a2 United States Patent

Mattiocco et al.

US008918783B2

US 8,918,783 B2
Dec. 23,2014

(10) Patent No.:
(45) Date of Patent:

(54) MANAGING VIRTUAL COMPUTERS

SIMULTANEOUSLY WITH STATIC AND

DYNAMIC DEPENDENCIES

(75) Inventors: Attilio Mattiocco, Cassino (IT);
Vincenzo Sciacca, Rome (IT)

(73) International Business Machines

Corporation, Armonk, NY (US)

Assignee:

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 1647 days.

@
(22)

Appl. No.: 12/167,010

Filed: Jul. 2, 2008

Prior Publication Data

US 2009/0013321 Al Jan. 8, 2009

(65)

(30) Foreign Application Priority Data

Jul. 4,2007 (FR) 07111753.5

(51) Imt.ClL
GO6F 9/455
U.S. CL
CPC
USPC
Field of Classification Search

None

See application file for complete search history.

(2006.01)
(52)
GOGF 9/455 (2013.01)
718/1

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

7,313,512 Bl 12/2007 Traut et al.

7,467,378 B1* 12/2008 Sobelccccoovviiiinnn 717/168
2007/0074199 Al* 3/2007 Schoenberg .. 717/168
2007/0250833 Al* 10/2007 Araujoetal. 718/1

22

Specify Action

Display Groups

2008/0004094 Al 1/2008 Mueller et al.
2008/0134176 Al 6/2008 Fitzgerald et al.
2009/0217296 Al 8/2009 Gebhart et al.
2009/0222560 Al 9/2009 Gopisetty et al.
2009/0228984 Al 9/2009 Sterin
2009/0249329 Al 10/2009 Dash
2009/0300641 Al 12/2009 Friedman et al.
2009/0328225 Al 12/2009 Chambers et al.
2010/0306767 Al 12/2010 Dehaan
2013/0007279 Al 1/2013 Banjerjee et al.
OTHER PUBLICATIONS

“Using Snapshots”; Workstation 5 User’s Manual; Nov. 15, 2006; p.
275-291; published by VMware, Inc., 3145 Porter Drive, Palo Alto,
CA 94304 (available at: www.vmware.com/pdf/ws55__manual.pdf).
“The Snapshot Manager”; Workstation 5 User’s Manual; Nov. 15,
2006; p. 282-286; published by VMware, Inc., 3145 Porter Drive,
Palo Alto, CA 94304 (available at: www.vmware.com/pdf/ws55__
manual.pdf).

“Cloning a Virtual Machine”; Workstation 5 User’s Manual; Nov. 15,
2006; p. 292-300; published by VMware, Inc., 3145 Porter Drive,
Palo Alto, CA 94304 (available at: www.vmware.com/pdf/ws55__
manual.pdf).

“Movie Record and Playback”; Workstation 5 User’s Manual; Nov.
15, 2006; p. 26-27; published by VMware, Inc., 3145 Porter Drive,
Palo Alto, CA 94304 (available at: www.vmware.com/pdf/ws55__

manual.pdf).

* cited by examiner

Primary Examiner — William B Partridge
(74) Attorney, Agent, or Firm — Brevetto Law Group

(57) ABSTRACT

Embodiments are disclosed for managing a plurality of vir-
tual computers in a virtual environment. According to one
embodiment, a method includes creating a virtual group. The
virtual group includes a plurality of virtual computers having
a relevant characteristic. An action to perform on the virtual
group is received, and the action is performed on each of the
virtual computers in the virtual group.

25 Claims, 9 Drawing Sheets

24

26

Select Group(s)

User

Check Static
Dependenciss {(SD)

Check Dynamic
Dependencies (DD}

DD Satisfied

28

38

\EndJ

40

Sitart Roliback on
Machine

No

System

US 8,918,783 B2

Sheet 1 of 9

Dec. 23,2014

U.S. Patent

S8IN0SaY XOpU| O}
SSUUOBWN [BNPIA
Y SUBDS WIBISAR

L Bl

A

/

9

XBPU] ISNA
WsIsAg 8y sesse|n
80IN0SaY 108]9S SI8sN

/

17

$888BD
30IN0saY jie
SMOUS WBsSAS

/

I

US 8,918,783 B2

Sheet 2 of 9

Dec. 23,2014

U.S. Patent

(D9 - sosusRIRYD
dnoiy) dnoigy ey jo
saneussalday sauQ 10918
P SO0IN0S8Y NdH 9SMosg

