ILOG CPLEX 7.5

User’s Manual

November 2001

© Copyright 2001 by ILOG

This document and the software described in this document are the property of ILOG and are protected as ILOG trade secrets. They are furnished under a
license or non-disclosure agreement, and may be used or copied only within the terms of such license or non-disclosure agreement.
No part of this work may be reproduced or disseminated in any form or by any means, without the prior written permission of ILOG SA.

Printed in France

List of Figures

List of Tables

Preface

Chapter 1

Table of Contents

.. 13
... 15
Meet ILOG CPLEX. 17
What IS ILOG CPLEX? . . .ttt e e e e e e 18
What You Need to KNOWt e 19
In This Manual 20

EXamples ON-Line 21
Notation in This Manual. e 22
Related DOCUMENTAtIONt e e e 23
For More Information. 24

Technical SUPPOIT e 24

WD Site. . .o 24

Using ILOG CPLEX Concert Technology Library 27

The Design of CPLEX Concert Technology Library 28
LiCBNSES . .ttt 28
Compiling and Linkingottt 29

Creating an Application with CPLEX Concert Technology Library 29

Modeling an Optimization Problem with Concert Technology 29
MOdeliNng ClasSeSt 30

ILOG CPLEX 7.5 — USER’'S MANUAL 5

TABLE OF CONTENTS

Data Management ClasSes oo v vttt e 32
Solving Concert Technology Models with lloCplex 33
Extractinga Model 34
Solving a Model 35
Choosing an OpPtiMIZET.ot e 35
Accessing Solution Information. 37
Querying Solution Datat 39
Accessing Basis Information 39
Performing Sensitivity ANalysis e 40
Analyzing Infeasible Problems 40
Solution Quality o 41
Modifying aModel 41
Deleting and Removing Modeling Objects i 42
Changing Variable Type.ot 43
Handling Errors . ..o e 43
Example: Dietary Optimization e 45
Program DesCription.t a7
Solving the Model with lloCplex 49
Complete Programo e 49
Chapter 2 Using the ILOG CPLEX Callable Library. 55
Architecture of the CPLEX Callable Library 55
LIS S . . ottt 57
Compiling and Linking oot 57
Using the Callable Library in an Application. 57
Initialize the ILOG CPLEX ENVIronment.ttt e 57
Instantiate the Problem Object. 58
Put Data inthe Problem Object 58
Optimize the Problem. 59
Change the Problem ObjecCt. 59
Destroy the Problem Object.o 59
Release the ILOG CPLEX Environment.ot 59

6 ILOG CPLEX 7.5 — USER’'S MANUAL

Chapter 3

TABLE OF CONTENTS

ILOG CPLEX Programming PractiCest 60
Variable Names and Calling Conventions 60
Data TYPES . . v v ettt e 61
Ownership of Problem Data e 61
Copyingin MIP and QPo 62
Problem Size and Memory Allocation ISSUES i 62
Status and Return Values 63
Symbolic CONSIANTS o 63
Parameter ROULINES oo e 64
NUILAIGUMENES . . e e e 64
Row and Column References e 64
Character StNGS . ..ot 65
Checking Problem Dataot 65
Callbackso 67
POrabIlitY . . . 67
FORTRAN INterfaceot e e e 68
CHt INterfaceo 70

Managing Parameters from the Callable Library 70

Example: Dietary Optimizationot 72
Program DesCription.ot 73
Complete Program e 74

Further Programming Considerations i, 85

Tips for Successful Application Development i 85
Prototype the Model 85
Identify ROULINES tO USEo e 86
TestInteractively e 86
Assemble Data Efficiently. 86
TESEDALA oot 87
Choose an OpPtIMIZErot e 87
Program with a View toward Maintenance and Modifications 88
Debug Effectively 20

ILOG CPLEX 7.5 — USER’'S MANUAL 7

TABLE OF CONTENTS

Test Correctness, Test Performance e 90
Using the Interactive Optimizer for Debugging. 90
Eliminating Common Programming Errors.ttt 92

Check Your Include Files 92

Clean House and Try AQainottt e e e e e e 92

Read YOUr MESSAQES. . . o vttt et e 92

CheCk Return ValUeso e 92

Beware of Numbering Conventionsttt 93

Make Local Variables Temporarily Global 93

Solve the Problem You Intended 93

Special Considerations for Fortran. e 93
Tl US . 93

Chapter 4 Solving Linear Programming Problems 95
Choosing an Optimizer for Your LP Problem i 96

Automatic Selection of Best Optimizer.ot e 96

Dual Simplex Optimizer 96

Primal Simplex Optimizer. 97

Network OptiMIzZEro 97

Primal-Dual Barrier Optimizert e 97
Tuning LP PerformancCe.ot 98

Preprocessing: Presolver and Aggregatorottt 98

Preprocessing: Explicitly Solvingthe Dual i 100

Starting from an Advanced Basis. 101

AdJUSEINg Parameters. e 102
Diagnosing Performance Problems 107

Lack Of MEMOIYo 107

Numerical Difficulties 108
Diagnosing LP Infeasibility 112

The Effect of Preprocessing on Feasibility. i 112

Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities 113

Interpreting Solution StatistiCs 114

8 ILOG CPLEX 7.5 — USER’'S MANUAL

Chapter 5

TABLE OF CONTENTS

Finding a Set of Irreducibly Inconsistent Constraints. 116
Example: Using a Starting Basisinan LPProblem 121
Example ilolpeX6.CpP - . v ot 121
EXample IPEX6.C. . . o o 123
Solving LP Problems with the Barrier Optimizer 129
Identifying LPs for Barrier Optimization 130
Using the Barrier Optimizert e 132
Special OptiONSottt 133
Controlling CrOSSOVET oo\ttt e e e e e e e 134
Interpreting the Barrier Log File 135
Understanding Solution Quality from the Barrier LP Optimizer 138
Tuning Barrier Optimizer Performance.t e 140
Overcoming Numerical Difficulties 144
Diagnosing Barrier Optimizer Infeasibility o ... 148
Solving Mixed Integer Programming Problems. 151
Sample: Stating a MIP Problem 152
Considering Preliminary ISSUESot e 152
Entering MIP Problems 153
Displaying MIP Problems 154
Determining Problem Type and Variable Type inMIPs 155
Using the Mixed Integer Optimizer. i e 156
BranCh & CUt 156
Feasibility and Optimality 158
CULS 159
POy . o o 162
HeUNSHICS .« . . 163
Preprocessing: Presolver and Aggregatorottt 163
Starting from a SolUtioN 165
Termination 166
Post-Solution Information inaMIP. 167
Using Sensitivity InformationinaMIP. 167

ILOG CPLEX 7.5 — USER’'S MANUAL 9

TABLE OF CONTENTS

Chapter 6

10

Using Special Ordered Sets (SOS)ottt e 168
Example: SOS Type 1 for SizingaWarehouse 168
Declaring SOS Members e 169
Setting Branching Priority foran SOS 169
Assigning SOS Weightso 170

Using Semi-Continuous Variables 170

Progress Reports: Interpreting the Node Log. 170

Troubleshooting MIP Performance Problems. 175
ProbINg . . . 175
TooMuch TimeatNode O e e 176
Trouble Finding More than One Feasible Solution. 176
Large Number of Unhelpful Cuts e 177
Lack of Movementinthe BestNode 177
Time Wasted on Overly Tight Optimality Criteria. 178
RUNNing OUut Of MEMOTY ot e 181
Difficulty Solving Subproblems. 186
Subproblem Optimization. e 187

Example: Optimizing a Basic MIP Problem i 189
Complete Program: ilomipeXL.CpP . . v« ot it et e e 189
Complete Program: MIipeXL.C. . .. oottt ittt 190

Example: Reading a MIP Problem fromaFile........ i, 199
Example: lomipeX2.CpP . . v ot 199
EXample: MiPEX2.C. . . 201

Example: Using SOS and Priority. 205
Example: lomipeX3.CPP .« v vt 205
EXample: MiPEX3.C. o ottt 207

Solving Network-Flow Problems. 219

Choosing an Optimizer: Network Considerations, 219

Formulating a Network Problem. 220

Example: Network Optimizer in the Interactive Optimizer......................... 221
Understanding the Network Log File e 222

ILOG CPLEX 7.5 — USER’'S MANUAL

TABLE OF CONTENTS

Tuning Performance of the Network Optimizer 223
Example: Using the Network Optimizer with the Callable Library 224
Complete Program: NEtEXL.Co vttt et e e e 226
Solving Network-Flow Problems as LP Problems 231
Example: Network to LP Transformation. i 233
Complete Program: NEIEX2.C v ottt et e 233
Solving LPs with the Network Optimizer. 237
NetwOork EXIraCtion oo e 237
Preprocessing and the Network Optimizer. i 238
Chapter 7 Solving Quadratic Programming Problems. 239
Identifying Convex Quadratic Programming Problems 240
ENtering QP S . .o 241
Saving QP Problems 241
Changing Problem Type in QPS e e 242
Changing Quadratic TeImMSttt e e 243
Optimizing QPs with the Barrier Optimizer 244
Understanding QP Solution Information. 245
Tuning QP Performance. e 245
Diagnosing QP Infeasibility 246
Example: Creating a QP, Optimizing, Finding a Solution 246
EXample: l0gPeXL.CPP « « .« v vt e 246
EXample: gPEXL.C. . oot 248
Example: Readinga QP from aFile 257
Complete Program: gPEX2.C. . . . v vttt e e e 257
Chapter 8 More About USing ILOG CPLEX e 263
Managing INput & OULPUL oo e e 263
Understanding File FOrmats i e e 264
Managing Log Files: the Log File Parameter it .. 269
Handling Message Channels: the Output-Channel Parameter 270
Handling Message Channels: Callable Library Routines. 271

ILOG CPLEX 7.5 — USER’'S MANUAL 11

TABLE OF CONTENTS

Example: Using the Message Handler. 272
Using QUEry ROULINESot e e e e e e 281
Using Surplus Arguments for Array Allocations oot 281
Example: Using Query ROULINES oo 283
Complete Program: ilolpex7.Cpp oo v i e 284
Complete Program: IPEXT7.Cot 286
Using Callbacks 293
Diagnostic Callbacks 294
Control Callbacks for HoCplexo e e 311
Using Parallel Optimizers e 319
Parallel Libraries. 320
Threads . .. o 320
NONAEtErMINISIM . . . ot e e e 322
Clock Settings and Time Measurementv ittt e ae 322
Using Parallel Optimizers in the Interactive Optimizer. 323
Using Parallel Optimizers in the CPLEX Component Libraries 323
Parallel MIP OptIMIzZer e 324
Parallel Barrier Optimizer 329
Parallel Simplex Optimizer. e 329
Appendix A Interactive Optimizer Commandst 331
Managing Parameters in the Interactive Optimizer.............. 338
Saving a Parameter Specification File 339
0= 341

12 ILOG CPLEX 7.5 — USER’'S MANUAL

List of Figures

Figure 1.1 A View of CPLEX Concert Technology Library 28

Figure 2.1 A view of the ILOG CPLEX world i 56

Figure 6.1 A Directed Network with Arc-Capacity, Flow-Cost, Sinks, and Sources 222

Figure 7.1 Maximize a Concave Objective Function, Minimize a Convex Objective Function
240

Figure 8.1 ILOG CPLEX Message Handling Routines 272

ILOG CPLEX 7.5 — USER’'S MANUAL 13

LiIstT OF FIGURES

14 ILOG CPLEX 7.5 — USER’'S MANUAL

List of Tables

Table 1.1 Concert Technology Modeling Objects 33
Table 1.2 Optimizer OptioNSt e e 36
Table 1.3 Algorithm Status and Information About the Model 38
Table 2.1 Special data types in the ILOG CPLEX Callable Library 61
Table 2.2 Default values of ILOG CPLEX growth parameters 62
Table 2.3 Callable Library routines for parameters in the ILOG CPLEX environment 64
Table 4.1 Optimizers for Linear Programming (LP) Problems 96
Table 4.2 Gradient Parameterst 104
Table 4.3 Primal Simplex Pricing Algorithm Values 104
Table 4.4 Dual Simplex Pricing Algorithm Values i, 105

Table 4.5 Values of the ILOG CPLEX Crash Parameter for the Primal Simplex Optimizer 106
Table 4.6 Values of the ILOG CPLEX Crash Parameter for the Dual Simplex Optimizer .. 106

Table 4.7 Implications of Dual Solutions for Primal Formulations 112
Table 4.8 Options to the Barrier Optimizer to Control Crossover 134
Table 4.9 Routines of the Callable Library to Control Crossover 134
Table 4.10 Infeasibilities and Norms in the Log File of a Barrier Optimization 137
Table 4.11 Barrier Solution Quality Display i 138
Table 4.12 Parameter Values for Starting-Point Heuristics 143

Table 4.13 Values of the Parameter to Choose the Algorithm in the Barrier Optimizer .. 145
Table 5.1 Callable Library Routines for Reading Formatted Files into MIP Applications . 154
Table 5.2 Interactive Optimizer Display Options for MIP Problems 154
Table 5.3 Parameters for Controlling Branch & Cut Strategy 158

ILOG CPLEX 7.5 — USER’'S MANUAL 15

LiIstT OF TABLES

16

Table 5.4 Parameters for Controlling Cuts i 160
Table 5.5 Parameters for Controlling MIP Preprocessingc.coiuiieene... 164
Table 5.6 Parameters to limit MIP optimization 166
Table 5.7 Parameters for Controlling the ILOG CPLEX Node Log File 171
Table 5.8 Values of the MIP Display Parameter i, 173
Table 5.9 Parameters for Limiting Strong Branching 178
Table 5.10 Relative, Absolute Gap Parameters (Relative, Absolute Optimality Tolerance) 179
Table 5.11 Relative and Absolute Objective Difference Parameters 180
Table 5.12 Cutoff Parameters 180
Table 5.13 Node File Control Parameters it 183
Table 5.14 Values for the Node File Storage Parameter 183
Table 5.15 Parameters for MIP Initial Relaxation and Subproblems 187
Table 5.16 Values of Start-Algorithm and Sub-Algorithm Parameters 188
Table 5.17 Crossover parameter values used for MIP subproblems 188
Table 6.1 Network Tolerance Parameter: Optimality 223
Table 6.2 Network Tolerance Parameter: Feasibility 223
Table 8.1 Options for the convert Utility and Corresponding File Extensions 269
Table 8.2 Options for the Output-Channel Command 270
Table 8.3 Channels Directing Output to ScreenortoaFile 270
Table 8.4 Callback MaCrost 296
Table 8.5 Status of nonzero callbacks for LPs i 302
Table 8.6 Status of nonzero callbacks for MIPs i, 303
Table 8.8 ILOG CPLEX Serial and Parallel Libraries for UNIX Platforms 320
Table 8.9 Thread-Limit Parameters e 320
ILOG CPLEX 7.5 — USER’'S MANUAL

Meet ILOG CPLEX

ILOG CPLEX offers C and C++ libraries that solve linear programming (LP) problems and
related problems. Specificaly, it solves linearly constrained optimization problems where
the objective to be optimized can be expressed as a linear function or a convex quadratic
function. In the linear case, the variablesin the model may be declared as continuous or
further constrained to take only integer values.

CPLEX comesin three forms to meet a wide range of users’ needs:

O

The CPLEX Interactive Optimizer isan executable program that can read a problem
interactively or from filesin certain standard formats, solve the problem, and deliver the
solution interactively or into text files. The program consists of the filecpl ex. exe on
Windows platforms or cpl ex on UNIX platforms.

Concert Technology is aset of libraries that offersan API that includes modeling
facilities to allow the programmer to embed CPLEX optimizersin a C++ application.
Thelibrary isprovided infilesi | ocpl ex. li b andconcert. |i b onWindows
platformsandin|i bi | ocpl ex. aand i bconcert.a onUNIX platforms, and makes
use of the Callable Library (described next).

The CPLEX CallableLibrary isaC library that allows the programmer to embed
CPLEX optimizersin applications written in C, Visual Basic, Java, and Fortran. The
library isprovided in filescpl ex70. | i b and cpl ex70. dl | on Windows platforms and
inlibcpl ex. a on UNIX platforms.

ILOG CPLEX 7.5 — USER’'S MANUAL 17

WHAT Is ILOG CPLEX?

In this manual, the phrase CPLEX Component Librariesis used when referring equally to
either of these two libraries. While both libraries are callable, the term CPLEX Callable
Library as used here refers specifically to the C library.

This preface introduces ILOG CPLEX, version 7.1. It includes the following sections:
What IsILOG CPLEX?

What You Need to Know

In This Manual

Notation in This Manual

Related Documentation

For More Information

O 0O o o o o

What Is ILOG CPLEX?

ILOG CPLEX isatool for solving, first of all, linear optimization problems. Such problems
are conventionally written like this:

Minimize (or maximize) CiXp+ CXpo + ...+ CXn

subject to X tapXot . taX, ~ b
ayXptagXet .. tagXy ~ b
amXy t a8mXo t ...t 8y~ by

with these bounds l;€X €Uy, 0l SX S Uy

where the relation ~ may be greater than or equal to, lessthan or equal to, or simply equal to,
and the upper bounds u; and lower bounds|; may be positive infinity, negativeinfinity, or any
real number.

When alinear optimization problem is stated in that conventional form, we customarily refer
to its coefficients and values by these terms:;

objective function coefficients ¢, o Gy
constraint coefficients a, ...y @
right-hand side by, T o
upper bounds uq, ...y Up
lower bounds l1, v
variables or unknowns X1, v Xn

18 ILOG CPLEX 7.5 — USER’'S MANUAL

WHAT You NEED TO KNOW

In the most basic linear optimization problem, the variables of the objective function are
continuous in the mathematical sense, with no gaps between real values. To solve such linear
programming problems, ILOG CPLEX implements optimizers based on the simplex
algorithms (both primal and dual simplex) as well as primal-dual logarithmic barrier
algorithms. These alternatives are explained more fully in Chapter 4, Solving Linear
Programming Problems.

ILOG CPLEX isaso atool for solving linear programming problems in which some or all
of the variables must assume integer values in the solution. Such problems are known as
mixed integer programs or M1Ps because they may combine continuous and discrete (for
example, integer) variables in the objective function and constraints. Within the category of
mixed integer programs, we distinguish two kinds of discrete integer variables: if the integer
values of the discrete variables must be either O (zero) or 1 (one), then we refer to them as
binary; if theinteger values are not restricted in that way, we refer to them as general integer
variables. This manual explains more about the separately licensed ILOG CPLEX Mixed
Integer Optimizer in Chapter 5, Solving Mixed Integer Programming Problems.

ILOG CPLEX can aso handle certain problemsin which the objective function is not linear
but quadratic. (The constraints in such a problem are still linear.) Such problems are known
asquadratic programs or QPs. Chapter 7, Solving Quadratic Programming Problems covers
those kinds of problems.

ILOG CPLEX also offers a Network Optimizer aimed at a special class of linear problem
with network structures. ILOG CPLEX can optimize such problems as ordinary linear
programs, but if ILOG CPLEX can extract all or part of the problem as a network, then
ILOG CPLEX will apply its more efficient Network Optimizer to that part of your problem
and use the partial solution it finds there to construct an advanced starting point to optimize
therest of the problem. Chapter 6, Solving Network-Flow Problems offers more detail about
how the CPLEX Network Optimizer works.

What You Need to Know

In order to use ILOG CPLEX effectively, you need to be familiar with your operating
system, whether UNIX or Windows.

In thismanual, we assume you are familiar with the concepts of mathematical programming,
particularly linear programming. In case those concepts are new to you, the bibliography on
page 25 in this preface indicates references to help you there.

This manual also assumes you already know how to create and manage files. In addition, if
you are building an application that uses the Component Libraries, this manual assumes that
you know how to compile, link, and execute programs written in a high-level language. The
Callable Library iswritten in the C programming language, while Concert Technology is
written in C++. This manual also assumes that you already know how to program in the

ILOG CPLEX 7.5 — USER’'S MANUAL 19

IN THIS MANUAL

appropriate language and that you will consult a programming guide when you have
guestionsin that area.

In This Manual

20

Chapter 1, Using ILOG CPLEX Concert Technology Library introduces the Concert
Technology Library. It provides an overview of the design of the library, explains modeling
techniques, and offers an example of programming with the Concert Technology Library. It
also provides information on controlling parameters.

Chapter 2, Using the ILOG CPLEX Callable Library introduces the ILOG CPLEX Callable
Library. It sketches the architecture of the product, explains the relation between the
Interactive Optimizer and the Callable Library, and offers an example of programming with
the Callable Library. It also provides an overview about the parameters you control in

ILOG CPLEX, outlines the callable routines controlling parameters, and explains the set
command.

Chapter 3, Further Programming Considerations provides tips on developing applications
with CPLEX, suggests waysto debug your applications built around CPLEX, and providesa
checklist to help avoid common programming errors.

Chapter 4, Solving Linear Programming Problems goes deeper into aspects of linear
programming with ILOG CPLEX. It explains how to tune performance, how to diagnose
infeasibility in amodel, and how to use the primal-dual logarithmic barrier algorithm
implemented in the ILOG CPLEX Barrier Optimizer on large, sparse linear programming
problems. It aso offers an example showing you how to start optimizing from an advanced
basis.

Chapter 5, Solving Mixed Integer Programming Problems shows you how to handle MIPs. It
particularly emphasizes performance tuning and offers a series of examples.

Chapter 6, Solving Network-Flow Problems describes how to use the CPLEX Network
Optimizer on linear programming problems based on a network model.

Chapter 7, Solving Quadratic Programming Problems takes up programming problemsin
which the objective function may be quadratic. It, too, includes exampl es.

Chapter 8, More About Using ILOG CPLEX includes several sections on working with
important aspects of the ILOG Component Libraries. Information is provided on:

0 Managing Input & Output explains how to enter mathematical programs efficiently and
how to generate meaningful output from your ILOG CPLEX applications. It also liststhe
available file formats for entering datainto ILOG CPLEX and writing bases and
solutions from ILOG CPLEX.

0 Using Query Routines tells how to access information about the model you currently
have in memory through query routines of the Callable Library.

ILOG CPLEX 7.5 — USER’'S MANUAL

IN THIS MANUAL

0 Using Callbacks shows how to use callbacks.

0 Using Paralel Optimizers explains how to exploit parallel optimizersin case your
hardware supports parallel architecture.

Appendix A, Interactive Optimizer Commands lists the commands available in the

ILOG CPLEX Interactive Optimizer with cross-references to examples of their usein this
manual. It also provides an overview about controlling parameters with the Interactive
Optimizer.

Examples On-Line

For the examples that we explain in the manual, we' [l also show you the complete code for
the solution, so that you can see exactly how CPLEX fitsinto your own applications. In case
you prefer to study code on-line, you'll also find the complete code for these examplesin a

subdirectory of the standard distribution of CPLEX.

The following table describes all the examplesin this manual and indicates where to find
them, both on-line and in the manual:

Example Source File In This Manual

dietary optimization: building a model by ilodiet.cpp Example: Dietary Optimization on page 45
rows (constraints) or by columns (variables),

solving with I | oCpl ex

dietary optimization: building a model by diet.c Example: Dietary Optimization on page 72
rows (constraints) or by columns (variables),

solving with the Callable Library

linear programming: starting from an il ol pex6.cpp |Example ilolpex6.cpp on page 121
advanced basis | pex6. c Example Ipex6.c on page 123

mixed integer programming: optimizing a
basic MIP

il om pexl. cpp
m pexl.c

Complete Program: ilomipex1.cpp on page 189
Complete Program: mipex1.c on page 190

mixed integer programming: reading a MIP
from a formatted file

il om pex2. cpp
m pex2.c

Example: ilomipex2.cpp on page 199
Example: mipex2.c on page 201

mixed integer programming: using special

il om pex3. cpp

Example: ilomipex3.cpp on page 205

ordered sets (SOS) and priority orders m pex3. c Example: mipex3.c on page 207

network optimization: using the Callable net ex1.c Complete Program: netexl1.c on page 226
Library

network optimization: relaxing a network netex2.c Complete Program: netex2.c on page 233
flow to an LP

quadratic programming: maximizing a QP [gpexl.c Complete Program: gpex1.c on page 249

ILOG CPLEX 7.5 — USER’'S MANUAL 21

NOTATION IN THIS MANUAL

Example Source File In This Manual

quadratic programming: reading a QP from |qgpex2.c Complete Program: gpex2.c on page 257

a formatted file

input and output: using the message han- || pex5.c Complete Program: Ipex5.c on page 273

dler

using query routines il ol pex7.cpp |Complete Program: ilolpex7.cpp on page 284
| pex7.c Complete Program: Ipex7.c on page 286

using callbacks ilolpex4.c Complete Program: ilolpex4.cpp on page 299
| pex4.c Complete Program: Ipex4.c on page 304

Notation in This Manual

Like the reference manual, this manual uses the following conventions:

O Important ideas are italicized the first time they appear.

0 The names of C routines and parametersin the ILOG CPLEX Callable Library begin
with CPX; the names of C++ classesin the CPLEX Concert Technology Library begin
with I | o; and both appearint hi s t ypef ace, for example: CPXcopyobj nanmes() or

Il oCpl ex.

0 Text that is entered at the keyboard or displayed on the screen and commands and their
options available through the Interactive Optimizer appear int hi s t ypef ace, for
example, set preprocessi ng aggregator n.

0 Valuesthat you must fill in (for example, the value to set a parameter) also appear in the
same typeface as the command but slanted to indicate you must supply an appropriate

value; for example, set si npl ex refactor i

fori .

0 Matrices are denoted in two ways.

indicates that you must fill in avalue

. Inprinted material where superscripts and bold type are available, we denote the
product of A and its transpose like this: AAT. The superscript T indicates the matrix

transpose.

. In computer-generated samples, such as log files, where only ASCII characters are
available, we denote the product of A and itstranspose likethis: A* A" . The asterisk
(*) indicates matrix multiplication, and the prime () indicates the matrix transpose.

22 ILOG CPLEX 7.5 — USER’'S MANUAL

RELATED DOCUMENTATION

Related Documentation

In addition to this manual of examples, which isintended to show you how to make

ILOG CPLEX work for you, the standard distribution of ILOG CPLEX comes with Get
Sarted with ILOG CPLEX, the ILOG CPLEX Reference Manual, and the ILOG Concert
Technology Documentation Kit. All ILOG documentation is available in an on-line version
in HTML (hypertext mark-up language). It is delivered with the standard distribution of the
product and accessible through conventional HTML browsers.

We strongly recommend that you begin your acquaintance with ILOG CPLEX through the
introductory manual, Getting Started with ILOG CPLEX, which includes tutorials for the
Interactive Optimizer, the Concert Technology Library, and the Callable Library. These
tutorials provide a stepping-stone toward the examples in this manual .

The ILOG CPLEX Reference Manual documents the Callable Library routines and their
arguments, the Concert Technology classes, methods, and functions, and the commands and
options of the Interactive Optimizer. The Reference Manual aso contains atable of
parameters that can be modified by parameter routines, alist of error messages, and details
about file formats. Consult the Reference Manual, whether printed or on-line, for
authoritative documentation of the Component Libraries and Interactive Optimizer.

The ILOG Concert Technology Documentation Kit includes the ILOG Concert Technology
Reference Manual, which documents the classes, methods, and functions of the Concert
Technology library; the ILOG Concert Technology User’s Manual, which provides examples
that show how to use Concert Technology to model problems; the ILOG Concert Technology
Hybrid Optimizers User’s Guide & Reference, which documents the class

Il oLi nConst rai nt and shows how to use ILOG’s main algorithm classes, | | oSol ver
and | | oCpl ex in cooperation; and the ILOG Concert Technology Migration Guide, which
shows how to translate applications created in previous versions of ILOG products to
Concert Technology.

ILOG CPLEX 7.5 — USER’'S MANUAL 23

FOrR MORE

INFORMATION

For More Information

24

ILOG offers technical support and comprehensive Web sites for its products.

Technical Support

For technical support of ILOG CPLEX, you should contact your local distributor, or, if you
areadirect ILOG customer, contact the nearest regional office:

Region E-mail Telephone Fax

France cplex-support@ilog.fr 080009 2791 +33(0)1 49 08 35 10
(numéro vert)
+33 (0)1 49 08 35 62

Germany cplex-support@ilog.de +49 6172406033 +496172 4060 10
Spain cplex-support@ilog.es +34 91 710 2480 +34 91 372 9976
United Kingdom cplex-support@ilog.co.uk +44 (0)1344 661600 +44 (0)1344 661601

Other European cplex-support@ilog.fr +33 (0)1 49 08 35 62 +33 (0)1 4908 35 10
countries

Japan cplex-support@ilog.co.jp +81 3 5211 5770 +81 35211 5771
Singapore cplex-support@ilog.com.sg +65 773 06 26 +65 773 04 39

USA cplex-support@ilog.com 1-877-ILOG-TECH +1 650 567 8001

1-877-456-4832
(toll free) or
1-650-567-8080

We encourage you to use e-mail for faster, better service.

Web Site

The CPLEX Web siteat htt p: // www. i | og. cond pr oduct s/ cpl ex/ offers product
descriptions, press releases, and contact information. It lists services, such astraining,

mai ntenance, technical support, and outlines specia programs. In addition, it links you to an
f t p site where you can pick up examples.

The technical support pages contain FAQ (Frequently Asked/Answered Questions) and the
latest patches for some of our products. Changes are posted in the product mailing list.
Access to these pages is restricted to owners of an ongoing maintenance contract. The

mai ntenance contract number and the name of the person this contract is sent to in your
company will be needed for access, as explained on the login page.

ILOG CPLEX 7.5 — USER’'S MANUAL

FOR MORE INFORMATION

All three of the following sites contain the same information, but accessis localized, so we
recommend that you connect to the site corresponding to your location and select the
“support” page from the home page.

0 TheAmericas: http://ww. il og. com
0 Asia& Pacificnations: htt p: //ww. i | 0og. com sg
0O Europe, Africa, and Middle East: htt p: // www. i | og. fr

On those Web pages, you will find additional information about ILOG CPLEX in technical
papers that have also appeared at industrial and academic conferences.

Further Reading

In case you want to know more about optimization and mathematical or linear programming,
hereis abrief selection of printed resources:

Williams, H. P. Mode Building in Mathematical Programming, 4th ed. New York: John
Wiley & Sons, 1999. This textbook includes many examples of how to design mathematical
models, including linear programming formulations. (How you formul ate your model is at
least asimportant as what |LOG CPLEX does with it.) It also offers a description of the
branch & bound algorithm.

Nemhauser, George L. and Laurence A. Wolsey, Integer and Combinatorial Optimization,
New York: John Wiley & Sons, 1999. A reprint of the 1988 edition. A widely cited reference
about integer programming, this book explains the branch & bound agorithm in detail.

Gill, Philip E., Walter Murray, and Margaret H. Wright, Practical Optimization. New York:
Academic Press, 1982 reprint edition. This book covers, among other topics, quadratic
programming.

ILOG CPLEX 7.5 — USER’'S MANUAL 25

FOR MORE INFORMATION

26 ILOG CPLEX 7.5 — USER’'S MANUAL

ABojouyoal

C
D,
=
Q
0
o
=
o
®
-
L d

Using ILOG CPLEX Concert Technology
Library

This chapter describes how to write C++ programs using the ILOG CPLEX Concert
Technology Library. It includes sections on:

O

O o o o o o o

The Design of CPLEX Concert Technology Library, including information on licensing
and on compiling and linking your programs

Creating an Application with CPLEX Concert Technology Library
Modeling an Optimization Problem with Concert Technology
Solving Concert Technology Modelswith I | oCpl ex

Accessing Solution Information

Modifying aModel

Handling Errors

Example: Dietary Optimization

ILOG CPLEX 7.5 — USER’'S MANUAL 27

THE DESIGN OF CPLEX CONCERT TECHNOLOGY LIBRARY

The Design of CPLEX Concert Technology Library

Figure 1.1 shows a program using the CPLEX Concert Technology Library to solve
optimization problems. The optimization part of the user’s application program is captured
in aset of interacting C++ objects that the application creates and controls. These objects
can be divided into two categories:

1. Modeling objects are used to define the optimization problem. Generally an application
creates several modeling objects to specify the optimization problems. Those objects are
grouped into an | | ovbdel object representing the compl ete optimization problem.

2. 11 oCpl ex objectsare used to solve models created with the modeling objects. An
I | oCpl ex object reads amodel and extractsits datato the appropriate representation for
the CPLEX optimizer. Thenthel | oCpl ex object isready to solve the model it extracted
and be queried for solution information.

User-Written Application

Concert lloCplex
Technology - object(s)

modeling _—

objects (CPLEX Core)

Figure1.1 A View of CPLEX Concert Technology Library

Licenses

CPLEX runsunder the control of the ILOG License Manager (ILM). Before you can run any
application program that calls CPLEX, you must have established avalid license that it can
read. Licensing instructions are provided to you separately when you buy or upgrade
CPLEX. Contact your local ILOG support department if thisinformation has not been
communicated to you or if you find that you need help in establishing your CPLEX 7.0
license.

28 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard
distribution of CPLEX for your computer platform. Check ther eadne filefor details.

Creating an Application with CPLEX Concert Technology Library

ABojouyoal

The remainder of this chapter is organized by the steps most applications are likely to follow.

0O First the model to be solved must be created. With Concert Technology this is done
independently of CPLEX. A short introduction to model creation is provided in
Modeling an Optimization Problem with Concert Technology on page 29. A more
comprehensive discussion can be found in the ILOG Concert Technology User’s Manual.

0 When the model is ready to be solved, it is handed over to CPLEX for solving. The
process for doing thisis shown in Solving Concert Technology Models with 1loCplex on
page 33, which includes a survey of the | | oCpl ex interface for controlling the
optimization. Individual controls are discussed in the chapters explaining the individual
optimizers.

0 Accessing Solution Information on page 37, shows you how to access and interpret
results from the optimization after solving the model.

0 After analyzing the results, you may make changes to the model and study their effect.
The way to perform such changes and how CPLEX deals with them is explained in
Modifying a Model on page 41.

0 Handling Errors on page 43, discusses the error handling and debugging support
provided by Concert Technology and CPLEX.

0O In Example: Dietary Optimization on page 45, an example program is presented.

Not covered in this chapter are advanced functions, such asthe use of callbacksfor querying
data about an ongoing optimization and for controlling the optimization itself. Callbacks and
advanced functions are discussed in Chapter 8, More About Using ILOG CPLEX.

Modeling an Optimization Problem with Concert Technology

In this section we will only give abrief introduction to using Concert Technology for
modeling optimization problemsto be solved by | | oCpl ex. For amore complete overview,
see the ILOG Concert Technology User’s Manual.

ILOG CPLEX 7.5 — USER’'S MANUAL 29

C
@
=
(o]
0O
o
S
o
()
=
—

MODELING AN OPTIMIZATION PROBLEM WITH CONCERT TECHNOLOGY

30

Modeling Classes

A Concert Technology model consists of a set of C++ objects. Each variable, each
constraint, each SOS set, and the objective function in amodel are represented by an object
of the appropriate Concert Technology class. We refer to these objects as modeling objects.

Creating the Environment—The IloEnv Object

Before creating modeling objects, an object of class| | oEnv must be constructed. We refer
to this object as the environment object. It is constructed with the statement:

11 oEnv env;

which isusualy the first Concert Technology statement in an application. At the end, the
environment must be closed by calling:

env. end();

Thisisusually the last Concert Technology statement in an application. Theend() method
must be called because, like most Concert Technology classes, thel | oEnv classisahandle
class. Thismeansthat | | oEnv objects are really only pointers to implementation objects.
Implementation objects are destroyed by calling theend() method. Failing to call the
end() method can result in memory leaks. Please see the ILOG Concert Technology User’s
Manual and the ILOG Concert Technology Reference Manual for more details about handle
classes in Concert Technology.

Users familiar with the callable C library are cautioned not to confuse the Concert
Technology environment object with the CPLEX environment object of type CPXENVpt r,
used for setting CPLEX parameters. Such an object is not needed with Concert Technology,
as parameters are handled directly by each instance of the | | oCpl ex class. Thus, when
talking about the environment in Concert Technology, we always refer to the object of class
I | oEnv required for all other Concert Technology objects.

Defining Variables and Expressions—The lloNumVar Object

Probably the first modeling class you will needis| | oNunVar . Objects of this class
represent modeling variables. They are described by the lower and upper bound for the
variable, and a type which can be one of | LOFLQAT, | LO NT, or | LOBOCL for continuous,
integer, or boolean variables, respectively. The following constructor creates an integer
variable with bounds -1 and 10:

Il oNunVar nylntVar(env, -1, 10, |LO NT);

Thel | oNunVar class provides methods that allow querying of the data needed to specify a
variable. However, only bounds can be modified. Concert Technology provides a modeling
object class | | oConver si on to change the type of avariable. Thisalows you to usethe
same variable with different typesin different models.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Variables are usually used to build up expressions, which in turn are used to define the
objective or constraints of the optimization problem. An expression can be explicitly written,
asin

1*x[1] + 2*x[2] + 3*x[3]
where x isassumed to be an array of variables (I | oNunar Ar r ay). Expressions can also be
created piece by piece, with aloop:

ABojouyoal

Il oExpr expr(env);
for (int i =0; i < x.getSize(); ++i)
expr += data[i] * x[i];

C
@
=
(o]
0O
o
S
o
()
=
—

While Concert Technology supports very general expressions, only linear or piecewiselinear
expressions can be used in models to be solved with I | oCpl ex. When you are done using
an expression object (that is, you created a constraint with it) you need to deleteit by calling
its method end() , for example:

expr.end();
Declaring the Objective—The IlloObjective Object

Objectsof class| | oObj ect i ve represent objective functions of optimization models.
I I oCpl ex may only handle models with at most one objective function, though the
modeling API provided by Concert Technology does not impose this restriction. An
objective function is specified by creating an instance of | | oObj ect i ve. For example:

Il oQoj ective obj(env,
1*x[1] + 2*x[2] + 3*x[3],
Il oCbj ective:: Mnimze);

defines the objective to minimize the expression 1*x[1] + 2*x[2] + 3*x[3].

Adding Constraints—The lloRange Object

Similarly, objects of class| | oRange represent constraints for the format
| ower bound <= expressi on <= upper bound. Any floating point value or +/ -
I'l ol nfi nity canbe used for the bounds. For example:

Il oRange ri(env, 3.0, x[1] + x[2], 3.0);
definesthe congtraint x[1] + x[2] == 3.0.

Formulating a Problem—The lloModel Object

To formulate a full optimization problem, the objects that are part of it need to be selected.
Thisis done by adding them to an instance of | | oMbdel , the class used to represent
optimization problems. For instance:

I oMbdel nodel (env);
nodel . add(obj) ;
nodel . add(r1);

ILOG CPLEX 7.5 — USER’'S MANUAL 31

MODELING AN OPTIMIZATION PROBLEM WITH CONCERT TECHNOLOGY

32

definesamodel consisting of the objective obj , constraint r 1, and al the variablesthey use.
Notice that variables need not be added to a model explicitly, asthey are implicitly
considered if any of the other modeling objects in the model use them. However, variables
may be explicitly added to amodel if desired.

For convenience, Concert Technology providesthe functions| | oM ni i ze and

I | oMaxi mi ze to define minimization and maximization objective functions. Also,
operators<=, ==, and <= are overloaded to create | | oRange constraints. Thisalows usto
rewrite the above examples in a more compact and readable way:

I | oMbdel nodel (env);
nmodel . add(I1 oM ni mi ze(env, 1*x[1] + 2*x[2] + 3*x[3]);
nodel . add(x[1] + x[2] == 3.0);

With this notation the C++ variables obj and r 1 need not be created.

Thel | oModel classisitself aclass of modeling objects. Thus, one model can be added to
another. A possible use of thisisto capture different scenariosin different models, all of
which are extensionsto acore model. The core model could be represented asan | | oMbdel
object added to the | | oMbdel objects that represent the individual scenarios.

Data Management Classes

Usually the data describing an optimization problem must be collected before or during the
creation of the Concert Technology representation of the model. Though in principle
modeling does not depend on how the data is generated and represented, this task may be
facilitated by using the array or set classes provided by Concert Technology.

For example, objects of class| | oNumAr r ay can be used to store numerical datain arrays.
Elements of the class| | oNumAr r ay can be accessed like elements of standard C++ arrays,
but the class al so offers awesalth of additional functions. For example, Concert Technology
arrays are extensible; in other words they transparently adapt to the required size when new
elements are added using the method add() . Conversely, elements can be removed from
anywhere in the array with the method r enove() . Concert Technology arrays aso provide
debugging support when compiled in debug mode by using assert to ensure that no
element beyond the array bounds is accessed. Input and output operators (that is,

oper at or << andoper at or >>) are provided for arrays. For example, the code:

Il oNumArray data(env, 3, 1.0, 2.0, 3.0);
cout << data << endl;

produces the following output:
[1.0, 2.0, 3.0]

When you are done using an array and want to reclaim its memory, call method end() , for
example, dat a. end() . However, when ending the environment, all memory of arrays
belonging to the same environment is returned to the system aswell. Thus, in practice you

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

do not call end() on an array (or any other Concert Technology object) just before calling

env. end() .

The constructor for arrays specifiesthat an array of size 3 with elements 1.0, 2.0, and 3.0 is
constructed. This output format can be read back in with, for example:

cin >> data;

The example at the end of this chapter takes advantage of this function and reads the

problem datafrom afile.

Finally, we want to point out that Concert Technology provides the template class
I'l oAr r ay<X> to create array classes for your own type X. This can be used to generate

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

multidimensional arrays. All the functions described above are supported for | | oAr r ay
classes except for input/output, which depends on the input and output operator being

defined for type X.

Solving Concert Technology Models with [loCplex

CPLEX generally does not need to be involved while you create your model. However, once
the model is set up, it istime to create your cpl ex object, that is, an instance of the class

|| oCpl ex, to be used to solvethe model. I | oCpl ex isaclass derived from

Il oAl gorit hm. There are other Concert Technology a gorithm classes, also derived from

Il oAl gori t hm. Some models might also be solved by using other agorithms, such as the
class| | oSol ver for constraint programming, or by using a hybrid algorithm consisting of

both I 1 0Sol ver and CPLEX. Some models, on the other hand, cannot be solved with

CPLEX.

The makeup of the model determines whether or not CPLEX can be used to solve it. More
precisely, in order to be handled by | | oCpl ex objects, amodel may only consist of
modeling objects of the following classes:

Table1.1 Concert Technology Modeling Objects

To model:

Use:

numerical variables

semi-continuous variable

linear objective functions

linear constraints

variable type conversions

objects of class | | oNunVar, as long as they are not
constructed with a list of feasible values

objects of class | | 0Seni Cont Var

objects of class | | oQhj ect i ve with linear or piecewise
linear expressions

objects of class | | oRange with linear or piecewise linear
expressions

objects of class | | oConver si on

ILOG CPLEX 7.5 — USER’'S MANUAL 33

SOLVING CONCERT TECHNOLOGY MODELS WITH ILOCPLEX

34

Table1.1 Concert Technology Modeling Objects (Continued)

To model: Use:

special ordered sets of type 1 objects of class | | 0SOS1
special ordered sets of type 2 objects of class | | 0SOS2 and

constraints objects of class | | 0And.

For adescription of special ordered sets see Using Special Ordered Sets (SOS) on page 168.
Thelast class, | | 0And, islisted for completeness only and is generally not used with
CPLEX, except withtheclass| | 0Sol ut i on, asdescribed inthe ILOG Concert Technology
User’s Manual.

Extracting a Model

In this manual we describe only one optimization model and use only one instance of

I | oCpl ex at atime to solve the model. Consequently, we talk about these as the model and
the cpl ex object. It should be noted, however, that in Concert Technology an arbitrary
number of models and algorithm objects can be created, provided you have enough licenses.
Thecpl ex object can be created using the constructor:

I'1 oCpl ex cpl ex(env);
To useit to solve the model, the model must first be extracted to cpl ex by caling:
cpl ex. extract (nodel) ;

This method copies the data from the model into the appropriate optimized data structures,
which CPLEX uses for solving the problem. It does so by extracting each of the modeling
objects added to the model and each of the objects referenced by them. For every extracted
modeling object, corresponding data structures are created internally in the cpl ex object.
For readers familiar with the sparse matrix representation used internally by CPLEX, a
variable becomes a column and a constraint becomes arow. Aswe will discuss later, these
data structures are kept synchronized with the modeling objects even if the modeling objects
are modified.

If you consider avariable to be part of your model, even though it is not (initially) used in
any constraint, you should add this variable explicitly to the model. This ensures that the
variable will be extracted. This may aso beimportant if you query solution information for
the variable, since solution information is available only for modeling objectsthat are known
to CPLEX because they have been extracted from amodel.

If you feel uncertain about whether or not an object will be extracted, you can add it to the
model to be sure. Even if an object isadded multipletimes, it will only be extracted once and
thus will not slow the solution process down.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Since the sequence of creating the cpl ex object and extracting the model to it is such a
common one, | | oCpl ex provides the shortcut:

I'l oCpl ex cpl ex(rodel) ;

Thisis completely equivalent to separate calls and ensures that the environment used for the
cpl ex object will be the same as that used for the model when it is extracted, as required by
Concert Technology. The shortcut uses the environment from the model to construct the
cpl ex object before extraction.

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

Solving a Model

Once the model is extracted to the cpl ex object, you are ready to solveit. Thisis done by
calling

cpl ex. sol ve();

For most problemsthisis al that is needed for solving the model. Nonetheless, CPLEX
offersavariety of controls that allow you to tailor the solution process for your specific
needs.

Choosing an Optimizer

The most important control is the selection of the optimizer option to use for solving LPs.
Solving the extracted model with CPLEX involves solving one or a series of LPs:

0 Only one LP must be solved if the extracted model isan LP itself, that is, if it does not
contain integer, boolean, semi-continuous or semi-integer variables, SOS, or piecewise
linear functions. Chapter 4, Solving Linear Programming Problems discusses the
algorithms available for solving LPs.

0O Inall other cases, the extracted problem that CPLEX seesisindeed aMIP and, in
general, aseries of LPs need to be solved. Method cpl ex. i sM P() returnsi | oTr ue in
such a case. Chapter 5, Solving Mixed Integer Programming Problems discusses the
algorithms applied.

The optimizer option used for solving the first LP (whether or not it is the only one or just
thefirst onein a series of problems) is controlled by calling the method:

cpl ex. set Root Al gorithn(al g);
where al g isamember of the nested enumeration type:

enum | 1 oCpl ex: : Al gorithm {
Pri mal ,
Dual ,
Barrier,
Net wor kPri mal ,
Net wor kDual ,
Dual Barri er

ILOG CPLEX 7.5 — USER’'S MANUAL 35

SOLVING CONCERT TECHNOLOGY MODELS WITH ILOCPLEX

36

}s

Asanested enumeration type, the fully qualified names that must be used in the program are
I'l oCpl ex:: Primal, |l oCpl ex:: Dual ,andsoon. Table 1.2 displays the meaning of the
optimizer options defined by | | oCpl ex: : Al gorithm

Table1.2 Optimizer Options

I oCpl ex: : Primal use the primal simplex algorithm
Il oCpl ex: : Dual use the dual simplex algorithm
Il oCpl ex::Barrier use the barrier algorithm. The type of crossover performed

after the barrier algorithm is determined by parameter
I I oCpl ex: : Bar Cr ossAl g.

I oCpl ex: : Net wor kPri mal use the primal network simplex algorithm on an embedded
network followed by the primal simplex algorithm on the
entire problem

I I oCpl ex: : Net wor kDual use the primal network simplex algorithm on an embedded
network followed by the dual simplex algorithm on the
entire problem

Il oCpl ex: : Dual Barri er use the dual simplex algorithm up to the simplex iteration
limit, if the LP is not solved by then switch to the barrier
algorithm. This option is available only for MIPs.

If the extracted model contains more than one LP, the algorithm for solving all but the first
LPiscontrolled by calling method cpl ex. set NodeAl gori t hn al g) . The current setting
for the root and node algorithm can be queried using methods:

11 oCpl ex::Algorithm Il oCpl ex:: get Root Al gorithm() const;
11 oCpl ex:: Al gorithm Il oCpl ex:: get NodeAl gorithm() const;

Controlling CPLEX Optimizers

Though CPLEX defaults will prove sufficient to solve most of the problems, CPLEX offers
avariety of parametersto control various algorithmic choices. ILOG CPLEX parameters
can assume values of type bool , numi nt,andstring. 1 oCpl ex providesfour
categories of parameters that are listed in the nested enumeration types

Il oCpl ex: : Bool Param |1 oCpl ex: : I nt Param |1 oCpl ex: : NunPar am

Il oCpl ex: : StringParam

To access the current value of a parameter that interests you from the Concert Technology
Library, use the method get Par am To access the default value of a parameter, use the
method get Def aul t . Use the methods get M n and get Max to access the minimum and
maximum values of numand i nt type parameters.

Someinteger parameters are tied to nested enumerations that define symbolic constants for
the values the parameter may assume. In particular, these enumeration types are:

Il oCpl ex: : M PEnphasi sType, | | oCpl ex: : Vari abl eSel ect,

Il oCpl ex: : NodeSel ect, || oCpl ex: : Pri mal Pri ci ng, and

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Il oCpl ex: : Dual Pri ci ng. They are used for parameters| | oCpl ex: : M PEnphasi s,
Il oCpl ex:: VarSel, |1 0oCpl ex:: NodeSel, Il oCpl ex:: PPri | nd, and

Il oCpl ex: : DPri | nd, respectively. Only the parameter | | oCpl ex: : M PEnphasi s may
be of importance for general use.

There are, of course, routines in the Concert Technology Library to set these parameters.
Use the following methods to set the values of CPLEX parameters:

Il oQpl ex: : set Par an{ Bool Param val ue);
I oCpl ex: : set Paran(| nt Param val ue);

I oQpl ex: : set Par an{ NunPar am val ue) ;

I'l oOpl ex: : set Paran(Stri ngParam val ue);

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

For exampl e, the numerical parameter | | oCpl ex: : EpOpt controlling the optimality
tolerance for the simplex algorithms can be set to 0.0001 by calling

cpl ex. set Paran(|1 oCpl ex: : EpOpt, 0.0001);

The ILOG CPLEX Reference Manual documents the type of each parameter (bool , i nt,
num st ri ng) along with the Concert Technology enumeration value, symbolic constant,
and reference number representing the parameter.

The method set Def aul t s resetsall parameters (except the name of the log file) to their
default values, including the ILOG CPLEX callback functions. This routine resets the
callback functions to NULL.

When solving MIPs, additional controls of the solution process are provided. Priority orders
and branching directions can be used to control the branching in a static way. These are
discussed in Priority on page 162. These controls are static in the sense that they allow you
to control the solution process based on data that does not change during the solution and
can thus be setup before solving the model.

Dynamic control of the solution process of MIPsis provided through control callbacks. They
are discussed in Using Callbacks on page 293. Callbacks allow you to control the solution
process based on information that is generated during the solution process.

Accessing Solution Information

Accessing Solution Status

Calling cpl ex. sol ve() returnsaboolean indicating whether or not afeasible solution (but
not necessarily the optimal one) has been found. To obtain more of the information about the
model that CPLEX found during the call to the sol ve() method, cpl ex. get St at us()
can be called. It returns a member of the nested enumeration type:

enum | | oAl gorithm: Status {
Unknown,
Feasi bl e,

ILOG CPLEX 7.5 — USER’'S MANUAL 37

ACCESSING SOLUTION INFORMATION

Opti mal ,
I nf easi bl e,
Unbounded,

I nf easi bl e Unbounded,

Error

}s

Notice that the fully qualified names havethel | oAl gori t hmprefix. Table 1.3 shows what
the possible return statuses mean for the extracted model.

Table 1.3 Algorithm Satus and Information About the Model

Return Status

Extracted Model

Feasi bl e has been proven to be feasible. A feasible solution can be
queried.

Opt i nal has been solved to optimality. The optimal solution can be
queried.

I nfeasible has been proven to be infeasible.

Unbounded has been proven to be unbounded. The notion of

unboundedness adopted by | | oCpl ex does not include that
the model has been proven to be feasible. Instead, what has
been proven is that if there is a feasible solution with objective
value x**, there exists a feasible solution with objective value
x"*-1 for a minimization problem, or x**+1 for a maximization
problem.

I nf easi bl eO Unbounded

has been proven to be infeasible or unbounded.

Unknown has not been able to be processed far enough to prove
anything about the model. A common reason may be that a
time limit was hit.

Error has not been able to be processed or an error occurred

during the optimization.

As can be seen, these statuses indicate information about the model that the CPLEX
optimizer was able to prove during the last call to method sol ve() . In addition, the CPLEX
optimizer provides information about how it terminated. For example, it may have
terminated with only afeasible but not optimal solution because it hit alimit or because a
user callback terminated the optimization. Such information is accessible by calling method
cpl ex. get Cpl exSt at us(), which returns a member of the nested enumeration type

Il oCpl ex: : St at us. For more information about those statuses see the ILOG CPLEX

Reference Manual.

38 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Querying Solution Data

If cpl ex. sol ve() returnsi | oTr ue, afeasible solution has been found and solution val ues
for model variables are available to be queried. For example, the solution value for the
numeric variable var 1 can be accessed as follows:

I oNum x1 = cpl ex. get Val ue(var1);

However, querying solution values variable by variable may result in ugly code. Herethe use
of Concert Technology arrays provides a much more compact way of accessing the solution
values. Assuming your variables are stored in anl | oNunVar Array var, you can use

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

Il oNumArray x(env);
cpl ex. get Val ues(x, var);

to access the solution values for al variablesin var at once. Valuex[i] containsthe
solution value for variablevar [i] .

Solution datais not restricted to the solution values of variables. It also includes val ues of
dlack variables for linear constraints and the objective value. If the extracted model does not
contain an objective object, | | oCpl ex assumes a 0 expression objective. The objective
value isreturned by calling method cpl ex. get Obj Val ue() . Slack values are accessed
with the methods get Sl ack() and get Sl acks(), which take linear constraints as a
parameter.

For LPs, solution data includes information such as dual variables and reduced cost. Such
information can be queried with the methods, get Dual (), get Dual s(),
get ReducedCost (), and get ReducedCost s() .

Accessing Basis Information

When solving the LPs with asimplex algorithm, that is using al but the

Il oCpl ex: : Barri er optimizer options, basisinformation is available as well. Basis
information can be consulted using the method | | oCpl ex: : get St at uses() which
returns basis status information for variables and constraints.

ILOG CPLEX 7.5 — USER’'S MANUAL 39

ACCESSING SOLUTION INFORMATION

40

Such information is encoded by the nested enumeration type:

I'l oOpl ex: : Basi sStatus {
Basi c,

At Lower,

At Upper ,

FreeOr Super basi c

b

Performing Sensitivity Analysis

The availability of abasis alows you to perform sensitivity analysis for your model. Such
analysistells you by how much you can modify your model without affecting the solution
you found. The modifications supported by the sensitivity anaysis function include bound
changes, changes of the right hand side vector and changes of the objective function. They
are analyzed by methods | | oCpl ex: : get BoundSA(), I | oCpl ex: : get RHSSA() , and
I'l oCpl ex: : get Obj SA(), respectively.

Analyzing Infeasible Problems

Animportant feature of CPLEX isthat even if no feasible solution has been found, that is, if
cpl ex. sol ve() returnsi | oFal se, some information about the problem can be queried
when solving LPs. All the methods discussed so far may successfully return information
about the current (infeasible) solution CPLEX maintains.

Unfortunately, there is no simple comprehensive rule about whether or not current solution
information can be queried. Thisisbecause, by default, CPLEX uses apresolve procedureto
simplify the model. If, for example, the model is proven to be infeasible during the presolve,
no current solution is generated by the optimizer. If, in contrast, infeasibility is only proven
by the optimizer, current solution information is available to be queried. The status returned
by calling cpl ex. get Cpl exSt at us() may help to determine which case you are facing,
but it is probably safer and easier to include the methods for querying solution within try/
catch statements.

When an LP has been proven to be infeasible, CPLEX provides assistance for determining
the cause of the infeasibility. Thisis done by computing what is known as an irreducibly
inconsistent set (11S), which is adescription of the minimal subproblem that is still
infeasible. Here minimality is defined by the property: if you remove any of the constraints
(including finite bounds), the infeasibility vanishes. An 11Sis computed for an infeasible
model by calling method cpl ex. get I 1 S() .

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Solution Quality

The CPLEX optimizer uses finite precision arithmetic to compute solutions. To compensate
for numerical errors due to this, tolerances are used by which the computed solution is
allowed to violate feasibility or optimality conditions. Thus the solution computed by the
sol ve() method may infact slightly violate the bounds specified in the model for example.
You can call:

ABojouyoal

Il oNum violation = cpl ex. getQuality(lloCpl ex::MaxPri nal | nfeas);

to query the maximum bound violation among all variables and slacks. If you are aso
interested in the variable or constraint where the maximum violation occurs, call instead:

I | oRange maxrange;

I'l oNunVar maxvar;

Il oNum violation = cpl ex. getQuality(lloCplex::MxPrinallnfeas,
&maxr ange,
&maxvar) ;

CPLEX will copy the variable or constraint handle in which the maximum violation occurs
to maxvar or maxr ange and make the other handle an empty one. The maximum primal
infeasibility is only one example of awealth of quality measures. The full list is defined by
the nested enumerationtype | | oCpl ex: : Qual i t y. All of these can be used as a parameter
for theget Qual i t y() methods, though some measures are not available for al optimizer
option choices.

Modifying a Model

In some applications you may want to solve the modification of another model, in order, for
example, to do scenario analysis or to make adaptations based on the solution of the first
model. To do this, you do not have to start a new model from scratch, but instead you can
take an existing model and change it to your needs. Thisis done by calling the modification
methods of the individual modeling objects.

When an extracted model is modified, the modification is tracked in the cpl ex object. This
is done through notification. Whenever a modification method is called, cpl ex objects that
have extracted the model are notified about it. The cpl ex objectsthen track the modification
in their internal data structures.

Not only does CPLEX track all modifications of the model it has extracted, but also it triesto
maintain as much solution information from a previousinvocation of sol ve() asispossible
and reasonable.

We aready encountered what is perhaps the most important modification method, that is, the
method | | oMbdel : : add() for adding modeling objects to a model. Conversely, you may

cal Il oModel : : renmove() toremoveamodeling object from amodel. Objective functions
can be modified by changing their sense and by editing their expression, or by changing their

ILOG CPLEX 7.5 — USER’'S MANUAL 41

C
@
=
(o]
0O
o
S
o
()
=
—

MODIFYING A MODEL

42

expression completely. Similarly, the bounds of constraints and their expressions can be
modified. For acomplete list of supported modifications, see the documentation of the
individual modeling objects in the ILOG Concert Reference Manual.

Deleting and Removing Modeling Objects

A special type of modification is that of deleting a modeling object by calling itsend()
method. Consider, for example, the deletion of avariable. What happens if the variable you
del ete has been used in constraints or the objective, or has been extracted to CPLEX?
Concert Technology carefully removes the deleted variable from all other modeling objects
and algorithms that may keep a reference to the variable in question. This applies to any
modeling object to be removed. However, user-defined handles to the removed variable are
not managed by Concert Technology. Instead it is up to the user to make sure that these
handles are not used after the deletion of the modeling object. The only operation allowed
then is the assignment operator.

Concert Technology also provides away to remove a modeling object from all other
modeling objects and algorithms exactly the same way as when deleting it, yet without
deleting the modeling object. Thisis done by calling the method r emoveFr omAl | () . This
may be helpful to temporarily remove a variable from your model while keeping the option
to add it back later on.

It isimportant to understand the difference between the above and calling

nmodel . remove(obj) for an object obj . In this case, it does not necessarily mean that obj
isremoved from the problem CPLEX maintains. Whether or not this happens depends on the
removed object being referenced by yet another extracted modeling object. Usually when a
congtraint is removed from the extracted model, the constraint is al so removed from CPLEX
aswell, unlessit was added to the model more than once.

Consider the case where avariableis removed from CPLEX after one of the delete or
remove operations discussed above. If the cpl ex object contains asimplex basis, by default
the status for that variable is removed from the basis aswell. If the variable happens to be
basic, the operation corrupts the basis. If thisis not desired, CPLEX provides a del ete mode
that first pivots the variable out of the basis before removing it. The resulting basis is not
guaranteed to be feasible or optimal, but it will still constitute avalid basis. To select this
mode, call method:

cpl ex. set Del et eMode(|1 oOpl ex: : Fi xBasi s) ;

Similarly, when removing a constraint with the Fi xBasi s delete mode, CPLEX will pivot
the corresponding slack or artificial variable into the basis before removing it, to assure
maintaining avalid basis. In either case, if no valid basis was available in thefirst place, no
pivot operation is performed. To set the delete mode back to its default setting, call:

cpl ex. set Del et eMbde(|1 oCpl ex: : LeaveBasi s);

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Changing Variable Type

The type of avariable cannot be changed by calling modification methods. Instead, Concert
Technology providesthemodeling class| | oConver si on, the objects of which allow you to
override the type of avariablein amodel. This design allows you to use the same variablein
different models with different types. Consider for example nodel 1 containing integer
variable x. You can then create nodel 2, asa copy of nodel 1, that treats x as a continuous
variable, with the following code:

ABojouyoal

o
@
=
(o]
0
]
S
o
0]
=
—

I I oMbdel nodel 2(env);
nmodel 2. add(nodel 1) ;
nmodel 2. add(|1 oConver si on(env, x, |LOFLQOAT));

A conversion object, that is, an instance of | | oConver si on, can only specify atypefor a

variable that isin amodel. Converting the type more than once is an error, because thereis
no rule about which would have precedence. However, thisisnot arestriction, since you can
remove the conversion from a model and add a new one.

Handling Errors

In Concert Technology two kinds of errors are distinguished:
1. Programming errors, such as:
. accessing empty handle objects
. mixing modeling objects from different environments
. accessing Concert Technology array elements beyond an array’s size
. passing arrays of incompatible size to functions.

Such errors are usually an oversight of the programmer. Once they are recognized and
fixed thereisusually no danger of corrupting an application. In a production version, it is
not necessary to handle these kinds of errors.

In Concert Technology such error conditions are handled using assert statements. If
compiled without - DNDEBUG, the error check is performed and the code aborts with an
error message indicating which assertion failed. A production version should then be
compiled with the - DNDEBUG compiler option, which removes all the checking. In other
words, no CPU cycles are consumed for checking the assertions.

2. Runtime errors, such as memory exhaustion.

A correct program assumes that such failures can occur and therefore must be treated,
even in aproduction version. In Concert Technology, if such an error condition occurs,
an exception isthrown.

ILOG CPLEX 7.5 — USER’'S MANUAL 43

HANDLING ERRORS

44

All exceptions thrown by Concert Technology classes (including I | oCpl ex) are derived
from | | oExcept i on. Exceptions thrown by algorithm classessuch as| | oCpl ex are
derived fromitschild class| | oAl gori t hm : Except i on. The most common exceptions
thrown by CPLEX are derived from I | oCpl ex: : Except i on, achild class of

Il oAl gorithm: Exception.

Objects of the exception class| | oCpl ex: : Except i on correspond to the error codes
generated by the C Callable Library. The error code can be queried from a caught exception
by calling method:

Ilolnt I1oCplex::Exception::getStatus() const;
The error message can be queried by calling method:
const char* || oException::get Message() const;

which isavirtual method inherited from the base class | | oExcept i on. If you want to
access only the message for printing to a channel or output stream, it is more convenient to
use the overloaded output operator (oper at or <<) provided by Concert Technology for

|| oExcepti on.

In addition to exceptions corresponding to error codes from the C Callable Library, acpl ex
object may throw exceptions pertaining only to | | oCpl ex. For example, the exception

Il oCpl ex:: Ml tipl eObj Excepti on isthrown if amodel is extracted containing more
than one objective function. Such additional exception classes are derived from class

Il oCpl ex: : Excepti on; objects can be recognized by a negative status code returned
when calling method get St at us() .

In contrast to most other Concert Technology classes, exception classes are not handle
classes. Thus, the correct type of an exceptionislost if it is caught by value rather than by
reference (that is, using cat ch(I | oException& e) {...}). Thisisonereason that we
suggest catching | | oExcept i on objectsby reference, asdemonstrated in all examples. See,
for example, i | odi et . cpp. Some derived exceptions may carry information that would be
lost if caught by value. So if you output an exception caught by reference, you may get a
more precise message than when outputting the same exception caught by value.

There is a second reason for catching exceptions by reference. Some exceptions contain
arrays to communicate the reason for the failure to the calling function. If thisinformation
were lost by calling the exception by value, method end() could not be called for such
arrays and their memory would be leaked (until env. end() iscalled). After catching an
expression by reference, calling the exception’s method end() will free al the memory that
may be used by arrays (or expressions) of the actual exception that was thrown.

In summary, the preferred way of catching an exception is:
catch (11 oException& e) {
e énd() ;

}

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

where| | oExcept i on may be substituted for the desired Concert Technology exception
class.

Example: Dietary Optimization

The optimization problem solved in this example isto compose adiet from a set of foods, so
that the nutritional requirements are satisfied and the total cost is minimized. Example
di et . cpp illustrates:

O

O
O
O
O

ABojouyoal

Creating aModel Row by Row

Creating aModel Column by Column

Creating Multi-Dimensional Arrayswith lloArray
Using Arrays for Input/Output

Solving the Model with [loCplex

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional
requirements to be satisfied, which are the constraints; and an objective of minimizing the
total cost of the food. There are two ways of looking at this problem:

O

The problem can be modeled in arowwise fashion, by entering the variablesfirst and
then adding the constraints on the variables and the objective function.

The problem can be modeled in a columnwise fashion, by constructing a series of empty
constraints and then inserting the variables into the constraints and the objective
function.

Concert Technology is equally suited for both kinds of modeling; in fact, you can even mix
both approaches in the same program. If anew food product is created, you can create a new
variablefor it regardless of how the model was originally built. Similarly, if anew nutrientis
discovered, you can add anew constraint for it.

Creating a Model Row by Row

You walk into the store and compile alist of foods that are offered. For each food, you store
the price per unit and the amount in stock. For some foods that you particularly like, you aso
set a minimum amount you would like to use in your diet. Then, for each of the foods, you
create a modeling variable to represent the quantity to be purchased for your diet.

Now you get a medical book and look up which nutrients are known and relevant for you.
For each nutrient, you note the minimum and maximum amounts that should be found in
your diet. Also, you go through the list of foods and determine how much afood item will

ILOG CPLEX 7.5 — USER’'S MANUAL 45

C
@
=
(o]
0O
o
S
o
()
=
—

EXAMPLE:

46

DIETARY OPTIMIZATION

contribute for each nutrient. This gives you one constraint per nutrient, which can naturally
be represented as a range constraint:

nutrMn[i] <= sumj (nutrPer[i][j] * Buy[j]) <= nutrMax[i]

wherei represents the number of the nutrient under consideration, nut rM n[i] and
nut r Max[i] the minimum and maximum amount of nutrienti and nutrPer[i][j] the
amount of nutrienti infood j . Finally, you specify your objective function:

mnimze sumj (cost[j] * Buy[j])

Thisway of creating the model is shown in the function bui | dMbdel ByRow; in example
i | odiet.cpp.

Creating a Model Column by Column

You start with the medical book where you compile the list of nutrients that you want to
ensure are properly represented in your diet. For each of the nutrients, you create an empty
constraint:

nutrMn[i] <= ... <= nutrMax[i]

where. . . isleft to befilled once you walk into the store. Also, you set up the objective
function to minimize the cost. We refer to constrainti asr ange[i] and to the objective as
cost.

Now you walk into the store and, for each food, you check the price and nutritional content.
With this data you create a variabl e representing the amount you want to buy of the food
type and install it in the objective function and constraints. That is, you create the following
column:

cost (foodCost[j]) "+" "sum.i" (range[i](nutrPer[i][j]))

where the notation “+” and “sunt’ indicate that you “add” the new variablej to the objective
cost and constraints range]i]. The value in parenthesisisthe linear coefficient that is used
for the new variable. We chose this notation for its similarity to the syntax actually used in
Concert Technology, as demonstrated in the function bui | dMbdel By Col urm, in example

i | odiet.cpp.

Creating Multi-Dimensional Arrays with [loArray

All data defining the problem are read from afile. The nutrients per food are stored in atwo-
dimensional array. Concert Technology does not provide a predefined array class,; however,
by using the template class| | oAr r ay, you can create your own two-dimensional array
class. Thisclassis defined with the type definition:

typedef Il oArray<l|oNumArray> || oNumArray?2;

and isthen ready to use, just like any predefined Concert Technology class, for example
I | oNumAr r ay, the one-dimensional array class for numerical data.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Program Description

The main program starts by declaring the environment and terminates by calling method
end() for the environment. The code in between is encapsulated in atry block that catches
all Concert Technology exceptions and prints them to the C++ error stream cer r. All other
exceptions are caught as well, and a simple error message isissued. The first action of the
program is to eval uate command line parameters and call function usage in cases of misuse.

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

the programis terminated.

I Note: In such cases, an exception is thrown. This ensuresthat env. end() iscalled before

Using Arrays for Input/Output

If all goeswell, theinput fileis opened inthefilei f st r eam After that, the arrays for
storing the problem data are created by declaring the appropriate variables. Then the arrays
arefilled by using the input operator with the datafile. The datais checked for consistency
and, if it fails, the program is aborted, again by throwing an exception.

After the problem data has been read and verified, we are ready to build the model. To do so
we construct the model object with the declaration

I I oMbdel rnod(env);

The array Buy is created to store the modeling variable. Since the environment is not passed
to the constructor of Buy, an empty handle is constructed. So at this point the variable Buy
cannot be used.

Depending on the command line function, either bui | dMet hodBy Row or

bui | dvet hodByCol umm is called. Both create the dietary model from the input data and
return an array of modeling variables as an instance of the class | | oNunVar Ar r ay. At that
point, Buy is assigned to an initialized handle containing all the modeling variables and can
be used afterwards.

Building the Model by Row

The function bui | dvbdel By Rowimplementsthe rowwise creation of the model. It first gets
the environment from the model object passed to it. Then the modeling variables Buy are
created. Instead of calling the constructor for the variablesindividually for each variable, we
create the full array of variables, with the array of lower and upper bounds and the variable
type as parameter. In this array, variable Buy[i] iscreated such that it has lower bound
foodM n[i], upper bound f oodMax[i], andtypet ype.

The statement:
mod. add(|| oM ni m ze(env, |l oScal Prod(Buy, foodCost)));

creates the objective function and adds it to the model. The | | oScal Pr od function creates
theexpressionsum j (Buy[j] * foodCost[j]) whichisthen passed to the function

ILOG CPLEX 7.5 — USER’'S MANUAL 47

EXAMPLE:

48

DIETARY OPTIMIZATION

I'l oM ni ni ze. That function creates and returnsthe actual | | oObj ect i ve object, whichis
added to the model with the call nod. add() .

The following loop creates the constraints of the problem one by one and adds them to the
model. First the expressionsum j (Buy[j] * nutrPer[i][]j]) iscreated by building a
Concert Technology expression. An expression variable expr of typel | oExpr iscreated,
and linear terms are added to it by using oper at or += in aloop. The expression is used with
the overloaded oper at or <= to construct a range constraint (an | | oRange object) whichis
added to the model:

nod. add(nutrM n[i] <= expr <= nutrMax[i]);

After an expression has been used for creating a constraint, it is deleted by calling
expr.end().

Finally, the array of modeling variables Buy is returned.

Building the Model by Column

The function bui | dMbdel By Col unm() implements the columnwise creation of the model.
It begins by creating the array of modeling variables Buy of size 0. Thisislater populated
when the columns of the problem are created and eventually returned.

The statement:
Il oQoj ective cost = Il oAdd(nmod, |1 oM nimze(env));

creates aminimization objective function object with 0 expressions and adds it to the model.
The objective object is created with the function | | oM ni nmi ze. The template function

Il oAdd is used to add the objective object to the model and to return an objective object
with the same type, so that we can store the objective in variable cost . The method

Il oMbdel : : add() returnsthe modeling object asan | | oExt r act abl e, which cannot be
assigned to avariable of aderived classsuch as| | oObj ect i ve. Similarly an array of range
constraints with 0 expressionsis created, added to the model, and stored in array r ange.

In the following loop, the columns of the model are created one by one. First a
representation of each new column is created, using the numeric column variable col (an
instance of I 1 oNunCol umm), and initialized with the objective coefficient for the new
variable. This coefficient isreturned by cost (f oodCost [j]) which callsthe overloaded
oper at or () forl |l oQoj ect i ve objects. Then the coefficients for the constraints are added
to the column using oper at or +=. The coefficient for row i iscreated with
range[i](nutrPer[i][]j]),whichcalsthe overloaded oper at or () for || oRange
objects.

When acolumn is completely constructed, a new variableis created for it and added to the
array of modeling variables Buy. The construction of the variable is performed by the
constructor:

Il oNunVar (col, foodMn[j], foodMax[j], type)

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

which creates the new variable with lower bound f oodM n[j], upper bound f oodMax[j]
and typet ype, and addsit to the existing objective and ranges with the coefficients specified
in column col . Again, after creating the variable for this column, the I | oCol umm object is
deleted by calling col . end() .

