
(12) United States Patent
Lee et al.

US006202174B1

(10) Patent N0.:
(45) Date of Patent:

US 6,202,174 B1
Mar. 13, 2001

(54) METHOD FOR IDENTIFYING AND
CORRECTING ERRORS IN A CENTRAL
PROCESSING UNIT

(76) Inventors: Sherman Lee, 28531 Cedarbluff Dr.,
Rancho Palos Verdes, CA (US) 90274;
David G. Kyle, 3107 Barton Point Cir.,
Austin, TX (US) 78733

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 08/710,336

(22) Filed: Sep. 16, 1996

(51) Int. Cl.7 G06F 11/00

(52) US. Cl. 714/38; 714/47; 714/704;
710/266

(58) Field of Search 395/183.14, 183.13,

395/183.15, 184.01, 185.01, 704, 708, 733,
734, 739; 364/267, 267.91, 737; 714/38,

37, 39, 47, 48

(56) References Cited

U.S. PATENT DOCUMENTS

3,905,023 * 9/1975 Perpiglia 395/18204

4,410,938 * 10/1983 Higashiyama . 395/184.01
4,412,285 * 10/1983 Neches et al. . .. 395/200.82

4,792,955 12/1988 Johnson et al. 371/68

4,819,234 * 4/1989 Huber 395/183.14

4,982,402 * 1/1991 Beaven et al. . .. 395/182.13

5,119,377 * 6/1992 Cobb et al. .. 395/183.14
5,125,087 * 6/1992 Randell 395/568

5,214,652 * 5/1993 Sutton 395/18208
5,437,039 7/1995 Yuen 395/725

5,533,192 * 7/1996 Hawley et al. 395/183.04

FOREIGN PATENT DOCUMENTS

442277A2 * of 1991 (EP) .

OTHER PUBLICATIONS

Allen, J .R., & Yau, S.S., “Real—time fault detection for small
computers”; May/1972; pp. 119—127.*
“PoWerPC 602 Aims for Comsumer Products”, Linley
GWennap, Microprocessor Report, Feb. 16, 1995, pp. 16—18.
“Intel’s P6 Uses Decoupled Superscalar Design”, Linley
GWennap, Microprocessor Report, Feb. 16, 1995, pp. 9—15.
“New Algorithm Improves Branch Prediction”, Linley
GWennap, Microprocessor Report, Mar. 27, 1995, pp.
17—21.

(List continued on next page.)

Primary Examiner—Dieu-Minh T. Le
(74) Attorney, Agent, or Firm—Skjerven, Morill,
MacPherson, Franklin & Friel LLP; Omkar K. Suryadevara

(57) ABSTRACT

Acentral processing unit (CPU) repeatedly interrupts execu
tion of softWare to save the CPU state, i.e. contents of
various storage elements internal to the CPU, until an error
occurs during the execution. On occurrence of the error, the
CPU once again saves state and only then passes control to
a handler in the softWare for handling the error. The state
saving steps can be implemented in a computer process by
use of a timer interrupt or by use of system management, or
ICE breakpoint instructions that are included in the X86
instruction set. Errors can be debugged off-line in a devel
opment system, for example, by use of an in-circuit emulator
to load the saved CPU states sequentially into the develop
ment system, thereby to recreate the error condition. Errors
can also be debugged proactively, even before the error
occurs, by use of a number of knoWn-to-be-erroneous
instructions and corresponding ?x instructions. For proac
tive debugging, the CPU compares instructions to be
executed With each of the knoWn-to-be-erroneous
instructions, and on ?nding a match, injects the correspond
ing ?x instructions into the to-be-executed instructions.
Therefore, known errors eg the PENTIUM arithmetic bug
are avoided, e. g. by replacing one arithmetic instruction With
another arithmetic instruction. Moreover, if an error has not
yet been debugged, a temporary ?x instruction can be used
to gracefully terminate an application.