A

Z "bi4

/

8

(NdH)
suiyorpy 1uaied
1003 SE DUIYOBIN
[enuiA 108j98

/

L

US 8,918,783 B2

Sheet 3 of 9

Dec. 23,2014

U.S. Patent

pS1LsID
UoHoY

\

Gl

& bi4

i |

UuonaYy
sieidwion o}
papesN
suoneisdo
OILIOYY PI0DSY

saipuapuada
JIUBUACT Alusp)

=

/
«

sapuspusds

=
v

Jllels Aluepy

\

4

UOHOY
HEs

\

L1

suuSBH
{eniiA HOHOY
Ioles 518817
ol 6

US 8,918,783 B2

Sheet 4 of 9

Dec. 23,2014

U.S. Patent

ssiouapuada ones
LOIBIA S82UN0SHY
SSOUM SSUIYOBI
aul lie dnois

y b4

A

\

Gl

Xopu|
BOIN0SAYN YUM
saiouspusdsaq
anes areduwion

A

\

8l

uonoY paloses
W04} Uonesin)

A

dnolsy ueis

\

Ll

uonoy
ue 108]8g

\

91

US 8,918,783 B2

Sheet 5 of 9

Dec. 23, 2014

U.S. Patent

Wa1sAg

SUIDEN
uo Moeqgiiod 1eig

/

oN

1%

paystey ga

{Qq) sswuspusdeg
OILBUACT Y08YD

¥e

A

Ov

pu

8¢

3

A

uonoY
BINoax

ce

paysiies 0%

ON

0g

A

{as) sswuspuads(]
SHEIS ¥o8UD

SEETe!

G Bi

{s)dnoic) 1wees

sdnois) Aejdsig

A

174

UsioY Alinadg

8¢

44

US 8,918,783 B2

Sheet 6 of 9

Dec. 23,2014

U.S. Patent

é
dnousy Bunsixg
O} sUioBiy DRY
HO
SUIOEBIN PPV B
dnoin
18I

dnoisy 40O SBUIDBIY BACH

7
1247

4
pejesuRn

9 bi4

é

dnousy Mmap
s1esln

ON

A

dnoicy s1esin

s@A

»| dnoISy O] BUIYDEY PRY

s
0%

ooy

214

s 1dwold <= sBuojeg supnep
LOIM 0] dnoun
10 onsusoRIEy s1oeduy abueys |

s
(4%

SaA

A 4

safiieyny 10} SBUIYOBIN 1SOH
SIONIUDKY AISNONURLOD SO

S
¢S

A

\ A

cy

U.S. Patent Dec. 23, 2014 Sheet 7 of 9

N /7
host host host
machine machine machine
06
\—_ _ VAN

US 8,918,783 B2

Actions
Manager

/\/Er’tuaiization framework (e.g. VMWare}

Fig. 7

U.S. Patent

US 8,918,783 B2

mgmit
agent

Dec. 23,2014 Sheet 8 of 9
Group Actions
Consistency ” Manager
Magr
Management {mgmt)} framework (e.g.Tivoli)
M 4 N (-
host D host D host
machine machine rmachine
YY)
./ N\ AN

/ Virfualization framework (e.9. VMWare)

Fig. 8

US 8,918,783 B2

Sheet 9 of 9

Dec. 23,2014

U.S. Patent

<

¢l

09

6 b4
9/
Nm// 08 8. vl
OIN 1NO NI | NO¥-QO
$nq 2007 @ / _
IOAE ~—pg 0L
< m 2| guv
sNg WoysAsg /
o : \
O/ Ed\/w_ n._/ ¢9 99
89 99 2%

US 8,918,783 B2

1
MANAGING VIRTUAL COMPUTERS
SIMULTANEOUSLY WITH STATIC AND
DYNAMIC DEPENDENCIES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of foreign priority to
European Patent Application No. 07111753.5, filed Jul. 4,
2007.