Solving the Model with lloCplex

After the model has been populated, we are ready to create the cpl ex object and extract the
model to it by calling:

ABojouyoal

C
@
=
(o]
0O
o
S
o
()
=
—

Il oCpl ex cpl ex(nod);

It isthen ready to solve the model, but for demonstration purposes we first write the
extracted model to filedi et . | p. Doing so can help you debug your model, as the file
contains exactly what CPLEX sees. If it does not match what you expected, it will probably
help you locate the code that generated the wrong part.

The modé is then solved by calling method sol ve() . Finaly, the solution status and
solution vector are output to the output channel cpl ex. out () . By default this channel is
initialized to cout . All logging during optimization is also output to this channel. To turn off
logging, you would set the out () stream of cpl ex to anull stream by calling

cpl ex. set Qut (env. get Nul | Streamn()).

Complete Program

The complete program, i | odi et . cpp, shown hereis also provided online, in the standard
distribution.

Notes:

0O All the definitions needed for a CPLEX Concert Technol ogy application are imported by
including thefile<i | cpl ex/i | ocpl ex. h>.

0 Thelinel LOSTLBEG Nisa macro that is needed for portability. Microsoft Visual C++
code varies, depending on whether you use the STL or not. This macro allows you to
switch between both types of code without the need to otherwise change your source
code.

O Function usageis called in case the program is executed with incorrect command line
arguments.

#i nclude <ilcplex/il ocpl ex. h>
| LOSTLBEG N

voi d usage(const char* nane) {
cerr << endl

cerr << "usage: " << pame << " [options] <file>" << endl;
cerr << "options: -c build nodel by colum" << endl;
cerr << " -i use integer variables" << endl;

ILOG CPLEX 7.5 — USER’'S MANUAL 49

EXAMPLE:

50

DIETARY OPTIMIZATION

cerr << endl;

}

typedef |l oArray<||oNunArray> || oNunArray?2;

I'l oNunVar Arr ay
bui | dMbdel ByRow(| | oMbdel nod,

const |l oNunmArray foodM n,
const |l oNumArray foodMax,
const |l oNumArray foodCost,
const |l oNumArray nutrMn,
const |l oNumArray nutrMax,
const |1 oNunmArray2& nutr Per,
Il oNunVar: : Type type) {

Il oEnv env = nod. get Env();

Il oNunVar Array Buy (env, foodMn, foodMax, type);

Ilolnt i, j;

Ilolnt n = foodCost.getSize();
Ilolnt m= nutrMn. getSize();

mod. add(1| oM ni m ze(env, |l oScal Prod(Buy, foodCost)));

for (i =0; i <m i++) {
I'l oExpr expr(env);
for (j =0; j <n; j++)

}

return (Buy);

}

I'l oNunVar Arr ay

expr += Buy[j] * nutrPer[
nod. add(nutrMn[i] <= expr <= nutrMax[i]);

bui | dMbdel ByCol urm(| | oMbdel nod,
const |l oNumArray foodM n,
const |l oNumArray foodMax,
const |l oNunArray foodCost,
const |loNumArray nutrMn,
const |l oNumArray nutrMax,
const |l oNumArray2& nutr Per,
I'l oNunVar : : Type type) {

Il oEnv env = nod. get Env();
I'l oNunVar Array Buy(env);

Ilolnt i, j;

Ilolnt n = foodCost. getSize();
Ilolnt m= nutrMn. getSize();

Il oOhj ective cost
I | oRangeArray range

for (j =05 j <n; j++) {

Il oAdd(nod, |1 oM nimze(env));
I | oAdd(nod, |1 oRangeArray(env,

I'l oNunCol utm col = cost (foodCost[j]);

ILOG CPLEX 7.5

USER'S MANUAL

BISRE

nutrMn,

nut r vax)) ;

<functionhead>

for (i =0; i <m i++) col +=range[i](nutrPer[i][j]);
Buy. add(Il oNunVar (col, foodMn[j], foodMax[j], type));

}
return (Buy); c
=
} g 2
. o> Q
int = 0
mai n(int argc, char **argv) S o
{ S a
I'l oEnv env; < @
try {
const char* filenanme = "../../../exanpl es/data/diet.dat";
Il oBool byCol um = |1 oFal se;
I'l oNunVar: : Type var Type = | LOFLQAT;
Ilolnt i;
for (i =1; i <argc; ++) {
if (argv[i][0] =="-") {
switch (argv[i][1]) {
case 'c’:
byCol um = |1 0True;
br eak;
case 'i’:
var Type = | LA NT;
br eak;
defaul t:
usage(argv[0]);
throw (-1);
}
}
el se {
filenane = argv[i];
br eak;
}
}
ifstreamfile(filenane);
if (!file) {
endl - C&'F << "ERROR could not open file '" << filename << "’ for reading" <<

usage(argv[0]);
throw (-1);
}

/1 model data

Il oNumArray foodCost(env), foodM n(env), foodMax(env);
Il oNumArray nutrMn(env), nutrMax(env);

I'l oNumArray2 nutr Per(env);

file >> foodCost >> foodM n >> foodMax;
file >> nutrMn >> nutrMax;

ILOG CPLEX 7.5 — USER’'S MANUAL 51

EXAMPLE: DIETARY OPTIMIZATION

file >> nutrPer;

Il ol nt nFoods
Ilolnt nNutr

= foodCost . get Si ze() ;

= nutrMn. getSi ze();

if (foodMn.getSize() != nFoods ||
f oodMax. get Si ze() != nFoods ||
nutrPer.getSize() !'= nNutr ||
nutr Max. get Si ze() !'= nNutr) {

cerr << "ERROR Data file '" << filenane
<< "' contains inconsistent data" << endl;
throw (-1);

}

for (i =0; i <nNutr; ++i) {
if (nutrPer[i].getSize() != nFoods) {
cerr << "ERROR Data file '" << argv[0]
<< "' contains inconsistent data" << endl;
throw (-1);
}
}

/1 Build nodel

Il oMbdel nod(env) ;
I'l oNunVar Array Buy;
if (byColum) {
Buy = buil dMbdel ByCol um(nod, foodM n, foodMax, foodCost,
nutrMn, nutrMx, nutrPer, varType);
}

el se {
Buy = buil dMbdel ByRow(nod, foodM n, foodMax, foodCost,
nutrMn, nutrMx, nutrPer, varType);
}

/1 Sol ve nodel

I'l oCpl ex cpl ex(nod);
cpl ex. export Model ("diet.|p");

cpl ex. sol ve();
cplex.out() << "solution status = " << cplex.getStatus() << endl;

cplex.out() << endl;

cpl ex.out() << "cost = " << cpl ex. get Obj Val ue() << endl;
for (i =0; i < foodCost.getSize(); i++)
cplex.out() << " Buy" << i << " =" << cplex.getValue(Buy[i]) << endl;

catch (Il oException& ex) {
cerr << "Error: " << ex << endl;

}
catch (...) {
cerr << "Error" << endl;

}

52 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

env. end();

return O;

}

ABojouyoal

C
)
>
Q
O
o
>
o
®
=
Ll

ILOG CPLEX 7.5 — USER’'S MANUAL 53

EXAMPLE: DIETARY OPTIMIZATION

54 ILOG CPLEX 7.5 — USER’'S MANUAL

Using the ILOG CPLEX Callable Library

C
B
=
!
—
>
o
O
o
)
o
)

This chapter describes how to write C programs using the ILOG ILOG CPLEX Callable
Library. It includes sections on:

0O Architecture of the CPLEX Callable Library, including information on licensing and on
compiling and linking your programs

Using the Callable Library in an Application
ILOG CPLEX Programming Practices

Managing Parameters from the Callable Library

o o o d

Example: Dietary Optimization

Architecture of the CPLEX Callable Library

ILOG CPLEX includes acallable C library that makes it easier to develop applications to
optimize, to modify, and to interpret the results of mathematical programming problems
whether linear, mixed integer, or convex quadratic ones.

You can use the Callable Library to write applications that conform to many modern
computer programming paradigms, such as client-server applications within distributed
computing environments, multithreaded applications running on multiple processors,

ILOG CPLEX 7.5 — USER’'S MANUAL 55

ARCHITECTURE OF THE CPLEX CALLABLE LIBRARY

56

applications linked to database managers, or applications using flexible graphic user
interface builders, just to name afew.

The Callable Library together with the ILOG CPLEX database make up the ILOG CPLEX
core, asyou seein Figure 2.1. The ILOG CPLEX database includes the computing
environment, its communication channels, and your problem objects. You will associate the
core with your application by calling library routines.

User

)

Operating System

read
User-Written Application
write
- = — — — —|= displa
/ \ piay
| CPLEX Core |
| CPLEX |
. -4
| Callable Library |
|) |
|| CPLEX Database | |
| environment, channels, | |
problem objects Y,

Figure2.1 Aview of the ILOG CPLEX world

TheILOG CPLEX Callable Library itself contains routines organized into several
categories.

O

O

optimization routines enable you to define a problem, optimize it, and generate results;
utility routines handle application programming issues;

problem modification routines let you change a problem after you have created it within
the ILOG CPLEX database;

problem query routines access information about a problem after you have created it;

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

0 filereading and writing routines move information from the file system of your
operating system into your application, or from your application into the file system;

0 parameter routines enable you to query, set, or modify parameter values maintained by
ILOG CPLEX.

Licenses

CPLEX runsunder the control of the ILOG License Manager (ILM). Before you can run any
application program that calls CPLEX, you must have established avalid license that it can
read. Licensing instructions are provided to you separately when you buy or upgrade
CPLEX. Contact your local ILOG support department if thisinformation has not been
communicated to you or if you find that you need help in establishing your CPLEX 7.0
license.

Compiling and Linking

Compilation and linking instructions are provided with the files that come in the standard
distribution of CPLEX for your computer platform. Check ther eadnme file for details.

C
B
=
!
—
>
o
O
o
)
o
)

Using the Callable Library in an Application

This section tells you how to use the Callable Library in your own applications. Briefly, you
must initialize the ILOG CPLEX environment, instantiate a problem object, and fill it with
data. Then your application calls one of the ILOG CPLEX optimizers to optimize your
problem. Optionally, your application can a so modify the problem object and re-optimizeit.
ILOG CPLEX isdesigned to support this sequence of operations—modification and re-
optimization of linear programming problems (L Ps)—efficiently by reusing the current
basis of a problem asits starting point (when applicable). After it finishes using

ILOG CPLEX, your application must free the problem object and release the ILOG CPLEX
environment it has been using. The following sections explain these steps in greater detail.

Initialize the ILOG CPLEX Environment

ILOG CPLEX needs certain internal data structuresto operate. In your own application, you
use aroutine from the Callable Library to initialize these data structures. You must initialize
these data structures before your application calls any other routine in the ILOG CPLEX
Callable Library.

Toinitialize alLOG CPLEX environment, you must use the routine CPXopenCPLEX() .

This routine checks for avalid ILOG CPLEX license and then returns a C pointer to the
ILOG CPLEX environment that is creates. Your application then passes this C pointer to

ILOG CPLEX 7.5 — USER’'S MANUAL 57

USING THE CALLABLE LIBRARY IN AN APPLICATION

58

other ILOG CPLEX routines (except CPXnsg()). Asadeveloper, you decide for yourself
whether the variable containing this pointer should be global or local in your application

A multithreaded application needs multiple ILOG CPLEX environments. Consequently,
ILOG CPLEX allows more than one environment to exist at atime; each one consumes a
licensed process.

Instantiate the Problem Object

Onceyou haveinitialized alLOG CPLEX environment, your next step isto instantiate (that
is, create and initialize) a problem object by calling CPXcr eat epr ob() . Thisroutine
returns a C pointer to the problem object. Your application then passes this pointer to other
routines of the Callable Library.

Most applications will use only one problem object, though ILOG CPLEX allows you to
create multiple problem objects within agiven ILOG CPLEX environment. Similarly, most
applications create only one ILOG CPLEX environment, although ILOG CPLEX allows|
environments, where | is the number of licensed ILOG CPLEX users on your system.

Put Data in the Problem Object

When you instantiate a problem object, it is originally empty. In other words, it has no
constraints, no variables, and no coefficient matrix. ILOG CPLEX offers you several
aternative ways to put datainto an empty problem object (that is, to populate your problem
object).

0 You can assemble arrays of data and then call CPXcopy! p() to copy the datainto the
problem object.

0 You can make a sequence of calls, in any convenient order, to these routines:
. CPXnewcol s();
CPXnewr ows() ;
. CPXaddcol s();
CPXaddr ows() ;
CPXchgcoeflist();

O If dataalready existin MPSor LPformat in afile, you can call CPXr eadcopypr ob() to
read that file and copy the data into the problem object. (MPS—Mathematical
Programming System—is an industry-standard format for organizing datain
mathematical programming problems. L P—Ilinear programming—isalLOG CPLEX-
specific format for expressing linear programming problems as equations or inequalities.
Under standing File Formats on page 264 explains these formats in greater detail.)

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Optimize the Problem

Call one of the ILOG CPLEX optimizers to solve the problem object that you have
instantiated and popul ated. Choosing an Optimizer for Your LP Problem on page 96 explains
in greater detail how to choose an appropriate optimizer for your problem.

Change the Problem Object

In analyzing a given mathematical program, you may make changesin amodel and study
their effect. Asyou make such changes, you must keep ILOG CPLEX informed about the
modifications so that ILOG CPLEX can efficiently re-optimize your changed problem.
Always use the problem modification routines from the Callable Library to make such
changes and thus keep ILOG CPLEX informed. In other words, do not change a problem by
atering the original data arrays and calling CPXcopyl p() again. That tempting strategy
usually will not make the best use of ILOG CPLEX. Instead, modify your problem by means
of the problem modification routines.

C
B
=
!
—
>
o
O
o
)
o
)

For example, let's say a user has already solved a given problem and then changes the upper
bound on a variable by means of an appropriate call to the Callable Library. ILOG CPLEX
will then begin any further optimization from the previous optimal basis. If that basisis still
optimal with respect to the new bound, then ILOG CPLEX will return that information
without even needing to refactor the basis.

Destroy the Problem Object

Use the routine CPXf r eepr ob() to destroy a problem object when your application no
longer needsit.

Release the ILOG CPLEX Environment

After al the calls from your application to the ILOG CPLEX Callable Library are complete,
you must release the ILOG CPLEX environment by calling the routine CPXcl oseCPLEX() .
Thisroutinetells ILOG CPLEX that:

0O all application callsto the Calable Library are complete;

0 ILOG CPLEX should release any memory allocated by ILOG CPLEX for this
environment;

0 theapplication has relinquished the ILOG CPLEX license for this run, thus making the
license available to the next user.

ILOG CPLEX 7.5 — USER’'S MANUAL 59

ILOG CPLEX PROGRAMMING PRACTICES

ILOG CPLEX Programming Practices

60

This section lists the programming practices we observe in developing and maintaining the
ILOG CPLEX Cadllable Library.

The ILOG CPLEX Callable Library supports modern programming practices. It uses no
external variables. Indeed, no global nor static variables are used in the library so that the
Cadllable Library isfully reentrant and thread-safe. The names of al library routines begin
with the three-character prefix CPX to prevent namespace conflicts with your own routines
or with other libraries. Also to avoid clutter in the namespace, there isaminimal number of
routines for setting and querying parameters.

Variable Names and Calling Conventions

Routinesin the ILOG CPLEX Callable Library obey the C programming convention of call
by value (as opposed to call by reference, for example, in FORTRAN and BASIC). If a
routine in the Callable Library needs the address of avariable in order to change the value of
the variable, then that fact is documented in the ILOG CPLEX Reference Manual by the
suffix _p inthe variable name in the synopsis of the routine. In C, you create such values by
means of the & operator to take the address of avariable and to pass this address to the
Callable Library routine.

For example, let'slook at the synopses for two routines, CPXget obj val () and
CPXget x() , asthey are documented in the ILOG CPLEX Reference Manual to clarify this
calling convention. Here is the synopsis of the routine CPXget obj val () :

int CPXgetobjval (CPXENVptr env, CPXLPptr |p, double *objval _p)
In that routine, the third parameter is a pointer to avariable of type doubl e. To cal this
routine from C, declare:

doubl e obj val ;

Then call CPXget obj val () inthisway:

status = CPXgetobjval (env, |Ip, &objval);

In contrast, here is the synopsis of the routine CPXget x() :

int CPXgetx (CPXENV env, CPXLPptr |p, double *x, int begin, int end)

You call it by creating a double-precision array by means of either one of two methods. The
first method dynamically allocates the array, like this:

doubl e *x = NULL;

X = (double *) nalloc (100*si zeof (double));

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

The second method declares the array as alocal variable, like this:

doubl e x[100];

Then to see the optimal valuesfor columns 5 through 104, for example, you could writethis:

status = CPXgetx (env, Ip, x, 5 104);

The variable obj val _p inthe synopsis of CPXget obj val () and thevariable x in the
synopsis of CPXget x() are both of type (doubl e *) . However, the suffix _p inthe
parameter obj val _p indicates that you should use an address of a single variable in one
call, whilethe lack of _p inx indicates that you should pass an array in the other.

For guidance about how to pass valuesto ILOG CPLEX routines from application
languages such as FORTRAN or BASIC that conventionally call by reference, see Call by
Reference on page 69 in this manual, and consult the documentation for those languages.

Data Types

C
B
=
!

—
>
o

O
o
)
o
)

Inthe Callable Library, ILOG CPLEX defines afew special datatypes for specific
ILOG CPLEX objects, asyou seein Table 2.1.

Table2.1 Special data typesinthe ILOG CPLEX Callable Library

Data type Is a pointer to Declaration Set by calling

CPXENVpt r ILOG CPLEX CPXENVptr env; CPXopenCPLEX()
environment

CPXLPpt r problem object CPXLPptr | p; CPXcr eat eprob()

CPXNETpt r problem object CPXNETptr net; CPXNETcr eat epr ob()

CPXCHANNELpt r | message channel CPXCHANNELpt r channel ; |CPXget channel s()
CPXaddchannel ()

When any of these special variables are set to avalue returned by an appropriate routine, that
value can be passed directly to other ILOG CPLEX routines that require such parameters.
The actual interna type of these variablesis amemory address (that is, a pointer); this
address uniquely identifies the corresponding object. If you are programming in alanguage
other than C, you should choose an appropriate integer type or pointer type to hold the
values of these variables.

Ownership of Problem Data

ThelLOG CPLEX Callable Library does not take ownership of user memory. All arguments
are copied from your user-defined arraysinto ILOG CPLEX-allocated memory.
ILOG CPLEX manages all problem-related memory. After you call alLOG CPLEX routine

ILOG CPLEX 7.5 — USER’'S MANUAL 61

ILOG CPLEX PROGRAMMING PRACTICES

that copies datainto alLOG CPLEX problem object, you can free the memory you used as
arguments to the copying routine.

Copying in MIP and QP

If you are licensed to use the ILOG CPLEX Mixed Integer Optimizer, the routine
CPXcopyct ype() copiesinformation about variable typesin amixed integer programming
application (MIP).

If you are licensed to use the ILOG CPLEX Barrier Optimizer, the routines
CPXcopygsep() and CPXcopyquad() arefor copying information about quadratic
objective coefficients in a convex quadratic programming application (QP).

Problem Size and Memory Allocation Issues

Asweindicated in Change the Problem Object on page 59, after you have created aproblem
object by calling CPXcr eat epr ob() , you can modify the problem in various ways through
callsto routines from the Callable Library. Thereis no need for you to allocate extra spacein
anticipation of future problem modifications. Any limit on problem sizeis determined by
system resources and the underlying implementation of the system function mal | oc() —not
by artificial limitsin ILOG CPLEX.

Asyou modify a problem object through calls to modification routines from the Callable
Library, ILOG CPLEX automatically handles memory allocations to accommodate the
increasing size of the problem. In other words, you do not have to keep track of the problem
size nor make corresponding memory allocations yourself aslong as you are using library
modification routines such as CPXaddr ows() or CPXaddcol s().

However, the sequence of Callable Library routines that you invoke can influence the
efficiency of memory management. Likewise, parameters controlling row growth

(CPX_PARAM RONGROWTH) , column growth (CPX_PARAM COLGROATH) , and nonzero
growth (CPX_PARAM_NZGROWIH) can also influence how efficiently ILOG CPLEX allocates
memory to accommodate the problem object. These growth parameters determine how
much extra space ILOG CPLEX allocatesinitsinternal structures when additionsto a
problem object increase the size of the problem object so that it exceeds currently allocated
space.

Table 2.2 Default values of ILOG CPLEX growth parameters

Parameter Default value
CPX_PARAM ROWGROATH 100
CPX_PARAM COLGROATH 100
CPX_PARAM NZGRONTH 500

62 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Table 2.2 shows you the default values of these growth parameters. At these default val ues,
if an application populates the problem object one row at atime, then CPLEX will cachethe
row additions until an updated problem is needed, for example when aquery or optimization
function is called. Similarly, it will cache column-based additions after 100 columns, and
nonzero-based arrays when the additions of coefficients produces another 500 nonzeros to
add to the matrix. Memory Management and Problem Growth on page 103 offers guidelines
about performance tuning with these parameters.

Status and Return Values

The Callable Library routine CPXopenCPLEX() returns apointer to alLOG CPLEX
environment. In case of failure, it returnsaNULL pointer. The parameter * st at us_p (that is,
one of itsarguments) is set to O if the routine is successful; in case of failure, that parameter
is set to anonzero value that indicates the reason for the failure. Each failure value is unique
and documented in the ILOG CPLEX Reference Manual.

The Callable Library routine CPXcr eat epr ob() returnsapointer to alLOG CPLEX
problem object and setsits parameter *st atus_p to 0 (zero) toindicate success. In
case of failure, it returnsa NULL pointer and sets* st at us_p to anonzero value indicating
the reason for the failure.

C
B
=
!
—
>
o
O
o
)
o
)

Some query routinesin the Callable Library return a nonzero value when they are
successful. For example, CPXget nuntol s() returns the number of columnsin the
constraint matrix (that is, the number of variablesin the problem object). However, most
query routines return 0 (zero) indicating success of the query and entail one or more
parameters (such as a buffer or character string) to contain the results of the query. For
example, CPXget r ownane() returnsthe name of arow initsname parameter.

Most other routinesin the Callable Library return an integer value, 0 (zero) indicating
success of the call. A nonzero return value indicates a failure. Each failure valueis unique
and documented in the ILOG CPLEX Reference Manual.

We strongly recommend that your application check the status—whether the status is
indicated by the return value or by a parameter—of the routine that it calls before it
proceeds.

Symbolic Constants

Most ILOG CPLEX routines return or require values that are defined as symbolic constants
in the header file (that is, the includefile) cpl ex. h. We highly recommend this practice of
using symbolic constants, rather than hard-coded numeric values. Symbolic namesimprove
the readability of calling applications. Moreover, if numeric values happen to changein
subsequent rel eases of the product, the symbolic names will remain the same, thus making
applications easier to maintain.

ILOG CPLEX 7.5 — USER’'S MANUAL 63

ILOG CPLEX PROGRAMMING PRACTICES

64

Parameter Routines

You can set many parametersin the ILOG CPLEX environment to control ILOG CPLEX
operation. The values of these parameters may be integer, double, or character strings, so
there are sets of routines for accessing and setting them. Table 2.3 shows you the names and

Table 2.3 Callable Library routines for parametersin the ILOG CPLEX environment

Type Change value Access current value |Access default, max, min

integer |CPXseti ntparam() |CPXgeti ntparam() CPXi nf oi nt par am()

double |CPXset dbl paran{) |CPXget dbl paran() CPXi nf odbl par am()

string |CPXsetstrparan() |CPXgetstrparan() CPXi nf ost r par am()

purpose of these routines. Each of these routines accepts the same first argument: a pointer
tothe ILOG CPLEX environment (that is, the pointer returned by CPXopenCPLEX()). The
second argument of each of those parameter routines is the parameter number, a symbolic
constant defined in the header file, cpl ex. h. Managing Parameters from the Callable
Library on page 70 offers more details about parameter settings.

Null Arguments

Certain ILOG CPLEX routines that accept optional arguments allow you to pass a NULL
pointer in place of the optional argument. The documentation of those routinesin the
ILOG CPLEX Reference Manual indicates explicitly whether NULL pointer arguments are
acceptable. (Passing null argumentsis an effective way to avoid allocating unnecessary

arrays.)

Row and Column References

Consistent with standard C programming practices, in ILOG CPLEX an array containing k
itemswill contain theseitemsin locations 0 (zero) through k- 1. Thus alinear program with
mrows and n columns will have its rows indexed from 0 to m 1, and its columns from 0
ton-1.

Within the linear programming data structure, the rows and columns that represent
constraints and variables are referenced by an index number. Each row and column may
optionally have an associated name. If you add or delete rows, the index numbers usually
change. However, ILOG CPLEX updates the names so that each row or column index will
correspond to the correct row or column name. Double checking names against index
numbers is the only sure way to determine which changes may have been made to matrix
indices in such a context. The routines CPXget r owi ndex() and CPXget col i ndex()
translate names to indices.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

If additions or deletions to the constraint matrix are few, then:

0 for deletions, ILOG CPLEX decrements each reference index above the deletion point,
and

0 for additions, ILOG CPLEX makes all additions at the end of the existing range.

Here is an example to illustrate how rows are renumbered when rowsk+1 tol - 1 are
deleted. That is, | - (k+1) elements are deleted in the example:

Rows before deletion k+1, , | -1, |, Lo, end

k+1, , lend-(l-(k+1))]

0
k
Rows after deletion 0
k

Character Strings

You can pass character strings as parametersto various ILOG CPLEX routines, for example,
asrow or column names. The Interactive Optimizer truncates output strings usually at 18
characters. Routines from the Callable Library truncate strings at 255 characters in output
text files (such as MPS, LP, and SOS text files) but not in binary SAV files. Routines from
the Callable Library also truncate strings at 255 characters in names that occur in messages.
Routines of the Callable Library that produce log files, such asthe simplex iteration log file
or the MIP node log file, truncate at 16 characters. The Callable Library routine

CPXwri t esol () truncates character stringsin binary solution filesat 8 charactersand in
text solution files at 16 characters. Input, such as names read from LP and MPS files or
typed interactively by theent er command, are truncated to 255 characters. However, we do
not recommend that you rely on this truncation because unexpected behavior may result.

C
B
=
!
—
>
o
O
o
)
o
)

Checking Problem Data

If you inadvertently make an error entering problem data, the problem object will not
correspond to your intentions. One possible result may be a segmentation fault or other
disruption of your application. In other cases, ILOG CPLEX may solve a different model
from the one you intended, and that situation may or may not result in error messages from
ILOG CPLEX.

Using the Data Checking Parameter

To help you detect thiskind of error, you can set the parameter CPX_PARAM DATACHECK to
the value CPX_ONto activate additional checking of array arguments for CPXcopy. . . (),
CPXread. .. (),and CPXchg. .. () functions. The additional checksinclude:

O invalid sense/ctype/sostype values

0 indexesout of range, for example, rowi nd >= nunr ows

ILOG CPLEX 7.5 — USER’'S MANUAL 65

ILOG CPLEX PROGRAMMING PRACTICES

66

0 duplicate entries

0 mat beg or sosbeg array with decreasing values
0O NANsindouble arrays

0 NULLsin name arrays

When the parameter is set to CPX_OFF, only simple checks, for example checking for the
existence of the environment, are performed.

Using Diagnostic Routines for Debugging

ILOG CPLEX also provides diagnostic routines to look for common errorsin the definition
of problem data. In the standard distribution of ILOG CPLEX, thefilecheck. ¢ containsthe
source code for these routines:

CPXcheckcopyl p()
CPXcheckcopyl pwnanes()
CPXcheckcopygpsep()
CPXcheckcopyquad()
CPXcheckaddr ows()
CPXcheckaddcol s()
CPXcheckchgcoeflist ()
CPXcheckval s()

o o o o o o g g odg

CPXcheckcopyct ype()

O

CPXcheckcopysos()
0 CPXNETcheckcopynet ()

Each of those routines performs a series of diagnostic tests of the problem data and issues
warnings or error messages whenever it detects a potential error. To use them, you must
compileand link thefile check. c. After compiling and linking that file, you will be able to
step through the source code of these routines with a debugger to help isolate problems.

If you have observed anomaliesin your application, you can exploit this diagnostic
capability by calling the appropriate routines just before a copying routine. The diagnostic
routine may then detect errors in the problem data that could subsequently cause
inexplicable behavior.

Those checking routines send all messages to one of the standard ILOG CPLEX message
channels. You capture that output by setting the parameter CPX_PARAM_SCRI ND (if you
want messages directed to your screen) or by calling the routine CPXset | ogfil e() .

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Callbacks

The Callable Library supports callbacks so that you can define functions that will be called
at crucia pointsin your application:

0 during the presolve process;
00 once per iteration in alinear programming routine;

0 once before anode is processed in a mixed integer optimization (if the end-user is
licensed for the ILOG CPLEX Mixed Integer Optimizer).

In addition, callback functions can call CPXget cal | backi nf o() to retrieveinformation
about the progress of an optimization algorithm. They can aso return avalue to indicate
whether an optimization should be aborted. CPXget cal | backi nf o() isthe only routine of
the Callable Library that a user-defined callback may call. (Of course, callsto routinesnot in
the Callable Library are permitted.)

Using Callbacks on page 293 describes callback facilities in greater detail.

Portability

ILOG CPLEX contains a number of featuresto help you create Callable Library
applications that can be easily ported between UNIX and Windows 95 and NT (that is,
Win32) platforms.

CPXPUBLIC

All ILOG CPLEX Cadllable Library routines except CPXnsg() have the word CPXPUBLI C
as part of their prototype. On UNIX platforms, this has no effect. On Win32 platforms, the
CPXPUBLI C designation tells the compiler that al of the ILOG CPLEX functions are
compiled with the Microsoft __st dcal | calling convention. The exception CPXnsg()
cannot becalled by st dcal | becauseit takes a variable number of arguments.
Conseguently, CPXnmsg() isdeclared as CPXPUBVARARGS; that calling convention is defined
as__cdecl for Win32 systems.

Function Pointers

All ILOG CPLEX Cadllable Library routines that require pointers to functions expect the
passed-in pointers to be declared as CPXPUBLI C. Consequently, when your application uses
the ILOG CPLEX Callable Library routines CPXaddf uncdest (),

CPXset | pcal | backf unc(), and CPXset mi pcal | backf unc(), it must declare the user-
written callback functions with the CPXPUBLI C designation. For UNIX systems, this has no
effect. For Win32 systems, this will cause the callback functions to be declared with the
__stdcal | calling convention. For examples of function pointers and callbacks, see
Example: Using Callbacks on page 303 and Example: Using the Message Handler on

page 272.

ILOG CPLEX 7.5 — USER’'S MANUAL 67

C
B
=
!
—
>
o
O
o
)
o
)

ILOG CPLEX PROGRAMMING PRACTICES

68

CPXCHARptr and CPXVOIDptr

The types CPXCHARpt r and CPXVQ Dpt r are used in the header filecpl ex. h to avoid the
complicated syntax of using the CPXPUBLI C designation on functions that return char or
voi d pointers.

File Pointers

File pointer arguments for Callable Library routines should be declared with the type
CPXFI LEpt r. On UNIX platforms, this practice is equivaent to using the file pointer type.
On Win32 platforms, the file pointers declared this way will correspond to the environment
of the ILOG CPLEX DLL. Any file pointer passed to a Callable Library routine should be
obtained with a call to CPXf open() and closed with CPXf cl ose() . Calable Library
routines with file pointer argumentsinclude CPXset | ogfi | e(), CPXaddf pdest (),
CPXdel f pdest (), and CPXf put s() . Handling Message Channels. Callable Library
Routines on page 271 discusses most of those routines.

String Functions

Several routinesin the ILOG CPLEX Callable Library makeit easier to work with strings.
These functions are helpful when you are writing applications in alanguage, such as Visua
Basic, that does not alow you to dereference a pointer. The string routinesin the

ILOG CPLEX Calable Library are CPXnmenctpy(), CPXstrl en(), CPXstrcpy(), and
CPXmsgstr ().

ILOG CPLEX-Allocated Memory

The Callable Library read routines CPXr eadcopypr ob(), €tc., return pointers to memory
allocated by the Callable Library. The Callable Library routine CPXf r ee() freesthese
pointers. On UNIX systems, it is acceptable, but not recommended for portability reasons, to
usethe systemcall free() .

For more complete access to ILOG CPLEX memory management, you also have the
routines CPXmal | oc() and CPXr eal | oc() . However, you are not required to use these
two routines in order to have correctly functioning Callable Library applications.

FORTRAN Interface

The Callable Library can be interfaced with FORTRAN applications. You can download
examples of a FORTRAN application from the ILOG web siteat ht t p: / / www. i | og. com
pr oduct s/ cpl ex. Choose Tech Support; then choose Callable Library Examples. The
examples were compiled on a Sun Solaris operating system. Since C-to-FORTRAN
interfaces vary across platforms (operating system, hardware, compilers, etc.), you may need
to modify the examples for your particular system.

Whether you need intermediate “glue” routines for the interface depends on your operating
system. Asafirst step in building such an interface, we advise you to study your system

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

documentation about C-to-FORTRAN interfaces. In that context, this section lists a few
considerations particular to ILOG CPLEX in building a FORTRAN interface.

Case-Sensitivity

Asyou know, FORTRAN is a case-insensitive language, whereas routines in the

ILOG CPLEX Calable Library have names with mixed case. Most FORTRAN compilers
have an option, such as the option - U on UNIX systems, that treats symbolsin a case-
sensitive way. We recommend that you use this option in any file that calls ILOG CPLEX
Cdlable Library routines.

On some operating systems, such as DEC Alpharunning Digital Unix, certain intrinsic
FORTRAN functions must bein all upper case (that is, capital letters) for the compiler to
accept those functions.

Underscore

On some systems, all FORTRAN external symbols are created with an underscore character
(that is, _) added to the end of the symbol name. Some systems have an option to turn off
this feature; for example, on DEC Alpharunning Digital Unix, the option

-assunme nounder scor e turns off the postpended underscore. If you are able to turn off
those postpended underscores, you may not need other “glue”’ routines.

C
B
=
!
—
>
o
O
o
)
o
)

Six-Character Identifiers

FORTRAN 77 alows identifiers that are unique only up to six characters. However, in
practice, most FORTRAN compilers allow you to exceed this limit. Since routinesin the
Callable Library have names greater than six characters, you need to verify whether your
FORTRAN compiler enforcesthislimit or allows longer identifiers.

Call by Reference

By default, FORTRAN passes arguments by reference; that is, the address of avariableis
passed to aroutine, not its value. In contrast, many routines of the Callable Library require
arguments passed by value. To accommodate those routines, most FORTRAN compilers
have the VM S FORTRAN extension %/AL() . This operator used in calls to external
functions or subroutines causes its argument to be passed by value (rather than by the default
FORTRAN convention of passed by reference). For example, with that extension, you can
call theroutine CPXpr i nopt () with this FORTRAN statement:

status = CPXprinopt (%al (env), %al (Ip))

Pointers

Certain ILOG CPLEX routinesreturn apointer to memory. In FORTRAN 77, such a pointer
cannot be dereferenced; however, you can store its value in an appropriate integer type, and
you can then pass it to other ILOG CPLEX routines. On most operating systems, the default
integer type of four bytesis sufficient to hold pointer variables. On some systems, such as
DEC Alpha, avariable of type | NTEGER* 8 may be needed. Consult your system

ILOG CPLEX 7.5 — USER’'S MANUAL 69

MANAGING PARAMETERS FROM THE CALLABLE LIBRARY

documentation to determine the appropriate integer type to hold variables that are C
pointers.

Strings

When you pass strings to routines of the Callable Library, they expect C strings; that is,
strings terminated by an ASCII NULL character, denoted \0 in C. Consequently, when you
pass aFORTRAN string, you must add aterminating NULL character; you do so by means of
the FORTRAN intrinsic function CHAR(0) .

C++ Interface

The ILOG CPLEX header file, cpl ex. h, includes the ext er n C statements necessary for
use with C++. You include it directly in C++ source. The standard distribution of

ILOG CPLEX includes examples of wrapper classes for C++ applications. The wrapper
classes do not implement all Callable Library routines, but they are easy to extend for any
routines you do need.

Managing Parameters from the Callable Library

70

Some ILOG CPLEX parameters assume values of type doubl e; others assume values of
typei nt ; others are strings (that is, C-type char *). Consequently, in the Callable Library,
there are sets of routines—onefor i nt, one for doubl e, onefor char *—to access and to
change parameters that control the ILOG CPLEX environment and guide optimization.

For example, the routine CPXi nf oi nt par an() shows you the default, the maximum, and
the minimum values of a given parameter of typei nt , whereas the routine

CPXi nf odbl par an() shows you the default, the maximum, and the minimum values of a
given parameter of type doubl e, and the routine CPXi nf ost r par an{) shows you the
default value of a given string parameter. Those three Callable Library routines observe the
same conventions: they return 0 from a successful call and a nonzero value in case of error.

The routines CPXi nf oi nt par an() and CPXi nf odbl par an() expect five arguments:

00 apointer to the environment; that is, apointer of type CPXENVpt r returned by
CPXopenCPLEX() ;

0 anindication of the parameter to check; this argument may be a symbolic constant, such
as CPX_PARAM _CLOCKTYPE, or areference number, such as 1006; the symbolic
constants and reference numbers of all ILOG CPLEX parameters are documented in the
ILOG CPLEX Reference Manual and they are defined in the include file cpl ex. h.

0 apointer to avariable to hold the default value of the parameter;
00 apointer to avariable to hold the minimum value of the parameter;

0 apointer to avariable to hold the maximum value of the parameter.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Theroutine CPXi nf ost r par an() differsslightly in that it does not expect pointers to
variables to hold the minimum and maximum val ues as those concepts do not apply to a
string parameter.

To access the current value of a parameter that interests you from the Callable Library, use
the routine CPXget i nt par an() for parameters of typei nt , CPXget dbl par an() for
parameters of type doubl e, and CPXget st r par an{) for string parameters. These routines
also expect arguments to indicate the environment, the parameter you want to check, and a
pointer to avariable to hold that current value.

No doubt you have noticed in other chapters of this manual that you can set parameters from
the Callable Library. There are, of course, routines in the Callable Library to set such
parameters. one sets parameters of typei nt ; another sets parameters of type doubl e;
another sets string parameters.

0 CPXsetintparan() acceptsargumentsto indicate:

. theenvironment; that is, a pointer of type CPXENVpt r returned by
CPXopenCPLEX() ;

C
B
=
!
—
>
o
O
o
)
o
)

the parameter to set; this routine sets parameters of typei nt ;
the value you want the parameter to assume.
0 CPXset dbl paran() accepts argumentsto indicate:

. theenvironment; that is, a pointer of type CPXENVpt r returned by
CPXopenCPLEX() ;

the parameter to set; this routine sets parameters of type doubl e;
the value you want the parameter to assume.
0 CPXsetstrparan() acceptsargumentsto indicate:

the environment; that is, a pointer of type CPXENVpt r returned by
CPXopenCPLEX() ;

the parameter to set; this routine sets parameters of typechar *;

. thevalue you want the parameter to assume.

The ILOG CPLEX Reference Manual documents the type of each parameter (i nt , doubl e,
char *) along with the symbolic constant and reference number representing the parameter.

Theroutine CPXset def aul t s() resetsall parameters (except the name of thelog file) to
their default values, including the ILOG CPLEX callback functions. This routine resets the
callback functionsto NULL. Like other Callable Library routines to manage parameters, this
one accepts an argument indicating the environment, and it returns 0 for success or a
nonzero value in case of error.

ILOG CPLEX 7.5 — USER’'S MANUAL 71

EXAMPLE:

DIETARY OPTIMIZATION

Example: Dietary Optimization

72

The optimization problem solved in this example isto compose adiet from a set of foods, so
that the nutritional requirements are satisfied and the total cost is minimized. Example
di et . c illustrates:

0 Creating aModel Row by Row
0 Creating aModel Column by Column
0 Solving the Model with CPXIpopt()

Problem Representation

The problem contains a set of foods, which are the modeling variables; a set of nutritional
requirements to be satisfied, which are the constraints, and an objective of minimizing the
total cost of the food. There are two ways to ook at this problem:

0 The problem can be modeled in arow-wise fashion, by entering the variables first and
then adding the constraints on the variables and the objective function.

0 The problem can be modeled in a column-wise fashion, by constructing a series of empty
constraints and then inserting the variables into the constraints and the objective
function.

Thediet problem is equally suited for both kinds of modeling. In fact you can even mix both
approachesin the same program: If a new food product, you can create anew variablefor it,
regardless of how the model was originally built. Similarly, is anew nutrient is discovered,
you can add a new constraint for it.

Creating a Model Row by Row

You walk into the store and compile alist of foods that are offered. For each food, you store
the price per unit and the amount they have in stock. For some foods that you particularly

like, you also set a minimum amount you would like to use in your diet. Then for each of the
foods you create a modeling variable to represent the quantity to be purchased for your diet.

Now you get amedical book and look up which nutrients are known and relevant for you.
For each nutrient, you note the minimum and maximum amount that should be found in your
diet. Also, you go through the list of foods and determine how much afood item will
contribute for each nutrient. This gives you one constraint per nutrient, which can naturally
be represented as a range constraint

nutrminfi] <= sumj (nutrper[i][j] * buy[j]) <= nutrmax[i]

wherei represents the number of the nutrient under consideration, nut rmi n[i] and
nut r max[i] the minimum and maximum amount of nutrienti and nutrper[i][j] the
amount of nutrienti infood j . Finally, you specify your objective function

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

sense = sumj (cost[j] * buy[j])
Thisway to create the model is shown in function popul at ebyr owin exampledi et . c.

Creating a Model Column by Column

You start with the medical book where you compile the list of nutrients that you want to
ensure are properly represented in your diet. For each of the nutrients you create an empty
constraint

nutrmn[i] <= ... <= nutrmax[i]

where. . . isleft to befilled once you walk into your store. Also you setup the objective
function to minimize the cost. We will refer to constrainti asrng[i] andtotheobjectiveas
cost.

Now you walk into the store and, for each food, you check its price and nutritional content.
With this data you create a variable representing the amount you want to buy of the food
type and ingtall it in the objective function and constraints. That is you create the following
column:

C
B
=
!
—
>
o
O
o
)
o
)

cost(foodCost[j]) "+" "sumi" (rng[i](nutrper[i]l[j]))

where the notation "+" and "sunt' indicates that you “add” the new variablej to the
objective cost and constraints range[i]. The value in parenthesisis the linear coefficient
that is used for the new variable). We chose this notation for its similarity to the syntax
actually used in the Callable Library as demonstrated in function popul at ebycol umm in
exampledi et . c.

Program Description

All definitions needed for a CPLEX Callable Library program areimported by including file
<i | cpl ex/ cpl ex. h> at the beginning of the program. After a number of lines that
establish the calling sequences for the routines that to be used, the program named mai n
begins by checking for correct command line arguments, printing a usage reminder and
exiting in case of errors.

Next, the data defining the problem are read from afile specified in the command line at run
time. The details of thisare handled in the routiner eaddat a. In thisfile, cost, lower bound,
and upper bound are specified for each type of food; then minimum and maximum levels of
several nutrients needed in the diet are specified; finally, atable giving levels of each nutrient
found in each unit of food is given. The result of a successful call to thisroutineistwo
variables &nf oods and &nnut r containing the number of foods and nutrients in the data
file, arrays &cost , & b, &ub containing the information on the foods, arrays &ut r ni n,
&nut r max containing nutritional requirements for the proposed diet, and array &nut r per
containing the nutritional value of the foods.

ILOG CPLEX 7.5 — USER’'S MANUAL 73

EXAMPLE:

74

DIETARY OPTIMIZATION

Preparations to build and solve the model with CPLEX begin with the call to
CPXopenCPLEX() . This establishes a CPLEX environment in which to contain the LP
problem, and succeeds only if avalid CPLEX licenseis found.

After some callsto set parameters, one to control the output that comesto the user’s
terminal, and the other to turn on data checking for debugging purposes, a problem object is
initialized through the call to CPXcr eat epr ob() . This call returns a pointer to an empty
problem object, which now can be populated with data.

Two alternative approaches to filling this problem object are implemented in this program,
popul at ebyr ow() and popul at ebycol um(), and which oneis executed is determined
at run time by a calling parameter on the command line. The routine popul at ebyr ow()
operates by first defining all the columns through a call to CPXnewcol s() and then
repeatedly calls CPXaddr ows() to enter the data of the constraints. The routine

popul at ebycol um() takesthe complementary approach of establishing all the rowsfirst
with acall to CPXnewr ows() and then sequentially adds the column data by calsto
CPXaddcol s() .

Solving the Model with CPXIpopt()

The model is at this point ready to be solved, and this is accomplished through the call to
CPXI popt (), which by default uses the dual simplex optimizer.

After this, the program finishes by making acall to CPXsol uti on() to obtainthevaluesfor
each variable in this optimal solution, printing these values, and writing the problem to a
disk file (for possible evaluation by the user) viathe call to CPXwri t epr ob() . It then
terminates after freeing all the arrays that have been allocated along the way.

Complete Program

The complete program, di et . c, appears here or online in the standard distribution.
#i ncl ude <il cpl ex/cpl ex. h>

/* Bring in the declarations for the string functions */

#i ncl ude <stdlib. h>
#i ncl ude <string. h>

/* Include declaration for functions at end of program*/

#i fndef CPX_PROTOTYPE_M N

static int
readarray (FILE *in, int *nump, double **data_p),
readdat a (char* file,
int *nfoods_p, double **cost_p, double **Ib_p, double
**ub_p’

int *nnutr_p, double **nutrm n_p, double **nutrmax_p,
doubl e ***nutrper_p),

popul at ebyr ow (CPXENVptr env, CPXLPptr Ip,
int nfoods, double *cost, double *Ib, double *ub,

ILOG CPLEX 7.5 — USER’'S MANUAL

popul at ebycol um

static void
free_and_nul
usage

#el se

static int
readarray
readdat a
popul at ebyr ow
popul at ebycol um

static void
free_and_nul
usage

#endi f

#i f ndef
int
main (int argc,
#el se

int

mai n (argc
int argc;
char **argv;
#endi f

{

argv)

int status = 0;
int

int

doubl e
doubl e
doubl e
doubl e
doubl e
doubl e

nf oods;
nnutr;
*cost

*I'b

*ub
*nutrmn
*nut r max
**nut r per

doubl e
doubl e
int

*x = NULL
obj val
sol stat;

<functionhead>

int nnutr, double *nutrmnin,
doubl e **nutrper),
(CPXENVptr env, CPXLPptr |p,
int nfoods, double *cost, double *|Ib, double *ub
int nnutr, double *nutrm n, double *nutrnmax
doubl e **nutrper);

doubl e *nut r max

(char **ptr),
(char *prognane)

C
B
=
!
—
>
o
O
o
)
o
®

CPX_PROTOTYPE_M N

char **argv)

NULL;
NULL;
NULL;
NULL;
NULL;
NULL;

/* Declare and all ocate space for the variables and arrays where we

will store the optimzation results including the status, objective
val ue, variabl e val ues, dual values, row slacks and variabl e
reduced costs. */

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

ILOG CPLEX 7.5

USER'S MANUAL 75

EXAMPLE: DIETARY OPTIMIZATION

int i, j;
/* Check the command |ine argunents */

if ((argc !'=3) |
(argv[1][0] !="-") [
(strchr (“rc”, argv[1][1]) == NULL)) {
usage (argv[O0]);
got o TERM NATE;

}

status = readdata(argv[2], &nfoods, &cost, & b, &ub,
&nnutr, &nutrmn, &utrmax, &nutrper);
if (status) goto TERM NATE;

/* Initialize the CPLEX environnment */
env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, “Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

}

/* Turn on data checking */
status = CPXsetintparam (env, CPX_PARAM DATACHECK, CPX_QON);
if (status) {

fprintf (stderr,

“Failure to turn on data checking, error %l.\n”, status);
got o TERM NATE;

}

/* Oreate the problem */
Ip = CPXcreateprob (env, &status, “diet”);

/* A returned pointer of NULL may nean that not enough nenory

76 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

was avail able or there was sone other problem |In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. */

if (Ip==NJL) {
fprintf (stderr, “Failed to create LP.\n");
got o TERM NATE;

}

/* Now popul ate the problemwi th the data. For building |arge
probl ens, consider setting the row, colum and nonzero growh
paraneters before performng this task. */

switch (argv[1][1]) {
case ‘r’':
status = popul at ebyrow (env, |p, nfoods, cost, |b, ub,
nnutr, nutrmn, nutrmax, nutrper);
br eak;
case ‘c':
status = popul at ebycol um (env, |p, nfoods, cost, |b, ub,
nnutr, nutrmn, nutrmax, nutrper);

br eak;

}

if (status) {
fprintf (stderr, “Failed to popul ate problem\n”);
got o TERM NATE;

}

/* Qptimze the problemand obtain solution. */

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

}

X = (double *) malloc (nfoods * sizeof (double));

if (x == NuL) {
status = CPXERR_NO_MEMCRY;
fprintf (stderr, “Could not allocate nmenory for solution.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, &solstat, &objval, x, NULL, NULL, NULL);

if (status) {
fprintf (stderr, “Failed to obtain solution.\n");
got o TERM NATE;

}
/* Wite the output to the screen. */

printf (“\nSolution status = %l\n”, solstat);
printf (“Solution value = %\n\n”, objval);

for (j =0; j < nfoods; j++)

ILOG CPLEX 7.5 — USER’'S MANUAL

C
B
=
!
—
>
o
O
o
)
o
)

77

EXAMPLE:

78

DIETARY OPTIMIZATION

printf (“Food %: Buy = %0f\n", j, x[j]);
/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, Ip, “diet.lp”, NULL);

if (status) {
fprintf (stderr, “Failed to wite LP to disk.\n");
got o TERM NATE;

}

TERM NATE:
/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NUL) {
status = CPXfreeprob (env, &p);
if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}
}
/* Free up the CPLEX environnent, if necessary */
if (env != NULL) {

status = CPXcl oseCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status >0) {
char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “%”, errmsg);

}
}
if (nutrper !'= NULL) {
for (i =0; i <nnutr; ++i) {
free_and_null ((char **) &nutrper[i]));
}
}

free_and_nul |
free_and_nul |

((char **) &nutrper);

((char **) &cost);
free_and_null ((char **) &cost);
free_and_null ((char **) & b);
free_and_null ((char **) &ub);
free_and_null ((char **) &nutrmnmin);
free_and_null ((char **) &nutrnax);
free_and_null ((char **) &x);

return (status);

} /* END main */

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

#i f ndef CPX_PROTOTYPE_M N

static int

popul at ebyr ow (CPXENVptr env, CPXLPptr |p,
i nt nfoods, double *cost, double *Ib, double *ub,
int nnutr, double *nutrmn, double *nutrnax,
doubl e **nutr per)

#el se

static int

popul at ebyrow (env, |p)

CPXENVptr env;

CPXLPpt r | p;

int nf oods;
doubl e *cost ;
doubl e *| b;
doubl e *ub;
int nnutr; %
doubl e *nutrmn; =1
doubl e *nut r max; «Q
doubl e **nut r per ; =
#endi f @
{ 0O
int status = 0; 9:’
)
int zero = 0; %
int *ind = NULL;
int i, j;

ind = (int*) malloc(nfoods * sizeof(int));
if (ind == NULL) {

status = CPXERR_NO_MEMCRY;

got o TERM NATE;

}
for (j =0; j <nfoods; j++) ind[j] =j;

status = CPXnewcols (env, |Ip, nfoods, cost, Ib, ub, NULL, NULL);
if (status) goto TERM NATE;

for (i =0; i <nnutr; i++) {
double rng = nutrmax[i] - nutrmin[i];
status = CPXaddrows (env, Ip, 0, 1, nfoods, nutrnin+i, “R’,

&ero, ind, nutrper[i], NULL, NULL);
if (status) goto TERM NATE;

status = CPXchgrngval (env, Ip, 1, &, &ng);

if (status) goto TERM NATE;
}

TERM NATE:
free_and_null ((char **)& nd);
return (status);

} /* END popul at ebyrow */

ILOG CPLEX 7.5 — USER’'S MANUAL 79

EXAMPLE: DIETARY OPTIMIZATION

/* To popul ate by colum, we first create the rows, and then add the
colums. */

#i fndef CPX_PROTOTYPE_M N

static int

popul at ebycol uim (CPXENVptr env, CPXLPptr |p,
int nfoods, double *cost, double *Ib, double *ub,
int nnutr, double *nutrmn, doubl e *nutrnax,
doubl e **nutr per)

#el se

static int

popul at ebycol um (env, |p)

CPXENVptr env;

CPXLPpt r | p;

int nf oods;

doubl e *cost;

doubl e *| b;

doubl e *ub;

int nnutr;

doubl e *nutrmn;

doubl e *nut r max;

doubl e **nut r per;

#endi f

{
int status = 0;
int i, j;
int zero = 0;
int *ind = NULL;
doubl e *val = NULL;
char *sense = NULL;
doubl e *rngval = NULL;

sense = (char*)mall oc(nnutr * sizeof(char));
if (sense == NULL) {

status = CPXERR_NO_MEMCRY;

got o TERM NATE;

}
for (i =0; i <nnutr; i++) sense[i] = ‘R ;
val = (doubl e*)nall oc(nnutr * sizeof (double));
if (val == NULL) {
status = CPXERR_NO_MEMORY;
got o TERM NATE;
}
rngval = (doubl e*)mall oc(nnutr * sizeof (double));
if (rngval == NULL) {
status = CPXERR_NO_MEMCRY;
got o TERM NATE;
}
for (i =0; i <nnutr; i++) rngval[i] = nutrmex[i] - nutrmn[i];

ind = (int*) malloc(nfoods * sizeof(int));
if (ind == NULL) {

status = CPXERR_NO_MEMCRY;

got o TERM NATE;

80 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

}

for (i =0; i <nnutr; i++) ind[i] =i;

status = CPXnewows (env, Ip, nnutr, nutrmn, sense, rngval, NULL);
if (status) goto TERM NATE;

for (j =0; j < nfoods; ++) {
for (i =0; i <nnutr; i++) val[i] = nutrper[i][j];

status = CPXaddcols (env, Ip, 1, nnutr, cost+j, &zero,
ind, val, |b+j, ub+j, NULL);
if (status) goto TERM NATE;
}

TERM NATE:
free_and_null ((char **)&sense);
free_and_null ((char **)&r ngval);
free_and_null ((char **)& nd);
free_and_null ((char **)&val);
return (status);

} /* END popul at ebycol um */

C
B
=
!
—
>
o
O
o
)
o
)

/* This sinple routine frees up the pointer *ptr, and sets *ptr to NULL */

#i f ndef CPX_PROTOTYPE_M N
static void

free_and_null (char **ptr)
#el se

static void

free_and_null (ptr)

char **ptr;

#endi f

if (*ptr I'= NULL) {
free (*ptr);
*ptr = NULL;

}
} /* END free_and_null */

#i fndef CPX_PROTOTYPE_M N
static void

usage (char *prognane)

#el se

static void

usage (prognane)

char *prognang;

#endi f

{
fprintf (stderr,”Usage: % -X <datafile>\n", prognane);
fprintf (stderr,” where X is one of the follow ng options: \n");
fprintf (stderr,” r generate problemby rown”);
fprintf (stderr,” c generate probl em by col um\n”);

ILOG CPLEX 7.5 — USER’'S MANUAL 81

EXAMPLE: DIETARY OPTIMIZATION

fprintf (stderr,” Exiting...\n");
} /* END usage */

#i f ndef CPX_PROTOTYPE_M N
static int
readarray (FILE *in, int *nump, double **data_p)
#el se
static int
readarray()
FILE *in;
int *num_p;
doubl e **dat a_p;
#endi f
{
int status = 0;
int max, num

char ch;
num = 0;
max = 10;

data_p = (doubl e)mal |l oc(nmax * sizeof (double));
if (*data_p == NULL) {

status = CPXERR_NO_MEMCRY;

got o TERM NATE;

}
for (;;) {
fscanf (in, “%", &ch);
if (ch=="\t"|]|
ch == “\r" ||
ch ==+ "*]
ch == "\n’) conti nue;
if (ch=="[") break;
status = -1;
got o TERM NATE;
}
for(;;) {

int read;
read = fscanf (in, “%qg”, (*data_p)+nun;
if (read == 0) {

status = -1;

got o TERM NATE;

}
numt+;
if (num>= max) {
max *= 2;
data_p = (doubl e)realloc(*data_p, max * sizeof (double));
if (*data_p == NULL) {
status = CPXERR_NO MEMCRY;
got o TERM NATE;
}
}
do {
fscanf (in, “9%”, &ch);
} while (ch =="* * || ch=="\n" || ch=="\t" || ch=="\r");

82 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

if (ch=="") break;
elseif (ch!=",") {
status = -1;

got o TERM NATE;

}
}

*nump = num
TERM NATE:
return (status);

} /* END readarray */

#i f ndef CPX_PROTOTYPE_M N

static int

readdata (char* file,
int *nfoods_p, double **cost_p, double **Ib_p, double **ub_p,
int *nnutr_p, double **nutrm n_p, double **nutrnmax_p,
doubl e ***nutrper_p)

#el se

static int

readdata ()

char *file;

int *nf oods_p;

doubl e **cost _p;

doubl e **| b_p;

doubl e **ub_p;

i nt *nnutr_p;

doubl e **nutrm n_p;

doubl e **nut r max_p;

doubl e ***nutr per_p;

#endi f

{

int status = 0;

int ncost, nlb, nub;
int nmin, nmax;

int i, n
char ch;
FILE *in = NULL;

in = fopen(file, “r”);
if (in==NJLL) {
status = -1,
got o TERM NATE;

}

if ((status = readarray(in, &ncost, cost_p))) goto TERM NATE;
if ((status = readarray(in, &nlb, I'b_p))) goto TERM NATE;
if ((status = readarray(in, &nub, ub_p))) goto TERM NATE;
if (ncost '=nlb || ncost !'=nub) {

status = -1;
got o TERM NATE;

ILOG CPLEX 7.5 — USER’'S MANUAL 83

C
B
=
!
—
>
o
O
o
)
o
)

EXAMPLE:

84

DIETARY OPTIMIZATION

*nf oods_p = ncost;

if ((status = readarray(in, &mnin, nutrmn_p))) goto TERM NATE;
if ((status = readarray(in, &max, nutrnmax_p))) goto TERM NATE;
if (nmax !'=nmn) {

status = -1;

got o TERM NATE;
}

*nnutr_p = nnin;

*nutrper_p = (doubl e**)nmall oc(nnin * sizeof (doubl e*));
if (*nutrper_p == NULL) {

status = CPXERR_NO_MEMCRY;

got o TERM NATE;
}

for (;;) {
fscanf (in, “%", &ch);
if (ch=="\t"|[]
ch == "\r’ ||
ch ==""* ||
ch == "\n’) continue;
if (ch=="[") break;
status = -1;
got o TERM NATE;
}
for (i =0; i <nnmin; i++) {
if ((status = readarray(in, &, (*nutrper_p)+i))) goto TERM NATE;
if (n!=ncost) {
status = -1;
got o TERM NATE;
}
fscanf (in, “%", &ch);
if (i <nmn-1 && ch!="*,"){
status = -1;
got o TERM NATE;
}
}
if (cht="1"){
status = -1;
got o TERM NATE;

TERM NATE:
return (status);

} /* END readdata */

ILOG CPLEX 7.5 — USER’'S MANUAL

Further Programming Considerations

This chapter offers suggestions for improving application development and debugging
completed applications. It includes sections on:

0 Tipsfor Successful Application Development
0 Using the Interactive Optimizer for Debugging

T
c
-

o=

(¢’)

S5 =

=T

@ O

= Q

23

© 3

> 3

>

(o]

0 Eliminating Common Programming Errors

Tips for Successful Application Development

In the previous chapters, we indicated briefly the minimal steps to use the Component
Librariesin an application. This section offers guidelines for successfully developing an
application that exploitsthe ILOG CPLEX Component Libraries according to those steps.
These guidelines aim to help you minimize devel opment time and maximize application
performance.

Prototype the Model

We strongly recommend that you begin by creating a small-scale version of the model for
your problem. (There are modeling languages, such as ILOG OPL, that may be helpful to

ILOG CPLEX 7.5 — USER’'S MANUAL 85

TIPS FOR SUCCESSFUL APPLICATION DEVELOPMENT

86

you for this task.) This prototype model can serve as atest-bed for your application and a
point of reference during development.

Identify Routines to Use

If you decompose your application into manageable components, you can more easily
identify the tools you must complete the application. Part of this decomposition consists of
determining which methods or routines from the ILOG CPLEX Component Libraries your
application will call. Such a decomposition will assist you in testing for completeness; it
may also help you isolate troublesome areas of the application during development; and it
will aid you in measuring how much work is already done and how much remains.

Test Interactively

The Interactive Optimizer in ILOG CPLEX (introduced in the manual ILOG CPLEX
Getting Started) offers areliable meansto test the ILOG CPLEX component of your
application interactively, particularly if you have prototyped your problem model.
Interactive testing through the Interactive Optimizer can also help you identify precisely
which methods or routines from the Component Libraries your application needs.
Additionaly, interactive testing early in development may also uncover any flawsin
procedural logic before they entail costly coding efforts.

Most importantly, optimization commands in the I nteractive Optimizer perform exactly like
optimization routines in the Component Libraries. In other words, the command pr i mopt
works just the same way as the method

Il oCpl ex: : set Root Al gori thn(I1oCpl ex:: Prinmal) and the routine

CPXpri nmopt () ; likewise, the command t r anopt works like the method

Il oCpl ex: : set Root Al gori t hn(11 oCpl ex: : Dual) and the routine CPXdual opt () ;
net opt workslikel | oCpl ex: : set Root Al gorithn(11oCpl ex::Barrier) and
CPXhybnet opt (), and so forth. Consequently, any discrepancy between the Interactive
Optimizer and the Component Libraries routines with respect to the solutions found,
memory used, or time taken indicates a problem in the logic of the application calling the
routines.

Assemble Data Efficiently

Asweindicated in previous chapters, ILOG CPLEX offers several ways of putting datainto
your problem or (more formally) populating the problem object. You must decide which
approach is best adapted to your application, based on your knowledge of the problem data
and application specifications. These considerations may enter into your decision:

0O If your Callable Library application builds the arrays of the problem in memory and then
calls CPXcopyl p() , it avoids time-consuming reads from disk files.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

0 Inthe Callable Library, using the routines CPXnewcol s() , CPXnew ows(),
CPXaddcol s(), CPXaddr ows(), and CPXchgcoef | i st () may help you build
modular code that will be more easily modified and maintained than code that assembles
all problem datain one step.

0 An application that reads an MPS or LP file may reduce the coding effort but, on the
other hand, may increase runtime and disk space requirements.

Keep in mind that if an application using the ILOG CPLEX Component Libraries reads
an MPS or LP file, then some other program must generate that formatted file. The data
structures used to generate the file can almost certainly be used directly to build the
problem-populating arrays for CPXcopy! p() or CPXaddr ows () —achoice resulting in
less coding and a faster, more efficient application.

In short, formatted files are useful for prototyping your application. For production
purposes, assembly of data arrays in memory may be a better enhancement.

Test Data

CPLEX provides the CPX_PARAM DATACHECK parameter to check the correctness of data
used in the CPXcopy... (), CPXread...(), and CPXchg... () functions. When this
parameter is set, CPLEX will perform extra checks to determine that array arguments
contain valid values, such asindices within range, no duplicate entries, valid row sense
indicators and valid numerical values. These checks can be very useful during development,
but are probably too costly for deployed applications. The checks are similar to but not as
extensive as those performed by the CPXcheck. . . () functions. When the parameter is not
set (the default), only simple error checks are performed, for example, checking for the
existence of the environment.

T
c
-

o=

(¢’)

S5 =

=T

@ O

= Q

23

© 3

@ 3

>

(o]

Choose an Optimizer

After you have instantiated and popul ated a problem object, you solveit by calling one of
the optimizers availablein the ILOG CPLEX Component Libraries. Your choice of
optimizer depends on the type of problem:

0 If the problemisalinear program, use the linear optimizer.

0 If the linear program includes alarge embedded network, consider using the network
optimizer.

O If the problem includes integer variables (MIP), use the branch & cut agorithm
(implemented in the separately licensed ILOG CPLEX Mixed Integer Optimizer).

O If the problem is a convex quadratic program (QP), use the primal-dual barrier method
(implemented in the separately licensed ILOG CPLEX Barrier Optimizer).

ILOG CPLEX 7.5 — USER’'S MANUAL 87

TIPS FOR SUCCESSFUL APPLICATION DEVELOPMENT

88

In ILOG CPLEX, there are many possible parameter settings for each optimizer. Generally,
the default parameter settings are best for linear programming problems, but Chapter 4,
Solving Linear Programming Problems, offers more detail about improving performance
with respect to LP problems. Integer programming problems are more sensitive to specific
parameter settings, so you may need to experiment with them, as suggested in Chapter 5,
Solving Mixed Integer Programming Problems.

In either case, the Interactive Optimizer in ILOG CPLEX letsyou try different parameter
settings and different optimizers to determine the best optimization procedure for your
particular application. From what you learn by experimenting with commandsin the

I nteractive Optimizer, you can more readily choose which method or routine from the
Component Librariesto call in your application.

Program with a View toward Maintenance and Modifications

Good programming practices save development time and make an application easier to
understand and modify. Tips for Successful Application Development on page 85 describes
our programming conventionsin developing ILOG CPLEX. In addition, we recommend the
following programming practices.

Comment Your Code

Comments, written in mixed upper- and lower-case, will prove useful to you at alater date
when you stare at code written months ago and try to figure out what it does. They will also
prove useful to our staff, should you need to send us your application for technical support.

Write Readable Code

Follow conventional formatting practices so that your code will be easier to read, both for
you and for others. Use fewer than 80 characters per line. Put each statement on a separate
line. Use white space (for example, space, blank lines, tabs) to distinguish logical blocks of
code. Display compound loops with clearly indented bodies. Display i f statements like
combs; that is, we recommend that you aligni f and el se in the same column and then
indent the corresponding block. Likewise, we recommend that you indent the body of
compound statements, loops, and other structures distinctly from their corresponding
headers and closing brackets. Use uniform indentation (for example, three to five spaces).
Put at least one space before and after each relational operator, as well as before and after
each binary plus (+) and minus (-). Use space as you do in normal English.

Avoid Side-Effects

We recommend that you minimize side-effects by avoiding expressionsthat produce internal
effects. In C, for example, try to avoid expressions of thisform:

a=c¢+ (d= e*f); [/* A BAD IDEA */

where the expression assigns the values of d and a.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Don’t Change Argument Values

A user-defined function should not change the values of its arguments. Do not use an
argument to afunction on the left-hand side of an assignment statement in that function.
Since C and C++ pass arguments by value, treat the arguments strictly as values; do not
change them inside a function.

Declare the Type of Return Values

Always declare the return type of functions explicitly. Though C has a*“ historical tradition”
of making the default return type of all functionsi nt , we recommend that you explicitly
declare the return type of functions that return avalue, and use voi d for procedures that do
not return avalue.

Manage the Flow of Your Code

Use only oner et ur n statement in any function. Limit your use of br eak statementsto the
inside of swi t ch statements. In C, do not use cont i nue statements and limit your use of
got o statements to exit conditions that branch to the end of a function. Handle error
conditionsin C++ with at ry/cat ch block and in C with agot o statement that transfers
control to the end of the function so that your functions have only one exit point.

In other words, control the flow of your functions so that each block has one entry point and
one exit point. This“one way in, one way out” rule makes code easier to read and debug.

Localize Variables

Avoid global variables at all costs. Code that exploits global variables invariably produces
side-effects which in turn make the code harder to debug. Global variables also set up
peculiar reactions that make it difficult to include your code successfully within other
applications. Also global variables preclude multithreading unless you invoke locking
techniques. As an alternative to global variables, pass arguments down from one function to
another.

T
c
-

o=

(¢’)

S5 =

=T

@ O

= Q

23

© 3

> 3

>

(o]

Name Your Constants

Scalars—both numbers and characters—that remain constant throughout your application
should be named. For example, if your application includes a value such as 1000, create a
constant with the #def i ne statement to nameit. If the value ever changes in the future, its
occurrences will be easy to find and modify as a named constant.

Choose Clarity First, Efficiency Later

Codefirst for clarity. Get your code working accurately first so that you maintain a good
understanding of what it is doing. Then, once it works correctly, look for opportunities to
improve performance.

ILOG CPLEX 7.5 — USER’'S MANUAL 89

USING THE INTERACTIVE OPTIMIZER FOR DEBUGGING

Debug Effectively

Using Diagnostic Routines for Debugging on page 66, contains tips and guidelines for
debugging an application that uses the ILOG CPLEX Callable Library. In that context, we
recommend using a symbolic debugger as well as other widely available development tools
to produce error-free code.

Test Correctness, Test Performance

Even a program that has been carefully debugged so that it runs correctly may still contain
errors or “features’ that inhibit its performance with respect to execution speed, memory
use, and so forth. Just asthe ILOG CPLEX Interactive Optimizer can aid in your tests for
correctness, it can also help you improve performance. It uses the same routines as the
Component Libraries; consequently, it requires the same amount of time to solve a problem
created by a callable-library application. We recommend that you use CPXwr i t epr ob(),
specifying afiletype of SAV, to create a binary representation of the problem object of your
application. Then read that representation into the I nteractive Optimizer, and solveit there. If
your application sets parameters, use the same settingsin the Interactive Optimizer. If you
find that your application takes significantly longer to solve the problem than does the
Interactive Optimizer, then you can probably improve the performance of your application.
In such a case, look closely at issues like memory fragmentation, unnecessary compiler
options, inappropriate linker options, and programming practices that slow the application
without causing incorrect results (such as operations within aloop that should be outside the
loop).

Using the Interactive Optimizer for Debugging

90

The ILOG CPLEX Interactive Optimizer distributed with the Component Libraries offersa
way to see what is going on within the ILOG CPLEX-part of your application when you
observe peculiar behavior in your optimization application. The commands of the
Interactive Optimizer correspond exactly to routines of the Component Libraries, so
anomalies due to the ILOG CPLEX-part of your application will manifest themselvesin the
Interactive Optimizer as well, and contrariwise, if the Interactive Optimizer behaves
appropriately on your problem, you can be reasonably sure that routines you call in your
application from the Component Libraries work in the same appropriate way.

The first step in using the Interactive Optimizer for debugging isto write aversion of the
problem from the application into aformatted file that can then be loaded into the Interactive
Optimizer. To do so, insert a call to the method | | oCpl ex: : export Model () or tothe
routine CPXwr i t epr ob() intoyour application. Usethat call to create afile, whether an LP,
SAV, or MPS formatted problem file. (Understanding File Formats on page 264 briefly

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

describes these file formats.) Then read that file into the Interactive Optimizer and optimize
the problem there.

Note that MPS, LP and SAV files have differences that influence how to interpret the results
of the Interactive Optimizer for debugging. SAV files contain the exact binary representation
of the problem as it appearsin your program, while MPS and L P files are text files
containing possibly less precision for numeric data. And, unless every variable appears on
the objective function, CPLEX will probably order the variables differently when it reads the
problem from an LP file than from an MPS or SAV file. With thisin mind, SAV filesarethe
most useful for debugging using the Interactive Optimizer, followed by MPS files, then
finally LPfiles, in terms of the change in behavior you might see by use of explicit files. On
the other hand, L P files are often quite hel pful when you want to examine the problem, more
so than as input for the Interactive Optimizer. Furthermore, try solving both the SAV and
MPS files of the same problem using the Interactive Optimizer. Different results may
provide additional insight into the source of the difficulty. In particular, use the following

guidelines with respect to reproducing your program’s behavior in the Interactive Optimizer.

1. If you can reproduce the behavior with a SAV file, but not with an MPSfile, this suggests
corruption or errorsin the problem data arrays. Use the diagnostic routines in the source
file check.c to track down the problem.

2. 1f you can reproduce the behavior in neither the SAV file nor the MPSfile, the most
likely cause of the problem isthat your program has some sort of memory error. Memory
debugging tools such as Purify or Insure will usually find such problems quickly.

3. When solving a problem in MPS or LP format, if the Interactive Optimizer issues a
message about a segmentation fault or similar ungraceful interruption and exits, contact
CPLEX technical support to arrange for transferring the problem file. The Interactive
Optimizer should never exit with a system interrupt when solving a problem from a text
file, even if the program that created the file has errors. Such cases are extremely rare.

If the peculiar behavior that you observed in your application persistsin the Interactive
Optimizer, then you must examine the LP or MPS or SAV problem file to determine whether
the problem file actually defines the problem you intended. If it does not define the problem
you intended to optimize, then the problem is being passed incorrectly from your application
to ILOG CPLEX, so you need to look at that part of your application.

Make sure the problem statistics and matrix coefficients indicated by the Interactive
Optimizer match the ones for the intended model in your application. Use the Interactive
Optimizer command di spl ay probl em st at s to verify that the size of the problem, the
sense of the constraints, and the types of variables match your expectations. For example, if
your model is supposed to contain only general integer variables, but the Interactive
Optimizer indicates the presence of binary variables, check the type variable passed to the
constructor of the variable (Concert Technology Library) or check the specification of the
ct ype array and the routine CPXcopyct ype() (Callable Library). You can aso examine

ILOG CPLEX 7.5 — USER’'S MANUAL 91

T
c
-~

o=

(¢’)

S5 =

=T

@ O

= Q

23

© 3

@ 3

>

(o]

ELIMINATING COMMON PROGRAMMING ERRORS

the matrix, objective, and right-hand side coefficientsin an LP or MPSfile to seeif they are
consistent with the values you expect in the model.

