user  with  Adminstrator  privilege,  and  open  a  command-line
window.

2. Install  MinGW, MSYS,  bison and flex. This will install  gcc – make sure it is
version 4.4 or later – to check, open a command window and type:

gcc --version

This should show gcc (GCC) 4.4.0 (or later).

3. Make sure MinGW is in your path (see MinGW documentation for details).

4. Go  to  the  main  directory  of your  Catalina  installation,  set  the  LCCDIR
environment variable (if not already set), execute use_catalina, then go to the
source subdirectory, and execute the build_all command:

cd C:\Program Files\Catalina
set LCCDIR=%CD%
use_catalina
cd source
build_all

Note that all the binaries end up in the bin sub-directory, and the libraries will be put
in lib, large_lib and compact_lib.

Copyright 2013 Ross Higson Page 109 of 158

http://www.mingw.org/


Catalina C Compiler Reference Manual

Building Catalina under Linux
These instructions assume you have installed Catalina in  the default  location for
Linux systems (i.e. /usr/local/lib/catalina). 

1. Become root. It is easiest to rebuild Catalina when logged in as root:

su root

2. Install  the  necessary  utilities  (note  you  may  already  have  some  of  these
installed, and that gcc must be version 4.4 or later):

yum install gcc-c++
yum install bison
yum install flex
yum install libtool
yum install unzip

3. If  you  also plan to  build  the srecord utilities (optional),  you  also need the
BOOST libraries:

yum install boost-devel

4. Download and untar/unzip the Catalina distribution – e.g:

tar -xvf Catalina_3.13.2_Linux32.tgz

5. Go  to  the  directory  that  was  just  created,  set  the  LCCDIR  environment
variable  (and  export  it),  execute  source use_catalina,  go  to  the  source
subdirectory and execute the build_all command:

cd Catalina_3.13.2
LCCDIR=$PWD
export LCCDIR
source use_catalina
cd source
./build_all

Note that the above commands are for the bash shell – if you use another shell,
some of the commands (e.g. to set LCCDIR) may need to be modified.

Note that all the binaries end up in the bin sub-directory, and the libraries will be put
in lib, large_lib and compact_lib.

Building Catalina under  OSX
Building Catalina under Macintosh OSX is similar to building under Linux (use pax
instead of tar). Note that you must have gcc installed, and it must be version 4.4 or
later.  An  easy  way  to  install  gcc under  OSX  is  to  use  MacPorts  (see
www.macports.org).  You  can  also  use  MacPorts  to  install  the  other  tools  and
libraries required (i.e. instead of using yum).

Copyright 2013 Ross Higson Page 110 of 158

http://www.macports.org/


Catalina C Compiler Reference Manual

Catalina Technical Notes
This section contains technical notes about various aspects of Catalina.

A Note about Binding and Library Management
Catalina uses lcc as its C compiler, providing a custom code generator specific to
the Parallax Propeller. Catalina also replaces the normal linker that lcc expects with
a binder. A binder does a similar job to a linker, but works at the source code level
instead of at the object code level – i.e. instead of the usual compile-assemble-link
sequence, Catalina uses a compile-bind-assemble sequence.

The Catalina Binder is called catbind.

To  understand the  relationship  between  catalina,  lcc and  catbind,  consider  the
following  steps  involved  in  generating  a  binary  file  from  a  C  source  file  using
Catalina:

 The catalina program processes the command line and parses the command
line options and the environment variables to determine a set of options to be
passed to lcc. It then invokes lcc.

 lcc preprocesses the C source file (which has a  .c extension) to expand all
macros and  include files, parses the resulting C source file for validity, and
produces a syntax tree of the C program.

 lcc traverses the syntax tree, invoking the Catalina code generator on each
node  as  required  to  produce  LMM PASM statements  that  are  the  logical
equivalent of the original C program – the result is written to an LMM PASM
source file (with a .s extension).

 Because Catalina binds at the source level, but lcc expects to invoke a linker
that binds at an object level, the Catalina version of  lcc simply renames the
LMM PASM file (.s extension) to appear to be an “object” file (.obj extension
under Windows).

 lcc invokes catbind on the “object” file (actually an LMM PASM source file) to
combine this source file with other source files from various libraries – the
binder recursively resolves all  the source symbols by including library files
until all symbols in all the included files have been resolved – the result is then
output as a single SPIN/PASM file (with a .spin extension).

 For LMM programs, the catbind program in turn then invokes the spinakker
(or homespun) SPIN compiler on the nominated target SPIN file (not directly
on  the  binder  output).  LMM  target  SPIN  files  are  normal  Propeller  SPIN
program that refers out to the following objects in other files19: 

o The SPIN file created by the binder (i.e. the user program);

19  EMM and XMM targets work slightly differently. Refer to the sections on EMM Support and 
XMM Support.

Copyright 2013 Ross Higson Page 111 of 158



Catalina C Compiler Reference Manual

o The Catalina Kernel;

o Any plugins required by the target;

 spinakker  (or  homespun) assembles  the  target  SPIN/PASM  file,  and
typically produces either a binary file (with a .binary extension) or an eeprom
file (with a .eeprom extension). A listing file can also be produced (with a .lst
or .list extension).

Part of the job of catbind is to resolve any references in the original C program to
functions provided by external libraries. Catalina libraries are simply collections of
PASM source files produced by using  lcc – but without  binding or compiling the
resulting output  (this  is  done by using the  –S option to  lcc).  The standard  C89
libraries provided (e.g. libc, libm) are generated using lcc in this way.

To  enable  libraries  to  be  efficiently  searched  when  the  binder  needs  to  resolve
symbols, each library must have an index.  catbind is itself used to produce these
indexes. This means that user libraries must be created using  catalina, and then
indexed using catbind. 

The  catbind program can also be used to provide diagnostic help for determining
how a symbol has been resolved, or in determining where an unresolved symbol is
referenced.

Copyright 2013 Ross Higson Page 112 of 158



Catalina C Compiler Reference Manual

A Note about the Catalina Libraries
Catalina provides a complete set of ANSI compliant C89 libraries, with some C99
additions. There are several different versions of each of the libraries provided:

libc the standard C library. This version of the library supports only stdin,
stdout and stderr – it does not support full file system access, and is
appropriate  for  platforms  with  no  SD  Card  file  system  (or  for
programs that do not need to use the file system).

libci the standard C library without floating point support in  stdio (e.g. in
routines such as printf and scanf). Like libc, this version of the library
supports only  stdin,  stdout and  stderr – it does not support full  file
system access, and is appropriate for platforms with no SD Card file
system (or for programs that do not need to use the file system) and
which do not need to do input or output on floating point numbers.
This library is significantly smaller than libc.

libcx the standard C library with extended file system support. This version
of the library is appropriate for programs which need to use an SD
Card  file  system.  This  library  is  significantly  larger  than  libc,  and
should only be used where SD card file system access is required.

libcix the standard C library with extended file system support, but without
floating  point  support  in  stdio (e.g.  in  routines  such  as  printf and
scanf). This version of the library is appropriate for programs which
need to use an SD Card file system, but which do not need to do
input or output on floating point numbers. This library is significantly
smaller than libcx.

libm the standard maths library, emulated in software. This version of the
maths  library  does  not  require  any  extra  cogs,  but  is  larger  and
slower than the other versions.

libma the  standard  maths library,  with  some  functions  emulated  on  a
separate cog. This library is smaller and faster than libm, but requires
a  free  cog  (this  is  transparent  to  the  user  of  the  library  -  the
management of the cog is handled automatically by Catalina).

libmb the  standard  maths library,  with  more  functions  emulated  on  two
separate  cogs.  This  library  is  smaller  and  faster  than  libma,  but
requires two free cogs (this is transparent to the user of the library –
the management of the cogs is handled automatically by Catalina).

Note that as well as all the standard C functions,  libc, libci, libcix  and libcx  also
provide the standard Catalina HMI functions described in the HMI Support section.

Note that there are two complete sets of the above libraries provided with Catalina –
one  is  contained  within  the  lib sub-directory,  and  the  other  is  contained  in  the
large_lib sub-directory. The reason for this is that programs built using the LARGE
addressing model (i.e. with the  –x5 command line option) also require the library

Copyright 2013 Ross Higson Page 113 of 158



Catalina C Compiler Reference Manual

code to be generated with  this option.  The large address model  actually uses a
completely different code generator to the tiny and small memory models. Catalina
automatically selects the correct set of libraries based on the command line options
(e.g.  the  –x5 option).  Note  that  this  means  you cannot  combine user-created
libraries and programs compiled using different addressing modes, except as
follows:

 programs built with –x3 can use libraries built with –x5

 programs built with –x4 can use libraries built with –x2 or –x0

Copyright 2013 Ross Higson Page 114 of 158



Catalina C Compiler Reference Manual

A Note about LMM Startup & Memory Management
For LMM programs Catalina memory management is reasonably simple. When a
Catalina program is loaded into Propeller RAM it consists of a collection of SPIN
objects, the same as any other Propeller program. The SPIN objects in the Catalina
program always end up being loaded in the following order:

 The compiled Catalina C program (LMM PASM)

 The Catalina Kernel (SPIN/PASM)

 Any plugins specified by the Target program (SPIN/PASM)

 The specified Target program (SPIN)

 VAR space for all SPIN objects

After this comes unallocated space, up to the top of RAM (on the current Propeller
this is 32Kb or $8000).

On  startup,  it  is  the  SPIN  target program  that  executes  first.  This  program  is
responsible for loading the Catalina Kernel into cog RAM and starting it. It then loads
each of the required plugins into cog RAM and starts each one. Then it starts the
Kernel. Finally, it terminates its own cog, shutting down the SPIN interpreter. From
this point on only the Kernel and the plugins are executing. Theoretically, either the
Catalina program, or one of the plugins could then (but currently do not) re-use the
terminated cog for other purposes.

Catalina uses the upper end of RAM as data space for plugins. The SPIN objects
that represent plugins may use VAR space while they are being initialized by the
target program, but once the Kernel has been started a plugin must no longer use
any VAR space. To make this possible, the Target program allocates each plugin a
data block at the upper end of RAM, and passes the plugin its data block address as
part of the startup process. This is the main reasons that a standard Parallax driver
typically needs to be modified for use with Catalina.

The stack used by a Catalina LMM program starts just below the plugin data and
grows downwards in memory. The heap used by a Catalina LMM program starts just
above the Catalina program itself and grows upwards in memory. This means that
the heap and the stack may both include space that was originally occupied by the
Kernel, a plugin or a driver. This is fine because once they are loaded and executing,
each plugin only uses the data block assigned to it by Catalina – this means neither
the Kernel nor the plugins require this space any longer, and it can be reallocated for
use by the Catalina program. 

This also explains why trying to save RAM space by eliminating unused drivers is
often not required – such space is reclaimed automatically to be used as Catalina
heap and stack space anyway. The only time it can be useful to eliminate unused
drivers is when leaving them in makes the final program too large to load in the first
place, or to large to use with the POD debugger.

Copyright 2013 Ross Higson Page 115 of 158



Catalina C Compiler Reference Manual

Note that the malloc “GRABSIZE” (the minimum size that malloc is configured to
grab whenever it needs more RAM space) has been set to 512 – but this is easy to
change in the malloc source in the supplied C89 library if required.

Copyright 2013 Ross Higson Page 116 of 158



Catalina C Compiler Reference Manual

A Note about POD and EMM/XMM
There are currently no EMM or XMM ‘debug’ targets. POD cannot be used to debug
EMM or XMM programs.  POD is partially implemented in SPIN, and because the
EMM and XMM Loaders rearrange the Propeller memory in order to make the entire
32K of onboard RAM available to Catalina programs, SPIN programs can no longer
be executed in conjunction with Catalina EMM or XMM programs (although SPIN is
still used to load and initialize Catalina plugins before the EMM or XMM Loader takes
over). 

POD targets for EMM and XMM may be included in a subsequent of Catalina – now
that the LARGE memory model allows C program data segments to be moved out of
HUB RAM, it may in future be possible to have some part of the HUB RAM reserved
exclusively for use by SPIN programs.

In  the meantime,  for  source level  debugging,  BlackCat and  BlackBox can both
debug  LMM,  EMM  or  XMM  programs.  Alternatively,  programs  can  initially  be
developed and debugged as LMM programs, with only the final version compiled as
an EMM or XMM program.