11 Claims, 5 Drawing Sheets

(2:0

CPU sure SAVER \
l
1

\ ERROR’
TERMWAIE
APPUEAT‘ON

/

g.
4 j oPmnucsvsrm

at; /

Low
APPumwN

RUN
APPUCATlEIN

1
1
1
a

/ /
/

US 6,202,174 B1
Page 2

OTHER PUBLICATIONS

“The Dr. Watson Diagnostic Tool”, Technical Articles: Win
doWs: Development Environrnent—Microsoft Development
Library, pp. 1—7, May 1994.
“An Annotated Dr. Watson Log File”, KBzWindows SDK
KBase—Microsoft Development Library, PSS ID No.:
Q81142, Jun. 1995, pp. 1—4.
“WW0440: The DrWatson and MSD Diagnostics”,
KBzWindows 3.x KBase—Microsoft Development Library,
PSS ID No.: Q75020, Jul. 1995, pp. 1—7.
Wolfe, Alexander, “Intel equips its P6 With test and debug
features”, Electronic Engineering Times Oct. 16, 1995 n870
p1(2), Cornputer Select, Dec. 1995, pp. 1—3.
Graharn, AndreW J ., “Pro?ting frorn standards”, Electronic
Engineering Times Oct. 23, 1995 n871 p24(2), Cornputer
Select, Dec. 1995, pp. 1—3.
Daniel, Wayne, “Test bus takes a ride on popular PCI”,
Electronic Engineering Times Oct. 16, 1995 n870 p55(1),
Cornputer Select, Dec. 1995, pp. 1—3.
Hlavaty, Joseph, “Exception Handlers and WindoWs Appli
cations”, Dr. Dobb’s Journal on CD—ROM, Sep. 1994, pp.
1—15.

Pietrek, Matt, “Postrnortern Debugging”, Dr. Dobb’s Journal
on CD—ROM, Sep. 1992, pp. 1—12.
“Nx686 Goes Toe—to—Toe With Pentiurn Pro”, Linley
GWennap, Microprocessor Report, Oct. 23, 1995, pp. 6—10.
“Hal Reveals Multichip SPARC Processor”, Linley GWen
nap, Microprocessor Report, Mar. 6, 1995, pp. 6—11.
“Cornputer OrganiZation and Design”, John L. Hennessy,
etc., Morgan Kaufrnann Publishers, Chapter 7, pp. 502—504.
“Intel Equips Its P6 With Test and Debug Features”, Alex
ander Wolfe, Electronic Engineering Times, Oct. 16, 1995,
pp. 1, 106.
“P6 Stirs Up SoftWare Issues”, Alexander Wolfe, Electronic
Engineering Times, Oct. 30, 1995, p.22.
“Intel’s Potent P6 Prerniers”, Alexander Wolfe, Electronic
Engineering Times, Oct. 30, 1995, pp. 1, 22, 24.
PentiurnTM Processor User’s Manual, vol. 1, Chapter 3, Intel,
1993, pp. 3—1 to 3—25.

The Complete X86, John Wharton, vol. II, Chapter 20, 1994,
pp. 639—679.

* cited by exarniner

U.S. Patent Mar. 13, 2001

START

WAIT FOR
STATE SAVING

EVENT

READ AND COMPARE
KNOWN-TO-BE

ERRONEOUS INSTRUCTIONS \
215

INJECT FIX INSTRUCTION
IF NECESSARY

ENTER
CRITICAL
SECTION

SAVE
CPU STATE

1

\
218

EXIT
CRITICAL
SECTION ~\ 219

__I
CPU STATE SAVER

FIG. 2
CPU

STATES

Sheet 4 0f 5

220 \

I 13I0A-130N / 129A-120M //

US 6,202,174 B1

START

LOAD
APPLICATION

RUN
APPLICATION

ERROR
TERMINATE
APPLICATION

L__

OPERATING SYSTEM

APPLICATION

1i

APPLICATIONS DATA

HARD DISK

US 6,202,174 B1
1

METHOD FOR IDENTIFYING AND
CORRECTING ERRORS IN A CENTRAL

PROCESSING UNIT

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is related to and incorporates by refer
ence herein in their entirety the following commonly oWned,
concurrently ?led, copending US. Patent Applications:

1. “A Port For Fine Tuning A Central Processing Unit” by
Sherman Lee and David G. Kyle, Ser. No. 08/710,337, now
US. Pat. No. 5,937,203, issued on Aug. 10, 1999.

2. “A Method For Fine Tuning Operation of Circuitry In
A Central Processing Unit” by Sherman Lee and David G.
Kyle, Ser. No. 08/710,294, now US. Pat. No. 5,812,425,
issued on Sep. 22, 1998.