Eliminating Common Programming Errors

92

We hope this section serves as a checklist to help you eliminate common pitfalls from your
application.

Check Your Include Files

Make sure that the header filei | ocpl ex. h (Concert Technology Library) or cpl ex. h
(Cdllable Library) isincluded at the top of your application sourcefile. If that fileis not
included, then compile-time, linking, or runtime errors may occur.

Clean House and Try Again

Remove all object files, recompile, and relink your application.

Read Your Messages

ILOG CPLEX detects many different kinds of errors and generates exception, warnings, or
error messages about them.

To query exceptions in the Concert Technology Library, use the methods:

Ilolnt IloCplex::Exception::getStatus() const;
const char* || oException::get Message() const;

To view warnings and error messages in the Callable Library, you must direct them either to
your screen or to alog file.

0O Todirect all messagesto your screen, use the routine CPXset i nt par an() to set the
parameter CPX_PARAM SCRI ND.

0O Todirect all messagesto alog file, use the routine CPXset | ogfil e().

Check Return Values

Most methods and routines of the Component Libraries return avalue that indicates whether
the routine failed, where it failed, and why it failed. This return value can help you isolate
the point in your application where an error occurs.

If areturn value indicates failure, always check whether sufficient memory is available.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Beware of Numbering Conventions

If you delete a portion of a problem, ILOG CPLEX changes not only the dimensions but
aso the indices of the problem. If your application continues to use the former dimensions
and indices, errors will occur. Therefore, in parts of your application that del ete portions of
the problem, look carefully at how dimensions and indices are represented.

Make Local Variables Temporarily Global

If you are having difficulty tracking down the source of an anomaly in the heap, try making
certain local variables temporarily global. This debugging trick may prove useful after your
application reads in a problem file or modifies a problem object. If application behavior
changes when you change alocal variable to global, then you may get from it a better idea of
the source of the anomaly.

Solve the Problem You Intended

Your application may inadvertently alter the problem and thus produce unexpected results.
To check whether your application is solving the problem you intended, use the Interactive
Optimizer, as we suggest on page 90, and the diagnostic routines, as described on page 66.

You should not ignore any ILOG CPLEX warning message in this situation either, so read
your messages, as we suggest on page 92.

If you are working in the Interactive Optimizer, we also suggest that you use the command
di spl ay probl em st at s to check the problem dimensions.

T
c
-

o=

(¢’)

S5 =

=T

@ O

= Q

23

© 3

> 3

>

(o]

Special Considerations for Fortran

Check row and column indices. Fortran conventionally numbers from one (1), whereas C
and C++ number from zero (0). This difference in numbering conventions can lead to
unexpected results with regard to row and column indices when your application modifies a
problem or exercises query routines.

We strongly recommend that you use the Fortran declaration | MPLI CI T NONE to help you
detect any unintended type conversions, as such inadvertent conversions frequently lead to
strange application behavior.

Tell Us

Finaly, if your problem remains unsolved by ILOG CPLEX, or if you believe you have
discovered abug in ILOG CPLEX, we would appreciate hearing from you about it.

ILOG CPLEX 7.5 — USER’'S MANUAL 93

TELL Us

94 ILOG CPLEX 7.5 — USER’'S MANUAL

Solving Linear Programming Problems

This chapter tells you more about solving linear programs with ILOG CPLEX using the LP
optimizers. It contains sections on:

Choosing an Optimizer for Your LP Problem

Tuning LP Performance

Diagnosing Performance Problems

Diagnosing LP Infeasibility

Example: Using a Starting Basisin an LP Problem

Solving LP Problems with the Barrier Optimizer

Interpreting the Barrier Log File

Understanding Solution Quality from the Barrier LP Optimizer

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Overcoming Numerical Difficulties

g
g
g
g
g
g
g
g
g
00 Diagnosing Barrier Optimizer Infeasibility

ILOG CPLEX 7.5 — USER’'S MANUAL 95

CHOOSING AN OPTIMIZER FOR YOUR LP PROBLEM

Choosing an Optimizer for Your LP Problem

Aswe explainin Using the Callable Library in an Application on page 57, to exploit

ILOG CPLEX inyour own application, you must first create alLOG CPLEX environment,
instantiate a problem object, and populate the problem object with data. Asyour next step,
you call alLOG CPLEX optimizer. ILOG CPLEX offers several different optimizersfor
linear programming problems. All of these optimizers are available to you in three forms, as
you see in Table 4.1: as commands for you to issue in the Interactive Optimizer, as
parameters to select in the Concert Technology Library, and as routines to call from the
Cadllable Library in your own application.

Table4.1 Optimizersfor Linear Programming (LP) Problems

Optimizer Igct)i:?:;:/de Concert Technology Library Parameter g?lllj?it:: HIZIER
automatically chosen |optim ze |cplex. sol ve() CPXI popt ()
primal simplex pri mopt cpl ex. set Root Al gori thn(11 oCpl ex: : Prinmal) CPXpr i mopt ()
dual simplex t ranopt cpl ex. set Root Al gori t hn(|1 oCpl ex: : Dual) CPXdual opt ()
network net opt cpl ex. set Root Al gori t hn(11 oCpl ex: : Net wor kDual) CPXhybnet opt ()
primal-dual barrier bar opt cpl ex. set Root Al gorithn(I1oCpl ex::BarrierPrimal) |CPXhybbaropt()

96

Automatic Selection of Best Optimizer

If you are unfamiliar with the relationship between problem characteristics and optimizer
speed, you may prefer to let CPLEX determine the best algorithm to use to optimize your
problem. Most models are well solved by the default optimizer selected by calling

optimi ze/cpl ex. sol ve() / CPXI popt () . We recommend using this option unless you
wish to tune performance.

Under defaults, CPLEX solves an LP model using the dual simplex method. The primal
simplex method is available as an aternative optimizer and can be faster on some models. To
determine whether your problem contains a network, try the network optimizer as well.
Additionaly, if you are licensed to use it, we suggest that you try the primal-dual
logarithmic barrier optimizer (that is, the ILOG CPLEX Barrier Optimizer); it is applicable
to very large, sparse problems, particularly those with a block-matrix structure. The
following sections say more about each linear optimizer.

Dual Simplex Optimizer

If you are familiar with linear programming theory, then you recall that alinear
programming problem can be stated in primal or dual form, and an optimal solution (if one

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

exists) of the dual has a direct relationship to an optimal solution of the primal model.
CPLEX's Dual Simplex Optimizer makes use of this relationship, but till reports the
solution in terms of the primal model. Recent computational advancesin the dual simplex
method have made it the first choice for optimizing alinear programming problem. Thisis
especially true for primal-degenerate problems with little variability in the right-hand side
coefficients but significant variability in the cost coefficients.

Primal Simplex Optimizer

CPLEX’s Primal Simplex Optimizer also can effectively solve awide variety of linear
programming problems with its default parameter settings. With recent advancesin the dual
simplex method, the primal simplex method is no longer the obvious choice for afirst try at
optimizing alinear programming problem. However, this method will sometimes work
better on problems where the number of variables exceeds the number of constraints
significantly, or on problems that exhibit little variability in the cost coefficients. Few
problem exhibit poor numerical performance in both primal and dual form. Consequently, if
you have a problem where numerical difficulties occur when you use the dual simplex
optimizer, then consider using the primal simplex optimizer instead.

Network Optimizer

If amajor part of your problem is structured as a network, then the ILOG CPLEX Network
Optimizer may have a positive impact on performance. The ILOG CPLEX Network
Optimizer recognizes a special class of linear programming problems with network
structure. It uses highly efficient network algorithms on that part of the problem to find a
solution from which it then constructs an advanced basis for the rest of your problem. From
this advanced basis, ILOG CPLEX then iterates to find a solution to the full problem.
Chapter 6, Solving Network-Flow Problems describes this optimizer in greater detail.

Primal-Dual Barrier Optimizer

The optional primal-dual ILOG CPLEX Barrier Optimizer requires a special license. It
offers an approach completely different from the primal and dual simplex optimizers and
from the network optimizer—an approach particularly efficient in large, sparse problems
(for example, more than 1000 rows or columns, relatively few nonzeros per column).
Solving LP Problems with the Barrier Optimizer on page 129 explains this optimizer in
greater detail in the context of linear programming, and Chapter 7, Solving Quadratic
Programming Problems covers this optimizer in the context of convex quadratic objective
functions.

ILOG CPLEX 7.5 — USER’'S MANUAL 97

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

TUNING LP PERFORMANCE

Tuning LP Performance

98

Each of the optimizers availablein CPLEX is designed to solve most linear programming
problems under its default parameter settings. However, characteristics of your particular
problem may make performance tuning advantageous.

Asafirst step in tuning performance, try the different CPLEX optimizers, as we suggested
in Choosing an Optimizer for Your LP Problem on page 96. The following sections describe
other features of CPLEX to consider in tuning the performance of your application:

0 Preprocessing: Presolver and Aggregator
0 Preprocessing: Explicitly Solving the Dual
0 Starting from an Advanced Basis

0 Adjusting Parameters

Preprocessing: Presolver and Aggregator

By default, the preprocessing parameters of ILOG CPLEX areon. That is, ILOG CPLEX
customarily preprocesses problems by simplifying constraints, reducing problem size, and
eliminating redundancy. Its presolver triesto reduce the size of a problem by decreasing the
number of rows and columns. Its aggregator tries to eliminate variables and rows through
substitution. However, if your problem contains no redundancy nor other opportunities for
simplification, then it will solve faster and it will save memory if you turn off the
preprocessing in ILOG CPLEX.

0 Thiscommand turns off preprocessing in the Interactive Optimizer:
set preprocessing presolve no

0O Toturn off preprocessing when using the Component Libraries, set the parameter
Il oCpl ex:: Prel nd or CPX_PARAM PREI ND.

By default, ILOG CPLEX will not invoke the aggregator when the presolver is off.

Rarely, a preprocessed problem may prove more difficult than the original. In such cases, to
improve performance, turn the presolver off or aternatively, specify a particular number of
passes for the presolver to make through the model by setting the nunpass parameter to a
positive number.

Occasionally, the substitutions that the ILOG CPLEX aggregator makes will increase matrix
density and thus make each iteration too expensive to be advantageous. In such cases, lower
the preprocessing fill parameter; it limits substitutions to minimize the addition of nonzeros.
ILOG CPLEX will make fewer substitutions as a consequence, and the resulting problem
will be less dense.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

To lower the preprocessing fill parameter:

0O Inthe Interactive Optimizer, use the command set preprocessing fill witha
lower value than its default value of 10.

0O When using the Component Libraries, set the parameter | | oCpl ex: : AggFi | | or
CPX_PARAM AGGFI LL.

By default, ILOG CPLEX appliesits aggregator once when it is using the LP optimizers.
For some problems, it may be worthwhile to apply the aggregator more than once. In those
cases, set the preprocessing aggregator parameter to a positive integer value.

To apply the aggregator more than once:

0 Inthe Interactive Optimizer, use the command, for example:
set preprocessing aggregator 2.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Aggl nd or
CPX_PARAM AGG ND.

In cases where your model may be primal infeasible or unbounded (dua infeasible), it may
be desirable to control the kinds of presolve reductions which CPLEX makes, in order to
make your analysis of the outcome of optimization more certain. These reductions can be
divided into two types. primal reductions and dual reductions. A reduction is primal if it
doesn't depend on the objective function. A reductionisdual if it doesn't depend on the right
hand side. By default, presolve performs both kinds of reductions.

Under the default, if the presolved model isinfeasible, we know only that the original model
is either infeasible or unbounded. But if presolve has performed only primal reductions and
the presolved model isinfeasible, then we have full assurance that the original model is also
infeasible. Similarly if presolve has performed only dual reductions and the presolved model
is unbounded, then the original model is verified as unbounded.

To control the dual reductions performed by presolve. In the:

O Interactive Optimizer, the command: set preprocessi ng reduce
0 Concert Technology Library, the parameter: I | oCpl ex: : Reduce

0 CallableLibrary, the parameter: CPX_PARAM REDUCE

can be used to select one of the following values:

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0=no prima and dual reductions
1 =only primal reductions

2 = only dua reductions

3 = both primal and dual reductions

If your problem includes network structures, there is a possibility that ILOG CPLEX
preprocessing may eliminate those structures from your model. For that reason, you should
consider turning off preprocessing before you invoke the network optimizer.

ILOG CPLEX 7.5 — USER’'S MANUAL 99

TUNING LP PERFORMANCE

100

The dependency checker strengthens problem reduction by detecting redundant constraints.
Such reductions are usually most effective with the primal-dual barrier optimizer.

To turn on the dependency checker to strengthen reduction:
0O Inthe Interactive Optimizer, usethe command set preprocessi ng dependency 1.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Depl nd or
CPX_PARAM DEPI ND.

To reduce memory usage, presolve may compress the arrays used for storage of the original
model. This can make more memory available for the use of the optimizer that the user has
called. Under default settings CPLEX automatically determines, from characteristics of the
model, whether to perform this compression. You can explicitly turn this feature on or off by
setting the presolve compression parameter to -1 for off, or 1 for on; the default of O
specifies the automatic setting.

To set presolve compression:
0O Inthe Interactive Optimizer enter the command set pr epr ocessi ng conpr ess.

0 Inthe Component Libraries use the parameter | | oCpl ex: : Pr eConpr ess or
CPX_PARAM PRECOVPRESS.

In case you want to save the preprocessed version of aproblem:

O Inthe Interactive Optimizer, use thewr i t e command with the pr e file typeto savea
binary copy to afile.

0 When using the Component Libraries, use the method | | oCpl ex: : export Mbdel () or
the routine CPXwr i t epr ob() .

Preprocessing: Explicitly Solving the Dual

In some situations, such as amodel that has many more rows than columns, it may be
advantageous to have ILOG CPLEX treat your model internally as the dual formulation.
Then you can call any of the linear optimizers on that formulation, and again CPLEX will
report results in terms of your origina formulation.

To treat your model internally asthe dual formulation and have ILOG CPLEX return results
in terms of your original formulation:

In the Interactive Optimizer, follow these steps:

1. If you have previously turned off the presolver, turn it back on. (The default setting of the
presolver ison. Dua preprocessing isignored when the presolver is off.) Turn the
presolver on with the command set pr eprocessi ng presol ve yes.

2. Cdl for dual simplex preprocessing with the command set pr eprocessi ng dual 1.

3. Then solve with any of CPLEX’slinear optimizers.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Similarly, when using the Component Libraries, in your own application, you can first turn
on the preprocessing presolver, request dual preprocessing and call the default optimizer,
likethis:

cpl ex. set Paran(|1 oCpl ex:: Prelnd, Il oTrue);
cpl ex. set Paran{ |1 oCpl ex: : PreDual , IloTrue);
cpl ex. sol ve();

CPXset i nt par am(env, CPX_PARAM PREI ND, CPX_ON);
CPXset i nt paran(env, CPX_PARAM PREDUAL, CPX_ON);
CPXI popt (env, |p);

The default setting of this parameter is 0, meaning "automatic”. With this setting, CPLEX
examines the problem and decides whether solving the primal or dual problem will be more
efficient. Currently, CPLEX performs this assessment only with the barrier optimizer. For all
other optimizers the default setting causes CPLEX to solve the primal problem.

It isworth emphasizing, to those versed in linear programming theory, that the decision to
solve the dual formulation of your model, viathis preprocessing parameter, is entirely
separate from the choice of using the dual simplex method versusthe primal simplex method
to perform the optimization. Although these features have theoretical underpinningsin
common, it is not redundant to consider (for example) solving the dual formulation of your
model with the dual simplex method; thiswould not simply result in the same computational
path as solving the primal formulation with the primal simplex method. In the case aready
mentioned of a model with many more rows than columns, either simplex variant may
perform much better when solving the dual formulation, due to the smaller basis matrix that
is maintained.

Starting from an Advanced Basis

As another performance improvement, consider starting from an advanced basis. (The
primal simplex, dual simplex, and network optimizers can start optimizing from an advanced
basisif oneis available; the primal-dua ILOG CPLEX Barrier Optimizer does not start
from an advanced basis.) If you can start from an advanced basis, then ILOG CPLEX may
iterate significantly fewer times, particularly if your current problem is similar to a problem
that you have solved previously. Even when problems are different, starting from an
advanced basis may dtill help performance. For example, if your current problemis
composed of several smaller problems, an optimal basis from one of the component
problems may significantly speed up solution of the larger problem.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Notethat if you are solving a sequence of LP modelsall within one run, by entering amodel,
solving it, modifying the model, and solving it again, under default settings the advanced
basiswill be used for the last of these steps automatically.

In other cases, you can communicate the final basis from one run to the start of the next by
first saving the basis to afile before the end of the first run.

ILOG CPLEX 7.5 — USER’'S MANUAL 101

TUNING LP PERFORMANCE

102

To save the basis of the optimized problem to afile:

0 When using the Component Libraries to optimize your problem, save by means of the
method cpl ex. export Model () or the routine CPXwr i t eprob() .

0O Inthe Interactive Optimizer, use thew i t e command with the file type sav.
To read an advanced basis from a saved file into the Interactive Optimizer, follow these
steps:

1. Assure that the advanced start parameter is set to its default value of yes:
set advance y.

2. Read thefile with ther ead command, and specify the file type as bas.

Similarly, when using the Component Libraries, set the parameter | | oCpl ex: : Advl nd or
CPX_PARAM _ADVI ND, to 1 and call the method I | ocpl ex. i nport Model () or theroutine
CPXr eadcopybase() .

Adjusting Parameters

After you have chosen the right optimizer and, if appropriate, you have started from an
advanced basis, you may want to experiment with different parameter settings to improve
performance. This section describes parameters that are most likely to affect performance of
linear optimizers. (Managing Parameters from the Callable Library on page 70, discusses
parameter settingsin general.)

To adjust parameters:
O Inthe Interactive Optimizer, usethe set command.
0 For the Concert Technology Library, use the method cpl ex. set Par an() .

0 For the Callable Library, the routine CPXset i nt par an() adjustsinteger-valued
parameters, and the routine CPXset dbl par an() adjusts parameters that take values of
typedoubl e.

For more performance tuning suggestions, refer to the following sections:
Memory Management and Problem Growth

Pricing Algorithm and Gradient Parameters

Scaling

Refactoring Frequency

0 Crash

If you find better parameter settings for your problem, save them in a parameter
specification file, as explained in Saving a Parameter Specification File on page 339.

O
O
O
O

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Memory Management and Problem Growth

Asit works, ILOG CPLEX automatically handles memory allocations to accommodate the
increasing size of a problem object as you modify the object through calls to modification
routinesin the Callable Library. The sequence of Callable Library routines that you invoke
can influence the efficiency of memory management. Aswe show in Table 2.2 on page 62,
you can control how ILOG CPLEX allocates memory through its growth parameters.

How you should set these growth parameters depends on how you build the problem object
in aparticular application. CPLEX will automatically manage (viaa cache) most changesto
prevent inefficiency when the changes will require memory re-allocations. If an application
buildsalarge problem in small increments, you still may be able to improve performance by
increasing the growth parameters. In particular, if you know reasonably accurate upper
bounds on the number of rows, columns, and nonzeros, and you are building alarge problem
in very small pieces with many calls to the problem modification routines, then setting the
growth parameters to the known upper bounds will make ILOG CPLEX perform the fewest
alocations and may thus improve performance of the problem modification routines.
However, overly generous upper bounds may result in excessive memory use.

Pricing Algorithm and Gradient Parameters

The gradient parametersin Table 4.2 determine the pricing algorithms that ILOG CPLEX
uses. Consequently, these are the algorithmic parameters most likely to affect simplex linear
programming performance. The default setting of these gradient parameters choose the
pricing algorithmsthat are best for most problems. Moreover, the enhancements of thelinear
algebraroutines that the ILOG CPLEX Simplex Optimizers use affect the various gradient
options differently. When you are selecting aternate pricing algorithms, look at these values
as guides:

O overal solution time;

0O number of Phase | iterations (that is, iterations before ILOG CPLEX arrives at aninitial
feasible solution);

O total number of iterations.

ILOG CPLEX recordsthose valuesin thelog file asit works. (By default, ILOG CPLEX
creates the log file in the directory where it is executing, and it names the log file

cpl ex. | og. Managing Log Files: the Log File Parameter on page 269 tells you how to
rename and relocate thislog file.)

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

If the number of iterations required to solve your problem is approximately the same as the
number of rows, then you are doing well. If the number of iterationsis three times greater

ILOG CPLEX 7.5 — USER’'S MANUAL 103

TUNING LP PERFORMANCE

104

than the number of rows (or more), then it may very well be possible to improve
performance by changing the gradient parameter that determines the pricing algorithm.

Table 4.2 Gradient Parameters

Parameter Primal Simplex Dual Simplex

In Interactive Optimizer si npl ex pgradi ent |[sinplex dgradient
In Concert Technology Library IloCplex::PPrilnd |[IloCplex::DPrilnd
In Callable Library CPX_PARAM PPRI | ND | CPX_PARAM DPRI | ND

Table 4.3 lists acceptable values for the primal simplex pricing parameter. Table 4.4 lists
values for dual simplex pricing parameter. The following paragraphs explain those values
and offer advice about them.

Table 4.3 Primal Smplex Pricing Algorithm Values

Symbolic constant value Integer value |Pricing algorithm

CPX_PPRI | ND_PARTI AL -1 reduced-cost pricing

CPX_PPRI | ND_AUTO 0 (default) [hybrid reduced-cost and devex pricing

CPX_PPRI | ND_DEVEX 1 devex pricing

CPX_PPRI | ND_STEEP 2 steepest-edge pricing

CPX_PPRI | ND_STEEPQSTART |3 steepest-edge pricing with initial slack
norms

CPX_PPRI | ND_FULL 4 full pricing

For the primal simplex pricing parameter, reduced-cost pricing (- 1 or

CPX_PPRI | ND_PARTI AL) is less computationally expensive, so you may prefer it for small
or relatively easy problems. Try reduced-cost pricing, and watch for faster solution times.
Also if your problem is dense (say, 20-30 nonzeros per column), reduced-cost pricing may
be advantageous.

In contrast, if you have a more difficult problem taking many iterations to complete Phase |
and arrive at an initial solution, then you should consider devex pricing (1 or

CPX_PPRI | ND_DEVEX) . Devex pricing benefits more from ILOG CPLEX linear algebra
enhancements than does partia pricing, so it may be an attractive aternative to partial
pricing in some problems. Do not use devex pricing, however, if your problem has many
columns and relatively few rows. In such a case, the number of calculations required per
iteration will usually be disadvantageous.

If you observe that devex pricing helps, then you might also consider steepest-edge pricing
(2 or CPX_PPRI | ND_STEEP). Steepest-edge pricing is computationally more expensive than

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

reduced-cost pricing, but it may produce the best results on difficult problems. One way of
reducing the computational intensity of steepest-edge pricing is to choose steepest-edge
pricing with initial slack norms (3 or CPX_PPRI | ND_STEEPQSTART).

For the dual simplex pricing parameter, the default value selects steepest-edge pricing with
unit initial norms. That is, the default (0 or CPX_DPRI | ND_AUTO) automatically selects 4 or
CPX_DPRI | ND_STEEPQSTART. You may a so consider starting with exact norms, since
ILOG CPLEX has reduced the cost of initializing norms.

Table4.4 Dual Smplex Pricing Algorithm Values

Symbolic Constant Values Integer Value |Pricing Algorithm

CPX_DPRI | ND_AUTO 0 (default) ILOG CPLEX determines
automatically

CPX_DPRI | ND_FULL 1 standard dual pricing

CPX_DPRI | ND_STEEP steepest-edge pricing

CPX_DPRI | ND_FULL_STEEP steepest-edge pricing in slack space

Al W[DN

CPX_DPRI | ND_STEEPQSTART steepest-edge pricing with unit initial

norms

Scaling

Poorly conditioned problems (that is, problemsin which even minor changesin dataresultin
major changes in solutions) may benefit from an alternative scaling method. Scaling
attemptsto rectify poorly conditioned problems by multiplying rows or columns by
constants without changing the fundamental sense of the problem. If you observe that your
problem has difficulty staying feasible during its solution, then you should consider an
alternative scaling method.

To set an aternative scaling method:

0 Inthe Interactive Optimizer, use the command set read scal e i, substituting O
(zero) fori to achieve equilibration scaling or 1 (one) for i to achieve more aggressive
scaling. In certain cases, it may be advantageous to turn off scaling. To do soin the
Interactive Optimizer, use the command set read scal e -1.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0 When using the Component Libraries, set the parameter | | oCpl ex: : Scal nd or
CPX_PARAM_SCAI ND. to the appropriate value.

Refactoring Frequency

ILOG CPLEX dynamically determines the frequency at which the basis of a problemis
refactored in order to maximize iteration speed. On very large problems, ILOG CPLEX
refactors the basis matrix infrequently. Very rarely should you consider increasing the
number of iterations between refactoring. In such cases:

ILOG CPLEX 7.5 — USER’'S MANUAL 105

TUNING LP PERFORMANCE

106

O Inthe Interactive Optimizer, use the command set si npl ex refactor i
(substituting a positive integer for i) to change the refactoring frequency.

0 When using the Component Libraries, set the parameter I | oCpl ex: : Rel nv or
CPX_PARAM REI NV.

Crash

It is possible to control the way ILOG CPLEX builds an initial basis through the crash
parameter.

In the primal simplex optimizer, the crash setting determines how ILOG CPLEX usesthe
coefficients of the objective function to select the starting basis. If itsvalueis 1 (one),
ILOG CPLEX uses the coefficientsto guideits selection; if its valueis 0 (zero),

ILOG CPLEX ignoresthe coefficients; if itsvalueis- 1, ILOG CPLEX does the opposite of
what the coefficients normally suggest. These values are summarized in Table 4.5.

Table 4.5 Values of the ILOG CPLEX Crash Parameter for the Primal Simplex Optimizer

Value |[Meaning for Primal Simplex Optimizer

1 Use coefficients of objective function to select basis
0 Ignore coefficients of objective function
-1 Select basis contrary to one indicated by coefficients of objective function

In the dual simplex optimizer, the crash setting determines whether ILOG CPLEX
aggressively uses primal variables instead of slack variables whileit still triesto preserve as
much dual feasibility aspossible. If itsvalueis 1 (one), it indicates the default starting basis;
if itsvalueis 0 (zero) or - 1, it indicates an aggressive starting basis. These values are
summarized in Table 4.6.

Table 4.6 Values of the ILOG CPLEX Crash Parameter for the Dual Smplex Optimizer

Value |[Meaning for Dual Simplex Optimizer

1 Use default starting basis
0 Use an aggressive starting basis
-1 Use an aggressive starting basis

To control theway ILOG CPLEX builds an initial basis:

O Inthe Interactive Optimizer, use the command set si npl ex crash i (substituting 1,
0,or-1fori).

0 When using the Component Libraries, set the parameter I | oCpl ex: : Cral nd or
CPX_PARAM CRAI ND.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Diagnosing Performance Problems

While some linear programming models offer opportunities for performance tuning, others,
unfortunately, entail outright performance problems that require diagnosis and correction.
This section indicates how to diagnose and correct such performance problems as lack of
memory or numerical difficulties.

Lack of Memory

To sustain computational speed, ILOG CPLEX triesto use only available physical memory,
rather than virtual memory or paged memory. Even if your problem datafit in memory,
ILOG CPLEX will need still more memory to optimize the problem. When ILOG CPLEX
recognizes that only limited memory is available, it automatically makes algorithmic
adjustments to compensate. These adjustments almost always reduce optimization speed. If
you detect when these automatic adjustments occur, then you can determine when you need
to add additional memory to your computer to sustain computational speed for your
particular problem. The following sections offer guidance for you to detect these automatic
adjustments.

Warning Messages

In certain cases, ILOG CPLEX issues awarning message when it cannot perform an
operation, but it continues to work on the problem. Other ILOG CPLEX messages indicate
that ILOG CPLEX is compressing the problem to conserve memory. These warnings mean
that ILOG CPLEX findsinsufficient memory available, so it isfollowing an alternate—Iless
desirable—path to a solution. If you provide more memory, ILOG CPLEX will return to the
best path toward a solution.

Paging Virtual Memory

On systems such as UNIX, where there is virtual memory management, if you observe
paging of memory to disk, then your application isincurring a performance penalty. If you
increase available memory in such a case, performance will speed up dramatically.

Refactoring Frequency and Memory Requirements

ThelLOG CPLEX Primal and Dua Simplex Optimizers refactor the problem basis at arate
determined by the refactor parameter:

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0O sinplex refactor intheInteractive Optimizer,
0O 11 0oCpl ex: : Rel nv inthe Concert Technology Library, and
00 CPX_PARAM REI NV inthe Callable Library.

The longer ILOG CPLEX works between refactoring, the greater the amount of memory it
needs for each iteration. Consequently, one way of conserving memory isto increase the
refactoring frequency by decreasing the interval between refactorings. In fact, if little

ILOG CPLEX 7.5 — USER’'S MANUAL 107

DIAGNOSING PERFORMANCE PROBLEMS

108

memory isavailabletoit, ILOG CPLEX will automatically decrease the refactoring interval
in order to use less memory at each iteration.

Sincerefactoring is an expensive operation, decreasing the refactoring interval will generally
slow performance. You can tell whether performance is being degraded in thisway by
checking the iteration log file.

In an extreme case, lack of memory may force ILOG CPLEX to refactor at every iteration,
and the impact on performance will be dramatic. If you provide more memory in such a
situation, the benefit will be tremendous.

Preprocessing and Memory Requirements

By default, the ILOG CPLEX presolver and aggregator are active. That is, ILOG CPLEX
automatically preprocesses your problem before optimizing, and this preprocessing requires
memory. If memory is extremely tight, consider turning off preprocessing.

To turn off preprocessing:
0O Inthe Interactive Optimizer, use the command set pr eprocessi ng presolve 0.

0 When using the Component Libraries, set the parameter I | oCpl ex: : Prel nd or
CPX_PARAM PREI ND.

Numerical Difficulties

ILOG CPLEX isdesigned to handle the numerical difficulties of linear programming
automatically. In this context, numerical difficulties mean such phenomena as repeated
occurrence of singularities, little or no progress toward realizing the objective function
value, little or no progressin scaled infeasibility, repeated problem perturbations, repeated
occurrences of the problem becoming infeasible. While ILOG CPLEX will usually achieve
an optimal solution in spite of these difficulties, you can help it do so more efficiently. This
section describes situations in which you can help.

Some problems will not be solvable even after you take the measures we suggest. Such
problems are so poorly conditioned that their optimal solutions are beyond the numerical
precision of your computer.

Numerically Sensitive Data

There is no absolute link between the form of datain a model and the numerical difficulty
the problem poses. Nevertheless, certain choicesin how you present the datato CPLEX can
have an adverse effect.

Placing large upper bounds (say, in the neighborhood of 1€” to 1e*?) on individual variables
can cause difficulty during Presolve. If you intend for such large bounds to mean “no bound
isredly in effect” it is better to simply not include such bounds in the first place.

Large coefficients anywhere in the model can likewise cause trouble at various pointsin the
solution process. Even if the coefficients are of more modest size, awide variation (say, six

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

or more orders of magnitude) in coefficients found in the objective function or right hand
side, or in any given row or column of the matrix, can cause difficulty either in Presolve
when it makes substitutions, or in the optimizer routines, particularly the barrier optimizer,
as convergence is approached.

A related source of difficulty isthe form of rounding when fractions are represented as
decimals; expressing 1/3 as .33333333 on a computer that in principle computes values to
about 16 digits can introduce an apparent “exact” value that will be treated as given but may
not represent what you intend. This difficulty is compounded if similar or related values are
represented a little differently elsewhere in the model. The underlying principle behind all
these cautionsisthat “information” contained down in the 8th or 10th decimal place of data
needs to convey actual meaning or the optimizer may start to draw false conclusions.

Measuring Problem Sensitivity with Basis Condition Number

I11-conditioned matrices are sensitive to minute changesin problem data. That is, in such
problems, small changes in data can lead to very large changesin the reported problem
solution. ILOG CPLEX provides abasis condition number to measure the sensitivity of a
linear system to the problem data. You might also think of the basis condition number asthe
number of placesin precision that can be lost.

For example, if the basis condition number at optimality is 1e'3, then achangein asingle
matrix coefficient in the thirteenth place may dramatically alter the solution. Furthermore,
since many computers provide about 16 places of accuracy in double precision, only three
accurate places are left in such a solution. Even if an answer is obtained, perhaps only the
first three significant digits are reliable.

Because of this effective loss of precision for matrices with high basis condition numbers,
ILOG CPLEX may be unable to select an optimal basis. In other words, a high basis
condition number can make it impossible to find a solution.

O Inthe Interactive Optimizer, use the command di spl ay sol uti on kappa inorder to
see the basis condition number of aresident basis matrix.

O Inthe Concert Technology Library, use the method
cpl ex.getQuality(lloCplex::Kappa).

0 Inthe Calable Library, use the routine CPXget dbl qual i t y() to access the condition
number in the double-precision variable dval ue, likethis:

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

status = CPXgetdbl quality(env, |p, &dval ue, CPX_KAPPA);

Repeated Singularities

Whenever ILOG CPLEX encounters a singularity, it removes a column from the current
basis and proceeds with its work. ILOG CPLEX reports such actions to the log file (by
default) and to the screen (if you are working in the Interactive Optimizer or if the message-
to-screen indicator CPX_PARAM SCRI NDis set to 1 (one)). Onceit finds an optimal solution
under these conditions, ILOG CPLEX will then re-include the discarded column to be sure

ILOG CPLEX 7.5 — USER’'S MANUAL 109

DIAGNOSING PERFORMANCE PROBLEMS

110

that no better solution is available. If no better objective value can be obtained, then the
problem has been solved. Otherwise, ILOG CPLEX continues its work until it reaches
optimality.

Occasionally, new singularities occur, or the same singularities recur. ILOG CPLEX
observes alimit on the number of singularities it tolerates. By default, the limit is ten. After
encountering ten singularities, ILOG CPLEX will save in memory the best factorable basis
found so far and stop its solution process. You may want to save this basisto afile for later
use.

To change the number of singularitiesthat ILOG CPLEX tolerates:

0O Inthe Interactive Optimizer, use the command
set sinplex linmts singularity i, substitutinganon-negative valuefori .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Si ngLi mor
CPX_PARAM SI NGLI M

To save the best factorable basis found so far in the Interactive Optimizer, usethewri t e
command with the file type sav. When using the Component Libraries, use the method
cpl ex. export Model () or the routine CPXwr i t eprob() .

If ILOG CPLEX encounters repeated singularities in your problem, you may want to try
aternative scaling on the problem (rather than simply increasing ILOG CPLEX tolerance
for singularities). Scaling on page 105 explains how to try alternative scaling.

If alternate scaling does not help, ancther tactic to try isto increase the Markowitz tolerance.
The Markowitz tolerance controls the kinds of pivots permitted. If you set it near its
maximum value of 0. 99999, it may make iterations slower but more numerically stable.
Inability to Stay Feasible on page 111 shows how to change the Markowitz tolerance.

If none of these ideas help, you may need to ater the model of your problem. Consider
removing the offending variables manually from your model, and review the model to find
other ways to represent the functions of those variables.

Stalling Due to Degeneracy

Highly degenerate linear programs tend to stall optimization progressin the primal and dual
simplex optimizers. When stalling occurs with the primal simplex optimizer, ILOG CPLEX
automatically perturbs the variable bounds; when stalling occurs with the dual simplex
optimizer, ILOG CPLEX perturbs the objective function.

In either case, perturbation creates a different but closely related problem. Once
ILOG CPLEX has solved the perturbed problem, it removes the perturbation by resetting
problem datato their original values.

If ILOG CPLEX automatically perturbs your problem early in the solution process, you
should consider starting the solution process yourself with a perturbation. (Starting in this
way will save the time that would be wasted if you first allowed optimization to stall and
then let ILOG CPLEX perturb the problem automatically.)

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

To start perturbation yourself:

0O Inthe Interactive Optimizer, use the command set si npl ex perturbation vy i
where thefirst option, y, indicates yes and the second option, i , (which you fill inwith a
value appropriate for your problem) indicates how much perturbation to introduce.

0 When using the Component Libraries set the parameter | | oCpl ex: : Per | nd or
CPX_PARAM PERI ND to turn on perturbation from the start, and set the parameter
I'1 oCpl ex: : EpPer or CPX_PARAM EPPER to any positive value greater than 1e®.

If you observe that your problem has been perturbed more than once, then consider whether
the simplex perturbation-limit parameter istoo large. The perturbation-limit parameter
determines the number of iterations ILOG CPLEX tries before it assumes the problem has
stalled. At its default value, 0 (zero), ILOG CPLEX determines internally how many
iterations to perform before declaring a stall. If you set this parameter to some other
nonnegative integer, then ILOG CPLEX uses that limit to determine when a problem has
stalled. If you reduce the perturbation-limit parameter, you may be able to reduce the
number of times the problem is necessarily perturbed.

To reduce the simplex perturbation-limit parameter:

0 Inthe Interactive Optimizer, use the command
set sinplex limts perturbation i, substitutingasmaller valuefori .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Per Li mor
CPX_PARAM PERLI M

Inability to Stay Feasible

If a problem repeatedly becomesinfeasiblein Phase Il (that is, after ILOG CPLEX has
achieved afeasible solution), then numerical difficulties may be occurring. It may help to
increase the Markowitz tolerance in such a case. By default, itsvalue is 0. 01, and suitable
valuesrange from 0. 0001 to 0. 99999.

To increase Markowitz tolerance:

0 Inthe Interactive Optimizer, use the command
set sinplex tol erances markow tz n, substituting agreater valuefor n.

0 When using the Component Libraries set the parameter | | oCpl ex: : EpM k or
CPX_PARAM EPMRK.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Sometimes dow progressin Phase | (the period when ILOG CPLEX calculates the first
feasible solution) is due to similar numerical difficulties, less obvious because feasibility is
not gained and lost. In the progress reported in the log file, an increase in the printed sum of
infeasibilities may be a symptom of this case. If so, it may be worth while to set a higher
Markowitz tolerance, just as in the more obvious case of numerical difficultiesin Phasell.

ILOG CPLEX 7.5 — USER’'S MANUAL 111

DIAGNOSING LP INFEASIBILITY

Diagnosing LP Infeasibility

112

ILOG CPLEX reports statistics about any problem that it optimizes. For infeasible solutions,
it reports values that you can analyze to determine where your problem formulation proved
infeasible. In certain situations, you can then alter your problem formulation or change
ILOG CPLEX parameters to achieve a satisfactory solution. This section explains how to
analyze such reports and indicates steps to take to alter your problem formulation or to
change ILOG CPLEX parameters.

0 Whenthe ILOG CPLEX Primal Simplex Optimizer terminates with an infeasible basic
solution, it calculates dual variables and reduced costs relative to the Phase | objective;
that is, relative to the infeasibility function. The Phase | objective function depends on
the current basis. Consequently, if you use the primal simplex optimizer with various
parameter settings, an infeasible problem will produce different objective values and
different solutions.

0 Whenthe CPLEX Dual Simplex Optimizer terminates and reports an unbounded
solution, then the origina problem is infeasible. When the dual simplex optimizer
terminates and reports an infeasible problem, the original problem is either infeasible,
too, or unbounded.

Table 4.7 summarizes these implications.
Table4.7 Implications of Dual Solutions for Primal Formulations

If the dual is | Then the primal is

unbounded infeasible

infeasible either infeasible or unbounded

The Effect of Preprocessing on Feasibility

CPLEX preprocessing may declare amodel infeasible before the sel ected optimization
algorithm begins. This saves considerable execution time in most cases. It isimportant,
when this is the outcome, to understand that there are two classes of reductions performed
by the preprocessor.

Reductions that are independent of the objective function are called primal reductions,
those that are independent of the right-hand side are called dual reductions. Preprocessing
operates on the assumption that the model being solved is expected by the user to be feasible
and that afinite optimal solution exists. If this assumption is false, then the model is either
infeasible or no bounded optimal solutions exist, i.e. unbounded. Since primal reductionsare
independent of the objective function, they cannot detect unboundedness, they can only
detect infeasibility. Similarly, dual reductions can only detect unboundedness.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Thus, to aid analysis of an infeasible or unbounded declaration by the preprocessor, a
parameter is provided that the user can set, so that the optimization can be rerun to assure
that the results reported by the preprocessor can be interpreted. If amodel is declared by the
preprocessor to be infeasible or unbounded and the user believesthat it might be infeasible,
the parameter | | oCpl ex: : Reduce or CPX_PARAM REDUCE

(set preprocessing reduce inthe Interactive Optimizer) can be set to 1 by the user,
and the preprocessor will only perform primal reductions. If the preprocessor still finds
inconsistency inthe model, it will be declared by the preprocessor to be infeasible, instead of
infeasible or unbounded. Similarly, setting the parameter to 2 meansthat if the preprocessor
detects unboundedness in the model, it will be declared unambiguously to be unbounded.

These parameters are intended for diagnostic use, as turning off reductions will usually have
anegativeimpact on performance of the optimization algorithmsin the normal (feasible and
bounded) case.

Coping with an Ill-Conditioned Problem or Handling Unscaled Infeasibilities

By default, ILOG CPLEX scales a problem before attempting to solve it. After it finds an
optimal solution, it then checks for any violations of optimality or feasibility in the original,
unscaled problem. If there is aviolation of reduced cost (indicating nonoptimality) or of a
bound (indicating infeasibility), ILOG CPLEX reports both the maximum scaled and
unscaled feasibility violations.

Unscaled infeasibilities are rare, but they may occur when a problem isill-conditioned. For
example, aproblem containing arow in which the coefficients have vastly different
magnitude isill-conditioned in this sense and may result in unscaled feasibilities.

It may be possible to produce a better sol ution anyway in spite of unscaled infeasibilities, or
it may be necessary for you to revise the coefficients. To determine which way to go, we
recommend these steps in such a case:

1. Usethecommanddi spl ay sol uti on qual ity intheInteractive Optimizer to locate
the infeasibilities.
2. Examine the coefficient matrix for poorly scaled rows and columns.

3. Evaluate whether you can change unnecessarily large or small coefficients.

4. Consider aternate scalings.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

You may also be able to re-optimize the problem successfully after you reduce optimality
tolerance, as explained in Maximum Reduced-Cost Infeasibility on page 114, or after you
reduce feasibility tolerance, as explained in Maximum Bound Infeasibility: Identifying
Largest Bound Violation on page 114. When you change these tolerances, ILOG CPLEX
may produce a better solution to your problem, but lowering these tol erances sometimes
produces erratic behavior or an unstable optimal basis.

ILOG CPLEX 7.5 — USER’'S MANUAL 113

DIAGNOSING LP INFEASIBILITY

114

Check the basis condition number, as explained in Measuring Problem Sensitivity with Basis
Condition Number on page 109. If the condition number isfairly low (for example, aslittle
as1e®or less), then you can be confident about the solution. If the condition number is high,
or if reducing tolerance does not help, then you must revise the problem model because the
current model may be too ill-conditioned to produce a numerically reliable result.

Interpreting Solution Statistics

By default, individual infeasibilities are written to alog file but not displayed on the screen.
To display the infeasibilities on your screen, use the command
set output logonly y cplex.!| og.

Regardless of whether a solution isinfeasible or optimal, the command

di splay sol ution quality inthelnteractive Optimizer displays the bound and
reduced-cost infeasibilities for both the scaled and unscaled problem. In fact, it displays the
following summary statistics for both the scaled and unscaled problem:

0 maximum bound infeasibility, that is, the largest bound violation;
maximum reduced-cost infeasibility;
maximum row residual;

a
a
0 maximum dual residual;

0 maximum absolute value of avariable, aslack variable, a dual variable, and a reduced
cost.

The following sections discuss these summary statistics in greater detail.

Maximum Bound Infeasibility: Identifying Largest Bound Violation

The maximum bound infeasibility identifies the largest bound violation. Thisinformation
may help you determine the cause of infeasibility in your problem. If the largest bound
violation exceeds the feasibility tolerance of your problem by only asmall amount, then you
may be able to get a feasible solution to the problem by increasing the feasibility tolerance.

0 Toincreasethe feasibility tolerance of your problem in the Interactive Optimizer, use the
commandset sinpl ex tol erances feasibility n,substitutingasmaller value
for n. Itsrangeis between 1 and 0.1. Its default value is 176,

0 To changethe infeasibility tolerance when using the Component Libraries set the
parameter | | oCpl ex: : EpRHS or CPX_PARAM EPRHS.

Maximum Reduced-Cost Infeasibility

The maximum reduced-cost infeasibility identifies avalue for the optimality tolerance that
would cause ILOG CPLEX to perform additional iterations. It refersto the infeasibility in
the dual slack associated with reduced costs. Whether ILOG CPLEX terminated with an
optimal or infeasible solution, if the maximum reduced-cost infeasibility is only slightly

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

smaller in absolute value than the optimality tolerance, then solving the problem with a
smaller optimality tolerance may result in an improvement in the objective function.

To lower the optimality tolerance in your problem in the Interactive Optimizer, use the
command set sinplex tol erances optinality n, substituting alower valuefor n.
Itsrange is between 1™ and 0.1. Its default value is 1e™%. To lower the optimality tolerance
when using the Component Libraries set the parameter | | oCpl ex: : EpOpt or
CPX_PARAM EPOPT.

Maximum Row Residual

The maximum row residual identifies the maximum constraint violation. ILOG CPLEX
Simplex Optimizers control these residuals only indirectly by applying numerically sound
methods to solvethe given linear system. When ILOG CPLEX terminates with an infeasible
solution, all infeasibilities will appear as bound violations on structural or slack variables,
not constraint violations. The maximum row residual may help you determine whether a
model of your problem is poorly scaled, or whether the final basis (whether it is optimal or
infeasible) isill-conditioned.

Maximum Dual Residual

The maximum dual residual indicates whether the current optimality tolerance is set
appropriately. If the maximum dual residual exceedsthe optimality tolerance, ILOG CPLEX
may stall before it reaches an optimal solution. In particular, if ILOG CPLEX stalls during
Phase | after almost reducing the sum of infeasibilities to 0 (zero), then you may be able to
find afeasible solution if you increase the optimality tolerance.

To increase the optimality tolerance in your problem in the Interactive Optimizer, use the
command set sinpl ex tol erances optimality n,substituting alarger value for n.
Itsrange is between 16%° and 0.1. Its default value is 1e°%8. To increase the optimality
tolerance when using the Component Libraries set the parameter | | oCpl ex: : EpQpt or
CPX_PARAM EPOPT.

Maximum Absolute Values: Detecting Ill-Conditioned Problems

When you are trying to determine whether your problem isill-conditioned, you need to
consider the following maximum absolute values, al available in the infeasibility analysis
that ILOG CPLEX provides you:

O vaiables;

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0 dlack variables;
0 dual variables;
0 reduced costs (that is, dual slack variables).

When using the Component Libraries, use the method cpl ex. get Qual i ty() or the
routine CPXget dbl qual i t y() to accessthe information provided by the command
di splay sol ution quality inthelInteractive Optimizer.

ILOG CPLEX 7.5 — USER’'S MANUAL 115

DIAGNOSING LP INFEASIBILITY

116

If you determine from this analysis that your model is indeed ill-conditioned, then you need
to reformulate it. Coping with an I11-Conditioned Problem or Handling Unscaled
Infeasibilities on page 113 outlines steps to follow in this situation.

Finding a Set of Irreducibly Inconsistent Constraints

If ILOG CPLEX reports that your problem isinfeasible, then you should invoke the

ILOG CPLEX infeasibility finder to save time and effort in the development process. This
diagnostic tool computes a set of infeasible constraints and column bounds that would be
feasible if one of them (a constraint or variable) were removed. Such a set is known as
irreducibly inconsistent.

To work, the infeasibility finder must have a problem that satisfies two conditions:
0 the problem has been optimized using the primal method or barrier with crossover, and
0 the problem has terminated with an infeasible basic solution to the primal problem.

When the ILOG CPLEX presolver detects infeasibility during preprocessing, no
optimization has yet taken place. Furthermore, since the presolver may perform many passes
on a problem, the reason that it identifies arow as infeasible may not be obvious. To run the
infeasibility finder and to see solution statistics in such a case, you should first turn off
ILOG CPLEX preprocessing before you optimize, as explained in Preprocessing: Presolver
and Aggregator on page 98, before you invoke the infeasibility finder.

Also if you are licensed to use the primal-dual ILOG CPLEX Barrier Optimizer, remember
that you may call it optionally without simplex crossover. In such acase, ILOG CPLEX will
not produce the infeasible basis that the infeasibility finder needs, so if you want to run the
infeasibility finder with the primal-dual barrier optimizer, then you must call that optimizer
with simplex crossover turned on.

Infeasibility Finder in the Interactive Optimizer

To invoke the infeasibility finder and to display part of its findingsin the Interactive
Optimizer, use the command di spl ay i i s. By default, ILOG CPLEX recordsal its
findingsin alog file. To send these findings to your screen as well, use the command
set output logonly y cplex.!|og.

You can aso write an |1S file from the Interactive Optimizer and then examine it with your
preferred text editor to see all the constraints and bounds in the irreducibly inconsistent set.

For an example of how to use the infeasibility finder and how to interpret its results, see
Example: Output from the Infeasibility Finder in the Interactive Optimizer on page 117.
Infeasibility Finder in the Component Libraries

When using the Component Libraries, to specify the infeasibility finder, set the parameter
I'l oCpl ex::11Slndor CPX_PARAM I | SI ND. Its default value of 0 (zero) invokes an
algorithm that requires minimal computation time but it may generate alarge set of

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

inconsistent constraints. Its alternative value of 1 (one) may take longer but generates a
minimal set of irreducibly inconsistent constraints. After you have specified the kind of 1S
to generate, use the method cpl ex. get | 1 S() or the routine CPXf i ndi i s() to tell

ILOG CPLEX to compute the set. Then use the method cpl ex. out () or the routines
CPXdi spl ayiis() or CPXiiswite() tooutput the resultsfor review.

Correcting Multiple Infeasibilities

Theinfeasibility finder will find only oneirreducibly inconsistent set (11S), though agiven
problem may contain many independent 11Ss. Consequently, even after you detect and
correct one such [1Sin your problem, it may still remain infeasible. In such a case, you need
to run the infeasibility finder more than once to detect those multiple causes of infeasibility
inyour problem.

Example: Output from the Infeasibility Finder in the Interactive Optimizer

After you have optimized a problem and CPLEX has terminated with a primal infeasible
basic solution, then you can invoke the CPLEX infeasibility finder on this optimized
problem and its infeasible basic solution. The ILOG CPLEX infeasibility finder will
compute an irreducibly inconsistent set (11S) of constraints and column bounds from your
problem and record this I1Sin alog file along with other useful information to help you
locate the source of infeasibility and aid you in revising or reformulating your problem
model.

If you want ILOG CPLEX to display this additional information on your screen in the
Interactive Optimizer, use the command set out put | ogonly yes. After that command,
invoke the infeasibility finder with the command di splay iis. | LOG CPLEX will
respond like this:

Starting Infeasibility Finder Algorithm..
Performing row sensitivity filter
Perform ng colum sensitivity filter

Nunber of rows in the iis: 3
Nunber of colums in the iis: 3
Nanes of rows in the iis:

NCDES (fixed)

D7 (1 ower bound)

D8 (1 ower bound)

Nanmes of colums in the iis:
T25 (upper bound)

T35 (upper bound)

T47 (upper bound)

lis Computation Tine = 0.01 sec.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Asyou can see, ILOG CPLEX states how many rows and columns comprise thellS. It also
tells the row and column names, and it identifies the bound causing the infeasibility. In this
example, all the columnsinthellS are limited by their upper bound. If you remove any of
the upper bounds on those columns, then the 11S becomes feasible. The bound information
about rowsisrealy needed only for ranged rows. In the case of ranged rows, the bound

ILOG CPLEX 7.5 — USER’'S MANUAL 117

DIAGNOSING LP INFEASIBILITY

118

indicates whether the row lies at the lower or upper end of the range of right-hand side
values. For other kinds of rows, there is only one possible right-hand side value at which the
row can lie. Greater-than constraints must lie at their lower bound. Less-than constraints
must lie at their upper bound. Equality constraints are fixed.

Example: Writing an IIS-Type File

After you have invoked the infeasibility finder with thedi spl ay iis command, if you
want additional information to determine the cause of infeasibility, usethewr i t e command
and thefiletypei i s to generate alLOG CPLEX LP format file containing each individual
constraint and bound in the 11S. You can then use the xecut e command to call an ordinary
text editor during your ILOG CPLEX session to examine the contents of that 11Sfile. It will
look something like this example:

CPLEX> wite infeas.iis

Starting Infeasibility Finder Algorithm..

Perform ng row sensitivity filter

Performng colum sensitivity filter

Irreducibly inconsistent set witten to file ‘infeas.iis’

CPLEX> xecute edit infeas.iis

Mnimze
subject to
\Rows in the iis:
NODE5: T25 + T35 - T57 - T58 =0
D7: T47 + T57 >= 20
D8: T58 >= 30
\Colums in the iis:
Bounds
T25 <= 10
T35 <= 10
T47 <= 2
\Non-iis colums intersecting iis rows:
T57 Free
T58 Free

In this example, you see that the bounds on T25 and T35 combine with the row NODES to
imply that T57 + T58 < 20. However, row D7 and the bound on T47 imply that T57 > 18.
Since row D8 requires T58 = 30, we seethat T57 + T58 = 48, so the constraints and bounds
areinfeasible. Notice that every constraint and bound contributes to this infeasibility,
according to the definition of an I1S. There are, in consequence, many different waysto
modify such a problem to make it feasible. The “right” change will depend on your
knowledge of the problem.

When ILOG CPLEX records the constraints and bounds of an IS, it also lists asfree all
columns that intersect one or more rows in the 1S but do not have boundsinthe IIS. This
portion of the file ensures that when you read the file into ILOG CPLEX, the resulting
problem satisfies the definition of an I1S. After you read in such afile, you can perform
additional problem analysis within your ILOG CPLEX session.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Example: Interpreting a Cumulative Constraint

In the example that we have been looking at, there were sufficiently few rows and column
boundsinthellSfor usto seethe cause of infeasibility at aglance. In contrast, other 11Sfiles
may contain so many rows and columns that it becomes difficult to see the cause of
infeasibility. When an 11'S contains many equality constraints and only afew bounds, for
example, this phenomenon commonly occurs. In such a situation, the equality constraints
transfer the infeasibility from one part of the model to another until eventually no more
transfers can occur. Consequently, such an 1S file will also contain a cumulative constraint
consisting of the sum of all the equality rows. This cumulative constraint can direct you
toward the cause of infeasibility, as the following sample I Sillustrates:

Mnimze
subject to
\Rows in the iis:
2: - X24 + x97 + x98 - x99 - x104 = -7758
3: - X97 + x99 + x100 - x114 - x115 =10
4: - x98 + x104 =0
10: - x105 + x107 + x108 - x109 = -151
11: - x108 + x109 + x110 - x111 = -642
12: - x101 - x102 - x110 + x111 + x112 + x113 - x117 = -2517
13: - x112 + x117 + x118 - x119 = -186
14: - x118 + x119 + x120 + x121 - x122 - x123 = -271
15: - x120 + x122 = -130
16: - x121 + x123 + x124 - x125 = -716
17: - x124 + x125 + x126 - x127 = -2627
18: - x126 + x127 + x128 - x129 = -1077
19: - x128 + x129 + x130 - x131 = -593
249: - x100 + x101 + x103 =0
251: - x113 + x114 + x116 =0

\'Sum of equality rows iniis
\' - x24 - x102 + x103 - x105 + x107 - x115 + x116 + x130 - x131 = -16668
\Colums in the iis:
Bounds
X24 <= 14434
x102
x103
x105
x107
x115
x116
x130
x131
\Non-iis colums intersecting iis rows:
X97 Free
x98 Free
x99 Free

L L T I T [T |
[eolololololoNoe)

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

End

Sincethere are 15 rowsin this 1S file, the cause of infeasibility is not immediately obvious.
However, if welook at the sum of the bounds on the columns, we see that

ILOG CPLEX 7.5 — USER’'S MANUAL 119

DIAGNOSING LP INFEASIBILITY

120

—X24 —x102 + x103 —x105 + x107 —x115 + x116 + x130 —x 131 > —14434, so it isimpossible
to satisfy the sum of equality rows. Therefore, to correct the infeasibility, we must alter one
or more of the bounds, or we must increase one or more of the right-hand side values.

Example: Setting a Time Limit on the Infeasibility Finder

The ILOG CPLEX infeasibility finder will stop when itstotal runtime exceeds the limit set
by the command set tinelinit. Theinfeasibility finder works by removing constraints
and bounds that cannot be involved in the IS, so it can provide partial information about an
[1S when it reaches its time limit. The collection of constraints and boundsiit offers then do
not strictly satisfy the definition of an 11'S. However, the collection does contain atrue I1S
within it, and frequently it provides enough information for you to diagnose the cause of
infeasibility in your problem. When it reaches the time limit, ILOG CPLEX output indicates
that it hasfound only a partia I1S. Thefollowing exampleillustratesthisidea. Init, we set a
time limit and then invoke the feasibility finder.

CPLEX> set timelimt 2
CPLEX> display iis

Starting Infeasibility Finder Al gorithm..
Performing row sensitivity filter

Infeasibility Finder A gorithmexceeded time limt.
Partial infeasibility output available.

Nurmber of rows in the (partial) iis: 101
Nunber of colums in the (partial) iis: 99

Tactics for Interpreting IS Output

The size of the IS reported by ILOG CPLEX depends on many factors in the problem
model. If an |1S contains hundreds of rows and columns, you may find it hard to determine
the cause of the infeasibility. Fortunately, there are tactics to help you interpret 1S output:

0 Consider selecting an aternative 11S algorithm. The default algorithm emphasi zes
computation speed, and it may giveriseto arelatively large I1S. If so, try setting the
i i sfind parameter to 1 (one) to invoke the alternative algorithm, and then run the
infeasibility finder again. Normally, the resulting 1S is smaller because the alternative
algorithm emphasizes finding aminimal 11S at the expense of computation speed.

0O If the problem contains equality constraints, examine the cumulative constraint
consisting of the sum of the equality rows. Aswe illustrated in one of the examples, the
cumulative constraint can simplify your interpretation of the 11S output. More generaly,
if you take other linear combinations of rowsin thellS, that may also help. For example,
if you add an equality row to an inequality row, the result may yield a simpler inequality
row.

0O Try preprocessing with the ILOG CPLEX presolver and aggregator. The presolver may
even detect infeasibility by itself. If not, running the infeasibility finder on the presolved
problem may help by reducing the problem size and removing extraneous constraints
that do not directly cause theinfeasibility but still appear inthe I1S. Similarly, running

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

the infeasibility finder on an aggregated problem may help because the aggregator
performs substitutions that may remove extraneous variables that clutter the 1S output.
More generally, if you perform substitutions, you may simplify the output so that it can
be interpreted more easily.

0 Other simplifications of the constraintsin the I|S may make it easier to interpret the |1S.
We mean such simplifications as combining variables, multiplying constraints by
constants, and rearranging sums.

Example: Using a Starting Basis in an LP Problem

This example shows you how to use a basis to start an optimization from an advanced point.

Example ilolpex6.cpp

The example, i | ol pex6. ¢, resembles one you may have studied in the manual Getting
Sarted with ILOG CPLEX; i | ol pex1. c. Thisexample differs from that earlier onein
these ways:

0 Arrays are constructed using the popul at ebyr ow method, and thus no command line
arguments are needed to select a construction method.

O Inthemai n routing, the arrayscst at andr st at set the status of the initial basis.

0 After the problem data has been copied into the problem object, the basisis copied by a
cal tocpl ex. get St at uses() .

0 After the problem has been optimized, the iteration count is printed. For the given data
and basis, the basisis optimal, so no iterations are required to optimize the problem.

The main program starts by declaring the environment and terminates by calling method
end() for the environment. The code in between is encapsulated in atry block that catches
all Concert Technology exceptions and prints them to the C++ error stream cer r. All other
exceptions are caught as well, and a simple error message is issued. Next the model object
and the cpl ex object are constructed. The function popul at ebycol unm() buildsthe
problem object and, aswe noted earlier, cpl ex. get St at uses() copiesthe advanced
starting basis.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Complete Program
The complete program, i | ol pex6. cpp, appears here or online in the standard distribution

#i ncl ude <ilcplex/ilocplex. h>
| LOSTLBEA N

static void

ILOG CPLEX 7.5 — USER’'S MANUAL 121

EXAMPLE:

122

USING A STARTING BASIS

popul at ebycol uim (11 oMbdel nodel,
i nt
nmain (int argc, char **argv)
I'l oEnv env;
try {
Il oMbdel nodel (env, “exanple”);
I'l oNunVar Array var (env);
Il oRangeArray rng(env);
popul at ebycol uim (nodel , var, rng);

I'l oCpl ex cpl ex(nodel);

I'l oOpl ex: : Basi sStat usArray cstat(env),
cstat.
cstat.
cstat.

rstat
rstat

cpl ex.
cpl ex.

cpl ex.
cpl ex.
cpl ex.

add(11 oCpl ex: : At Upper);
add(11 oCpl ex: : Basi c);
add(11 oCpl ex: : Basi c);
.add(I1 oCpl ex: : At Lower) ;
.add(I1 oCpl ex: : At Lower) ;
set Statuses(cstat, var, rstat,
sol ve();

out() << “Solution status
out () << “Solution val ue
out() << “lteration count =

I'l oNumArray val s(env);

cpl ex. get Val ues(val s, var);
env.out() << “Val ues =4 <<
cpl ex. get Sl acks(val s, rng);
env.out() << “Slacks =" <<
cpl ex. get Dual s(val's, rng);
env.out () << “Duals =" <<
cpl ex. get ReducedCost s(val s, var);
env.out () << “Reduced Costs = “ <<

cpl ex.

export Model (“I pex6.1p”);

catch (Il oException& e) {
cerr << “Concert exception caught:

}

catch (..

A

cerr << “Unknown exception caught”

}

env. end();

return O;

} // END main

static void

ILOG CPLEX 7.5 —

USER’

IN AN LP PROBLEM

I'l oNunVar Array var,

rng);

vals << endl;
vals << endl;
val s << endl;

val s << endl;

“ << e << endl;

<< endl;

S MANUAL

rstat(env);

Il oRangeArray rng);

“ << cplex.getStatus() << endl;
“ << cpl ex. get oj Val ue() << endl;
“ << cplex.getN terations() << endl;

<functionhead>

popul at ebycol utm (11 ovbdel nodel, |1 oNunVarArray x, |l oRangeArray c)
{

I'l oEnv env = nodel . get Env();

Il oChj ective obj = Il oMaxi m ze(env);

c.add(!l oRange(env, -llolnfinity, 20.0));

c.add(!l oRange(env, -llolnfinity, 30.0));

x. add(11 oNumVar (obj (1.0) + c[0](-1.0) + c[1](1.0), 35.0, 40.0)):
x. add(obj (2.0) + ¢[0](1.0) + c[1](-3.0));
x. add(obj (3.0) + c[0](1.0) + c[1](1.0));

nmodel . add(obj) ;
nodel . add(c);

} /1 END popul at ebycol um

Example Ipex6.c

The example, | pex6. ¢, resembles one you may have studied in the ILOG CPLEX Getting
Sarted manual, | pex1. c. Thisexample differs from that earlier one in these ways:

O Inthemai n routing, the arrayscst at andr st at set the status of the initial basis.

0 After the problem data has been copied into the problem object, the basisis copied by a
call to CPXcopybase() .

0 After the problem has been optimized, the iteration count is printed. For the given data
and basis, the basisis optimal, so no iterations are required to optimize the problem.

The application beginswith declarations of arraysto store the solution of the problem. Then,
beforeit calls any other ILOG CPLEX routine, the application invokes the Callable Library
routine CPXopenCPLEX() to initialize the ILOG CPLEX environment. Once the
environment has been initialized, the application calls other ILOG CPLEX Callable Library
routines, such as CPXset i nt par am() with the argument CPX_PARAM_SCRI NDto direct
output to the screen and most importantly, CPXcr eat epr ob() to create the problem object.
The routine popul at ebycol uim() builds the problem object, and as we noted earlier,
CPXcopybase() copiesthe advanced starting basis.

Before the application ends, it calls CPXf r eepr ob() to free space allocated to the problem
object and CPXcl oseCPLEX() to free the environment.

Complete Program
The complete program, | pex6. c, appears here or online in the standard distribution

#i ncl ude <il cpl ex/ cpl ex. h>

/* Bring in the declarations for the string functions */

ILOG CPLEX 7.5 — USER’'S MANUAL 123

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

EXAMPLE:

124

USING A STARTING BASIS IN AN LP PROBLEM

#i ncl ude <string. h>
/* Include declaration for function at end of program */
#i fndef CPX_PROTOTYPE_M N

static int
popul at ebycol uim (CPXENVptr env, CPXLPptr Ip);

#el se

static int
popul at ebycol um () ;

#endi f

/* The problemwe are optimzing will have 2 rows, 3 colums
and 6 nonzeros. */

#defi ne NUVROAS 2

#defi ne NUMCOLS 3

#defi ne NUMNZ 6

#i fndef CPX_PROTOTYPE_M N

int

nain (void)

#el se

int

main ()

#endi f

{
char probnane[16]; /* Problemnanme is max 16 characters */
int cstat [NUMCOLS] ;
int rstat [NUMRONF] ;

/* Declare and al | ocate space for the variables and arrays where we
will store the optimization results including the status, objective
val ue, variabl e val ues, dual values, row slacks and vari abl e
reduced costs. */

i nt sol stat;

doubl e objval;

double x[NUMOCLS];
doubl e pi [NUMROWE] ;
doubl e sl ack[NUMRONE] ;
double dj [NUMCOLS];

CPXENVpt r env = NULL;
CPXLPpt r Ip = NULL;
i nt st at us;

i nt i, s

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

int cur _nunrows, cur_nuncol s;
/* Initialize the CPLEX environnment */
env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, “Could not open CPLEX environnment.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;
}

/* Create the problem */

strcpy (probnane, “exanple”);
Ip = CPXcreateprob (env, &status, probnane);

/* A returned pointer of NULL may nean that not enough nenory
was avail able or there was sone other problem |In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. */

if (Ip==NUL) {
fprintf (stderr, “Failed to create LP.\n");
got o TERM NATE;

w
=)
<
5
)
—
o
3
o
=3
)
=
(2}

}

/* Now popul ate the problemwi th the data. */
status = popul at ebycol um (env, |p);

if (status) {

ILOG CPLEX 7.5 — USER’'S MANUAL 125

EXAMPLE:

126

USING A STARTING BASIS IN AN LP PROBLEM

fprintf (stderr, “Failed to popul ate problemdata.\n");
got o TERM NATE;
}

/* W\ assume we know the optimal basis. Variables 1 and 2 are basic,
while variable 0 is at its upper bound */

cstat[0] = OPX_AT_UPPER;
cstat[1] CPX_BASI C,
cstat[2] = CPX_BASIC,

/* The row statuses are all nonbasic for this problem*/

rstat[0] = CPX_AT_LOAER,
rstat[1] = CPX _AT_LOAER

/* Now copy the basis */

status = CPXcopybase (env, |Ip, cstat, rstat);

if (status) {
fprintf (stderr, “Failed to copy the basis.\n");
got o TERM NATE;

}

/* Qptimze the problemand obtain solution. */

status = CPX popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optim ze LP.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, &solstat, &bjval, x, pi, slack, dj);
if (status) {

fprintf (stderr, “Failed to obtain solution.\n");

got 0 TERM NATE;

/* Wite the output to the screen. */

printf (“\nSolution status = %\ n", solstat);
printf (“Solution value = %\n", objval);
printf (“lIteration count = %l\n\n”, CPXgetitcnt (env, Ip));

/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is, rather than using sizes fromwhen the problem
was built. cur_nunrows and cur_nuntols store the current nunber
of rows and colums, respectively. */

cur_nunrows = CPXget nuntrows (env, |p);
cur_nuntol s = CPXget nuntol s (env, |p);
for (i =0; i < cur_nunrows; i++) {

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

printf (“Row %l: Slack = %d0f Pi = 9%40f\n", i, slack[i], pi[i]);
}

for (j =0; j < cur_nuncols; j++) {
printf (“Colum %: Value = %0f Reduced cost = %40f\n",
joox[il, dilil);
}

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, Ip, “lpex6.sav”, NULL);
if (status) {
fprintf (stderr, “Failed to wite LP to disk.\n");
got 0 TERM NATE;

}

TERM NATE:
/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NJL) {
status = CPXfreeprob (env, &p);
if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}

/* Free up the CPLEX environment, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n”);
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “9%", errmsg);

w
=)
<
5
)
—
o
3
o
=3
)
=
(2}

}
return (status);

} /* END main */

/* This function builds by colum the linear program

ILOG CPLEX 7.5 — USER’'S MANUAL 127

EXAMPLE:

128

USING A STARTING BASIS

Maxi m ze
obj: x1 + 2 x2 + 3 x3
Subj ect To
cl: - x1 +x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
End
*/
#i fndef CPX_PROTOTYPE_M N
static int
popul at ebycol utm (CPXENVptr env,
#el se
static int
popul at ebycol um (env, |p)
CPXENVptr env;
CPXLPpt r | p;
#endi f
{
i nt status = 0;
doubl e obj [NUMCCOLS] ;
doubl e | b[NUMCOLS] ;
doubl e ub[NUMCOLS] ;
char *col nanme[NUMCOLS] ;
int mat beg[NUMCCLS] ;
i nt mat i nd[NUMNZ] ;
doubl e matval [NUM\Z] ;
doubl e rhs[NUMROAS] ;
char sense[NUMROWE] ;
char *r ownane[NUMROWE] ;

/* To build the probl emby col um,

add the colums. */

IN AN LP PROBLEM

CPXLPptr 1 p)

CPXchgobj sen (env, Ip, CPX_ MAX); /* Problemis maxim zation */
/* Now create the newrows. First, populate the arrays.
rownane[0] = “c1”;

sense[0] ='L;

rhs[0] = 20.0;

rownane[1] = “c2”;

sense[1] =L

rhs[1] = 30.0;

status = CPXnew ows (env,
if (status)

I'p,

/* Now add the new col ums.

obj[0] = 1.0; obj [1]

ILOG CPLEX 7.5

NUMROAB, rhs, sense,

got o TERM NATE;

First,

= 2.0; obj [2]

USER'S MANUAL

create the rows, and then

NULL,

popul ate the arrays.

<functionhead>

mat beg[0] = O; nmat beg[1] = 2; mat beg[2] = 4;
matind[0] = O; matind[2] = O; matind[4] = O;
matval [0] = -1.0; matval[2] = 1.0; matval [4] = 1.0;
matind[1] = 1; matind[3] = 1; matind[5] = 1;
matval [1] = 1.0; matval [3] = -3.0; matval [5] = 1.0;
I b[0] = 0.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_| NFBOUND;
col name[0] = “x1”; colnane[1] = “x2"; col nanme[2] = “x3";

status = CPXaddcols (env, |p, NUMCOLS, NUWNZ, obj, natbeg, matind,
matval, |b, ub, col nane);
if (status) goto TERM NATE;
TERM NATE:

return (status);

} /* END popul at ebycol um */

Solving LP Problems with the Barrier Optimizer

This section tells you more about solving linear programming problems using the

ILOG CPLEX Barrier Optimizer. (Chapter 7, Solving Quadratic Programming Problems,
explains how to use the ILOG CPLEX Barrier Optimizer in convex quadratic problems.) It
includes sections on:

O ldentifying LPsfor Barrier Optimization
Interpreting the Barrier Log File
Understanding Solution Quality from the Barrier LP Optimizer

Overcoming Numerical Difficulties

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

O
O
O
O

Diagnosing Barrier Optimizer Infeasibility

To usethe ILOG CPLEX Barrier Optimizer in application development, you must hold a
special, optional, development license. If you call barrier routines from the ILOG CPLEX
Cdlable Library inyour applications, your end users must be licensed for runtime or derived
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX
representative.

ILOG CPLEX 7.5 — USER’'S MANUAL 129

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

130

Identifying LPs for Barrier Optimization

ThelLOG CPLEX Barrier Optimizer iswell suited to large, sparse problems. An alternative
to the simplex optimizers, it exploits aprimal-dual logarithmic barrier algorithm to generate
a sequence of gtrictly positive primal and dual solutionsto a problem. ILOG CPLEX finds
the primal solutions, conventionally denoted (X, s), from the primal formulation:

Minimize c'x

subject to Ax=b
with theseboundsx + s= uand x> |

where A isthe constraint matrix, including slack and surplus variables; u is the upper and |
the lower bounds on the variables.

Simultaneously, ILOG CPLEX automatically finds the dual solutions, conventionally
denoted (y, z, w) from the corresponding dual formulation:

Maximizeb'y - u'w + |7z
subject to Aly-w+ z=¢
with these boundsw=0and z= 0

All possible solutions maintain strictly positive primal solutions (x - |, s) and strictly positive
reduced costs (z, w) so that the value O (zero) forms abarrier for primal and dua variables
within the algorithm.