Copyright 2013 Ross Higson Page 117 of 158



Catalina C Compiler Reference Manual

A Note about Catalina Code Sizes
Given the limited amount  of  RAM on the Propeller  (32kb) it  is  easy to  generate
programs where the binary may initially seem to end up too large to be useful. 

Having the ability to run Catalina programs from external  memory (XMM) is one
option, but not all platforms support XMM RAM. On platforms with only the in-built
32kb of Hub RAM Catalina offers many alternatives to reduce the final program size.

First, consider the program below – it is the traditional C “Hello, world” program: 

#include <stdio.h>
void main() {

printf("Hello, world (from Catalina!)\n");
}

To compile this program (a version of it is actually included in the  Catalina\demos
folder), we might initially use a simple command such as:

catalina hello_world.c -lc

This compiles the program, links it with the libc version of C89 library and uses the
default  target  and  drivers,  and  the  LMM kernel.  Here  are  the  statistics  actually
produced by the above command:

code = 13308 bytes
cnst = 144 bytes
init = 208 bytes
data = 940 bytes
file = 19724 bytes

At  first  sight,  it  appears  that  this  trivial  program  consumes  nearly  20Kb of  our

precious 32kb of inbuilt Hub RAM!  DON’T PANIC! - this can be substantially
reduced in various simple ways. 

For example, by using the  libci library (in place of  libc) for programs that do not
require  support  for  i/o  of  floating point  numbers (they can still  use floating point
internally – they just can’t scan or print them) the program size immediately reduces
from  20Kb to  around  12Kb.  To  see  this,  compile  the  same program using  this
command instead:

catalina hello_world.c -lci

Here are the statistics:

code = 6240 bytes
cnst = 103 bytes
init = 208 bytes
data = 772 bytes
file = 12448 bytes

The big difference in code size is due to how much code is required in the standard 
C library to perform I/O of floating point numbers. 

If you don't need the full capabilities of the Standard C I/O libraries, Catalina also 
provides smaller alternatives. In this case, we can use the “tiny” library, which 
provides smaller (but more limited) versions of the standard C I/O functions. We 
specify those in addition to the standard library:

Copyright 2013 Ross Higson Page 118 of 158



Catalina C Compiler Reference Manual

catalina hello_world.c -lci -ltiny

Here are the statistics:

code = 2964 bytes
cnst = 15 bytes
init = 224 bytes
data = 772 bytes
file = 9324 bytes

For this program, several other optimizations are also possible, and can be selected
on the command line. For example, try the following command:

catalina hello_world.c -lci -ltiny -C NO_FLOAT -C NO_ARGS -C NO_EXIT

Here are the statistics: 

code = 2912 bytes
cnst = 15 bytes
init = 220 bytes
data = 772 bytes
file = 8116 bytes

Our program size is now around 8kb. But that’s not the end of the story. Notice that
the sum of the segments (code, cnst, init & data) is actually only around 4kb?
The other 4kb of the final file size is taken up by plugins and the kernel itself. But we
don’t need to waste even this space - Catalina provides EMM (EEPROM) and SMM
(SDCARD)  loaders  which  can  make  this  space  available  as  code  space.  So  in
reality,  the  program  requires  only  4kb of  Hub  RAM  even  though  it  includes  a
substantial  portion  of  the  stdio  library (which  of  course  only  ever  needs  to  be
included once). This leaves us around  28kb of Hub RAM for more C code (or for
other purposes). And that code does not need to include the stdio library code again!

To make the significance of this last point plainer, consider the following program,
very similar to the traditional C “hello, world” program:

#include <catalina_hmi.h>
void main () {
   t_string(1, "Hello, world (from Catalina!)\n");
}

Let’s  compile  this  program with  our  next  command (this  program is  also  in  the
Catalina\demos folder, called hello_world_3.c):

catalina hello_world_3.c -lci -C NO_FLOAT -C NO_ARGS -C NO_EXIT

Here are the statistics: 

code = 208 bytes
cnst = 31 bytes
init = 4 bytes
data = 4 bytes
file = 4444 bytes

Excluding the “one off” Catalina runtime overheads (i.e. the Catalina kernel, the HMI
plugin and various support functions) this program actually compiles to only around
250 bytes, even though when compiled and bound with a suitable target, it occupies
about  4.5Kb of RAM - this is because (in this case) Catalina must also include at
least the following:

 the Catalina Kernel (~2Kb);

Copyright 2013 Ross Higson Page 119 of 158



Catalina C Compiler Reference Manual

 a Catalina HMI plugin and drivers (~2.5Kb);

But if  we were to load this program using an SMM or EMM two-phase loader, it
requires only the 250 bytes of Hub RAM - leaving over 31Kb for more code! 

The difference between the two “hello world” programs is that the first version uses
the printf function from the C89 library, whereas the second uses a t_string function
which is built into the Catalina HMI plugin. This small change means that Catalina
does not need to load a significant part of the C library (i.e. printf and its associated
support  functions).  In  reality,  this  small  difference  between  the  two  programs
amounts to  over  a thousand lines of library C code.  But  many programs do not
require the full functionality provided by libc, and some do not need to load it at all.

EMM targets can be used on any Propeller with a 64Kb EEPPROM attached, and
SMM targets can be used on any Propeller with an SD Card attached. While these
techniques do not reduce the program size, they do mean that more of the available
32Kb of RAM can actually be used by the C program.

As if this is not enough, there is also the Catalina Compact Memory Model (CMM).
This dramatically  reduces the size of any Propeller programs – typically by over
50% - but at a cost in reduced speed. The resulting programs will still execute faster
than Spin, but slower than the equivalent LMM program.

Let’s compile the same program in COMPACT mode:
catalina hello_world_3.c -lci -C NO_FLOAT -C NO_ARGS -C NO_EXIT -C COMPACT

Here are the statistics: 

code = 104 bytes
cnst = 31 bytes
init = 4 bytes
data = 4 bytes
file = 4416 bytes

Finally, there is also the Catalina Code Optimizer that can reduce code sizes even
further – typically 15 – 20% for LMM programs (slightly less for CMM programs). The
Catalina Optimizer works on any size program. For example, here are the statistics
when both CMM and the Optimizer are used on the above program:

catalina hello_world_3.c -lci -C NO_FLOAT -C NO_ARGS C NO_EXIT -C COMPACT -O4

Here are the statistics: 

code = 92 bytes
cnst = 31 bytes
init = 0 bytes
data = 4 bytes
file = 4400 bytes

Our final Catalina C program now uses only 125 bytes of Hub
RAM at run time - less than the equivalent SPIN program!

Who says C can’t be an effective language for the Propeller?

Copyright 2013 Ross Higson Page 120 of 158



Catalina C Compiler Reference Manual

A Note about Catalina symbols vs C symbols
Both  Catalina  and  lcc make  use  of  symbols.  Catalina  uses  symbols  to  pass
configuration options to the various targets compiled by the spinakker or homespun
Spin compilers (remember, Catalina targets are really just SPIN programs). lcc uses
symbols to pass configuration options to the C program it is compiling.

Is there a relationship between these symbols? Obviously you can access Catalina
symbols from within the targets (that’s what they’re intended for!) but can you also
access such symbols from within a C program? The answer is ‘yes’ – but with a few
minor complications.

The Catalina front-end accepts symbols defined on the command line using the -C
command line option, or specified in the CATALINA_DEFINE environment variable.
When a symbol is defined two things happen:

1. The  symbol  is  passed  to  the  Catalina  Binder,  and  is  then  passed  on  to
Homespun  to  conditionally  compile  based  on  the  symbol  defined  on  the
Catalina command line.

2. The symbol is passed to lcc, but with the prefix __CATALINA_ added. This is
done to avoid name collision with names commonly used in C programs. This
symbol will be available to C programs like any other.

So when compiling a program using a command like this:

catalina hello_world.c –lc -C HYDRA -C VGA

Then the following happens:

1. The following symbols will be passed through lcc to the Catalina Binder, and
can be used in targets to conditionally include or exclude sections of Spin or
PASM code:

HYDRA
VGA

2. The following symbols will be passed to lcc, and can be used in C programs
like any other C symbol:

__CATALINA_HYDRA
__CATALINA_VGA

Note that to define symbols from within either Homespun or C and then have them
available to programs written in the other language is not currently supported.

It is possible to pass symbols directly to C programs (i.e. without Catalina adding in
the  __CATALINA_ prefix)  by using the appropriate Catalina command line option
(e.g.  -DXXXX),  or  using  the  CATALINA_LCCOPT environment  variable  (e.g.  set
CATALINA_LCCOPT= -DXXXX). This environment variable is used to pass options
directly  to  lcc.  However,  it  is  important  to  note  the  difference  between  this
environment variable and the CATALINA_DEFINE environment variable – i.e.:

Symbols defined using the  CATALINA_LCCOPT environment variable  must
be preceded by  -C – this is because this environment variable can contain

Copyright 2013 Ross Higson Page 121 of 158



Catalina C Compiler Reference Manual

any lcc option, not just symbol definitions. Within C program, these symbols
will appear “as is” (i.e. without any Catalina prefix added). 

Symbols defined in the  CATALINA_DEFINE environment variable  must not
be  preceded  by  -C because  this  environment  variable  is  processed  by
Catalina and can contain only symbol definitions. Within Homespun programs
these symbols will appear “as is” but within C programs these symbols will
appear with the standard Catalina prefix added.

Finally, note that Catalina always defines the symbol  __CATALINA__ - this symbol
can therefore  always  be used within  C programs to  determine if  they are  being
compiled with Catalina.

Copyright 2013 Ross Higson Page 122 of 158



Catalina C Compiler Reference Manual

A Note about the Catalina Loader Protocol
Catalina uses both the normal Parallax load protocol (e.g. to load an LMM program
from a PC) as well as its own internal protocol (e.g. to load an XMM program from a
PC, or to load programs between CPUs).

The  loader  protocol  is  a  single-master,  multi-slave  protocol,  where  the  master  
can be either  a  PC,  or  one of  the on-board CPUs (usually  the one with  direct  
access  to  the  SD  card).  All  the  slave  CPUs  in  the  system  are  expected  to  
monitor  the  serial  line  and  read  all  packets  -  but  ignore  them  until  they
see  their  specific  sync  signal.  They  respond  to  the  master  using  the  same  
sync signal.

Note that CPU numbers always start from 1 (e.g. 1, 2 & 3 on a TriBladeProp, or
1 & 2 on Morpheus) – there is no CPU 0. 

All  file  loads  starts  with  the  “sync”  signal.  The  sync  signal  is  always  two  
bytes  -  $FF $nn,  where  $nn is  the  number  of  the  CPU  for  which  the  data  
is intended (if requesting) or the CPU from which it is sent (if responding).

For  example,  to  alert  CPU  #2  to  receive  a  file,  the  sync  signal  $FF $02 is
sent. During the transfer, whenever CPU #2 needs to respond, it sends  $FF $02
back again (before each response).

Byte  stuffing  is  used  to  prevent  sync  signals  being  interpreted  accidentally  
(e.g.  within  a  stream  of  binary  data).  This  means  that  other  than  within  the  
sync  signal  itself,  any  transmission  of  a  single  byte  $FF is  "stuffed"  to  send
two bytes - $FF $00. Any such sequence seen by the receiver must be "unstuffed" 
back to a single  $FF (note that  $FF $00 can never represent a sync signal, as  
there is no CPU 0).

To  send  a  file,  a  “sync”  is  first  sent  to  the  destination  CPU.  Then  the  file  is
sent in packets. Each packet has the following format:

<address> 4 bytes, with address $00FFFFFE reserved as an EOT marker

<size> 4 bytes specifying the size of the following binary data

<data> up to <size> bytes of data (usually one sector)

Note  that  each  packet  should  NOT begin  with  another  sync  signal  -  this  would
initiate a new transfer.

The CPU receiving the packets responds to each packet with:

<sync> a sync signal containing its own CPU #

<LRC> single  byte  LRC  of  the  <size>  data  bytes  it  just  received.

If  the  sender  fails  to  receive  this  response  to  each  packet,  or  the  LRC  does  
not  match,  or  a  timeout  expires,  then  the  packet  is  retransmitted.  Otherwise  
the  next  packet  is  transmitted.  To  complete  the  transmission,  a  special  
"empty" data packet is sent - i.e.:

Copyright 2013 Ross Higson Page 123 of 158



Catalina C Compiler Reference Manual

$00FFFFFE the special address marker that means EOT

$00000000 zero bytes follow

At  any  time,  a  transmission  can  be  aborted  simply  by  not  sending  any  more  
packets.  All  receivers  start  the  process  all  over  again  whenever  they  see  
another sync signal - even if it is in the middle of a packet transmission.