BACKGROUND

Embodiments of the disclosure relate to managing virtual
computers in a virtual environment. A virtual environment
typically includes a large number of virtual machines residing
on a small number of real servers. In this specification, refer-
ences to computer and machine may be used to reference the
same technology. In maintaining or operating a machine, it is
often necessary to perform a number of operations (e.g.
installing a software bundle, or changing configuration
parameters) thereon. In a virtual environment these opera-
tions must be repeated for a number (if not all) of the virtual
machines in that environment.

SUMMARY

According to an embodiment a method for managing a
plurality of virtual computers is provided. The method
includes creating a virtual group. The virtual group includes a
plurality of virtual computers having a relevant characteristic.
An action to perform on the virtual group is received, and the
action is performed on each of the virtual computers in the
virtual group.

DRAWING DESCRIPTION

FIG. 1 is a flowchart of a resource indexing operation
according to an embodiment.

FIG. 2 is a block diagram of a manual method of creating
virtual groups according to an embodiment.

FIG. 3 is a flowchart of an action creation according to an
embodiment.

FIG. 4 is a flowchart of an automatic method of creating
virtual groups according to an embodiment.

FIG. 5 is a block diagram of a method of managing the
activities of virtual machines in a virtual environment accord-
ing to an embodiment.

FIG. 6 is a block diagram of a method of managing the
consistency of a virtual machine grouping according to an
embodiment.

FIG. 7 is a block diagram of a system embedded in a
virtualization framework according to an embodiment.

FIG. 8 is a block diagram of a system implemented as an
external tool to a virtualization environment according to an
embodiment.

FIG. 9 is a block diagram of a virtual machine on which an
embodiment operates.

DETAILED DESCRIPTION

1. Grouping of Virtual Machines An embodiment may pro-
vide a flexible and dynamic mechanism for grouping virtual
machines, wherein the virtual machines may be grouped
according to one or more common shared characteristics that
may be specified by the user. Thus, a group may comprise one
or more virtual machines which are related to each otherin a

20

25

30

35

40

45

55

60

65

2

non-hierarchical manner, through one or more shared
attributes known as group characteristics. The attributes con-
sidered within the group characteristics, may include inter
alia:

file attributes (e.g. detailing particular versions offiles etc);

registry attributes (single key or entire registry trees);

installed programs (detailing for example, the version or
language of the programs);

screen Resolution attributes; and

accounts information. For example, a virtual machine
operating on a particular network (e.g., a local area network
(LAN) which we will call LAN.sub.2), may employ the Win-
dows (trade mark) operating system in support of a database
(DB) program (e.g., DB version 2). The virtual machine may
be amember of three groups, such as, for example, a Windows
(trade mark) group, a DB version 2 group and a LAN.sub.2
group.

2. Creating Groups

A group may be created manually or automatically (as a
result of an action being created and executed). However,
before groups are created, the embodiment may index the
resources of the virtual machines in the virtual environment.
Thus, the steps of indexing the resources may be a precursor
to both the manual and automatic methods of group creation.
Referring to FIG. 1, the resource indexing operation may
comprise the steps of:

showing 2 a user all the potential resource classes;

allowing the user to select 4 the resource classes the

embodiment must index; and

scanning 6 all the virtual machines in the virtual environ-

ment to determine and index their resources.
2(a) Manual Group Creation

Referring to FIG. 2, in the manual group creation process,
a virtual machine may first be selected 7 as a root parent
machine (RPM), and a number of the attributes of the root
parent machine may be reviewed 8 to allow the user to iden-
tify the attributes that may be characteristic of the group (e.g.
virtual machines employing the Windows (trade mark) oper-
ating system). The virtual machines possessing these
attributes may then form the relevant group.

2(b) Creating an Action

The manual group creation process may be followed by
creating an action to be performed by the relevant group. The
automatic group creation process may be preceded by the
creation of an action.

Referring to FIG. 3, the process of creating an action may
comprise allowing a user to define 9 the action of interest;
allowing the user to select 10 a virtual machine on which the
action is to be performed; identifying 12, 13 the static and
dynamic dependencies (to be discussed later) of the action;
and recording 14 the atomic operations needed to complete
the action.