ILOG CPLEX measures progress by the primal feasibility, dual feasibility, and duality gap
at each iteration. To measure feasibility, ILOG CPLEX considers the accuracy with which
the primal constraints (Ax = b, x + s= u) and dual constraints (A'y + z- w = c) are
satisfied. The optimizer stops when it finds feasible primal and dual solutions that are
complementary. A complementary solution is one where the sums of the products (¥ 1)z
and (U - X))z are within some tolerance of 0 (zero). Since each (¥ -I;), (U - %), and z is
strictly positive, the sum can be near zero only if each of theindividual productsis near zero.
The sum of these products is known as the complementarity of the problem.

On each iteration of the barrier optimizer, ILOG CPLEX computes a matrix based on AAT
and then computes a Cholesky factor of it. This factored matrix has the same number of
nonzeros on each iteration. The number of nonzerosin this matrix isinfluenced by the
barrier ordering parameter. The particular ordering that is most effective depends on the
platform (computer hardware and operating system) and the specific problem.

The ILOG CPLEX Barrier Optimizer is appropriate and often advantageous for large
problems, for example, those with more than 1000 rows or columns. It is effective on
problems with staircase structures or banded structuresin the constraint matrix. It isalso
effective on problems with a small number of nonzeros per column.

Its performance is most dependent on these characteristics:

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

0 the number of nonzerosin the Cholesky factor;

0O the presence of dense columns, that is, columns with arelatively high number of nonzero
entries.

To decide whether to use the barrier optimizer on a given problem, you should look at both
these characteristics. (We explain how to check those characteristics later in this chapter in
Step 2 and Step 3 on page 132.)

Barrier Simplex Crossover

Since many users prefer basic solutions because they can be used to restart optimization, the
ILOG CPLEX Barrier Optimizer includes basis crossover algorithms. By default, the
Interactive Barrier Optimizer bar opt automatically invokes aprimal crossover when the
barrier algorithm terminates (unless termination occurs abnormally because of insufficient
memory or numerical difficulties). Optionally, you can also execute barrier optimization
with adual crossover or with no crossover at all. The section Using the Barrier Optimizer in
the Interactive Optimizer on page 132 explains how to control crossover in the Interactive
Optimizer. From the Callable Library, use the routine CPXhybbar opt () with an argument
to indicate crossover.

Differences between Barrier and Simplex Optimizers

The barrier optimizer and the simplex optimizers (primal and dual) are fundamentally
different approaches to solving linear programming problems. The key differences between
them have these implications:

0 Simplex and barrier optimizers differ with respect to the nature of solutions.

Simplex solutions are basic solutions. Barrier solutions are not. Consequently, when you
use the barrier optimizer alone, you get no basis for advanced restarts. If you want to
optimize the same or similar problems repeatedly, the barrier optimizer alone may not be
appropriate.

Also since a barrier solution is not a basic solution, no range information is available for
sengitivity analysis when you use the barrier optimizer alone.

Furthermore, barrier solutions tend to be midface solutions. In cases where multiple
optimaexist, barrier solutions tend to place the variables at values between their bounds,
whereas in basic solutions from a simplex technique, the values of the variables are more
likely to be at either their upper or their lower bound. While objective values will be the
same, the nature of the solutions can be very different.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0 Simplex and barrier optimizers have different numerical properties, sensitivity, and
behavior. For example, the barrier optimizer is sensitive to the presence of unbounded
optimal faces, whereas the simplex optimizers are not. As aresult, problems that are
numerically difficult for one method may be easier to solve by the other.

ILOG CPLEX 7.5 — USER’'S MANUAL 131

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

132

0 Simplex and barrier optimizers have different memory requirements. Depending on the
size of the Cholesky factor, the barrier optimizer can require significantly more memory
than the simplex optimizers.

0 Simplex and barrier optimizers work well on different types of problems. The barrier
optimizer works well on problems where the AAT remains sparse. Also, highly
degenerate problems that pose difficulties for the primal or dual simplex optimizers may
be solved quickly by the barrier optimizer. In contrast, the simplex optimizers will
probably perform better on problems where the AAT and the resullti ng Cholesky factor
arerelatively dense, though it is sometimes difficult to predict from the dimensions of the
model when thiswill be the case.

Using the Barrier Optimizer

We have described how the ILOG CPLEX Barrier Optimizer finds primal and dua solutions
from the primal and dual formulations of amodel (see the section Identifying LPsfor Barrier
Optimization on page 130) , but you do not have to reformulate the problem yourself. The
ILOG CPLEX Barrier Optimizer automatically creates the primal and dual formulations of
the problem for you after you enter or read in the problem.

Using the Barrier Optimizer in the Interactive Optimizer

In the Interactive Optimizer, we recommend thisway of working with the ILOG CPLEX
Barrier Optimizer:

1. Enter the problem. You enter an LP problem to solve with the barrier optimizer just as
you enter other LP problems. In the Interactive Optimizer, use the ent er command to
typein the problem datainteractively, or use ther ead command to read a problem from
afilein MPS, LP, or SAV format.

2. Check the number of nonzerosin the Cholesky factor. To do so, use the command
set barrier limts iterations 0;thenusethecommandbaropt stop. These
two commands together will make ILOG CPLEX count the number of nonzeros in the
Cholesky factor but stop before it begins barrier iterations.

3. Check for dense columns. If you use the command di spl ay probl em hi st ogram c,
ILOG CPLEX will show you the number of columns with nonzerosin the
unpreprocessed problem. If you want to see the density of columnsin the processed,
presolved, aggregated problem, do this:

a. Write the preprocessed problem to afile with the file extension .pr e; usethewri t e
command to do so.

b. Read thefile in with ther ead command.

c. Display the histogram with its column option: di spl ay probl em hi st ogram c.
You will be able to identify dense columns at a glance.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

4. Usethe bar opt command to start optimization.

The option st op tells ILOG CPLEX to stop with anonbasis barrier solution.
(Afterwards, you can apply the command pri nopt or t ranopt explicitly to this
nonbasis, barrier solution to cross over to aprimal or dual basic solution.)

The option pri nmopt (or the shortcut p) tells ILOG CPLEX to cross over automatically
to abasic solution using the primal simplex optimizer.

The option dual opt (or the shortcut d) tells ILOG CPLEX to cross over to abasic
solution using the dual simplex optimizer.

If you specify no option, ILOG CPLEX assumes dual opt .

5. Check ILOG CPLEX progress. Use the command set barri er displ ay to change
the level of information displayed on the screen or logged to afile.

Using the Barrier Optimizer in the Component Libraries

Initialize the ILOG CPLEX environment, create the problem object, and populate the
problem object, as explained in Creating an Application with CPLEX Concert Technology
Library on page 29 and Using the Callable Library in an Application on page 57.

0 Inthe Concert Technology Library, use the method:

. cpl ex. set Root Al gorithn(11oCplex::Barrier) toinvokethe CPLEX Barrier
Optimizer without crossover.

. cpl ex.set Root Al gorithn(11oCplex::BarrierPrimal) toinvokethe CPLEX
Barrier Optimizer with primal crossover.

. cpl ex. set Root Al gorithn(11oCpl ex::BarrierbDual) toinvokethe CPLEX
Barrier Optimizer with dual crossover.

0 Inthe Calable Library, use the routine:
« CPXhybbar opt () toinvokethe ILOG CPLEX Barrier Optimizer with crossover.
. CPXbar opt () toinvokethe ILOG CPLEX Barrier Optimizer without crossover.

Special Options

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

In addition to the parameters available for other ILOG CPLEX LP optimizers, there are also
parameters to control the ILOG CPLEX Barrier Optimizer. In the Interactive Optimizer, to
see alist of the parameters specific to the ILOG CPLEX Barrier Optimizer, use the
commandset barrier.

ILOG CPLEX 7.5 — USER’'S MANUAL 133

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

134

Controlling Crossover

In the Concert Technology Library, crossover is specified in the method that invokes the
optimizer.

In the Interactive Optimizer, options to the bar opt command control whether the

ILOG CPLEX Barrier Optimizer stopswith a nonbasic solution or crosses over to asimplex
optimizer to generate a basic solution. Table 4.8 summarizes those options to the bar opt
command in the Interactive Optimizer.

Table 4.8 Optionsto the Barrier Optimizer to Control Crossover

Option Purpose

(no option) ILOG CPLEX assumes pri nopt option

st op ILOG CPLEX stops optimization with a nonbasic, barrier
solution

pri nmopt After barrier optimization, ILOG CPLEX uses primal
crossover

dual opt After barrier optimization, ILOG CPLEX uses dual
crossover

Table 4.9 shows you the corresponding routines from the Callable Library.
Table 4.9 Routines of the Callable Library to Control Crossover

Option Callable Library routine

(no option) CPXhybbaropt (env, |p, CPX_ALG PRI MVAL)

st op CPXbaropt (env, |p)

pri nopt CPXhybbaropt (env, |p, CPX_ALG PRI MAL)

dual opt CPXhybbar opt (env, |p, CPX_ALG DUAL)

Using VEC File Format

When you usethe ILOG CPLEX Barrier Optimizer with no crossover (for example, with the
command bar opt st op), you can save the primal and dual variable values and their
associated reduced cost and dual valuesin a VEC-format file. You can then read that VEC
fileinto ILOG CPLEX before you initiate a crossover at alater time. After you read aVEC
fileinto ILOG CPLEX, all three optimizers—primal simplex, dual simplex, and barrier
simplex—automatically invoke crossover.

Even if you have set the advanced basis indicator to no (meaning that you do not intend to
start from an advanced basis), ILOG CPLEX automatically resets the indicator to yes when

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

it readsaVEC file. If you turn off the advanced basisindicator after reading aVVEC file, then
the simplex optimizers will honor this setting and will not initiate crossover.

Interpreting the Barrier Log File

Likethe ILOG CPLEX Simplex Optimizers, the ILOG CPLEX Barrier Optimizer records
information about its progressin alog file asit works. Some users find it helpful to keep a
new log file for each session. By default, ILOG CPLEX recordsinformation in afile named
cpl ex. | og. Inthe:

0O Interactive Optimizer, usethe command set | ogfil e fil ename to change the name
of thelog file.

00 Cadlable Library, usetheroutine CPXset | ogfi | e() with argumentsto indicate thelog
file

You can control the level of information about barrier optimization that ILOG CPLEX
recordsin thelog file.

0O Level one, the default, includes the usual and customary information, explained in
greater detail later in this section.

0O Level two, rarely needed, gives information about the automatically computed barrier
column-nonzeros parameter and provides diagnostic detail for ILOG CPLEX technical
support. To set level two, in the:

Interactive Optimizer, use the command set barrier display 2.
From the Callable Library, set the parameter CPX_PARAM BARDI SPLAY.

0O Toturn off progress information entirely, use the value 0 (zero) in the command or
routine.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

ILOG CPLEX 7.5 — USER’'S MANUAL 135

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

136

To giveyou anideaabout abarrier log file, hereisthelog file for a pure barrier optimization
(that is, the bar opt command with the st op option) at display level one (the default).

Tried aggregator 1 tine.

LP Presolve elimnated 9 rows and 11 col unms
Aggregator did 6 substitutions

Reduced LP has 12 rows, 15 columms, and 38 nonzeros.
Presolve time = 0.00 sec.

Nunber of nonzeros in |ower triangle of A*A = 26
Usi ng Appr oxi mate M ni num Degree ordering

Total tinme for automatic ordering = 0.00 sec.
Summary statistics for Chol esky factor:

Rows in Factor = 12
I nt eger space required =12
Total non-zeros in factor = 78
Total FP ops to factor = 650

Itn Primal Qj Dual oj PrimlInf Upper Inf Dual Inf
0 -1.3177911e+01 -1.2600000e+03 6.55e+02 0.00e+00 3.92e+01
1 -4.8683118e+01 -5.4058675e+02 3.91e+01 0.00e+00 1.18e+01
2 -1.6008142e+02 -3.5969226e+02 1.35e-13 7.1le-15 5.81e+00
3 -3.5186681e+02 -6.1738305e+02 1.59e-10 1.78e-15 5. 16e-01
4 -4.5808732e+02 -4.7450513e+02 5.08e-12 1.95e-14 4.62e-02
5 -4.6435693e+02 -4.6531819e+02 1.66e-12 1.27e-14 1.59e-03
6 -4.6473085e+02 -4.6476678e+02 5.53e-11 2.17e-14 2.43e-15
7 -4.6475237e+02 -4.6475361e+02 5.59e-13 2.99e-14 2.19e-15
8 -4.6475312e+02 -4.6475316e+02 1.73e-13 1.55e-14 1.17e-15
9 -4.6475314e+02 -4.6475314e+02 1.45e-13 2.8le-14 2.17e-15
Barrier - Optimal: Qbjective = -4.6475314194e+02
Solution tine = 0.01 sec. Iterations =9

Preprocessing in the Log File

The opening lines of that log file record information about preprocessing by the

ILOG CPLEX presolver and aggregator. After those preprocessing statistics, the next line
records the number of nonzerosin the lower triangle of a particular matrix, AAT, denoted
A*Ainthelog file.

Nonzeros in Lower Triangle of AAT in the Log File

The number of nonzerosin the lower triangle of AAT gives an early indication of how long
each barrier iteration will take. The larger this number, the more time each barrier iteration
requires. If this number is close to 50% of the square of the number of rows, then the
problem may contain dense columns that are not being detected. In that case, examine the
histogram of column counts; then consider setting the barrier column-nonzeros parameter to
avauethat enables ILOG CPLEX to treat more columns as being dense.

Ordering-Algorithm Time in the Log File

After the number of nonzerosin the lower triangle of AAT, ILOG CPLEX records the time
required by the ordering algorithm. (The ILOG CPLEX Barrier Optimizer offers you a
choice of four ordering algorithms, explained in Choosing an Ordering Algorithmon

page 142.) Thislinein the log file verifiesthat ILOG CPLEX isusing the order you chose.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Cholesky Factor in the Log File

After the time required by the ordering algorithm, ILOG CPLEX records information about
the Cholesky factor. ILOG CPLEX computes this matrix on each iteration. The number of
rows in the Cholesky factor represents the number after preprocessing. The size of the dense
window indicates how dense the factored matrix is. If the size of the dense window is large
with respect to the number of rows, then the Cholesky factor is dense, and consequently, the
ILOG CPLEX Barrier Optimizer will require more time per iteration.

The next line of information about the Cholesky factor—integer space required—indicates
the amount of memory needed to store the sparsity pattern of the factored matrix. If this
number is low, then the factor can be computed more quickly than when the number is high.

Information about the Cholesky factor ends with the number of nonzeros in the factored
matrix. Thisnumber isdirectly related to the time required per iteration of the ILOG CPLEX
Barrier Optimizer. In fact, the difference between this number and the number of nonzerosin
AAT indicates the fill-level of the Cholesky factor. If thefill-level islarge, consider an
aternate ordering algorithm.

Iteration Progress in the Log File

After the information about the Cholesky factor, the log file records progress at each
iteration. It records both primal and dual objectives (asPri mal Obj and Dual Obj) per
iteration.

It al'so records absolute infeasibilities per iteration. Internally, the ILOG CPLEX Barrier
Optimizer treats inequality constraints as equality constraints with added slack and surplus
variables. Consequently, primal constraintsin aproblem arewrittenasAx = bandx + s=u,
and the dual constraints are written as ATy + z-w= c. Asaresult, inthelog file, the
infeasibilities represent norms, as summarized in Table 4.10.

Table 4.10 Infeasibilities and Normsin the Log File of a Barrier Optimization

w

o

Infeasibility |[In log file Norm <
. , a
primal Prim I nf [b - Ax| -
T

upper Upper | nf [u-(x+s)| i
o

dual Dual | nf lc-yA -z +w| =
=

(2}

If solution values are large in absol ute value, then the infeasibilities may appear inordinately
large because they are recorded in the log file in absolute terms. The optimizer uses relative
infeasibilities as termination criteria

Infeasibility Ratio in the Log File

If you are using one of the barrier infeasibility algorithms available in the ILOG CPLEX
Barrier Optimizer (that is, in the Interactive Optimizer you have used the command
set barrier algorithm1lorset barrier algorithm 2 orfromtheCallable

ILOG CPLEX 7.5 — USER’'S MANUAL 137

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

Library, you used the routine CPXset i nt par an() to set the parameter

CPX_PARAM BARALGto thevaluel or 2), then ILOG CPLEX records an additional column
of output titled | nf Rat i o, theinfeasibility ratio. Thisratio, always positive, is a measure
of progressfor that particular algorithm. In a problem with an optimal solution, you will see
thisratio increase to alarge number. In contrast, in aproblem that is primal infeasible or dual
infeasible, thisratio will decrease to avery small number.

Understanding Solution Quality from the Barrier LP Optimizer

When ILOG CPLEX successfully solves a problem with the ILOG CPLEX Barrier
Optimizer, it reports the optimal objective value and solutiontimein alog file, asit doesfor
other LP optimizers.

Because barrier solutions (prior to crossover) are not basic solutions, certain solution
statistics associated with basic solutions are not available for a strictly barrier solution. For
example, reduced costs and dual values are available for strictly barrier LP solutions, but
range information about them is not.

To help you evaluate the quality of abarrier solution more readily, ILOG CPLEX offersa
special display of information about barrier solution quality. To display thisinformation in
the Interactive Optimizer, use the command di spl ay sol uti on qual ity after
optimization. When using the Component Libraries, use the method

cpl ex. get Qual i ty() or usetheroutines CPXget i nt qual i ty() for integer information
and CPXget dbl qual i t y() for double-valued information.

Table4.11 Barrier Solution Quality Display

Item Meaning

primal objective primal objective value c"x

dual objective dual objective value b'y - u'w + 17z

duality gap difference between primal and dual objectives

complementarity sum of column and row complementarity

column complementarity (total) sum of [(x; - I;)* Z| + [(u; - X;)= wjl

column complementarity (max) maximum of |(x; - |)+ zj| and |(u; - X;) w;j| over
all variables

row complementarity (total) sum of |slack; ¢ yj|

row complementarity (max) maximum of |slack; ¢ y;|

primal norm [x| (total) sum of absolute values of all primal variables

138 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Table4.11 Barrier Solution Quality Display (Continued)

Item Meaning

primal norm [x| (max) maximum of absolute values of all primal
variables

dual norm |rc| (total) sum of absolute values of all reduced costs

dual norm |rc| (max) maximum of absolute values of all reduced
costs

primal error (Ax = b) (total, max) total and maximum error in satisfying primal

equality constraints

dual error (A'pi + rc = c) (total, max) total and maximum error in satisfying dual
equality constraints

primal x bound error (total, max) total and maximum error in satisfying primal
lower and upper bound constraints

primal slack bound error (total, max) total and maximum violation in slack variables

dual pi bound error (total, max) total and maximum violation with respect to zero
of dual variables on inequality rows

dual rc bound error (total, max) total and maximum violation with respect to zero
of reduced costs

primal normalized error (Ax = b) (max) | accuracy of primal constraints

dual normalized error (A'pi + rc = c) accuracy of dual constraints
(max)

Table 4.11 liststheitems ILOG CPLEX displays and explains their meaning. In the solution
quality display, the term pi refersto dual solution values, that is, they valuesin the
conventional barrier problem-formulation. The term rc refersto reduced cost, that is, the
difference z - w in the conventional barrier problem-formulation. Other terms are best
understood in the context of primal and dual LP formulations.

Normalized errors, for example, represent the accuracy of satisfying the constraints while
considering the quantities used to compute Ax on each row and yTA on each column. In the
primal case, for each row, we consider the nonzero coefficients and the x; values used to
compute Ax. If these numbers are large in absolute value, then it is acceptable to have a
larger absolute error in the primal constraint.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

Similar reasoning applies to the dual constraint.

ILOG CPLEX 7.5 — USER’'S MANUAL 139

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

140

If ILOG CPLEX returned an optimal solution, but the primal error seems high to you, the
primal normalized error should be low, since it takes into account the scaling of the problem
and solution.

After asimplex optimization—whether primal, dual, or network—or after a crossover, the
display command will display information related to the quality of the simplex solution.

Tuning Barrier Optimizer Performance

Naturally, the default parameter settings for the ILOG CPLEX Barrier Optimizer work best
on most problems. However, you can tune several algorithmic parameters to improve
performance or to overcome numerical difficulties. These parameters are described in the
sections:

Out-of-Core Barrier: Letting the Optimizer Use Disk for Storage
Preprocessing: the Presolver and Aggregator

O
O
0 Detecting and Eliminating Dense Columns
O

Choosing an Ordering Algorithm

0 Using a Starting-Point Heuristic

In addition, several parameters set termination criteria. With them, you control when
ILOG CPLEX stops optimization.

You can a'so control convergence tolerance—another factor that influences performance.
Convergence tolerance determines how nearly optimal a solution ILOG CPLEX must find:
tight convergence tolerance means ILOG CPLEX must keep working until it finds asolution
very close to the optimal one; loose tolerance means ILOG CPLEX can return a solution
within a greater range of the optimal one and thus stop cal culating sooner.

Performance of the ILOG CPLEX Barrier Optimizer is most highly dependent on the size of
the Cholesky factor computed at each iteration. When you adjust barrier parameters, always
check their impact on the size of the Cholesky factor. At default output settings, thissizeis
reported at the beginning of each barrier optimization in the log file, aswe explainin
Cholesky Factor in the Log File on page 137.

Another important performance issue is the presence of dense columns. By a dense column,
we mean that a given variable appears in arelatively large number of rows. You can check
column density as we suggest in Step 3 on page 132. We a so say more about column
density in Detecting and Eliminating Dense Columns on page 142.

In adjusting parameters, you may need to experiment to find beneficial settings because the
precise effect of parametric changes will depend on the nature of your LP problem aswell as
your platform (hardware, operating system, compiler, etc.). Once you have found
satisfactory parametric settings, keep them in a parameter specification file for re-use, as
explained in Saving a Parameter Specification File on page 339.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Out-of-Core Barrier: Letting the Optimizer Use Disk for Storage

Under default settings, the CPLEX Barrier Optimizer will do al of its work using central
memory (varioudly referred to also as RAM, core, or physical memory). For models too
large to solve in the central memory on your computer, or in cases whereit is simply not
desired to use this much memory, it is possible to instruct the barrier optimizer to use disk
for part of the working storage it needs, specifically the Cholesky factorization. Since disk
is slower than central memory, there may be somelost performance by making this choice
on models that could be solved entirely in central memory, but the out-of-core feature in the
CPLEX Barrier Optimizer is designed to make this as efficient as possible. It generally will
be far more effective than relying on the operating system’s virtual memory (swap space).

To activate out-of-core Barrier:
0O Inthe Interactive Optimizer, use the command: set barrier outofcore yes.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar OOC or
CPX_PARAM BAROOCtO 1.

Even when out-of-core Barrier is activated, the factorization will stay in central memory
unless its size exceeds the val ue of the Working Memory parameter. The default for this
parameter is 128, meaning 128 megabytes.

To select a different threshold for use of disk working storage, say 32 megabytes:
0O Inthe Interactive Optimizer, use the command: set wor kmem 32.

0 When using the Component Libraries, set the parameter 11 oCpl ex: : Wr kMemor
CPX_PARAM WORKNVEM

When Barrier is being run out-of-core, the location of disk storage is controlled by the
Working Directory parameter. For example, if you wish to use the directory / t np/ mywor k
for this purpose, where this directory aready exists at the start of the CPLEX Barrier run:

0O Inthe Interactive Optimizer, use the command set wor kdi r /t nmp/ nywor k.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Wor kDi r or
CPX_PARAM WORKDI Rto bethestring '/ t np/ nywor k’.

Preprocessing: the Presolver and Aggregator

For best performance of the ILOG CPLEX Barrier Optimizer, preprocessing should almost
aways beon. That is, we recommend that you use the default setting where the presolver
and aggregator are active. While they may use more memory, they also reduce the problem,
and problem reduction is crucial to barrier optimizer performance. In fact, reduction is so
important that even when you turn off preprocessing, ILOG CPLEX still applies minimal
presolving before barrier optimization.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

For problems that contain linearly dependent rows, it isagood ideato turn on the
preprocessing dependency parameter. (By default, it is off.) This dependency checker may

ILOG CPLEX 7.5 — USER’'S MANUAL 141

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

142

add some preprocessing time, but it can detect and remove linearly dependent rows to
improve overall performance.

To turn on the preprocessing dependency parameter:
O Inthe Interactive Optimizer, usethe command set preprocessi ng dependency 1.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Depl nd or
CPX_PARAM DEPI ND.

Detecting and Eliminating Dense Columns

Dense columns can significantly degrade barrier optimizer performance. (A dense columnis
onein which a given variable appears in many rows.) For that reason, we recommend that
after you enter or read a problem for barrier optimization, you check it for dense columns by
inspecting its column histogram after preprocessing, asin Step 3 on page 132.

In fact, when afew dense columns are present in a problem, it is often effective to
reformulate the problem to remove those dense columns from the model.

Otherwise, you can control whether ILOG CPLEX perceives columns as dense by setting
the column nonzeros parameter. At its default setting, ILOG CPLEX calculates an
appropriate value for this parameter automatically. However, if your problem contains one
(or afew) dense columns that remain undetected at the default setting, you can adjust this
parameter yourself to help ILOG CPLEX detect it (or them). For example, in alarge
problem in which one column contains forty entries while the other columns contain less
than five entries, you will benefit by setting the column nonzeros parameter to 30. This
setting allows ILOG CPLEX to recognize that column as dense and thus invoke techniques
to handleit.

To set the column nonzeros parameter:

0O Inthe Interactive Optimizer, use the command set barri er col nonzeros i,
substituting a positive integer for i .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Col Nz or
CPX_PARAM BARCOLNZ.

Once ILOG CPLEX detects adense column, it takes stepsto eliminateit.

Choosing an Ordering Algorithm

ILOG CPLEX offers several different algorithms in the CPLEX Barrier Optimizer for
ordering the rows of a matrix:

0 automatic, the default, indicated by the value 0;

0O approximate minimum degree (AMD), indicated by the value 1;
0 approximate minimum fill (AMF) indicated by the value 2;

0 nested dissection (ND) indicated by the value 3.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Thelog file, aswe explain in Ordering-Algorithm Time in the Log File on page 136, records
the time spent by the ordering algorithm in a barrier optimization, so you can experiment
with different ordering algorithms and compare their performance on your problem.

Automatic ordering, the default option, will usually be the best choice. This option attempts
to choose the most effective of the available ordering methods, and it usually resultsin the
best order. It may reguire more time than the other settings. The ordering timeis usually
small relative to the total solution time, and a better order can lead to asmaller total solution
time. In other words, a change in this parameter is unlikely to improve performance very
much.

The AMD algorithm provides good quality order within moderate ordering time. AMF
usually provides better order than AMD (usually 5-10% smaller factors) but it requires
somewhat more time (10-20% more). ND often produces significantly better order than
AMD or AMF. Ten-fold reductionsin runtimes of the ILOG CPLEX Barrier Optimizer have
been observed with it on some problems. However, ND sometimes produces worse order,
and it requires much more time.

To change from one ordering a gorithm to another:

O Inthe Interactive Optimizer, use the command set barrier ordering i,
substituting avalue (0, 1, 2, or 3) forii .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Or der or
CPX_PARAM BARORDER.
Using a Starting-Point Heuristic

ILOG CPLEX supports several different heuristics to compute the starting point for the
ILOG CPLEX Barrier Optimizer. Table 4.12 summarizes the parameter values to indicate
which starting-point heuristic to use.

Table4.12 Parameter Values for Starting-Point Heuristics (c/))
<
Value Heuristic =]
(@]
. —
1 dual is 0 (default) o
Y,
2 estimate dual Pa)
=
3 average primal estimate, dual 0 g
(7]

4 average primal estimate, estimate dual

For most problems the default works well. Indeed, changing the starting-point heuristic may
even worsen performance overall. However, if you are using the dual preprocessing option
(for example, set preprocessi ng dual 1), then one of the other heuristics for
computing a starting point may perform better than the default.

ILOG CPLEX 7.5 — USER’'S MANUAL 143

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

144

To change the starting point heuristic:

0O Inthe Interactive Optimizer, use the command set barrier startalg i,
substituting avaluefori .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Start Al g or
CPX_PARAM BARSTARTALG.

Overcoming Numerical Difficulties

Aswe noted in Differences between Barrier and Smplex Optimizers on page 131, the
algorithmsin the barrier optimizer have very different numerical properties from thosein the
simplex optimizer. While the barrier optimizer is often extremely fast, particularly on very
large problems, numerical difficulties occasionally arise with it in certain classes of
problems. For that reason, we recommend that you run simplex optimizersin conjunction
with the barrier optimizer to verify solutions. At its default settings, the ILOG CPLEX
Barrier Optimizer always crosses over after abarrier solution to asimplex optimizer, so this
verification occurs automatically.

Difficulties in the Quality of Solution

Under standing Solution Quality fromthe Barrier LP Optimizer on page 138 lists the items
that ILOG CPLEX displays about the quality of abarrier solution. If the ILOG CPLEX
Barrier Optimizer terminates its work with a solution that does not meet your quality
requirements, you can adjust parameters that influence the quality of a solution. Those
adjustments affect the choice of ordering algorithm, the choice of barrier algorithm, the limit
on barrier corrections, and the choice of starting-point heuristic—topics introduced in
Tuning Barrier Optimizer Performance on page 140 and recapitul ated here in the following
subsections.

Change the Ordering Algorithm

Aswe explain about tuning performance in Choosing an Ordering Algorithm on page 142,
you can choose one of several ordering algorithmsto useinthe ILOG CPLEX Barrier
Optimizer. To improve the quality of a solution in some problems, change the ordering
algorithm, as suggested on page 143.

Change the Barrier Algorithm

The ILOG CPLEX Barrier Optimizer implements the algorithms listed in Table 4.13. The
default option invokes option 3 for LPs and option 1 for MIPs where the ILOG CPLEX
Barrier Optimizer is used on the subproblems. Naturally, the default is the fastest for most
problems, but it may not work well on problemsthat are primal infeasible or dual infeasible.
Options 1 and 2 in the ILOG CPLEX Barrier Optimizer implement abarrier algorithm that
also detectsinfeasibility. (They differ from each other in how they compute a starting point.)
Though they are slower than the default option, in a problem demonstrating numerical

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

difficulties, they may eliminate the numerical difficulties and thusimprove the quality of the
solution.

Table 4.13 Values of the Parameter to Choose the Algorithmin the Barrier Optimizer

Value Meaning

0 default

1 algorithm starts with infeasibility estimate
2 algorithm starts with infeasibility constant
3 standard barrier algorithm

To change the barrier a gorithm:
O Inthe Interactive Optimizer, use the command set barrier algorithmi.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Al g or
CPX_PARAM BARALG.

Change the Limit on Barrier Corrections

The default barrier algorithm in the ILOG CPLEX Barrier Optimizer computes an estimate
of the maximum number of centering corrections that ILOG CPLEX should make on each
iteration. You can see this computed value by setting barrier display level two, as explained
in Interpreting the Barrier Log File on page 135, and checking the value of the parameter to
limit corrections. (Its default valueis- 1.) If you see that the current value is 0 (zero), then
you should experiment with greater settings. Setting this parameter to avalue greater than 0
may improve numerical performance, but there may also be an increasein computation time,

To set the parameter to limit barrier corrections:

0 Inthe Interactive Optimizer use the command
set barrier limts corrections i, substituting aninteger greater than zero but
less than or equal totenforii .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar MaxCor or
CPX_PARAM BARMAXCOR.

Choose a Different Starting-Point Heuristic

Aswe explained in Using a Starting-Point Heuristic on page 143, the default starting-point
heuristic workswell for most problems suitabl e to barrier optimization, and in fact, changing
the starting-point heuristic can worsen performance. However, if you are preprocessing your
problem as dual (for example, in the Interactive Optimizer you issued the command

set preprocessing dual), then adifferent starting-point heuristic may perform better
than the default. To change the starting-point heuristic, see Table 4.12 on page 143.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

ILOG CPLEX 7.5 — USER’'S MANUAL 145

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

146

Difficulties during Optimization

Numerical difficulties can degrade performance of the ILOG CPLEX Barrier Optimizer or
even prevent convergence toward a solution. There are several possible sources of numerical
difficulties:

0 elimination of too many dense columns may cause numerical instability;

0O tight convergence tolerance may aggravate small numerical inconsistenciesin a problem;
0 unbounded optimal faces may remain undetected and thus prevent convergence.

The following subsections offer guidance about overcoming those difficulties.

Numerical Instability Due to Elimination of Too Many Dense Columns

Detecting and Eliminating Dense Columns on page 142 explains how to change parameters
to encourage ILOG CPLEX to detect and eliminate as many dense columns as possible.
However, in some problems, if ILOG CPLEX removes too many dense columns, it may
cause numerical instability.

You can check how many dense columns ILOG CPLEX removes by looking at the
preprocessing statistics at the beginning of the log file, as we explained in Preprocessing in
the Log File on page 136. If you observe that the removal of too many dense columnsresults
in numerical instability in your problem, then increase the column nonzeros parameter.

The default value of the column nonzeros parameter is 0 (zero); that valuetells
ILOG CPLEX to calculate the parameter automatically.

To see the current value of the column nonzeros parameter—either one you have set or one
ILOG CPLEX has automatically cal culated—you need to look at the level two display. To
see the level two display:

O Inthe Interactive Optimizer, use the command set barri er display 2.
0 From the Callable Library, set the parameter CPX_PARAM BARDI SPLAY.

Either alternative will record level two information in the log file, where you can see the
current value of the column nonzeros parameter.

If you determine that the current val ue of the column nonzeros parameter isinappropriate for
your problem and thustells ILOG CPLEX to remove too many dense columns, then you can
increase the parameter to keep the number of dense columns removed low. In the Interactive
Optimizer, use the command set barri er col nonzeros i, substituting alarger value
fori . When using the Component Libraries, set the parameter | | oCpl ex: : Bar Col Nz or
CPX_PARAM BARCOLNZ.

Small Numerical Inconsistencies and Tight Convergence Tolerance

If your problem contains small numerical inconsistencies, it may be difficult for the
ILOG CPLEX Barrier Optimizer to achieve a satisfactory solution at the default setting of
the complementarity convergence tolerance. In such a case, you should increase that
tolerance to a value greater than its default, 18,

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

To increase complementarity convergence tolerance:

O Inthe Interactive Optimizer, use the command set barrier convergetol i,
substituting a greater than or equal to 1e1%for i .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar EpConp or
CPX_PARAM _BAREPCOVP.

Unbounded Variables and Unbounded Optimal Faces

An unbounded optimal face occursin an LP that contains a sequence of optimal solutions,
all with the same value for the objective function and unbounded variable values. The
ILOG CPLEX Barrier Optimizer will fail to terminate normally if an undetected unbounded
optimal face exists.

Normally, the ILOG CPLEX Barrier Optimizer uses its barrier growth parameter to detect
such conditions. If this parameter is increased beyond it default value, the ILOG CPLEX
Barrier Optimizer will be less likely to determine that the problem has an unbounded
optimal face and more likely to encounter numerical difficulties.

Consequently, you should change the barrier growth parameter only if you find that the
ILOG CPLEX Barrier Optimizer isterminating its work before it finds the true optimum
because it has falsely detected an unbounded face.

Furthermore, if you know that all the variablesin your problem have afinite upper bound,
then you should set an upper bound on al previously unbound variablesin your problem.

To set an upper bound on unbound variables:

O Inthe Interactive Optimizer, use the command set barrier linits varupper i,
substituting your known upper bound for i .

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Var Up or
CPX_PARAM BARVARUP.

ILOG CPLEX will then use that upper bound to temporarily set a bound on any previously
unbound variables.

Difficulties with Unbounded Problems
ILOG CPLEX detects unbounded problems in either of two ways:

O either it finds a solution with small complementarity that is not feasible for either the
primal or the dual formulation of the problem;

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

0 or theiterations tend toward infinity with the objective value becoming very large in
absolute value.

The ILOG CPLEX Barrier Optimizer stops when the absolute value of either the primal or
dual objective exceeds the object-range parameter.

ILOG CPLEX 7.5 — USER’'S MANUAL 147

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

148

If you increase the value of the object-range parameter, then the ILOG CPLEX Barrier
Optimizer will iterate more times before it decides that the current problem suffers from an
unbounded objective value.

If you know that your problem has large objective values, consider increasing the object-
range parameter. In the Interactive Optimizer, use the command

set barrier lints objrange i,substitutingalargepositivevaluefori . When using
the Component Libraries, set the parameter | | oCpl ex: : Bar Cbj Rng or

CPX_PARAM BAROBJRNG.

Also if you know that your problem has large objective values, consider changing the
algorithm that the ILOG CPLEX Barrier Optimizer is using from the default to one of the
aternatives. To change the algorithm:

0O Inthe Interactive Optimizer, use the command set barrier algorithmi,
substituting a value from Table 4.13 on page 145.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Al g or
CPX_PARAM BARALG.

Diagnosing Barrier Optimizer Infeasibility

When the ILOG CPLEX Barrier Optimizer terminates and reports an infeasible solution, all
the usual solution information is available. However, the solution values, reduced costs, and
dual variables reported then do not correspond to a basis; hence, that information does not
have the same meaning as the corresponding output from the ILOG CPLEX simplex
optimizers.

Actualy, since the ILOG CPLEX Barrier Optimizer worksin asingle phase, al reduced
costs and dual variables are calculated in terms of the original objective function.

If the ILOG CPLEX Barrier Optimizer reports to you that a problem isinfeasible, but you
still need abasic solution for the problem, use the primal simplex optimizer. For example, in
the Interactive Optimizer, use the command pr i nopt . ILOG CPLEX will then use the
solution provided by the barrier optimizer to determine a starting basis for the primal
simplex optimizer. When the primal simplex optimizer finishes its work, you will have an
infeasible basic solution for further infeasibility anaysis.

If the default algorithm in the ILOG CPLEX Barrier Optimizer determines that your
problemisprimal infeasible or dual infeasible, then try the alternate algorithmsin the barrier
optimizer. These algorithms, though slower than the default, are better at detecting primal
and dual infeasibility. To change the algorithm:

O Inthe Interactive Optimizer, use the command set barrier algorithmi,
substituting a value from Table 4.13 on page 145.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Bar Al g or
CPX_PARAM BARALG.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

In Finding a Set of Irreducibly Inconsistent Constraints on page 116, we explained how to
invoke the infeasibility finder on a solution basis found by one of the simplex optimizers. If
you are using the pure barrier optimizer (that is, with no crossover to a simplex optimizer),
then it will not generate a basis on which you can call the infeasibility finder to analyze your
congtraints and locate an I1S. Consequently, if you are interested in finding an 11S for your
problem, you should invoke the ILOG CPLEX Barrier Optimizer with crossover, as
explained in Controlling Crossover on page 134.

w
=)
<
5
Q@
—
U
i
o
=2
()
3
o

ILOG CPLEX 7.5 — USER’'S MANUAL 149

SOLVING LP PROBLEMS WITH THE BARRIER OPTIMIZER

150 ILOG CPLEX 7.5 — USER’'S MANUAL

Solving Mixed Integer Programming
Problems

The ILOG CPLEX Mixed Integer Optimizer enables you to solve models in which one or
more variables must be restricted to integer solution values. This chapter tells you more
about optimizing mixed integer programming (MIP) problems with ILOG CPLEX. It
includes sections on:

0 Sample: Stating aMIP Problem

Considering Preliminary Issues

Using the Mixed Integer Optimizer

Using Sengitivity Information inaMIP

Using Special Ordered Sets (SOS)

Using Semi-Continuous Variables

Progress Reports: Interpreting the Node Log
Troubleshooting MIP Performance Problems
Example: Optimizing a Basic MIP Problem
Example: Reading a MIP Problem from a File

o o o o o o o g g o

Example: Using SOS and Priority

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 151

SAMPLE:

STATING A MIP PROBLEM

To usethe ILOG CPLEX Mixed Integer Optimizer in application development, your
development license must include the MIP option. If you call MIP routines from the Concert
Technology or Callable Librariesin your applications, your end-users’ runtime (derivative
work) licenses must also include the MIP option. For moreinformation about ILOG CPLEX
licensing, contact your ILOG CPLEX representative.

Sample: Stating a MIP Problem

A mixed integer programming (MIP) problem may consist of both integer and continuous
variables. Theinteger variables may be restricted to the values 0 (zero) and 1 (one), in which
case they arereferred to as binary variables. Or they may take on any integer values, in
which case they are referred to as general integer variables. A variable that may take either
the value O or avalue between alower and an upper bound is referred to as semi-continuous.
A semi-continuous variable that is restricted to integer valuesis referred to as semi-integer.
(Continuous variables in amixed integer programming problem are not restricted to integer
values.) Thefollowing illustrates a mixed integer programming problem, which issolved in
the example programi | ori pex1. cpp / mi pex1. c, discussed later in this chapter:

Maximize X + 2% + 33 + X4
subject to - Xt X o+ X3 o+ 10xy4 = 20
Xp - Ao + X3 < 30
Xo - 35 = 0
with these bounds 0 = x4 < 40
0 <= X < +ow
0 = X3 <= +o
2 < X < 3
X4 integer

Considering Preliminary Issues

152

When you are optimizing aMIP, there are afew preliminary issues that you need to consider
to get the most out of ILOG CPLEX. The following sections cover such topics as entering
variable type, displaying MIPsin the Interactive Optimizer, determining the problem type,
and switching to relaxed versions of your problem.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Entering MIP Problems

You enter MIPsinto ILOG CPLEX inthe sameway as LPs, as explained in Put Data in the
Problem Object on page 58, with this additional consideration: you need to indicate which
variables are binary, general integer, semi-continuous, and semi-integer, and which are
contained in special ordered sets (SOS).

Concert Technology Library users can specify thisinformation by passing atype valueto the
appropriate constructor when creating the variable. Use | | oNunVar : : Bool for binary
variables, I | oNunVar : : I nt for general integer variables, | | oSeni Cont Var for semi-
continuous variables, and I | 0Seni Cont Var: : | nt for semi-integer variables. SOS
variables are created as instances of the class| | 0SOS1 or | | 0SOS2.

Cadllable Library users can specify thisinformation through the CPXcopyct ype() routine.

In the Interactive Optimizer, to indicate binary integersin the context of the ent er
command, type bi nar i es on aseparate line, followed by the designated binary variables.
To indicate general integers, type gener al s on aseparate line, followed by the designated
genera variables. To indicate semi-continuous variables, type seni - cont i nuous on a
separate line, followed by the designated variables. Semi-integer variables are indicated by
being specified as both general integer and semi-continuous. The order of these three
sections does not matter. To enter the general integer variable of the Sample: Stating a MIP
Problem on page 152, you type this:

general s
x4

You may also read MIP datain from aformatted file, just as you do for linear programming
problems. Chapter 8, More About Using ILOG CPLEX in this manual describes file formats
briefly, and the ILOG CPLEX Reference Manual documents file formats, such as MPS, LP,
and others.

0 Toread MIP problem datainto the | nteractive Optimizer, usether ead command with an
option to indicate the file type.

0 Toread MIP problem datainto your application, usethei npor t Model () method in the
Concert Technology Library or use a copy routine from the Callable Library. Table 5.1
summarizes the available routines and their purpose.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 153

CONSIDERING PRELIMINARY ISSUES

154

Table5.1 Callable Library Routines for Reading Formatted Filesinto MIP Applications

To read this format

Use this Callable Library routine

MPS, LP, or SAV file

CPXr eadcopypr ob()

MST file containing MIP start values

CPXr eadcopymi pstart ()

ORD file containing MIP priority order

CPXr eadcopyor der ()

ORD file containing MIP branching directions | CPXr eadcopyor der ()

SOS file

CPXr eadcopysos()

MPS file containing SOS information

CPXr eadcopypr ob()

Displaying MIP Problems

If you arelicensed to use the ILOG CPLEX Mixed Integer Optimizer, then you will see
additional display optionsin the Interactive Optimizer. Table 5.2 summarizes these

additional options.

Table 5.2 Interactive Optimizer Display Options for MIP Problems

Interactive command

Purpose

di spl ay problem binaries

lists variables restricted to binary values

di spl ay problem generals

lists variables restricted to integer values

di spl ay probl em sem -conti nuous

lists variables of type semi-continuous and
semi-integer

di splay problemintegers

lists all of the above

di spl ay problem sos

lists the names of variables in one or more
Special Ordered Sets

di splay problem stats

lists LP statistics plus:

« binary variable types, if present;
« general variable types, if present;
 and number of SOS, if present.

In the Concert Technology Library, use one of the accessor methods supplied with the

appropriate object class, such as| | 0SOS2:

: get Vari abl es. Refer to the ILOG Concert

Technology Reference Manual for more information.

From the Callable Library, use the routines CPXget ct ype() and CPXget sos() to access

thisinformation.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Determining Problem Type and Variable Type in MIPs

When you enter a problem in the Interactive Optimizer, ILOG CPLEX determines the
problem type from the available information. If there are no binary variables, no general
variables, and no SOS, ILOG CPLEX treats the problem type as LP. Before any variables
can be changed to binary or general type (that is, restricted to integer va ues), the problem
type must be changed to MIP. Reading an SOS description automatically changes the
problem typeto MIP.

Changing Problem Type

If you arelicensed to use the ILOG CPLEX Mixed Integer Optimizer, then you will see
additional change optionsin the Interactive Optimizer. To change the problem type to MIP,
use the command change probl em ni p.

The command change pr obl emshows you the type of the current problem and prompts
you to indicate the type of problem you would like it to be. In other words, with this
command, you can change the current MIP problem to its continuous relaxation or to its
fixed MIP. Its continuous relaxation is alinear program in which al its variables are
continuous (rather than restricted to integer values). Its fixed MIP isthe linear programin
which the integer variables are fixed at the values they attained in the best integer solution.

Since a continuous relaxation of a MIP and the fixed MIP are both linear programs, &l the
features of the ILOG CPLEX Interactive Optimizer are available to them, including
information about the quality of solutions and about sensitivity analysis. The original
variable bounds and their types are restored when the problem type is changed back to MIP.

Changing Variable Type

The command change t ype adds (or removes) the restriction on avariable that it must be
an integer. In the I nteractive Optimizer, when you enter the command change t ype, the
system prompts you to enter the variable that you want to change, and then it promptsyou to
enter the type (c for continuous, b for binary, i for general integer, s for semi-continuous, n
for semi-integer).

You can change avariable to binary even if itsbounds are not O (zero) and 1 (one). However,
in such a case, the system issues a warning message at optimization, and the optimization
may terminate with a bound violation.

Consequently, in the example that we mentioned (see Sample: Stating a MIP Problem on
page 152), if we want to make x4 abinary variable, we should first change the bounds on x,
to 0 and 1; then we can safely change its type to binary.

If you change a variable's type to be semi-continuous or semi-integer, make sure to create
both alower bound and an upper bound for it. These variable types specify that at an optimal
solution the value for the variable must be either exactly zero or else be between the lower
and upper bounds (and further subject to the restriction that the value be an integer, in the
case of semi-integer variables).

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 155

USING THE MIXED INTEGER OPTIMIZER

By the way, if itstype has been changed to MIP, a problem may be a mixed integer problem,
even if all its variables are continuous.
Modifying Relaxed and Fixed Problems

The change command in the Interactive Optimizer does not apply to the continuous
relaxation of aMIP; nor does it apply to the fixed MIP. If you want to interactively modify
and re-solve arelaxed or fixed version of aMIP, then you should follow these steps:

1. Write out the relaxed or fixed version to afile.

2. Read back in the relaxed or fixed version.

If you simply change the problem typeto LP, al the MIP-related information will be
discarded. After this modification, you will not be able to restore the original MIP problem.

Using the Mixed Integer Optimizer

156

The ILOG CPLEX Mixed Integer Optimizer exploits abranch & cut algorithm.
To invoke the Mixed Integer Optimizer:

O Inthe Interactive Optimizer, use the m popt command.

0 Inthe Concert Technology Library, with the method I | oCpl ex: : sol ve().
0 Inthe Calable Library, you call it with the CPXni popt () routine.

Branch & Cut

In the branch & cut algorithm, ILOG CPLEX solves a series of LP subproblems. To manage
those subproblems efficiently, ILOG CPLEX builds atree in which each subproblem isa
node. The root of the tree is the LP relaxation of the original MIP problem.

If the solution to the relaxation has one or more fractional variables, ILOG CPLEX will try
to find cuts. Cuts are constraints that cut away areas of the feasible region of the relaxation

that contain fractional solutions. ILOG CPLEX can generate several types of cuts. (Cutson
page 159 tells you more about that topic.) Such a gorithms have been known historically as
branch & bound, especially when cuts are not generated.

If the solution to the relaxation still has one or more fractional-valued integer variables after
ILOG CPLEX triesto add cuts, then ILOG CPLEX branches on a fractional variableto
generate two new subproblems, each with more restrictive bounds on the branching variable.
For example, with binary variables, one node will fix the variable at O (zero), the other, at

1 (one).

The subproblems may result in an al-integer solution, in an infeasible solution, or another
fractional solution. If the solution isfractional, ILOG CPLEX repeats the process.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

ILOG CPLEX cuts off nodes when the value of the objective function associated with the
subproblem at that node is worse than the cutoff value. The cutoff valueis determined in
either of two ways:

O You set the cutoff value in the:

. Interactive Optimizer by means of the command
set mip tol erances | owercutof f (whenyou are maximizing the objective) or
set nmp tol erances uppercutof f (whenyou are minimizing the objective);

. Concert Technology Library set the parameter Cut Lo or Cut Up.
. Cadllable Library set the parameter CPX_PARAM CUTLO or CPX_PARAM CUTUP.

The default value of the lower cutoff is -1e* ’°; the default value of the upper cutoff is
1e* 7. You can supply any number that you find appropriate for your problem.

0 ILOG CPLEX will usethe value of the best integer solution found so far, as modified by
tolerance parameters.

. Inthe Interactive Optimizer, use the command
set mp tol erances objdifference for an absolute objective difference cutoff
orset mip tolerances rel objdifference forarelative objective difference
cutoff.

. Inthe Concert Technology Library set the parameter Cbj Di f or Rel Obj Di f .

. Inthe Callable Library, set the parameter CPX_PARAM OBJDI F or
CPX_PARAM RELCBJDI F.

Be careful in changing these tolerances: if either of them is nonzero, you may missthe
optimal solution by as much asthat amount. For example, if the true optimum is 100, and
the absolute cutoff is set to 5, and a feasible solution of, say, 103 is found at some point,
then the cutoff will discard &l nodes with a solution worse than 98, and thus the solution
of 100 will be overlooked.

Once ILOG CPLEX finds an integer solution, it does the following:
0O it makes that integer solution the incumbent solution and that node the incumbent node;

0O it makes the value of the objective function at that node (modified by the objective
difference parameter) the new cutoff value;

0O it prunesfrom thetree all subproblems for which the value of the objective function isno
better than the incumbent.

You control the path that ILOG CPLEX traversesin the tree through several parameters, as
summarized in Table 5.3 and explained further in later sections. Briefly, ILOG CPLEX must
make different kinds of choices:

ILOG CPLEX 7.5 — USER’'S MANUAL 157

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

USING THE MIXED INTEGER OPTIMIZER

O within atree, about which node to branch on,
O at anode, which variable to branch on, and

0O at avariable, which direction to branch (up or down or other).

Table 5.3 Parameters for Controlling Branch & Cut Strategy

géfrr]?:;lr:/; Optimizer IC::L(])rr:((::tt?(r)tnTechnology Library Callable Library Routine

set mp strategy backtrack Il oCpl ex: : set Param(Bt Tol , n) CPXset dbl par an{ env, CPX_PARAM BTTOL, n)

set mp strategy nodesel ect Il oCpl ex: : set Par an(NodeSel , i) CPXset i nt paran{ env, CPX_PARAM NODESEL, i)
set mp strategy vari abl esel ect |11 0Cpl ex:: set Paranm(Var Sel, i) CPXset i nt paran{env, CPX_PARAM VARSEL, i)

set mp strategy bbinterval 11 oCpl ex: : set Paran(BBI nterval, i) [CPXsetintparan{env, CPX_PARAM BBI NTERVAL, i)
set mp strategy branch Il oCpl ex: : setParam(BrDir, i) CPXset i nt paran(env, CPX_PARAM BRDIR i)

158

At each node, ILOG CPLEX may delve deeper into the tree or it may backtrack. The value
of the backtrack parameter, page 176, influences this decision. When ILOG CPLEX
backtracks, there are usually large numbers of available, unexplored nodes. The node
selection parameter, page 177, influences its selection. Once a node has been selected, the
variable selection parameter, page 176, influences which variable is selected for branching.
Priority, page 162, provides a powerful mechanism through which you supply problem-
specific directives about the order of variables during branching. You also supply problem-
specific preferences about branching direction, either globally or by specific variable. And
specia ordered sets (SOS), page 169, may also improve branching strategy.

Feasibility and Optimality

The parameter | | oCpl ex: : M pEnphasi s / CPX_PARAM M PEMPHASI S (set i p
enphasi s in the Interactive Optimizer) specifies whether CPLEX should emphasize
feasibility or optimality asit solves the problem.

At the default setting of 0, CPLEX uses tactics designed to find a proved optimal solution
most quickly, with less regard for the speed at which feasible solutions are produced along
the way. With a setting of 1, CPLEX uses tactics designed to find the first and subsequent
feasible solutions more quickly, at the likely expense of prolonging the time required to find
aproven optimal solution.

Either setting will deliver a proved optimum, will produce feasible solutions during the
course of computation, and will honor other parameter settings (such as time limits or
branching strategies); the difference isin the trade-offs the MIP algorithm makes between
the competing aims. Since proving optimality is often far more difficult than finding feasible
solutions, setting this parameter to 1 is useful in situations (for example) where obtaining a
good solution within atime limit is more important than arriving at a proved optimum.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Cuts

Cuts are constraints added to a model to restrict (cut away) noninteger solutions that would
otherwise be solutions of the LP relaxation. The addition of cuts usually reduces the number
of branches needed to solve aMIP.

In the following descriptions of cuts, the term subproblem includes the root node (that is, the
LP relaxation). Cuts are most frequently seen at the root node, but they may be added by
ILOG CPLEX at other nodes as conditions warrant.

ILOG CPLEX generatesits cuts in such away that they are valid for al subproblems, even
when they are discovered during analysis of a particular subproblem. If the solution to a
subproblem violates one of the subsequent cuts, ILOG CPLEX may add an LP constraint to
reflect this condition.

Clique Cuts

A cliqueisarelationship among agroup of binary variables such that at most onevariablein
the group can be positive in any integer feasible solution. Before optimization starts,

ILOG CPLEX constructs a graph representing these rel ationships and finds maximal cliques
in the graph.

Cover Cuts

If aconstraint takes the form of aknapsack constraint (that is, asum of binary variables with
nonnegative coefficients less than or equal to a nonnegative right-hand side), then thereisa
minimal cover associated with the constraint. A minimal cover isasubset of the variables of
the inequality such that if all the subset variables were set to one, the knapsack constraint
would be violated, but if any one subset variable were excluded, the constraint would be
satisfied. ILOG CPLEX can generate a constraint corresponding to this condition, and this
cut iscalled a cover cut.

Disjunctive Cuts

A MIP problem can be divided into two subproblems with disjunctive feasible regions of
their LP relaxations by branching on an integer variable. Digjunctive cuts are inequalities
valid for the feasible regions of LP relaxations of the subproblems, but not valid for the
feasible region of LP relaxation of the MIP problem.

Flow Cover Cuts

Flow covers are generated from constraints that contain continuous variables, where the
continuous variables have variable upper bounds that are zero or positive depending on the
setting of associated binary variables. The idea of aflow cover comes from considering the
constraint containing the continuous variables as describing a single node in a network
where the continuous variables are in-flows and out-flows. The flows will be on or off
depending on the settings of the associated binary variables for the variable upper bounds.
The flows and the demand at the single node imply aknapsack constraint. That knapsack

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 159

USING THE MIXED INTEGER OPTIMIZER

160

constraint is then used to generate a cover cut on the flows (that is, on the continuous
variables and their variable upper bounds).
Flow Path Cuts

Flow path cuts are generated by considering a set of constraints containing the continuous
variables that describe a path structure in a network, where the constraints are nodes and the
continuous variables are in-flows and out-flows. The flows will be on or off depending on
the settings of the associated binary variables.

Gomory Fractional Cuts

Gomory fractional cuts are generated by applying integer rounding on a pivot row in the
optimal LP tableau for a (basic) integer variable with a fractional solution value.
Generalized Upper Bound (GUB) Cover Cuts

A GUB constraint for a set of binary variablesisasum of variableslessthan or equal to one.
If the variablesin a GUB constraint are also members of a knapsack constraint, then the
minimal cover can be selected with the additional consideration that at most one of the
members of the GUB constraint can be one in a solution. This additional restriction makes
the GUB cover cuts stronger (that is, more restrictive) than ordinary cover cuts.

Implied Bound Cuts

In some models, binary variables imply bounds on continuous variables. ILOG CPLEX
generates potential cutsto reflect these relationships.

Mixed Integer Rounding (MIR) Cuts

MIR cuts are generated by applying integer rounding on the coefficients of integer variables
and the right-hand side of a constraint.

Adding Cuts and Re-Optimizing

Each time ILOG CPLEX adds a cut, the subproblem is re-optimized. CPLEX repeats the
process of adding cuts at a node until it finds no further effective cuts. It then selects the
branching variable for the subproblem.

Parameters control the way each class of cutsis used. Those parameters are listed in
Table 5.4.

Table5.4 Parametersfor Controlling Cuts

Cut Type Interactive Command Ei%r;gf;t;;(;m;ggy g::?gl;até_ribrary
Clique set mp cuts cliques Il oCpl ex:: Ciques CPX_PARAM CLI QUES
Cover set mp cuts covers Il oCpl ex: : Covers CPX_PARAM_COVERS
Disjunctive set mip cuts disjunctive|lloCplex::DisjCuts CPX_PARAM DI SJCUTS

ILOG CPLEX 7.5 — USER’'S MANUAL

Table 5.4 Parametersfor Controlling Cuts (Continued)

<functionhead>

Cut Type Interactive Command Ei%r;gf;t;;(;m;ggy g::?gl;até_ribrary

Flow Cover set mp cuts flowcuts Il oCpl ex: : Fl owCovers CPX_PARAM _FLOWCOVERS
Flow Path set m p cuts pathcut Il oCpl ex: : Fl owPat hs CPX_PARAM_FLOWPATHS
Gomory set mp cuts gonory Il oCpl ex: : FracCuts CPX_PARAM FRACCUTS
GUB Cover set m p cuts gubcovers Il oCpl ex: : GUBCover s CPX_PARAM_GUBCOVERS
Implied Bound set mp cuts inplied Il oCpl ex: : | npl Bd CPX_PARAM | MPLBD
Mixed Integer set mp cuts mrcut Il oCpl ex: : M RCut s CPX_PARAM M RCUTS
Rounding (MIR)

The default value of each of those parametersis 0 (zero). By default, ILOG CPLEX
automatically determines how often (if at al) it should try to generate that class of cut. A
setting of - 1 indicates that no cuts of the class should be generated; a setting of 1 indicates
that cuts of the class should be generated moderately; and a setting of 2 indicates that cuts of
the class should be generated aggressively. For digjunctive cuts, a setting of 3 is permitted,
which indicates that disjunctive cuts should be generated very aggressively.

In the Interactive Optimizer, thecommandset nip cuts all iappliesthevaluei toall
classes of cut parameters. That is, you can set them all at once.

The cuts-factor parameter controls the number of cuts ILOG CPLEX addsto the model. The
problem can grow to cuts-factor times the original number of rows in the model (or in the
presolved model, if the presolver is active). Thus, a cuts-factor of 1.0 would mean that no
cuts will be generated, which may be a more convenient way of turning off all cuts than
setting them individually. The default cuts-factor value of 4.0 works well in most cases, asit
allows a generous number of cuts whilein rare instances it also servesto limit unchecked
growth in the problem size.

Set the cuts-factor parameter in the:
0 Interactive Optimizer withthecommandset mip limts cutsfactor .

0 Concert Technology Library with the function I | oCpl ex: : set Par an{ Cut sFact or,
n).

0 CalableLibrary with the routine CPXset dbl par an(env, CPX_PARAM CUTSFACTOR,
n).

ILOG CPLEX 7.5 — USER’'S MANUAL 161

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

USING THE MIXED INTEGER OPTIMIZER

162

The cuts aggregation parameter controls the number of constraints allowed to be aggregated
for generating MIR and flow cover cuts. Set this parameter in the:

0O Interactive Optimizer with thecommandset nmip linmits aggforcut .

0O Concert Technology Library with the function I | oCpl ex: : set Par an{ AggCut Li m
i).

00 CallableLibrary with the routine CPXset i nt par an{ env, CPX_PARAM AGGCUTLI M
i) .

The gomorypass parameter controls the number of passes for generating Gomory fractional

cuts. Set this parameter in the:

O Interactive Optimizer with thecommandset mip linits gonorypass.

0 Concert Technology Library with the function | | oCpl ex: : set Par an{ Fr acPass,
i).

00 CallableLibrary with the routine
CPXset i nt paran{ env, CPX_PARAM FRACPASS, i).

The parameter will not have any effect if the parameter for set nmip cuts gonory hasa
nonzero value. The gomorycand parameter controls the number of variable candidates to be
considered for generating Gomory fractional cuts. Set this parameter in the:

0O Interactive Optimizer with thecommandset mip linits gonorycand.

0 Concert Technology Library with the function | | oCpl ex: : set Par an{ Fr acCand,
i).

00 CallableLibrary with the routine CPXset i nt par an{ env, CPX_PARAM FRACCAND,
i).

Priority

In branch & cut, ILOG CPLEX makes decisions about which variable to branch on at a
node. You can control the order in which ILOG CPLEX branches on variables by issuing a
priority order. A priority order assigns a branching priority to some or al of the integer
variablesin amodel. ILOG CPLEX branches on variables with an assigned priority before
variables without a priority. It also branches on variables with higher priority before
variables with lower priority, when the variables have fractional values.

You can specify priority for any variable, though the priority isused only if the variableisa
general integer variable, abinary integer variable, or amember of a special ordered set.

Sometimes, ageneric priority may be helpful. There are options for setting priority among
variables based on the magnitude of their coefficientsin the objective function, on the range
of their bounds, and on their objective value divided by column count.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

For example:

0O Inthe Interactive Optimizer, the command set ni p ordertype 1 will make
ILOG CPLEX branch on variables by decreasing cost.

0 For the Concert Technology Library, the corresponding parameter is
Il oCpl ex: : M POrdType.

O For the Callable Library it is CPX_PARAM M PORDTYPE.

If you explicitly read afile of priority orders, its settings will override any generic priority
order you may have set by interactive commands.

O Inthelnteractive Optimizer, thecommandset nip strategy order 0 overridesal
priority orders—whether set by a command or from afile—so that ILOG CPLEX uses
no priority orders.

0 For the Concert Technology Library the corresponding parameter is
11 oCpl ex:: M POdlnt.

O For the Callable Library it is CPX_PARAM M PORDI ND.

Problems that use integer variables to represent different types of decisions should assign
higher priority to those that must be decided first. For example, if some variablesin amodel
activate processes, and others use those activated processes, then the first group of variables
should be assigned higher priority than the second group. In that way, you can use priority to
achieve better solutions.

Priority based on the magnitude of objective coefficientsis often useful in this way.

Heuristics

CPLEX supports a heuristic to find integer solutions at nodes during the branch & cut
procedure. To invoke this heuristic:

0O Inthe Interactive Optimizer, usethecommandset nip strategy heuristicfreq.
0O Inthe Concert Technology Library, set the parameter | | oCpl ex: : Heur Fr eq.
0O From the Callable Library, set the parameter CPX_PARAM HEURFREQ.

For example, if the frequency is set to 20, then the node heuristic will be applied at node 0,
node 20, node 40, and so on. At the default setting 0 (zero), ILOG CPLEX automatically
determines the frequency dynamically. The value - 1 turnsthis feature off.

Preprocessing: Presolver and Aggregator

When you invoke the M 1P optimizer—whether through the I nteractive Optimizer command
m popt , through acall to the Concert Technology Library function I | oCpl ex: : sol ve(),
or through the Callable Library routine CPXmi popt () —ILOG CPLEX by default

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 163

USING THE MIXED

INTEGER OPTIMIZER

automatically preprocesses your problem. Table 5.5 summarizes the preprocessing
parameters. In preprocessing, ILOG CPLEX applies its presolver and aggregator once or
more to reduce the size of the integer program in order to strengthen the initial linear
relaxation and to decrease the overall size of the mixed integer program.

Table5.5 Parametersfor Controlling MIP Preprocessing

Interactive Command C_oncert Technology Callable Library Comment

Library Parameter Parameter
set preprocessing aggregator I'l oCpl ex: : Aggl nd CPX_PARAM _AGG ND on by default
set preprocessing presolve I'l oCpl ex:: Prelnd CPX_PARAM_PREI ND on by default
set preprocessing boundstrength Il oCpl ex: : BndStrenl nd CPX_PARAM BNDSTRENI ND presoh/e must be on
set preprocessing coeffreduce I'l oCpl ex: : CoeRedl nd CPX_PARAM_COEREDI ND presolve must be on
set preprocessing rel ax I'l oCpl ex: : Rel axPrel nd CPX_PARAM_RELAXPREI ND applies to relaxation
set preprocessing reduce Il oCpl ex: : Reduce CPX_PARAM_REDUCE all on by default
set preprocessing nunpass not available CPX_PARAM_PREPASS automatic by default

164

The parameters reduce and numpass have the same meanings for LP and MIP.
Preprocessing: Presolver and Aggregator on page 98 explains the meanings and
adjustments of all these parameters.

While preprocessing, ILOG CPLEX also attempts to strengthen bounds on variables. This
bound strengthening may take along time. In such cases, you may want to turn off bound
strengthening.

ILOG CPLEX aso attempts to reduce coefficients during preprocessing. Coefficient
reduction usually strengthens the linear programming relaxation and reduces the number of
nodes in the branch & cut tree, but not always. Sometimes, it increases the amount of time
needed to solve the linear programs at each node—enough time to offset the benefit of fewer
nodes. Two levels of coefficient reduction are available, so it isworthwhile to experiment
with these preprocessing options to see whether they are beneficial to your problem.

In addition, you may also set the relaxation parameter to tell ILOG CPLEX to apply
preprocessing to the initia relaxation of the problem. Sometimes this preprocessing will
result in additional, beneficial presolve transformationsin the L P relaxation—
transformations that are not possible in the original MI1P model.

ILOG CPLEX preprocesses a MIP by default. However, if you use abasisto start LP
optimization at the root node, ILOG CPLEX will proceed with that starting basis without
preprocessing it. In other words, if you change aMIP to arelaxed problem, optimizeit asan
LP, and use that basis to start M1 P-optimization, then no preprocessing will occur.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

If you want to apply a particular LP algorithm to the first relaxation, this strategy is
reasonable. However, for problems that benefit from MIP preprocessing, we do not
recommend it. Instead, we recommend that you use parameters to indicate which algorithm
to use on thefirst relaxation (st ar t al gor i t hmin the Interactive Optimizer and
CPX_PARAM STARTALG in the Callable Library) and which to use on the subproblems
(subal gori t hmin the Interactive Optimizer and CPX_PARAM SUBALGin the Callable
Library). In Concert Technology Library, use the methods

Il oCpl ex: : set Root Al gorithmand || oCpl ex: : set NodeAl gori t hm Subproblem
Optimization on page 187 explains more about choosing algorithms for the first relaxation
and subsequent subproblems.

Starting from a Solution

You can provide a known solution (for example, from a MIP problem previously solved or
from your knowledge of the problem) to serve as the first integer solution. In such a start,
you must specify valuesfor all integer variables, for all semi-continuous variables, and for
all members of special ordered sets. Optionally, you may a so specify values for continuous
variables. ILOG CPLEX evauates that start solution for integrality and feasibility. If itis
integer-feasible, it will become an integer solution of the current problem.

Occasionally, aset of MIP start values will be integer feasible for the original problem, but
not feasible for the preprocessed problem because of complicated transformations carried
out by the presolver or aggregator. ILOG CPLEX issues awarning whenever the MIP start
values do not provide an integer solution, and optimization continues.

You control whether ILOG CPLEX uses a MIP start solution through the mipstart
parameter.

O Inthe Interactive Optimizer, usethe commandset mip strategy mpstart 1.

0 For the Concert Technology Library, use the method
Il oCpl ex: :setParam(M PStart, IloTrue).

0 For the Callable Library, use the routine
CPXset i nt paran{ env, CPX_PARAM M PSTART, CPX_ON).

ILOG CPLEX reads and writes MIP start information in MST files (that is, MIP start-file
format, as described briefly inUnderstanding File Formats on page 264 or documented in
the ILOG CPLEX Reference Manual).

CPLEX saves starting values for al integer variables, al semi-continuous variables, and all
members of special ordered sets at the end of MIP optimization when there is afeasible
solution. These values can then be used in subsequent optimizations.

0O Inthe Interactive Optimizer, use thew i t e command to generate an MST file.

0 Inthe Concert Technology Library, use the method | | oCpl ex: : expor t Model ().

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 165

USING THE MIXED INTEGER OPTIMIZER

0 Inthe Callable Library, use the routine CPXnst wri t e() .

Termination

ILOG CPLEX terminates MIP optimization under a variety of circumstances. First,

ILOG CPLEX declares integer optimality and terminates when it finds an integer solution
and all nodes have been processed. Optimality in this case isrelative to whatever tolerances
and optimality criteriayou have set. For example, ILOG CPLEX considers the cutoff value
and the objective difference parameter in this context.

In addition, ILOG CPLEX terminates optimization when it reaches alimit that you have set.
You can set limits on time, number of nodes, size of tree memory, size of the node log file,
and number of integer solutions. Table 5.6 summarizes those parameters and their purpose.

Table5.6 Parametersto limit MIP optimization

Use this parameter
To set a limit on

Concert Technology Library | Callable Library Interactive Optimizer
elapsed time Il oCplex::TiLim CPX_PARAM TI LI M tinelinit
number of nodes I | oCpl ex: : NodeLi m CPX_PARAM NCDEL| M mp linmts nodes
size of tree memory I oCpl ex: : TreLim CPX_PARAM TRELI M mp limts treemenory
size of node log file I'l oCpl ex: : Wor kMem CPX_PARAM_WORKMEM wor knmem
number of integer solutions | 1 | oCpl ex: : I nt Sol Li m CPX_PARAM | NTSOLLIM |mip linits solutions

166

The limit on tree memory terminates optimization only when the parameter controlling the
node file (in the Interactive Optimizer, mi p strategy fil e, inthe Concert Technology
Library, I | oCpl ex: : NodeFi | el nd, in the Callable Library, CPX_PARAM_NODEFI LEI ND)
is0, the default. If the valueis other than 0, optimization will continue.

ILOG CPLEX also terminates when an error occurs, such as when ILOG CPLEX runs out
of memory or when a subproblem cannot be solved. If an error is due to failure to solve a
subproblem, an additional line appearsin the node log file to indicate the reason for that
failure.

Writing a Tree File

When ILOG CPLEX terminates a MIP optimization before it achieves optimality (for
example, because it has reached alimit you set), it till has significant information about the
current branch & cut tree. You can save thisinformation by writing it to afile of type TRE (a
binary, proprietary ILOG CPLEX format). Later, you can then read the saved TRE file and
restart the optimization from where ILOG CPLEX left off.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

TosaveaMIPinaTRE file:

0 Inthe Interactive Optimizer, use the commandw i te fil ename.tre or
wite filename tre.

0 From the Callable Library, use the routine CPXt r eewri t e() .

A TRE file may be quite large (corresponding to the current size of an activetree) so it may
consume considerable disk space.

If you modify the model of a MIP after you create its TRE file, then the TRE file will be of
no use to you. ILOG CPLEX will accept the old TRE file if the basic dimensions of the
problem have not changed, but the results it produces from it will likely be invalid for the
modified model.

Post-Solution Information in a MIP

Interpreting Solution Satistics on page 114 explains how to use the di spl ay command in
the Interactive Optimizer to see post-solution information from the linear optimizers.
However, because of the way integer solutions are generated, the di spl ay command shows
you only limited information from the MIP optimizer. In fact, ILOG CPLEX generates
integer solutions by solving subproblems that have different bounds from the original
problem, so computing solution values with the original bounds will not usually give the
same solution. Nevertheless, the following solution statistics are available from the MIP
optimizer:

0O objective function value for the best integer solution, if one exists;

0O best bound, that is, best objective function value among remaining subproblems;
0 solution quality;

0 primal values for the best integer solution, if one has been found,;

0 dlack valuesfor best integer solution, if one has been found.

If you request other solution statistics, ILOG CPLEX will issue the error message, “Not
available for mixed integer problems—use CHANGE PROBLEM to change the problem

type.”

Using Sensitivity Information in a MIP

Other post-solution information does not have the same meaning in amixed integer program
asin alinear program because of the specia nature of the integer variablesin the MIP. The
reduced costs, dua values, and sensitivity ranges give you information about the effect of

making small changesin problem data so long as feasibility is maintained. Integer variables,

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 167

USING SPECIAL ORDERED SETS (SOS)

however, lose feasibility if asmall change is made in their value, so this post-solution
information cannot be used to evaluate changes in problem datain the usual way of LPs.

Integer variables typically represent major structural decisionsin amodel, and often many
continuous variables of the model are related to these major decisions. With that observation
inmind, if you take the integer variable values as given, then you can use post-solution
information applying only to the continuous variables in the usual way.

To access this limited sensitivity informationin aMIP:

O Inthe Interactive Optimizer, use the command change probl em fi xed to fix the
values of the integer variables.