Copyright 2013 Ross Higson Page 124 of 158



Catalina C Compiler Reference Manual

Catalina Development

Reporting Bugs
Please report all Catalina bugs to ross@thevastydeep.com. 

Where possible, please include a brief source code example that demonstrates the
problem.

If you want to help develop Catalina
Anyone who has ideas or wants to assist  in the development of  Catalina should
contact Ross Higson at ross@thevastydeep.com 

Okay, but why is it called “Catalina”?
Why? Because it’s a big, slow, “C”-going contraption … powered by Propellers!  

See http://en.wikipedia.org/wiki/PBY_Catalina

Copyright 2013 Ross Higson Page 125 of 158

http://en.wikipedia.org/wiki/PBY_Catalina
mailto:ross@thevastydeep.com
mailto:ross@thevastydeep.com


Catalina C Compiler Reference Manual

Acknowledgments
Parallax – for creating the Propeller chip in the first place

Chris Fraser and David Hanson – for  lcc

André LaMothe – for the Hydra platform, and also the C3 platform

Cluso99 – for the TriBladeProp and RamBlade platforms

Coley – for the Hybrid Propeller board

Dr_Acula – for the DracBlade platform

Bill  Henning –  for  his  original  work  on  the  Large Memory  Model  for  the
Propeller, and also for the Morpheus platform.

Mike Green – for the keyboard driver that supports both Hydra and Demo
boards, and also for his basic I2C driver

Cam Thompson – for the Float32 libraries for the Propeller

Kaio – for the POD debugger

Insonix – for Prop Terminal

Brad Campbell – for bstc

Baggers – for the high resolution TV text driver

Michael Park – for Homespun 

Lewin Edwards – for the DOSFS SD Card file system

Radical Eye Software – for the fsrw SD Card file system

Eric Moyer – for the modified firmware for the Hydra Xtreme HX512 SRAM
card

Bob Anderson – for his work on the BlackCat debugger

Kye – for the FATEngine file system

Various contributors – for the C89 C library (see the source files)

Pullmoll – for the improved signed integer division routine

Hanno Sander – for his work on Catalina support in ViewPort

Steve Densen – for the spinc utility, and his work on the caching SPI driver

David Betz – for his work on the caching SPI driver

Microcontrolled – for the Catalina logo

Rayman –  for  the  FlashPoint   XMM  boards  (SuperQuad,  RamPage  and
RamPage 2)

Ted Stefanik – for  procedures to manipulating the Propeller special registers,
and for the libtiny library.

Nick Sabalausky - for the 22KHz, 16-bit, 6 Channels Sound Driver

Copyright 2013 Ross Higson Page 126 of 158



Catalina C Compiler Reference Manual

Roy Eltham – for openspin, the open source version of the Parallax Spin 
compiler, from which spinnaker is derived.

Copyright 2013 Ross Higson Page 127 of 158



Catalina C Compiler Reference Manual

The Current Catalina Release

What’s new in this release?
If you have been using a previous Catalina releases, the following list summarizes
the changes have been made since the previous release:

Release 3.13.2:
1. Updated Code::Blocks to release 13.12. Updated the Catalina Code::Blocks

documentation and quick start guide to match.
2. Improved Code::Blocks compiler support  for  Catalina -  now more compiler

options are automatically checked for consistency (e.g. you can only select
one HMI option,  or  only  select  a  caching  option  for  a  SMALL or  LARGE
program).

3. Improved Catalina Project Wizard. Now more options can be selected using
the wizard.  Also,  fixed  a  problem that  did  not  allow selecting  the  LARGE
memory model using the Wizard. One improvement is that it is now possible
to specify the output format (.binary or .eeprom). This means Code::Blocks
can now correctly tell whether a target needs rebuilding or not.

4. Made  it  possible  to  create  a  single  default  target  using  the  Wizard.  This
simplifies things, and is now the recommended way to create projects. The
previous  method  (creating  a  separate  debug  and  release  target)  is  still
supported. The release target (if created) is also now optimized by default.

5. Improved  the  build  scripts  to  depend  only  on  the  LCCDIR  environment
variable, which allows Catalina to be rebuilt with a single command with no
editing of scripts etc required.  

6. Added more Code::Blocks example workspaces and projects (using existing
C programs from the demos folder) - these are in the workspaces 
      sound_demos : sound_spacewar, sound_demo
      more_demos  : globbing, sumeria, chimaera, test_spi, test_tty

7. Fixed some problems with some of the Code::Blocks projects, such as the
pre- and post- build command in the spinc_demo projects. 

Release 3.13:
1. Fixed  a  problem with  the  graphics  library  that  caused it  to  not  compile  if

spinnaker (openspin)  was  used.  It  compiled  correctly  if  Homespun was
used.

2. Modified the CMM kernel to include relative jumps, and various other minor
performance improvements. These can both improve the speed and reduce
the size of CMM programs significantly.

3. Add a new Optimizer level (level 5) which optimizes loads. This can improve
the  speed  and  reduce  the  size  of  both  CMM  and  LMM  programs
significantly.

Copyright 2013 Ross Higson Page 128 of 158



Catalina C Compiler Reference Manual

4. Improved  the  performance  of  the  PSHM primitive  -  this  can  improve  the
speed of both CMM and LMM programs that make intensive use of procedure
calls significantly.

5. The ALTERNATE LMM kernel is now deprecated, since the improvements in
the standard LMM kernel have made it  redundant. It  will  be removed from
future releases.

6. The combined result of the the CMM and LMM changes can reduce program
size and improve program speed as follows:
      CMM: up to 20% size reduction, and up to 15% speed improvement
      LMM: up to 5% size reduction, and up to 20% speed improvement.
Not all programs will achieve these reductions, but all non-trivial programs will
achieve SOME improvement. 

In addition, the following issues were fixed in a  3.12 Errata release, and are also
fixed in this release:

1. Modified the  sumeria.c and  chimaera.c demo programs to seed the random
number generator on each execution.

2. Fixed a bug in the CMM kernel in the PSHB primitive. However, this primitive
is not currently used by Catalina, so this bug would not have affected any
existing Catalina programs.

3. Included a new demos for the SD card file system - a "globbing" demo that
allows pattern matching of file names - see demos\globbing for more details.

4. Fixed some script issues in the build_utilities and Set_Linux_Permissions
that only affected Linux or OSX platforms.

5. Fixed  some  compilation  issues  in  the  source\catalina  directory  that  were
preventing Catalina compiling with the clang compiler under OSX.

6. Added the ability to specify the port by name to the  blackbox program (via
the -p parameter). This is required only under OSX, where ports must always
be specified by name.

7. Fixed a problem with the CMM thread libraries that prevented programs from
compiling when the spinnaker Spin compiler was used (programs compiled ok
using the Homespun compiler). Only affected COMPACT mode programs.

8. Fixed a problem with the CMM optimizer that may have resulted in programs
not executing correctly if the Catalina Optimizer was used (programs would
execute correctly without the optimizer).

Previous Releases:
The details of  changes made in all  earlier  releases was getting to large to keep
including in this reference manual, so it has been moved to a new document. See
the Catalina Release History for details on earlier releases.

What’s due in the next release?
Other than additional plugin support, only bug fix releases and minor enhancements
are expected for the immediate future - at least until the Prop II becomes available.
The Prop II  will  require some (hopefully minimal) code generator changes, and a

Copyright 2013 Ross Higson Page 129 of 158



Catalina C Compiler Reference Manual

new version  of  Catalina  will  be  released  to  support  it  when  that  chip  becomes
available (or when sufficient details of its modified code set become available).

While Catalina will always remain a completely free and open source compiler, it is
expected  that  at  some  point  there  will  be  one  or  more  enhancement  packages
offered for purchase by Catalina users. 

The enhancements are expected to include:

 Debugger  support  for  C  running  on  multiple  cogs  (the  free  version  can  only
debug the cog running the C main function);

 Cog safe versions of the standard C libraries (the free version will  require that
you use locks around some library calls - such as  malloc -  which are not re-
entrant);

 New device drivers, plugins and libraries;

 Additional supported platforms.

Copyright 2013 Ross Higson Page 130 of 158



Catalina C Compiler Reference Manual

Catalina Internals
This section contains technical descriptions about various Catalina internals.

A normal user of Catalina who just wants to compile C programs does not need to
know anything contained in these sections – they are provided for users who may
want to know more about how Catalina works, or who may want to modify Catalina.

A Description of the LMM and XMM Kernels
The Propeller chip is a wonderful thing – eight 32 bit RISC processors sharing 64Kb
of RAM, with all eight processors also sharing 32 general purpose I/O pins! But a
significant limitation of the design is that each of the processors (or cogs, to use the
Parallax terminology) only has direct, full-time access to 2048 bytes of cog RAM for
the direct execution of Propeller Assembly (PASM) programs. The remaining 32kb of
RAM (referred to as  hub RAM) is shared amongst all  the cogs on a round-robin
basis, with each cog only being able to access this RAM 1/8 th of the time. Also, the
RAM dedicated to each cog is organized as 512 longs – of which only 496 can be
used to hold instructions or general purpose registers. 

To execute  programs larger  than 496 instructions,  one (or  more)  of  the  cogs is
typically allocated to running a built-in SPIN language interpreter, which executes
byte-coded  SPIN  programs  out  of  the  shared  32Kb  of  hub  RAM.  
However, while a SPIN program can access the full 32kb of hub RAM, SPIN is an
interpreted  language,  and  it  is  literally  dozens of  times  slower  to  execute  an
instruction in SPIN than it is to execute the equivalent instruction in PASM.

The  Large  Memory  Model  (LMM)  mode  for  the  Propeller  chip  was  originally
proposed by Bill Henning as a means of allowing PASM programs to be larger than
496 instructions. Bill realized that a cog could be used to first fetch, and then execute
PASM  instructions  from  hub  RAM using  a  few  simple  cog-based  instructions  –
allowing arbitrary sized PASM programs to  be executed.  Essentially,  LMM mode
uses a cog to  simulate a cog – and even though the simulated cog runs (at best)
only ¼ the speed of a real cog, it had access to the full 32Kb of hub RAM for the
storage of PASM instructions. 

LMM mode is essential in enabling traditional high-level compiled languages to be
run on the Propeller, since there are few compilers that can compile useful high-level
language program into only 496 instructions.  Also,  even though hub-based LMM
programs are at least four times slower to execute than cog-based native programs
(due to the fact that each instruction can only be fetched for execution while the cog
has access to hub RAM), LMM programs are typically still many times faster than
SPIN.

The basic code to implement LMM consists of a loop of only 4 PASM instructions -
for  more  details  see  Bill  Henning’s  original  thread  on  the  Parallax  forums  at
http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=154421.  The  program
that executes these four instructions (in a simple loop) is referred to as an LMM
kernel.  Since  it  would  be  very  wasteful  to  use  an  entire  cog  to  execute  only  4

Copyright 2013 Ross Higson Page 131 of 158

http://forums.parallax.com/forums/default.aspx?f=25&p=1&m=154421


Catalina C Compiler Reference Manual

instructions, most kernels use the remainder of the cog RAM to implement useful
primitive operations designed to simplify whatever job the LMM kernel is designed
for. For example, most modern procedural computer languages make extensive use
of both a call stack and a stack frame – so it is useful for an LMM kernel intended to
support  high  level  languages  to  implement  both  call/return  and  stack  frame
manipulation primitives – this not only simplifies the job of the language compiler, it
also reduces the code size and improves the overall execution speed of the resulting
program.

This is exactly what both the Catalina LMM Kernel does. 

The Catalina LMM kernel can execute PASM programs up to 8192 instructions long
– i.e. the number of instructions that can fit into the 32Kb of hub RAM built into the
Propeller. While this is sufficient to enable many useful programs to be written in a
high-level compiled language, it is still somewhat limiting. So the next step was to
use some of the I/O pins on the Propeller to implement a general purpose external
memory bus. When supported by appropriate external hardware, this allows PASM
instructions to be stored ‘off-chip’, yet still be fetched fast enough to be useful. This is
the so-called eXternal Memory Model (XMM). 