2(c) Automatic Group Creation

In an embodiment, the automatic group generation scheme
may permit an administrator of a virtual environment to con-
struct an index from a subset of all the available classes of
resources. In particular, the administrator may be allowed to
select which of the available classes of resources is to be used
to construct the index. Thereafter, the automatic group cre-
ation scheme may index the selected subset of the resources
of all (or a defined set) of the virtual machines in the virtual
environment. In an embodiment, all the resources of all the
virtual machines in a virtual environment may be indexed.

Referring to FIG. 4, the administrator may then be permit-
ted to open a virtual machine and create 16 a new action (e.g.
install a patch on a particular piece of software) therefore (as
shown in FIG. 3). The embodiment may then perform the

US 8,918,783 B2

3

required action, and in doing so, perform a series of steps that
may employ a number of the resources of the virtual environ-
ment.

The embodiment may construct a list of resources involved
in performing the action, and those created in performing the
action. For clarity, these resources are known henceforth as
static and dynamic dependencies respectively, and will be
described in more detail later. The embodiment may compare
18 the static dependencies with the resources previously
indexed, to determine which of the virtual machines have
resources that match static dependencies. The embodiment
may then form 19 a group from the matching machines.

It should be noted that in an embodiment only those
resource classes previously selected to be indexed by the
administrator may be used to construct the list of static and
dynamic dependencies. For example, if the administrator
only selected registry keys as the resource to be indexed
during the preliminary stages of the automatic group creation
scheme, only the registry keys may be recorded in the list of
static and dynamic dependencies. However, in order to replay
the action, the embodiment may record all the resources
involved in the action (and not just the registry keys). Having
constructed the list of static and dynamic dependencies for
the action, the embodiment may use the outcome and its
associated list as a template for the creation of a new group.
3. Performing an Action

In performing a desired action on the virtual machines of
the virtual environment, the embodiment may implement two
separate, albeit interlinked processes in parallel. The first
process may comprise performing the action itself and the
second process may involve maintaining the consistency of
the relationships between the above-mentioned different
groups, whilst the action is being performed.

Referring to FIG. 5, in a first step of performing an action,
the user may be provided with a facility for defining 22 the
desired operation or action (using the procedure shown in
FIG. 1) to be applied simultaneously to a one or more virtual
machines in a virtual environment. The actions may include
configuration changes that are possible through an external
file (e.g. a VMWare (trade mark) Option), without the need
for interaction with the operating system of the each virtual
machine. Alternatively, the actions may include configuration
changes that have to be implemented by interacting with the
operating system (e.g. by remote control like input grab) of
the each relevant virtual machine.

When the user indicates that he wants to apply a particular
action to a virtual environment, the embodiment may present
24 the user with a list of the current groups in the environment
and the members of the groups. In other words, the embodi-
ment may provide the user with a grouping picture of the
virtual environment, for example, listing the virtual machines
which are running DB version 2 and which have a particular
patch installed thereto.

The user may determine from the list the relevant group for
his desired action. Furthermore, the user may decide whether
or not the action is to be applied to all of the machines in a
given group. In other words, the embodiment may enable the
user to select 26 a one or more of the displayed groups (or a
subset of any of the groups) to which to apply a given action.

Using the above example, a user may wish to install a patch
on virtual machines running the DB version 2 software pack-
age. In this case, the user may be provided with an option for
specifying the wish to install a patch. The user may be further
provided with the option of specifying some or all of the
virtual machines in the DB version 2 group.

On receiving the group (or subset thereof) specified by the
user and action/operation to be applied to the virtual

20

25

30

35

40

45

50

55

60

65

4

machines therein, an embodiment may check whether the
desired action (e.g. installation of a patch) can be applied to
all of the virtual machines within the selected group (or subset
thereof). In other words, the embodiment may check 28 for
the presence in the selected group (of virtual machines) of the
first (initial) resources that may be required to perform the
desired action. As will be recalled, these initial requirements
are known as static dependencies. In an embodiment, the
static dependencies may have to be satisfied in order for the
desired action to start. Using the above example of installing
a new patch for a DB version 2 software program, the check-
ing 28 the static dependencies could include checking that all
the DB version 2 registry keys are present in a virtual
machine. If 30 the static dependencies are satisfied, the
embodiment may multicast the relevant information (or com-
mands) to the relevant virtual machines, to cause the desired
action to be executed 32 therein.