0 Inthe Callable Library, use the routine CPXchgpr obt ype() .

ILOG CPLEX then sets the variable bounds so that upper and lower bounds are those in the
current integer solution. You can then optimize the resulting linear program and display its
post-solution statistics.

Using Special Ordered Sets (SOS)

168

A specia ordered set (SOS) is an additional way to specify integrality conditionsin amodel.
There are various types of SOS:

0 SOSType lisaset of variables (whether all integer, all continuous, or mixed integer and
continuous) where at most one variable may be nonzero.

0 SOSType2isaset or integer or continuous variables where at most two variables may
be nonzero. If two variables are nonzero, they must be adjacent in the set.

ILOG CPLEX uses specia branching strategies to take advantage of SOS. The special
branching strategies depend upon the order among the variables in the set. The order is
specified by assigning weights to each variable. The order of the variablesin the model
(such asinthe MPS or LP format datafile, or the column index in a Callable Library
application) is not used in SOS branching. If there is no order relationship among the
variables (such that weights cannot be specified or would not be meaningful), SOS
branching should not be used. For many classes of problems, these branching strategies can
significantly improve performance.

Example: SOS Type 1 for Sizing a Warehouse

To giveyou afeel for how SOS can be useful, here's an example of an SOS Type 1 used to
choose the size of awarehouse. Let’s assume for this example that we can build awarehouse
of 10000, 20000, 40000, or 50000 square feet. We define binary variables for the four sizes,
say, X1, X9, X4, and Xs. We connect these variables by a constraint defining another variable to
denote available square feet, like this: z - 10000, - 20000x, - 40000x, - 50000x5 = O.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Those four variables are members of a special ordered set. Only one size can be chosen for
the warehouse; that is, at most one of the x variables can be nonzero in the solution. And,
thereis an order relationship among the x variables (namely, the sizes) that can be used as
weights. We say that the weights of the set members are 10000, 20000, 40000, and 50000.

Let's say furthermore that we have afractional (that is, noninteger) solution of x; = 0.1,

x5 = 0.9. These values indicate that other parts of the model have imposed the requirement
of 46000 square feet since 0.1* 10000 + 0.9*50000 = 46000. In SOS parlance, we say that
the weighted average of the set is (0.1* 10000 + 0.9*50000)/(0.1 + 0.9) = 46000.

We split the set before the variable with weight exceeding the weighted average. In this case,
we split the set like this: x;, X5, and x4 will be in one subset; xg in the other.

Now we branch. One branch restricts x4, X, X4 t0 0 (zero). This branch resultsin x5 being set
to 1 (one).

The other branch, where x5 is set to 0 (zero), resultsin an infeasible solution, so we remove
it from further consideration.

If awarehouse must be built, then we need the additional constraint that

X1+ %o+ X4 + X5 = 1. Theimplicit constraint for an SOS Type 1 isless than or equal to one.
The linear programming relaxation may more closely resemble the MIP if we add that
constraint.

Declaring SOS Members
ILOG CPLEX offers you several waysto declare an SOS in a problem:

0 Usean SOSfile (that is, onein SOS format, with the file extension .sos). SOSfiles offer
you the most powerful and flexible aternative because the SOS file structure allows you
to do several tasks at once:

provide branching priorities for sets,
assign weightsto individual set members,
define overlapping sets.

0 Use SOS declarations within an MPS or LP file (that is, one in MPS format with the file
extension . nps or in LP format with the file extension . | p. If you already have MPS
fileswith SOS information, you may prefer this option. Conventions for declaring SOS
information in MPS files are documented in the ILOG CPLEX Reference Manual.

Setting Branching Priority for an SOS

An entire SOS can be given a branching priority. There are two alternative waysto give an
SOS branching priority, both documented in the ILOG CPLEX Reference Manual:

0 Usean SOSfileto set priorities.

ILOG CPLEX 7.5 — USER’'S MANUAL 169

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

USING SEMI-CONTINUOUS VARIABLES

0 Usean ORD fileto set priorities.

ILOG CPLEX derivesthe branching priority of a set from the branching priorities of its
members: the entire set is assigned the highest priority among its members.

To specify SOS priorities:

0O Inthe Concert Technology Library, usethe functionsi | oCpl ex: : set Priority() and
Il oCplex::setPriorities().

0 Inthe Callable Library, use the routines CPXcopysos() or CPXcopyor der () .

Assigning SOS Weights

Members of an SOS should be given unique weights that in turn define the order of the
variablesin the set. (These unique weights are also called reference row values.) The most
flexible way for you to assign weightsis through an SOS, MPS, or LPfile. An aternativeis
to use MPS format to assign asingle reference row containing weights. Such areference row
may be a free row with specific weighting information, or it may be the objective function,
or it may be a constraint row.

0 Inthe Concert Technology library, SOS weights are specified in the constructor when the
SOS s created.

0 Inthe Calable Library, the routine CPXcopysos() letsyou specify weightsdirectly in
an application.

In our SOS exampl e, page 168, we used the coefficients of the warehouse capacity
constraint to assign weights.

Using Semi-Continuous Variables

Semi-continuous variables are variables that may take either the value O or valuesin afinite
range[a, b]. Semi-continuous variables can be specified in MPS and LPfiles. In the Concert
Technology Library, semi-continuous variables are instances of theclass| | oSeni Cont Var.
In the Callable Library, semi-continuous variables can be entered with type CPX_SEM CONT
or CPX_SEM | NT viathe routine CPXcopyct t ype() .

Progress Reports: Interpreting the Node Log

170

Aswe explained earlier, when ILOG CPLEX optimizes mixed integer programs, it builds a
tree with the linear relaxation of the original MIP at the root and subproblems to optimize at
the nodes of thetree. ILOG CPLEX reportsits progress in optimizing the original problem
inanodelog file asit traversesthis tree.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Through ILOG CPLEX parameters, you control how information in the log file is recorded
and displayed. You can use those parameters at their default values (adequate for most
problems), or you can reset them through commands in the Interactive Optimizer, through
member functionsin the Concert Technology Library, or through routines from the Callable
Library. Table 5.7 summarizes those parameters, and the following paragraphs explain how
to use them.

Table5.7 Parametersfor Controlling the ILOG CPLEX Node Log File

Interactive Concert Technology Librar . .
Default . gy y Callable Library Routine

Command Function
2 set mip display 11 oCpl ex: : set Paranm(M PDi spl ay, i) CPXset i nt par an(env, CPX_PARAM M PDI SPLAY, i)
100 set mip interval |[IloCplex::setParam(MPInterval, i) |CPXsetintparan(env, CPX_PARAM M PI NTERVAL, i)

Generdly, ILOG CPLEX records aline in the node log about every node with an integer
solution and about every n nodes solved, where nis controlled by the MIP interval
parameter.

0 Inthe Interactive Optimizer, use the command set mip interval i tochangethe
MIP interval parameter in order to log node information more (asmaller value of i) or
less (alarger value of i) frequently.

0O From the Callable Library, use the routine CPXset i nt par an{) with argumentsto
indicate the environment, the parameter CPX_PARAM M PI NTERVAL, and a positive
integer value. The default valueis 100.

Hereis an example of such anodelog file:

Tried aggregator 1 time.

No M P presol ve or aggregator reductions.
Presolve time = 0. 00 sec.

Root relaxation solution time = 0.00 sec
oj ective is integral.

Nodes Cut s/
Node Left nojective |Inf Best I|nteger Best Node I|tCnt Gap
0O o 4.0000 6 4. 0000 12
* 4 2 5. 0000 0 5. 0000 4.0000 17 20.00%
10 1 cutof f 5. 0000 4. 0000 31 20. 00%
I nteger optimal solution: Gbjective = 5.0000000000e+000
Sol ution time = 0. 02 sec. Iterations = 41 Nodes = 13

In that example, ILOG CPLEX found the optimal objective function value of 5 at 13 of the
nodesin 41 iterations, and ILOG CPLEX found an optimal integer solution at node 4. The
MIP interval parameter was set at 10, so every tenth node was logged, in addition to the
node where an integer solution was found.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 171

PROGRESS REPORTS: INTERPRETING THE NODE LOG

172

Asyou can see in that example, ILOG CPLEX logs an asterisk (*) in the left-most column
for any node where it finds an integer-feasible solution. In the next column, it logs the node
number. It next logs the number of nodes | eft to explore.

In the next column, ILOG CPLEX either records the objective value at the node or areason
to fathom the node. (A node is fathomed if the solution of a subproblem at the nodeis
infeasible; or if the value of objective function at the node is worse than the cutoff value for
branch & cut; or if the node supplies an integer solution.)

Inthe columnlabeled I | nf , ILOG CPLEX records the number of integer-infeasible
variables and special ordered sets. If no solution has been found, the next column is left
blank; otherwise, it records the best integer solution found so far.

The column labeled Cut s/ Best Node records the best objective function value of al the
unexplored nodes. If the word Cut s appears in this column, it means various cuts were
generated; if a particular name of a cut appears, then only that kind of cut was generated.

The column labeled | t Cnt records the cumulative iteration count of the algorithm solving
the subproblems. Until a solution has been found, the column labeled Gap isblank. If a
solution has been found, the relative gap valueis printed when it isless than 999. 99;
otherwise, hyphens are printed. The gap is computed as abs(best i nteger -

best node)/(1le-10 + abs(best integer)). Consequently, the printed gap vaue
may not always move smoothly. In particular, there may be sharp improvements whenever a
new best integer solution is found.

ILOG CPLEX alsologsitsaddition of cutsto amodel. Hereis an example of anode log file
from a problem where ILOG CPLEX made cover cuts.

M P Presolve elimnated 0 rows and 1 col umms.
M P Presol ve nodified 12 coefficients.
Reduced M P has 15 rows, 32 colums, and 97 nonzeros.

Presolve time = 0. 00 sec.
Nodes Cut s/
Node Left Objective IInf Best Integer Best Node ItOnt Gap
0 0 2819.3574 7 2819. 3574 35
2881. 8340 8 Covers: 4 44
2881. 8340 12 Covers: 3 48
* 7 6 3089. 0000 0 3089. 0000 2904. 0815 62 5.99%

Cover cuts applied: 30

Integer optimal solution: bjective = 3.0890000000e+003
Solution tine = 0. 10 sec. Iterations = 192 Nodes = 44

ILOG CPLEX alsologsthe number of cliqueinequalitiesin the clique table at the beginning
of optimization and the number eventually applied. Cuts generated at intermediate nodes are
not logged individually unless they happen to be generated at a node logged for other
reasons. ILOG CPLEX logs the number of applied cuts of al classes at the end.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

CPLEX dso indicates, in the node log file, each instance of a successful application of the
node heuristic. The following example shows a node log file for a problem where the
heuristic found a solution at node 0. The + denotes a node generated by the heuristic.

Nodes Cut s/
Node Left Ohjective |Inf Best Integer Best Node ItCnt Gap
0 0 403. 8465 640 403. 8465 4037

405. 2839 609 diques: 10 5208
405. 2891 612 diques: 2 5288

Heuristic: feasible at 437.000, still |ooking

Heuristic: feasible at 437.000, still |ooking

Heuristic conplete

* 0+ 0 436. 0000 0 436. 0000 405. 2891 5288 7.04%

Periodically, if the MIP display parameter is greater than 0 (zero), ILOG CPLEX recordsthe
cumulative time spent since the beginning of the current MIP optimization and the amount
of memory used by branch & cut. (By periodically, we mean that time and memory
information appears either every 20 nodes or ten times the MIP display parameter,
whichever is greater. The default value of the MIP display parameter is 2.) The following
example shows you one line from a node log file indicating elapsed time and memory use.

El apsed b& tine = 120.01 sec. (tree size = 0.09 M)

To change the MIP display parameter:
0O Inthe Interactive Optimizer, use the command set ni p di spl ay.

0O From the Callable Library, use the routine CPXset i nt par an() with argumentsto
indicate the environment, the parameter CPX_PARAM M PDI SPLAY, and avalue.

Table 5.8 lists the acceptabl e values for this parameter.
Table5.8 Values of the MIP Display Parameter

Value |Effect

0 no display

1 display integer feasible solutions

2 display nodes under mip interval control

3 same as 2, but add information on node cuts
4 same as 3, but add LP display for root node
5 same as 3, but add LP display for all nodes

ILOG CPLEX prints an additional summary linein the log if optimization stops beforeitis
complete. This summary line shows the best MIP bound, that is, the best objective value
among al the remaining node subproblems. The following example shows you lines from a

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 173

PROGRESS REPORTS: INTERPRETING THE NODE LOG

174

node log file where an integer solution has not yet been found, and the best remaining
objective value is 2973.9912281.

Node limt, no integer solution.
Current M P best bound = 2.9739912281e+03 (gap is infinite)
Solution tine = 0.01 sec. Iterations = 68 Nodes = 7 (7)

Sample: Sating a MIP Problem on page 152 offersatypical MIP problem. Here is the node
log file for that problem with the default setting of the MIP display parameter:

Tried aggregator 1 tinme.

Aggregator did 1 substitutions.

Reduced M P has 2 rows, 3 colums, and 6 nonzeros.
Presolve time = 0.00 sec.

Cdique table:0 GUB, 0 GUBEQ O two-covers, O probed
I mpl Bd table: O bounds

Root relaxation solution tine = 0. 00 sec.
Nodes Cut s/
Node Left bjective |Inf Best Integer Best Node ItCnt Gap
0 0 125. 2083 1 125. 2083 3
* 122. 5000 0 122. 5000 Cuts: 2 4

M xed integer rounding cuts applied: 1
Gonory fractoinal cuts applied: 1

I nteger optimal solution: Gbjective = 1.2250000000e+002
Solution time = 0. 02 sec. Iterations = 4 Nodes = 0

These additional items appear only in the node log file (not on screen):

O Vari abl e records the name of the variable where ILOG CPLEX branched to create this
node. If the branch was due to a special ordered set, the name listed here will be the
right-most variable in the left subset.

0 Bindicates the branching direction:

. Dmeansthe variables was restricted to alower valug;

. Umeansthe variable was restricted to a higher value;

. L meansthe left subset of the special ordered set was restricted to 0 (zero);

. Rmeanstheright subset of the special ordered set was restricted to 0 (zero).
0 Parent indicates the node number of the parent.

0 Dept h indicates the depth of this node in the branch & cut tree.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Troubleshooting MIP Performance Problems

Even the most sophisticated methods currently available to solve pure integer and mixed
integer programming problems require noticeably more computation than the methods for
similarly sized pure linear programs. Many relatively small integer programming models, in
fact, still take enormous amounts of computing time to solve. Indeed, some such models have
never yet been solved. In the face of these practical obstaclesto a solution, proper formulation
of the model is crucia to successful solution of pureinteger or mixed integer programs.

For help in formulating a model of your own integer or mixed integer problem, you may
want to consult H.P. Williams's textbook about practical model building (referenced in
Further Reading on page 25 in this manual).

Also you may want to develop a better understanding of branch & cut, afeature of the
ILOG CPLEX MIP Optimizer. For that purpose, Williams's book offers agood introduction,
and Nemhauser and Wolsey’s book (also referenced in Further Reading on page 25 in this
manual) goesinto greater depth about branch & cut aswell as other techniques implemented
inthe ILOG CPLEX MIP Optimizer.

While we have found that the default M1P parameters settings work well for most problems,
runtimes can sometime be improved by modifying these settings. This section proposes
alternate parameter settings that can help when you are solving difficult MIPs.

Probing

While most of the suggestions in this section are oriented toward overcoming specific
obstacles, the probing parameter can help in many different ways on difficult models.
Probing is atechnique that looks at the logical implications of fixing each binary variable to
0 or 1. Probing can be expensive, so this parameter should be used selectively. On models
that are in some sense easy, the extratime spent probing may not reduce the overall time
enough to be worthwhile. On difficult models, probing may incur very large runtime costs at
the beginning and yet pay off with shorter overall runtime. When you are tuning
performance, it is usually because the model is difficult, and then probing is worth trying.

When the probing parameter is set to 1 (one), CPLEX performs alimited amount of probing
(tolimit probing runtime); when set to 2, the full amount of probing implemented in CPLEX
is performed.

To activate probing::

0O Inthe Interactive Optimizer, use the command set ni p strategy probe i.
0 Inthe Concert Technology Library, set the integer parameter Pr obe.

0O Inthe Callable Library, set the integer parameter CPX_PARAM PROBE.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 175

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

176

Too Much Time at Node 0

For some problems, ILOG CPLEX will spend a significant amount of time performing
computation at node O, apart from solving the L P relaxation. While thisinvestment of time
normally savesin the overall branch & cut, it does not always do so. Time spent at hode 0
can be reduced by two parameters.

First, you can turn off the node heuristic:

0 Inthe Interactive Optimizer, use the command
set mip strategy heuristicfreq -1.

0O Inthe Concert Technology Library, set the integer parameter Heur Fr eq.
0 Inthe Callable Library, set the integer parameter CPX_PARAM HEURFREQ
Second, you can choose aless expensive variable selection strategy:

0 Inthe Interactive Optimizer, use the command
set mp strategy variabl esel ect 1or4.

0O Inthe Concert Technology Library, set the integer parameter Var Sel .
0 Inthe Calable Library, set the integer parameter CPX_PARAM VARSEL.

Time at node 0 can also be consumed by the effort to solve the L P rel axation. Experiment by
solving the relaxed problem using each of the LP optimizers. These experiments may
suggest a better setting for the st ar t al gor i t hmparameter.

Trouble Finding More than One Feasible Solution

For some models, ILOG CPLEX finds an integer feasible solution early in the process and
then does not find a better one for quite awhile. One possibility, of course, is that the first
feasible solution is optimal. In that case, there are no better solutions.

The more common reason for this behavior, though, is the default best-bound variable
selection strategy. This strategy concentrates on exploring nodes that are high in the
branch & cut tree for the purpose of proving optimality more quickly.

One easy setting to try is the MIP emphasis parameter. It's described in Feasibility and
Optimality on page 158. A setting of 1 leadsto a greater emphasis on finding feasible
solutions during the course of optimization.

If you want to keep the default emphasis on proving optimality, the most useful parameter
for altering the default strategy, in the hope of finding new feasible solutions more
frequently, is the backtrack parameter. To set its value:

0O IntheInteractive Optimizer, set nmip strategy backtrack n.

0O Inthe Concert Technology Library, set the numeric parameter Bt Tol .

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

O Inthe Calable Library, set the double parameter CPX_PARAM BTTOL.).

By setting this value closer to 1.0, you force branch & cut to dive deeper into the tree, where
integer feasible solutions are more likely to be found.

Another approach to finding more feasible solutionsis to increase the frequency of the node
heuristic. To set its value:

O Inthe Interactive Optimizer, set mip strategy heuristicfreq i.
0O Inthe Concert Technology Library, set the integer parameter Heur Fr eq.
O Inthe Calable Library, set the integer parameter CPX_PARAM HEURFREQ.

This heuristic can be expensive, so exercise caution when setting this parameter to values
less than 10.

A final approach to finding more feasible solutionsis to try an alternate node selection
strategy. To set the strategy:

0O Inthe Interactive Optimizer, set mi p strategy nodesel ect i.
0O Inthe Concert Technology Library, set the integer parameter NodeSel .
O Inthe Callable Library, set the integer parameter CPX_PARAM NCDESEL.

Values 2 and 3 use node estimates to sel ect nodes and thus sometimes produce more frequent
feasible solutions.

Large Number of Unhelpful Cuts

While the cuts added by ILOG CPLEX reduce runtime for most problems, on occasion they
can have the opposite effect. If you notice, for example, that ILOG CPLEX addsalarge
number of cuts at the root, but the objective value does not change significantly, then you
may want to experiment with turning off cuts.

0O Inthe Interactive Optimizer, you can turn cuts off selectively
(set mip cuts covers -1)oralaonce(set mp cuts all -1).

0 Inthe Component Libraries, set the parameters that control classes of cuts (Table 5.4 on
page 160).

Lack of Movement in the Best Node

For some models, the Best Node value in the node log changes very slowly or not at all.
Runtimes for such models can sometimes be reduced by the variable selection strategy
known as strong branching. Strong branching explores a set of candidate branching-

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 177

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

variables in-depth, performing alimited number of simplex iterations to estimate the effect
of branching up or down on each.

I mportant: Srong branching consumes significantly more computation time per node than
the default variable selection strategy.

To activate strong branching :

O Inthe Interactive Optimizer, use the command
set m p strategy variabl esel ect 3.

O Inthe Concert Technology Library, set the integer parameter Var Sel .
0 Inthe Callable Library, set the integer parameter CPX_PARAM VARSEL.

On rare occasions, it can be helpful to modify strong branching limits. If you modify the
limit on the size of the candidate list, then strong branching will explore alarger (or smaller)
set of candidates. If you modify the limit on strong branching iteration, then strong
branching will perform more (or fewer) simplex iterations per candidate. Table 5.9
summarizes those limits and shows the parameter names.

Table5.9 Parametersfor Limiting Strong Branching

Concert Technology Callable Library

Limit Interactive Command Library Parameter Parameter

size of candidate list |set mip limits strongcand [I10oCpl ex:: StrongCandLi m{ CPX_PARAM STRONGCANDLI| M

iterations per set mip linmts strongit Il oCpl ex::StrongltLim |CPX_PARAM STRONG TLI M
candidate

Time Wasted on Overly Tight Optimality Criteria

Sometimes ILOG CPLEX finds agood integer solution early, but many additional nodes
must be examined to prove that solution is optimal. You can speed up the processin such a
case if you are willing to change the optimality tolerance. ILOG CPLEX supports two kinds
of tolerance:

0 Relative optimality tolerance guarantees that a solution lies within a certain percentage
of the optimal solution.

0 Absolute optimality tolerance guarantees that a solution lies within a certain absolute
range of the optimal solution.

The default relative optimality tolerance is 0.0001. At this tolerance, the final integer
solution is guaranteed to be within 0.01% of the optimal value. Of course, many
formulations of integer or mixed integer programs do not require such tight tolerance, so
requiring ILOG CPLEX to seek integer solutions that meet this tolerance in those casesis

178 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

wasted computation. If you can accept greater optimality tolerance in your model, then you
should change the parameter to control relative gap.

For exampl e, to set the relative gap to one percent:
O Inthe Interactive Optimizer, use thiscommand: set ni p tol erance nipgap 0.01.

0O Inthe Concert Technology Library, use the method | | oCpl ex: : set Par an(EpGap,
0.01).

0 Inthe Callable Library, usetheroutine CPXset dbl par am(env, CPX_PARAM EPGAP,
0.01).

If, however, you know that the objective values of your problem are near zero, then you
should change the absol ute gap because percentages of very small numbers areless useful as
optimality tolerance.

For example, to change the absolute gap:

0 Inthe Interactive Optimizer, use this command :
set m p tol erance absmi pgap 3.0.

0O Inthe Concert Technology Library, use the method | | oCpl ex: : set Par an({ EpAGap,
3.0).

0 IntheCallableLibrary, usetheroutine CPXset dbl par am(env, CPX_PARAM EPAGAP,
3.0).

Table 5.10 summarizes the default value and range of absolute and relative gap parameters.
Table5.10 Relative, Absolute Gap Parameters (Relative, Absolute Optimality Tolerance)

Relative Gap Absolute Gap
Default value le-04 le-6
Range 0.0-1.0 Any positive value
Concert Technology 11 oCpl ex: : EpGap I I oCpl ex: : EpAGap
Library parameter
Callable Library CPX_PARAM EPGAP | CPX_PARAM EPAGAP
parameter
Interactive Optimizer m pgap absmi pgap
option

To speed up the proof of optimality, you can set objective difference parameters, both
relative and absolute. Setting these parameters hel ps when there are many integer solutions
with similar objective values. For example, in the Interactive Optimizer, this command

set mip tol erances objdifference 100. 0 makes|LOG CPLEX skip any potential
solution with its objective value within 100.0 units of the best integer solution so far.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 179

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

180

Naturally, since this objective difference setting may make ILOG CPLEX skip an interval
where the true integer optimum may be found, the objective difference setting weakens the
guarantee of optimality. Table 5.11 summarizes the default vaue and range of relative and
absol ute objective difference parameters.

Table5.11 Relative and Absolute Objective Difference Parameters

Relative Objective Difference

Absolute Objective Difference

Default value

0.0

0.0

Range

0.0-1.0

Any value

Concert Technology
Library parameter

Il oCpl ex: : Rel Obj Di f

I1oCplex::ObjDif

Callable Library
parameter

CPX_PARAM RELOBJDI F

CPX_PARAM OBJDI F

Interactive Optimizer
option

rel obj di fference

obj di fference

Cutoff parameters can also be helpful in restricting the search for optimality. If you know
that there are solutions within a certain distance of theinitial relaxation of your problem,
then you can readily set the upper cutoff parameter for minimization problems and the lower

cutoff parameter for maximization problems. For example:

0 Inthe Interactive Optimizer, use this command
set mp tol erances uppercutoff 5000 inaminimization problem, and this one
set mip tolerance | owercutoff 200 inamaximization problem.

0 When using the Component Libraries, set the parameters| | oCpl ex: : Cut Up or
Il oCpl ex: : Cut Lo or CPX_PARAM CUTUP or CPX_PARAM CUTLOand appropriate

values.

Table 5.12 summarizes the default value and range of the lower and upper cutoff parameters.
Table5.12 Cutoff Parameters

Lower cutoff

Upper cutoff

Default value

-1le+75

le+75

Range

Any value

Any value

Concert Technology
Library parameter

11 oCpl ex: : CutlLo

Il oCpl ex: : Cut Up

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Table5.12 Cutoff Parameters (Continued)

Lower cutoff Upper cutoff
Callable Library CPX_PARAM CUTLO CPX_PARAM CUTUP
parameter
Interactive Optimizer | ower cut of f upper cut of f
option

When you set a MIP cutoff value, ILOG CPLEX searches with the same solution strategy as
though it had aready found an integer solution, using a node selection strategy that differs
from the one it uses before afirst solution has been found.

Running Out of Memory

The most common difficulty with MIPs s running out of memory. This problem occurs
when the branch & cut tree becomes so large that insufficient memory remainsto solve an
L P subproblem. As memory gets tight, you may observe warning messages from

ILOG CPLEX asit attempts various operationsin spite of limited memory. In such a
situation, if ILOG CPLEX does not find a solution shortly, it terminates the process with an

€error message.

The information about atreethat ILOG CPLEX accumulatesin memory can be substantial .
In particular, ILOG CPLEX saves a basis for every unexplored node. Furthermore, when
ILOG CPLEX usesthe best bound or best estimate strategies of node selection, the list of
unexplored nodes itself can become very long for large or difficult problems. How large the
unexplored node list can be depends on the actual amount of memory available, the size of
the problem, and algorithm selected.

A less frequent cause of memory consumption is the generation of cutting planes. Gomory
fractional cuts, and, in rare instances, Mixed Integer Rounding cuts, are the ones most likely
to be dense and thus use significant memory under default/automatic settings. You can try
turning off these cuts, or any of the cuts you seelisted as being generated for your model (in
the cuts summary at the end of the node log), or simply all cuts, through the use of parameter
settings discussed in the section on cutsin this manual; doing this carries the risk that this
will make the model harder to solve and only delay the eventual exhaustion of available
memory during branching.

Certainly, if you increase the amount of available memory, you extend the problem-solving
capability of ILOG CPLEX. Unfortunately, when a problem fails because of insufficient
memory, it is difficult to project how much further the process needed to go and how much
more memory is needed to solve the problem. For these reasons, the following suggestions
aim at avoiding memory failure whenever possible and recovering gracefully otherwise.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 181

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

182

Reset the Tree Memory Parameter

To avoid afailure due to running out of memory, we recommend setting the working
memory parameter to instruct CPLEX to begin using disk for storage of nodes before it
consumes all available memory.

To set the working memory parameter:

0 Inthe Interactive Optimizer, use the command set wor knem n using avaluen that is
smaller than the total available memory in megabytes.

0 For the Component Libraries, set the parameter | | oCpl ex: : Wor kMemor
CPX_PARAM_WORKMEM.

Because the storage of nodes can require alot of space, it may aso be advisableto set atree
limit on the size of the entire tree being stored so that not al of your disk will be filled up
with working storage. The call to the MIP optimizer will be stopped once the size of the tree
exceeds the value of the tree limit parameter. Under default settings the limit is infinity
(1e+75), but you can set it to alower value (in megabytes):

To set the tree limit parameter:
O Inthe Interactive Optimizer, use the commandset nmip linmts treenenory .

0 For the Component Libraries, set the parameter | | oCpl ex: : TreLi m or
CPX_PARAM TRELI M

Write a Tree File and Restart

On some platforms, even when the current tree size is within system limits, memory
fragmentation may be so great that performance becomes poor. To overcome that kind of
fragmentation, we recommend that you stop optimization, write atree file (using the TRE
format), exit ILOG CPLEX, restart it, read in the model and treefile, and continue
optimization then.

Use Node Files for Storage

ILOG CPLEX offers anode file storage feature to store some parts of the branch & cut tree
infiles. If you usethis feature, CPLEX will be able to explore more nodes within a smaller
amount of computer memory. This feature includes several options to reduce the use of
physical memory, and it entails avery small increase in runtime, so it has less overall impact
on system resources. Node file storage offers a much better option than relying on swap
space.

This feature is especially helpful when you are using steepest-edge pricing as the
subproblem simplex pricing strategy because pricing information itself consumes a great
deal of memory.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

There are several parametersthat control the use of node files. They are summarized as
follows, and described in detail in the next paragraphs:

Table5.13 Node File Control Parameters

Interactive Optimizer Concert Technology Library | Callable Library

mip limits treememory I oCpl ex:: TreLim CPX_PARAM TRELI M

mip strategy file I oCpl ex: : NodeFi | el nd | CPX_PARAM NODEFI LEI ND
workdir Il oCpl ex:: WorkDir CPX_PARAM WORKDI R
workmem Il oCpl ex: : Wor kMem CPX_PARAM WORKVEM

ILOG CPLEX invokes node file storage when it reaches the working memory limit. By
default, the limit is 128 (megabytes).

To set alimit on the size of the branch & cut tree held in memory:

0 IntheInteractive Optimizer, use the command set wor knem n, substituting avaluefor
n.

0 When using the Component Libraries, set the parameter | | oCpl ex: : Wor kMemor
CPX_PARAM WWORKMVEM

ILOG CPLEX uses nodefile storage most effectively when the amount of working memory
is reasonably large so that it does not have to create node files too frequently. A reasonable
amount is to use approximately half the memory, but no more than 32 megabytes. Higher
valuesresult in only marginally improved efficiency.

When tree storage size exceeds the limit defined by 1 | oCpl ex: : Wor kMem/

CPX_PARAM WWORKMEM what happens next is determined by the setting of

I'l oCpl ex: : NodeFi | el nd / CPX_PARAM NODEFI LEI ND. If the latter parameter is set to
zero, then optimization proceeds with the tree stored in memory until CPLEX reaches the
tree memory limit (I 1 oCpl ex: : TreLi m/ CPX_PARAM TRELI M. If the parameter is set
to 1 (the default), then avery fast compression algorithm is used on the nodesto try to
conserve memory, without resorting to writing the node files to disk. If the parameter is set
to 2, then node files are written to disk. If the parameter is set to 3, then nodes are both
compressed (asin option 1) and written to disk (asin option 2). Thus, regardless of the
setting of 1 1 oCpl ex: : NodeFi | el nd / CPX_PARAM NODEFI LEI ND, CPLEX will stop the
optimization when the total memory used to store the tree exceeds the tree memory limit.

[

Table5.14 Valuesfor the Node File Storage Parameter %
é.

Value |Meaning Comments =

0 no node files optimization continues g

1 node file in memory and compressed | optimization continues (default) %

(0]

=

[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 183

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

184

Table5.14 Values for the Node File Storage Parameter (Continued)

Value |Meaning Comments
2 node file on disk files created in temporary directory
3 node file on disk and compressed files created in temporary directory

In cases where node files are written to disk, CPLEX will create atemporary subdirectory
under the directory specified by thel | oCpl ex: : Wor kDi r / CPX_PARAM WORKDI R
parameter. The directory named by this parameter must exist before CPLEX attemptsto

create node files. By default, the value of this parameter is“.”, which means the current
working directory.

ILOG CPLEX creates the temporary directory by means of system calls. If the system
environment variable is set (on Windows 95 or NT, the environment variable TMP; on UNIX
platforms, the environment variable TMPDI R), then the system ignores the ILOG CPLEX
node-file directory parameter and creates the temporary node-file directory in the location
indicated by its system environment variable. Furthermore, if the directory specified in the
ILOG CPLEX node-file directory parameter isinvalid (for example, if it containsillegal
characters, or if the directory does not allow write access), then the system chooses a
location according to its own logic.

The temporary directory created for node file storage will have aname prefixed by cpx. The
fileswithin it will aso have names prefixed by cpx.

ILOG CPLEX automatically removes the files and their temporary directory when it frees
the branch & cut tree:

O inthe Interactive Optimizer,
. at problem modification;
. at normal termination;
0O from the Concert Technology Library,
. whenyou call env. end()
O fromthe Callable Library,
« when you call aproblem modification routine;

. when you call CPXf r eeprob().
If a program terminates abnormally, the files are not removed.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Node files may grow very large. You can limit their size by setting the file limit parameter:
O Inthe Interactive Optimizer, use the command set wor kmemwith any positive value.

0 Inthe Concert Technology Library, usethe method I | oCpl ex: : set Par an(Wr kimem
n), and in the Callable Library, use the routine
CPXset dbl par an(env, CPX_PARAM WORKMEM n) wheren isany positive value.
The default value is 128 (megabytes).

When ILOG CPLEX uses node-file storage, the sequence of nodes processed may differ
from the sequence in which nodes are processed without node-file storage. Nodesin node-
file storage are not accessible to user-written callback routines.

Change Algorithms

The best approach to reduce memory use is to modify the solution process. Here are some
ways to do so:

0 Switch to a higher backtracking parameter, as suggested on page 176.

0 Switch the node selection strategy to best estimate, or more drastically to depth-first, as
explained on page 177. Depth-first search rarely generates along, memory-consuming
list of unexplored nodes since ILOG CPLEX dives deeply into the tree instead of
jumping around. A narrowly focused search, like depth-first, also often resultsin faster
processing times for individual nodes. However, overall efficiency is sometimes worse
than with best-bound node sel ection because each branch is searched exhaustively to its
deepest level beforeit is fathomed in favor of better branches.

0 Another memory-conserving strategy is to use strong branching for variable selection.

Strong branching requires substantial computational effort at each node to determine the

best branching variable. As aresult, it generates fewer nodes and thus makes less overall
demand on memory. Often, strong branching is faster as well.

0 On some problems, the automatic generation of cuts results in excessive memory use

with little benefit in speed. In such cases, we recommend that you turn off cut generation.

. Inthe Interactive Optimizer, use the commandsset nip cuts all -1 toturn off
al cuts. Useset nmip cuts class -1 (wherecl ass may becl i ques, covers
etc.) to turn off individual classes of cuts.

. Inthe Component Libraries, cuts may be turned off only by class; use the method
Il oCpl ex: : set Paran() or theroutine CPXset i nt par an() with the appropriate
parameter to indicate which class of cutsto turn off (O i ques /
CPX_PARAM CLI QUES, Covers / CPX_PARAM COVERS, et c) and the value - 1 each
time.

See Table 5.4 on page 160 for acompletelist of available cuts.

ILOG CPLEX 7.5 — USER’'S MANUAL 185

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

Difficulty Solving Subproblems

There are classes of MIPs that produce very difficult subproblems, for example, if the
subproblems are dual degenerate. In such a case, an aternative optimizer, such asthe primal
simplex or the primal-dual barrier optimizer, may be better suited to your problem than the
default dual simplex optimizer for subproblems.

Overcoming Degeneracy

If the subproblems are dual degenerate, then consider using the primal simplex optimizer for
the subproblems. Set the subalgorithm parameter, as explained in Subal gorithm Parameter
on page 188, to use the primal simplex optimizer.

Another effective strategy in overcoming dual degeneracy isto permanently perturb the
problem. For subproblems that are dual degenerate, in the Interactive Optimizer, write out
the perturbed problem as a DPE filewiththecommandwri te fi | ename. dpe substituting
an appropriate file name. (A . dpe fileis saved as abinary SAV format file.) Then you can
read the saved file back in and solve it. The subproblem should then solve more cleanly and
quickly.

In the case of DPE files solved by the dual simplex optimizer, any integer solution is also
guaranteed to be an integer-feasible solution to the original problem. In most cases, the
solution will be optimal or near-optimal as well.

Shortening Long Solution Times

If subproblems are taking many iterations per node to solve, consider using a stronger dual
pricing algorithm, such as dual steepest-edge pricing.

In case you have selected the primal-dual barrier optimizer to solve the initial LP relaxation,
you may want to apply it to the subproblems in one of two ways:

O barrier with crossover
. intheInteractive Optimizer use, set mip strategy subal gorithm 4

. inthe Concert Technology Library, use the method
I oCpl ex: : set NodeAl gorithn(Barrier)

. Or CPXsetint paran(env, CPX_PARAM SUBALG CPX_NODEALG BARRI ER) .
This choice applies the primal-dual barrier optimizer to all subproblems.

0 dual to limit, then barrier
. intheInteractive Optimizer use, set mip strategy subal gorithm5

. inthe Concert Technology Library, use the method
Il oCpl ex: : set NodeAl gorit hm(Dual Barrier)

. Or CPXseti nt paranm(env, CPX_PARAM SUBALG, CPX NODEALG DUAL)

186 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Recognizing that the barrier optimizer does not utilize a basis, this choice lets the dual
simplex optimizer run for a predetermined number of iterations and then switches to the
barrier optimizer for the subproblem. To use this choice, you need to set the simplex
iteration limit to a reasonably low number of dual iterations.

If you limit the number of simplex iterations, the limit applies to all invocations of simplex
optimizers, except crossover. Since the dual simplex optimizer will most often be the best
method, try to specify a sufficient number of iterations before you force the switch to the
barrier optimizer.

Subproblem Optimization

In some problems, you can improve performance by evaluating how the LP subproblems are
solved at the nodes in the branch & cut tree, and then possibly modifying the choice of
algorithm to solve them. Aswe mentioned in Preprocessing: Presolver and Aggregator on
page 163, you can control which algorithm ILOG CPLEX appliesto theinitial relaxation of
your problem separately from your control of which algorithm ILOG CPLEX applies to
other subproblems. Table 5.15 summarizes the commands to control those two parameters.
The following sections explain those parameters more fully.

Table5.15 Parametersfor MIP Initial Relaxation and Subproblems

Interactive command Callable Library parameter |Applies to
set mp strategy startal gorithm CPX_PARAM STARTALG initial relaxation
set mp strategy subal gorithm CPX_PARAM SUBALG subproblems

Start-Algorithm Parameter

The start-algorithm parameter indicates the algorithm for ILOG CPLEX to use on theinitial
subproblem. In atypical MIP, that initial subproblem is usually the linear relaxation of the
original MIP. By default, ILOG CPLEX starts theinitial subproblem with the dual simplex
optimizer. You may have information about your problem that indicates another optimizer
could be more efficient. Table 5.16 summarizes the values available for the start-algorithm
parameter.

To set this parameter:

O Inthelnteractive Optimizer, usethecommandset mip strategy startal gorithm
with the value to indicate the optimizer you want.

0 Inthe Concert Technology library, use the method I | oCpl ex: : set Root Al gorit hny()
and the appropriate algorithm enumeration value.

O Inthe Calable Library, use the routine CPXset i nt par an{) with the parameter
CPX_PARAM STARTALG, and the appropriate symbolic constant.

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 187

TROUBLESHOOTING MIP PERFORMANCE PROBLEMS

Table5.16 Values of Sart-Algorithm and Sub-Algorithm Parameters

Il oCpl ex: : Pri mal CPX_NODEALG_PRI MAL 1 primal simplex
Il oCpl ex: : Dual CPX_NODEALG_DUAL 2 dual simplex (default)
Il oCpl ex: : Net wor k CPX_NODEALG_HYBNETOPT 3 network simplex
Il oCpl ex::Barrier CPX_NODEALG_HYBBAROPT 4 barrier with crossover (if licensed)
Il oCpl ex: : Dual Barri er CPX_NODEALG _DUAL_HYBBAROPT |5 dual simplex to iteration limits, then
barrier (if licensed)
CPX_NODEALG_BARRI ER 6 barrier without crossover (if licensed)

188

Crossover Parameter

To control the kind of crossover used by the barrier optimizer for MIP subproblems, in the
Interactive Optimizer, usethecommandset mip strategy crossover i substitutinga
value to indicate which optimizer to call at crossover. From the callable Library, use the
routine CPXset i nt par an() with the parameter CPX_PARAM M PHYBAL G and a crossover
value. Table 5.17 lists the acceptable values for this crossover parameter.

Table5.17 Crossover parameter values used for MIP subproblems

Value Calls this Optimizer
1 (default) primal crossover
2 dual crossover

Subalgorithm Parameter

The subalgorithm parameter indicates the algorithm for ILOG CPLEX to use on subsequent
subproblems. By default, ILOG CPLEX appliesthe dual simplex optimizer to subproblems,
but again, you may have information about your problem that tells you another optimizer
could be more efficient. To specify a subalgorithm in the Interactive Optimizer, use the
commandset nip strategy subal gorithmwiththe valueto indicate the optimizer
you want. In the Concert Technology library use the method

Il oCpl ex: : set NodeAl gori t hn() and the appropriate algorithm enumeration value. In
the Callable Library, use the routine CPXset i nt par an() with the parameter

CPX_PARAM SUBALG, and the appropriate symbolic constant. The values and symbolic
constants are the same for the subalgorithm parameter asfor the start-algorithm parameter in
Table 5.16 on page 188.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Example: Optimizing a Basic MIP Problem

This example illustrates how to optimize aMIP with the ILOG CPLEX Component
Libraries.

Complete Program: ilomipex1.cpp

The example derives fromi | ol pex8. cpp. Here are the differences between that linear
program and this mixed integer program:

0 The problem to solveis dlightly different. It appearsin Sample: Stating a MIP Problem
on page 152.

0O Theroutinepopul at ebyr ow() added the variables, objective, and constraints to the
model created by the method I | oMbdel nodel (env) .

#i ncl ude <ilcplex/il ocplex. h>
| LOSTLBEGA N

static void
popul at ebyrow(| | ovbdel nodel, |1 oNunVarArray var, |l oRangeArray con);

int
nmain (void) {
Il oEnv env;

try {
Il oModel nodel (env);

I'l oNunVar Array var(env);
I'l oRangeArray con(env);
popul at ebyrow (nodel , var, con);

I'l oOpl ex cpl ex(nodel) ;
cpl ex. sol ve();

env.out() << "Solution status
env.out() << "Solution val ue

' << cplex.getStatus() << endl;
' << cpl ex. get Ovj Val ue() << endl;

Il oNumArray val s(env);

cpl ex. get Val ues(val s, var);

env.out () << "Val ues =" << vals << endl;
cpl ex. get Sl acks(val s, con);

env.out() << "Sl acks =" << vals << endl;

cpl ex. expor t Model (" m pex1.|p");
catch (Il oException& e) {

cerr << "Concert exception caught: " << e << endl;

}

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 189

EXAMPLE: OPTIMIZING A BAsIC MIP PROBLEM

catch (...) {
cerr << "Unknown exception caught" << endl;

}

env. end();
return O;

} // END main

static void
popul at ebyrow (11 oMddel nodel, IloNunVarArray x, |l oRangeArray c)
{

Il oEnv env = nodel . get Env();

.add(Il oNunVar (env, 0.0, 40.0));

.add(I'l oNunvar (env));

.add(1l oNunVar (env));

.add(!l oNunVar (env, 2.0, 3.0, ILONT));

model . add(|| oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2] + x[3]));

X X X X

c.add(- x[0] + x[1] + x[2] + 10 * x[3] <= 20);
c. add(x[0] - 3 * x[1] + x[2] <= 30);
c. add(x[1] - 3.5% x[3] == 0);
nodel . add(c);

} // END popul at ebyr ow

Complete Program: mipex1.c

The example derives from | pex8. c. Here are the differences between that linear program
and this mixed integer program:

0 The problem to solveisdlightly different. It appearsin Sample: Stating a MIP Problem
on page 152.

0 Theroutineset probl endat a() has a parameter, ct ype, to set the types of the
variables to indicate which ones must assume integer values. The routine
CPXcopyct ype() associates this data with the problem that CPXcr eat epr ob()
creates.

0 Theexample calls CPXni popt () to optimize the problem, not CPXpr i nopt (), of
course. CPXmi popt () solves MIPs.

0O The example callsthe routines CPXget st at () , CPXget mi pobj val (),
CPXget mi px(), and CPXget mi psl ack() (instead of CPXsol uti on())togeta
solution.

190 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

We do not get dual variables this way. If we want dual variables, we must do the
following:

. Use CPXchgpr obt ype() to change the problem type to CPXPROB_FI XED.

. Thencall CPXpri nopt () to optimize that problem.
Then use CPXsol uti on() to get asolution to the fixed problem.

#i ncl ude <il cpl ex/cpl ex. h>
#i ncl ude <stdlib. h>

/* Bring in the declarations for the string functions */

#i ncl ude <string. h>

/* Include declaration for function at end of program */

#i fndef OPX_PROTOTYPE_M N

static int

set probl endata (char **probnane_p, int *nuntols_p, int *nunrows_p,

int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **natval _p,

double **Ib_p, double **ub_p, char **ctype_p);

static void
free_and_null (char **ptr);

#el se

static int
set probl endata ();

static void
free_and_null ();

#endi f
/* The problemwe are optimzing will have 2 rows, 3 col umms
and 6 nonzeros. */

#defi ne NUVRONB 3

#defi ne NUMCOLS 4 (c_?
#defi ne NUMNZ 9 <.
a
fndef CPX_PROTOTYPE_M N =
i nt =
mai n (voi d) <
#el se o
int g
D)
3
(2]

ILOG CPLEX 7.5 — USER’'S MANUAL 191

EXAMPLE: OPTIMIZING A BAsIC MIP PROBLEM

main ()

#endi f

{

/* Declare pointers for the variables and arrays that will contain
the data which define the LP problem The setprobl endata() routine
al | ocates space for the problemdata. */

char *probnane = NULL;
i nt nuncol s;

i nt nunT ows;

int obj sen;

doubl e *obj = NULL;
doubl e *rhs = NULL;

char *sense = NULL;
int *mat beg = NULL;
int *matcnt = NULL;
int *matind = NULL;

doubl e *mat val = NULL;
doubl e *I'b = NULL;
doubl e *ub = NULL;
char *ctype = NULL;

/* Declare and all ocate space for the variables and arrays where we will
store the optimzation results including the status, objective val ue,
vari abl e values, and row sl acks. */

i nt sol stat;

doubl e objval;

double x[NUMCCLS];
doubl e sl ack[NUMRONE] ;

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

int st at us;

int i, g

int cur_nunrows, cur_nuntol s;

/* Initialize the CPLEX environment */
env = CPXopenCPLEX (&status);

/* 1f an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, "Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errmnsg);

192 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

fprintf (stderr, "%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
"Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

}

/* Fill in the data for the problem */

status = setprobl endata (&probname, &nuntols, &nunrows, &objsen, &obj,
& hs, &sense, &matbeg, &mtcnt, &matind, &matval,
& b, &ub, &ctype);
if (status) {
fprintf (stderr, "Failed to build problemdata arrays.\n");
got 0 TERM NATE;

/* Oreate the problem */
Ip = CPXcreateprob (env, &status, probnane);

/* A returned pointer of NULL may nean that not enough nenory
was available or there was sone other problem |In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX _PARAM SCRIND causes the error nessage to
appear on stdout. */

if (Ip==NJL) {
fprintf (stderr, "Failed to create LP.\n");
got o TERM NATE;

/* Now copy the problemdata into the Ip */

status = CPXcopylp (env, |Ip, nuntols, nunrows, objsen, obj, rhs,
sense, natbeg, matcnt, matind, matval,
I'b, ub, NULL);

if (status) {
fprintf (stderr, "Failed to copy problemdata.\n");
got o TERM NATE;

}

/* Now copy the ctype array */

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 193

EXAMPLE:

194

OPTIMIZING A BAsIic MIP PROBLEM

status = CPXcopyctype (env, |Ip, ctype);

if (status) {
fprintf (stderr, "Failed to copy ctype\n");
got o TERM NATE;

}
/* Qptimze the problemand obtain solution. */

status = CPXmi popt (env, Ip);

if (status) {
fprintf (stderr, "Failed to optimze MP.\n");
got o TERM NATE;

}

sol stat = CPXgetstat (env, Ip);

/* Wite the output to the screen. */

printf ("\nSolution status = %\ n", solstat);

status = CPXgetm pobjval (env, |p, &objval);

if (status) {
fprintf (stderr,"No MP objective value available. Exiting...\n");
got o TERM NATE;

}

printf ("Solution value = %\n\n", objval);

/* The size of the problemshould be obtained by aski ng CPLEX what
the actual size is, rather than using what was passed to CPXcopyl p.
cur_nunmrows and cur_nuntols store the current nunber of rows and
colums, respectively. */

cur _nunr ows
cur _nuntol s

= CPXget nuntows (env, |p);

= CPXget nuntol s (env, |p);

status = CPXgetm px (env, Ip, x, O, cur_nuntols-1);

if (status) {
fprintf (stderr, "Failed to get optimal integer x.\n");
got o TERM NATE;

}

status = CPXgetm psl ack (env, |p, slack, 0, cur_nunrows-1);
if (status) {
fprintf (stderr, "Failed to get optinal slack values.\n");
got o TERM NATE;

}
for (i =0; i < cur_nunrows; i++) {

printf ("Row %l: Slack = %d0f\n", i, slack[i]);
}

for (j =0; j < cur_nuncols; j++) {

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

printf ("Colum %: Value = %d0f\n", j, X[j]);
}

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, |p, "mpexl.lp", NULL);
if (status) {
fprintf (stderr, "Failed to wite LP to disk.\n");
got o TERM NATE;
}

TERM NATE:
/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NJL) {
status = CPXfreeprob (env, &p);
if (status) {
fprintf (stderr, "CPXfreeprob failed, error code %.\n", status);

}

/* Free up the CPLEX environnent, if necessary */

if (env != NULL) {
status = CPXcl oseCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX_PARAM SCRIND indicator is set to CPX_ ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, "Could not close CPLEX environnment.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, "%", errmsg);

}
/* Free up the problemdata arrays, if necessary. */

free_and_null ((char **) &probnane);
free_and_null ((char **) &obj);
free_and_null ((char **) &rhs);
free_and_null ((char **) &sense);
free_and_null ((char **) &matbeg);
free_and_null ((char **) &matcnt);
free_and_null ((char **) &matind);
free_and_null ((char **) &matval);
free_and_null ((char **) & b);
free_and_null ((char **) &ub);

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 195

EXAMPLE: OPTIMIZING A BAsIC MIP PROBLEM

free_and_null ((char **) &ctype);
return (status);

} /* END main */

/* This function fills in the data structures for the m xed integer program

Maxi m ze
obj: x1 + 2 x2 + 3 x3 + x4
Subj ect To
cl: - x1 + x2 + x3 + 10x4 <= 20
c2: x1 - 3 x2 + x3 <= 30
c3: X2 - 3.5x4 =0
Bounds
0 <= x1 <= 40
2 <= x4 <=3
I nt egers
x4
End

*/

#i fndef OPX_PROTOTYPE_M N

static int

set probl endata (char **probnane_p, int *nuntols_p, int *nunrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **natind_p, double **natval _p,
double **I b_p, double **ub_p, char **ctype_p)

#el se

static int

set probl endata (probname_p, nuntol s_p, nunrows_p, objsen_p, obj_p,
rhs_p, sense_p, matbeg_p, nmatcnt_p, matind_p, natval _p,
I'b_p, ub_p, ctype_p)

char **pr obnanme_p;
int *nuncol s_p;
int *nunT owWs_p;
int *obj sen_p;

doubl e **obj _p;
doubl e **rhs_p;

char **sense_p;

int **mat beg_p;
i nt **mat cnt _p;
i nt **matind_p;

doubl e **natval _p;
double **Ib_p;
doubl e **ub_p;
char **ctype_p;
#endi f

{

char *zprobnane = NULL; /* Probl em nane <= 16 characters */

196 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

double *zobj = NULL;
double *zrhs = NULL;

char *zsense = NULL;
int *zmat beg = NULL;
int *zmatcnt = NULL;
int *zmat i nd NULL;

doubl e *zmat val NULL;
doubl e *zlb = NULL;
doubl e *zub = NULL;
char *zctype = NULL;
int status = 0;

zprobnane = (char *) malloc (16 * sizeof(char));
zobj = (double *) nalloc (NUMCOLS * sizeof (double));

zrhs = (double *) nalloc (NUVROAS * sizeof (double));
zsense = (char *) nmalloc (NUMROAS * sizeof (char));
zmatbeg = (int *) malloc (NUMOOLS * sizeof(int));

zmat cnt = (int *) malloc (NUMCOLS * sizeof(int));
zmatind = (int *) malloc (NUMNZ * sizeof (int));

zmat val = (double *) nalloc (NUMZ * sizeof (double));

zlb = (double *) nalloc (NUMCOLS * sizeof (double));
zub = (double *) nalloc (NUMCOLS * sizeof (double));
zctype = (char *) malloc (NUMCOLS * sizeof (char));
if (zprobname == NULL || zobj == NULL ||

zrhs == NULL || zsense == NULL ||

zmatbeg == NULL || zmatcnt == NULL ||

zmatind == NULL || zmatval == NULL ||

zlb == NULL || zub == NULL ||

zctype == NULL) |

status = 1;

goto TERM NATE;
}

strcpy (zprobname, "exanple");

/* The code is formatted to make a visual correspondence

between the mathematical |inear program and the specific data
itens. */
zobj[0] = 1.0; zobj [1] = 2.0; zobj[2] = 3.0; zobj[3] = 1.0
zmat beg[0] = O; zmat beg[1] = 2; zmat beg[2] = 5; zmat beg[3] = 7;
zmatcent[0] = 2; zmatcent[1] = 3; zmatcnt[2] = 2; zmatcent[3] = 2; -
o
zmatind[0] = O; zmatind[2] = O; zmatind[5] = O; zmatind[7] = O; <
zmatval [0] = -1.0; zmatval[2] = 1.0; zmatval[5] = 1.0; zmatval[7] = 10.0; é
zmatind[1] = 1; zmatind[3] = 1; zmatind[6] = 1; =
zmatval[1] = 1.0; zmatval[3] = -3.0; zmatval[6] = 1.0; E
zmatind[4] = 2; zmatind[8] = 2; 8—
©
=
n

ILOG CPLEX 7.5 — USER’'S MANUAL 197

EXAMPLE:

OPTIMIZING A BAsIic MIP PROBLEM

zmatval [4] = 1.0; zmatval [8] = -3.5;
zI b[0] = 0.0; zIb[1] = 0.0; zIb[2] = 0.0; zIb[3] = 2.0;
zub[0] = 40.0; zub[1] = CPX_I NFBOUND; zub[2] = CPX_| NFBOUND; zub[3] = 3.0;
zctype[0] ='C; zctype[l] ='C; zctype[2] ='C; zctype[3] ="1";
/* The right-hand-side values don't fit nicely on a |line above. So put
them here. */
zsense[0] = "'L";
zr hs[0] = 20.0
zsense[1l] ="'L";
zrhs[1] =30.0
zsense[2] = "FE;
zrhs[2] = 0.0;
TERM NATE:

if (status) {
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul

}

el se {
*nuntol s_p
*nunt ows_p
*obj sen_p

*probnane_p
*obj _p
*rhs_p
*sense_p
*mat beg_p
*matcnt _p
*matind_p
*matval _p
*Ib_p
*ub_p
*ctype_p
}

return (status);

198

ILOG CPLEX 7.5

((char **) &zprobnane);
((char **) &zobj);
((char **) &zrhs);
((char **) &zsense);
((char **) &zmat beg);
((char **) &matcnt);
((char **) &matind);
((char **) &matval);
((char **) &zl b);
((char **) &zub);
((char **) &zctype);
NUMCALS;

NUMROWS;

CPX_MAX; /* The problemis naximzation */
zpr obnane;

zobj ;

zrhs;

zsense;

zmat beg;

zmatcnt;

zmat i nd;

zmat val ;

zl b;

zub;

zctype;

USER'S MANUAL

<functionhead>

} /* END setprobl endata */

/* This sinple routine frees up the pointer *ptr, and sets *ptr to NULL */

#i f ndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr)
#el se
static void
free_and_null (ptr)
char **ptr;
#endi f
{
if (*ptr I'= NULL) {
free (*ptr);
*ptr = NULL;
}
} /* END free_and_null */

Example: Reading a MIP Problem from a File

This example shows you how to solve a MIP with the Component Libraries when the
problem datais stored in afile.

Example: ilomipex2.cpp

This example derivesfrom i | ol pex2. cpp, an LP explained in the manual Getting Started
with ILOG CPLEX. That LP example differs from this MIP example in these ways:

0 Thisexample solvesonly MIPs, soit callsonly | | oCpl ex: : sol ve() , and itscommand
line does not require the user to indicate an optimizer.

0 Thisexample doesn’t generate or print abasis.

Like other applications based on the ILOG CPLEX Concert Technology Library, this one
uses! | oEnv env toinitialize the Concert Technology environment and

Il oModel nodel (env) to create aproblem object. Beforeit ends, it callsenv. end to free
the environment.

#incl ude <ilcplex/il ocplex.h>
| LOSTLBEGA N

static void usage (const char *prognane);

i nt
nmain (int argc, char **argv)

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 199

EXAMPLE:

}

Il oEnv env;

try {
Il oMbdel nodel (env);
I'l oCpl ex cpl ex(env);

if (argc!=2) {
usage (argv[O0]);
throw(-1);

}

Il ooj ective obj;

I'l oNunVar Array var (env);
Il oRangeArray rng(env);
cpl ex. i nport Model (nodel , argv[1],
cpl ex. extract (nodel) ;

cpl ex. sol ve();

env.out() << "Solution status ="
env.out() << "Solution val ue

I'l oNumArray val s(env);
cpl ex. get Val ues(val s, var);
env.out() << "Val ues ="
}
catch (Il oException& e) {
cerr << "Concert exception caught:

}
catch (...) {

READING A MIP PROBLEM FROM A FILE

var,

<< cpl ex
=" << cpl ex

<< vals <<

rng);

.getStatus() << endl;
.get j Val ue() << endl;

endl ;

<< e << endl;

cerr << "Unknown exception caught" << endl;

}

env. end();
return O;
/1 END main

static void usage (const char *prognane)

{

cerr << "Usage:
cerr << "
cerr << "
cerr << "

' << prognane << "

Exiting..." << endl;

} // END usage

200

ILOG CPLEX 7.5 —

filename"
where filenanme is a file with extension "
MPS, SAV, or LP (lower case is allowed)" << endl;

<< endl;
<< endl;

USER'S MANUAL

<functionhead>

Example: mipex2.c

The example derives from | pex2. ¢, an LP explained in the manual Getting Sarted with
ILOG CPLEX. That LP example differs from this MIP example in these ways:

0 Thisexample solvesonly MIPs, so it calls only CPXmi popt () , and its command line
does not require the user to indicate an optimizer.

0O Thisexample calls CPXget st at () , CPXget ni pobj val (), and CPXget mi px() to get
asolution. It doesn’t generate or print abasis.

Like other applications based on the ILOG CPLEX Callable Library, this one calls
CPXopenCPLEX() toinitializethe ILOG CPLEX environment; it sets the screen-indicator
parameter to direct output to the screen and calls CPXcr eat epr ob() to create a problem
object. Before it ends, it calls CPXf r eepr ob() to free the space allocated to the problem
object and CPXcl oseCPLEX() to free the environment.

#i ncl ude <il cpl ex/cpl ex. h>

/* Bring in the declarations for the string and character functions
and mal l oc */

#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>

/* Include declarations for functions in this program*/
#i f ndef CPX_PROTOTYPE_M N

static void
free_and_null (char **ptr),
usage (char *prognane);

#el se

static void
free_and_null (),
usage O;

#endi f

#i f ndef CPX_PROTOTYPE_M N

i nt

main (int argc, char *argv[])
#el se

i nt

nmain (argc, argv)

int ar gc;

char *argv[];

#endi f

/* Declare and all ocate space for the variables and arrays where we will
store the optimzation results including the status, objective val ue,
and vari abl e val ues. */

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 201

EXAMPLE: READING A MIP PROBLEM FROM A FILE

i nt sol stat;

double objval;

double *x = NULL;
CPXENVpt r env = NULL;
CPXLPpt r Ip = NULL;

i nt st at us;

int i

int cur _nuntol s;

/* Check the command |ine argunents */

if (argc!=2) {
usage (argv[O0]);
got o TERM NATE;
}

/* Initialize the CPLEX environnent */
env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, "Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errmsg);
fprintf (stderr, "9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
"Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

/* Create the problem using the filename as the probl em name */
Ip = CPXcreateprob (env, &status, argv[1]);

/* A returned pointer of NULL may nean that not enough nenory
was available or there was some other problem In the case of
failure, an error message will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. Note that nost CPLEX routines return
an error code to indicate the reason for failure. */

202 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

if (Ip==NJL) {
fprintf (stderr, "Failed to create LP.\n");
got o TERM NATE;

}

/* Now read the file, and copy the data into the created |p */

status = CPXreadcopyprob (env, |p, argv[1], NULL);

if (status) {
fprintf (stderr, "Failed to read and copy the problemdata.\n");
got o TERM NATE;

}

/* Optimze the problemand obtain solution. */
status = CPXmi popt (env, Ip);

if (status) {
fprintf (stderr, "Failed to optimze MP.\n");
got o TERM NATE;

}

sol stat = CPXgetstat (env, Ip);
printf ("Solution status %l.\n", solstat);

status = CPXgetm pobjval (env, |p, &objval);

if (status) {
fprintf (stderr,"Failed to obtain objective value.\n");
got o TERM NATE;

}

printf ("Qbjective value % 10g\n", objval);

/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is. cur_nuntols stores the current nunber
of colums. */

cur_nuntol s = CPXget nuntol s (env, |p);
/* Alocate space for solution */
x = (double *) malloc (cur_nuntol s*si zeof (doubl e));

if (x == NuL) {
fprintf (stderr, "No menmory for solution values.\n");
got o TERM NATE;

}

status = CPXgetm px (env, Ip, x, O, cur_nuntols-1);
if (status) {
fprintf (stderr, "Failed to obtain solution.\n");
got o TERM NATE;

}

/* Wite out the solution */

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 203

EXAMPLE:

204

READING A MIP PROBLEM FROM A FILE

for (j =0; j < cur_nuncol
printf ("Colum %:

TERM NATE:

}

/* This sinple routine frees up the pointer *ptr,

#i f ndef

/* Free up the solution */
free_and_nul |
/*

if (Ip!=NUL) {

status = CPXfreeprob (env,

if (status) {
fprintf (stderr,

/* Free up the CPLEX envir

if (env != NULL) {
status = CPXcl oseCPLEX

Val ue = %47.10g\n", j,

s; j++) |

((char **) &x);

Free up the problem as allocated by CPXcreat eprob,

& p);

"CPXfreeprob failed, error code %l.\n",

onnment, if necessary */

(&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use

CPXgeterrorstring.

For other CPLEX routines,

x[i1):

if necessary */

status);

the errors will

be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errnsg[1024];
fprintf (stderr,
fprintf (stderr,
}

return (status);

/* END main */

CPX_PROTOTYPE_M N

static void

free_and_nul |

(char **ptr)

#el se
static void

free_and_nul |
char

(ptr)
**ptr;

#endi f

if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL,

ILOG CPLEX 7.5

st at us,
errmnsg);

errmsg);

USER'S MANUAL

"Coul d not close CPLEX environnent.\n");
CPXgeterrorstring (env,
"o

and sets *ptr to NULL */

<functionhead>

} /* END free_and_null */

#i f ndef CPX_PROTOTYPE_M N
static void

usage (char *prognane)

#el se

static void

usage (prognane)

char *prognang;

#endi f

{
fprintf (stderr,"Usage: % filenane\n", prognane);
fprintf (stderr," where filename is a file with extension \n");
fprintf (stderr," MPS, SAV, or LP (lower case is allowed)\n");

fprintf (stderr," This programuses the CPLEX M P optim zer.\n");
fprintf (stderr,” Exiting...\n");
} /* END usage */

Example: Using SOS and Priority

This exampleillustrates how to use SOS and priority orders.

Example: ilomipex3.cpp

It derivesfromi | oni pex1. cpp. The differences between that simpler MIP example and
thisone are:

0O The problem solved is slightly different so the output isinteresting. The actual SOS and
priority order that the example implements are arbitrary; they do not necessarily
represent good data for this problem.

0 Theroutineset Priorities() setstheSOS and priority order:

#incl ude <ilcplex/il ocplex.h>
| LOSTLBEGA N

static void
popul at ebyrow | | oMbdel nodel, |loNunVarArray var, |loRangeArray con);

int
main (void) {
Il oEnv env;

try {
I'l oMbdel nodel (env);

I'l oNunVar Array var(env);
Il oRangeArray con(env);
popul at ebyrow (nodel , var, con);

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 205

EXAMPLE:

206

USING SOS AND PRIORITY

I'l oCpl ex cpl ex(nodel);

Il oNumVar Array ordvar(env, 2, var]|
Il oONumAr r ay ordpri(env, 2, 8.0,
cplex.setPriorities (ordvar, ordpr
cplex.setDirection(var[1], IloCple
cplex.setDirection(var[3], IloCple
cpl ex. sol ve();

env.out() << "Solution status ="
env.out() << "Solution value =

Il oNumArray val s(env);

cpl ex. get Val ues(val s, var);
env.out() << "Val ues =
cpl ex. get Sl acks(val s, con);
env.out () << "Sl acks

<<
cpl ex. expor t Model (" m pex3.1p");

}
catch (Il oException& e) {
cerr << "Concert exception caught:

1], var[3]);
7.0);

i)

x: : BranchUp);
x: : BranchDown) ;

<< cplex.getStatus() << endl;

' << cpl ex. get Obj Val ue() << endl;

val s << endl;

val s << endl;

" << e << endl;

}
catch (...) {
cerr << "Unknown exception caught" << endl;
}
env. end();
return O;
} // END main
static void
popul at ebyrow (11 oMddel nodel, IloNunVarArray x, |l oRangeArray c)
{
I'l oEnv env = nodel . get Env();
x.add(!l oNunVar (env, 0.0, 40.0));
x.add(ll oNunVar (env, 0.0, llolnfinity, ILONT));
x.add(!ll oNunVar (env, 0.0, llolnfinity, ILONT));
x.add(!ll oNunVar (env, 2.0, 3.0, ILONTI));
nmodel . add(Il oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2] + x[3]));
c.add(- x[0] + x[1] + x[2] + 10 * x[3] <= 20);
c. add(x[0] - 3 * x[1] + x[2] <= 30);
c. add(x[1] - 3.5% x[3] == 0);
nodel . add(c);

nmodel . add(|| 0SCS1(nodel . get Env(),

I I oNunVar Array(nodel . get Env(), 2,

Il oNumArray(env, 2,

ILOG CPLEX 7.5 USER

x[2],
)

x[3]),
25.0, 18.0)

'S MANUAL

<functionhead>

} /1 END popul at ebyr ow

Example: mipex3.c

This example derives from ni pex1. c. The differences between that simpler MIP example
and thisone are:

0 The problem solved is slightly different so the output isinteresting. The actual SOS and
priority order that the example implements are arbitrary; they do not necessarily
represent good data for this problem.

0 Theroutine CPXwr i t epr ob() writesthe problem to disk before the example copiesthe
SOS and priority order to verify that the base problem was copied correctly.

0 ThelLOG CPLEX preprocessing parameters for the presolver and aggregator are turned
off to make the output interesting. Generally, we do not require nor recommend doing
this.

0 Theroutineset sosandor der () setsthe SOS and priority order:
. It callsCPXcopysos() tocopy the SOS into the problem object.
. It callsCPXcopyor der () to copy the priority order into the problem object.
. It writesthe SOSinformation to files by calling CPXsoswri te() .
. It writesthe priority order to files by calling CPXor dwri t e() .
#i ncl ude <il cpl ex/cpl ex. h>
#i ncl ude <stdlib. h>
/* Bring in the declarations for the string functions */
#i ncl ude <string. h>
/* Include declaration for function at end of program */

#i fndef CPX_PROTOTYPE_M N

static int
set probl endata (char **probnane_p, int *nuntols_p, int *nunrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **natval _p,
double **Ib_p, double **ub_p, char **ctype_p),
set sosandorder (CPXENVptr env, CPXLPptr |p);

static void
free_and_null (char **ptr);

#el se

[
=)
<
=
Q
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 207

EXAMPLE:

208

USING SOS AND PRIORITY

static int
set probl endata (),
set sosandorder ();

static void
free_and_nul |

OF

#endi f

/* The problemwe are optimzing will have 2 rows, 3 colums

and 6 nonzeros. */

#defi ne NUVROAS 3
#defi ne NUMCOLS 4
#defi ne NUWMNZ 9

#i f ndef
int
nain (void)
#el se

int

main ()
#endi f

{

CPX_PROTOTYPE_M N

/* Declare and al l ocate space for the variables and arrays that

will contain the data which define the LP problem*/
char *probnane = NULL;
int nuncol s;
int nunT ows;
int obj sen;
double *obj = NULL;
doubl e *rhs = NULL;
char *sense = NULL;
int *mat beg = NULL;
int *matcnt = NULL;
int *matind = NULL;
doubl e *matval = NULL;
doubl e *I b = NULL;
doubl e *ub = NULL;
char *ctype = NULL;

/* Declare and al |l ocate space for the variables and arrays where we
will store the optimization results including the status,
val ue, variabl e values, and row sl acks. */

int sol stat;

double objval;

double x[NUMCOLS];
doubl e sl ack[NUMROWE] ;

ILOG CPLEX 7.5 — USER’'S MANUAL

obj ective

<functionhead>

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

int st at us;

int i, g

int cur_nunrows, cur_nuntol s;

/* Initialize the CPLEX environnment */
env = CPXopenCPLEX (&status);

/* 1f an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, "Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, "%", errmnsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
"Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;
}

/* Fill in the data for the problem */

status = setprobl endata (&probname, &nuntols, &nunrows, &objsen, &obj,
& hs, &sense, &matbeg, &mtcnt, &matind, &matval,
& b, &ub, &ctype);
if (status) {
fprintf (stderr, "Failed to build problemdata arrays.\n");
got o TERM NATE;
}

/* Create the problem */
Ip = CPXcreateprob (env, &status, probnane);
/* A returned pointer of NULL may nean that not enough menory

was available or there was sone other problem |In the case of
failure, an error message will have been witten to the error

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 209

EXAMPLE: USING SOS AND PRIORITY

channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. */

if (Ip==NUL) {
fprintf (stderr, "Failed to create LP.\n");
got o TERM NATE;

}

/* Now copy the problemdata into the Ip */

status = CPXcopylp (env, |Ip, nuntols, nunrows, objsen, obj, rhs,
sense, matbeg, matcnt, matind, natval,
I'b, ub, NULL);

if (status) {
fprintf (stderr, "Failed to copy problemdata.\n");
got o TERM NATE;

}
/* Now copy the ctype array */

status = CPXcopyctype (env, |Ip, ctype);

if (status) {
fprintf (stderr, "Failed to copy ctype\n");
got o TERM NATE;

}

/* Wite a copy of the problemto a file. */

status = CPXwiteprob (env, |p, "mpex3.nps", NULL);
if (status) {
fprintf (stderr, "Failed to wite LP to disk.\n");
got o TERM NATE;

}
/* Set up the SOS set and priority order */

status = setsosandorder (env, |p);
if (status) goto TERM NATE;

/* Turn off CPLEX presolve, aggregate, and print every node. This
is just to nake it interesting. Turning off CPLEX presolve is
NOT reconmended practice !l */

status = CPXsetintparam (env, CPX_PARAM PREI ND, CPX_COFF);
if (!status) CPXsetintparam (env, CPX_PARAM AGE ND, CPX_OFF);
if (!status) CPXsetintparam (env, CPX_PARAM M PI NTERVAL, 1);

if (status) {

fprintf (stderr, "Failed to set sone CPLEX paraneters.\n");
got o TERM NATE;

210 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Qptimze the problemand obtain solution. */

status = CPXmi popt (env, Ip);

if (status) {
fprintf (stderr, "Failed to optimze MP.\n");
got o TERM NATE;

}

sol stat = CPXgetstat (env, Ip);
/* Wite the output to the screen. */
printf ("\nSolution status = %\ n", solstat);

status = CPXgetm pobjval (env, |p, &objval);

if (status) {
fprintf (stderr,"No MP objective value available. Exiting...\n");
got o TERM NATE;

}

printf ("Solution value = %\n\n", objval);

/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is, rather than using what was passed to CPXcopyl p.
cur_nunmrows and cur_nuntols store the current nunber of rows and
col ums, respectively. */

cur _nunr ows CPXget nuntows (env, |p);
cur_nuntol s = CPXget nuntol s (env, |p);

status = CPXgetm px (env, Ip, x, O, cur_nuntols-1);

if (status) {
fprintf (stderr, "Failed to get optinal integer x.\n");
got 0 TERM NATE;

}

status = CPXgetm pslack (env, Ip, slack, 0, cur_nunrows-1);
if (status) {
fprintf (stderr, "Failed to get optinal slack values.\n");
got 0o TERM NATE;

}
for (i =0; i < cur_nunrows; i++) { -
printf ("Row %: Slack = %d0f\n", i, slack[i]); o
} <
>
for (j = 0; j < cur_nuntols; j++) { &
printf ("Colum %: Value = %0f\n", j, X[j]); =
U
: it}
. o
TERM NATE: o
)
=
(2]

ILOG CPLEX 7.5 — USER’'S MANUAL 211

EXAMPLE: USING SOS AND PRIORITY

/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NUL) {
status = CPXfreeprob (env, &p);
if (status) {
fprintf (stderr, "CPXfreeprob failed, error code %l.\n", status);

}

/* Free up the CPLEX environment, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, "Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, "9%", errmsg);

}

/* Free up the problem data arrays, if necessary. */

free_and_null ((char **) &probnane);
free_and_null ((char **) &obj);
free_and_null ((char **) &rhs);
free_and_null ((char **) &sense);
free_and_null ((char **) &matbeg);
free_and_null ((char **) &matcnt);
free_and_null ((char **) &matind);
free_and_null ((char **) &matval);
free_and_null ((char **) & b);
free_and_null ((char **) &ub);
free_and_null ((char **) &ctype);

return (status);

} /* END main */

/* This function fills in the data structures for the nixed integer program

Maxi m ze

obj: x1 + 2 x2 + 3 x3 + x4

Subj ect To

cl: - x1 + x2 + x3 + 10x4 <= 20

212 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

c2: x1 - 3 x2 + x3 <= 30
c3: X2 - 3.5x4 =0
Bounds
0 <= x1 <= 40
2 <= x4 <=3
I nt egers
X2 X3 x4
End

*/

#i fndef OPX_PROTOTYPE_M N

static int

set probl endata (char **probnane_p, int *nuntols_p, int *nunrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **natval _p,
double **I b_p, double **ub_p, char **ctype_p)

#el se

static int

set probl endata (probname_p, nuntol s_p, nunrows_p, objsen_p, obj_p,
rhs_p, sense_p, matbeg_p, nmatcnt_p, matind_p, natval _p,
I'b_p, ub_p, ctype_p)

char **pr obnanme_p;
int *nuncol s_p;
int *nunT ows_p;
int *obj sen_p;

doubl e **obj _p;
double **rhs_p;

char **sense_p;

int **mat beg_p;
int **mat cnt _p;
i nt **matind_p;

doubl e **namtval _p;

double **Ib_p;

doubl e **ub_p;

char **ctype_p;

#endi f

{
char *zprobnane = NULL; /* Probl em nane <= 16 characters */
doubl e *zobj = NULL;
double *zrhs = NULL,;

char *zsense = NULL;

i nt *zmat beg = NULL;

int *zmatcnt = NULL; D

int *zmatind = NULL; <

double *zmatval = NULL; S

double *zlb = NULL; &

doubl e *zub = NULL; §

char *zctype = NULL; o

int status = O; 3
o
o
o)
3
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 213

EXAMPLE:

214

zpr obnane
zobj
zrhs
zsense
zmat beg
zmat cnt
zmatind
zmatva
zl b

zub
zctype

if (zprobname ==

zrhs

zmat beg
zmat i nd

zlb

zctype
= 1;
got o TERM NATE;

status

}

—~—~—

(int *)
(int *)
(int *)

USING SOS AND PRIORITY

char *) malloc (16 * sizeof(char));
double *) nmalloc (NUMCOLS * sizeof (double));
double *) nalloc (NUVMROAS * sizeof (double));
char *) malloc (NUMROAS * sizeof (char));

mal oc (NUMCOLS * sizeof(int));
nmal oc (NUMCOLS * sizeof(int));
nmal oc (NUM\Z * sizeof (int));

* sizeof (char));

(double *) nalloc (NUMNZ * sizeof (double));
(double *) nalloc (NUMCOLS * sizeof (double));
(double *) nalloc (NUMCOLS * sizeof (double));
(char *) nalloc (NUMCOLS
NULL || zobj == NULL ||
== NULL || zsense == NULL ||
== NULL || zmatcnt == NULL ||
== NULL || znmatval == NULL ||
== NULL || zub == NULL ||
== NULL)
"exanpl e");

strcpy (zprobnane,

/* The code is fornatted to nmake a visual
bet ween the nat hemati cal

zobj [1] =

zmat beg[1]
zmatcnt [1]

zmat i nd[2]
zmat val [2]

zmat i nd[3]
zmat val [3]

zmat i nd[4]
zmat val [4]

b[1]
b[1]

0.0;

zctype[1] =

yly;

CPX_| NFBOUND; zubl 2]

zctype[2]

/* The right-hand-side values don't fit nicely on

itemns. */

zobj[0] = 1.0;
zmat beg[0] = O;
zmatcnt[0] = 2;
zmatind[0] = O;
zmatval [0] = -1.0;
zmatind[1] = 1;
zmatval [1] = 1.0;
zI b[0] = 0.0; zl
zub[0] = 40.0; zu
zctype[0] ='C;

them here. */
zsense[0] = 'L";
zr hs[0] = 20.0;

ILOG CPLEX 7.5

2.0; zobj[2] = 3.0;

2; zmat beg[2] = 5;

3; zmatcnt[2] = 2;

0; zmatind[5] = O;
1.0; znmatval[5] = 1.0;
1; zmatind[6] = 1;
-3.0; zmatval[6] = 1.0;
2;

1.0

zl b[2] 0.0;

e
1

a |ine above.