FIELD OF THE INVENTION

This invention relates to a method for identifying errors in
a programmed digital computer and for correcting the iden
ti?ed errors. In particular, this invention relates to a method
for monitoring instructions and data that cause errors, ana
lyZing the monitored instructions and data to predict errors
and for preventing future errors from occurring, for example
by inserting corrective softWare.

BACKGROUND OF THE INVENTION

MICROSOFT Corporation’s Dr. Watson is a debugging
tool that logs information regarding internal operations of
the operating system “WINDOWS” into a failure report. Dr.
Watson logs the information after any application softWare
(typically called just “application”) encounters an error, that
MICROSOFT calls “unrecoverable application error
(UAE).” See, for example, “An Annotated Dr. Watson Log
File,” KBzWindows SDK KBase, Microsoft Development
Library, MICROSOFT Corporation, One Microsoft Way,
Redmond, Wash.; “Postmortem Debugging,” Matt Pietrek,
Dr. Dobb’s Journal, September 1992; and “Exception Han
dlers and WindoWs Applications,” Joseph Hlavaty, Dr.
Dobbs Journal, September 1994; all of Which are incorpo
rated by reference herein in their entirety.

Brie?y, a Dr. Watson failure report contains information
on (1) the name of an application that failed, (2) the error
encountered, such as “Exceed Segment Bounds (Read),” (3)
the instruction’s address at Which the failure occurred, (4)
the instruction that caused the failure, (5) the contents in
various registers, such as CPU registers, instruction pointer
(also called “program counter”), stack pointer, base pointer,
code segment selector, stack segment selector, data segment
selector, extra segment selector, 32-bit registers and ?ag bits
(e. g. Over?ow bit, Direction bit, Sign bit, Zero bit, Carry bit,
Interrupt bit, Auxcarry bit and Parity bit), (6) WINDOWS
installation and environment information, (7) stack frame
information such as disassembled instructions surrounding
the failed instruction, and several levels of nested function
calls leading to the failed instruction, (8) names of all tasks
When the failure occurred and (9) user response typed into
a “Dr. Watson’s Clues” dialog box.
MICROSOFT Corporation recommends that a user exit

WINDOWS after a UAE occurs, and if exiting is not
possible, to restart the personal computer. See “The DrWat
son and MSD Diagnostics,” KBzWindows 3.x KBase,
Microsoft Development Library, MICROSOFT
Corporation, One Microsoft Way, Redmond, Wash., also
incorporated by reference herein in its entirety.

10

15

20

25

30

35

40

45

55

60

65

2
MICROSOFT Corporation further recommends that after a
UAE occurs, the user should run MICROSOFT DIAGNOS
TICS (MSD) that identi?es system con?guration
information, such as the BIOS, video card type,
manufacturer, installed processor(s), I/O port status, operat
ing system version, environment settings, hardWare devices
attached, and additional softWare running concurrently With
MSD. Id. All of these actions can result in loss of valuable
data, as Well as valuable time before a user can continue
using the application.
MICROSOFT Corporation also recommends that after

logging several UAEs, the user should send the log to
MICROSOFT Corporation, although MICROSOFT Corpo
ration cannot respond to log contributors. Id. Therefore, the
user receives no assistance in identifying the problem that
caused the UAE and in ?xing the application to avoid that
particular UAE in future. Moreover, Dr. Watson appears to
log only an application’s UAEs failures, and cannot be used
for debugging other errors, such as errors in the operating
system or errors in hardWare.

Errors in hardWare can be debugged using a built-in
“debug” port of the type present in INTEL’s P6 (also called
“Pentium Pro”) microprocessor. INTEL recommends the
P6’s debug port as an aid for designing a system board on
Which the CPU is mounted. See, for example, “Intel equips
its P6 With test and debug features,” Electronic Engineering
Times, Oct. 16, 1995, n870, pages 1-2, that is incorporated
by reference herein in its entirety.

Brie?y, the P6 debug port is typically connected to an
“in-target probe” (ITP) via a 30-pin connector, and alloWs
access to boundary-scan (JTAG) and built-in-self-test
(BIST) structures on the P6 microprocessor. Through an ITP
such as ICE-16 available from, for example, American
Arium, Tustin, Calif., board designers can control program
execution, set break points, monitor the P6’s access of
registers, memory and input-output devices.

HoWever, a typical user neither has access to an ITP nor
the expertise needed to use the ITP. Therefore, the user is
still unable to identify the problem that causes a UAE and
unable to ?x the application to avoid knoWn UAEs in future.