As an aside, whilst the above description has focussed on
managing changes or substantially simultaneously applying
operations/actions to a plurality of virtual machines, it will be
understood that an embodiment may also provide a facility
for inserting machine specific data, or changing the configu-
rations of individual virtual machines etc.

Furthermore, an embodiment may check that variables or
resources required to perform the desired action are updated
(in all the machines belonging to the selected group(s) or
sub-group(s)) in accordance with the performance of the
action. As will be recalled, these requirements are known as
dynamic dependencies. Thus, an embodiment may effec-
tively check 34 that the dynamic dependencies have been
satisfied in all the machines belonging to the selected
group(s) (or subgroup(s)). Using the above example of
installing a patch on a DB version 2 software program, this
may involve checking whether a change in the registry key
caused by the installation process has been recorded in the
virtual machines in the selected group(s) (or sub-group(s)).

Inparticular, if 36 a one or more dynamic dependencies are
satisfied by a virtual machine in the selected group(s) (or
sub-group(s)) the action may be completed and the process
may terminate 38. However, if 36 during the execution of the
desired action something happens to variables/resources
associated therewith (wherein this happening does not com-
ply with what might be expected for this action), so that the
one or more dynamic dependencies are not satisfied by a
particular virtual machine in the selected group(s) (or sub-
group(s)), the embodiment may reverse 40 all the steps
executed in performing the desired action on the virtual
machine in question. As a result, the virtual machine in ques-
tion may be restored to its previous state, prior to the perfor-
mance of the desired action. This process is known as a
“roll-back” process and may be performed using snapshots
taken of the status of the virtual machines before applying the
action thereto. Similarly, the roll-back operation may com-
prise restoring the relationships (that existed before the per-
formance of the desired action) between the virtual machine
in question and the rest of the virtual machines. The process
may then terminate 38.

4. Group Consistency Checking

The group consistency checking process may operate in
parallel with the performance of the desired action to update
the grouping information on the virtual environment and
thereby manage the consistency of the relationships between
the groups of the virtual machines (i.e. to ensure that whilst
the desired action is being performed, the shared character-
istics between the grouped virtual machines do not change).

Referring to FIG. 6, during the group consistency checking
process a group consistency manager (to be discussed below)

US 8,918,783 B2

5

may continuously monitor 42 the virtual machines in the
virtual environment. The group consistency manager may
provide 44 a prompt to the user in the event that the execution
of a desired action/operation in a virtual machine causes a
change in the relevant group characteristic of the virtual
machine.

If the user cancels 46 the operation, the group consistency
manager may return to continuously monitoring 42 the virtual
machines. However, if the user does not cancel the operation,
the virtual machine in question may be removed 48 from the
relevant group.

Thus, in the event that the performance of'a desired action
causes the consistency within a group to be damaged, there
may be two different remedies, namely: (a) cancel 46 or
roll-back the action as shown in FIG. 3; or (b) remove 48 the
offending machine from the relevant group.

If the user chooses to remove 48 the offending machine
from the relevant group, the group consistency checking pro-
cess may provide the user with the option of creating a new
sub-group (of the original group) and adding the offending
machine thereto; or adding the offending machine to another
existing group. Take for example the process of upgrading the
version of software on a group of virtual machines. More
particularly, take the example of upgrading the version of a
database program from the DB version 2.0 to DB version 2.1.
In this case, an original group could comprise all the virtual
machines running the DB version 2.0 database program and a
sub-group thereof could comprise all the virtual machines
whose database program has been updated to DB 2.1. Thus,
these virtual machines may be in a more up-to-date state than
the rest of the virtual machines in the virtual environment.

Should the user choose to create a new sub-group for the
offending machine or to add the machine to a pre-existing
group, the group consistency checking process may create 50
the relevant sub-group, add 52 the machine thereto (or add 52
the machine to a pre-existing group), and return to monitoring
42 the virtual environment.