USER'S MANUAL

cor r espondence
l'i near program and the specific data

zobj [3] =

zmat beg[3]
zmat cnt [3]

zmat i nd[7]
zmatval [7]

zmat i nd[8]
zmat val [8]

zI b[3
CPX_| NFBOUND; zub[3

zctype[3]

1. 0;

-3.5;

no
wnN
ee

]
]

yly;

So put

zsense[1l] ="'L";

zrhs[1] = 30.0

zsense[2] = 'FE;

zrhs[2] = 0.0;
TERM NATE:

if (status) {
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul
free_and_nul

}

el se {
*nuntol s_p
*nunt ows_p
*obj sen_p

*probnane_p
*obj _p
*rhs_p
*sense_p
*mat beg_p
*matcnt _p
*matind_p
*matval _p
*Ib_p
*ub_p
*ctype_p
}

return (status);

((char **) &zprobnane);
((char **) &zobj);
((char **) &zrhs);
((char **) &zsense);
((char **) &zmatbeg);
((char **) &matcnt);
((char **) & matind);
((char **) &matval);
((char **) &zl b);
((char **) &zub);
((char **) &zctype);
NUMCALS;

NUMROWS;

CPX_MAX; /* The problemis neximzation */
zpr obnane;

zobj ;

zrhs;

zsense;

zmat beg;

znmatcnt;

zmati nd;

zmat val ;

zl b;

zub;

zctype;

} /* END setprobl endata */

#i f ndef
static int

set sosandor der (CPXENVptr env,

#el se

static int

set sosandor der (env
CPXENVptr env;
CPXLPpt r | p;

#endi f

ILOG CPLEX 7.5

CPX_PROTOTYPE_M N

CPXLPptr | p)

I'p)

USER'S MANUAL

<functionhead>

215

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

EXAMPLE:

216

USING SOS AND PRIORITY

/* Priority order information */
int colindex[2];
int priority[2];
int direction[2];

/* SOS set information */
char sostype[1];

int sospri[1];
int sosbeg[1] ;
int sosi nd[2] ;

doubl e sosref[2];
int status = 0;

/* Note - for this exanple, the priority order and SCS i nformati on
are just nade up for illustrative purposes. The priority order
is not necessarily a good one for this particular problem */

/* Set order info. Variables 1 and 3 will be in the priority order,
with respective priorities of 8 and 7, and with respective
branching directions of up and down */

colindex[0] = 1; colindex[1] = 3;
priority[0] 8; priority[1] 7;
direction[0] CPX_BRANCH_UP; direction[1] CPX_BRANCH_DOM;

status = CPXcopyorder (env, Ip, 2, colindex, priority, direction);
if (status) {

fprintf (stderr, "CPXcopyorder failed.\n");

got o TERM NATE;
}

/* Set SCS set info. Create one SCS type 1 set, with variables
2 and 3 init, with set priority 3, and reference val ues
25 and 18 for the 2 variables, respectively. */

sostype[0] CPX_TYPE_SC81,;

sospri[0] = 3;
sosbeg[0] = O;
sosind[0] = 2; sosind[1] = 3;

sosref[0] = 25; sosref[1] = 18;

status = CPXcopysos (env, Ip, 1, 2, sostype, sospri,
sosbeg, sosind, sosref);
if (status) {
fprintf (stderr, "CPXcopysos failed.\n");
got o TERM NATE;

}
/* To assist in debugging, wite the order and SC5 to a file. */

status = CPXordwite (env, Ip, "mipex3.ord");

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

if (status) {
fprintf (stderr, "CPXordwite failed.\n");
got o TERM NATE;

}

status = CPXsoswite (env, |Ip, "mpex3.so0s");
if (status) {
fprintf (stderr, "CPXsoswite failed.\n");
got o TERM NATE;
}

TERM NATE:

return (status);

/* This sinple routine frees up the pointer *ptr, and sets *ptr to NULL */

#i fndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr)
#el se
static void
free_and_null (ptr)
char **ptr;
#endi f
{
if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL;
}
} /* END free_and_null */

[
=)
<.
>
)
=
T
3
o
=3
)
=
[2)

ILOG CPLEX 7.5 — USER’'S MANUAL 217

EXAMPLE: USING SOS AND PRIORITY

218 ILOG CPLEX 7.5 — USER’'S MANUAL

U
=
o
=
®
3
(2]

MO|4-YIomiaN Buiajos

Solving Network-Flow Problems

This chapter tells you more about the ILOG CPLEX Network Optimizer. It includes sections
on:

Choosing an Optimizer: Network Considerations
Formulating a Network Problem

Example: Network Optimizer in the Interactive Optimizer

Solving Network-Flow Problems as LP Problems

g
g
g
0 Example: Using the Network Optimizer with the Callable Library
g
0 Example: Network to LP Transformation

g

Solving LPs with the Network Optimizer

Choosing an Optimizer: Network Considerations

Aswe explain in Using the Callable Library in an Application on page 57, to exploit
ILOG CPLEX in your own application, you must first create alLOG CPLEX environment,
instantiate a problem object, and populate the problem object with data. Asyour next step,
you call alLOG CPLEX optimizer.

ILOG CPLEX 7.5 — USER’'S MANUAL 219

FORMULATING A NETWORK PROBLEM

If part of your problem is structured as a network, then you may want to consider calling the
ILOG CPLEX Network Optimizer. This optimizer may have a positive impact on
performance. There are two alternative ways of calling the network optimizer:

0O If your entire problem consists of anetwork flow, you should consider creating a network
object instead of an LP object. Then populate it, and solve it with the network optimizer.
This alternative generally yields the best performance because it does not incur the
overhead of LP data structures.

0O If your problem isan LP where alarge part is a network structure, you may call the
network optimizer for the populated LP object.

How much performance improvement you observe between using only asimplex optimizer
versus using the network optimizer followed by either of the simplex optimizers depends on
the number and nature of the other constraints in your problem. On a pure network problem,
we have measured performance 100 times faster with the network optimizer. However, if the
network component of your problem is small relative to its other parts, then using the
solution of the network part of the problem as a starting point for the remainder may or may
not improve performance, compared to running the primal or dual simplex optimizer. Only
experiments with your own problem can tell.

Formulating a Network Problem

220

A network-flow problem finds the minimal-cost flow through a network, where a network
consists of aset N of nodes and a set A of arcs connecting the nodes. Anarc aintheset Ais
an ordered pair (i, j) wherei and j are nodesin the set N; nodei is called the tail or the from-
node and node j is called the head or the to-node of the arc a. Not all the pairs of hodesin a
set N are necessarily connected by arcsin the set A. More than one arc may connect apair of
nodes; in other words, a; = (i, j) and a, = (i, j) may be two arcsin A, both connecting the
nodesi andj in N.

Each arc may be associated with four values:

O Xg5istheflow value, that is, the amount passing through the arc a from itstail (or from-
node) to its head (or to-node). The flow values are the modeling variables of a network-
flow problem. Negative values are allowed; a negative flow value indicates that thereis
flow from the head to the tail.

O g thelower bound, determines the minimum flow allowed through the arc a. By default,
the lower bound on an arc is 0 (zero).

O u,, the upper bound, determines the maximum flow allowed through the arc a. By
default, the upper bound on an arc is positive infinity.

O c,, the objective value, determines the contribution to the objective function of one unit
of flow through the arc.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Each node is associated with one value:

0 s,isthesupply value at node n.

)

By convention, a node with strictly positive supply value (that is, s, > 0) is called a supply %
node or a source, and a node with strictly negative supply value (that is, s, < 0) iscalled a - a
demand node or asink. A node where s, = 0 is called a transshipment node. The sum of all [P
supplies must match the sum of al demands; if not, then the network flow problem is % %
infeasible. 3 9
0 <

T, isthe set of arcswhose tails are node n; H,, isthe set of arcs whose heads are node n. The T
usual form of a network problem looks like this: g

Minimize (or maximize) z (Caxa)
allA

subject to Z Xq— z Xy = s,0(nON)
aldT, alH,

with these bounds |, <x,<u,0(alA)

That is, for each node, the net flow entering and leaving the node must equal its supply
value, and al flow values must be within their bounds. The solution of a network-flow
problem is an assignment of flow valuesto arcs (that is, the modeling variables) to satisfy
the problem formulation. A flow that satisfies the constraints and bounds is feasible.

Example: Network Optimizer in the Interactive Optimizer

This example is based on a network where the aim is to minimize cost and where the flow
through the network has both cost and capacity. Figure 6.1 shows you the nodes and arcs of
this network. The nodes are labeled by their identifying node number from 1 through 8. The
number inside a node indicates its supply value; O (zero) is assumed where no number is
given. The arcs are labeled 1 through 14. The lower bound | , upper bound u, and objective
value c of each arc aredisplayed in parentheses (1, u, c) besideeach arc. Inthis
example, node 1 and node 5 are sources, representing a positive net flow, whereas node 4
and node 8 are sinks, representing negative net flow.

ILOG CPLEX 7.5 — USER’'S MANUAL 221

EXAMPLE: NETWORK OPTIMIZER IN THE INTERACTIVE OPTIMIZER

%A R) A6 (-inf, +inf, $6)

A14 (0, +inf, $6)

A2 (0, 25, $3)
A5 (0, 9, $5)

A10 (0, 15, $6)

(@s's‘0) 6V

~

— =@ (V)
3(12, 12, $4) A4 (0, 10, $3)

Figure6.1 A Directed Network with Arc-Capacity, Flow-Cost, Snks, and Sources

In the standard distribution of ILOG CPLEX, the file nexanpl e. net containsthe
formatted problem formulation for this example. You can read it into the Interactive
Optimizer with the commandr ead nexanpl e. net . After you read the problem into the
Interactive Optimizer, you can solve it with the command net opt or the command
optimze.

Understanding the Network Log File
AsILOG CPLEX solves the problem, it produces alog like the following lines:

Iteration log . .

Iteration: 0 Infeasibility = 48. 000000 (5.15396e+13)
Network - Optimal: Objective = 2. 6900000000e+02
Solution tine = 0.00 sec. Iterations =7 (7)

This network log file differs slightly from the log files produced by other ILOG CPLEX
optimizers: it contains values enclosed in parentheses that represent modified objective
function values.

Aslong as the network optimizer has not yet found afeasible solution, we say that it isin
Phase |. In Phase |, the network optimizer uses modified objective coefficients that penalize
infeasibility. At its default settings, the ILOG CPLEX Network Optimizer displaysthe value

222 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

of the objective function calculated in terms of these modified objective coefficientsin
parentheses in the network log file.

You can control the amount of information recorded in the network log file, just asyou
control the amount of information in other ILOG CPLEX log files. To record no information
a al inthelog file, use the command set networ k di spl ay 0. To display the current
objective value in parentheses relative to the actual unmodified objective coefficients, use
thecommand set network di splay 1. To seethedisplay we described earlier in this
section, leave the network display parameter at its default value, 2. (If you have changed the
default value, you can reset it with the command set network di splay 2.)

U
=
o
=
®
3
(2]

MO|4-YIomiaN Buiajos

Tuning Performance of the Network Optimizer

The default values of parameters controlling the network optimizer are generally the best
choices for effective performance. However, the following sections indicate parameters that
you may want to experiment with in your particular problem.

Controlling Tolerance

You control the feasibility tolerance for the network optimizer through the feasibility
tolerance parameter. In the Interactive Optimizer, use the command
set network tolerances feasibility.

Likewise, you control the optimality tolerance for the network optimizer through the
optimality tolerance parameter. Table 6.1 and Table 6.2 summarize the default value, range,
and parameter name.

Table 6.1 Network Tolerance Parameter: Optimality

Optimality tolerance

Default Value 1e

Range 01-1ell
Callable Parameter | CPX_PARAM _NETEPOPT
Interactive Option |network tol erances optimality

Table 6.2 Network Tolerance Parameter: Feasibility

Feasibility tolerance

Default Value 1e6

Range 01-1elt
Callable Parameter | CPX_PARAM NETEPRHS
Interactive Option |network tol erances feasibility

ILOG CPLEX 7.5 — USER’'S MANUAL 223

EXAMPLE: USING THE NETWORK OPTIMIZER WITH THE CALLABLE LIBRARY

Selecting a Pricing Algorithm for the Network Optimizer

On the rare occasions when the network optimizer seems to take too long to find a solution,
you may want to change the pricing algorithm to try to speed up computation. In the
Interactive Optimizer, use the command set network pricing i, substituting avaue
fori toindicate which pricing algorithm to use. All the choices use variations of partial
reduced-cost pricing.

Limiting Iterations in the Network Optimizer

Usethecommandset network iterations i,substitutingavauefori , if youwant to
[imit the number of iterations that the network optimizer performs.

Changing Sense: from Min to Max

To change aminimization problem to a maximization problem in the Interactive Optimizer,
usethe command change sense nax and optimize again. For example, hereisatranscript
of asession in the Interactive Optimizer where we have already entered nexanpl e. net and
optimized it, and we now change its sense and optimize again:

CPLEX> change sense max

Problemis a mnimzation problem
Problemis now a naxinizati on probl em

CPLEX> net opt

Iteration log . . . Iteration: 0 Objective = 269. 000000
Network - Optimal: bjective = 5. 0400000000e+02

Sol ution time = 0.00 sec. Iterations =5 (0)

Because we had already solved this example once as a minimization problem, the
maximization started from a feasible solution. You control whether or not the network
optimizer starts from an existing solution: use the command set advance 1 toindicatein
the Interactive Optimizer that you want to start from an advanced basis. This setting isthe
default.

Example: Using the Network Optimizer with the Callable Library

In the standard distribution of ILOG CPLEX, thefilenet ex1. ¢ contains code that creates,
solves, and displays the solution of the network-flow problemillustrated in Figure 6.1 on
page 222.

Briefly, the mai n() function initializesthe ILOG CPLEX environment and creates the
problem object; it also calls the optimizer to solve the problem and retrieves the solution.

In detail, mai n() first callsthe Callable Library routine CPXopenCPLEX() . Aswe explain
in Initialize the ILOG CPLEX Environment on page 57, CPXopenCPLEX() must always be
thefirst ILOG CPLEX routinecalledinalLOG CPLEX Callable Library application. Those
routines create the ILOG CPLEX environment and return a pointer (called env) toit. This
pointer will be passed to every Callable Library routine. If thisinitialization routine fails,

224 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

env will be NULL and the error code indicating the reason for the failure will be written to
st at us. That error code can be transformed into a string by the Callable Library routine
CPXgeterrorstring().

After mai n() initiaizesthe ILOG CPLEX environment, it usesthe Callable Library routine
CPXset i nt par an{) toturnonthe ILOG CPLEX screen indicator parameter

CPX_PARAM SCRI ND so that ILOG CPLEX output appears on screen. If this parameter is
turned off, ILOG CPLEX does not produce viewable output, neither on screen, nor in alog
file. We recommend turning this parameter on when you are debugging your application.

U
=
o
=
®
3
(2]

The Cadllable Library routine CPXNETcr eat epr ob() creates an empty problem object, that
is, aminimum-cost network-flow problem with no arcs and no nodes.

MO|4-YIomiaN Buiajos

The function bui | dNet wor k() populates the problem object; that is, it loads the problem
datainto the problem object. Pointer variables in the example are initialized as NULL so that
you can check whether they point to valid data—a good programming practice. The most
important callsin thisfunction are to the Callable Library routines, CPXNETaddnodes() ,
which adds nodes with the specified supply values to the network problem, and
CPXNETaddar cs() , which adds the arcs connecting the nodes with the specified objective
values and bounds. In this example, both routines are called with their last argument NULL
indicating that no names are assigned to the network nodes and arcs. If you want to name
arcs and nodes in your problem, pass an array of strings instead.

The function bui | dNet wor k() aso includes afew routines that are not strictly necessary
to thisexample, but illustrate concepts you may find useful in other applications. To deletea
node and all arcs dependent on that node, it uses the Callable Library routine

CPXNETdel nodes() . To change the objective sense to minimization, it uses the Callable
Library routine CPXNETchgobj sen() .

Also bui | dNet wor k() setsthe row growth and column growth parameters

CPX_PARAM ROAGROWH and CPX_PARAM COLGROWTH. These parameters specify the
amount that internal arrays are extended if more nodes or arcs are added than currently fitin
alocated memory. If you build up a problem by adding nodes and arcs one by one, and if
these parameters are set to alow value, then internal arrays will be frequently reallocated;
frequent reallocation may negatively impact performance. Ideally, these parameters are set
to the maximum number of nodes and arcs that the problem will ever have. This setting will
avoid all reallocation and therefore provide best performance. The parameter

CPX_PARAM ROWGROWIH pertainsto adding nodes to a network problem (and rowsto an LP,
QP, or MIP problem) whereas CPX_PARAM COLGROWIH pertains to adding arcs to a network
problem (or columnsto an LP, QP, or MIP problem).

Let’'sreturnto mai n() , whereit actualy calls the network optimizer with the Callable
Library routine, CPXNETpr i nopt () . For CPXNETpr i nopt (), thereturnvalue 0 means
that solution information is available in the network object. Before retrieving that solution,
we allocate arraysto hold it. Then we use CPXNETsol uti on() to copy the solution into
those arrays. After we display the solution on screen, we write the network problem into a
file, net ex1. net inthe NET file format.

ILOG CPLEX 7.5 — USER’'S MANUAL 225

EXAMPLE: USING THE NETWORK OPTIMIZER WITH THE CALLABLE LIBRARY

The TERM NATE: label is used as a place for the program to exit if any type of error occurs.
Therefore, code following this label cleans up: it frees the memory that has been all ocated
for the solution data; it freesthe network object by calling CPXNETf r eepr ob() ; and it frees
the ILOG CPLEX environment by calling CPXcl oseCPLEX() . All freeing should be done
only if the datais actually available. The Callable Library routine CPXcl oseCPLEX()
should always be the last ILOG CPLEX routine calledin alLOG CPLEX Callable Library
application. In other words, al ILOG CPLEX objects that have been allocated should be
freed before the call to CPXcl oseCPLEX() .

Complete Program: netexl.c
The complete program, net ex1. c, appears here or online in the standard distribution.

#i ncl ude <il cpl ex/cpl ex. h>
#i ncl ude <stdlib. h>

/* Inmport the declarations for the string functions */

#i ncl ude <string. h>

/* Forward declaration for function at end of program */
#i f ndef CPX_PROTOTYPE_M N

static int
bui | dNetwork (CPXENVptr env, CPXNETptr net);

static void
free_and_null (char **ptr);

#el se

static int
bui I dNetwork () ;

static void
free_and_null ();

#endi f

#i f ndef CPX_PROTOTYPE_M N
int

mai n (void)

#el se

int

main ()

#endi f

/* Declare variables and arrays for retrieving problemdata and
solution information later on. */

int narcs;

226 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

int nnodes;
int sol st at ;
doubl e objval;

/* Initialize the CPLEX environnent */

doubl e *X = NULL;
double *pi = NULL;
double *slack = NULL; S
double *dj = NULL; T @
o 2
CPXENVptr env = NULL; S 2
CPXNETptr net = NULL; g 2
int st at us; n =
i nt i, T
o
=

env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no
output, so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, “Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

}
/* Create the problem */
net = CPXNETcreateprob (env, &status, “netexl”);

/* A returned pointer of NULL may nean that not enough nenory
was available or there was some other problem In the case of
failure, an error nmessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. */

if (net == NULL)
fprintf (stderr, “Failed to create network object.\n");
got o TERM NATE;

/* Fill in the data for the problem Note that since the space for

ILOG CPLEX 7.5 — USER’'S MANUAL 227

EXAMPLE: USING THE NETWORK OPTIMIZER WITH THE CALLABLE LIBRARY

the data already exists in local variables, we pass the arrays
directly to the routine to fill in the data structures. */

status = buil dNetwork (env, net);

if (status) {
fprintf (stderr, “Failed to build network problem\n”);
got o TERM NATE;

}
/* Qptimze the problemand obtain solution. */

status = CPXNETprinopt (env, net);

if (status) {
fprintf (stderr, “Failed to optim ze network.\n");
got o TERM NATE;

}
/* get network dinensions */

narcs
nnodes

CPXNETget nunarcs (env, net);
CPXNETget nunmodes (env, net);

/* allocate nenory for solution data */

X = (double *) nalloc (narcs * sizeof (double));
dj = (double *) malloc (narcs * sizeof (double));
pi = (double *) nalloc (nnodes * sizeof (double));
slack = (double *) malloc (nnodes * sizeof (double));
if (x == NULL ||
dj == NULL ||
pi == NULL ||
slack == NULL
fprintf (stderr, “Failed to allocate arrays.\n");
got o TERM NATE;
}

status = CPXNETsol ution (env, net, &solstat, &objval, x, pi, slack, dj);
if (status) {

fprintf (stderr, “Failed to obtain solution.\n");

got o TERM NATE;

}

/* Wite the output to the screen. */

printf (“\nSolution status = %\ n", solstat);

printf (“Solution value = %\n\n”, objval);
for (i = 0; i < nnodes; i++) {
printf (“Node %@d: Slack = %0f P = 9%0f\n", i, slack[i], pi[i]);

for (j =0; j < narcs; j++) {
printf (“Arc 9%d: Value = %40f Reduced cost = %40f\n",
i x0il, difil):

228 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Finally, wite a copy of the problemto a file. */

status = CPXNETwriteprob (env, net, “netexl.net”, NULL);
if (status) {
fprintf (stderr, “Failed to wite network to disk.\n");
got o TERM NATE;
}

TERM NATE:

U
=
o
=
®
3
(2]

/* Free menory for solution data */

free_and_null ((char **) &x);
free_and_null ((char **) &dj);
free_and_null ((char **) &pi);
free_and_null ((char **) &slack);

MO|4-YIomiaN Buiajos

/* Free up the problem as allocated by CPXNETcreateprob, if necessary */

if (net '= NULL) {
CPXNETfreeprob (env, &net);
if (status) {
fprintf (stderr, “CPXNETfreeprob failed, error code %.\n", status);

/* Free up the CPLEX environnent, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {

char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environnent.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “9%", errmsg);

}
return (status);

} /* END main */

#i fndef CPX_PROTOTYPE_M N

static int

bui | dNet wor k (CPXENVptr env, CPXNETptr net)
#el se

static int

bui I dNetwork (env, net)
CPXENVptr env;
CPXNETptr net;

ILOG CPLEX 7.5 — USER’'S MANUAL 229

EXAMPLE: USING THE NETWORK OPTIMIZER WITH THE CALLABLE LIBRARY

#endi f
{

int status = 0;
/* definitions to inprove readability */
define NNCDES 8

define NARCS 14
define inf CPX_| NFBOUND

o H

/* Define list of supply values for the nodes */
doubl e suppl y[NNODES] = {20.0, 0.0, 0.0, -15.0, 5.0, 0.0, 0.0, -10.0};
/* Define list of tail or fromnode indices as well as head or

to-node indices for the arcs. Notice that according to C
standard the first node has index 0. */

int tail[NARCS] ={ O, 1, 2, 3, 6 5, 4,
4, 2, 3, 3, 5, 5, 1};
int head[NARCS] = { 1, 2, 3, 6, 5, 7, 7,
1, 1, 4, 5, 3, 4, 5);

/* Define list of objective values and | ower and upper bound val ues
for the arcs */

doubl e obj [NARCS] = { 3.0, 3.0, 4.0, 3.0, 5.0, 6.0, 7.0,
4.0, 2.0, 6.0, 5.0, 4.0, 3.0, 6.0};
double ub [NARCS] = {24.0, 25.0, 12.0, 10.0, 9.0, inf, 20.0,
10.0, 5.0, 15.0, 10.0, 11.0, 6.0, inf};
double Ib [NARCS] = {18.0, 0.0, 12.0, 0.0, 0.0, -inf, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};

/* Delete existing network. This is not necessary in this
context since we know we have an enpty network object.
Noti ce that CPXNETdel nodes deletes all arcs incident to
the del eted nodes as well. Therefore this one function
call effectively del etes an existing network problem */

if (CPXNETget nummodes (env, net) > 0) {
status = CPXNETdel nodes (env, net, O,
CPXNETget nummodes (env, net)-1);
if (status) goto TERM NATE;

/* Set growth rates for rows/nodes and colums/arcs. This
is to avoid internal nenory reallocations while adding
nodes and arcs. Since we are adding all nodes and all
arcs using only one function call for each it is actually
unnecessary, but if nore function calls are used, finding
the right settings may inprove perfornance. */

status = CPXsetintparam (env, CPX_PARAM ROAGROMH, NNCDES);
if (status) goto TERM NATE;

status = CPXsetintparam (env, CPX_PARAM COLGROMH, NARCS);
if (status) goto TERM NATE;

230 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Set optimzation sense */

status = CPXNETchgobj sen (env, net, CPX M N);
if (status) goto TERM NATE;

/* Add nodes to network along with their supply val ues,
but wi thout any names. */

status = CPXNETaddnodes (env, net, NNCDES, supply, NULL);
if (status) goto TERM NATE;

U
=
o
=
®
3
(2]

/* Add arcs to network along with their objective values and
bounds, but w thout any nanes. */

MO|4-YIomiaN Buiajos

status = CPXNETaddarcs (env, net, NARCS, tail, head, |Ib, ub, obj, NULL);
if (status) goto TERM NATE;

TERM NATE:
return (status);

} /* END buil dnetwork */

#i fndef CPX_PROTOTYPE_M N
static void

free_and_null (char **ptr)
#el se

static void

free_and_null (ptr)

char **ptr;

#endi f

if (*ptr I'= NULL) {
free (*ptr);
*ptr = NULL;

}
} /* END free_and_null */

Solving Network-Flow Problems as LP Problems

A network-flow model isan LP model with specia structure. The ILOG CPLEX Network
Optimizer isahighly efficient implementation of the primal simplex technique adapted to
take advantage of this specia structure. In particular, no basis factoring occurs. However, it
is possible to solve network models using any of the ILOG CPLEX LP optimizersif first,
you convert the network data structures to those of an LP model. To convert the network
data structuresto L P data structures, in the Interactive Optimizer, use the command
change probl em | p; from the Callable Library, use the routine CPXcopynet t ol p() .

ILOG CPLEX 7.5 — USER’'S MANUAL 231

SOLVING

Minimize

331 + 332 +

subject to

ap

_al +

a

a

NETWORK-FLow PROBLEMS AS LP PROBLEMS

The LP formulation of our example from Figure 6.1 on page 222 looks like this:

4a3 + 3a4 + 5&5 + 636 + 7a7 + 438 + Zag + 6a10 + 5a11 + 4a12 + 3313 + 6314

= 20
- ag - Qg + ay =0
ag + ag =0
ag + a, + apo + all - agp = -15
a; + ag - 2 - a3 =5

- a5t g - ap +tap +tag - ay =0

with these bounds

18 =<
0 <
0 <
0 <
0 <
0 <
0 <
0 <
0 <
0 <
0 <
0 <

232

az
a
as
ay
ag
as
az
ag

a9

IN

IN

IN

<

24

25

12

10

9

free

IN

IN

IN

IN

IN

IN

IN

20

10

15

10

11

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

In that formulation, in each column there is exactly one coefficient equal to 1 (one), exactly
one coefficient equal to -1, and all other coefficients are O (zero).

Since a network-flow problem correspondsin this way to an LP problem, you can indeed
solve a network-flow problem by means of alLOG CPLEX LP optimizer aswell. If you
read a network-flow problem into the Interactive Optimizer, you can transform it into its LP
formulation with the command change pr obl em | p. After thischange, you can apply any
of the LP optimizersto this problem.

U
=
o
=
®
3
(2]

When you change a network-flow problem into an LP problem, the basisinformation that is
available in the network-flow problem is passed along to the LP formulation. In fact, if you
have already solved the network-flow problem to optimality, then if you call the primal or
dual simplex optimizers (for example, with the Interactive Optimizer command pri nopt or
t r anopt), that simplex optimizer will perform no iterations.

MO|4-YIomiaN Buiajos

Generally, you can a so use the same basis from abasis file for both the LP and the network
optimizers. However, there is one exception: in order to use an LP basis with the network
optimizer, at least one slack variable or one artificial variable needs to be basic. Sarting
from an Advanced Basis on page 101 explains more about thistopic in the context of LP
optimizers.

If you have already read the LP formulation of a problem into the I nteractive Optimizer, you
can transform it into a network with the command change pr obl em net wor k. Given any
LP problem and this command, ILOG CPLEX will try to find the largest network embedded
in the LP problem and transform it into a network-flow problem. However, asit does so, it

discards all rows and columns that are not part of the embedded network. At the same time,
ILOG CPLEX passes along as much basis information as possible to the network optimizer.

Example: Network to LP Transformation

This example shows how to transform a network-flow problem into its corresponding L P
formulation. That example also indicates why you might want to make such a change. The
exampl e reads a network-flow problem from afile (rather than populating the problem
object by adding rows and columnsaswe did in net ex1. c¢). It then attempts to solve the
problem by calling the Callable Library routine CPXNETpr i nopt () . If it determines that the
problem isinfeasible, it then transforms the problem into its LP formulation so that the
infeasibility finder can analyze the problem and possibly indicate the cause of the
infeasibility in anirreducibly inconsistent set (11S). To perform this analysis, the application
callsthe Callable Library routine CPXi i swri t e() towritethellStothefilenetex2.iis.

Complete Program: netex2.c
The complete program, net ex2. c, appears here or online in the standard distribution.

#i ncl ude <il cpl ex/cpl ex. h>

ILOG CPLEX 7.5 — USER’'S MANUAL 233

EXAMPLE: NETWORK TO LP TRANSFORMATION

/* Inmport the declarations for the string functions */

#i ncl ude <string. h>

#i fndef CPX_PROTOTYPE_M N

i nt

nmain (int argc, char **argv)
#el se

i nt

main (argc, argv)

int argc;

char **argv;

#endi f

/* Declare variables and arrays for retrieving problemdata and
solution information later on. */

i nt status = O;
CPXENVptr env = NULL;
CPXNETptr net = NULL;
CPXLPptr Ip = NULL;

/* Check command |ine */

if (argc!=2) {
fprintf (stderr, “Usage: % <network file>\n", argv[0]);
fprintf (stderr, “Exiting ...\n");
got o TERM NATE;

}

/* Initialize the CPLEX environnent */
env = CPXopenCPLEX (&st atus);

/* 1If an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no
output, so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_ PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {
char errnsg[1024];
fprintf (stderr, “Could not open CPLEX environnment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “%”, errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */
status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);

if (status) {
fprintf (stderr,

234 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;
}

/* Oreate the problem */
net = CPXNETcreateprob (env, &status, “netex2");

/* A returned pointer of NULL may nean that not enough nenory
was avail able or there was sone other problem In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX _PARAM SCRIND causes the error nessage to
appear on stdout. */

swa|qoid

=
(]
Z
)
—
=
]
=
ol
i
o
=

if (net == NULL)
fprintf (stderr, “Failed to create network object.\n");
got o TERM NATE;

}

/* Read network problemdata fromfile
with filename given as command |ine argunment. */

status = CPXNETreadcopyprob (env, net, argv[1]);

if (status) {
fprintf (stderr, “Failed to build network problem\n”);
got o TERM NATE;

}

/* Optimze the problem*/

status = CPXNETprinopt (env, net);

if (status) {
fprintf (stderr, “Failed to optim ze network.\n");
got o TERM NATE;

/* Check network solution status */
if (CPXNETgetstat (env, net) == CPX_INFEASIBLE) {
/* Oreate LP object used for invoking infeasibility finder */

Ip = CPXcreateprob (env, &status, “netex2");
if (Ip==NJLL)
fprintf (stderr, “Failed to create LP object.\n");
got o TERM NATE;
}

/* Copy LP representation of network problemto | p object, along
with the current basis available in the network object. */

status = CPXcopynettolp (env, Ip, net);

if (status) {
fprintf (stderr, “Failed to copy network as LP.\n");
got o TERM NATE;

ILOG CPLEX 7.5 — USER’'S MANUAL 235

EXAMPLE:

236

NETWORK TO LP TRANSFORMATION

/* Optimze the LP with primal to create an LP solution. This
optimzation will start fromthe basis previously generated by
CPXNETprimopt () as long as the advance indicator is swtched
on (its default). */

status = CPXsetintparam (env, CPX_PARAM LPMETHOD, CPX_ALG PRI MAL);
if (status) {
fprintf (stderr,
“Failure to set LP nmethod, error %l.\n", status);
got o TERM NATE;

}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optim ze LP.\n");
got o TERM NATE;

}

/* Find IS and wite it to a file */

status = CPXiiswite (env, Ip, “netex2.iis”);

if (status) {
fprintf (stderr, “Failed to find I1Sor wite IS file\n");
got o TERM NATE;

}

printf (“IlSwitten to file netex2.iis\n");

el se {

printf (“Network problemnot proved to be infeasible\n");

TERM NATE:

/*

if

/*

/*

Free up the problemas allocated by CPXNETcreateprob, if necessary */

(net !'= NULL) {
CPXNETfreeprob (env, &net);
if (status) {
fprintf (stderr, “CPXNETfreeprob failed, error code %.\n", status);

Free up the problemas allocated by CPXcreateprob, if necessary */
(I'p!'=NULL) {
CPXfreeprob (env, & p);

if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %.\n”, status);

Free up the CPLEX environment, if necessary */

(env !'= NULL) {
status = CPXcl oseCPLEX (&env);

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX_PARAM SCRIND indicator is set to CPX_ ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “%”, errmsg);

U
=
o
=
®
3
(2]

}
}

return (status);

MO|4-YIomiaN Buiajos

} /* END main */

Solving LPs with the Network Optimizer

If you tell ILOG CPLEX to apply the network optimizer to an LP problem—whether in the
Interactive Optimizer with the command net opt or from the Callable Library with the
routine CPxhybnet opt () —ILOG CPLEX performs a sequence of steps. It first searches
for apart of the LP that conformsto network structure. Such apart is known as an embedded
network. It then uses the network optimizer to solve that embedded network. Next, it uses
the resulting basis to construct a starting basis for the full LP problem. Finally, it solves the
LP problem with a simplex optimizer.

Network Extraction

The ILOG CPLEX network extractor searches an L P constraint matrix for a submatrix with
the following characteristics:

0O the coefficients of the submatrix are al 0 (zero), 1 (one), or -1 (minus one);

0 each variable appearsin at most two rows with at most one coefficent of +1 and at most
one coefficient of -1.

ILOG CPLEX can perform different levels of extraction. The level it performs depends on
thenet f i nd parameter.

0 Whenthenetfi nd parameterissetto 1 (one), ILOG CPLEX extracts only the obvious
network; it uses no scaling; it scans rowsin their natural order; it stops extraction as soon
as no more rows can be added to the network found so far.

0 Whenthenet fi nd parameter is set to 2, the default setting, ILOG CPLEX also uses
reflection scaling (that is, it multiplies rows by - 1) in an attempt to extract alarger
network.

ILOG CPLEX 7.5 — USER’'S MANUAL 237

SOLVING LPs WITH THE NETWORK OPTIMIZER

0 Whenthenet fi nd parameter isset to 3, ILOG CPLEX uses general scaling, rescaling
both rows and columns, in an attempt to extract a larger network.

In terms of total solution time expended, it may or may not be advantageous to extract the
largest possible network. Characteristics of your problem will determine the tradeoff
between network size and the number of simplex iterations required to finish solving the
model after solving the embedded network.

To set thenet f i nd parameter:

O Inthe Interactive Optimizer, usethe command set network netfind i, substituting
avauefori .

0O From the Callable Library, use the routine CPXset i nt par an{) with arguments to
indicate the environment, the parameter CPX_PARAM NETFI ND, and avalue.

(This parameter is the same one that you use when you transform an LP model to a network-
flow model, as described in Solving LPs with the Network Optimizer on page 237.)

Even if your problem does not conform precisely to network conventions, the network
optimizer may still be advantageous to use. When it is possible to transform the original
statement of alinear program into network conventions by these algebraic operations:

0 changing the signs of coefficients,

0O multiplying constraints by constants,

0O rescaling columns,

0 adding or eliminating redundant relations,

then ILOG CPLEX will carry out such transformations automatically if you set the netfind
parameter appropriately.

Preprocessing and the Network Optimizer

If your LP problem includes network structures, thereis a possibility that ILOG CPLEX
preprocessing may eliminate those structures from your model. For that reason, you should
consider turning off preprocessing before you invoke the network optimizer on an LP
problem.

238 ILOG CPLEX 7.5 — USER’'S MANUAL

W

Solving Quadratic Programming Problems

Buiwweiboid

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

This chapter tells you about solving convex quadratic programming problems (QPs) with
the ILOG CPLEX Barrier Optimizer. (To use the ILOG CPLEX Barrier Optimizer in linear
programs (L Ps), see Solving LP Problems with the Barrier Optimizer on page 129.)

This chapter contains sections on:

I dentifying Convex Quadratic Programming Problems
Entering QPs

Saving QP Problems

Changing Problem Type in QPs

Changing Quadratic Terms

Optimizing QPs with the Barrier Optimizer

Example: Creating a QP, Optimizing, Finding a Solution
Example: Reading a QP from aFile

To usethe ILOG CPLEX Barrier Optimizer in application development, you must hold a
special, optional, development license. If you call barrier routines from the ILOG CPLEX
Cdlable Library in your applications, your end user must be licensed for runtime or derived
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX
representative.

o o o o o o o o

ILOG CPLEX 7.5 — USER’'S MANUAL 239

IDENTIFYING CONVEX QUADRATIC PROGRAMMING PROBLEMS

Identifying Convex Quadratic Programming Problems

240

Conventionadlly, a quadratic program (QP) is formulated this way:
Minimize Y,x"Qx+ c'x
subjectto Ax~b

with these bounds| < x < u

where the relation ~ may be any combination of equal to, less than or equal to, greater than
or equal to, or range constraints. As in other problem formulations, | indicates lower and u
upper bounds. Q isamatrix of obj ect|vefunct|on coefficients. That is, the elements Q;; are
the coefficients of the quadratic terms xJ and the elements Q;; and Q;; are summed together
to be the coefficient of the term X;X;.

ILOG CPLEX distinguishes two kinds of Q matrices:
0 Inaseparable problem, only the diagonal terms of the matrix are defined.
0 Inanonseparable problem, at least one off-diagonal term of the matrix is nonzero.

ILOG CPLEX optimizes only convex quadratic minimization problems or equivalently, only
concave quadratic maximization problems, asillustrated in Figure 7.1. For convex QPs, Q
must be positive semi-definite; that is, theterm x’Qx = 0 for al x, whether or not x is
feasible. For concave maximization problems, the requirement is that Q must be negative
semi-definite; that is, X’ Qx < 0 for all x. In aminimization problem, if Q is separable and
positive semi-definite, then Q = 0.

A A

-

Figure7.1 Maximize a Concave Objective Function, Minimize a Convex Objective Function

In this chapter, we assume you have some familiarity with quadratic programming. For a
more compl ete explanation of quadratic programming generally, we recommend you consult
atext such as one of those listed in Further Reading on page 25 of the preface of this
manual.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Entering QPs

Asyou seein the problem formulation, ILOG CPLEX assumesthereisan initial factor, 1/2.
For example, if the term 10x; appearsin your problem, that is, if the actual coefficient of x?
is 10, then you should enter the value 20.

You can enter datato define a QP by any of severa different methods:

0 You can define the problem entirely using LP format or MPS format. (Understanding
File Formats on page 264, explains these formatsin greater detail.) Briefly, the
ILOG CPLEX LPformat includes extensionsto support quadratic objective information,
and an MPS file must include a QVATRI X section to support quadratic data.

. Inthe Interactive Optimizer, use the r ead command to read problemsin from a
formatted file, or use theent er command to enter problem data interactively.

. For 11 oCpl ex, method i nport Model will seamlessly read a problem file containing
QP into a Concert Technology model.

Buiwweiboid

2
g
=)
>
(o]
QO
(=
<)
o
=
QD
=
o

. Fromthe Callable Library, use the routine CPXr eadcopypr ob() to read and copy
problem data from a formatted file.

0 You can define the linear part of the problem by any of the entry methods described in
Put Data in the Problem Object on page 58, and then enter the quadratic terms from an
auxiliary QP file (see page 265). The QP file format is documented in greater detail in
the ILOG CPLEX Reference Manual.

Saving QP Problems

After you enter a QP problem, whether interactively or by reading a formatted file, you can
then save the problem in aformatted file. The formats available to you are LP, MPS, and
SAV. When you save a QP problem in one of these formats, the quadratic information will
also be recorded in the formatted file.

In addition, you can save the quadratic part of aproblemina QP file (aformatted file with
the extension . gp, as described on page 265). To do so:

O Inthe Interactive Optimizer, use thew i t e command
0 Inthe Callable Library, use the routine CPXgpwri t e() .
0O Writing a QP format file is not supported by I | oCpl ex.

ILOG CPLEX 7.5 — USER’'S MANUAL 241

CHANGING PROBLEM TYPE IN QPsS

Changing Problem Type in QPs

242

When you enter aproblem, ILOG CPLEX determines the problem type from the available
information. If you enter quadratic information about a problem, whether interactively or by
reading a formatted file, then ILOG CPLEX assumes that the problem typeisqp for
guadratic.

O Inthe Interactive Optimizer, if you are licensed to use the ILOG CPLEX Barrier
Optimizer, then you will see additional change options. You can use the command
change probl emwith its optionsto change a quadratic problem to these other types:

zer oed_gp indicatesthat you want ILOG CPLEX to change the quadratic problem to
an associated linear relaxation by assuming that the matrix Q isO.

When you change the problem type of aQPto zer oed_qgp, then you can optimize the
problem as an LP, using any of the ILOG CPLEX LP optimizers licensed to you
(primal simplex, dua simplex, network, or barrier). This change in problem type to
zer oed_gp retainsthe quadratic information about the problem, so once you have an
LP solution to the relaxed LP version of the problem, you can then change the
problem type back to gp and use the original Q matrix.

In fact, Diagnosing QP Infeasibility on page 246, shows you how to use this option to
diagnoseinfeasibilitiesin QPs.

. | pindicatesthat you want ILOG CPLEX to treat the problem as an LP. This change
in problem type, in contrast to zer oed_gp, drops the quadratic information about
your problem.

. mp, if you are licensed to use the MIP optimizer, indicates that you want
ILOG CPLEX to treat the problem asaMIP. This change in problem type, in contrast
to zer oed_qp, drops the quadratic information about your problem.

0 From the Callable Library, use the routine CPXchgpr obt ype() to change the problem
type. The header file (that is, theincludefile) cpl ex. h contains a section titled Problem
Types of the constants that define various problem types.

O 11 0oCpl ex handles problem types transparently (provided your license supports the
required problem types). When extracting amodel with a quadratic objective function, it
will automatically detect it as a QP and make the required adjustments of data structures.
To solvea zer oed_gp corresponding to an extracted QP, method sol veZer oedQP()
must be called instead of method sol ve() . With sol veZer oedQP() , the optimizer to
be used is controlled by set Root Al gori t hn().

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Changing Quadratic Terms

ILOG CPLEX distinguishes between a quadratic algebraic term and a quadratic matrix
coefficient. The quadratic algebraic terms are the coefficients that appear in the algebraic
expression defined as part of the ILOG CPLEX LPformat. The quadratic matrix coefficients
appear in Q. The quadratic coefficient of an off-diagonal term must be distributed within the
Q matrix, and it is always one-half the value of the quadratic algebraic term.

To clarify that terminology, consider this example:

Minimizea+ b + 1/2(a? + 4ab + 7b?)

subjecttoa+ b= 10

with theseboundsa=0andb=0

The off-diagonal quadratic algebraic term in that example is 4, so the quadratic matrix Q is
&
27

0O InaQP, you can change the quadratic matrix coefficients in the Interactive Optimizer by

using the command change qpterm

Buiwweiboid

2
g
=)
>
(o]
QO
(=
<)
o
=
QD
=
o

0O Fromthe Callable Library, use the routine CPXchggpcoef () to change quadratic matrix
coefficients.

0 Concert Technology does not support direct editing of expressions other than linear
expressions. Conseguently, to change a quadratic objective function, you need to create
an expression with the modified quadratic objective and use
Il oObj ective: : set Expr () toinstal this new expression in the model’s objective.

Changing an off-diagonal element changes the corresponding symmetric element aswell. In
other words, if acall to CPXchggpcoef () changes Q(i, j) to avalue, it aso changes Q(j, i)
to that same value.

To continue our example, if we want to change the off-diagonal quadratic term from 4 to 6,
we would use this sequence of commands in the Interactive Optimizer:

CPLEX> change gpterm
Change which quadratic term[‘variable’ ‘variable']:

ab

Present quadratic termof variable “a, variable ‘b’
i's 4.000000.

Change quadratic termof variable “a, variable ‘b’
to what: 6.0

Quadratic termof variable “a, variable ‘b’ changed
to 6.000000.

ILOG CPLEX 7.5 — USER’'S MANUAL 243

OPTIMIZING QPs WITH THE BARRIER OPTIMIZER

From the Callable Library, the CPXchggpcoef () cal to change the off-diagonal term from
4 to 6 would change both of the off-diagona matrix coefficients from 2 to 3. Thus, the
indices would be 0 and 1, and the new matrix coefficient value would be 3.

If you have entered alinear problem without any quadratic terms, and you want to create
guadratic terms, you must first change the problem type to QP. To do so, use the command
change probl em gp. This command will create an empty quadratic matrix with Q = 0.

When you change quadratic terms, there are still restrictions on the properties of the Q
matrix. In aminimization problem, it must be convex, positive semi-definite. In a
maximization problem, it must be concave, negative semi-definite. For example, if you
change the sense of an objective function in a convex Q matrix from minimization to
maximization, you will thus make the problem unsolvable. Likewise, in aconvex Q matrix,
if you make aterm negative, you will thus make the problem unsolvable.

Optimizing QPs with the Barrier Optimizer

244

To use the ILOG CPLEX Barrier Optimizer in application development, you must hold a
special, optional, development license. If you call barrier routines from the ILOG CPLEX
Callable Library in your applications, your end user must be licensed for runtime or derived
work. For more information about ILOG CPLEX licensing, contact your ILOG CPLEX
representative.

To optimize a QP that you have entered or read:
0 Inthe Interactive Optimizer, use the command bar opt .
0O From the Callable Library, use the routine CPXbar opt () .

0O Method |1 oCpl ex: : sol ve() will automatically invoke the barrier optimizer if the
extracted model isa QP. The setting of root or node a gorithm will be ignored.

For a QP, the ILOG CPLEX Barrier Optimizer generates apure barrier solution. That is, the
solution is not a basic solution. The barrier crossovers described in Barrier Smplex
Crossover on page 131 do not apply to quadratic barrier optimizations.

The ILOG CPLEX Barrier Optimizer automatically preprocesses your quadratic problem,
conducting presolution problem analysis and reductions appropriate for a QP. (It ignoresthe
settings of the ILOG CPLEX parameters for preprocessing, presolver, and aggregator.)

Generally, the default parameter settings of the ILOG CPLEX Barrier Optimizer are
appropriate for most QPs. In fact, for QPs, the ILOG CPLEX Barrier Optimizer uses only
the default barrier algorithm (indicated in the Interactive Optimizer by

set barrier algorithm 0andfromthe Callable Library by the parameter
CPX_PARAM BARAL G with the value 0). In other words, it does not use the other two
algorithms discussed in the context of linear barrier optimization and listed in Table 4.13 on
page 145.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Understanding QP Solution Information

When the ILOG CPLEX Barrier Optimizer reaches a solution for a QP, it generates all the
primal and dual information available for pure, nonbasis barrier solutions, as described in
Understanding Solution Quality from the Barrier LP Optimizer on page 138.

Reminder: Since there is no basic solution after this kind of optimization, thereis no
objective range information. Also, since there is no basic solution, it is not possible to save
an advanced basis for restarts. You cannot write . bi n nor . t xt files either.

You can save QP solution information as VEC files with the extension . vec.

0 Inthe Interactive Optimizer, use thewr i t e command followed by afile name with the
extension . vec.

0O From the Callable Library, use the routine CPXvecwri t e() .
To display information about a QP solution from the ILOG CPLEX Barrier Optimizer:

Buiwweiboid

2
g
=)
>
(o]
QO
(=
<)
o
=
QD
=
o

0 Inthe Interactive Optimizer, there are several options:

. display solution quality providesinformation about the quality of a QP
solution with respect to solution optimality. (Table 4.11 on page 138 lists and explains
thisinformation.)

. display problem vari abl e showsthe quadratic objective function coefficient of
a specific variable.

. display problem gpvari abl es showsthe names of quadratic variables.

. display problemconstraint obj returnsthe complete linear and quadratic
objective function.

0 Fromthe Callable Library, usethe routine CPXsol ut i on() to accessthe solution values
and the routine CPXget dbl qual i t y() to accessinformation about the quality of the
solution.

0O Froman! | oCpl ex object, solution information can be queried as for any other problem
type using the get Val ues() and similar methods. Also, method get Qual i ty() works
the same way for QPs as for any other problem type.

Tuning QP Performance

Aswe mentioned, the default settings of the parameters controlling the ILOG CPLEX
Barrier Optimizer are appropriate for most QPs. However, if you need to experiment with
those settings to tune performance for your particular problem, we recommend that you
review Tuning Barrier Optimizer Performance on page 140, where we explain those
parameters in the context of linear optimization.

ILOG CPLEX 7.5 — USER’'S MANUAL 245

EXAMPLE: CREATING A QP, OPTIMIZING, FINDING A SOLUTION

Diagnosing QP Infeasibility

If the ILOG CPLEX Barrier Optimizer reports that your QP is primal infeasible, then you
can ask ILOG CPLEX torelax the QP toitslinear version with the Q matrix set to 0.

To change the problem type:
O Inthe Interactive Optimizer, use the command change probl em zer oed_gp.
0 From the Callable Library, use the routine CPXchgpr obt ype()

You can then solve the relaxed linear version by means of alLOG CPLEX simplex
optimizer, such as primal simplex or dual simplex. Then you can apply the ILOG CPLEX
infeasibility finder to that relaxed solution, with its associated, original QP information, to
help you diagnose the source of the infeasibility. (Diagnosing LP Infeasibility on page 112
explains how to use the ILOG CPLEX infeasibility finder following a simplex optimizer.)

Since | | oCpl ex handles problem types transparently, the way to diagnose an infeasible
model isdlightly different. Since infeasibility does not depend on the objective function, you
start by removing the objective extractable from the extracted model. This way, the model
seen by thecpl ex object isan LPwith a0 objective and the LP 1S finder can be applied. To
get the original model back, simply add the objective back to the model.

Example: Creating a QP, Optimizing, Finding a Solution

This example shows you how to build and solve a QP. The problem being created and solved
is:

Maximize
Xg ot 2+ 3 - 05 (3 + 227 + 11x2 - 12X - 23%Xy)

subject to
-Xq + X + X3 < 20
X1 - 33X, + x3 < 30

with these bounds

0 < x4 < 40
0 < X2 < 4o
0 < X3 < 4o

Example: ilogpexl.cpp

This exampleisamost identical toi | ol pex1. cpp with only function popul at ebyr owto
create the model. Also, this function differs only in the creation of the objective fromits

246 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

i | ol pex1. cpp counterpart. Here the objective function is created and added to the model
likethis:
model . add(Il oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[?2]
- 12*x[0] *x[1] - 23*x[1]*x[2])));
In general, any expression built of basic operations+, -, *,/ constant, and brackets’() ' that
amounts to a quadratic and optional linear term can be used for building QP objective
function. Note that the expressions of the objective or any constraint of the model must not
contain| | oPi ecew sel i near when aQP objectiveis specified, in order for I | oCpl ex to
be able to process the model.

Complete Program: ilogpex1.cpp
The complete program, i | ogpex1. cpp, appears here or online in the standard distribution.

#i ncl ude <ilcplex/ilocplex. h>
| LOSTLBEG N

Buiwweiboid

static void
popul at ebyr ow (11 oModel nodel, |loNunvVarArray var, |loRangeArray con);

2
g
=)
>
(o]
QO
(=
<)
o
=
QD
=
o

i nt
nmain (int argc, char **argv)

Il oEnv env;

try {
Il oMbdel nodel (env);
I'l oNunVar Array var(env);
I'l oRangeArray con(env);

popul at ebyrow (nodel, var, con);

I'l oCpl ex cpl ex(nodel);

// Qptimze the problemand obtain solution.
if (!cplex.solve()) {

env.error() << “Failed to optimze LP" << endl;
throw-1);

Il oNumArray val s(env);

env.out() << “Solution status = “ << cplex.getStatus() << endl;
env.out() << “Solution value =*“ << cplex.getbjValue() << endl;
cpl ex. get Val ues(val s, var);

env.out() << “Val ues =" << vals << endl;

cpl ex. get Sl acks(val s, con);

env.out() << “Slacks =" << vals << endl;

cpl ex. get Dual s(val s, con);

env.out() << “Duals =" << vals << endl;

cpl ex. get ReducedCost s(val s, var);

env.out() << “Reduced Costs = “ << vals << endl;

cpl ex. export Model (“qpex1.1p”);

ILOG CPLEX 7.5 — USER’'S MANUAL 247

EXAMPLE: CREATING A QP, OPTIMIZING, FINDING A SOLUTION

catch (Il oException& e) {

cerr << “Concert exception caught: “ << e << endl;
}
catch (...) {
cerr << “Unknown exception caught” << endl;
}
env. end();
return O;

} // END main

// To populate by row, we first create the variables, and then use themto
I/ create the range constraints and objective. The nodel we create is:

I/

11 Maxi m ze

11 obj: x1 + 2 x2 + 3 x3

11 - 0.5 (33*x1*x1 + 22*x2*x2 + 11*x3*x3
/1 - 12*x1*x2 - 23*x2*x3)
/1 Subj ect To

11 cl: - x1 +x2 + x3 <= 20

/1 c2: x1 - 3 x2 + x3 <= 30

11 Bounds

I 0 <= x1 <= 40

I/ End

static void
popul at ebyrow (11 oMddel nodel, IloNunVarArray x, |l oRangeArray c)

I'l oEnv env = nodel . get Env();

x.add(!l oNunVar (env, 0.0, 40.0));
x. add(1l oNunVar (env));
x. add(1l oNunVar (env));
nmodel . add(|| oMaxi m ze(env, x[0] + 2 * x[1] + 3 * x[2]
- 0.5 * (33*x[0]*x[0] + 22*x[1]*x[1] + 11*x[2]*x[2]

- 12*x[0] *x[1] -
23*x[1]*x[2])));
c.add(- x[0] + x[1] + x[2] <= 20);
c. add(x[0] - 3 * x[1] + x[2] <= 30);
nmodel . add(c);

} // END popul at ebyr ow

Example: gpex1.c

Intheroutineset pr obl endat a() , there are parameters for gmat beg, gmat cnt ,

gmat i nd, and grmat val to fill the quadratic coefficient matrix. The Callable Library routine
CPXcopyquad() copiesthisdatainto the problem object created by the Callable Library
routine CPXcr eat epr ob() .

In this example, the problem is a maximization, so we handle that fact by specifying the
objective sense of CPX_MAX.

248 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

The off-diagonal termsin the matrix Q are one-half the value of the terms x;x,, and XXz as
they appear in the algebraic form of the example.

Instead of calling CPXI popt () to find a solution aswe do for the linear programming
problemin| pex1. c, thistime we call CPXbar opt () to optimize this quadratic
programming problem.

Complete Program: gpex1.c
The complete program, gpex1. c, appears here or online in the standard distribution.

#i ncl ude <il cpl ex/cpl ex. h>
#i ncl ude <stdlib. h>

/* Bring in the declarations for the string functions */
#i ncl ude <string. h>
/* Include declaration for function at end of program */

#i fndef CPX_PROTOTYPE_M N

Buiwweiboid

static int
set probl endata (char **probnanme_p, int *nuntols_p, int *nunrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **matind_p, double **natval _p, double **Ib_p,
double **ub_p, int **gmatbeg_p, int **gmatcnt_p,
int **qmatind_p, double **qmatval _p);

2
g
=)
>
(o]
QO
(=
<)
o
=
QD
=
o

static void
free_and_null (char **ptr);
#el se

static int
set probl endata ();

static void
free_and_null ();

#endi f

/* The problemwe are optimzing will have 2 rows, 3 col ums,
6 nonzeros, and 7 nonzeros in the quadratic coefficient matrix. */

#defi ne NUVROAS
#defi ne NUMCOLS
#defi ne NUWMNZ
#defi ne NUMQNZ

#i f ndef CPX_PROTOTYPE_M N
int

mai n (void)

#el se

int

main ()

~No wN

ILOG CPLEX 7.5 — USER’'S MANUAL 249

EXAMPLE:

250

CREATING A QP, OPTIMIZING, FINDING A SOLUTION

#endi f

/* Declare pointers for the variables and arrays that wll

the data which define the LP problem The setprobl endat a()
al | ocates space for the problemdata. */

char *probnane = NULL;
int nuncol s;

int nunT ows;

int obj sen;

double *obj = NULL;
doubl e *rhs = NULL;
char *sense = NULL;
int *mat beg = NULL;
int *matcnt = NULL;
int *matind = NULL;
double *matval = NULL;
doubl e *I b = NULL;
double *ub = NULL;

int *gmat beg = NULL;
i nt *qmatcnt = NULL;
int *gqmatind = NULL;
double *qgmatval = NULL;

contain

routine

/* Declare and al |l ocate space for the variables and arrays where we

will store the optinization results including the status,
val ues, row slacks and vari abl e

val ue, vari abl e val ues,

reduced costs.

int sol st at;
doubl e objval;

*

/

double x[NUMOCLS];
doubl e pi [NUMROWE] ;
doubl e sl ack[NUMROWE] ;
double dj [NUMOOLS];

CPXENVpt r env = NULL;
CPXLPpt r Ip = NULL;
int st at us;

int i, j;

int cur _nunr ows,

dual

cur _nuntol s;

/* Initialize the CPLEX environnent */

env = CPXopenCPLEX (&status);

/* 1f an error occurs,

failure. A call

the error message.

to CPXgeterrorstring will produce the text

so the only way to see the cause of the error is to use

CPXgeterrorstring.

For other CPLEX routines,

be seen if the CPX _PARAM SCRIND indicator is set to CPX ON

if (env == NULL) {
char errnsg[1024];
fprintf (stderr,
CPXgeterrorstring (env,

“Coul d not open CPLEX environnment.\n");
status, errnsg);

ILOG CPLEX 7.5

USER'S MANUAL

obj ective

the status val ue indicates the reason for

of

Not e that CPXopenCPLEX produces no out put,

the errors will

*/

<functionhead>

fprintf (stderr, “%”, errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QN);
if (status) {
fprintf (stderr,
“Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;
}

/* Fill in the data for the problem */

status = setprobl endata (&probname, &nuntols, &nunrows, &objsen, &obj,
& hs, &sense, &matbeg, &matcnt, &matind,
&matval, & b, &ub, &gmatbeg, &gnatcnt,
&ymati nd, &gnatval);
if (status) {
fprintf (stderr, “Failed to build problemdata arrays.\n");
got 0 TERM NATE;

Buiwweiboid

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

/* Create the problem */
I p = CPXcreateprob (env, &status, probnane);

/* A returned pointer of NULL may nean that not enough nenory
was available or there was some other problem In the case of
failure, an error nmessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. */

if (Ip==NJL) {
fprintf (stderr, “Failed to create problem\n”);
got o TERM NATE;

/* Now copy the LP part of the problemdata into the Ip */

status = CPXcopylp (env, Ip, nuntols, nunrows, objsen, obj, rhs,
sense, matbeg, matcnt, matind, natval,
I'b, ub, NULL);

if (status) {
fprintf (stderr, “Failed to copy problemdata.\n");
got o TERM NATE;

}

status = CPXcopyquad (env, |p, qmatbeg, gmatcnt, qmatind, gmatval);
if (status) {

fprintf (stderr, “Failed to copy quadratic matrix.\n");

got o TERM NATE;
}

/* Qptimze the problemand obtain solution. */

ILOG CPLEX 7.5 — USER’'S MANUAL 251

EXAMPLE:

252

CREATING A QP, OPTIMIZING, FINDING A SOLUTION

status = CPXbaropt (env, Ip);

if (status) {
fprintf (stderr, “Failed to optimze Q.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, &solstat, &objval, x, pi, slack, dj);
if (status) {

fprintf (stderr, “Failed to obtain solution.\n");

got o TERM NATE;

/* Wite the output to the screen. */

printf (“\nSolution status = %\ n", solstat);
printf (“Solution value = %\n\n”, objval);

/* The size of the problemshould be obtained by aski ng CPLEX what
the actual size is, rather than using what was passed to CPXcopyl p.
cur_nunrows and cur_nuntols store the current nunber of rows and
colums, respectively. */

cur_nunrows = CPXget nuntrows (env, |p);
cur_nuntol s = CPXget nuntol s (env, |p);
for (i =0; i < cur_nunrows; i++) {
printf (“Row %l: Slack = %d0f Pi = 9%40f\n", i, slack[i], pi[i]);

for (j =0; j < cur_nuncols; j++) {
printf (“Colum % : Value = %40f Reduced cost = %40f\n",
} i x[il, dilil);

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, Ip, “qgpexl.lp”, NULL);

if (status) {
fprintf (stderr, “Failed to wite LP to disk.\n");
got o TERM NATE;

}

TERM NATE:

/* Free up the problemas allocated by CPXcreateprob, if necessary */
if (Ip!=NJL) {
status = CPXfreeprob (env, &p);

if (status) {
fprintf (stderr, “CPXfreeprob failed, error code %l.\n", status);

}
/* Free up the CPLEX environnent, if necessary */

if (env != NULL) {
status = CPXcl o0seCPLEX (&env);

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX_PARAM SCRIND indicator is set to CPX_ ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environment.\n");
CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “%”, errmsg);

}

/* Free up the problemdata arrays, if necessary. */

free_and_nul |
free_and_nul |
free_and_nul |
free_and_nul |
free_and_nul |

((char **) &probnane);
((char **) &obj);
((char **) &rhs);
((char **) &sense);
((char **) &nmatbeg);
free_and_null ((char **) &matcnt);
free_and_null ((char **) &matind);
free_and_null ((char **) &matval);

((

((

((

((

((

((

Buiwweiboid

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

free_and_nul | char **) & b);
free_and_nul | char **) &ub);
free_and_nul | char **) &qgnat beg);
free_and_nul | char **) &ymatcnt);
free_and_nul | char **) &gnatind);
free_and_nul | char **) &gmatval);

return (status);

} /* END main */

/* This function fills in the data structures for the quadratic program

Maxi m ze
obj: x1 + 2 x2 + 3 x3
- 0.5 (33x1*x1 + 22*x2*x2 + 11*x3*x3
- 12*x1*x2 - 23*x2*x3)
Subj ect To
cl: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
0 <= x1 <= 40
End
*/

#i f ndef CPX_PROTOTYPE_M N

static int

set probl endata (char **probnane_p, int *nuntols_p, int *nunrows_p,
int *objsen_p, double **obj_p, double **rhs_p,
char **sense_p, int **matbeg_p, int **matcnt_p,
int **natind_p, double **natval _p, double **Ib_p,
doubl e **ub_p, int **qnatbeg_p, int **qmatcnt_p,

ILOG CPLEX 7.5 — USER’'S MANUAL 253

EXAMPLE: CREATING A QP, OPTIMIZING, FINDING A SOLUTION

int **qmatind_p, double **qmatval _p)

#el se

static int

set probl endata (probnanme_p, nuntol s_p, nunrows_p, objsen_p, obj_p,
rhs_p, sense_p, matbeg_p, matcnt_p, matind_p, natval _p,
I b_p, ub_p, gmatbeg_p, gnatcnt_p, gmatind_p, qnatval _p)

char **pr obnanme_p;
int *nuncol s_p;
int *nunT ows_p;
int *obj sen_p;

doubl e **obj _p;
double **rhs_p;

char **sense_p;

int **mat beg_p;
i nt **mat cnt _p;
int **mat i nd_p;

doubl e **matval _p;
double **Ib_p;
double **ub_p;

int **qmat beg_p;
i nt **qmat cnt _p;
int **qmat i nd_p;
doubl e **qgmatval _p;
#endi f
{
char *zprobnane = NULL; /* Probl em nane <= 16 characters */

doubl e *zobj = NULL;
doubl e *zrhs = NULL;

char *zsense = NULL;
int *zmat beg = NULL;
int *zmatcnt = NULL;
int *zmatind =

NULL;
doubl e *zmat val NULL;
doubl e *zIb = NULL;
doubl e *zub = NULL;

int *zgmat beg = NULL;

i nt *zgmatcnt = NULL;

int *zgmatind = NULL;

double *zqgmatval = NULL;

int status = O;

zprobnane = (char *) malloc (16 * sizeof(char));

zobj = (double *) nalloc (NUMCOLS * sizeof (double));
zrhs = (double *) nalloc (NUVROAS * sizeof (double));
zsense = (char *) nmalloc (NUMROAS * sizeof (char));
zmatbeg = (int *) malloc (NUMOCLS * sizeof(int));

zmat cnt = (int *) malloc (NUMOCLS * sizeof(int));
zmatind = (int *) malloc (NUMNZ * sizeof (int));

zmat val = (double *) nalloc (NUMNZ * sizeof (double));
zl b = (double *) nalloc (NUMCOLS * sizeof (double));
zub = (double *) nalloc (NUMCOLS * sizeof (double));
zqmatbeg = (int *) malloc (NUMOCLS * sizeof(int));
zgmatent = (int *) malloc (NUMOCLS * sizeof (int));
zgmatind = (int *) malloc (NUMNZ * sizeof(int));
zgmatval = (double *) malloc (NUMXNZ * sizeof (double));
if (zprobname == NULL || zobj == NULL ||

zrhs == NULL || zsense == NULL ||

254 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

zmatbeg == NULL || zmatcnt == NULL ||

zmatind == NULL || zmatval == NULL ||

zlb == NULL || zub == NULL ||

zgmatbeg == NULL || zgmatcnt == NULL ||

zgmatind == NULL || zgmatval == NULL) {
status = 1;

got o TERM NATE;
}

strcpy (zprobname, “exanple”);

/* The code is fornatted to nake a visual correspondence

between the mathematical |inear programand the specific data
itens. */
zobj[0] = 1.0; zobj[1] =2.0; zobj[2] = 3.0; 2
'U —
-~ <
zmat beg[0] = O; zmatbeg[1] = 2; zmat beg[2] = 4; ‘8 =4
zmatcnt[0] = 2; zmatent[1] = 2; zmatcent[2] = 2; = «Q
QO
zmatind[0] = O; zmatind[2] = O; zmatind[4] = O; zsense[0] = g ;%
zmatval [0] = -1.0; zmatval[2] = 1.0; zmatval[4] = 1.0; zrhs[0] = 52
Q
zmatind[1] = 1; zmatind[3] = 1; zmatind[5] = 1; zsense[1] = g
zmatval [1] = 1.0; zmatval [3] = -3.0; zmatval[5] = 1.0; zrhs[1] =
zIb[0] = 0.0; zIb[1]] = 0.0; zIb[2] = 0.0;
zub[0] = 40.0; zub[1] = CPX_I NFBOUND; zub[2] = CPX_| NFBOUND;

/* Now set up the Q matrix. Note that we set the val ues know ng that
* we’re doing a maximzation problem so negative values go on

* the diagonal. Al so, the off diagonal terns are each repeated,

* by taking the algebraic termand dividing by 2 */

2; zgmat beg[2]

zgqmat beg[0] = O; zgmat beg[1]
1 =2 3; zgmat cnt [2]

zgqnatcnt [O zqnmat cnt [1]

5;
2,

/* Matrix is set up visually. Note that the x1*x3 termis 0, and is
* left out of the matrix. */

zgqmatind[0] = O; zqmatind[2] = O;

zgmatval [0] = -33.0; zqmatval[2] = 6.0;

zgnatind[1] = 1; zgnatind[3] = 1; zgnmatind[5] = 1;

zqmatval [1] = 6.0; zgmatval [3] = -22.0; zgmatval [5] = 11.5;
zqmatind[4] = 2; zgmatind[6] = 2;
zqmatval [4] = 11.5; zqmatval[6] = -11.0

TERM NATE:

if (status) {
free_and_null ((char **) &zprobnane);
free_and_null ((char **) &zobj);
free_and_null ((char **) &zrhs);
free_and_null ((char **) &zsense);
free_and_null ((char **) &zmatbeg);
free_and_null ((char **) &matcnt);

ILOG CPLEX 7.5 — USER’'S MANUAL 255

EXAMPLE: CREATING A QP, OPTIMIZING, FINDING A SOLUTION

free_and_nul |
free_and_nul |

((char **) & matind);

((char **) &matval);
free_and_null ((char **) &zlb);
free_and_null ((char **) &zub);
free_and_null ((char **) &z qgmatbeg);
free_and_null ((char **) &qgmatcnt);
free_and_null ((char **) & qgmatind);
free_and_null ((char **) &qgmatval);

el se {
*nuntols_p = NUMCOLS;
*nunr ows_p = NUMROVG;
obj sen_p = CPX_MAX; / The problemis naximzation */
*probnane_p = zprobnane;
*obj _p = zobj;
*rhs_p = zrhs;
*sense_p = zsense;
*mat beg_p = zmat beg;
*matcnt _p = zmatcnt;
*matind_p = zmati nd;
*matval _p = zmatval ;
*Ib_p = zl b;
*ub_p = zub;
*qmat beg_p = zqnat beg;
*qmatcnt _p = zqmatcnt ;
*qmatind_p = zqgnatind;
*gqmatval _p = zqmatval;

return (status);

} /* END setprobl endata */

/* This sinple routine frees up the pointer *ptr, and sets *ptr to NULL */

#i f ndef CPX_PROTOTYPE_M N
static void

free_and_null (char **ptr)
#el se

static void

free_and_null (ptr)

char **ptr;

#endi f

if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL,

}
} /* END free_and_null */

256 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Example: Reading a QP from a File

This example shows you how to optimize a QP with routines from the ILOG CPLEX
Callable Library when the problem datais stored in afile. The example derives from
| pex2. ¢, described in the manual ILOG CPLEX Getting Started.