There  are  many  different  varieties  of  XMM,  depending  on  the  type  of  external
hardware, how many I/O pins are dedicated to memory access, how the external
memory must be addressed, and whether this access is ‘latched’ or not. Typical of
XMM implementations  is  the  Hydra  Xtreme card  –  this  card  provides  512Kb  of
external SRAM, and uses 12 of the Propeller’s I/O pins - 8 pins are used to provide
an 8 bit parallel bus, with 4 additional control lines necessary to control the access of
data via this bus. The Xtreme was originally developed specifically for the Hydra
games console, but is also now supported on several other Propeller platforms.

For the kernel, accessing external memory via XMM is even slower than accessing
hub memory via LMM. For example, in the case of the Hydra Xtreme (with its 8 bit
bus) it takes 4 separate byte-sized accesses to fetch each long PASM instruction for
execution. But even so, executing PASM instructions from XMM can still be done
fast enough to be useful. The architecture of the Propeller is such that anything that
really needs to be done fast – such as a device driver – can have a cog completely
dedicated to the job which runs a program direct from cog RAM. For most programs,
the fact  that  the top-level  program logic  is  executed more slowly – i.e.  as LMM
executing from hub either RAM or XMM RAM – is not usually an issue. 

So the main difference between the LMM and XMM kernels is that the LMM Kernel is
designed to execute LMM programs stored in hub RAM, while the XMM Kernel is
designed  to  execute  LMM programs stored in  XMM RAM.  The  set  of  primitives
supported by both Kernels is identical, although the means they use to implement
these primitives sometimes differs.

Copyright 2013 Ross Higson Page 132 of 158



Catalina C Compiler Reference Manual

The  remainder  of  this  document  describes  the  XMM and LMM Kernels  used  to
execute Catalina programs, by describing the common virtual machine registers, and
the LMM primitives that both kernels implement.20

Note that this document describes the Catalina beta LMM and XMM kernels. These
kernels (like the rest of Catalina) are still in beta release, and may change before the
first ‘official’ release.

A Description of the Catalina Virtual Machine
The Catalina LMM and XMM Kernels  both implement a  32 bit  ‘virtual  cog’,  with
various general purpose and dedicated registers which (unsurprisingly) is otherwise
very similar to the 32 bit processor implemented by each physical cog. 

This virtual cog supports a subset of existing PASM instructions, but this is extended
by  adding  various  LMM  primitives  to  those  instructions  intended  specifically  to
support Catalina C programs.

Registers
r0 - r23 The kernel supports 24 General Purpose Registers. Each register is 32

bits, and each can hold a signed or unsigned integer, or a floating point
value.  Some  of  the  kernel  primitive  operations  make  specific  use  of
registers  r0 and  r1 to accept  or return arguments (e.g.  MULT,  DIVS,
DIVU). Additional conventions are imposed by the Catalina C compiler –
e.g.  the  compiler  always  uses  some  of  these  registers  as  integer
registers, and others as floating point registers. The compiler also uses
r2 .. r5 to pass the first 4 arguments to functions instead of passing them
on the stack - this can make function calls much more efficient. However,
these compiler conventions have nothing to do with the kernel itself, and
may vary between compilers, or even between different versions of the
same compiler.

PC The Program Counter holds a 32 bit pointer to the next instruction to
be executed. Note that this is a byte address in either hub RAM (for the
LMM kernel)  or  external  RAM (for  the  XMM kernel).  It  is  not  a  long
address in cog RAM as it would be for a cog executing normal PASM.
This means the PC must be incremented by 4 after each instruction, not
by 1.

SP The Stack Pointer holds a 32 bit pointer to the top of the stack. The
stack holds long values, and the SP points to the long that is currently on
the top of the stack. The stack is implemented in hub RAM for both LMM
and XMM programs. It is initialized on startup to point to the upper RAM

20  In this documentation, you may also see references to the EEPROM Memory Model (or EMM)
mode. However, in EMM mode the Kernel used is still the LMM Kernel. The difference between
LMM mode and EMM mode is that in LMM mode both the cog initialization code and the program
to be executed must be stored within the first 32Kb of external EEPROM, whereas in EEM mode
only  the cog initialization  code  is  stored  from the first  32Kb of  the  external  EEPROM – the
program to be executed is loaded from the second 32Kb - this allows EMM programs to be larger
than LMM programs – although when executed, both execute from the Propeller’s hub RAM.

Copyright 2013 Ross Higson Page 133 of 158



Catalina C Compiler Reference Manual

area just below the configuration data blocks of various kernel plugins,
and grows downwards in hub memory.

FP The Frame Pointer is a 32 bit pointer to the current execution frame,
which is held on the stack. For a discussion of stack pointers and frame
pointers,  and  the  relationship  and  difference  between  them,  see
http://en.wikipedia.org/wiki/Call_stack. For specific details on the calling
conventions  used  by  Catalina,  see  the  section  on  Catalina  Calling
Conventions below.

RI The Intermediate Register is a 32 bit register specifically used to pass
or return a single 32 bit value to or from various LMM primitives. It is also
used internally by many of the LMM primitives as a temporary register
when calculating the absolute address of  a  Relative  Index value,  so
programs should not expect RI to be preserved by any primitive. 

BC The Byte Count register is a 32 bit register used internally by various
primitives that move or copy structures – it  represents the size of the
structure (in bytes) to be moved or copied. It is also used to pass the size
(in  bytes)  required by a function  when creating  a  new frame,  and to
return the SP associated with the caller once the new stack frame has
been established. However, when not being used for these purposes, it
is available for use as a general purpose register – the Catalina Compiler
makes use of it to perform various address calculations.

BA The Base Address is a 32 bit pointer initialized by the Catalina startup
code to point to the base address of all other addresses in the image.
This is used to locate the Catalina program in the binary image.

BZ The Base End is a 32 bit pointer initialized by the Catalina startup code
to  point  to  the  end  of  all  the  static  segments  in  the  image,  and the
beginning of the dynamic data segment that is used for the stack and the
heap.

CS The Code Segment  is a 32 bit pointer containing the address of the
static code segment when that segment is relocated to XMM RAM. The
code segment can end up anywhere in XMM, and (once relocated) the
BA (Base Address) is no longer sufficient to correct the internal memory
references. This register is not used by the LMM Kernel.

Copyright 2013 Ross Higson Page 134 of 158

http://en.wikipedia.org/wiki/Call_stack


Catalina C Compiler Reference Manual

Primitives
Each Kernel  primitive  is  implemented as  a  JMP instruction  to  a  low (and  fixed)
address inside the cog that is executing the kernel. Therefore, like all normal PASM
instructions,  each LMM primitive occupies a 32 bit  long.  However,  unlike normal
PASM instructions, many of the LMM primitives actually occupy  two 32 bit  longs,
with a 32 bit long parameter following immediately after the JMP instruction. 

The following table describes each primitive (in alphabetical order). The primitives
marked with * require the immediately following long to contain the parameter value
described in the text:

Note that unless otherwise specified, the primitives do not affect the Propeller C or Z
flags.

BR_A * This instruction (Branch if Above) loads the PC with the value of its 32 bit
address parameter if and only if the Propeller’s Z flag is not set and C
flag is not  set.  BR_A automatically performs any necessary address
translation.

BR_B * This instruction (Branch if Below) loads the PC with the value of its 32 bit
address parameter  if  and only if  the Propeller’s  C flag is  set.  BR_B
automatically performs any necessary address translation.

BR_Z * This instruction (Branch if Zero) loads the PC with the value of its 32 bit
address parameter  if  and only  if  the Propeller’s  Z flag is  set.  BR_Z
automatically performs any necessary address translation.

BRAE * This instruction (Branch if Above or Equal) loads the PC with the value of
its 32 bit  address parameter if and only if the Propeller’s  C flag is not
set. BRAE automatically performs any necessary address translation.

BRBE * This instruction (Branch if Below or Equal) loads the PC with the value of
its 32 bit address parameter if and only if the Propeller’s Z flag is set or
C  flag  is  set.  BRBE  automatically  performs  any  necessary  address
translation.

BRNZ * This instruction (Branch if Non-Zero) loads the PC with the value of its 32
bit  address parameter if  and only if  the Propeller’s  Z flag is not set.
BRNZ automatically performs any necessary address translation.

CALA * This instruction (Call Address) saves the address of the next instruction
following CALA on top of the stack (decrementing SP by 4), then loads
its  parameter  into  PC.  CALA  automatically  performs  any  necessary
address translation on this parameter.

CALI This instruction (Call Indirect) saves the address of the next instruction
following CALI on top of the stack (decrementing SP by 4), then loads RI
into PC.

CPYB * This  instruction  (Copy  Bytes)  copies  a  multi-byte  structure  from  the
address specified in  r1 to the address specified in  r0.  The parameter
following this instruction contains the number of bytes to be copied. Note

Copyright 2013 Ross Higson Page 135 of 158



Catalina C Compiler Reference Manual

that r0 and r1 are not preserved. Note that CPYB destroys the Propeller
Z flag.

DIVS This instruction (Division - Signed) performs signed division. The 32 bit
dividend must be in r0 and the 32 bit divisor must be in r1. On return, the
32 bit quotient is in r0 and the 32 bit remainder is in r1. Note that DIVS
destroys the Propeller C and Z flags.

DIVU This instruction (Division - Unsigned) performs unsigned division. The
32 bit dividend must be in  r0 and the 32 bit divisor must be in  r1. On
return, the 32 bit quotient is in r0 and the 32 bit remainder is in r1. Note
that DIVU destroys the Propeller C and Z flags.

FADD This instruction (Floating Point Addition) performs 32 bit  floating point
addition. On entry, r0 and r1 contain the 32 bit numbers to be added. On
return, r0 contains the result (i.e. r0 + r1).

FCMP This instruction (Floating Point Comparison) performs 32 bit floating point
comparison.  On  entry,  r0 and  r1 contain  the  32  bit  numbers  to  be
compared. On return, the Propeller’s Z flag and C flag are set.

FDIV This instruction (Floating Point Division) performs 32 bit floating point
division. On entry, r0 and r1 contain the 32 bit numbers to be divided. On
return, r0 contains the result (i.e. r0 / r1).

FMUL This  instruction  (Floating  Point  Multiplication)  performs 32  bit  floating
point multiplication. On entry, r0 and r1 contain the 32 bit numbers to be
multiplied. On return, r0 contains the result (i.e. r0 * r1).

FSUB This instruction (Floating Point Subtraction) performs 32 bit floating point
subtraction.  On  entry,  r0 and  r1 contain  the  32  bit  numbers  to  be
subtracted. On return, r0 contains the result (i.e. r0 - r1).

FLIN This instruction (Floating Point from Integer) converts the integer in r0
to a floating point value. On return, the result is in r0.

INFL This instruction (Integer from Floating Point) converts the floating point
value in r0 to an integer. On return, the result is in r0.

INIT This instruction (Initialization) is the main entry point for the kernel. It is
called only once, on startup.

JMPA * This instruction (Jump Address) loads the PC with the value of its 32 bit
parameter.  JMPA  automatically  performs  any  necessary  address
translation.

JMPI This instruction (Jump Indirect) loads the PC with the value of RI.

LODA * This instruction (Load Address) loads its 32 bit  address parameter into
RI.  The difference between LODA and LODL is  that  LODA treats its
parameter  as  an  address,  and automatically  performs any necessary
address translation.

Copyright 2013 Ross Higson Page 136 of 158



Catalina C Compiler Reference Manual

LODF * This instruction (Load Frame Reference) loads its 32 bit signed offset
parameter into RI, then adds FP to it. When executed within a function,
this  means that  RI will  contain  either  the address of  a  local  variable
(negative offset) or one of the arguments to the function (positive offset).

LODL * This  instruction  (Load  Long)  loads  its  32  bit  parameter  into  RI.  The
difference between LODL and LODA is that LODL does not perform any
address translation.

MULT This  instruction  (Multiplication)  performs  multiplication.  The  32  bit
multiplicand must be in  r0 and the 32 bit multiplier must be in  r1.  On
return, the 32 bit result is in r0. Note that MULT destroys the Propeller C
and Z flags.

POPM * This instruction (Pop Many Registers) treats its 32 bit parameter as a
bitmap specifying which of the general purpose registers to pop from the
stack. E.g. if bit 23 is set,  r23 is popped (decrementing SP by 4), then
r22 etc … down to r0. Note that POPM destroys the Propeller C flag.