SUMMARY

In accordance With the invention, a central processing unit
(CPU) repeatedly interrupts execution of softWare to save
the CPU state, ie contents of various storage elements
internal to the CPU, until an error occurs during the execu
tion. On occurrence of the error, the CPU once again saves
state and only then passes control to a handler in the
softWare for handling the error. Each time the CPU state is
saved at locations in memory different from the previous
time so that a sequence of CPU states is saved When control
passes to the handler. The storage elements Whose contents
are saved can be of tWo types: (1) accessible, and (2)
inaccessible to the executing softWare, such as an operating
system or an application. Moreover, the above-described
state saving steps can be implemented, in different embodi
ments of the invention, in hardWare (eg as a state machine)
or in softWare (eg in basic-input-output-system (BIOS), in
an operating system, as a device driver, or as a utility). In one
speci?c embodiment, the state saving steps are implemented
in a computer process by use of x86 instructions.1
1 The x86 instruction are instructions executable by microprocessors com
patible With microprocessors in the 8086, 80286, 80386, 80486, Pentium and
Pentium Pro (P6) families of microprocessors available from Intel Corpora
tion, Santa Clara, Calif.

In one embodiment, errors are debugged off-line in a
development system, for example, by use of an in-circuit

US 6,202,174 B1
3

emulator to load the saved CPU states sequentially into the
development system, thereby to recreate the error condition.
If the frequency of the saved CPU states is too coarse to ?nd
the source of the error, the CPU states can be saved more
frequently, eg after shorter time periods, on every jump
instruction, on every input-output instruction, on every
function-call instruction, or on some combination these
events, depending on one or more ?ags. The ?ags can be set,
for example, in a con?guration ?le that is checked at the
startup of the computer process. The sequence of saved CPU
states alloWs recreation of error conditions otherWise not
possible in the prior art. Moreover, the CPU states are saved
transparent to the softWare, thereby alloWing recreation of
errors in an operating system as Well as errors from inter
action betWeen the operating system and an application,
both of Which Were not possible in the prior art.

In accordance With the invention, an error can also be
debugged proactively by a computer process, even before
the error occurs, by use of a number of knoWn-to-be
erroneous instructions and ?x instructions corresponding to
the knoWn-to-be-erroneous instructions. In one embodi
ment, the CPU compares instructions to be executed With
each of the knoWn-to-be-erroneous instructions, and on
?nding a match, injects the corresponding ?x instructions
into the to-be-executed instructions. In this embodiment,
these proactive error debugging steps are executed by the
state saving process optionally depending on a ?ag that is set
or cleared, for example, in a con?guration ?le. In another
embodiment, the proactive error debugging steps are imple
mented in a different process that executes independent of
the state saving process, i.e. does not save CPU states.

Therefore, Well knoWn errors eg the 80286 jump bug or
the PENTIUM arithmetic bug are easily avoided, eg by
inserting a no-op instruction before a jump instruction or by
replacing one arithmetic instruction With another arithmetic
instruction. Such proactive debugging alloWs a user to
continue to use, for example, a defective PENTIUM or
defective softWare and not have any knoWn errors. More
over, if an error has not yet been debugged, the handler can
add an erroneous instruction to the knoWn-to-be-erroneous
instructions With a corresponding temporary-?x instruction
to gracefully terminate the application, eg if the erroneous
instruction is knoWn to crash (e.g. “freeZe”) the CPU. Such
graceful termination of the application alloWs the CPU to
continue execution of other softWare that may be of value to
a user, eg to eliminate the need to reboot the operating
system otherWise required in the prior art.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1A—1C each illustrate a central processing unit
(CPU) circuitry tuner in three different embodiments of a
computer system.

FIG. 2 illustrates, in a high level ?oWcharts and block
diagrams, various steps performed by the CPU-circuitry
tuner of FIGS. 1A—1C.

FIG. 3 illustrates addresses and contents of main memory
120 and system management memory 130 in one embodi
ment of the invention.