This example differsfrom | pex2. ¢ initscommand line. In gpex2. c, thereis no need of a
command-line argument to indicate which optimizer to call, as only the ILOG CPLEX
Barrier Optimizer is used to solve QPs. In other words, this example always calls the routine
CPXbar opt () .

This example also differsin the way it shows a solution. Since no basis is available for the
QP, this example calls the routine CPXget x() to get asolution. It is, however, possible to
call CPXsol uti on() to get aprima and dua solution to the problem.

Like other applications based on the ILOG CPLEX Callable Library, this one begins with
callsto CPXopenCPLEX() toinitialize the ILOG CPLEX environment and to

CPXcr eat eprob() to create the problem object. Before it ends, it frees the problem object
with acall to CPXf r eepr ob() , and it frees the environment with a call to

CPXcl 0seCPLEX() .

Buiwweiboid

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

Complete Program: gpex2.c
The complete program, qpex2. c, appears here or online in the standard distribution.
#i ncl ude <il cpl ex/cpl ex. h>

/* Bring in the declarations for the string and character functions
and mal l oc */

#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
/* Include declarations for functions in this program*/
#i f ndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr),
usage (char *prognane);
#el se
static void
free_and_null (),
usage O;

#endi f

#i fndef CPX_PROTOTYPE_M N

ILOG CPLEX 7.5 — USER’'S MANUAL 257

EXAMPLE:

258

READING A QP FROM A FILE

i nt
main (int argc, char *argv[])
#el se

i nt

nmain (argc, argv)
int ar gc;

char *argv[];
#endi f

/* Declare and allocate space for the variables and arrays where we
results including the status, objective
val ue and variabl e val ues. */

wll store the optim zation

int sol stat;

doubl e objval;

doubl e *x = NULL;
CPXENVpt r env = NULL;
CPXLPpt r Ip = NULL;
int st at us;

int i

int cur _nuntol s;

/* Check the command |ine argunents */

if (argc!=2) {
usage (argv[O0]);
got o TERM NATE;
}

/* Initialize the CPLEX environnent */

env = CPXopenCPLEX (&status);

/* If an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring wll
Not e that CPXopenCPLEX produces no out put,

the error nessage.

so the only way to see the cause of the error is to use

CPXgeterrorstring.

For other CPLEX routines,

be seen if the CPX_PARAM SCRIND indicator is set to CPX_ON

if (env == NULL) {
char errmsg[1024];
fprintf (stderr, “Could not

open CPLEX environment.\n");

CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “%”, errmsg);

got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env,
if (status '=0) {
fprintf (stderr,

CPX_PARAM SCRI ND, CPX_ON);

“Failure to turn on screen indicator, error %l.\n",

got o TERM NATE;

ILOG CPLEX 7.5 —

USER'S MANUAL

the errors will

produce the text of

*/

status);

<functionhead>

/* Create the problem using the filename as the probl em name */
Ip = CPXcreateprob (env, &status, argv[1]);

/* A returned pointer of NULL may nean that not enough nenory
was available or there was sone other problem |In the case of
failure, an error nmessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the parameter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. Note that npbst CPLEX routines return
an error code to indicate the reason for failure. */

if (Ip==NJL) {
fprintf (stderr, “Failed to create LP.\n");
got o TERM NATE;

}

/* Now read the file, and copy the data into the created Ip */

status = CPXreadcopyprob (env, |p, argv[1], NULL);

if (status) {
fprintf (stderr, “Failed to read and copy the problemdata.\n");
got o TERM NATE;

Buiwweiboid

}

if (CPXgetprobtype (env, Ip) != CPXPROB_QP) {
fprintf (stderr, “File does not contain quadratic data. Exiting.\n");
got o TERM NATE;

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

}

/* Optimze the problemand obtain solution. */
status = CPXbaropt (env, Ip);
if (status) {

fprintf (stderr, “Failed to optimze QP.\n");

got o TERM NATE;
}

sol stat = CPXgetstat (env, Ip);
printf (“Solution status %l.\n", solstat);

status = CPXgetobjval (env, |p, &objval);
if (status) {
fprintf (stderr,”Failed to obtain objective value.\n");
got o TERM NATE;
}
printf (“Cbjective value % 10g\n”, objval);
/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is. cur_nuntols stores the current nunber
of colums. */
cur_nuntol s = CPXget nuntol s (env, |p);

/* Alocate space for solution */

ILOG CPLEX 7.5 — USER’'S MANUAL 259

EXAMPLE:

260

READING A QP FROM A FILE

X

if

}

= (double *) nalloc (cur_nuntol s*sizeof (double));

(x == NULL) {
fprintf (stderr,”No nenmory for basis statuses.\n");
got o TERM NATE;

status = CPXgetx (env, Ip, x, O, cur_nuntols-1);
if (status) {

}
/*

for (j
printf (“Colum %: Value = %7.100\n", j, Xx[j]);

fprintf (stderr, “Failed to obtain solution.\n");
got o TERM NATE;

Wite out the solution */

= 0; j <cur_nuntols; j++) {

TERM NATE:

}

/* Free up the basis and solution */

free_and_null ((char **) &x);

/*

if

/*

}

Free up the problem as allocated by CPXcreat eprob,

(I'p!'=NULL) {

status = CPXfreeprob (env, &p);

if (status) {
fprintf (stderr,

Free up the CPLEX environnent, if necessary */

(env !'= NULL) {
status = CPXcl o0seCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,

so the only way to see the cause of the error is to use

“CPXfreeprob failed, error code %l.\n",

if necessary */

status);

CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (status) {
char errnsg[1024];
fprintf (stderr, “Could not close CPLEX environnent.\n");

CPXgeterrorstring (env, status, errmnsg);
fprintf (stderr, “9%", errmsg);

return (status);

/* END main */

ILOG CPLEX 7.5 — USER’'S MANUAL

/* This sinple routine frees up the pointer *ptr,

#i fndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr)
#el se
static void
free_and_null (ptr)
char **ptr;
#endi f
{
if (*ptr !'= NULL) {
free (*ptr);
*ptr = NULL;

}
} /* END free_and_null */

#i fndef CPX_PROTOTYPE_M N

static void

usage (char *prognane)

#el se

static void

usage (prognane)

char *prognang;

#endi f

{
fprintf (stderr,”Usage:
fprintf (stderr,”
fprintf (stderr,”
fprintf (stderr,”
fprintf (stderr,”

% filenanme\n”,

fprintf (stderr,” Exiting...\n");

} /* END usage */

ILOG CPLEX 7.5 — USER’'S MANUAL

prognane) ;

<functionhead>

and sets *ptr to NULL */

Buiwweiboid

w
=l
<.
=
Q
Q
(=
@
o
=
@
=
o

where filename is a file with extension \n");
MPS, SAV, or LP (lower case is allowed)\n");
Thi s program uses the CPLEX Barrier optimzer\n”);
to optimze quadratic prograns.\n”);

261

EXAMPLE: READING A QP FROM A FILE

262 ILOG CPLEX 7.5 — USER’'S MANUAL

This chapter provides information designed to help you master several important aspects of
ILOG CPLEX. It includes sections on:

O

O
O
O

More About Using ILOG CPLEX

Managing Input & Output

z
_ o
— o
S »
o
92
g
o
>
(@]

Using Query Routines
Using Callbacks

Using Parallel Optimizers

Managing Input & Output

This section tells you about input to and output from ILOG CPLEX. It contains the
following subsections:

O

O
O
O
O

Understanding File Formats

Managing Log Files: the Log File Parameter

Handling Message Channels: the Output-Channel Parameter
Handling Message Channels: Callable Library Routines
Example: Using the Message Handler

ILOG CPLEX 7.5 — USER’'S MANUAL 263

MANAGING INPUT & OUTPUT

Understanding File Formats

The ILOG CPLEX Reference Manual documents the file formats that ILOG CPLEX
supports. Hereis a brief description of these file formats:

0 BASfilesaretext files governed by MPS conventions (that is, they are not binary) for
saving a problem basis.

0 BIN filesare binary files. ILOG CPLEX uses this format when it writes solution files
containing the binary representation of real numbers.

0 DPEistheformat ILOG CPLEX usesto write aproblem in abinary SAV file after the
objective of a problem has been perturbed for use with the dual simplex optimizer.

0 DUA format, governed by MPS conventions, writes the dual formulation of a problem
currently in memory so that the MPS file can later be read back in and the dual
formulation can then be optimized explicitly. Thisfile format is largely obsolete now
since you can use the command set pr epr ocessi ng dual inthe Interactive
Optimizer to tell ILOG CPLEX to solve the dual formulation of an LP automatically.
(You no longer have to tell ILOG CPLEX to write the dual formulation to a DUA file
and then tell ILOG CPLEX to read the file back in and solveit.)

0 EMB istheformat ILOG CPLEX usesto save an embedded network it extracts from a
problem. EMB files are written in MPS format.

O lISistheformat ILOG CPLEX uses to represent irreducible inconsistent sets of
constraints. Finding a Set of Irreducibly Inconsistent Constraints on page 116 and
Example: Writing an 11S-Type File on page 118 explain more about these kinds of files.

0 LP(Linear Programming) isalLOG CPLEX-specific file formatted for entering
problemsin an algebraic, row-oriented form. In other words, LP format allows you to
enter problemsin terms of their constraints. When you enter problems interactively in
the Interactive Optimizer, you are implicitly using LP format. ILOG CPLEX will aso
read infilesin LP format. Working with LP Files on page 266 explains more fully how to
use LP fileswith ILOG CPLEX.

0 MIN format for representing minimum-cost network-flow problems was introduced by
DIMACSin 1991. More information about DIMACS network file formatsis available
viaanonymous ftp fromf t p: // di macs. r ut ger s. edu/ pub/ net f | ow/ gener al -

i nf o/ specs. t ex.

0 MPS (Mathematical Programming System) is an industry-standard, ASClI-text file
format for mathematical programming problems. Besides the industry conventions,
ILOG CPLEX also supports extensions to this format for ILOG CPLEX-specific cases,
such as names of more than eight characters, blank space as delimiters between columns,
etc. Working with MPS Files on page 267 in this manual explains more fully how to use
MPS fileswith ILOG CPLEX.

0 MST isatext format ILOG CPLEX usesto enter a starting solution for aMIP.

264 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

NET isalLOG CPLEX-specific ASCII format for network-flow problems. It isflexible
and supports named nodes and arcs.

ORD isaformat available only if you are licensed to use the ILOG CPLEX MIP
Optimizer. It is used to enter and to save priority orders for branching. It may contain
branching instructions for individual variables.

PPE isthe format ILOG CPLEX usesto write aproblem in abinary SAV file after the
bounds of a problem have been perturbed for use with the primal simplex optimizer.

PRE istheformat ILOG CPLEX usesto write a presolved, reduced problem formulation
to abinary SAV file. Since a presolved problem has been reduced, it will not correspond
to the original problem.

QPisaformat available only if you are licensed to use the ILOG CPLEX Barrier
Optimizer. It contains the coefficients of nonzero coefficientsin the Q matrix of a
guadratic programming problem. You must enter the linear part of that quadratic

programming problem first (by whichever means you choose).

REW isaformat to write a problem in MPS format with disguised row and column
names. This format may be useful, for example, for problems that you consider highly
proprietary.

SAV isalLOG CPLEX-specific binary format for reading and writing problems and
their associated basisinformation. ILOG CPLEX includes the basisin a SAV file only if
the problem currently in memory has been optimized and a basis exists. This format
offers the advantage of being numerically accurate (to the same degree as your platform)
in contrast to text file formats that may lose numerical accuracy. It also hasthe additional
benefit of being efficient with respect to read and write time. However, since a SAV file
is binary, you cannot read nor edit it with your favorite text editor.

SOSisaformat available only if you are licensed to use the ILOG CPLEX MIP
Optimizer. It declares special ordered sets, the set branching order, and weights for each
set member.

TRE isaformat available only if you are licensed to use the ILOG CPLEX MIP
Optimizer. It saves information about progress through the branch & cut tree. It isa
binary format.

z
e
=3
S »
S
92
g
o
>
(@]

TXT filesare ASCI|-text files. ILOG CPLEX uses this format when it writes solution
filesin text.

VEC isaformat available only if you are licensed to use the ILOG CPLEX Barrier
Optimizer. It savesthe solution to a pure barrier optimization prior to crossover (that is, a
nonbasis solution) that can later be read back in and used to initiate crossover. Using
VEC File Format on page 134 explains how to use thisfile format.

ILOG CPLEX 7.5 — USER’'S MANUAL 265

MANAGING

266

INPUT & OUTPUT

Working with LP Files

LP files are row-oriented so you can look at a problem asyou enter it in anaturally and
intuitively algebraic way. However, ILOG CPLEX represents aproblem internally in a
column-ordered format. This difference between the way ILOG CPLEX accepts a problem
in LP format and the way it stores the problem internally may have an impact on memory
use and on the order in which variables are displayed on screen or infiles.

Memory Use and LP Files

Whenever ILOG CPLEX reads afilein LP format, it converts from row-orientation to
column-orientation. The conversion requires memory. On a platform with limited memory,
if there isinsufficient memory to read a given problem in LP format, there may still be
sufficient memory to read the problem in MPS format. Generally, the ILOG CPLEX MPS
file reader will load MPS format files more efficiently than will the LP reader loading LP
format files.

Variable Order and LP Files

AsILOG CPLEX readsan LP format file by rows, it adds columns as it encounters themin
arow. This convention will have an impact on the order in which variables are named and
displayed. For example, consider this problem:

Maximize 2X, + 3X3

subject to
Xy o+t X + X3 < 20
Xp - 3 + X3 < 30

with these bounds

0 < X1 < 40
0 < X < o
0 < X3 < +00

Since ILOG CPLEX reads the objective function asthe first row, the two columns appearing
there will become the first two variables. When the problem is displayed or rewritten into
another LP file, the variables there will appear in a different order within each row. In this
example, if you execute the command di spl ay probl em al | , you will seethis:

Maxi m ze

obj: 2 x2 + 3 x3

Subj ect To

cl: x2 + x3 - x1 <= 20

c2: - 3 x2 +x3 + x1 <= 30
Bounds

0 <= x1 <= 40

Al other variables are >= 0.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

That is, x1 appears at the end of each constraint in which it has a nonzero coefficient. This
re-ordering does not affect the optimal value of the problem, but you may find it
disconcerting when you first encounter it.

Working with MPS Files

The ILOG CPLEX MPSfilereader is highly compatible with existing modeling systems.
Thereis generaly no need to modify existing problem files to use them with ILOG CPLEX.
However, there are ILOG CPLEX-specific conventions that may be useful for you to know.
This section explains those conventions, and the ILOG CPLEX Reference Manual
documents M PS format more fully.

Free Rows in MPS Files

Inan MPSfile, ILOG CPLEX selectsthefirst free row or N-type row as the objective
function, and it discards all subsegquent free rows unlessit isinstructed otherwise by an
OBJNANME section in thefile. To retain free rowsin an MPSfile, reformulate them as equality
rows with an additional free variable. For example, replace the freerow x + y by the
equalityrowx + y - s = 0wheres isfree. Generally, the ILOG CPLEX presolver will
remove rows like that before optimization so they will have no impact on performance.

Ranged Rows in MPS Files

To handle ranged rows, ILOG CPLEX introduces a temporary range variable, creates
appropriate bounds for this variable, and changes the sense of the row to an equality (that is,
MPS type EQ). The added range variables will have the same name as the ranged row with
the characters Ry prefixed. When ILOG CPLEX generates solution reports, it removes these
temporary range variables from the constraint matrix.

Extra Rim Vectors in MPS Files

The MPS format allows multiple right-hand sides (RHS), multiple bounds, and multiple
range vectors. It aso allows extrafree rows. Together, these features are known as extra rim
vectors. By default, the ILOG CPLEX MPS reader selects the first RHS, bound, and range
definitionsthat it finds. The first free row (that is, N-type row) becomes the objective
function, and the remaining free rows are discarded. The extrarim data are also discarded.

z
e
— o
S »
S
92
g
o
>
(@]

Naming Conventions in MPS Files

ILOG CPLEX accepts any noncontrol-character within a name. However, ILOG CPLEX
recognizes blanks (that is, space) as delimiters, so you must avoid them in names. You
should also avoid $ (dollar sign) and * (asterisk) as charactersin names because they
normally indicate acomment within a data record.

Error Checking in MPS Files

Fairly common problemsin MPS files include split vectors, unnamed columns, and
duplicated names. ILOG CPLEX checks for these conditions and reports them. If repeated
rows or columns occur in an MPSfile, ILOG CPLEX reports an error and stops reading the
file. You can then edit the MPS file to correct the source of the problem.

ILOG CPLEX 7.5 — USER’'S MANUAL 267

MANAGING

268

INPUT & OUTPUT

Saving Modified MPS Files

You may often want to save a modified MPSfile for later use. To that end, ILOG CPLEX
will write out a problem exactly asit appearsin memory. All your revisions of that problem
will appear in the new file. One potential areafor confusion occurs when amaximization
problem is saved. Since MPS conventionally represents all problems as minimizations,
ILOG CPLEX reverses the sign of the objective-function coefficients when it writes a
maximization problem to an MPS file. When you read and optimize this new problem, the
values of the variables will be valid for the original model. However, since the problem has
been converted from a maximization to the equival ent minimization, the objective, dual, and
reduced-cost values will have reversed signs.

Converting File Formats

MPS, Mathematical Programming System, an industry-standard format based on ASCI|-text
has historically been restricted to a fixed format in which data fields were limited to eight
characters and specific fields had to appear in specific columns on specific lines.

ILOG CPLEX supports extensions to MPS that allow more descriptive names (that is, more
than eight characters), greater accuracy for numerical data, and greater flexibility in data
positions.

Most MPSfilesin fixed format conform to the ILOG CPLEX extensions and thus can be
read by the ILOG CPLEX MPS reader without error. However, the ILOG CPLEX MPS
reader will not accept the following conventions:

0 blank space within a name;
0 blank lines;

0 missing fields (such as bound names and right-hand side names);

0 extraneous, uncommented characters,

O blanksin lieu of repeated name fields, such as bound vector names and right-hand side
names.

You can convert fixed-format MPS files that contain those conventions into acceptable
ILOG CPLEX-extended MPSfiles. To do so, usethe convert utility supplied in the
standard distribution of ILOG CPLEX. Theconvert utility removes unreadable features
from fixed-format MPS, REW, BAS, SOS, and ORD files. It runs from the operating system
prompt of your platform. Here isthe syntax of the convert utility:

convert -option inputfilenane outputfil enane

Your command must include an input-file name and an output-file name; they must be
different from each other. The options, summarized in Table 8.1, indicate the file type. You

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

may specify only one option. If you do not specify an option, ILOG CPLEX attempts to
deduce the file type from the extension in the file name.

Table8.1 Optionsfor the convert Utility and Corresponding File Extensions

Option |File type File extension
-m MPS (Mathematical Programming System) . nmps
-r REV (MIPs revise file) .rev
-s SOS (Special Ordered Set) . S0S
-b BAS (basis file according to MPS conventions) |. bas
-0 ORD (priority orders) .ord

Managing Log Files: the Log File Parameter

AsILOG CPLEX isworking, it records messages to alog file. By default, it creates the log
filein the directory whereit is running, and it namesthefilecpl ex. | og. If such afile

aready exists, ILOG CPLEX adds aline indicating the current time and date and then
appends new information to the end of the existing file. That is, it does not overwrite thefile,

and it distinguishes different sessions within the log file.

You can locate the log file where you like, and you can rename it. Some users, for example,
liketo create a specifically named log file for each session. Also you can closethelog filein
case you do not want ILOG CPLEX to record messages to its default log file.

The following sections show you the commands for creating, renaming, relocating, and

closing alogfile.

Creating, Renaming, Relocating Log Files

z
e
— o
S »
S
92
g
o
>
(@]

0O Inthe Interactive Optimizer, use the command set | ogfil e fil enane, substituting
the name you prefer for the log file. In other words, use this command to rename or
relocate the default log file.

0 From the Callable Library, first use the routine CPXf open() to open the target file; then
use theroutine CPXset | ogfi | e(). The ILOG CPLEX Reference Manual documents
both routines.

Closing Log Files

0O If you do not want ILOG CPLEX to record messagesin alog file, then you can close the
log file from the Interactive Optimizer with the command set | ogfile *.

ILOG CPLEX 7.5 — USER’'S MANUAL

269

MANAGING

270

INPUT & OUTPUT

0 By default, routines from the Callable Library do not write to alog file. However, if you
want to close alog file that you created by acall to CPXset | ogfi | e(), call
CPXset | ogfi | e() again, and thistime, passaNULL pointer asits second argument.

Handling Message Channels: the Output-Channel Parameter

Besides the log-file parameter, ILOG CPLEX offers you output-channel parametersto give
you finer control over when and where messages appear in the I nteractive Optimizer.
Output-channel parameters indicate whether output should or should not appear on screen.
They also alow you to designate log files for message channels. The output-channel
parameters do not affect the log-file parameter, so it is customary to use the command

set |ogfil e beforethecommandset output channel val uel val ue2.

In the output-channel command, you can specify achannel : di al og, errors, | ogonl y,
resul ts, andwar ni ngs. Table 8.2 summarizes the information carried over each channel.

Table 8.2 Options for the Output-Channel Command

Channel Information

di al og messages related to interactive use; e.g., prompts, help messages, greetings

errors messages to inform user that operation could not be performed and why

| ogonly message to record only in file (not on screen) e.g., multiline messages

results information explicitly requested by user; state, change, progress information

war ni ngs messages to inform user request was performed but unexpected condition
may result

The option val ue2 lets you specify afile nameto redirect output from a channel.

Also in that command, val uel allows you to turn on or off output to the screen. When

val uel isy, output isdirected to the screen; when itsvalueisn, output is not directed to the
screen. Table 8.3 summarizes which channels direct output to the screen by default. If a
channel directs output to the screen by default, you can leave val uel blank to get the same
effect asset out put channel .

Table 8.3 Channels Directing Output to Screen or to a File

Channel Default valuel |Meaning

di al og y blank directs output to screen but not to a file

errors y blank directs output to screen and to a file

| ogonly n blank directs output only to a file, not to screen
ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Table 8.3 Channels Directing Output to Screen or to a File

Channel Default valuel |Meaning
results y blank directs output to screen and to a file
war ni ngs y blank directs output to screen and to a file

Handling Message Channels: Callable Library Routines

ILOG CPLEX defines several message channels for flexible control over message output:
O cpxresul ts for messages containing status and progress information;

O cpxerror for messages issued when atask cannot be compl eted;

O cpxwar ni ng for messages issued when anonfatal difficulty is encountered; or when an
action taken may have side-effects; or when an assumption made may have side-effects;

O cpxl og for messages containing information that would not conventionally be displayed
on screen but could be useful in alog file.

Output messages flow through message channels to destinations. Message channels are
associated with destinations through their destination list. Messages from routines of the
ILOG CPLEX Callable Library are assigned internally to one of those predefined channels.
Those default channels are C pointers to ILOG CPLEX objects; they are initialized by
CPXopenCPLEX() ; they are not global variables. Your application accesses these objects by
calling theroutine CPXget channel s() . You can use these predefined message channelsfor
your own application messages. You can a so define new channels.

z
e
— o
S »
S
92
g
o
>
(@]

An application using routines from the ILOG CPLEX Callable Library produces no output
messages unless the application specifies message handling instructions through one or
more calls to the message handling routines of the Callable Library. In other words, the
destination list of each channel isinitially empty.

M essages from multiple channels may be sent to one destination. All predefined

ILOG CPLEX channels can be directed to asingle file by acall to CPXset | ogfil e().
Similarly, al predefined ILOG CPLEX channels except cpx! og can be directed to the
screen by CPX_PARAM_SCRI ND. For afiner level of control, or to define destinations for
application-specific messages, use the following message handling routines, all documented
inthe ILOG CPLEX Reference Manual:

0O CPxmsg() setslogfile for predefined ILOG CPLEX channels;
O CPXfl ushchannel () flushesachannd to its associated destination;

0 CPXdi sconnect channel () flushesachannel and clearsits destination list;

ILOG CPLEX 7.5 — USER’'S MANUAL 271

MANAGING

272

INPUT & OUTPUT

00 CPXdel channel () flushesachannel, clearsits destination list, frees memory for that
channel;

00 CPXaddchannel () addsachannel;

00 CPXaddf pdest () addsadestination fileto the list of destinations associated with a
channel;

[0 CPXdel f pdest () deetesadestination from the destination list of a channel;
00 CPXaddf uncdest () adds a destination function to a channel;
[0 CPXdel funcdest () deletesadestination function to achannel;

Once channel destinations are established, messages can be sent to multiple destinations by
asingle call to a message-handling routine.

User-written
application CPXaddf pdest | Destination File(s)|
CPXaddchannel CPXdel f pdest)
CPXsg Channel(s)
(CPXdel channe CPXaddf uncdest

| Destination Function(s) |

(CPXdel f uncdest)

Figure8.1 ILOG CPLEX Message Handling Routines

Example: Using the Message Handler

This example shows you how to use the ILOG CPLEX message handler from the Callable
Library. It captures all messages generated by ILOG CPLEX and displays them on screen
along with alabel indicating which channel sent the message. It also creates a user channel
to receive output generated by the program itself. The user channel accepts user-generated
messages, displays them on screen with alabel, and records them in afile without the label.

This example derivesfrom | pex1. ¢, aprogram described in the ILOG CPLEX Getting
Sarted manual. There are afew differences between the two examples:

O Inthisexample, thefunction our msgf unc() —rather than the C functionspri nt f () or
fprintf(stderr, . . .)—managesall output. The program itself or CPXnsg()
from the ILOG CPLEX Callable Library callsour msgf unc() . Infact, CPXnsg() isa
replacement for pri nt f (), alowing a message to appear in more than one place, for
example, both on screen and in afile.

Only after you initialize the ILOG CPLEX environment by calling CPXopenCPLEX()
canyou cal CPxnmsg() . And only after you call CPXget channel s() can you usethe

ILOG CPLEX 7.5 — USER’'S MANUAL

Complete Program: Ipex5.c
The complete program, | pex5. c, appears here or online in the standard distribution.
#i ncl ude <il cpl ex/ cpl ex. h>

/* Bring in the declarations for the string functions */

#i ncl ude <string. h>

<functionhead>

default ILOG CPLEX channels. Therefore, callsto our nsgf unc() print directly any
messages that occur before the program gets the address of cpxer r or (achannel). After
acall to CPXget channel s() getsthe address of cpxerror, and after acall to
CPXaddf uncdest () associates the message function our nsgf unc() with cpxerror,
then error messages are generated by callsto CPXmsg() .

After the TERM NATE: label, any error must be generated with care in case the error
message function has not been set up properly. Thus, our nsgf unc() isalso called
directly to generate any error messages there.

A call to the ILOG CPLEX Callable Library routine CPXaddchannel () initidizesthe
channel our channel . The C library routine f open() opensthefilel pex5. out to
accept solution information. A call the ILOG CPLEX Callable Library routine

CPXaddf pdest () associates that file with that channel. Solution information is also
displayed on screen since our nsgf unc() isassociated with that new channel, too. Thus
in the loops near the end of mai n() , when the solution is printed, only one call to
CPXnsg() sufficesto put the output both on screen and into thefile. A call to

CPXdel channel () deletesour channel .

Although CPXcl oseCPLEX() will automatically delete file- and function-destinations
for channels, we recommend that you call CPXdel f pdest () and CPXdel f uncdest ()
asthe end of your programs.

z
e
— o
S »
S
92
g
o
>
(@]

/* Include declaration for function at end of program */

#i fndef CPX_PROTOTYPE_M N

static int

popul at ebycol um (CPXENVptr env, CPXLPptr |p);

static void CPXPUBLIC

our msgf unc (void *handl e, char *message);

#el se

static int

popul at ebycol um () ;

static void CPXPUBLI C

our nsgf unc 0);

#endi f

ILOG CPLEX 7.5 — USER’'S MANUAL 273

MANAGING

274

INPUT & OUTPUT

/* The problemwe are optimzing will have 2 rows, 3 colums
and 6 nonzeros. */

#defi ne NUVRONB 2
#defi ne NUMCOLS 3
#defi ne NUWNZ 6

#i f ndef CPX_PROTOTYPE_M N
int

mai n (void)

#el se

int

main ()

#endi f

{

char probnane[16]; /* Problemnanme is max 16 characters */

/* Declare and allocate space for the variables and arrays where we
will store the optimzation results including the status, objective
val ue, variabl e val ues, dual values, row slacks and variabl e
reduced costs. */

i nt sol stat;

double objval;

double x[NUMCCLS];
doubl e pi [NUMROWE] ;
doubl e sl ack[NUMROWE] ;
double dj [NUMCOLS];

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

i nt st at us;

int i, g

i nt cur _nunrows, cur_nunctol s;
char errnsg[1024] ;
CPXCHANNELptr cpxerror = NULL;
CPXCHANNELptr cpxwar ni ng = NULL;
CPXCHANNELptr cpxresults = NULL;
CPXCHANNELptr our channel = NULL;
char *errorlabel = "cpxerror";
char *warnl abel = "cpxwarning";
char *resl abel = "cpxresul ts";
char *ourl abel = "Qur Channel ";

CPXFI LEptr fpout = NULL;

/* Initialize the CPLEX environnent */
env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

/* Since the nessage handler is yet to be set up, we'll call our
messagi ng function directly to print out any errors */

if (env == NULL) {
/* The message argunent for ournsgfunc nmust not be a constant,
so copy the nesage to a buffer. */
strcpy (errnsg, "Could not open CPLEX environnent.\n");
ourmsgfunc ("Qur Message", errnsg);
got o TERM NATE;

}

/* Now get the standard channels. |If an error, just call our
nessage function directly. */

status = CPXgetchannels (env, &cpxresults, &cpxwarning, &cpxerror, NULL);
if (status) {

strcpy (errnsg, "Could not get standard channels.\n");

ourmsgfunc ("Qur Message", errnsg);

CPXgeterrorstring (env, status, errnsg);

ourmsgfunc ("Qur Message", errnsg);

got 0o TERM NATE;

}

/* Now set up the error channel first. The |label will be "cpxerror" */

status = CPXaddfuncdest (env, cpxerror, errorlabel, ourmsgfunc);
if (status) {
strcpy (errnsg, "Could not set up error message handler.\n");
ournsgfunc ("Qur Message", errnsg);
CPXgeterrorstring (env, status, errmnsg);
ournsgfunc ("Qur Message", errnsg);

z
e
=3
S »
o
92
g
o
>
(@]

/* Now that we have the error message handl er set up, all CPLEX
generated errors will go through ourmsgfunc. So we don’t have
to use CPXgeterrorstring to deternmine the text of the nessage.
W can al so use CPXnsg to do any other printing. */

status = CPXaddfuncdest (env, cpxwarning, warnlabel, ournsgfunc);

if (status) {
CPXmsg (cpxerror, "Failed to set up handler for cpxwarning.\n");
got o TERM NATE;

}

status = CPXaddfuncdest (env, cpxresults, reslabel, ournsgfunc);

if (status) {
CPXmsg (cpxerror, "Failed to set up handler for cpxresults.\n");
got o TERM NATE;

}

/* Now turn on the iteration display. */

status = CPXsetintparam (env, CPX_PARAM S| MD SPLAY, 2);

ILOG CPLEX 7.5 — USER’'S MANUAL 275

MANAGING INPUT & OUTPUT

if (status) {
CPXnsg (cpxerror, "Failed to turn on sinplex display level.\n");
got o TERM NATE;

}

/* Create the problem */

strcpy (probnane, "exanple");
Ip = CPXcreateprob (env, &status, probnane);

/* A returned pointer of NULL may nean that not enough nenory
was avail able or there was sone other problem |In the case of
failure, an error nessage will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX _PARAM SCRIND causes the error nessage to
appear on stdout. */

if (Ip==NJL) {
CPXnsg (cpxerror, "Failed to create LP.\n");
got o TERM NATE;

}

/* Now popul ate the problemwi th the data. */
status = popul at ebycol um (env, |p);

if (status) {
fprintf (stderr, "Failed to popul ate probl emdata.\n");
got o TERM NATE;

}

/* Optimze the problemand obtain solution. */

status = CPXl popt (env, |p);

if (status) {
CPXnsg (cpxerror, "Failed to optimze LP.\n");
got o TERM NATE;

}

status = CPXsolution (env, Ip, &solstat, &objval, x, pi, slack, dj);
if (status) {

CPXnsg (cpxerror, "Failed to obtain solution.\n");

got o TERM NATE;

/* Wite the output to the screen. W wll also wite it to a
file as well by setting up a file destination and a function
destination. */

our channel = CPXaddchannel (env);

if (ourchannel == NULL) {
CPXmsg (cpxerror, "Failed to set up our private channel.\n");
got o TERM NATE;

}

fpout = CPXfopen ("I pex5.msg", "w');
if (fpout == NULL) {

276 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

CPXnsg (cpxerror, "Failed to open |Ipex5.nsg file for output.\n");
got o TERM NATE;

status = CPXaddf pdest (env, ourchannel, fpout);

if (status) {
CPXnsg (cpxerror, "Failed to set up output file destination.\n");
got o TERM NATE;

}

status = CPXaddfuncdest (env, ourchannel, ourlabel, ournsgfunc);
if (status) {
CPXnsg (cpxerror, "Failed to set up our output function.\n");
got o TERM NATE;
}

/* Now any nessage to channel ourchannel will go into the file
and into the file opened above. */

CPXnsg (ourchannel, "\nSolution status = %\ n", solstat);
CPXmsg (ourchannel, "Solution value = %\n\n", objval);

/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is, rather than using sizes fromwhen the problem
was built. cur_nunrows and cur_nuntols store the current nunber
of rows and colums, respectively. */

cur _nunr ows CPXget nuntows (env, |p);
cur_nuntol s CPXget nuntol s (env, Ip);
for (i = 0; i < cur_nunrows; i++)
CPXnsg (ourchannel, "Row %l: Slack = %40f Pi = %d0f\n",
i, slack[i], pi[i]);

}

for (j =0; j < cur_nuntols; j++) {
CPXnsg (ourchannel, "Columm %l: Value = %40f Reduced cost = 9%40f\n",
b x[j1, difjl);

z
_ o
— o
S »
o
92
g
o
>
(@]

}

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, Ip, "lpex5.1p", NUL);

if (status) {
CPXnsg (cpxerror, "Failed to wite LP to disk.\n");
got o TERM NATE;

}
TERM NATE:
/* First check if ourchannel is open */

if (ourchannel != NULL) {
int chanstat;
chanstat = CPXdel funcdest (env, ourchannel, ourlabel, ourmsgfunc);
if (chanstat) {
strcpy (errnsg, "CPXdelfuncdest failed.\n");
ournsgfunc ("Qur Message", errnsg);
if (!status) status = chanstat;

ILOG CPLEX 7.5 — USER’'S MANUAL 277

MANAGING

278

INPUT

/*

| *
if

/*

& OUTPUT

if (fpout !'= NULL) {
chanstat = CPXdel f pdest (env, ourchannel, fpout);
if (chanstat) {
strcpy (errnsg, "CPXdelfpdest failed.\n");
ournsgfunc ("Qur Message", errnsg);
if (!status) status = chanstat;

}
CPXfcl ose (fpout);
}

CPXdel channel (env, &ourchannel);

Free up the problem as allocated by CPXcreateprob, if necessary */

(I'p!=NJL) {

status = CPXfreeprob (env, &p);

if (status) {
strcpy (errnsg, "CPXfreeprob failed.\n");
ourmsgfunc ("Qur Message", errmnsg);

Now del ete our function destinations fromthe 3 CPLEX channels. */
(cpxresults !'= NULL) {
int chanstat;
chanstat = CPXdel funcdest (env, cpxresults, reslabel, ournsgfunc);
if (chanstat && !status) {
status = chanstat;
strcpy (errnsg, "Failed to delete cpxresults function.\n");
ournsgfunc ("Qur Message", errnsg);

(cpxwarning != NULL) {
int chanstat;
chanstat = CPXdel funcdest (env, cpxwarning, warnlabel, ournsgfunc);
if (chanstat && !status) {
status = chanstat;
strcpy (errnsg, "Failed to del ete cpxwarning function.\n");
ournsgfunc ("Qur Message", errnsg);

(cpxerror != NULL) {
int chanstat;
chanstat = CPXdel funcdest (env, cpxerror, errorlabel, ournsgfunc);
if (chanstat && !status) {
status = chanstat;
strcpy (errnsg, "Failed to delete cpxerror function.\n");
ournsgfunc ("Qur Message", errnsg);

Free up the CPLEX environnent, if necessary */

(env !'= NULL) {
status = CPXcl o0seCPLEX (&env);

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use
CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX_PARAM SCRIND indicator is set to CPX_ ON. */

if (status) {
strcpy (errnsg, "Could not close CPLEX environnent.\n");
ourmsgfunc ("Qur Message", errmnsg);
CPXgeterrorstring (env, status, errnsg);
ourmsgfunc ("Qur Message", errnsg);

}

return (status);

} /* END main */
/* This function builds by colum the linear program

Maxi m ze

obj: x1 + 2 x2 + 3 x3

Subj ect To

cl: - x1 + x2 + x3 <= 20

c2: x1 - 3 x2 + x3 <= 30

Bounds =

0 <= x1 <= 40)

End ~ o
* (@] >

O =
#i fndef OPX_PROTOTYPE_M N o2
. . v}

static int = =
popul at ebycol um (CPXENVptr env, CPXLPptr |p) T g
#el se X =
static int Q

popul at ebycol um (env, |p)

CPXENVptr env;
CPXLPpt r | p;
#endi f

{

int stat us =0
doubl e obj [NUMCCLS];
double | b[NUMOOLS];
doubl e ub[NUMCCLS] ;

char *col nane[NUMCOLS] ;
i nt mat beg[NUMCOLS] ;
int mat i nd[NUMNZ] ;

doubl e mat val [NUMN\Z] ;
doubl e r hs[NUMROWE] ;

char sense[NUMROWE] ;
char *r ownane[NUMROWE] ;

/* To build the problemby colum, create the rows, and then
add the colums. */

CPXchgobj sen (env, Ip, CPX_MAX); /* Problemis maxim zation */

ILOG CPLEX 7.5 — USER’'S MANUAL 279

MANAGING INPUT & OUTPUT

/* Now create the new rows. First, populate the arrays. */

rownane[0] = "c1";
sense[0] ='L;
rhs[0] = 20.0;
rownane[1] = "c2";
sense[1] ='L;
rhs[1] = 30.0;

status = CPXnewows (env, |p, NUMROAB, rhs, sense, NULL, rownane);
if (status) got o TERM NATE;

/* Now add the new colums. First, popul ate the arrays. */

obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
mat beg[0] = O; mat beg[1] = 2; mat beg[2] = 4;
matind[0] = O; matind[2] = 0; matind[4] = O;
matval [0] = -1.0; matval[2] = 1.0; matval [4] = 1.0;
matind[1] = 1; matind[3] = 1; matind[5] = 1;
matval [1] = 1.0; matval [3] = -3.0; matval [5] = 1.0;
I b[0] = 0.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_| NFBOUND;
col nane[0] = "x1"; colnane[1] = "x2"; col nane[2] = "x3";

status = CPXaddcols (env, Ip, NUMCOLS, NUWNZ, obj, matbeg, matind,
matval, |b, ub, col nane);
if (status) goto TERM NATE;
TERM NATE:
return (status);

} /* END popul at ebycol um */

~
* %k kb %k ok

~

For our message functions, we will interpret the handle as a pointer
to a string, which will be the label for the channel. W' Il put

angl e brackets <> around the nessage so its clear what the function is
sending to us. W’I||l place the newines that appear at the end of

a message after the > bracket. The 'message’ argunent must not be

a constant, since it is changed by this function.

#i f ndef CPX_PROTOTYPE_M N

static void CPXPUBLIC

our msgfunc (void *handl e, char *nmessage)
#el se

static void CPXPUBLI C

our nsgfunc (handl e, nessage)

void *handl e;

char *nessage;

#endi f

280 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

char *| abel;
int lenstr;
i nt flag = 0;

lenstr = strlen(message);

if (nessage[lenstr-1] == '\n") {
nmessage[lenstr-1] = '\0’;
flag = 1;

}

| abel = (char *) handl e;

printf ("% 15s: <%>", |abel, message);

if (flag) putchar(’\n");
/* If we clobbered the '\n’, we need to put it back */
if (flag) message[lenstr-1] ="'\n";

} /* END ournsgfunc */

Using Query Routines

This section tells you how to use query routines. It contains sections on:
0 Using Surplus Arguments for Array Allocations
0 Example: Using Query Routines

z
e
— o
S »
S
92
g
o
>
(@]

Using Surplus Arguments for Array Allocations

Most of the ILOG CPLEX query routinesin the Callable Library require your application to
allocate memory for one or more arrays that will contain the results of the query. In many
cases, your application—the calling program—does not know the size of these arraysin
advance. For example, in acall to CPXget col s() requesting the matrix data for a range of
columns, your application needs to pass the arrays cnat i nd and cmat val for

ILOG CPLEX to populate with matrix coefficients and row indices. However, unless your
application has carefully kept track of the number of nonzero columns (that is, the

col nonzer o counts) throughout the problem specification and, if applicable, throughout its
modification, the actual length of these arrays remains unknown.

Fortunately, the ILOG CPLEX query routines in the Callable Library contain a surplus
argument that, when used in conjunction with the array length arguments, enables you first
to call the query routine to determine the length of the required array. Then, when the length
is known, your application can properly allocate these arrays. Afterwards, your application
makes a second call to the query routine with the correct array lengths to obtain the
requested data.

ILOG CPLEX 7.5 — USER’'S MANUAL 281

USING QUERY ROUTINES

282

For example, consider a program that needsto call CPXget col s() to access arange of
columns. Hereisthelist of arguments for CPXget col s() .

CPXget col s (CPXENVptr env,
CPXLPptr | p,
int *nzcnt_p,
int *cnatbeg,
int *cmatind,
doubl e *cmatval ,
int cnatspace,
int *surplus_p,
int begin,
int end);

Thearrayscmat i nd and crmat val require one element for each nonzero matrix coefficient
in the requested range of columns. The required length of these arrays, specified in

cmat space, remains unknown at the time of the query. Your application—the calling
program—can determine the length of these arrays by first calling CPXget col s() witha
value of 0 for cmat space. Thiscall will return an error status of

CPXERR_NEGATI VE_SURPLUS indicating a shortfall of the array length specified in

cmat space (in this case, 0); it will aso return the actual number of matrix nonzerosin the
requested range of columns. CPXget col s() deposits this shortfall as a negative number in
the integer pointed to by sur pl us_p. Your application can then negate this shortfall and
allocate the arrays cmat i nd and crat val sufficiently long to contain all the requested
matrix elements.

The following sample of code shows you what we mean. The first call to CPXget col s()
passes avalue of 0 for cmat space in order to obtain the shortfall in cnat sz. The sample

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

then uses the shortfall to allocate the arrays cmat i nd and crat val properly; then it calls
CPXget col s() again to obtain the actual matrix coefficients and row indices.

status = CPXgetcols (env, |p, &zcnt, cmatbeg, NULL, NULL,
0, &matsz, 0, nuntols - 1);
if (status != CPXERR _NEGATI VE_SURPLUS) {
if (status '=0) {
CPXnmsg (cpxerror,
“CPXgetcols for surplus failed, status = %\ n", status);
got o TERM NATE;
}
CPXneg (cpxwarning, “All colums in range [%l, %] are enpty.\n”,
0, (nuntols - 1));

}

cmatsz = -cnatsz;

cmatind = (int *) malloc ((unsigned) (1 + cmatsz)*sizeof(int));
cmatval = (double *) malloc ((unsigned) (1 + cnatsz)*sizeof (double));
if (cnatind == NULL || crmatval == NULL) {

CPXnsg (cpxerror, “CPXgetcol mallocs failed\n");
status = 1;
got o TERM NATE;

status = CPXgetcols (env, |Ip, &zcnt, cmatbeg, cnatind, cmatval,
cmatsz, &surplus, 0, nuntols - 1);
if (status) {
CPXnsg (cpxerror, “CPXgetcols failed, status = %l\n”, status);
got 0 TERM NATE;

}

That sample code (or your application) does not need to determine the length of the array
cnat beg. The array cnat beg has one element for each column in the requested range.
Since thislength is known ahead of time, your application does not need to call a query
routine to calculate it. More generally, query routines use surplus arguments in the way we
just described only for the length of any array required to store problem data of unknown
length. Problem datain this category includes nonzero matrix entries, row and column
names, other problem data names, special ordered sets (SOS), priority orders, and MIP start
information.

z
e
— o
S »
S
92
g
o
>
(@]

Example: Using Query Routines

This example usesthe ILOG CPLEX Callable Library query routine CPXget col name() to
get the column names from a problem object. To do so, it applies the programming pattern
we just described in Using Surplus Arguments for Array Allocations on page 281. It derives
from the example| pex2. c, explained in the manual ILOG CPLEX Getting Sarted manual.
This query-routine example differs from that simpler example in several ways.

0 Theexample calls CPXget col nanme() twice after optimization: the first call determines
how much space to allocate to hold the names; the second call gets the names and stores
theminthearrayscur _col nane and cur _col nanest or e.

ILOG CPLEX 7.5 — USER’'S MANUAL 283

USING QUERY ROUTINES

0 When the example printsits answer, it uses the names as stored in cur _col nane. If no
names exist there, the exampl e creates fake names.

This example assumes that the current problem has been read from afile by
CPXr eadcopypr ob() . You can adapt the example to use other ILOG CPLEX query
routines to get information about any problem read from afile.

Complete Program: ilolpex7.cpp
The complete program, i | ol pex7. cpp, appears here or online in the standard distribution.

#incl ude <ilcplex/il ocplex. h>
| LOSTLBEGA N

static void usage (const char *prognane);

i nt
nmain (int argc, char **argv)
{
Il oEnv env;
try {
I'l oModel nodel (env);
I'l oCpl ex cpl ex(env);

if ((argec !'=3) |
(strchr ("podthbn", argv[2][0]) == NULL)) {
usage (argv[O0]);
throw(-1);

}

switch (argv[2][0]) {

case '0’:
br eak;

case 'p’:
cpl ex. set Root Al gorithm(11oCpl ex:: Primal);
br eak;

case 'd:
cpl ex. set Root Al gori thm(11oCpl ex:: Dual) ;
br eak;

case 'b’:
cpl ex. set Root Al gorithm(11oCplex::Barrier);
cpl ex. set Paran(|1 oCpl ex: : Bar O ossAl g, |10oCpl ex:: NoAl g);
br eak;

case 'h':
cpl ex. set Root Al gorithm(11oCplex::Barrier);
br eak;

case 'n’:
cpl ex. set Root Al gori thm(11 oCpl ex: : Net wor kDual) ;
br eak;

defaul t:
br eak;

284 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Il ooj ective obj;

I'l oNunVar Array var (env);

Il oRangeArray rng(env);

cpl ex. i nport Model (nodel, argv[1], obj, var, rng);

cpl ex. extract (nodel) ;
if ('cplex.solve()) {
env.error() << "Failed to optimze LP" << endl;

throw(-1);
}
env.out() << "Solution status = " << cplex.getStatus() << endl;
env.out() << "Solution value =" << cplex.getbjValue() << endl;
for (Ilolnt i =0; i < var.getSize(); ++i) {
if (var[i].getName()) env.out() << var[i].getNane();
el se env.out() << "Fake" << i;
env.out () << ": " << cplex.getValue(var[i]);
try { // basis may not exist
env.out () << "\t' << cplex.getStatus(var[i]);
} catch (...) {
}
env.out () << endl;
} 5
} =~ o
catch (11 oException& e) { (@] >
cerr << "Concert exception caught: " << e << endl; O =
} g 2
catch (...) { [
cerr << "Unknown exception caught" << endl; g! %
} >
«Q
env. end();
return O;

} // END main

static void usage (const char *prognane)

{
cerr << "Usage: " << prognane << " filenane algorithnf << endl;
cerr << " where filename is a file with extension " << endl;
cerr << " MPS, SAV, or LP (lower case is allowed)" << endl;
cerr << " and algorithmis one of the letters" << endl;
cerr << " default" << endl;

o
cerr << " p primal sinplex" << endl;
cerr << " d dual sinplex" << endl;
cerr << " b barrier" << endl;
cerr << " h barrier with crossover" << endl;
cerr << " n network sinpl ex" << endl;
cerr << " Exiting..." << endl;
} // END usage

ILOG CPLEX 7.5 — USER’'S MANUAL 285

USING QUERY ROUTINES

This example usesthe ILOG CPLEX Callable Library query routine CPXget col name() to
get the column names from a problem object. To do so, it applies the programming pattern
we just described in Using Surplus Arguments for Array Allocations on page 281. It derives
from the example| pex2. c, explained in the manual ILOG CPLEX Getting Sarted manual.
This query-routine example differs from that simpler example in several ways:

0 Theexample calls CPXget col nanme() twice after optimization: the first call determines
how much space to allocate to hold the names; the second call gets the names and stores
theminthearrayscur _col nane and cur _col nanest or e.

0 When the example prints its answer, it uses the names as stored in cur _col nane. If no
names exist there, the example creates fake names.

This example assumes that the current problem has been read from afile by
CPXr eadcopypr ob() . You can adapt the example to use other ILOG CPLEX query
routines to get information about any problem read from afile.

Complete Program: Ipex7.c
The complete program, | pex7. c, appears here or online in the standard distribution.

#i ncl ude <il cpl ex/cpl ex. h>

/* Bring in the declarations for the string and character functions
and mal loc */

#i ncl ude <ctype. h>
#i ncl ude <stdlib. h>
#i ncl ude <string. h>
/* Include declarations for functions in this program */
#i f ndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr),
usage (char *prognane);
#el se
static void
free_and_null (),
usage 0
#endi f
#i f ndef CPX_PROTOTYPE_M N
int
nmain (int argc, char *argv[])

286 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

#el se

i nt

nmain (argc, argv)
int ar gc;

char *argv[];
#endi f

{

/* Declare and al l ocate space for the variables and arrays where we will
store the optimzation results including the status, objective val ue,
vari abl e val ues, and basis. */

int sol stat;

doubl e objval;

double *x = NULL;

int *cstat = NULL;

i nt *rstat = NULL;

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

int status = O;

i nt is

int cur_nunrows, cur_nuntol s;
char **cur _col nane = NULL;
char *cur_col nanestore = NULL;
int cur _col nanespace;

int sur pl us;

int net hod;

char *basi snsgQ;

/* Check the command |ine argunents */

if ((argec !'=3) |
(strchr ("podhbn", argv[2][0]) == NULL)) {
usage (argv[O0]);
got o TERM NATE;

}

/* Initialize the CPLEX environnment */

env = CPXopenCPLEX (&status);

/* 1f an error occurs, the status value indicates the reason for
failure. A call to CPXgeterrorstring will produce the text of
the error message. Note that CPXopenCPLEX produces no output,
so the only way to see the cause of the error is to use

CPXgeterrorstring. For other CPLEX routines, the errors will
be seen if the CPX PARAM SCRIND indicator is set to CPX ON. */

if (env == NULL) {

ILOG CPLEX 7.5 — USER’'S MANUAL 287

z
_ o
— o
S »
o
92
g
o
>
(@]

USING QUERY ROUTINES

char errnsg[1024];
fprintf (stderr, "Could not open CPLEX environnent.\n");
CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, "9%", errmsg);
got o TERM NATE;
}

/* Turn on output to the screen */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_QON);
if (status) {
fprintf (stderr,
"Failure to turn on screen indicator, error %l.\n", status);
got o TERM NATE;

/* Create the problem using the filename as the probl em name */
Ip = CPXcreateprob (env, &status, argv[1]);

/* A returned pointer of NULL may nean that not enough menory
was available or there was sone other problem |In the case of
failure, an error message will have been witten to the error
channel frominside CPLEX. In this exanple, the setting of
the paraneter CPX_PARAM SCRI ND causes the error nessage to
appear on stdout. Note that nost CPLEX routines return
an error code to indicate the reason for failure. */

if (Ip==NUL) {
fprintf (stderr, "Failed to create LP.\n");
got o TERM NATE;

}
/* Now read the file, and copy the data into the created Ip */

status = CPXreadcopyprob (env, Ip, argv[1], NULL);

if (status) {
fprintf (stderr, "Failed to read and copy the problemdata.\n");
got o TERM NATE;

}
/* Qptimze the problemand obtain solution. */

switch (argv[2][0]) {

case '0':
met hod = CPX_ALG AUTOWATI C;
br eak;

case 'p’:
met hod = CPX_ALG PRI MAL;
br eak;

case 'd':
met hod = CPX_ALG DUAL;
br eak;

288 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

case 'n’:
met hod = CPX_ALG NET;
br eak;
case 'h':
met hod = CPX_ALG BARR ER;
br eak;
case 'b':
met hod = CPX_ALG BARRI ER;
status = CPXsetintparam (env, CPX_PARAM BARCROSSALG CPX_ALG NONE);
if (status) {
fprintf (stderr,
"Failed to set the crossover nethod, error %.\n",

status);
goto TERM NATE;

}

br eak;

defaul t:
met hod = CPX_ALG _NONE;
br eak;
}

status = CPXsetintparam (env, CPX_PARAM LPMETHOD, nethod);
if (status) {
fprintf (stderr,
"Failed to set the optim zation nethod, error %d.\n", status);
got o TERM NATE;
}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, "Failed to optimze LP.\n");
got o TERM NATE;

z
_ o
— o
S »
o
92
g
o
>
(@]

}

sol stat = CPXgetstat (env, Ip);
status = CPXgetobjval (env, |p, &objval);

if (status) {
fprintf (stderr,"Failed to obtain objective value.\n");
got o TERM NATE;

}

printf ("Solution status %d. bjective value % 10g\n",
sol stat, objval);

/* The size of the problem should be obtained by aski ng CPLEX what
the actual size is. cur_numrows and cur_nuntols store the
current nunber of rows and col umms, respectively. */

cur_nuntol s = CPXget nuntol s (env, |p);
cur_nunrows = CPXget nuntrows (env, |p);

/* Alocate space for basis and solution */

ILOG CPLEX 7.5 — USER’'S MANUAL 289

USING QUERY ROUTINES

cstat = (int *) mal | oc (cur_nuncol s*sizeof (int));
rstat = (int *) mal | oc (cur_nunrows*si zeof (int));
X = (double *) nmalloc (cur_nuntol s*sizeof (doubl e));

if (cstat == NULL || rstat == NULL || x == NULL) {
fprintf (stderr,"No nenmory for basis statuses.\n");
got o TERM NATE;

}

/* |f CPXgetbase causes an error, we don’t want to see that error
message on the screen. So turn off the screen indicator for
this call, and turn it back on afterwards. */

CPXset i nt param (env, CPX_PARAM SCRIND, CPX_OFF);
status = CPXgetbase (env, Ip, cstat, rstat);
CPXset i nt param (env, CPX_PARAM SCRIND, CPX_ON);

if (status == CPXERR_NO BASIS) {
printf ("No basis exists.\n");
free_and_null ((char **) &cstat);
free_and_null ((char **) &rstat);

else if (status) {
fprintf (stderr,"Failed to get basis. error %l.\n", status);
got o TERM NATE;

}

status = CPXgetx (env, Ip, x, O, cur_nuncols-1);

if (status) {
fprintf (stderr, "Failed to obtain priml solution.\n");
got o TERM NATE;

}

/* Now get the colum nanmes for the problem First we determ ne how
much space is used to hold the names, and then do the allocation.
Then we call CPXgetcol nane() to get the actual nanes. */

status = CPXgetcol name (env, |p, NULL, NULL, O, &surplus, O,
cur_nuntol s-1);

if ((status !'= CPXERR _NEGATI VE SURPLUS) &&
(status !'=0)) |
fprintf (stderr,
"Coul d not determ ne anount of space for colum nanes.\n");
got o TERM NATE;

}

cur _col nanespace = - surplus;

if (cur_colnamespace > 0) {
cur _col nane = (char **) malloc (sizeof(char *)*cur_nuntols);
cur_col nanestore = (char *) nalloc (cur_col nanespace);
if (cur_col name == NULL ||

290 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

cur_col nanestore == NULL) {
fprintf (stderr, "Failed to get nenory for columm nanes.\n");
status = -1;

got o TERM NATE;
}
status = CPXgetcol name (env, |p, cur_col nane, cur_col nanestore,
cur _col nanespace, &surplus, 0, cur_nunctols-1);
if (status) {
fprintf (stderr, "CPXgetcolnane failed.\n");
got o TERM NATE;

}
}
el se {

printf ("No names associated with problem Using Fake nanes.\n");
}

/* Wite out the solution */

for (j =0; j < cur_nuncols; j++) {
if (cur_colnamespace > 0) {

printf ("%16s: ", cur_colnane[j]);
}
el se {
printf ("Fake% 6. 6d M)
) 5
printf ("9d7.109", x[j]); — @
if (cstat !'= NULL) { Q 5
switch (cstat[j]) { Oz
case CPX_AT_LOWER Q2
basi smsg = "Nonbasi ¢ at | ower bound"; - "C'
br eak; >n!)
case CPX _BASIC: S
basi snsg = "Basic"; <
br eak;
case CPX_AT_UPPER
basi snsg = "Nonbasi ¢ at upper bound";
br eak;
case CPX _FREE_SUPER:
basi snsg = "Superbasic, or free variable at zero";
br eak;
defaul t:
basi snsg = "Bad basis status";
br eak;

}

printf (" 9", basisnsg);

}
printf ("\n");
TERM NATE:

ILOG CPLEX 7.5 — USER’'S MANUAL 291

USING QUERY ROUTINES

292

/*

Free up the basis and solution */

free_and_null ((char **) &cstat);
free_and_null ((char **) &rstat);

fre
fre
fre
/*

if

/*

}

ret

Yo

/* Thi

e_and_null ((char **) &x);
e_and_null ((char **) &cur_col name);
e_and_null ((char **) &cur_col nanestore);

Free up the problem if necessary */
(Ip!'=NULL) {

status = CPXfreeprob (env, &p);
if (status) {

fprintf (stderr, "CPXfreeprob failed, error code %.\n",

}

Free up the CPLEX environnent, if necessary */

(env = NULL) {
status = CPXcl oseCPLEX (&env);

/* Note that CPXcl oseCPLEX produces no out put,
so the only way to see the cause of the error is to use

status);

CPXgeterrorstring. For other CPLEX routines, the errors wll
be seen if the CPX_PARAM SCRIND indicator is set to CPX_ ON. */

if (status) {
char errnsg[1024];

fprintf (stderr, "Could not close CPLEX environnment.\n");

CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, "9%", errmsg);

urn (status);

END main */

s sinple routine frees up the pointer *ptr, and sets *ptr to NULL */

#i f ndef CPX_PROTOTYPE_M N
static void
free_and_null (char **ptr)

#el se

static void
free_and_null (ptr)

char
#endi f
{

**ptr;

ILOG CPLEX 7.5 — USER’'S MANUAL

if (*ptr I'= NULL) {
free (*ptr);
*ptr = NULL;

} /* END free_and_null */

#i fndef CPX_PROTOTYPE_M N

static void

usage (char *prognane)

#el se

static void

usage (prognane)

char *prognang;

#endi f

{
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf
fprintf

(stderr, "Usage:
(stderr,"
(stderr,"
(stderr,"
(stderr,"
(stderr,"
(stderr,"
(stderr, "
(stderr,"

fprintf (stderr,"

fprintf (stderr,"
} /* END usage */

% filenane algorithmn",
where filename is a file with extension \n");

prognane) ;

<functionhead>

MPS, SAV, or LP (lower case is allowed)\n")

and algorithmis one of the letters\n");

defaul t\n");

primal sinmplex\n");

dual sinplex\n");

network sinplex\n");
barrier\n");

barrier with crossover\n");

|=
@)
®
@)
1Y)
—
m
X

Using Callbacks

<
]
=
(0]
>
o
]
=
—
C
@
=
(o]

This section introduces the topic of callback routines, which alow you to closely monitor
and guide the behavior of CPLEX optimizers. It includes information on:

00 Diagnostic Callbacks

0 Control Calbacksfor I | oCpl ex

CPLEX callbacks allow user code to be executed regularly during an optimization. There
are two types of callbacks, diagnostic callbacks and control callbacks, which are discussed
separately in the following sections. To use callbacks with CPLEX, you must first write the
callback function, and then passit to CPLEX.

ILOG CPLEX 7.5

USER'S MANUAL

293

USING CALLBACKS

Diagnostic Callbacks

Diagnostic callbacks allow you to monitor an ongoing optimization, and optionally abort it.
These callbacks are distinguished by the place where they are called during an optimization.
There are 10 such places where diagnostic callbacks are called:

O

o o o o o o o dg

The presolve cal | back iscalled regularly during presolve.

The crossover cal | back iscalled regularly during crossover from abarrier solutionto a
SIMPLEX basis.

The network cal | back iscalled regularly during the network simplex.

The barrier cal | back iscalled at each iteration during the barrier algorithm.

The primal cal | back iscalled at each iteration during the primal simplex algorithm.
Thedua cal | back iscalled at each iteration during the dual simplex algorithm.

The MIPcal | back is called at each node during the branch & cut search.

The probing cal | back is called regularly during probing.

Thefractional cut cal | back is called regularly during the separation for fractional cuts.

The diunctive cut cal | back iscalled regularly during the separation for digunctive
cuts.

Implementing Callbacks In CPLEX with Concert Technology

With I | oCpl ex, callbacks are accessed viaathe I | oCpl ex: : Cal | back handle class. It
points to an implementation object of asubclassof I 1 oCpl ex: : Cal | back! . One such
implementation classis provided for each type of callback. The implementation class
provides the functions that can be used for the particular callback as protected member
functions. To reflect the fact that some callbacks share part of their protected API, the
callback classes are organized in a class hierarchy as shown by this diagram:

294

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Il oQpl ex: : Cal | backl

I
- 11 oCpl ex: : Presol veCal | backl

+- -
I
+--- 11 0oCpl ex:: Orossover Cal | backl
I

+--- 11 0Cpl ex: : Net wor kCal | backl

I

+--- 11 0Cpl ex: : LPCal | backl

|
- Il oCplex::BarrierCall backl

I

! +-

I I

| +--- 11 oCplex::Primal Si npl exCal | backl
I I

| +--- 11 0Cpl ex: : Dual Si npl exCal | backl

I

+--- 11 0Cpl ex:: M PCal | backl

I
- 11 0oCpl ex: : Probi ngCal | back

+- -

I

+--- |1 0oCpl ex:: Fractional Cut Cal | backl
|

+- -

- |1 oCplex::D sjunctiveCut Cal | backl

This means that, for example, all functions available for the MIP callback are also available
for the probing, fractional cut, and disjunctive cut callbacks. In particular, the function to
abort the current optimization is provided by the class | | oCpl ex: : Cal | backl andisthus
available to all callbacks.

There are two ways of implementing callbacks for I | oCpl ex: amore complex way that
exposes al the C++ implementation details, and a simplified way that uses macros to handle
the C++ technicalities. We will first expose the more complex way and discuss the
underlying design. To quickly implement your callback without details on the internal
design, proceed directly to Writing Callbacks with Macros on page 296.

z
e
— o
S »
S
92
g
o
>
(@]

Writing Callback Classes by Hand

To implement your own callback for I | oCpl ex, first select the callback class corresponding
to the callback you want implemented. From it derive your own implementation class and
overwrite the virtual method mai n() . Thisiswhere you implement the callback actions,
using the protected member functions of the callback class from which you derived your
callback or one of its base classes.

Next write afunction that creates a new object of your implementation class using the
environment operator new and returning it asan | | oCpl ex: : Cal | back handle object.
Hereis an example implementation of such afunction:

I'l oOpl ex: : Cal | back MyCal | back(IloEnv env, Ilolnt nun) {
return (new (env) MCall backl (num);

}

ILOG CPLEX 7.5 — USER’'S MANUAL 295

USING CALLBACKS

296

Oncetheimplementation is completed, useit with 1 | oCpl ex by calingcpl ex. use() with
the handle object returned by your callback function. To remove acallback that isbeing used
by acpl ex object, cal cal | back. end() onthell oCpl ex: : Cal | back handle callback.

One abject of a callback implementation class can be used with only one I | oCpl ex object
at atime. Thus, when you use a callback with more than one cpl ex object, a copy of the
implementation object is created every timecpl ex. use() iscaled except for thefirst time.
Method | | oCpl ex: : use() returnsahandleto the callback object that has actually been
installed to enable calling end() onit.

To construct the copies of the callback objects, class| | oCpl ex: : Cal | backl defines
another pure virtual method:

virtual I1oCplex::Callbackl* IloCplex::Callbackl::mkeCd one()
const = O;

which must be implemented for your callback class. This method will be called to create the
copies heeded for using a callback on different cpl ex objects or on onecpl ex object witha
parallel optimizer.

In most cases you can avoid writing callback classes by hand, using supplied macros that
make the process as easy asimplementing a function. You must implement a callback by
hand only if the callback manages internal data not passed as arguments, or if the callback
requires eight or more parameters.

Writing Callbacks with Macros

Here is how to implement a callback using macros. First, determine which callback you
want to implement and how many arguments to pass to the callback function. These two
pieces of information determine the macro you need to use.

For example, to implement a dual simplex callback with one parameter, the macro is

| LODUALSI MPLEXCALLBACK1. Generaly, for every callback type XXX and any number of
parameters n from 0 to 7 there isamacro called | LOXXXCALLBACKn. The following table
lists the callbacks and the corresponding macros and classes (where nis a placeholder for

0..7):

Table 8.4 Callback Macros

Callback [Macro Class

presolve || LOPRESCLVECALLBACKn I'l oCpl ex: : Presol veCal | backl

LP | LOLPCALLBACKN I I oCpl ex: : LPCal | backl

primal | LOPRI MALSI MPLEXCALLBACKn |11 0Cpl ex: : Pri mal Si npl eXCal | backl
simplex

dual | LODUALSI MPLEXCALLBACKn I'l oCpl ex: : Dual Si npl eXCal | backl
simplex

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Table 8.4 Callback Macros (Continued)

Callback |Macro Class

barrier | LOBARRI ERCALLBACKN Il oCpl ex: : Barri er Cal | backl
crossover | LOCROSSOVERCAL LBACKN I I oCpl ex: : Crossover Cal | backl
network | LONETWORKCALLBACKN I I oCpl ex: : Net wor kCal | backl
MIP | LOM PCALLBACKn Il oCpl ex: : M PCal | backl

probing | LOPROBI NGCALLBACKnN I'l oCpl ex: : Probi ngCal | backl

fractional || LOFRACTI ONALCUTCALLBACKNn |11 oCpl ex: : Fracti onal Cut Cal | backl
cut

digunctive || LODI SJUNCTI VECUTCALLBACKnN |11 oCpl ex: : Di sj unct i veCut Cal | backl
cut

The protected member functions of the corresponding class and its base classes determine
the functions that can be called for implementing your callback (see the ILOG CPLEX
Reference Manual).

Hereis an example of how to implement adual simplex callback with the name
MyCal | back that takes one parameter:

| LODUALSI MPLEXCALLBACK1(MyCal | back, Ilolnt, num {
if (getNiterations() == num) abort();

}

This callback aborts the dual simplex algorithm at the nunth iteration. It queries the current
iteration number by calling function get Ni t er at i ons() , which is a protected member
function of class| | oCpl ex: : LPCal | backl .

z
e
— o
S »
S
92
g
o
>
(@]

To use this callback with an | | oCpl ex object cpl ex, simply call:
Il oQpl ex: : Cal | back nycal | back = cpl ex. use(MyCal | back(env, 10));

The callback that is added to cpl ex isreturned by the method use and stored in variable
nycal | back. Thisalowsyou to call nycal | back. end() to remove the callback from
cpl ex. If you do not intend accessing your callback, for example in order to delete it before
ending the environment, you may safely leave out the declaration and initialization of
variable nycal | back.

Callback Interface

Two callback classes in the hierarchy need extra attention. Thefirst is the base class

I'l oCpl ex: : Cal | backl . Since thereis no corresponding callback in CPLEX, this class
cannot be used for implementing user callbacks. Instead, its purpose isto provide an
interface common to all callback functions. This consists of the methods get Mbdel (),

ILOG CPLEX 7.5 — USER’'S MANUAL 297

USING CALLBACKS

298

which returns the model that is extracted to the CPLEX object that is calling the callback,
get Env() , which returns the corresponding environment, and abor t () , which aborts the
current optimization. Further, methods get Nr ows () and get Ncol s() alow you to query
the number of rows and columns of the current cpl ex LP matrix. These methods can be
called from all callbacks.

Note: No manipulation of the model or, more precisely, any extracted modeling object is
allowed during the execution of a callback. If you want to use your callback with a parallel
optimizer, no modification is allowed of any array or expression not local to the callback
function itself (that is, constructed and end() ed init). The only exception isthe
modification of array elements. For example, x[i] = 0 would be permissible, whereas
x. add(0) would not unlessx isalocal array of the callback. To avoid any problems when
changing from a sequential optimizer to a parallel one, it is advisable to always observe
thisrestriction.

The LP Callback

The second specia callback classis| | oCpl ex: : LPCal | backl . If you create an LP
callback and useit withan 1 | oCpl ex object, this callback will be used for all of the barrier,
dual simplex, and primal simplex callbacks. In other words, implementing and using one LP
callback is equivalent to writing and using these three callbacks independently.

Example: Deriving the Primal Simplex Callback

This example demonstrates the use of the primal simplex callback to print logging
information at each iteration. It is a modification of examplei | ol pex1. cpp, so wewill
restrict our discussion to the differences. The following code:

| LOPRI MALSI MPLEXCALLBACKI O(MyCal | back) {
cout << "lteration " << getNiterations() << "
if (isFeasible()) {

cout << "(bjective =" << getObjValue() << endl;
}
el se {
cout << "Infeasibility measure = " << getinfeasibility() << endl;

}
}

defines the callback MyCal | back without parameters with the code enclosed in the outer
{}.

The callback prints the iteration number to cout . Then, depending on whether the current
solution isfeasible or not, it prints the objective value or infeasibility measureto cout . The
functionsget Ni t erati ons(),i sFeasi bl e(), get Obj Val ue(), and

get I nf easi bi l i ty() are member functions provided in the callback’s basecl ass

I'l oCpl ex: : Pri mal Si npl exCal | backl! . Seethe | LOG CPLEX Reference Manual for the
complete list of methods provided for each callback class.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Hereis how the macro | LOPRI MALSI MPLEXCALLBACKO is expanded:

class MyCal | backl : public IloCplex::PrimalSinplexCallbackl {
void main();
Il oCpl ex: : Cal | backl * nmaked one() const {
return (new (getEnv()) MCallbackl (*this));
}

3
I oCpl ex: : Cal | back MyCal | back(1| oEnv env) {
return (Il oCplex::Callback(new (env) MyCallbackl()));

}

void MyCal | backl:: main() {
cout << "lteration " << getNiterations() << "
if (isFeasible()) {

cout << "(bjective = " << getChj Val ue() << endl;
el se {
cout << "Infeasibility measure = " << getlnfeasibility() << endl;
}
}

The 0 in the macro indicates that 0 parameters are passed to the constructor of the callback.
For callbacks requiring up to 7 parameters similar macros are defined where the 0 is
replaced by the number of parameters, ranging from 1 through 7. For an example of this
using the cut callback, see Example: Controlling Cuts on page 312. If you need morethan 7
parameters, you will need to derive your callback class yourself without the help of amacro.