The embodiment may also enable a user to decide that the
change in question is not sufficient to warrant the creation of
anew sub-group. This facility may provide a balance between
improving the granularity of the grouping whilst avoiding
uncontrolled growth in the number of groups in the virtual
environment.

Thus, the embodiment may effectively keep track of (and
manage) the status of the virtual environment. As a result, the
embodiment may show a user all the resources available for a
required action, (e.g. which files are created destroyed and
registry keys changed). Thus, the embodiment may provide
an enhancement on a standard multicast strategy, insofar as it
may enable the grouping of multicast targets and the mainte-
nance of dynamic consistency relationships between the
groups.

5. Architecture

The architecture of an embodiment may comprise three
subsystems namely a group consistency manager, an action
manager and a relationship manager. The group consistency
manager may be responsible for creating, defining and keep-
ing track of groups and their characteristics. The action man-
ager may enable an action (software installation, configura-
tion change, etc.) to be applied to a number of virtual
machines in a scalable, parallel way, avoiding the necessity of
repeating the single action for every and each virtual machine
in the virtual environment.

When the user tries to perform an action on some or all of
the virtual machines in a selected group, the relationship
manager may determine whether the desired action can be
implemented on all of the selected virtual machines. For

20

25

30

35

40

45

50

55

60

65

6

example, let the user wish to install a patch on all of the virtual
machines in LAN, running version 2 of the DB program. In
other words, the desired action received from the user by the
action manager is that of installing a patch on all of the virtual
machines in LAN,, running version 2 of the DB program). Let
the user select (from the group consistency manager) the
group comprising all the virtual machines in the LAN, group.
However, let some of the virtual machines actually present on
the relevant LAN (i.e. LAN,) run DB version 1 (i.e. an earlier
version of the DB program). In this case, it may not be
possible to install the patch (intended for DB program version
2) to the virtual machines running the DB version 1 program.
If the desired action is inconsistent with any of the character-
istics of the selected virtual machines, the relationship man-
ager may be responsible for managing any eventual group
branching and new group creations. Using the above
example, the desired action (i.e. the installation of the patch)
may be applied to those virtual machines in the LAN, group
that satisfy the software pre-requisite of running the DB ver-
sion 2 program, and a subgroup may be created from the
LAN, group comprising these virtual machines.

To facilitate these operations, static and dynamic depen-
dencies may be associated with individual actions. A static
dependency relates to the characteristics of the group target
for an action. These static dependencies may be satisfied
before launching the action. Dynamic dependencies may be
satisfied during the progress of an action. The action manager
may be responsible to execute the action.

It will be appreciated that the embodiment could be imple-
mented inside a virtualization framework (e.g. new VM Ware
tool as shown in FIG. 7). Alternatively, the embodiment could
be implemented as an external tool, based on an ad hoc
created software and existing management software (as the
Tivoli Software Distribution), as shown in FIG. 8.

The individual virtual machines on which the embodiment
operates may have a generic structure as shown in FIG. 9.
More particularly, a generic computer of the system is
denoted with 60. The computer 60 may be formed by several
units that are connected in parallel to a system bus 62. In
detail, one or more microprocessors 64 may control operation
of'the computer 60, a random access memory (RAM) 66 may
be directly used as a working memory by the microprocessors
64, and a read only memory (ROM) 68 may store basic code
for a bootstrap of the computer 60. Peripheral units may be
clustered around a local bus 70 (by means of respective inter-
faces). Particularly, a mass memory may include a hard-disk
72 and a drive 74 for reading compact disk-read only memo-
ries (CD-ROMs) 76. Moreover, the computer 60 may include
input devices 78 (for example, a keyboard and a mouse), and
output devices 80 (for example, a monitor and a printer). A
Network Interface Card (NIC) 82 may be used to couple the
computer 60 to the network. A bridge unit 84 may interface
the system bus 62 with the local bus 70. Each microprocessor
64 and the bridge unit 84 may operate as master agents
requesting an access to the system bus 62 for transmitting
information. An arbiter 86 may manage the granting of the
access with mutual exclusion to the system bus 62.

Similar considerations apply if the system has a different
topology, or it is based on other networks. Alternatively, the
computers may have a different structure, include equivalent
units, or consist of other data processing entities (such as
personal digital assistant (PDAs), mobile phones, and the
like).