DETAILED DESCRIPTION

In accordance With the invention, a central processing unit
(hereinafter “CPU”) repeatedly interrupts execution of soft
Ware to save the CPU state, i.e. contents of various storage
elements internal to the CPU, until an error occurs during the
execution. On occurrence of the error, the CPU once again
saves state and only then passes control to a handler in the

10

15

20

25

30

35

40

45

55

60

65

4
softWare for handling the error. The storage elements Whose
contents are saved can be of tWo types: (1) accessible, and
(2) inaccessible to the executing softWare, such as an oper
ating system or an application. The state saving steps can be
implemented in a computer process by use of system man
agement instructions that are included in the x86 instruction
set. Errors can be debugged off-line in a development
system, for example, by use of an in-circuit emulator to load
the saved CPU states sequentially into the development
system, thereby to recreate the error condition. Errors can
also be debugged proactively, even before the error occurs,
by use of a number of knoWn-to-be-erroneous instructions
and ?x instructions corresponding to the knoWn-to-be
erroneous instructions. Speci?cally, the CPU compares
instructions to be executed With each of the knoWn-to-be
erroneous instructions, and on ?nding a match, injects the
corresponding ?x instructions into the to-be-executed
instructions. Therefore, knoWn errors eg the PENTIUM
arithmetic bug are avoided, eg by replacing one arithmetic
instruction With another arithmetic instruction. Moreover, if
an error has not yet been debugged, a temporary ?x instruc
tion can be used to gracefully terminate an application that
Would otherWise “freeze” the CPU.

In one embodiment, the above-described CPU is a “tun
able CPU” having a number of tunable units, With each
tunable unit having one or more parameters that can be
changed, to thereby change circuitry in the CPU. Examples
of circuitry in a tunable unit and a device (called “?ne tuning
port”) for changing circuitry in the CPU are described in the
above-incorporated application, Ser. No. 08/710,337 now
US. Pat. No. 5,937,203, issued on Aug. 10, 1999.

In this embodiment, the above-described state saving
steps are implemented in a computer process that ?ne tunes
the tunable CPU. The computer process Waits for a trigger
ing event indicating the need for ?ne tuning of the tunable
CPU, reads one or more statistics on performance of the
tunable CPU, compares the read statistics With predeter
mined statistics patterns to determine one or more parameter
signals, and drives the parameter signals to one or more
tunable units, thereby to change the circuitry in the tunable
CPU. Examples of steps for ?ne tuning the tunable CPU are
described in the above-incorporated application, Ser. No.
08/710,294 now US. Pat. No. 5,812,425, issued on Sep. 22,
1998.
Although speci?c circuitry is described herein for a

particular embodiment of the invention, other such embodi
ments Will be obvious to a person skilled in the art of
designing debugging systems for microprocessors in vieW of
the disclosure. Accordingly, the embodiments described
herein are merely illustrative and not limiting.

In one embodiment, a computer system 100A includes a
CPU 110A having a built-in CPU state saver 110S. CPU
state saver 110S repeatedly saves the state of CPU 110A,
such as contents of storage elements 110D—110N as
described more completely beloW. In addition to CPU 110A,
computer system 100A includes a read only memory 111
that is encoded With basic input output system instructions
for CPU 110A. Read only memory 111 and CPU 110A are
coupled to each other by a CPU bus 112 that is also coupled
via a system bridge (not labelled) to a system bus 113.
System bus 113 in turn is coupled to a ?oppy drive 114, a
hard disk 115, a monitor 116, a keyboard 117 and a mouse
118. CPU bus 112 is also coupled to a main memory 120 that
is encoded With a number of applications, eg application
120A . . . 120I . . . 120M, Where M is the number of

applications.
In addition to the above-described parts, computer system

100A also includes a system management memory 130 that

US 6,202,174 B1
5

is coupled via CPU bus 112 to CPU 110A, and that is
accessible to CPU state saver 110S. System management
memory 130 is typically “hidden” from i.e. made inacces
sible from applications 120A—120M in the manner described
in, for example, “The CPU and Undocumented
Instructions,” Chapter 3 of the book “The Undocumented
PC” by Frank van GilluWe, Addison-Wesley Publishing
Company, Reading, Mass.; this book is incorporated by
reference herein in its entirety. In this embodiment, system
management memory 130 holds a number of CPU states e.g.
CPU state 130A, . . . 130I, . . . 130N, Where N is the number

of CPU states. CPU states for one embodiment are described
beloW in reference to FIG. 3.