PSHA * This instruction (Push Address) pushes its 32 bit address parameter into
the  stack  (decrementing  SP by 4).  PSHA automatically  performs any
necessary address translation.

PSHB * This  instruction  (Push  Bytes)  pushes  a  multi-byte  structure  onto  the
stack.  The  structure  to  be  pushed  must  be  pointed  to  by  r0.  The
parameter following this instruction contains the number of bytes to be
pushed. SP is decremented by the number of bytes, rounded up to the
next  multiple  of  4.  Note  that  r1 is  not  preserved.  Note  that  PSHB
destroys the Propeller C and Z flags.

PSHF This instruction (Push Frame Reference) loads its 32 bit signed offset
parameter  into  RI,  then adds  FP to  it.  It  then uses that  value  as  an
address,  and pushes the  value found at  that  address onto  the stack
(decrementing SP by 4). The result is that the top of the stack ends up
with the value of either a local variable (negative offset) or one of the
arguments to the function (positive offset).

PSHL This instruction (Push Long) pushes the 32 bit contents of RI onto the
stack (decrementing SP by 4).

PSHM * This instruction (Push Many Registers) treats its 32 bit parameter as a
bitmap specifying which of the general purpose registers to push on the
stack. E.g. if bit 0 is set, r0 is pushed (incrementing SP by 4), then r1 etc
… up to r24. Note that PSHM destroys the Propeller C flag.

NEWF This instruction (New Frame) saves the current value of FP on the stack
(decrementing  SP by  4),  and  sets  up  a  new  frame  pointer  in  FP,
allocating BC bytes for local storage. If this instruction is executed as the
fist instruction of a function, then on exit  BC contains the value of  SP
before the function was called – this assists in accessing arguments to
the function that have been pushed onto the stack.

Copyright 2013 Ross Higson Page 137 of 158



Catalina C Compiler Reference Manual

RETF This instruction (Return from Frame) discards the current frame pointer
by loading FP with the value on the top of the stack (incrementing SP by
4).  It  then  loads  the  PC with  the  value  on  the  top  of  the  stack
(incrementing SP by 4).

RBYT This instruction (Read Byte) loads the low order byte of the BC register
with the value of the byte in memory pointed to by RI. The remainder of
the  BC register  will  be  zero.  See the note  below on Kernel  Memory
Models for details on which memory is accessed by this instruction.

RLNG This instruction (Read Long) loads the low order word of the BC register
with the value of the long in memory pointed to by RI. The remainder of
the  BC register  will  be  zero.  See the note  below on Kernel  Memory
Models for details on which memory is accessed by this instruction.

RWRD This instruction (Read Word) loads the BC register with the value of the
word in memory pointed to by RI. See the note below on Kernel Memory
Models for details on which memory is accessed by this instruction.

RETN This instruction (Return) loads the  PC with the value on the top of the
stack (incrementing SP by 4). This is only used by trivial functions that do
not  use  NEWF  –  if  NEWF  has  been  called,  RETF  should  be  used
instead.

SYSP This instruction (System Plugin) invokes an external plugin. On entry,
r2 contains either the cog that contains the plugin (bit 7 set) or the type
of plugin to be called (bit 7 not set), and r3 contains the data to send to
the plugin. On return,  r0 will  contain the result of the call, or -1 if the
plugin could not be located. Note that SYSP destroys the Propeller C
and Z flags.

WBYT This instruction (Write Byte) writes the low order byte of the BC register
to the byte of memory byte pointed to by  RI.  See the note below on
Kernel Memory Models for details on which memory is accessed by this
instruction.

WLNG This instruction (Write Long) writes the BC register to the long of memory
pointed to  by  RI.  See the  note  below on Kernel  Memory  Models  for
details on which memory is accessed by this instruction.

WWRD This instruction (Write Long) writes the low order word of the BC register
to the word of memory pointed to by RI.  See the note below on Kernel
Memory  Models  for  details  on  which  memory  is  accessed  by  this
instruction.

Kernel Memory Models
The RLNG, RWRD, RBYT, WLNG, WWRD and WBYT primitives are used to write to
Hub RAM and/or XMM RAM, depending on the kernel and memory model in use:

LMM Kernel: These instructions only access Hub RAM.

Copyright 2013 Ross Higson Page 138 of 158



Catalina C Compiler Reference Manual

XMM Kernel (small): These instructions only access XMM RAM.

XMM Kernel (large): These instructions can be used to access both XMM
RAM and Hub RAM.

Unsupported PASM
The LMM and XMM Kernels cannot be used to execute arbitrary PASM instructions.
Attempting to execute some PASM instructions would disrupt the operation of the
kernel  itself.  The  Catalina  Code  Generator  never  generates  such  instructions  –
instead, where necessary, it generates the code required to invoke the equivalent
LMM primitive instead.

The  following  table  summarizes  the  PASM instructions  that  should  not  be  used
within programs intended to be executed by the Catalina Kernel, and also (where
appropriate) the LMM equivalent that should be substituted instead:

PASM LMM Equivalent

Conditional JMP BR_Z, BRNZ, BR_A, BRAE, BR_B, BRBE

Unconditional JMP JMPA (or load the address in RI and use JMPI)

RET RETN (or RETF if NEWF has been called)

JMPRET or CALL CALA (or load the address in RI and use CALI)

DJNZ SUB and then BRNZ

TJZ CMP and then BR_Z

TJNZ CMP and then BRNZ

Object and Image Formats
By default, Catalina executables use the same binary or eeprom executable image
format as other Propeller executables (although note that other formats are available
– see the Catalina documentation). 

However, only Catalina programs compiled as LMM programs (i.e. using  layout 0,
specified using the  -x0  option, or when no other layout is specified) can be easily
loaded and run on a Propeller, since only those are of size 32kb or less.

EMM executables (using  layout  1,  specified using the  -x1 option) will  always  be
between 32kb and 64kb, and “small” XMM executables (using  layout 2,  specified
using the -x2 option) or “large” XMM executables (using layout 5, specified using the
–x5 option) will always be larger than 32k – and can in fact be any size.

We will deal with Catalina LMM images first, as they are the simplest. In an LMM
executable image, the compiled Catalina C program is contained within a normal
chain of SPIN objects – which will include the Catalina Target, the various plugins
that target is responsible for loading, and the LMM Kernel. The compiled Catalina C
program object hence has a base address in the same way that every SPIN object
has a base address. 

Copyright 2013 Ross Higson Page 139 of 158



Catalina C Compiler Reference Manual

In addition, the Catalina C program object has two key items of internal structure, at
the offsets specified in the file Catalina_Common.spin:

LMM_INIT_BZ_OFF = $4b
LMM_INIT_PC_OFF = $4c

As the names imply,  these are the offsets (in longs) from the base address (+8)
within each object of the initial values of BZ, and the initial values of the PC (which in
C will always be the address of the main function). These values must be extracted
from within the object itself. 

The initial value of BA is the object’s base address, and the initial value of the SP is
always the top of memory just below any RAM space allocated to the plugins. 

Catalina expects to be able to use the memory following  BZ as dynamic data (i.e.
heap or stack space). But the initial BZ offset is not only the pointer to the start of the
dynamic data segment - it also points to the end of a special structure consisting of 5
longs, as follows:

CODE Start of static code segment
CNST Start of static constant data segment
INIT Start of static initialized data segment
DATA Start of static uninitialized data segment
ENDS End of all static segments

This  structure  contains  values  that  would  need  to  be  used  by  the  kernel  when
relocating the various program segments. In fact, the LMM Kernel does not relocate
any segments, and therefore does need to use any of these extra values - they are
only needed by the XMM Kernel.

The EMM targets differ from the LMM targets in that they don’t include the compiled
Catalina C program objects – but  these targets don’t  need to  relocate individual
segments either. The EMM targets are self contained SPIN programs that occupy
the first 32kb of external EEPROM. Instead of containing the Catalina C program
object, the EMM targets expect to load this object from address $8000 in the external
EEPROM (i.e. in the second 32kb). Once all the target plugins have been loaded,
the  EMM  loader  simply  overwrites  the  whole  of  hub  RAM  with  the  Catalina  C
program object found at that address – and in the process, overwrites itself with the
Catalina LMM Kernel. The only value the EMM targets therefore have to manipulate
is the overall Base Address (BA).

The situation is slightly more complex for XMM targets. The current XMM targets are
also  self-contained  SPIN programs that  expect  to  load  the  compiled  Catalina  C
program object stored at location $8000 in the external EEPROM – but the XMM
targets must use the 5 long structure described above to decompose the compiled
Catalina C program object – currently the static code segments are moved to XMM
RAM and the static data segments are moved to hub RAM. Thus the XMM targets
currently need to set up the CS register, and (in future, when the static and dynamic
data segment may also moved to XMM RAM) they may also need to set up the SD
and DD registers.

Copyright 2013 Ross Higson Page 140 of 158



Catalina C Compiler Reference Manual

Catalina Calling Conventions
Although only indirectly related to the LMM or XMM kernels themselves, it is worth
spending  some time  discussing  the  function  calling  conventions  adopted  by  the
Catalina Code Generator, since the primitives implemented by the Catalina kernels
have been optimized to support this particular type of calling convention.

The most complex part of the Code Generator is concerned with the set up of the
arguments (and the local  variables) on the stack when calling a function.  These
conventions must be understood and adopted by any PASM function intended to be
directly callable from Catalina. 

In order to make most effective use of the scarce Propeller resources, such as the
limited cog RAM (in the form of the general purpose registers) as well as the limited
hub  RAM,  and  also  to  minimize  the  overhead  of  performing  each  function  call,
Catalina adopts the following calling conventions:

 The result of a function is always returned in r0.

 The caller  must  clean up the stack.  This means that if  a function expects
parameters,  the  caller  must  not  only  push  the  parameters  onto  the  stack
before making the call, it must adjust the stack again afterwards when the call
is complete. The called procedure simply uses the parameters provided and
then returns its result in r0. 

 The  parameters  are  always  passed  in  reverse  order.  For  example,  when
calling function(a,b,c,d,e) – and assuming all the parameters are passed on
the stack – they must be pushed onto the stack in order: e, d, c, b, a.

 Up to 4 of the formal parameter to a function can be passed in registers r2, r3,
r4,  and  r5.  Given that  parameters  are processed in  reverse  order,  this  is
actually the last four parameters. For example, when calling a function such
as function(a,b,c,d,e) it would mean e is passed in r2, d is passed in r3, c is
passed in r4, and b is passed in r5. Parameter a in such cases would need to
be  pushed  onto  the  stack  –  which  would  also  have  space  allocated  for
parameters b,  c,  d and e even though it is not used unless the argument is
actually  a  structure,  or  the  function  is  variadic,  or  the  function  takes  the
address of the argument – in such cases the register passing is not possible,
and the corresponding register is not used. 

These calling conventions may seem (and in fact are) quite complex to implement.
But they have the advantage that probably 75% (or more) of  all  function calls –
especially so-called “leaf” functions that do not themselves make any further function
calls – can simply be made by loading the arguments into the appropriate registers
and then calling the function – without having to first push each argument onto the
stack. Similarly,  in most cases the function itself can simply use the arguments it
finds in the registers – without needing to load them from the stack. 

In a recursive program, or one that consists of a large number of relatively trivial
function calls, this calling convention saves large amounts of program code – and
also make the resulting program much faster to execute.

Copyright 2013 Ross Higson Page 141 of 158



Catalina C Compiler Reference Manual

A Description of the Standard Catalina XMM API
Supporting new XMM hardware is quite simple with Catalina – the XMM Kernel can
be customized to include new XMM hardware access routines, or (if those routines
will not fit in the Kernel) then the cache support option can be used instead. 

All  newly developed XMM access routines must conform to the following general
XMM API,  so that  the core parts  of  the Catalina Kernel  remains identical  on all
supported platforms.

Note  that  it  is  important  that  (unless  otherwise  specified)  no XMM API  routine
affects the processor flags, such as the Z or C flags. If these flags must be used,
they should be saved and restored by the XMM API functions.

The XMM API now consists of three distinct parts:

• The cache access functions – these are mandatory in all cases. If only these
functions are implemented, they must fit in the space available in the cache
cog – about 355 longs.

• The  direct access functions –  these are  optional.  However,  without  these
functions,  only  cached  access  will  be  supported.  If  implemented,  these
functions must fit in the available space in the kernel cog - about 96 longs.