Embodiments may take the form of an entirely hardware
embodiment, an entirely software embodiment or an embodi-
ment containing both hardware and software elements. An

US 8,918,783 B2

7

embodiment that is implemented in software may include, but
is not limited to, firmware, resident software, microcode, etc.

Furthermore, embodiments may take the form of a com-
puter program product accessible from a computer-usable or
computer-readable storage medium providing program code
for use by or in connection with a computer or any instruction
execution system. For the purposes of this description, a
computer-usable or computer readable storage medium can
be any apparatus that can contain, store, communicate, propa-
gate, or transport the program for use by or in connection with
the instruction execution system, apparatus, or device.

The storage medium can be an electronic, magnetic, opti-
cal, electromagnetic, infrared, or semiconductor system, (or
apparatus or device) or a propagation medium. Examples of a
computer-readable medium include a semiconductor or solid
state memory, magnetic tape, a removable computer diskette,
a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Current
examples of optical disks include compact disk-read only
memory (CD-ROM), compact disk-read/write (CD-R/W)
and DVD.

A data processing system suitable for storing and/or
executing program code may include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

This disclosure has been presented for purposes of illus-
tration and description but is not intended to be exhaustive or
limiting. Many modifications and variations will be apparent
to those of ordinary skill in the art. The embodiments were
chosen and described in order to explain principles and prac-
tical application, and to enable others of ordinary skill in the
artto understand the disclosure for various embodiments with
various modifications as are suited to the particular use con-
templated.

What is claimed is:

1. A method comprising:

creating a virtual group, wherein the virtual group includes
a plurality of virtual computers having a relevant char-
acteristic;

receiving an action to be performed simultaneously on the
plurality of virtual computers in the virtual group;

checking static dependencies required for said action,
wherein the static dependencies comprise resources and
registry keys required for performing the action;

initiating performance of the action on each of the virtual
computers in the virtual group in response to veritying
that said static dependencies are satisfied;

checking a plurality of dynamic dependencies, wherein the
plurality of dynamic dependencies comprises changes
in resources and registry keys to verify performance of
the action; and

10

20

25

30

35

40

45

50

55

60

65

8

performing a roll-back process on at least one of the plu-
rality of virtual computers in response to determining
that at least one dynamic dependency is not satisfied, the
roll-back process including restoring the at least one of
the plurality of virtual computers to a previous state from
prior to the performing the action.

2. The method of claim 1, wherein said virtual group com-
prises three or more computers, the method further compris-
ing:

updating resource information for each of the virtual com-

puters in the virtual group to indicate that the action has
been performed in response to verifying that said at least
one dynamic dependency is satisfied.

3. The method of claim 2, further comprising:

checking the resource information for each of the virtual

computers in the virtual group to determine whether the
action changed the relevant characteristic.

4. The method of claim 3, further comprising:

removing one of the virtual computers from the virtual

group in response to determining that the action changed
the relevant characteristic of the one of the virtual com-
puters.

5. The method of claim 1, wherein the creating the virtual
group includes manually creating the virtual group by select-
ing a root parent machine, wherein the root parent machine
includes a plurality of attributes.

6. The method of claim 5, wherein the creating the virtual
group further includes allowing a user to select one of the
attributes to be the relevant characteristic.

7. The method of claim 1, further comprising:

determining resource information for each of the virtual

computers; and

indexing the resource information for each of the virtual

computers.

8. The method of claim 1, wherein the creating the virtual
group includes automatically creating the virtual group by
constructing a list of static dependencies and dynamic depen-
dencies, wherein the static dependencies are resources
involved in the performing the action, and wherein the
dynamic dependencies are resources created by the perform-
ing the action.

9. The method of claim 8, wherein the creating the virtual
group further includes determining which of the virtual com-
puters includes the static dependencies, and creating the vir-
tual group based on at least one of the static dependencies.

10. The method of claim 1, further comprising:

determining whether the action can be performed on each

of the virtual computers in the virtual group prior to
performing the action.

11. The method of claim 1, wherein the performing the
action includes updating software.

12. The method of claim 1, wherein the virtual group is a
first virtual group; and

wherein at least one of the plurality of virtual computers is

a member of the first virtual group and also a second
virtual group.