In this embodiment, CPU state saver 110S in CPU 110A
is implemented in hardWare as circuitry that performs a
number of steps illustrated in FIG. 2 (described beloW). In
an alternative embodiment, CPU state saver 110S is encoded
as microcode resident in storage elements (not shoWn) in
CPU 110A that also performs the steps of FIG. 2. In another
embodiment, a CPU 110B (FIG. 1B) does not have the
above-described CPU state saver 110S, but rather has a
softWare version, CPU state saver 1115 that is encoded in
read only memory 111 in addition to the Basic Input Output
System (BIOS) instructions. CPU state saver 111T also
performs the steps described beloW in reference to FIG. 2.
Note that the same reference numerals are used for various
parts in FIGS. 1B and 1C that are similar or identical to the
corresponding parts in FIG. 1A.

In yet another embodiment of the invention, both CPU
110C (FIG. 1C) and read only memory 111C do not have a
CPU state saver 110S or 111s. Instead, a softWare version,
CPU state saver 120S is encoded in main memory 120C. In
addition, computer system 100C does not have system
management memory 130, and rather CPU states
130A—130N are saved in main memory 120C. In this
embodiment as Well, CPU state saver 120T performs the
steps described beloW in reference to FIG. 2.

A CPU state saver 210 in one embodiment of the inven
tion initialiZes variables on start up in a step 211 and
thereafter checks in step 212 Whether the state of CPU 110A
(FIG. 1A) can be saved, and if not stops in step 213. Step
212 can be implemented, for example, by determining the
identity of CPU 110A and jumping to instructions speci?c to
the determined identity for the folloWing steps. The identity
of CPU 110A can be determined, for example, as described
in “System Equipment and Detection,” Chapter 4 of the
book “The Undocumented PC” incorporated by reference
above.

If the CPU state is savable, CPU state saver 210 stores one
of the CPU state 130A—130N into memory. Then CPU state
saver 210 goes from step 212 to step 213 and Waits for an
event indicating the need for saving CPU state. The state
saving event can be, for example, the loading and running of
an application program by the operating system or a system
interrupt that occurs periodically, e.g. every ?ve second or
10 seconds during the running of an application. The CPU
state can be saved more frequently, eg by having CPU state
on every jump instruction, on every input-output instruction
or on every functionicall instruction, or some combination
depending on ?ags in eg storage element 110D.
On occurrence of such an event, CPU state saver 210 goes

to step 215 and analyZes (as described more completely
beloW) the to-be-performed instructions. The CPU state is
also saved on occurrence of an error-in Which case CPU

state saver 210 skips steps 215—215 (described beloW) and
goes directly to step 217. Then, CPU state saver 210 goes to

10

15

25

55

65

6
step 216 and injects one or more ?x instructions as neces
sary. For example, a “no-op” instruction can be inserted
before a jump instruction for the A0286 microprocessor. As
another example, an arithmetic instruction to the PENTIUM
can be replaced by a series of arithmetic instructions that
Work around the error.

Next, CPU state saver 210 enters a critical section in step
217, for example by disabling interrupts and serialiZing (e.g.
making sequential) the execution of instructions in CPU
110A. During this step, if necessary, CPU state saver 210
also sWitches from main memory 120 to system manage
ment memory 130 that is inaccessible to applications
120A—120M.

After entering the critical section, CPU state saver 210
goes to step 218 and stores the CPU state in memory, such
as system management memory 130 or main memory 120.
Depending on the identity of CPU 110A, one of the save
state instructions in Table 1 is used to save the CPU state.

TABLE 1

Save Number Address for Address
CPU State of Storing for Save
Iden- Instruc- Bytes Current State
tity tion OpCode Saved CPU State Software

AMD SMI F1h 228 6000:0h FFFFFFFOh
386SXLC (reset)
AMD SMI F1h 228 6000:0h FFFFFFFOh
386DXLC (reset)
AMD SMI F1h 364 6000:0h FFFFFFFOh
486DXLC (reset)
IBM ICEBP F1h 284 6000:0h FFFFFFFOh
386SLC (reset)
IBM ICEBP F1h 284 6000:0h FFFFFFFOh

486SLC (reset)
Intel Timer OFh, 30h; 512 3000:FEOOh 3000:8000h
386SL Interrupt note:

from enable bit
8236OSL 5 in model

speci?c
register
lOOOh

Intel Timer OFh, 30h; 512 3000:FEOOh 3000:8000h
486SL Interrupt note:

from enable bit
8236OSL 5 in model

speci?c
register
1000b

Similarly, a store instruction can also be used to store CPU
state in memory. The data saved in a CPU state 130A is
illustrated in Table 2 for an INTEL microprocessor (see
pages 88—90 of the above-referenced book by Frank van
GilluWe for more details).