• The flash access functions – these are mandatory for FLASH support. FLASH
always requires the use of the cache. If only these  are implemented, they and
the cache access functions must fit in the space available in the cache cog –
about 355 longs.

The XMM API cache access functions
The  cache  access  functions  are  the  minimum  XMM  functions  required.  These
functions are used by the Caching XMM driver (enabled when one of the CACHED
symbols is defined). The advantage of the caching XMM driver is that it only requires
four functions to be implemented:

XMM_Activate  -  This routine is called during XMM Kernel  initialization to
initialize  the  XMM Hardware.  It  may  also  be  called  (if  configured  for  the
platform by defining  the  symbol  XMM_SHARED)  at  the  conclusion  of  the
execution of any system plugin call – see also XMM_Tristate.

On entry:

None.

On exit:

None.

XMM_Tristate - This routine can be called ((if configured for the platform by
defining the symbol XMM_SHARED) ) at the beginning of any system plugin
call – this is needed if a plugin may need to use hardware that cannot be used
while  the  XMM memory  hardware  is  active.  If  this  is  the  case,  the  XMM

Copyright 2013 Ross Higson Page 142 of 158



Catalina C Compiler Reference Manual

hardware will be reactivated by calling XMM_Activate at the conclusion of the
system plugin call.

On entry:

None.

On exit:

None.

XMM_ReadPage - Read multiple bytes from XMM RAM to Hub RAM.

On entry:

XMM_Addr destination address in XMM RAM

Hub_Addr  Destination address in main memory (16-bits used)

XMM_Len   number of bytes to read.

On exit:

XMM_Addr incremented by number of bytes read.

XMM_WritePage - Write multiple bytes from Hub RAM to XMM RAM.

On entry:

XMM_Addr destination address in XMM RAM

Hub_Addr  source address in main memory (16-bits used)

XMM_Len   number of bytes to write.

On exit:

XMM_Addr incremented by number of bytes written.

The XMM API direct access functions
The direct access functions are additional functions required to support direct XMM
access from within  the XMM kernel.  They are  optimized to  provide they type  of
access the Kernel needs, and generally provide the best performance. However, it is
sometimes not possible to fit  the direct functions in the Kernel.  In that case, the
cache has to be used to access the XMM RAM.

Direct access requires the cache access functions, plus four additional functions:

XMM_ReadLong - Read a long from XMM RAM to Cog RAM. Note that this
function is used for all instruction fetches, and should be optimized for speed
if possible.

On entry:

XMM_Addr XMM address to read  (the number of bits used depends
on the platform)

XMM_Dst  The  destination  of  this  instruction  must  be  set  to  the
destination address in Cog RAM.

Copyright 2013 Ross Higson Page 143 of 158



Catalina C Compiler Reference Manual

On exit:

XMM_Addr incremented by 4.

Destination Cog RAM location  that  will  contain  the  long read from
XMM.

XMM_ReadMult -  Read multiple bytes from XMM RAM to Cog RAM. Bytes
are read into the destination location least significant byte first, so this routine
can be used to read byte, word or long values.

On entry:

XMM_Addr XMM address to read (the number of bits used depends
on the platform)

XMM_Dst destination of this instruction set to destination address in
Cog RAM.

XMM_Len number of bytes to read (1, 2 or 4).

On exit:

XMM_Addr incremented by number of bytes read.

Destination Cog RAM location that will  contain the bytes read from
XMM.

XMM_WriteLong - Write a long from XMM RAM to Cog RAM. 

On entry:

XMM_Addr XMM address to write (the number of bits used depends
on the platform)

XMM_Src  The source of this instruction must be set to the source
address in Cog RAM.

On exit:

XMM_Addr incremented by 4.

Source Cog RAM location that contains a long value to be written
to XMM.

XMM_WriteMult -  Write multiple bytes from Cog RAM to XMM. Bytes are
written from the source location least significant byte first, so this routine can
be used to write byte, word or long values.

On entry:

XMM_Addr XMM address to write (the number of bits used depends
on the platform).

XMM_Src The source of this instruction must be set to the source
address in Cog RAM.

XMM_Len number of bytes to write (1, 2 or 4).

Copyright 2013 Ross Higson Page 144 of 158



Catalina C Compiler Reference Manual

On exit:

XMM_Addr incremented by number of bytes read.

Source Cog RAM location that contains the bytes to be written to
XMM.

The XMM API flash access functions
Some platforms implement XMM RAM using FLASH, or a combination of FLASH
and SRAM. If  any FLASH RAM is used, the cache must be used, and following
additional 11 functions are required:

XMM_FlashActivate  -  Called to initialize  the  Flash hardware  (if  required).
Similar to XMM_Activate.

On entry:

None.

On exit:

None.

XMM_FlashTristate  -  Called  to  disable  the  Flash  hardware  (if  required).
Similar to XMM_Tristate.

On entry:

None.

On exit:

None.

XMM_FlashWritePage -  Write multiple bytes of Hum RAM to FLASH. For
some flash RAM, writes are limited to a maximum of 256 bytes.

On entry:

XMM_Addr destination address in FLASH RAM.

Hub_Addr  Source address in main memory (16-bits used).

XMM_Len   number of bytes to write (up to 256).

On exit:

XMM_Addr incremented by number of bytes written.

XMM_FlashReadPage - Read multiple bytes from FLASH to Hub RAM.

On entry:

XMM_Addr destination address in FLASH RAM

Hub_Addr  Destination address in main memory (16-bits used)

XMM_Len   number of bytes to read.

On exit:

Copyright 2013 Ross Higson Page 145 of 158



Catalina C Compiler Reference Manual

XMM_Addr incremented by number of bytes read.

XMM_FlashComparePage  -  Compare  multiple  bytes  of  Hub  RAM  with
FLASH. Used if the symbol WRITE_CHECK is defined.

On entry:

XMM_Addr address in FLASH RAM

Hub_Addr  address in main memory (16-bits used)

XMM_Len   number of bytes to compare.

On exit:

Z Flag set if equal, cleared if not equal.

XMM_Addr incremented by number of bytes equal.

Hub_Addr incremented by number of bytes equal.

outx Value of last main memory (Hub) byte compared.

XMM_FlashCheckEmpty  -  Check  that  a  section  of  FLASH  is  empty  (all
0xFF). Used if the symbol ERASE_CHECK is defined.

On entry:

XMM_Addr address in FLASH RAM

XMM_Len   number of bytes to check.

On exit:

Z Flag set if all empty, cleared if not empty.

XMM_Addr incremented by number of bytes compared.

outx Value of last FLASH byte checked.

XMM_FlashEraseChip  -  Erase the  entire  FLASH.  Used  by  loaders  if  the
CHIP_ERASE symbol is defined.

On entry:

None.

On exit:

None.

XMM_FlashEraseBlock - Erase a 4k block of FLASH. Used by loaders if the
CHIP_ERASE symbol is  not defined (the default). If the FLASH chip cannot
erase  4k  blocks,  this  may  be  a  null  routine  (and  CHIP_ERASE must  be
defined).

On entry:

XMM_Addr address in FLASH RAM of 4k block to erase.

On exit:

Copyright 2013 Ross Higson Page 146 of 158



Catalina C Compiler Reference Manual

None.

XMM_FlashUnprotect  -  Unprotect  the  entire  FLASH.  Some FLASH chips
require the chip be unprotected before any Write operations (and sometimes
before any Read operations). If this is not required, this may be a null routine.

On entry:

None.

On exit:

None.

XMM_FlashWriteEnable - Enable Writing to the FLASH. Some FLASH chips
require a write enable to be performed before each Write operation. If this is
not required, this may be a null routine.

On entry:

None.

On exit:

None.

XMM_FlashWaitUntilDone  -  Loop  until  a  Write  or  Erase  operation
completes.

On entry:

None.

On exit:

outx Contents of the FLASH status register.

Other XMM support routines may be required, especially if the XMM platform uses
memory paging – a typical implementation might (for example) also store a current
page register, and provide routines to set up and/or increment XMM addresses that
takes the current page into account. However, such routines are platform dependent
and do not form part of the standard XMM API.

A Description of the Catalina Addressing Modes
Catalina supports four different addressing modes:

TINY In this mode, all addresses are Hub RAM addresses – this means
that all code and data addresses must be less than 32k (at least on
the Prop I - on the Prop II this is expected to be extended to at least
256k). This is the mode used by the LMM Kernel for all programs
compiled using the –x0 or –x1 or -C TINY command line option.

SMALL In this mode, all data addresses are Hub RAM addresses, but all
code addresses are XMM RAM addresses. Hub RAM addresses

Copyright 2013 Ross Higson Page 147 of 158



Catalina C Compiler Reference Manual

must  be  less  than  32k  (Prop  I)  or  256k  (Prop  II),  but  code
addresses can be up to  16Mb. This  mode is  used by the XMM
Kernel,  for  programs  compiled  using  the  –x2 or  -C  SMALL
command line option.

LARGE In this mode, all data and code addresses are XMM addresses, and
can be up to 16Mb. But at run time, all stack and frame addresses
are Hub addresses, and must be less than 32k (Prop I)  or 256k
(Prop II). This includes the addresses of all local variables, which
are constructed “on the fly” on the stack. This mode is used by the
XMM Kernel, for programs compiled using the  –x5 or  -C LARGE
command line option.

COMPACT In this mode, all addresses are Hub RAM addresses – however, all
code and data addresses are specified using 24 bits, making this
mode potentially suitable for the Prop 1. This is the mode used by
the CMM Kernel  for  all  programs compiled  using  the  –x8 or  -C
COMPACT command line option.

The TINY memory model is conceptually the simplest, since all addresses are Hub
RAM addresses. However, it can only be used for programs where everything (i.e.
the program code, data, heap and stack) can fit into Hub RAM.

The SMALL memory model is more complex. The Kernel has to accommodate the
differences  between  Hub  RAM  and  XMM  RAM.  However,  passing  data  around
between different plugins is still relatively simple, since all data addresses are Hub
RAM addresses.

The LARGE memory model is actually simpler internally than the Small model, but
there is one complication – in this mode data addresses can be either an XMM RAM
address (e.g. a heap address) or a Hub RAM address (e.g. a local variable address).
Both are equally valid at the program level, but XMM RAM addresses cannot be
used to pass data between plugins. This means, for example, that it is not possible
to pass the address of a static string (which will be an XMM RAM address) directly to
a plugin (such as a HMI plugin). Catalina works around this limitation by copying
data from XMM RAM to Hub RAM whenever it must be passed to a plugin. At the
program level, this is invisible to the user, but it has implications when writing plugins
or other PASM code to be executed in conjunction with Catalina programs.

The COMPACT memory model is similar to the TINY memory model – but the code
itself is completely different, being a hybrid of LMM code and interpreted code.

Copyright 2013 Ross Higson Page 148 of 158



Catalina C Compiler Reference Manual

A Description of the Catalina Image Format
All Catalina program images consist of 2 parts – a SPIN program that establishes the
environment for the program by loading the plugins, the drivers and the Kernel itself,
and then the compiled program that the Kernel will execute once loaded. 