13. The method of claim 1, wherein the performing of the
action comprises performing the action in parallel on each of
the virtual computers in the virtual group.

14. A system comprising:

a micro-processor; and

a memory element, wherein the memory element includes

computer-readable instructions that are executable by
the processor to:

US 8,918,783 B2

9

create a virtual group, wherein the virtual group includes
aplurality of virtual computers having a relevant char-
acteristic;

receive an action to be performed simultaneously on the
plurality of virtual computers in the virtual group;

check static dependencies required for said action,
wherein the static dependencies comprise resources
and registry keys required for performing the action;

initiate performance of the action on each of the virtual
computers in the virtual group in response to verify-
ing that said static dependencies are satisfied;

check a plurality of dynamic dependencies, wherein the
plurality of dynamic dependencies comprises
changes in resources and registry keys to verify per-
formance of the action; and

perform a roll-back process on at least one of the plural-
ity of virtual computers in response to determining
that at least one dynamic dependency is not satisfied,
the roll-back process including restoring the at least
one of the plurality of virtual computers to a previous
state from prior to the performing the action.

15. The system of claim 14, wherein said virtual group
comprises three or more computers and wherein the memory
element further includes computer-readable instructions that
are executable by the processor to:

update resource information for each of the virtual com-

puters in the virtual group to indicate that the action has
been performed in response to verifying that said at least
one dynamic dependency is satisfied.

16. The system of claim 15, wherein the memory element
further includes computer-readable instructions that are
executable by the processor to:

check the resource information for each of the virtual com-
puters in the virtual group to determine whether the
action changed the relevant characteristic.

17. The system of claim 14, wherein the memory element
further includes computer-readable instructions that are
executable by the processor to:

determine whether the action can be performed on each of

the virtual computers in the virtual group prior to per-
forming the action.

18. The system of claim 14, wherein the virtual group is a
first virtual group; and

wherein at least one of the plurality of virtual computers is

a member of the first virtual group and also a second
virtual group.

19. The system of claim 14, wherein the performing of the
action comprises performing the action in parallel on each of
the virtual computers in the virtual group.

20

25

30

35

40

45

50

10

20. A computer program product comprising:
a non-transitory computer-readable storage medium com-

prising computer-readable instructions to:

create a virtual group, wherein the virtual group includes
aplurality of virtual computers having a relevant char-
acteristic;

receive an action to be performed simultaneously on the
plurality of virtual computers in the virtual group;

check static dependencies required for said action,
wherein the static dependencies comprise resources
and registry keys required for performing the action;

initiate performance of the action on each of the virtual
computers in the virtual group in response to verify-
ing that said static dependencies are satisfied;

check a plurality of dynamic dependencies, wherein the
plurality of dynamic dependencies comprises
changes in resources and registry keys to verify per-
formance of the action; and

perform a roll-back process on at least one of the plural-
ity of virtual computers in response to determining
that at least one dynamic dependency is not satisfied,
the roll-back process including restoring the at least
one of the plurality of virtual computers to a previous
state from prior to the performing the action.

21. The computer program product of claim 20, wherein
said virtual group comprises three or more computers and
wherein the computer-readable storage medium further com-
prises computer-readable instructions to:

update resource information for each of the virtual com-

puters in the virtual group to indicate that the action has
been performed in response to verifying that said at least
one dynamic dependency is satisfied.

22. The computer program product of claim 21, wherein
the computer-readable storage medium further comprises
computer-readable instructions to:

check the resource information for each of the virtual com-

puters in the virtual group to determine whether the
action changed the relevant characteristic.

23. The computer program product of claim 20, wherein
the computer-readable storage medium further comprises
computer-readable instructions to:

determine whether the action can be performed on each of

the virtual computers in the virtual group prior to per-
forming the action.

24. The computer program product of claim 20, wherein
the virtual group is a first virtual group; and

wherein at least one of the plurality of virtual computers is

a member of the first virtual group and also a second
virtual group.

25. The computer program product of claim 20, wherein
the performing of the action comprises performing the action
in parallel on each of the virtual computers in the virtual

group.