TABLE 2

System Total
Management Word
Memory Offset Stored Data Stored in CPU State

FEOO 124 Unknown
FEF8 2 State Dump Base-This holds

the internal register value
of the segment for the
Suspend code and storage of
this table. It defaults to
3000b.

FEFC 1 System Management Mode Bits
bit 0 = 1 CPU supports
I/O Trap restart
bit 1 = 1 CPU supports

US 6,202,174 B1
7

TABLE 2-continued

System Total
Management Word
Memory Offset Stored Data Stored in CPU State

state dump base changes
FFFE 1 System Management Mode

Revision Number
FFOO 1 I/O Trap restart-Always set

to Zero when saved.

FFO2 1 Halt auto restart-This value
is set to 1 if SMI occurred
while the CPU was in a HALT
instruction. Otherwise it
is set to O.

FFD4 51 Unknown
FFA8 1 ES
FFAA 1 Unknown
FFAC 1 CS
FFAE 1 Unknown
FFBO 1 SS
FFB2 1 Unknown
FFB4 1 DS
FFB6 1 Unknown
FFB8 1 FS
FFBA 1 Unknown
FFBC 1 GS
FFBE 1 Unknown
FFCO 1 LDTR-Local Descriptor Table

Register
FFC2 1 Unknown
FFC4 1 TR-Task Register
FFC6 1 Unknown
FFC8 2 DR7
FFCC 2 DR6
FFDO 2 EAX
FFD4 2 ECX
FFD8 2 EDX
FFDC 2 EBX
FFEO 2 ESP
FFB4 2 EBP
FFE8 2 ESI
FFEC 2 EDI
FFFO 2 EIP
FFF4 2 EFLAGS
FFF8 2 CR0
FFFC 2 CR1

In addition to the above-described contents of storage
elements, in this embodiment, CPU state saver 210 also
saves application-speci?c information, such as the name of
an application, stack frame information, and operating sys
tem speci?c information, such as the names of all tasks
running when the failure occurred and other information of
the type saved by Dr. Watson as described above. CPU state
saver 2 can also save the contents of a data cache as part of
the CPU state. Alternatively, CPU saver 210 can save state

on every input-output instruction, thereby to record data
operands from as the operands and to CPU 110A. Therefore,
the storage elements whose contents are saved are of two
types: (1) accessible and (2) inaccessible to the executing
software. In this particular embodiment, the CPU state is
automatically stored at the memory location 3000: FE00h
(FIG. 3) on execution of a save state instruction (Table 1).
The current CPU state 130C saved at the address 3000:
FE00h is then copied by CPU state saver 210 as shown by
arrows 301A—301N to one of CPU states 130A—130N.

If CPU State Saver 210 executes step 218 due to an error,
CPU state saver 210 copies all of CPU states 130A—130N to
hard disk 115.

Thereafter, CPU state saver 210 goes to step 219 and exits
from the critical section, for example by enabling interrupts.
In the step 219, CPU state saver 210 also switches from
system management memory 130 to main memory 120 as

10

15

20

25

30

35

40

45

55

60

65

8
necessary. CPU state saver 210 does not ?ush a cache
memory (not shown) in any of the above-described steps.
Thereafter, CPU state saver 210 returns to step 214 and
awaits another state saving event.
Although certain speci?c embodiments have been

described herein, numerous modi?cations and adaptations of
the described embodiments will be obvious in view of the
disclosure.

For example, instead of proactive debugging of error by
CPU state saver 210, errors can also be debugged off-line in
a development system, for example by use of an inserted
emulator (not shown) to load the saved CPU states
130A—130N (FIG. 2) sequentially into the development
system. Such sequential loading of CPU states can recreate
the error condition by executing the error-causing software,
if all of the necessary data is available, for example in CPU
states 130A—130N, or can be recreated by a person skilled
in the art of designing debugging systems for microproces
sors.