The compiled program image executed by the Kernel code always starts with the
same ‘prologue’, as follows:

' Catalina programs all start at offset 0
org 0

' the first 2 longs are reserved (one of them is required by the POD
' POD debugger when it is used to debug LMM programs)

long 0 '$00
long 0 '$01

' the next 41 longs contain JMP instructions for each Kernel primitive
' (the actual values not significant in the program image – only the
' address of each jump instruction is important)
INIT jmp 0 '$02
LODL jmp 0 '$03
LODA jmp 0 '$04
LODF jmp 0 '$05
PSHL jmp 0 '$06
PSHB jmp 0 '$07
CPYB jmp 0 '$08
NEWF jmp 0 '$09
RETF jmp 0 '$0a
CALA jmp 0 '$0b
RETN jmp 0 '$0c
CALI jmp 0 '$0d
JMPA jmp 0 '$0e
JMPI jmp 0 '$0f
DIVS jmp 0 '$10
DIVU jmp 0 '$11
MULT jmp 0 '$12
BR_Z jmp 0 '$13
BRNZ jmp 0 '$14
BRAE jmp 0 '$15
BR_A jmp 0 '$16
BRBE jmp 0 '$17
BR_B jmp 0 '$18
SYSP jmp 0 '$19
PSHA jmp 0 '$1a
FADD jmp 0 '$1b
FSUB jmp 0 '$1c
FMUL jmp 0 '$1d
FDIV jmp 0 '$1e
FCMP jmp 0 '$1f
FLIN jmp 0 '$20
INFL jmp 0 '$21
PSHM jmp 0 '$22
POPM jmp 0 '$23
PSHF jmp 0 '$24
RLNG jmp 0 '$25
RWRD jmp 0 '$26

Copyright 2013 Ross Higson Page 149 of 158



Catalina C Compiler Reference Manual

RBYT jmp 0 '$27
WLNG jmp 0 '$28
WWRD jmp 0 '$29
WBYT jmp 0 '$2a
' the next 8 longs contain the internal Kernel registers  
PC long 0 '$2b
SP long 0 '$2c
FP long 0 '$2d
RI long 0 '$2e
BC long 0 '$2f
BA long 0 '$30
BZ long 0 '$31
CS long 0 '$32
' the next 24 longs contain the general purpose registers  
r0 long 0 '$33
r1 long 0 '$34
r2 long 0 '$35
r3 long 0 '$36
r4 long 0 '$37
r5 long 0 '$38
r6 long 0 '$39
r7 long 0 '$3a
r8 long 0 '$3b
r9 long 0 '$3c
r10 long 0 '$3d
r11 long 0 '$3e
r12 long 0 '$3f
r13 long 0 '$40
r14 long 0 '$41
r15 long 0 '$42
r16 long 0 '$43
r17 long 0 '$44
r18 long 0 '$45
r19 long 0 '$46
r20 long 0 '$47
r21 long 0 '$48
r22 long 0 '$49
r23 long 0 '$4a
' the next 6 longs contain some constants that are required either in
' the Kernel or in the compiled program – while there are many others 
' that could have been included here, these ones are specifically
' required for various purposes
Bit31 long $80000000 '$4b
all_1s long $ffffffff '$4c
cviu_m1 long $000000ff '$4d
cviu_m2 long $0000ffff '$4e
top8 long $ff000000 '$4f ' top 8 bits bitmask
low24 long $00ffffff '$50 ' low 24 bits bitmask
' the next 2 longs contain initial program values
init_BZ long @sbrkinit '$51 ' end of code / start of heap
init_PC long @C_main '$52 ' the initial PC  
' the next long contains the segment layout (i.e. 0, 1, 2, 3, 4 or 5)
seglayout long SEGMENT_LAYOUT
' the next 4 longs contains the start address of each of the segments,
' followed by a long containing the address of the first byte after
' all the segments

Copyright 2013 Ross Higson Page 150 of 158



Catalina C Compiler Reference Manual

segtable long @Catalina_Code
long @Catalina_Cnst
long @Catalina_Init
long @Catalina_Data
long @Catalina_Ends

        long  @Catalina_RO_Base
        long  @Catalina_RW_Base

In  the  program image,  this  prologue  is  then  followed  by  each  of  the  segments
themselves (i.e.  the  Code,  Cnst,  Init and  Data segments).  The address of each
segment  is  given  in  segtable,  and  the  segment  layout  and  address  mode  is
specified in the seglayout. 

It  is important to note that the first  83 longs (i.e.  longs $00 to $52) are identical
between the program image and the Kernel – i.e. longs with the same names are
present  within  both  the  compiled  program image and within  the  Kernel.  In  most
cases,  the actual  values contained in these longs in the program image are not
significant  –  the  exceptions  are  the  init_BZ,  init_PC,  seglayout and  segtable
values -  the kernel  must  retrieve these from the program image before program
execution can begin.

Beyond the first 83 longs (i.e. beyond longs $00 to $52) the values in the prologue
above are present in the image, but equivalent long values do not exist within the
Kernel.  Additional  longs beyond those shown (i.e.  after the  segtable entries,  but
before any actual program segments) may be present in the program image, but the
prologue is guaranteed never to exceed 512 bytes (i.e. 128 longs, or longs $00 to
$7F).

The remaining details of the image format used by a Catalina program depends on
both the memory model (i.e. LMM, EMM or XMM) and the addressing mode (i.e.
TINY,  SMALL,  LARGE  or  COMPACT)  selected  during  compilation  –  these  are
controlled by the –x command line parameter. The following are the main differences
in the image format for each supported value of this parameter:

-x0 The image is a normal Propeller format image (binary or eeprom). The
total size of the image (i.e. the Kernel, plus all the required plugins and
drivers, plus the compiled program) must be 32k or less. The compiled
program embedded in the image must be executed by an LMM Kernel
that uses the TINY addressing mode – this means that all code and data
addresses are Hub addresses. This image format can be loaded by any
means supported for normal SPIN programs, as well as by the Catalina
Generic SD Loader.

-x1 The image consists  of  two sections – the first  32k is  a normal  SPIN
program that contains an LMM kernel, plus all the required plugins and
drivers, and also a loader that knows how to loads a compiled program
from  the  second  32k  stored  in  an  external  EEPROM.  The  compiled
program embedded in the image must be executed by an LMM mode
Kernel that uses the TINY addressing mode – this means that all code
and data addresses are Hub addresses. This image format cannot be

Copyright 2013 Ross Higson Page 151 of 158



Catalina C Compiler Reference Manual

loaded  by  normal  SPIN  tools,  and  is  specifically  intended  to  be
programmed into a 64kb EEPROM.

-x2 The image consists  of  two sections – the first  32k is  a normal  SPIN
program that contains a SMALL mode XMM kernel plus all the required
plugins and drivers, and also a loader that knows how to load a compiled
program from XMM –  which  is  where  the  Catalina  Generic  Program
Loader puts anything after the first 32k when it loads such programs. The
compiled program embedded in the image must be executed by an XMM
Kernel that uses the “Small” addressing mode – this means that all code
addresses  are  XMM  addresses,  but  all  data  addresses  are  Hub
addresses. This image format cannot be loaded by normal SPIN tools,
but can be loaded using the Catalina Generic SD Loader.

-x5 The image consists  of  two sections – the first  32k is  a normal  SPIN
program that contains a LARGE mode XMM kernel plus all the required
plugins and drivers, and also a loader that knows how to load a compiled
program from XMM – which is where the Catalina SD Program Loader
puts anything after the first 32k when it loads a program. The compiled
program embedded in the image must be executed by an XMM Kernel
that uses the LARGE addressing mode – this means that all code, data
and  heap  addresses  are  XMM  addresses,  but  all  stack  and  frame
addresses are Hub addresses. This image format cannot be loaded by
normal SPIN tools,  but can be loaded using the Catalina Generic SD
Loader.

-x8 Similar to -x0, except the code is not LMM code – it is a hybrid of LMM
and interpreted code.

As  implied  above,  there  are  several  ways  to  load  Catalina  program  images,
depending on the image format:

-x0 These programs can be loaded using any standard Propeller tool, and
can  also  be  loaded  using  the  Catalina  Generic  SD  Loader,  or  the
Catalina Payload utility.

-x1 These  programs  cannot  be  “loaded”  as  such  –  they  must  be
programmed into an EEPROM. The mechanism for doing this is platform
dependent – Catalina provides the ability to generate various file formats
(such as Motorola S Records, or Intel Hex records) that can be used by
various  EEPROM  programmers,  but  does  not  provide  any  specific
mechanism for actually programming an EEPROM.

-x2 These programs must be loaded using the Catalina Generic SD Loader,
or the Catalina Payload program.

-x5 These programs must be loaded using the Catalina Generic SD Loader
or the Catalina Payload program.

-x8 These programs must be loaded using the Catalina Payload program.

A description of the Generic SD Loader is given in the next section.

Copyright 2013 Ross Higson Page 152 of 158



Catalina C Compiler Reference Manual

A Description of the Generic SD Loader
Now that Catalina has SD Card file system support, it made sense to include an SD
Loader that can be used to load Catalina programs from an SD Card. 

However,  the file system support  mandated by ANSI C (and as implemented by
Catalina) is quite complex and is really intended for Propeller platforms that also
have XMM memory support. Even simple programs that use the Catalina SD file
system will be larger than 32k - this means the ANSI C file system is not suitable for
use by an SD Loader that has to fit into 32k.

But while the SD Loader has to be small, it does not need to be particularly fast - so
instead of using C, the Catalina Loader is implemented as a SPIN program which
uses  the  FATEngine  file  system  module.  This  means  that  the  SD  Loader  is
essentially independent of Catalina and can be used to load normal SPIN programs
from the SD Card as well as Catalina C programs.

The major feature of the Catalina SD Loader is that in addition to being able to load
normal  SPIN  or  LMM  C  programs  (or  any  other  program  which  fit  within  the
Propeller's 32k of Hub RAM) the Loader also knows how to load programs and/or
data into XMM RAM. This allows programs with code segments up to 16Mb to be
compiled on a PC, and then loaded into the Propeller via an SD Card.

The SD Loader currently load programs based only on the size of the file being
loaded. Files of 32kb or less (actually 31k, since the loader requires 1k for its internal
SD card buffers) are loaded into Hub RAM. Files larger than 32k are assumed to
consist of two parts - the first 31k is loaded into Hub RAM, while anything beyond the
32k boundary is loaded into XMM RAM. 

Other than requiring the use of 1kb during the load process, the SD Loader imposes
no other limitations or overheads - i.e. it does not consume any cogs or RAM space
once the program has been loaded and begins executing.

Although this sounds simple enough, the details of the whole process of booting a
program from an SD Card are quite complex. 

Here is an overview of the process:

Phase   I: The SD Loader loads the file sector list of the selected file into Hub
RAM, and then starts the Sector Loader.

Phase  II: The Sector Loader loads the file sectors themselves into both Hub
RAM and XMM RAM, then starts the Target program in Hub RAM.

In multi-CPU systems where the program is to be loaded into
another CPU, the SD loader does not load the sectors into local RAM
– instead, it sends each sector via serial I/O to the target CPU, and
the subsequent phases are executed on the target CPU.

For SPIN or LMM C programs, the process ends here. For XMM C
programs the process then carries on ....

Copyright 2013 Ross Higson Page 153 of 158



Catalina C Compiler Reference Manual

Phase III: The Target program loads the Catalina Plugins into Cog RAM, and
then starts the Hub Loader.

Phase  IV: The Hub Loader  copies the XMM Kernel  from Hub RAM to XMM
RAM, then loads the Catalina data segments from XMM RAM to Hub
RAM, then copies  the XMM Kernel  back to  Hub RAM from XMM
RAM. Finally, the Hub Loader starts the XMM Kernel.

And here are all the details:

Phase I:

1. The SD Loader uses FATEngine to mount the SD card, determine the sector
geometry of the card, and also to load the root directory of the card. 

2. The SD Loader can be configured to either load a specific file, or display the
root  directory  of  the  SD  Card  and  allow  the  user  to  select  one.  If  it  is
configured for the latter, the SD Loader loads and starts an instance of a tv
and keyboard driver, and displays the root directory of the SD Card, allowing
the user to select the name of a file to be loaded.

3. The cluster list of the selected file is loaded into RAM (at fixed address of
$7F00).  This  is  required  because  FATEngine (which  is  a  normal  SPIN
program running from Hub RAM) must be terminated before the selected file
can be loaded - but once FATEngine is terminated the SD Card can only be
interrogated using "low level" sector-based I/O - not "high level" file-based I/O.

4. If the SD Loader started a keyboard and tv driver, these are terminated once
the cluster list has been successfully loaded.

5. The SD Loader then starts the Sector Loader - this is a PASM program that
uses the cluster  list  and the sector  geometry of  the SD Card  to  load the
sectors that make up the selected file. 

Phase II:

1. In single CPU systems, or in multi-CPU systems where a program is to be
loaded into the local CPU, the Sector Loader loads the first 31kb of the file
into Hub RAM - and anything after the first 32k into XMM RAM. Note that
neither the SD Loader nor the Sector Loader know how to interpret any of the
data they load - they simply cooperate to load the data into Hub RAM or XMM
RAM based on where it was in the file. This is why the Catalina Loader is
referred to as a "Generic" Loader - there is nothing Catalina specific in any of
these  operations,  and  the  Loader  can  be  used  to  load  anything  -  either
program or data - into Hub RAM and XMM RAM. Of course, it   assumes that
the start of Hub RAM is a valid Propeller program and executes it - but the
rest of the Hub RAM or the XMM RAM could contain anything.

2. In multi-CPU systems where the program is to be loaded into another CPU,
the SD loader  instead sends each sector  via  serial  I/O to  a  Generic SIO
Loader executing on the target CPU, which does the same job as described
in the previous step. The subsequent phases are then executed on the target

Copyright 2013 Ross Higson Page 154 of 158



Catalina C Compiler Reference Manual

CPU. Note that this loader must already be executing on the target CPU – this
can be accomplished by loading it into EEPROM and having it always start on
boot, or by first executing a separate CPU boot loader, which uses the built-in
Parallax load capabilities to load a program from one CPU to another (the
built-in Parallax loader is only suitable for loading programs up to 32k in size,
which is why we need a two-step load for Catalina programs – which may be
larger than 32k). The use of these utilities is fully described in the Multi-CPU
system Support section of the Catalina Reference Manual

3. If it loaded a program locally, the Sector Loader then performs a "soft reset"
by shutting down any other cogs and then restarting its own cog using the
normal  Propeller  boot  code  -  essentially,  this  starts  the  cog  as  a  SPIN
interpreter, which will begin executing whatever program was just loaded into
Hub RAM - i.e. whatever program was in the first 31kb of the selected file. If it
loaded a program into another CPU, the Sector Loader instead does a “hard
reset” of the Propeller – which normally restarts the SD Loader.

If the program loaded is either a normal SPIN program, or a Catalina LMM C target,
that's the end of the process - the loaded program just executes normally. But if the
program that has just been loaded into Hub RAM (and started) is in fact a Catalina
XMM target,  there  is  still  more  work  to  do  before  the  Catalina  program can be
started. 

Phase III:

1. To be successfully booted from an SD Card, the Target program must know
that the program to be executed has already been loaded into XMM RAM by
the Sector Loader. This is why programs to be loaded from SD Card typically
require a different target to programs intended to be loaded from EEPROM.
Note that there is no need for a specific LMM target to use the Loader - LMM
programs exist entirely within Hub RAM, and do not need to do any memory
re-organization - it is irrelevant to the LMM program how it got loaded into Hub
RAM.

2. Like any other target, a Target loaded from the SD Card must load into Cog
RAM  all  the  plugins  required  by  the  Catalina  program  to  be  executed  -
including an SD Card plugin if the Catalina program itself requires access to
the SD file system.

3. The Target must also contain the XMM Kernel needed to execute the Catalina
program - but this Kernel cannot be started just yet.  First,  the Kernel itself
must be temporarily copied from Hub RAM to XMM RAM so that the Hub
RAM can be re-organized. To do this, the target loads a Hub Loader, which is
yet  another low-level loader program that specifically know how to find the
Kernel code in the target, and also how to find the data and code segments of
the Catalina program that the Sector Loader has loaded into XMM RAM.

Copyright 2013 Ross Higson Page 155 of 158



Catalina C Compiler Reference Manual

Phase IV:

1. The XMM Hub Loader moves the Kernel to XMM RAM, after the data the
Sector Loader loaded from the SD Card.

2. The XMM Hub Loader moves the data segments of the Catalina Program in
XXM RAM to Hub RAM. 

3. The XMM Hub Loader relocates the code segment in XMM RAM so that it is
where  the  Kernel  expects  to  find  it.  While  it  is  possible  to  define  a  new
memory segment layout  that would avoid the need for this step, doing so
would  further  complicate  the  Catalina  compilation  process,  so  instead  the
XMM  Hub  Loader  uses  SD-specific  targets  that  know  how  to  relocate  a
normal Catalina x2 XMM layout.

4. The XMM Hub Loader moves the Kernel from XMM RAM to Hub RAM. It is
copied into the space which (once the program is started) will  be used as
heap and stack space - Note that this means that all Catalina XMM programs
must limit their constant data segments to 28kb. 

5. Finally, the Hub XMM Loader restarts itself as the XMM Kernel, and begins
executing the Catalina program in XMM.

This load process is so complex mainly because the Propeller is so resource limited
– but there are also some design decisions that have led to further complications,
such as the decision to use a Generic Loader that does not decode the Catalina
image, instead requiring the loaded program to do this job itself. These decisions
may be revisited in a later release.

A Description of the Proxy Device Protocol
The proxy devices use one or more client drivers, and one server program, in place
of the usual drivers. Catalina has two client drivers – one replaces the local SD card
plugin when the PROXY_SD symbol is defined (e.g. on the command line), and the
other  replaces  up  to  three  HMI  drivers  when  the  PROXY_SCREEN,
PROXY_MOUSE or  PROXY_KEYBOARD symbols  are  defined  (e.g.  on  the
command line). It is possible to mix and match any combination of local and proxy
devices. Usually, the server program is compiled to support all devices - the client
can then choose to use a real driver to access the local device, or a proxy driver to
access a remote device.

The two proxy drivers (i.e. the one for the SD device and the one for all HMI devices)
share a single serial connection to the proxy server running on a remote CPU, and
coordinate their operation using a Propeller  lock – this ensures that requests from
the  two  drivers  do  not  conflict  even  though  they  are  running  independently  on
separate cogs.

There is only one server program, which services all the proxy device requests. It
does not need to use a lock – since only one request is sent at a time, it simply
services each request as it arrives. 

Copyright 2013 Ross Higson Page 156 of 158



Catalina C Compiler Reference Manual

The server is a pure server – it does not ever initiate requests. However, to avoid
having to have the client poll the server (e.g. to see if there is a key available) the
server  does send a  signal  byte  (currently  a  null  byte)  to  the  client  continuously
whenever it has information waiting to be retrieved – the client does not know from
this whether it is mouse, keyboard or some other data, so when it sees the signal
byte it must poll for all possible types of data.

The  serial  protocol  is  quite  simple,  but  does  employ  byte  stuffing  to  avoid
accidentally  interpreting  arbitrary  binary  data  (e.g.  SD  sector  data)  as  a  proxy
request or response, and also employs LRC checks on long packets to detect data
errors – on some systems the inter-CPU serial communications is a bit noise-prone –
possibly due to interaction with the USB Prop Plug on systems that use the Propeller
SI/SO pins for serial  communications between CPUs. LRC checking is a way to
avoid data corruptions on noisy communications channels.

Byte stuffing is done on all (hex)  FF bytes – they are stuffed to  FF 00. This is to
avoid any possible conflict with the ‘sync’ signal, which is always FF nn, where nn is
the CPU number of the proxy server.

The protocol messages are as follows:

SD_Init – enable (initialize) the SD card
Request: FF nn 01

Response: FF nn 01

SD_Read – read a sector from the SD card
Request: FF nn 02 ss ss ss ss

Response: FF nn 02 <512 bytes> cc

(or) FF nn 00 

Note: ss ss ss ss is the sector number
cc is the LRC of the sector data

Note: The short response indicates an error condition.

SD_Write – write a sector to the SD card
Request: FF nn 03 ss ss ss ss <512 bytes> cc

Response: FF nn 03

Note: ss ss ss ss is the sector number
cc is the LRC of the sector data

SD_ByteIO – write a byte to the SD card
Request: FF nn 04 bb

Response: FF nn 04

Note: bb is the byte to write.

Copyright 2013 Ross Higson Page 157 of 158



Catalina C Compiler Reference Manual

SD_StopIO – disable (tristate) the SD card
Request: FF nn 05

Response: FF nn 05

KB_Reset – reset the keyboard (clear any buffered keys)
Request: FF nn 06

Response: FF nn 06                       

KB_Data – read a character of keyboard data
Request: FF nn 07

Response: FF nn 07 kk

(or) FF nn 00

Note: The short response indicates no keyboard data available.

Note: kk is the keyboard character.

MS_Data – read mouse data
Request: FF nn 08

Response: FF nn 08 xx xx xx xx yy yy yy yy zz zz zz zz bb 
(or) FF nn 00 

Note: The full response is sent if the server detects any change in 
mouse data, otherwise the short response is sent.

Note: xx xx xx xx is the abs_x value
yy yy yy yy is the abs_y value
zz zz zz zz is the abs_z value
bb is the button states

TV_Data – write screen data
Request: FF nn 09

Response: FF nn

Request: bb <up to MAX_TEXT bytes> FF nn

Response: FF nn

This protocol will be expanded over time to include new proxy devices, and also to
add currently  unsupported capabilities to  existing proxy  devices (such as screen
cursor, scroll and color functions).

Copyright 2013 Ross Higson Page 158 of 158


	What is Catalina?
	Status
	Features
	Catalina is ANSI C compliant
	Catalina runs on Windows, Linux and OSX
	Catalina supports multiple Propeller platforms
	Catalina supports C programs up to 16Mb
	Catalina is Free!
	But what does all this really mean?


	Installing Catalina
	Overview
	Catalina Directory Structure

	Using Catalina
	Using the Catalina Compiler
	Catalina Environment Variables
	Using lcc directly
	Using the Catalina Binder
	Using the Payload Loader
	Building the Payload Loader utilities

	Catalina Support for the Propeller
	SPIN/PASM Assembler Support
	Floating Point Support
	HMI Support
	Keyboard functions
	Mouse functions
	Screen functions
	Utility functions

	CGI (Computer Graphics Interface) Support
	VGI (Virtual Graphics Interface) Support
	Multi-Thread and Multi-Cog Support
	Fundamental Thread Functions
	Additional Thread Utility Functions

	Plugin Support
	Cog functions
	Special Register Access
	Registry, Plugin and Service functions

	Debugger Support
	BlackCat and BlackBox Support
	POD Support
	Compiling programs for debugging with POD
	Using POD


	SD Card Support
	File System Support
	Serial Device Support
	The tty library (libtty)
	The tty256 library (libtty256)
	The 4 port Serial library (libserial4)

	Sound Support
	SPI/I2C Support
	Support for other Output Formats
	SPI Flash and Cache Support

	Catalina Targets
	Default Target Configuration Options
	LMM Support
	CMM Support
	XMM Support
	Specifying the Memory Model
	EMM Support
	SMM Support
	Catalina Cog Usage
	Supporting multiple Propeller platforms
	Target Packages
	The standard target package (target)
	The basic target package
	The minimal target package


	Using PASM with Catalina
	Using the PASM function
	Load the PASM program at initialization time
	Convert the PASM program into a Catalina plugin
	Load a compiled PASM program into a cog
	Writing an LMM PASM function that can be called directly from C
	Precautions when using LMM PASM with the Catalina Optimizer

	Multi-Cog Support
	Multi-CPU Support
	Proxy Devices
	Generic_Proxy_Server

	Resetting and/or Loading another Prop
	Catalina_XMM_SD_Loader
	Generic_SIO_Loader
	CPU_n_Boot
	CPU_n_Reset
	Multi-CPU Examples


	Customizing Catalina
	Customized Platforms
	Customized Targets and Target Packages
	Using existing Parallax Drivers
	Use a Spin object unmodified
	Use only the PASM portion of the driver


	Building Catalina
	Building Catalina under Windows
	Building Catalina under Linux
	Building Catalina under OSX

	Catalina Technical Notes
	A Note about Binding and Library Management
	A Note about the Catalina Libraries
	A Note about LMM Startup & Memory Management
	A Note about POD and EMM/XMM
	A Note about Catalina Code Sizes
	A Note about Catalina symbols vs C symbols
	A Note about the Catalina Loader Protocol

	Catalina Development
	Reporting Bugs
	If you want to help develop Catalina
	Okay, but why is it called “Catalina”?
	Acknowledgments

	The Current Catalina Release
	What’s new in this release?
	Release 3.13.2:
	Release 3.13:
	Previous Releases:

	What’s due in the next release?

	Catalina Internals
	A Description of the LMM and XMM Kernels
	A Description of the Catalina Virtual Machine
	Registers
	Primitives
	Kernel Memory Models
	Unsupported PASM
	Object and Image Formats
	Catalina Calling Conventions

	A Description of the Standard Catalina XMM API
	The XMM API cache access functions
	The XMM API direct access functions
	The XMM API flash access functions

	A Description of the Catalina Addressing Modes
	A Description of the Catalina Image Format
	A Description of the Generic SD Loader
	A Description of the Proxy Device Protocol
	SD_Init – enable (initialize) the SD card
	SD_Read – read a sector from the SD card
	SD_Write – write a sector to the SD card
	SD_ByteIO – write a byte to the SD card
	SD_StopIO – disable (tristate) the SD card
	KB_Reset – reset the keyboard (clear any buffered keys)
	KB_Data – read a character of keyboard data
	MS_Data – read mouse data
	TV_Data – write screen data