In another variation of one embodiment, when an error
has not yet been debugged, an error handler in the software
being executed adds an erroneous instruction to the known
to-be-erroneous instructions, with the corresponding
temporary-?x instruction to gracefully terminate the
application, eg if the erroneous instruction is known to
crash (e.g. “freeZe”) the CPU. Such graceful termination of
an application allows the CPU to continue the execution of
other software. Such execution of other software may be
valuable to a user, for example by eliminating the need to
reboot the operating system that would otherwise have been
required in the prior art.

Moreover, any information related to the central process
ing unit can be saved as a part of the CPU state. For example,
if not saved by the above-described save state instruction
(Table 1), various CPU registers such as registers CR1, CR2,
CR3 and CR4, DRO—DR7 and ?oating point registers STn,
FCS, FSW, FIP, tag word and ?oating point op code can also
be saved as part of the CPU state. The amount of data to be
saved in a CPU state is limited only by the size of the system
management memory, and the number of saved CPU states
required for debugging. If the number of bytes being saved
is small, e. g. 228 bytes, several thousand states can be saved
in, for example, one MB of system management memory.
Alternatively, if several thousands of bytes are saved in a
single CPU state (eg if data cache is also saved), only a
handful of CPU states may be saved in, for example, 32 MB
of system management memory.
Numerous such modi?cations and adaptations of the

above described embodiments are encompassed by the
attached claims.
We claim:
1. Acomputer process for identifying an error in a central

processing unit (CPU), the computer process comprising:
executing software in said CPU, wherein the software

comprises a plurality of instructions;
repeatedly interrupting said executing by said CPU, and

saving contents of storage elements in said CPU until
an error occurs during said executing, said contents
saved at each interruption forming one state in a
sequence of states of said CPU maintained by said
repeatedly saving;

comparing an instruction in said plurality of instructions
with a known-to-be-erroneous instruction prior to
execution of said instruction in said plurality of instruc
tions; and

injecting a ?x instruction into the plurality of instructions
on ?nding a match during said comparing, said ?x

US 6,202,174 B1

instruction corresponding to the knoWn-to-be
erroneous instruction.

2. The computer process of claim 1 Wherein the knoWn
to-be-erroneous instruction is a jump instruction and the ?x
instruction is a no-op instruction.

3. The computer process of claim 1 Wherein the knoWn
to-be-erroneous instruction is a ?rst arithmetic instruction
and the ?x instruction is a second arithmetic instruction.

4. A computer process for identifying and correcting an
error in a central processing unit (CPU), the computer
process comprising:

executing softWare;
repeatedly interrupting said executing and comparing a

to-be-executed instruction in the softWare With a ?rst
predetermined instruction; and

injecting a second predetermined instruction correspond
ing to the ?rst predetermined instruction into a plurality
of to-be-executed instructions on ?nding a match dur
ing said repeatedly interrupting.

5. The computer process of claim 4 Wherein said ?rst
instruction is a ?rst arithmetic instruction and said second
instruction is a second arithmetic instruction.

6. The computer process of claim 4 Wherein:
said ?rst predetermined instruction is knoWn to be erro

neous; and

said second predetermined instruction implements a ?x
for said ?rst predetermined instruction.

7. The computer process of claim 6 Wherein:
said ?rst instruction causes a crash on execution by said
CPU; and

said second instruction terminates said executing thereby
to avoid said crash.

15

25

10
8. The computer process of claim 6 Wherein:

said ?rst instruction causes an error on execution by said

CPU; and
said second instruction is one of a group of instructions

that When executed by said CPU avoid said error.
9. A computer process for identifying and correcting an

error, the computer process comprising:
executing softWare, the softWare comprising an operating

system and at least one application;

repeatedly interrupting said executing and comparing a
to-be-executed instruction in the softWare With a
knoWn-to-be-erroneous instruction thereby to detect an
upcoming error; and

injecting into a plurality of to-be-executed instructions a
?x instruction corresponding to the knoWn-to-be
erroneous instruction on ?nding a match during said
comparing, thereby avoiding occurrence of said error.

10. The computer process of claim 9 Wherein:

the knoWn-to-be-erroneous instruction is one of a

sequence of knoWn-to-be-erroneous instructions; and
the ?x instruction is one of a sequence of ?x instructions

corresponding to the sequence of knoWn-to-be
erroneous instructions.

11. The computer process of claim 10 further comprising:

adding to the sequence of knoWn-to-be-erroneous instruc
tions an erroneous instruction; and

adding to the sequence of ?x instructions an instruction
that terminates said executing.