After the callback MyCal | back is defined, it can be used with the line:
cpl ex. use(My/Cal | back(env));

Function MyCal | back creates an instance of the implementation class MyCal | backl . A
handle to this implementation object is passed to cpl ex method use() .

z
e
— o
S »
S
92
g
o
>
(@]

If your application defines more than one primal simplex callback object (possibly with
different subclasses), only the last one passed to CPLEX with the use method is actually
used during primal simplex. On the other hand, I | oCpl ex can handle one callback for each
callback class at the same time. For example aprimal simplex callback and a MIP callback
can be used at the sametime.

Complete Program: ilolpex4.cpp
The complete program, i | ol pex4. cpp, appears here or online in the standard distribution.

#incl ude <ilcplex/il ocplex.h>
| LOSTLBEGA N

| LOPRI MALSI MPLEXCALLBACKO(MyCal | back) {
cout << "lIteration " << getNterations() << "
if (isFeasible()) {

cout << "(hjective = " << getvj Val ue() << endl;
} else {
cout << "Infeasibility measure = " << getlInfeasibility() << endl;

ILOG CPLEX 7.5 — USER’'S MANUAL 299

USING CALLBACKS

300

static void

popul at ebycol utm (11 oMbdel nodel, Ilo
int
nmain (int argc, char **argv)
{

Il oEnv env;

try {

Il oMbdel nodel (env, "exanple");

I'l oNunVar Array var (env);
Il oRangeArray rng(env);
popul at ebycol uim (nodel , var, rng)

I'l oCpl ex cpl ex(nodel);
cpl ex. setQut (env. getNul | Strean());

NunVar Array var,

cpl ex. set Root Al gori thn{ Il oCpl ex:: Prinal);

cpl ex. use(M/Cal | back(env));
cpl ex. sol ve();

cplex.out() << "Solution status
cplex.out() << "Solution val ue

Il oNumArray val s(env);

cpl ex. get Val ues(val s, var);
env.out() << "Values =" <<
cpl ex. get Sl acks(val s, rng);
env.out () << "Sl acks

cpl ex. get Dual s(val's, rng);

<<

env.out() << "Duals =" <<
cpl ex. get ReducedCost s(val s, var);
env.out () << "Reduced Costs = " <<

cpl ex. export Model ("1 pex4.1p");

catch (Il oException& e) {

cerr << "Concert exception caught:
}
catch (...) {

cerr << "Unknown exception caught”

}

env. end();
return O;
} // END main

Il oRangeArray rng);

" << cplex.getStatus() << endl;
' << cpl ex. get vj Val ue() << endl;

val s << endl;
val s << endl;
val s << endl;

val s << endl;

' << e << endl;

<< endl ;

// To populate by colum, we first create the rows, and then add the

/1 col ums.

ILOG CPLEX 7.5 — USER

'S MANUAL

<functionhead>

static void
popul at ebycol uim (11 ovbdel nodel, |l oNunVarArray x, |l oRangeArray c)
{

I'l oEnv env = nodel . get Env();

Il oQoj ective obj = IloMaxi m ze(env);
c.add(!l oRange(env, -llolnfinity, 20.0));
c.add(!l oRange(env, -llolnfinity, 30.0));

x. add(11 oNumVar (obj (1.0) + c[0](-1.0) + c[1](1.0), 35.0, 40.0)):
x. add(obj (2.0) + c[0](1.0) + c[1](-3.0));
x. add(obj (3.0) + c[0](1.0) + c[1](1.0));

nodel . add(obj) ;
nmodel . add(c);

} /1 END popul at ebycol um

Implementing Callbacks in the Callable C Library

ILOG CPLEX optimization routinesin the Callable Library incorporate a callback facility to
allow your application to transfer control temporarily from ILOG CPLEX to the calling
application. Using callbacks, your application can implement interrupt capability, for
example, or create displays of optimization progress. Once control is transferred back to a
function in the calling application, the calling application can retrieve specific information
about the current optimization from the routine CPXget cal | backi nf o() . Optionally, the
calling application can then tell ILOG CPLEX to discontinue optimization.

z
e
— o
S »
S
92
g
o
>
(@]

To implement and use a callback in your application, you must first write the callback
function and then tell ILOG CPLEX about it. For more information about the ILOG CPLEX
Callable Library routines for callbacks, see the ILOG CPLEX Reference Manual.

Setting Callbacks

In the Callable Library, control callbacks are grouped into two groups: LP callbacks and
MIP callbacks. For each group, one callback function can be set, by calling functions
CPXset | pcal | backf unc() and CPXset mi pcal | backf unc(), respectively. The
function CPXset | pcal | backf unc() iscalledfor callbacks1 through 6, whilethe function
CPXset mi pcal | backf unc() iscalled for callbacks 7 through 10. You can distinguish
between the actua callbacks by querying the parameter wher ef r omwhich is passed to the
callback function as parameter by CPLEX.

Callbacks for LPs and for MIPs

ILOG CPLEX will evaluate two user-defined callback functions, one during the solution of
L P problems and one during the solution of MIP problems (if you are licensed to use the
MIP optimizer). ILOG CPLEX callsthe LP callback once per iteration during the solution of
an LP problem and periodically during the presolve of LP and MIP preprocessing.

ILOG CPLEX 7.5 — USER’'S MANUAL 301

USING CALLBACKS

302

ILOG CPLEX callsthe MIP callback once before each subproblem is solved in the branch
& cut process.

Every user-defined callback must have these arguments:
0 env, apointer tothe ILOG CPLEX environment;

0 chdat a, apointer to ILOG CPLEX internal data structures needed by
CPXget cal | backi nfo();

0O wher ef r om indicates which optimizer is calling the callback;

0 cbhandl e, apointer supplied when your application calls CPXset | pcal | backf unc()
or CPXset mi pcal | backf unc() (so that the callback has accessto private user data).

The arguments wher ef r omand cbhandl e should be used only in callsto
CPXget cal | backi nfo().

Return Values for Callbacks
A user-written callback should return anonzero value if the user wishes to stop the
optimization and a value of zero otherwise.

For LP problems, if the callback returns anonzero value, the solution process will terminate.
If the process was not terminated during the presolve process, the status returned by the
function | | oCpl ex: : get St at us or the routines CPXsol uti on() or CPXget st at () will
be one of the valuesin Table 8.5.

Table 8.5 Satus of nonzero callbacks for LPs

Value |[Symbolic constant Meaning

12 CPX_ABORT_FEAS aborted in Phase Il (simplex)

13 CPX_ABORT_I NFEAS aborted in Phase | (simplex)

14 CPX_ABORT_DUAL_| NFEAS primal feasible, dual infeasible (barrier)
15 CPX_ABORT_PRI M_| NFEAS primal infeasible, dual feasible (barrier)
16 CPX_ABORT_PRI M _DUAL_I NFEAS | primal and dual both infeasible (barrier)
17 CPX_ABORT_PRI M_DUAL_FEAS primal and dual both feasible (barrier)
18 CPX_ABORT_CROSSOVER aborted in crossover (barrier)

For both LP and MIP problems, if the LP callback returns a nonzero value during presolve
preprocessing, the optimizer will return the value CPXERR_PRESLV_ABORT, and no solution
information will be available.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

For MIP problems, if the callback returns a nonzero value, the solution process will
terminate and the status returned by | | oCpl ex: : get St at us() or CPXget st at () will be
one of the valuesin Table 8.6.

Table 8.6 Satus of nonzero callbacks for MIPs

Value |[Symbolic constant Meaning

113 CPXM P_ABORT_FEAS current solution integer feasible

114 CPXM P_ABORT_I NFEAS no integer feasible solution found

Interaction Between Callbacks and CPLEX Parallel Optimizers

When you use callback routines, and invoke the parallel version of CPLEX optimizers, you
need to be aware that the CPLEX environment passed to the callback routine corresponds to
an individual CPLEX thread rather than to the original environment created. CPLEX frees
this environment when finished with the thread. This does not affect most uses of the
callback function. However, keep in mind that CPLEX associates problem objects,
parameter settings, and message channels with the environment that specifiesthem. CPLEX
therefore frees these items when it removes that environment; if the callback uses routines
like CPXcr eat epr ob, CPXcl onepr ob or CPXget channel s, those objectsremain
alocated only aslong as the associated environment does. Similarly, setting parameters with
routines like CPXset i nt par amaffects settings only within the thread. So, applications that
access CPLEX objectsin the callback should use the original environment you created by if
they need to access these objects outside the scope of the callback function.

Example: Using Callbacks

z
e
— o
S »
S
92
g
o
>
(@]

This example shows you how to use callbacks effectively with routines from the

ILOG CPLEX Callable Library. Itisbased on | pex1. ¢, aprogram described in the manual
Getting Sarted with ILOG CPLEX. This example about callbacks differs from that simpler
onein severa ways:

0 To make the output more interesting, this example optimizes adlightly different linear
program.

0 ThelLOG CPLEX screenindicator (that is, the parameter CPX_PARAM SCRI ND) is not
turned on. Only the callback function produces output. Consequently, this program calls
CPXget errorstring() todetermineany error messages and then prints them. After
the TERM NATE: |abel, the program uses separate status variables so that if an error

ILOG CPLEX 7.5 — USER’'S MANUAL 303

USING CALLBACKS

304

occurred earlier, its error status will not be lost or destroyed by freeing the problem
object and closing the ILOG CPLEX environment. Table 8.7 summarizes those status
variables.

Table 8.7 SatusVariablesin| pex4. c

Variable Represents status returned by this routine

frstatus CPXf r eeprob()

cl status CPXcl oseCPLEX()

0 Thefunction nycal | back() attheend of the program is called by the optimizer. This
function tests whether the primal simplex optimizer has been called. If so, then acall to
CPXget cal | backi nf o() getsthe following information:

. iteration count;

. feasibility indicator;

. sum of infeasibilities (if infeasible);

. objectivevalue (if feasible).

The function then prints these values to indicate progress.

0 Beforethe program calls CPXI popt () , the default optimizer from the ILOG CPLEX
Callable Library, it sets the callback function by calling CPXset | pcal | backf unc() . It
unsets the callback immediately after optimization.

This callback function offers amodel for graphic user interfaces that display optimization
progress as well asthose GUIs that allow a user to interrupt and stop optimization. If you
want to provide your end-user afacility like that to interrupt and stop optimization, then you
should make nycal | back() return anonzero value to indicate the end-user interrupt.

Complete Program: Ipex4.c
The complete program, | pex4. c, appears here or online in the standard distribution.

#i ncl ude <il cpl ex/cpl ex. h>

/* Bring in the declarations for the string functions */
#i ncl ude <string. h>

/* Include declaration for function at end of program */
#i fndef OPX_PROTOTYPE_M N

static int
popul at ebycol um (CPXENVptr env, CPXLPptr |p);

static int CPXPUBLIC

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

nmycal | back (CPXENVptr env, void *chdata, int wherefrom
voi d *cbhandl e);

#el se

static int
popul at ebycol um () ;

static int CPXPUBLIC
nmycal | back ();

#endi f

/* The problemwe are optimzing will have 2 rows, 3 col ums
and 6 nonzeros. */

#defi ne NUVROAS 2

#defi ne NUMCOLS 3

#defi ne NUMNZ 6

#i fndef OPX_PROTOTYPE_M N
int

mai n (voi d) s

#el se s

i nt Q >
; ()

main () o

#endi f (-8 g

{ [

char probnane[16]; /* Problemnanme is max 16 characters */ g! o

=]

«Q

/* Declare and al |l ocate space for the variables and arrays where we
will store the optimization results including the status, objective
val ue, variabl e val ues, dual values, row slacks and vari abl e
reduced costs. */

i nt sol stat;

doubl e objval;

double x[NUMCCLS];
doubl e pi [NUMROWE] ;
doubl e sl ack[NUMROWNE] ;
double dj [NUMCOLS];

CPXENVpt r env = NULL;

CPXLPpt r Ip = NULL;

i nt st at us;

int i,

int cur_nunrows, cur_nuntol s;

/* Initialize the CPLEX environnent */

ILOG CPLEX 7.5 — USER’'S MANUAL 305

USING CALLBACKS

306

env = CPXopenCPLEX (&status);

/* If an error occurs, the status val ue indicates the reason for
failure. The error nessage will be printed at the end of the
program */

if (env == NULL) {
fprintf (stderr, “Could not open CPLEX environnent.\n");
got o TERM NATE;

}

/* Turn *of f* output to the screen since we'll be producing it
via the callback function. This also means we won’'t see any
CPLEX generated errors, but we'll handle that at the end of

the program */

status = CPXsetintparam (env, CPX_PARAM SCRIND, CPX_OFF);
if (status) {
fprintf (stderr,

“Failure to turn off screen indicator, error %l.\n", status);

got 0 TERM NATE;
}

/* Oreate the problem */

strcpy (probnane, “exanple”);
Ip = CPXcreateprob (env, &status, probnane);

/* A returned pointer of NULL may nean that not enough menory
was available or there was sone other problem |In the case of
failure, an error message will have been witten to the error
channel frominside CPLEX. In this exanple, we wouldn't see
an error nessage from CPXcreateprob since we turned off the
CPX_PARAM SCRI ND par aneter above. The only way to see this nessage
woul d be to use the CPLEX nessage handl er, but that clutters up
the sinplicity of this exanple, which has a point of illustrating
the CPLEX cal |l back functionality. */

if (Ip==NILL) {

fprintf (stderr, “Failed to create LP.\n");
got o TERM NATE;

}

/* Now popul ate the problemwi th the data. */
status = popul at ebycol umm (env, |p);
if (status) {

fprintf (stderr, “Failed to popul ate problemdata.\n");
got o TERM NATE;

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

status = CPXsetl pcal | backfunc (env, nycall back, NULL);

if (status) {
fprintf (stderr, “Failed to set callback function.\n");
got o TERM NATE;

}

/* Optimze the problemand obtain solution. */

status = CPXsetintparam (env, CPX_PARAM LPMETHOD, CPX ALG PRI MVAL);
if (status) {
fprintf (stderr,
“Failed to set the optimzation method, error %l.\n", status);
got o TERM NATE;
}

status = CPXl popt (env, |p);

if (status) {
fprintf (stderr, “Failed to optimze LP.\n");
got o TERM NATE;

}

/* Turn off the callback function. This isn't strictly necessary,
but is good practice. Note that the cast in front of NULL
is only necessary for sone conpilers. */

#i f ndef CPX_PROTOTYPE_M N
status = CPXsetl pcal | backfunc (env,
(int (CPXPUBLIC *)(CPXENVptr, void *, int, void *)) NULL, NULL);
#el se
status = CPXsetl pcal | backfunc (env, (int (CPXPUBLIC *)()) NULL, NULL);
#endi f
if (status) {
fprintf (stderr, “Failed to turn off callback function.\n");
got o TERM NATE;

z
_ o
— o
S »
o
92
g
o
>
(@]

}

status = CPXsolution (env, Ip, &solstat, &objval, x, pi, slack, dj);
if (status) {

fprintf (stderr, “Failed to obtain solution.\n");

got o TERM NATE;

/* Wite the output to the screen. */

printf (“\nSolution status = %l\n”, solstat);
printf (“Solution value = %\n\n", objval);

/* The size of the problemshould be obtained by aski ng CPLEX what
the actual size is, rather than using sizes fromwhen the problem
was built. cur_nunrows and cur_nuntols store the current nunber
of rows and colums, respectively. */

ILOG CPLEX 7.5 — USER’'S MANUAL 307

USING CALLBACKS

308

cur_nunrows = CPXget nuntrows (env, |p);
cur_nuntol s = CPXget nuntol s (env, |p);
for (i =0; i < cur_nunrows; i++) {
printf (“Row %l: Slack = %d0f Pi = 9%40f\n", i, slack[i], pi[i]);
}

for (j =0; j < cur_nuncols; j++) {
printf (“Colum %: Value = %0f Reduced cost = %40f\n",
joox[il, dilil);
}

/* Finally, wite a copy of the problemto a file. */

status = CPXwiteprob (env, |p, “lpex4.1p”, NULL);

if (status) {
fprintf (stderr, “Failed to wite LP to disk.\n");
got 0 TERM NATE;

}

TERM NATE:

/* Free up the problemas allocated by CPXcreateprob, if necessary */

if (Ip!=NJL) {
int frstatus;
frstatus = CPXfreeprob (env, & p);
if (frstatus) {
fprintf (stderr, “CPXfreeprob failed, error code %.\n", frstatus);
if ((!status) & & frstatus) status = frstatus;

/* Free up the CPLEX environnent, if necessary */

if (env != NULL) {
int clstatus;
cl status = CPXcl o0seCPLEX (&env);

if (clstatus) {

fprintf (stderr, “CPXcloseCPLEX failed, error code %.\n", clstatus);
if ((!status) & clstatus) status = clstatus;

if (status) {
char errnsg[1024];

/* Note that since we have turned off the CPLEX screen indicator,
we'll need to print the error nessage ourselves. */

CPXgeterrorstring (env, status, errnsg);
fprintf (stderr, “%”, errmsg);

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

}

return (status);

} /* END main */

/* This function builds by colum the linear program

Maxi m ze
obj: x1 + 2 x2 + 3 x3
Subj ect To
cl: - x1 + x2 + x3 <= 20
c2: x1 - 3 x2 + x3 <= 30
Bounds
35 <= x1 <= 40
End

*/

#i fndef CPX_PROTOTYPE_M N

static int

popul at ebycol utm (CPXENVptr env, CPXLPptr |p)
#el se

static int

popul at ebycol um (env, |p)

CPXENVptr env;

CPXLPpt r | p;

#endi f

{
i nt stat us =0
doubl e obj [NUMCCLS];
double | b[NUMOOLS];
doubl e ub[NUMCCLS] ;

char *col name[NUMCCLS] ;
int mat beg[NUMCOLS] ;
int mat i nd[NUMN\Z] ;

doubl e mat val [NUMN\Z] ;
doubl e rhs[NUMROWE] ;

char sense[NUMROWE] ;
char *r ownane[NUMROWE] ;

/* To build the problemby colum, create the rows, and then
add the colums. */

CPXchgobj sen (env, Ip, CPX_ MAX); /* Problemis maxim zation */

/* Now create the newrows. First, populate the arrays. */

rownane[0] = “c1”;
sense[0] =L
rhs[0] = 20.0;

ILOG CPLEX 7.5 — USER’'S MANUAL 309

z
_ o
— o
S »
o
92
g
o
>
(@]

USING CALLBACKS

rownane[1] = “c2”;
sense[1] ='L;
rhs[1] = 30.0;

status = CPXnewows (env, |Ip, NUVMROAS, rhs, sense, NULL, rownane);
if (status) got o TERM NATE;

/* Now add the new colums. First, popul ate the arrays. */

obj[0] = 1.0; obj[1] = 2.0; obj[2] = 3.0;
mat beg[0] = O; nmat beg[1] = 2; mat beg[2] = 4;
matind[0] = O; matind[2] = O; matind[4] = O;
matval [0] = -1.0; matval[2] = 1.0; matval [4] = 1.0;
matind[1] = 1; matind[3] = 1; matind[5] = 1;
matval [1] = 1.0; matval [3] = -3.0; matval [5] = 1.0;
I b[0] = 35.0; Ib[1] = 0.0; Ib[2] = 0.0;
ub[0] = 40.0; ub[1] = CPX_INFBOUND; ub[2] = CPX_| NFBOUND;
col name[0] = “x1"; colnane[1] = “x2"; col nanme[2] = “x3";

status = CPXaddcols (env, Ip, NUMCOLS, NUWNZ, obj, matbeg, matind,
matval, |b, ub, col nane);
if (status) goto TERM NATE;

TERM NATE:
return (status);

} /* END popul at ebycol um */

/* The callback function will print out the Phase of the sinplex nethod,
the sumof infeasibilities if in Phase 1, or the objective if in Phase 2.
If any of our requests fails, we'll return an indication to abort.

*/

#i fndef CPX_PROTOTYPE_M N

static int CPXPUBLIC

nycal | back (CPXENVptr env, void *chdata, int wherefrom void *cbhandl e)
#el se

static int CPXPUBLIC

nycal | back (env, cbdata, wherefrom cbhandl e)

CPXENVptr env;

voi d *chdat a;
int wher ef rom
voi d *cbhandl e;
#endi f
{

int status = 0;

310 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

int phase = -1;
doubl e sumi nf _or_obj ecti ve;
int itent = -1;

if (wherefrom== CPX_CALLBACK PRI MAL) {
status = CPXgetcal | backinfo (env, chdata, wherefrom
CPX_CALLBACK | NFO | TCOUNT, &itcnt);
if (status) goto TERM NATE;

status = CPXgetcal | backi nfo (env, chdata, wherefrom
CPX_CALLBACK | NFO PRI MAL_FEAS, &phase);
if (status) goto TERM NATE;

if (phase == 0) {
status = CPXgetcal | backi nfo (env, cbhdata, wherefrom
CPX_CALLBACK_| NFO PRI MAL_| NFVEAS,
&sum nf _or _obj ective);
if (status) goto TERM NATE;

printf (“lteration %: Infeasibility measure = %\n”,
itcnt, sum nf_or_objective);

}
el se {
status = CPXgetcal | backi nfo (env, chdata, wherefrom
CPX_CALLBACK_| NFO PRI MAL_CBJ, §
&sum nf _or _obj ective); - =
if (status) goto TERM NATE; @] >
O =
printf (“lteration %: Objective = %\n", (_8 8
itcnt, suninf_or_objective); — "C'
} Ra
=
}]
TERM NATE:

return (status);

} /* END nycal | back */

Control Callbacks for lloCplex

Control callbacks allow you to control the branch & cut search during the optimization of
MIP problems. The following control callbacks are available for I 1 oCpl ex:

0 Thenodecal | back allowsyou to query and optionally overwrite the next node CPLEX
will process during abranch & cut search.

0O Thesolvecal | back alowsyou to specify and configure the optimizer option to be used
for solving the LP at each individual node.

ILOG CPLEX 7.5 — USER’'S MANUAL 311

USING CALLBACKS

312

0 Thecut cal | back alowsyou to add problem-specific cuts at each node.

0O Theheuristic cal | back allowsyou to implement a heuristic that tries to generate a new
incumbent from the solution of the LP relaxation at each node.

0 Thebranchcal | back alowsyou to query and optionally overwrite the way CPLEX
will branch at each node.

These callbacks are implemented as an extension of the diagnostic callback class hierarchy.
This extension is shown below along with the macro names for each of the control callbacks
(see Diagnostic Callbacks on page 294 for a discussion of how macros and callback
implementation classes relate).

11 oCpl ex: : M PCal | backl | LOM PCALLBACKNn
L--- Il oCpl ex: : NodeCal | backl | LONODECALLBACKnN
L——— 11 oCpl ex: : Control Cal | back
L--- I I oCpl ex: : BranchCal | backl | LOBRANCHCALLBACKn
L--- I'l oCpl ex: : Cut Cal | backl | LOCUTCALLBACKN
+!—— 11 oCpl ex: : Heuri sticCal | backl | LOHEURI STI CCALLBACKnN
L--- I'l oCpl ex: : Sol veCal | backl | LOSOLVECALLBACKN

Similar to class| | oCpl ex: : Cal | backl, class| | oCpl ex: : Control Cal | backl isnot
provided for deriving user callback classes, but for defining the common interface for its
derived classes. Thisinterface provides methods for querying information about the current
node, such as current bounds or solution information for the current node. See class

Il oCpl ex: : Control Cal | backl inthelLOG CPLEX Reference Manual for more
information.

Example: Controlling Cuts

This example shows how to use the cut callback in the context of solving the noswot model.
Thisisarelatively small model from the MIPLIB 3.0 test-set, consisting only of 128
variables. Thismodel isvery hard to solve by itself, in fact until the release of CPLEX 6.5 it
appeared to be unsolvable even after days of computation.

Whileit is now solvable directly, the computation time isin the order of several hours on
state-of-the-art computers. However, cuts can be derived, the addition of which make the
problem solvable in a matter of minutes or seconds. These cuts are:

x21 - x22 <=0

x22 - x23 <=0

x23 - x24 <=0

2.08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0.25*wll + 0.25*wW21 + 0.25*w31 + 0.25*w4l + 0.25*wbl <= 20.25

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

2.08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0.25*wl2 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52 <= 20. 25
2.08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0.25*wl3 + 0.25*wW23 + 0.25*w83 + 0.25*w43 + 0.25*wh3 <= 20. 25
2.08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0.25*wl4 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0. 25*wWs4 <= 20. 25
2.08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0.25*w1l5 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0. 25*wWs5 <= 16. 25

These cuts have been derived after interpreting the model as a resource alocation model on
five machines with scheduling, horizon constraints and transaction times. The first tree cuts
break symmetries among the machines, while the others capture minimum bounds on
transaction costs. See “MIP: Theory and Practice —Closing the Gap” for more on how
these cuts have been found.

Of course the best way to solve the noswot model with these cutsisto simply add the cutsto
the model before calling the optimizer. However, for demonstration purposes, we will add
the cuts, using a cut callback, only when they are violated at a node. This cut callback takes
alist of cuts as parameter and adds individual cuts whenever they are violated with the
current LP solution. Notice, that adding cuts does not change the extracted model, but
affects only the internal problem representation of the CPLEX object.

This callback isimplemented with the code:

<
| LOCUTCALLBACK3(Ct Cal | back, Il oExprArray, Ihs, IloNumArray, rhs, IloNum eps) { = S
Ilolnt n = 1hs.getSize(); @) ©
for (Ilolnt i =0, i <n; ++) { oz
Il oNum xrhs = rhs[i]; @) g
if (xrhs < Ilolnfinity & getValue(lhs[i]) > xrhs + eps) { ;9 =
Il oRange cut; >|'|2 S
try { S
cut = (lhs[i] <= xrhs); @
add(cut).end();
rhs[i] = Ilolnfinity;

}
catch (...) {

cut.end();
t hr ow,
}
}
}
}

Thisdefinestheclass Ct Cal | backl asaderived classof | | oCpl ex: : Cut Cal | backl and
provides the implementation for its virtual methods mai n() and naked one() . Itaso
implements a function Ct Cal | back that creates an instance of Ct Cal | backl and returns
anll oCpl ex: : Cal | back handlefor it.

Asindicated by the 3 in the macro name, the constructor of | | oCt Cal | backl takesthree
parameters, caled | hs, r hs, and eps. The constructor stores them as private membersto
have direct access to them in the callback function, implemented as method mai n. Notice

ILOG CPLEX 7.5 — USER’'S MANUAL 313

USING CALLBACKS

314

the comma (,) between the type and the argument object in the macro invocation. Here is
how the macro expands:

class |IloCCal |l backl : public IloCplex::Fractional CutCal |l backl {
Il oExpr Array | hs;
Il oNumArray rhs;
Il oNum eps;
public:
Il oCpl ex: : Cal | backl * naked one() const {
return (new (getEnv()) IloCCallbackl(*this));

}

Il oCt Cal | backl (Il oExprArray xl hs, IloNumArray xrhs, |1l oNum xeps)
I hs(xl hs), rhs(xrhs), eps(xeps)

{}

voi d main();

b

I'l oOpl ex:: Cal |l back Il oCtCallback(!loEnv env,
Il oExprArray |hs,
Il oNumArray rhs,
Il oNum eps) {
return (I1oCplex:: Callback(new (env) IloCCallbackl (lhs, rhs, eps)));
}

void IloCtCall backl::min() {

}

where the actual implementation code has been substituted with “. . . ”. Similar macros are
provided for other numbers of parameters ranging from 0 through 7 for al callback classes.

The first parameter | hs isan array of expressions, and the parameter r hs isan array of
values. These parameters are the left-hand side and right-hand side values of cuts of the form
I hs <= r hs to betested for violation and potentially added. The third parameter eps gives
atolerance by which acut must at |east be violated in order to be added to the problem being
solved.

The implementation of this example cut callback looks for cuts that are violated by the
current LP solution of the node where the callback is invoked. We loop over the potential
cuts, checking each for violation by querying the value of thel hs expression with respect to
the current solution. Thisis done by calling get Val ue with this expression asa parameter.
Thisistested for violation of more than the tolerance parameter eps with the corresponding
right-hand side value.

Tip: A numerical tolerance is aways awise thing to consider when dealing with any non-
trivial model, to avoid certain logical inconsistencies that could otherwise occur due to
numerical roundoff. Here we use the standard CPLEX simplex feasibility tolerance for this
purpose, to insure some consistency with the way CPLEX is treating the rest of the model.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

If aviolation is detected, the callback createsan | | oRange object to represent the cut:

I hs[i] <= rhs[i].ItisaddedtotheLP by caling method add() . Adding acut to
CPLEX, unlike extracting amodel, only copies the cut into the CPLEX data structures,
without maintaining a notification link between the two. Thus, after a cut has been added, it
can be deleted by calling its method end() . In fact, it should be deleted, as otherwise the
memory used for the cut could not be reclaimed. For convenience, method add() returns
the cut that has been added, and thus we can call end() directly on the returned | | oRange
object.

It isimportant that all resources that have been allocated during a callback are freed again
before leaving the callback--even in the case of an exception. Here exceptions could be
thrown when creating the cut itself or when trying to add it, for example, due to memory
exhaustion. Thus, we enclose these operationsin atry block and catch al exceptions that
may occur. In the case of an exception, we delete the cut by calling cut . end() and re-
throw whatever exception was caught. Re-throwing the exception can be omitted if you
want to continue the optimization without the cut.

After the cut has been added, we set ther hs valueto | | ol nfi ni ty to avoid checking this
cut for violation at the next invocation of the callback. Note that we did not simply remove
theith element of arraysr hs and | hs, because thisis not supported if the cut callback is
invoked from a parallel optimizer. However, changing array elementsis allowed.

Also, for the potential use of the callback in parallel, the variable xr hs ensures that we are
using the same value when checking for violation of the cut as when adding the cut.
Otherwise, another thread may have set ther hs valueto | | ol nfi ni ty just between the
two actions, and a useless cut would be added. CPLEX would actually handle this correctly,
asit handles adding the same cut from different threads.

z
e
— o
S »
S
92
g
o
>
(@]

Function nakeCut s() generatesthearraysrhs and | hs to be passed to the cut callback. It
first declares the array of variables to be used for defining the cuts. Since the environment is
not passed to the constructor of that array, an array of O-variable handlesis created. In the
following loop, these variable handles are initialized to the correct variables in the noswot
model which are passed to this function as parameter var s. The identification of the
variablesis done by querying variables names. Once all the variables have been assigned,
they are used to create the | hs expressions and r hs values of the cuts.

The cut callback is created and passed to CPLEX in theline:

cpl ex. use(C Cal | back(env, Ihs, rhs, cplex.getParan(lloCplex::EpRHS)));

The function & Cal | back constructs an instance of our callback class Ct Cal | backl and
returnsan | | oCpl ex: : Cal | back handle object for it. Thisis directly passed to function
cpl ex. use.

We should point out that I | oCpl ex provides an easier way to manage such cutsin a case
like this, where al cuts can be easily enumerated before starting the optimization. Calling
the methods cpl ex. addCut () and cpl ex. addCut s() allowsyou to copy the cutsto

ILOG CPLEX 7.5 — USER’'S MANUAL 315

USING CALLBACKS

316

I I oCpl ex before the optimization. Thus, instead of creating and using the callback, we
could have written:

cpl ex. addCut s(makeCut s(var));

as shown in examplei | oadni pex7. cpp inthedistribution. During branch & cut, CPLEX
will consider adding individual cutsto its representation of the model only if they are
violated by anode LP solution in about the same way this example handles them. Whether
this or adding the cuts directly to the model gives better performance when solving the
model depends on theindividual problem.

Complete Program: iloadmipex5.cpp
The complete program, i | oadni pex5. cpp, appears here or onlinein the standard
distribution.

#i ncl ude <ilcplex/ilocplex. h>
| LOSTLBEG N

| LOCUTCALLBACK3(Ct Cal | back, |1 oExprArray, |hs, IloNumArray, rhs, |loNum eps) {
Ilolnt n = 1hs.getSize();
for (Ilolnt i 0; i <n; ++i) {
Il oNum xrhs = rhs[i];
if (xrhs < Ilolnfinity && getValue(lhs[i]) > xrhs + eps) {

Il oRange cut;
try {
cut = (I hs[i] <= xrhs);
add(cut).end();
rhs[i] = Illolnfinity;
}
catch (...) {
cut.end();
t hr ow,
}
}
}
}
voi d

makeCut s(const |l oNunVarArray vars, |loExprArray |hs, |loNumArray rhs) {

Il oNumvar x11, x12, x13, x14, x15;
Il oNumvar x21, x22, x23, x24, x25;
Il oNumVar x31, x32, x33, x34, x35;
Il oNumVar x41, x42, x43, x44, x45;
Il oNumvar x51, x52, x53, x54, x55;
Il oNumvar wil, wi2, wi3, wl4, wi5;
Il oNumvar w21, w22, w23, w24, w25;
Il oNumvar w31, w32, w33, w34, w35;
Il oNumvar w41, w42, w43, w44, w45;
Il oNumvar w51, w52, wh3, wh4, Wwh5;
Ilolnt num = vars. get Si ze();

for (llolnt i =0; i < num ++) {

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

if (strcnp(vars[i].getNane(), "X11") == 0) x11 = vars[i];
else if (strcnp(vars[i].getNane(), "X12") == 0) x12 = vars[i];
else if (strcnp(vars[i].getNane(), "X13") == 0) x13 = vars[i];
else if (strcnp(vars[i].getName(), "X14") == 0) x14 = vars[i];
else if (strcnp(vars[i].getNane(), "X15") == 0) x15 = vars[i];
else if (strcnp(vars[i].getNane(), "X21") == 0) x21 = vars[i];
else if (strcnp(vars[i].getName(), "X22") == 0) x22 = vars[i];
else if (strcnp(vars[i].getNane(), "X23") == 0) x23 = vars[i];
else if (strcnp(vars[i].getNane(), "X24") == 0) x24 = vars[i];
else if (strcnp(vars[i].getName(), "X25") == 0) x25 = vars[i];
else if (strcnp(vars[i].getNane(), "X31") == 0) x31 = vars[i];
else if (strcnp(vars[i].getNane(), "X32") == 0) x32 = vars[i];
else if (strcnp(vars[i].getName(), "X33") == 0) x33 = vars[i];
else if (strcnp(vars[i].getNane(), "X34") == 0) x34 = vars[i];
else if (strcnp(vars[i].getNane(), "X35") == 0) x35 = vars[i];
else if (strcnp(vars[i].getName(), "X41") == 0) x41 = vars[i];
else if (strcnp(vars[i].getNane(), "X42") == 0) x42 = vars[i];
else if (strcnp(vars[i].getNane(), "X43") == 0) x43 = vars[i];
else if (strcnp(vars[i].getName(), "X44") == 0) x44 = vars[i];
else if (strcnp(vars[i].getNane(), "X45") == 0) x45 = vars[i];
else if (strcnp(vars[i].getNane(), "X51") == 0) x51 = vars[i];
else if (strcnp(vars[i].getName(), "X52") == 0) x52 = vars[i];
else if (strcmp(vars[i].getNane(), "X53") == 0) x53 = varsJ[i];
else if (strcrmp(vars[i].getName(), "X54") == 0) x54 = vars[i];
else if (strcnp(vars[i].getName(), "X55") == 0) x55 = vars[i]; §
else if (strcmp(vars[i].getNane(), "W1") == 0) wll = vars[i]; =~ o
else if (strcnp(vars[i].getNane(), "W2") == 0) wl2 = vars[i]; (@] >
else if (strcnp(vars[i].getName(), "WL3") == 0) wil3 = vars[i]; O =
else if (strcnp(vars[i].getNane(), "W4") == 0) wl4 = vars[i]; (_8 8
else if (strcnp(vars[i].getName(), "W5") == 0) wl5 = vars[i]; — "C'
else if (strcnp(vars[i].getName(), "W21") == 0) w21 = vars[i]; g! o
else if (strcnp(vars[i].getNane(), "We2") == 0) w22 = vars[i]; =]
else if (strcnp(vars[i].getNane(), "We3") == 0) w23 = vars[i]; «
else if (strcnp(vars[i].getName(), "W24") == 0) w24 = vars[i];
else if (strcnp(vars[i].getNane(), "We5") == 0) w25 = vars[i];
else if (strcnp(vars[i].getNane(), "WB1") == 0) w3l = vars[i];
else if (strcnp(vars[i].getName(), "WB2") == 0) w32 = vars[i];
else if (strcnp(vars[i].getNane(), "WB3") == 0) w33 = vars[i];
else if (strcrmp(vars[i].getName(), "WB4") == 0) w34 = vars[i];
else if (strcnp(vars[i].getName(), "WB5") == 0) w35 = vars[i];
else if (strcnp(vars[i].getNane(), "W1") == 0) w4l = vars[i];
else if (strcnp(vars[i].getNane(), "W2") == 0) w42 = vars[i];
else if (strcnp(vars[i].getName(), "W3") == 0) w43 = vars[i];
else if (strcnp(vars[i].getNane(), "W4") == 0) w44 = vars[i];
else if (strcnp(vars[i].getNane(), "W5") == 0) w45 = vars[i];
else if (strcnp(vars[i].getName(), "Ws1l") == 0) wsl = vars[i];
else if (strcnp(vars[i].getNane(), "W2") == 0) wb2 = vars[i];
else if (strcrmp(vars[i].getName(), "Ws3") == 0) wh3 = vars[i];
else if (strcnp(vars[i].getName(), "Ws4") == 0) wh4 = vars[i];
else if (strcrmp(vars[i].getName(), "Ws5") == 0) wh5 = vars[i];

}
| hs. add(x21 - x22); rhs.add(0.0);

ILOG CPLEX 7.5 — USER’'S MANUAL 317

USING CALLBACKS

| hs. add(x22 - x23); rhs.add(0.0);
| hs. add(x23 - x24); rhs.add(0.0);

| hs. add(2. 08*x11 + 2.98*x21 + 3.47*x31 + 2.24*x41 + 2.08*x51 +
0,25*wll + 0.25*w21 + 0.25*w31 + 0.25*w4l + 0.25*w51);
rhs. add(20. 25) ;
I hs. add(2. 08*x12 + 2.98*x22 + 3.47*x32 + 2.24*x42 + 2.08*x52 +
0,25*wl2 + 0.25*w22 + 0.25*w32 + 0.25*w42 + 0.25*w52);
rhs. add(20. 25) ;
| hs. add(2. 08*x13 + 2.98*x23 + 3.47*x33 + 2.24*x43 + 2.08*x53 +
0,25*wl3 + 0.25*w23 + 0.25*w33 + 0.25*w43 + 0.25*w53);
rhs. add(20. 25) ;
| hs. add(2. 08*x14 + 2.98*x24 + 3.47*x34 + 2.24*x44 + 2.08*x54 +
0,25*wl4 + 0.25*w24 + 0.25*w34 + 0.25*w44 + 0. 25*w54);
rhs. add(20. 25) ;
I hs. add(2. 08*x15 + 2.98*x25 + 3.47*x35 + 2.24*x45 + 2.08*x55 +
0, 25*wl5 + 0.25*w25 + 0.25*w35 + 0.25*w45 + 0. 25*w55);
rhs. add(16. 25) ;
}
i nt
mai n(int argc, char** argv)
{
I oEnv env;
try {
|1 oModel m

Il oCpl ex cpl ex(env);

Il oQbj ective obj;
I'l oNunVar Array var (env);
Il oRangeArray con(env);

env.out() << "reading ../../../exanpl es/ data/ noswot. nps" << endl;
cplex.inmportMdel (m "../../../exanpl es/data/noswot.nps", obj, var, con);

env.out () << "constructing cut callback ..." << endl;

I'l oExpr Array | hs(env);

Il oNumArray rhs(env);

makeCut s(var, |hs, rhs);

cpl ex. use(Ct Cal | back(env, |hs, rhs, cplex.getParan(l|oCplex::EpRHS)));

env.out () << "extracting nmodel ..." << endl;
cpl ex.extract(m;

env.out () << "solving nodel ...\n";

cpl ex. sol ve();

env.out () << "solution status is " << cplex.getStatus() << endl;
env.out () << "solution value is " << cplex.getjValue() << endl;

catch (Il oException& ex) {
cerr << "Error: " << ex << endl;

}
env. end();
return O;

318 ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Using Parallel Optimizers

This section tells you how to use ILOG CPLEX parallel optimizers. It includes sections on:
Parallel Libraries

Threads

Nondeterminism

Clock Settings and Time Measurement

Using Parallel Optimizersin the Interactive Optimizer

Using Parallel Optimizersin the CPLEX Component Libraries

Parallel MIP Optimizer

o o o o o o o o

Parallel Barrier Optimizer
0 Paralel Simplex Optimizer

There are three specialized ILOG CPLEX optimizers—Parallel Simplex, Parallel MIP, and
Parallel Barrier—implemented to run on hardware platformswith parallel processors. These
parallel optimizers, like other ILOG CPLEX optimizers, are available in the Interactive
Optimizer and in the Component Libraries, if you hold alLOG CPLEX Parallel license. The
paralel license allows you to use the parallel implementation of the ILOG CPLEX
optimizers for which you aready hold alicense. For example, if you are licensed to use the
ILOG CPLEX Interactive Optimizer, the MIP Optimizer, and the parallel optimizers, then
Parallel Simplex and Parallel MIP will both be available to you (if they have been
implemented on your parallel platform). If you then add alicense for the ILOG CPLEX
Barrier Optimizer, the Parallel Barrier Optimizer will automatically be available to you as
well.

For Windows users, or for LINUX users, no special procedures are needed to compile and
link your program to the parallel libraries. For other UNIX platforms, separate parallel
versions of the libraries and I nteractive Optimizer are provided for your use. Table 8.8
summarizes these details. Additional compiler/linker flags may be needed when compiling
your program to use parallel CPLEX. Consult the makefile that is provided in the CPLEX
distribution for your computer platform, and if thereis aline marked "For paralel” use the
information there as a guide.

z
e
— o
S »
S
92
g
o
>
(@]

ILOG CPLEX 7.5 — USER’'S MANUAL 319

USING PARALLEL OPTIMIZERS

320

Parallel Libraries

Generally, you use ILOG CPLEX parallel optimizersjust asyou use ILOG CPLEX serial
optimizers. They are available through the Interactive Optimizer and through methods and
routines of the Callable Library.

To access the parallel optimizers from routines of the Component Libraries, you need to link
to the parallel library. Table 8.8 summarize the names of the serial and parallel libraries for
UNIX platforms.

Table 8.8 ILOG CPLEX Serial and Parallel Libraries for UNIX Platforms

Most Unix platforms Serial Library Parallel Library

Interactive Optimizer cpl ex par cpl ex

Component Libraries libcplex.a I'i bparcpl ex. a

Threads

The ILOG CPLEX parallel optimizers are licensed for a specific maximum number of
threads (that is, the number processors applied to a given problem). The number of threads
that ILOG CPLEX actually uses during a parallel optimization is the smaller of:

0 the number of threads made available by the operating system;

0 the number of threads indicated by the licensed values of the thread-limit parameters.
Table 8.9 summarizes the values of those thread-limit parameters.

Table 8.9 Thread-Limit Parameters

Interactive Commands

Concert Technology
Enumeration Value

Callable Library Parameter

set sinplex limts threads

Il oCpl ex: : Si mThr eads

CPX_PARAM_SI MTHREADS

set barrier limts threads

Il oCpl ex: : Bar Thr eads

CPX_PARAM BARTHREADS

set mip lints threads

Il oCpl ex: : M PThr eads

CPX_PARAM M PTHREADS

set mip lints strongthreads

Il oCpl ex: : StrongThr eadLi m

CPX_PARAM_STRONGTHREADLI M

The notion of the number of threads used when running a parallel CPLEX optimizer is
entirely separate from the limit on licensed uses. A typical CPLEX license permits one
licensed use, that is a single concurrent execution on one licensed computer. If the license
also contains the parallel option with athread limit of, say, four (on a machine with at |east
four processors), that one concurrent execution of CPLEX can employ any number of
parallel threads to increase performance, up to that limit of 4. A license with the parallel
option, that additionally has alimit larger than one on the number of licensed uses, can

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

support that many simultaneous executions of CPLEX, each with the licensed maximum
number of parallel threads. In such a case, the operating system will manage any contention
for processors.

The number of parallel threads used by a CPLEX optimizer is controlled by operating
system environment variables and/or CPLEX parameter settings, up to the limits found in
the CPLEX license on the machine. Thisis discussed in more detail in the sections that
follow.

Threads and Platform Considerations

Ordinarily, your operating system will make available to ILOG CPLEX as many threads as
there are processors on your machine. In some cases, you can override this behavior through
operating-system environment variables.

0 DEC only: The default number of threads is the number of processors on the machine.
You can override this default by setting the operating system environment variable
MP_THREAD_COUNT before you call ILOG CPLEX.

0 SGI only: The default number of threads is the smaller of 8 or the number of processors
on the machine. You can override this default by setting the operating system
environment variable MPC_NUM _THREADS before you call ILOG CPLEX.

Those environment variables can be used to establish an upper limit on thread count, subject
to the limit of your ILOG CPLEX parallel license.

Individual ILOG CPLEX optimizers, such asthe ILOG CPLEX Barrier Optimizer, may be
affected by other platform considerations. See the various parallel optimizers (MIP on
page 325, nested on page 328, barrier on page 329, or simplex on page 330) for details that
cover those considerations.

z
e
— o
S »
S
92
g
o
>
(@]

Example: Threads and Licensing

For example, let's assume you use ILOG CPLEX to optimize MIP models on an eight-
processor machine, and you have purchased alLOG CPLEX license for four parallel
threads. Then you can use the Interactive Optimizer command

set mp limt threads i,substituting values 1 through 4 fori . Evenif you set an
operating system environment variable to 6, you will not be able to set

mp limt threads higher than 4 because you are licensed for a maximum of four
threads. In contrast, if you set an operating system environment variable to 2, then you can
setmip linmit threads only aslargeas 2, and any MIP optimization you carry out will
be limited to two processors because of the setting of the operating system environment
variable.

Threads and Performance Considerations

If you set the number of threads to a value greater than the number of processors,
performance will usually degrade. If you set the number of threads to a value less than the
number of processors, the remaining processors will be available for other jobs on your

ILOG CPLEX 7.5 — USER’'S MANUAL 321

USING PARALLEL OPTIMIZERS

322

platform. Simultaneously running multiple parallel jobs with atotal number of threads
exceeding the number of processors may impair the performance of each individual process
as its threads compete with one another.

If you set an operating system environment variable to a greater value than you actually use
within ILOG CPLEX withal i nit t hreads parameter, your operating system may create
idle threads that still consume system resources. If you know in advance how many threads
you want to use, we recommend that you set the operating system environment variable to
that number before you start ILOG CPLEX.

The benefit of applying more threads to optimizing a specific problem varies depending on the
optimizer you use and the characteristics of the problem. You should experiment to assess
performance improvements and degradation when you apply more or fewer processors. For
example, when you optimize an LP relaxation, there may be little or no benefit in applying
more than four processorsto the task. In contragt, if you use 16 processors during the MIP
phase of an optimization, you may improve solution speed by afactor of 20. In such acase,
you should set the parameterssi npl ex linmit threadsandmip linit threadsto
different valuesin order to use your computing resources efficiently.

Another key consideration in setting optimizer and global thread limitsis your management
of overall system load.

Nondeterminism

Among the ILOG CPLEX parallel optimizers, only parallel simplex follows a deterministic
algorithm, producing the same number of iterations and the same solution path when you
apply it to the same problem more than once. In contrast, the parallel barrier and parallel
MIP optimizers are nondeterministic: repeated solutions of a model using exactly the same
settings can produce different solution paths and, in the case of the parallel MIP optimizer,
very different solution times and results.

The basic algorithm in the ILOG CPLEX Parallel MIP Optimizer is branch & cut. The
primary source of parallelism in branch & cut is the solution of the LP subproblems at the
individual nodes of the search tree. These subproblems can be distributed over available
processors to be carried out in parallel. The individual solution paths for these subproblems
will, in fact, be deterministic, but the speed at which their solutions occur can vary slightly.
These variations |ead to nodes being taken from and replaced in the branch & cut treein
different order, and this reordering leads to nondeterminism about many other quantities that
control the optimization. This nondeterminism is unavoidablein such a context, and its
effects can result in some casesin very different solution paths.

Clock Settings and Time Measurement

The clock-type parameter determines how ILOG CPLEX measures computation time. For
most nonparallel processing purposes, CPU time, the default type, is appropriate. It reports
how much time the CPU was actually employed to complete an operation. Thisvalueis

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

highly system dependent. On some parallel systems, it may measure aggregate CPU time,
that is, the sum of time used by all processors, or on others, it may report the CPU time of
only one process. In short, it may give you a misleading indication of parallel speed.

The alternative type, wall-clock time, is usually more appropriate for parallel computing
because it measures the total physical time elapsed after an operation begins. When multiple
processes are active, and when parallel optimizers are active, wall-clock time can be much
different from CPU time.

You can choose the type of clock setting, in the:

O Interactive Optimizer, with the command set cl ockt ype i .

0 Concert Technology Library, usethemethod | | oCpl ex: : set Paran(T ockType, i).

0 CalableLibrary, usethe routine CPXset i nt par an{ env, CPX_PARAM CLOCKTYPE,
i).

Replace thei with the value 1 to specify CPU time or 2 to specify wall-clock time.

Using Parallel Optimizers in the Interactive Optimizer

1. If necessary for your platform, set any operating system environment variabl e needed for
parallel operation. See Threads on page 320 and platform considerations for the various
parallel optimizers (MIP on page 325, nested on page 328, barrier on page 329, or
simplex on page 330) for details.

2. Start the parallel implementation of the ILOG CPLEX Interactive Optimizer with the
command par cpl ex (or cpl ex on machines where a separate executable is not needed)
at the operating system prompt.

z
e
— o
S »
S
92
g
o
>
(@]

3. Set the thread-limit, as explained in Threads on page 320.
4. Enter and populate your problem object as usual.
5. Call the parallel optimizer with the appropriate command:

Parallel MIP Optimizer nm popt
Parallel Barrier Optimizer bar opt
Parallel Simplex Optimizer prinopt ortranopt

Using Parallel Optimizers in the CPLEX Component Libraries

1. Link your application to the parallel implementation of the ILOG CPLEX Component
Libraries. See Table 8.8 on page 320 for the library name, which varies according to
platform.

2. Createyour ILOG CPLEX environment and initialize a problem object in the usual way.

ILOG CPLEX 7.5 — USER’'S MANUAL 323

USING PARALLEL OPTIMIZERS

324

5.

See Initialize the ILOG CPLEX Environment on page 57 and Instantiate the Problem
Object on page 58 for details.

Within your application, set the appropriate CPLEX parameter from Table 8.9 to specify
the number of threads.

Enter and populate your problem object in the usual way, asin Put Data in the Problem
Object on page 58.

Call the paralel optimizer with the appropriate method or routine:

Optimizer Concert Technology Library Callable Library
Parallel MIP Optimizer Il oCpl ex: : sol ve() CPXmi popt ()
Parallel Barrier Optimizer |1 oCpl ex: : Barri er or CPXbar opt () or

Il oCpl ex::BarrierPriml or CPXhybbaropt ()
Il oCpl ex: : Barri er Dual

Parallel Simplex Il oCpl ex:: Primal or CPXpri nopt () or
Optimizer Il oCpl ex: : Dual CPXdual opt ()

Parallel MIP Optimizer

The CPLEX Paralel MIP Optimizer is quite robust with respect to parallelism, so it
achieves remarkabl e speedups on awide variety of models—particularly difficult ones that
process a large number of nodes in the branch & cut search tree while proving optimality.
The parallel MIP optimizer provides severa different opportunities for applying multiple
processors to the solution of a problem.

O

Parallelism can be applied to the root relaxation using either parallel barrier optimizer or
(on platforms where it is available) parallel simplex optimizer, depending on the setting
of the start-algorithm parameter. Parallelism here is controlled by the barrier (or simplex)
thread-limit parameter.

Oncethe root relaxation has been solved, you can process nodesin the branch & cut tree
in parallel by setting the MIP thread-limit parameter to a value greater than 1.

In the Interactive Optimizer, usethe commandset nmip linits threads.

When using the Component Libraries, set the parameter | | oCpl ex: : M pThr eads or
CPX_PARAM M PTHREADS.

Alternatively, you can process one node at atime but apply multiple processors to the
solution of each node by setting the MIP thread-limit to 1 (one) and choosing either
paralel simplex or parallel barrier for the subalgorithm.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

O A third alternative, using strong branching as the variabl e selection strategy, isto process
one node at atime but apply multiple processors to strong branching variable selection,
by setting the MIP thread-limit to 1 (one) and the strong branching thread-limit to a
value greater than one.

The following sections discuss details and tradeoffs associated with these options.

Platform Considerations

The parallel MIP optimizer is available on all the parallel platforms that ILOG CPLEX
supports.

Memory Considerations and the Parallel MIP Optimizer

Before the parallel MIP optimizer invokes parallel processing, it makes separate, internal
copiesof theinitial problem. Theindividual processors use these copies during computation,
so each of them requires an amount of memory roughly equal to the original model after itis
presolved.

Output from the Parallel MIP Optimizer

The parallel MIP optimizer generates slightly different output from the serial M1P optimizer
(described in Termination on page 166 and Post-Solution Information in a MIP on
page 167). The following paragraphs explain those differences.

Timing Statistics from the Parallel MIP Optimizer

We explained that you can control the amount of information that ILOG CPLEX displays
and recordsinitslog files.

To make ILOG CPLEX record elapsed time for the MIP optimizer:

z
e
— o
S »
S
92
g
o
>
(@]

0O Inthe Interactive Optimizer, use the command set mi p di splay i,wherei is1,2,
3,4,0r5.

0 When using the CPLEX Component Libraries, set the parameter
Il oCpl ex: : M PDi spl ay or CPX_PARAM M PDI SPLAY to one of these same values
1-5.

In the parallel MIP optimizer, these elapsed times are always wall-clock times, regardless of
the clock-type parameter.

ILOG CPLEX prints asummary of timing statistics specific to the parallel MIP optimizer at
the end of optimization. You can see typical timing statistics in the following sample run.

ILOG CPLEX 7.5 — USER’'S MANUAL 325

USING PARALLEL OPTIMIZERS

326

Probl em’ fixnet6. nps’ read.
Read time = 0. 04 sec.
CPLEX> o

Tried aggregator 1 tine.
M P Presol ve nodi fied 308 coefficients.
Aggregator did 1 substitutions.

Reduced M P has 477 rows, 877 col ums,

Presolve tinme =

0. 02 sec.

dique table menbers:

and 1754 nonzeros.

M P enphasis: optinality
Root relaxation solution time = 0. 04 sec.
Nodes Cut s/
Node Left Ohjective |Inf Best Integer Best Node I tCnt Gap
0 0 3192. 0420 12 3192. 0420 305
3263. 9220 19 Quts: 36 341
3393. 0917 17 Cuts: 24 403
3444. 9996 19 Flowcuts: 9 439
3479. 7206 24 Fl oncuts: 6 470
3489. 7893 21 Fl owcuts: 3 482
3500. 4789 24 Fl oncuts: 4 494
3502. 0646 26 Fl owcuts: 4 499
3526. 8260 20 Fl oncuts: 2 502
3527. 0669 19 Flowcuts: 1 504
3527. 2559 22 Fl oncuts: 1 506
3527. 6402 24 Flowcuts: 1 508
3529. 7853 18 Fl oncuts: 1 515
* 0+ 0 4116. 0000 0 4116. 0000 3529. 7853 515 14.24%
* 40+ 24 4077. 0000 0 4077. 0000 3808. 7017 1191 6.58%
* 46 23 3983. 0000 0 3983. 0000 3854. 2312 1198 3.23%
Sequential (before b&b):
CPU tine = 0.79
Paral l el b&b, 4 threads:
Real time = 0.48
Critical tinme (total) = 0. 00
Spin time (average) = 0. 00
Total (sequential +parallel) = 1. 27 sec
Cover cuts applied: 1
Fl ow cuts applied: 43
Conory fractional cuts applied: 8
Integer optimal solution: Objective = 3. 9830000000e+03

Solution tinme = 1.65 sec. Iterations = 1415 Nodes = 74

The summary at the end of the sampletells usthat 0.79 seconds were spent in CPU time (since
the clock-type parameter was the default) in the sequential phase, mainly in preprocessing by
the presolver and in solving theinitia linear-programming relaxation. The parallel part of this
sample run took 0.48 seconds of real time (that is, elapsed time for that phase).

Other parts of the sample report indicate that the processors spent an average of 0.00
seconds of real time spinning (that is, waiting for work while there were too few active

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

nodes available). Therea critical time was atotal of 0.00 seconds, time spent by individual
processors in updating global, shared information. Since only one processor can access the
critical region at any instant in time, the amount of time spent in thisregion really is crucial:
any other processor that tries to access this region must wait, thus sitting idle, and thisidle
time is counted separately from the spin time.

Logs from the Parallel MIP Optimizer

Thereisalso adifference in the way logging occursin the parallel MIP optimizer. When this
optimizer is called, it makes a number of copies of the problem. These copies are known as
clones. The parallel MIP optimizer creates as many clones asthere arethreads availableto it.
When the optimizer exits, these clones and al their paraphernalia are discarded.

If alog file is active when the clones are created, then ILOG CPLEX creates aclonelog file
for each clone. The clone log files are named cl oneK. | og, where K is the index of the
clone, ranging from O (zero) to the number of threads minus one. Since the clones are
created at each call to the parallel MIP optimizer and discarded when it exits, the clone logs
are opened at each call and closed at each exit. (The clone log files are hot removed when
the clones themselves are discarded.)

The clone logs contain information normally recorded in the ordinary log file (by default,
cpl ex. | og) but inconvenient to send through the normal log channel. The information
likely to be of most interest to you are special messages, such as error messages, that result
from calls to the L P optimizers called for the subproblems.

Nested Parallelism

If alLOG CPLEX paralel LP optimizer (for example, paralel simplex or parallel barrier) is
available along with the parallel MIP optimizer, then you have the option to choose the
strategy for solving the MIP model in parallel in different ways:

0 Makethe branch & cut parallel.

If you want to make the branching parallel, then you should set the thread-limit
parameter for the subproblem optimizer to 1 (one). For example:

. Inthelnteractive Optimizer, usethecommandset barrier linit threads 1or
set sinmplex limt threads 1.

« When using the CPLEX Component Libraries, set the parameters
I | oCpl ex: : Bar Thr eads / CPX_PARAM BARTHREADS or
I'l oCpl ex: : Si nirhr eads / CPX_PARAM S| MTHREADS to 1 (one).

0 Make the solution of subproblems parallel.

If you want all the parallelism to occur in solutions of the subproblems, not at the
branching level, then you should set the MIP thread-limit parameter to 1 (one). For
example:

. Inthe Interactive Optimizer use the commandset mip linit threads 1.

ILOG CPLEX 7.5 — USER’'S MANUAL 327

z
e
=3
S »
S
92
g
o
>
(@]

USING PARALLEL OPTIMIZERS

328

. When using the CPLEX Component Libraries, set the parameter
I'l oCpl ex:: M pThr eads or CPX_PARAM M PTHREADS to 1 (one).

0O make the strong branching variable selection parall€l;

If you want the strong branching variable selection to occur in paralel, you should set
the MIP thread-limit parameter to 1 (one) and the strong branching thread-limit
parameter to a value greater than one. For example:

In the Interactive Optimizer, use the commandsset nmip linmts threads 1 and
set mp limts strongthreads 2.

. When using the CPLEX Component Libraries, set the parameter
I'l oCpl ex:: M pThr eads / CPX_PARAM M PTHREADS to 1 (one) and to set the
parameter | | oCpl ex: : St rongThr eadLi m/ CPX_PARAM STRONGTHREADLI Mto a
value greater than one.

0 make both branch & bound and subproblem solutions parallel by nesting.

On systems that support nested parallelism, you can make both the branch & cut and the
subproblem solutions work in parallel by setting the thread-limit parameters for both
optimizers (MIP for the branch & cut, barrier or ssimplex for the subproblems) to values
greater than one. For example, on a six-processor system, If the MIP thread-limit were
set to 3, and the barrier thread-limit were set to 2, then three subproblems could be
solved simultaneously, each using two processors.

Nested Parallelism Platform Considerations

Nested parallelism is not supported on DEC, HP, nor SGI parallel platforms. Consequently,
on these platforms, you cannot call parallel optimizersfrom within other parallel optimizers.
In particular, you cannot call the ILOG CPLEX Parallel Simplex or ILOG CPLEX Parall€l

Barrier Optimizer from within the ILOG CPLEX Paralel MIP Optimizer.

For example, if you invoke the MIP optimizer and you have set the MIP thread-limit
parameter to use more than one thread, when you call the simplex optimizer on MIP
subproblems, it will use the serial, sequential algorithm. To use the parallel simplex
optimizer or the parallel barrier optimizer on MIP subproblems, you must set the MIP
thread-limit to 1 (one). That is, you must make it serial, sequential (not parallel).

MIP First Rule and its Exceptions

Since the parallelism available in the parallel MIP optimizer is normally applicableto avery
large class of problems, and since it normally benefits them greatly, it will more often be
best to use the parallel MIP optimizer, rather than parallel simplex or parallel barrier
optimizers on the subproblems. We call this rule of thumb, “MIP firgt.”

One exception to this MIP-first rule occurs in problems with an extremely large aspect ratio
(that is, the number of columns divided by number of rows) where the memory requirements
of the parallel MIP optimizer exceed available resources.

ILOG CPLEX 7.5 — USER’'S MANUAL

<functionhead>

Another exception, again for problems with alarge aspect ratio, occurs for any problem that
generates relatively few active nodes during a MIP optimization.

Finally, large aspect problems that spend alarge fraction of the total solution time searching
for the first incumbent may be good candidates for the parallel simplex optimizer (rather
than MIP first).

Parallel Barrier Optimizer

The ILOG CPLEX Parallel Barrier Optimizer achieves significant speedups over its seria
counterpart (the ILOG CPLEX Barrier Optimizer described in Solving LP Problems with the
Barrier Optimizer on page 129, and in Chapter 7, Solving Quadratic Programming
Problems) on awide variety of classes of problems. Consequently, the parallel barrier
optimizer will be the best LP choice on aparallel computer more frequently than on asingle-
processor. For that reason, you should be careful not to apply performance data or
experience based on serial optimizers when you are choosing which optimizer to use on a
paralel platform.

If you decide to use the parallel barrier optimizer on the subproblems of aMIP, see also other
specia considerations about nested parallelism in Nested Parallelism on page 327.

Platform Considerations

On Hewlett-Packard (HP) only, the default number of threads used by the ILOG CPLEX
Parallel Barrier Optimizer is the number of processors on the computer. You can override
this default by resetting the operating system environment variable

MP_NUMBER_OF THREADS before you start ILOG CPLEX.

z
e
— o
S »
S
92
g
o
>
(@]

On Sun only, you must set the UNIX environment variable PARALLEL to anumber. This
number will be the overriding maximum for the number of threads, subject to licensing
limits, as explained on page 319. The default behavior of the ILOG CPLEX Parallel Barrier
Optimizer without this environment variable is to use only one thread.

Parallel Simplex Optimizer

In the ILOG CPLEX implementation of the Parallel Simplex Optimizer, the column-based
work occursin parallel. Consequently, a significant gain in speed may occur in the dual
simplex optimization(t r anopt /11 oCpl ex: : Dual / CPXdual opt ()).

Occasionally, in the primal simplex optimizer if the primal gradient parameter is set to
steepest-edge pricing and the aspect ratio (that is, the number of columns divided by the
number of rows) is relatively large (for example, 10 or more), then good speedups may
occur with the parallel optimizer here, too. Larger problems with a somewhat smaller aspect
ratio may also benefit from parallel smplex optimization. Sinceit is difficult to predict
where the breakpoint will be, we encourage you to experiment.

ILOG CPLEX 7.5 — USER’'S MANUAL 329

USING PARALLEL OPTIMIZERS

If you decide to use the parallel simplex optimizer on the subproblems of a MIP, see other
specia considerations about nested parallelism in Nested Parallelism on page 327.

Platform Considerations
The parallel simplex optimizer is available only on DEC and SGI parallel systems.

330 ILOG CPLEX 7.5 — USER’'S MANUAL

Interactive Optimizer Commands

The following table lists Interactive Optimizer commands, their primary options, and pages
in this manual on which usage examples can be found.

Command Options Example

add

bar opt page 96,
page 133

bar opt dual opt page 133

bar opt pri nopt page 133

bar opt st op page 133

change bounds

change coefficient

change delete

change name

change obj ective

ILOG CPLEX 7.5 — USER’'S MANUAL 331

332

Command Options Example

change probl em type page 155,
page 168,
page 242,
page 242,
page 246

change rhs

change gpterm page 243

change sense max page 224

change type page 155

di spl ay iis page 116

di spl ay probl em al |

di spl ay probl em bi nari es page 154

di spl ay probl em bounds

di spl ay probl em constraints page 245

di spl ay probl em general s page 154

di spl ay probl em hi st ogr am page 132

di spl ay probl em i ntegers page 154

di spl ay probl em nanes

di spl ay pr obl em gpvari abl es page 245

di spl ay probl em seni - conti nuous

di spl ay probl em sos

di spl ay probl em stats page 93,
page 154

di spl ay probl em vari abl e page 245

di spl ay sensitivity

di spl ay settings

di spl ay settings al |

di spl ay settings changed

ILOG CPLEX 7.5

— USER’'S MANUAL

Command Options Example

di spl ay sol ution basi s

di spl ay sol ution best bound

di spl ay sol ution dual

di spl ay sol ution kappa page 109

di spl ay sol ution obj ective

di spl ay sol ution quality page 113,
page 138,
page 245

di spl ay sol ution reduced

di spl ay sol ution sl acks

di spl ay sol ution vari abl es

enter

hel p

m popt page 156

net opt page 96,
page 222

optim ze page 96

pri mopt page 96

qui t

read fil ename type page 102,
page 222,
page 132

set advance yes page 102,
page 224

set barrier page 133

set barrier al gorithm page 137,
page 145,
page 244

set barrier col nonzer os page 142,
page 146

ILOG CPLEX 7.5

— USER’'S MANUAL

333

334

Command Options Example

set barrier conver get ol i page 147

set barrier crossover i

set barrier di spl ay i page 133,
page 135,
page 146

set barrier limts corrections i page 145

set barrier limts grow h i

set barrier linits iterations 0 page 132

set barrier linits obj range i page 148

set barrier limts var upper i page 147

set barrier ordering i page 143

set barrier startal g i page 144

set cl ocktype i

set defaul ts

set logfile filename

set | psol ver i

set mp cuts cl ass -1 page 160,
page 185

set mp di spl ay 2 page 171

set mp enphasi s

set mop interval 100 page 171

set mplimts aggf or cut i

set mplinmts cut sfactor page 161

set mplimts cut passes i

set mplimts gonor ycand i

set mplimts gonor ypass i

set mplints nodes page 166

ILOG CPLEX 7.5 — USER’'S MANUAL

Command Options Example

set mplinmts sol utions page 166

set mplimts strongcand i

set mplimts strongit i

set mplinits treemenory page 182,
page 183

set mp ordtype i

set nmp strategy backt r ack page 158,
page 176

set mp strategy bbi nt er val page 158

set mp strategy branch i page 158

set mp strategy crossover i page 188

set m p strategy file i

set mp strategy heuristicfreq page 163,
page 176

set mp strategy mi pstart 1 page 165

set mp strategy nodesel ect i page 158,
page 177

set m p strategy order i page 163

set mp strategy presol venode

set mp strategy pr obe page 175

set mp strategy startal gorithm page 187

set mp strategy subal gorithm i page 186,
page 187,
page 188

set mp strategy vari abl esel ect i page 158,
page 176,
page 178

set m p tol erances absmi pgap 3.0 page 179

set m p tol erances integrality i

ILOG CPLEX 7.5 — USER’'S MANUAL 335

336

Command Options Example
set mp tol erances | ower cut of f n page 157,
page 180
set m p tol erances m pgap 0.01 page 179
set mp tol erances obj di fference n page 157,
page 179
set mp tol erances rel objdi fference |n page 157,
page 180
set m p tol erances upper cut of f n page 157,
page 180
set net wor k di spl ay i page 223
set net wor k iterations i page 224
set net wor k netfind i page 238
set net wor k pricing i page 224
set network tolerances |[feasibility i page 223
set network tol erances |optimality i
set out put | ogonly y page 114,
page 116
set out put channel vl v2
set pr eprocessi ng aggr egat or 2 page 98,
page 108,
page 164
set pr eprocessi ng boundstrength page 164
set pr eprocessi ng coef freduce page 164,
page 189
set pr eprocessi ng dependency 1 page 98,
page 141
set pr eprocessi ng dual 1 page 100,
page 143
set pr eprocessi ng fill i page 98
set pr eprocessi ng l'i near i

ILOG CPLEX 7.5

— USER’'S MANUAL

Command Options Example

set pr eprocessi ng nunpass

set pr eprocessi ng presol ve page 98,
page 100,
page 108,
page 164

set pr eprocessi ng reduce page 98,
page 112

set pr eprocessi ng rel ax page 164

set read constraints

set read dat acheck

set read nonzer oes

set read gpnonzer oes

set read reverse

set r ead scal e page 105

set read vari abl es

set si npl ex basi si nt erval

set si npl ex crash page 106

set si npl ex dgr adi ent page 104,
page 105

set si npl ex di spl ay

set si mpl ex iisfind

set sinmplex limts iterations

set sinplex limts | ower obj

set sinplex limts perturbation page 110

set simplex limts singularity page 109

set sinmplex limts upper obj

set si mpl ex perturbation page 110

set si npl ex pgr adi ent page 104

ILOG CPLEX 7.5

— USER’'S MANUAL

337

MANAGING PARAMETERS IN THE INTERACTIVE OPTIMIZER

Command Options Example
set si mpl ex pricing
set si npl ex refact or page 105,
page 107
set sinplex tolerances |feasibility page 114
set simpl ex tolerances |markowtz page 111
set sinplex tolerances |optimality page 114
set si mpl ex Xxxstart
set timelimt page 166
set wor kdi r directory
set wor kmem filesize page 166,
page 185
t ranopt page 96
wite filenanme type page 98,
page 109,
page 118,
page 186,
page 132,
page 241
xecut e conmand page 118

Managing Parameters in the Interactive Optimizer

To seethe current value of a parameter that interests you in the Interactive Optimizer, use the
command di spl ay settings. Thecommanddi spl ay settings changed listsonly
those parameters whose values are not the default value. The command

di spl ay settings all listsall parametersand their values.

To change the value of a parameter in the Interactive Optimizer, use the command set
followed by options to indicate the parameter and the value you want it to assume.

The ILOG CPLEX Reference Manual documents the name of each parameter and its options
in the Interactive Optimizer.

338 ILOG CPLEX 7.5 — USER’'S MANUAL

SAVING A PARAMETER SPECIFICATION FILE

Saving a Parameter Specification File

You can tell the ILOG CPLEX Interactive Optimizer to read customized parameter settings
from a parameter specification file. By default, ILOG CPLEX expects a parameter
specification file to be named cpl ex. par, and it looks for that file in the directory where it
is executing. However, you can rename the file, and you can tell ILOG CPLEX to look for it
in another directory by setting the system environment variable CPLEXPARFI LE to the full
path name (including anew name, a new location) of your parameter specification file. You
set that environment variable in the customary way for your platform. For example, on a
Unix platform, you might use a shell command to set the environment variable, or on a
personal computer running NT, you might click on the Systemicon in the control panel, then
select the environment tab from the available system properties tabs.

During initialization in the Interactive Optimizer, ILOG CPLEX locates any available
parameter specification file (by checking the current execution directory for cpl ex. par
and by checking the environment variable CPLEXPARFI LE) and reads that file. Asit opens
thefile, ILOG CPLEX displays the message “Initial parameter values are being read from
cpl ex. par” (or from the parameter specification file you specified). As ILOG CPLEX
displays that message on the screen, it also writes the message to the log file. If

ILOG CPLEX cannot open the file, it displays no message, records no note in thelog file,
and uses default parameter settings.

You can use a parameter specification file to change any parameter or parameters accessible
by the set command in the Interactive Optimizer. The parameter types, names, and options
are those used by the set command in the Interactive Optimizer.

To create a parameter specification file, you can use either of these alternatives:
0 Usean ordinary text editor to create afile where each line observes the following syntax:
parameter-name option value

0 Usethecommanddi spl ay setti ngs inthelnteractive Optimizer to generate alist of
current parameter settings. Those settings will be recorded in the log file. You can then
edit the log file to create your parameter specification file.

di spl ay settings changed lists parameters different from the default.

di splay settings all listsal parameters.

Each entry on aline must be separated by at least one space or tab. Blank linesin a
parameter specification file are acceptable; there are no provisions for commentsin thefile.
You may abbreviate parameter names to unique character sequences, asyou do in the set
command.

AsILOG CPLEX reads a parameter specification file, if the parameter name and value are
valid, ILOG CPLEX sets the parameter and writes a message about it to the screen and to

ILOG CPLEX 7.5 — USER’'S MANUAL 339

SAVING A PARAMETER SPECIFICATION FILE

340

thelog file. If ILOG CPLEX encounters arepeated parameter, it uses the last value
specified. ILOG CPLEX terminates under the following conditions:

O if it encounters a parameter that is unknown;
O if it encounters a parameter that is not unique;
O if the parameter is correctly specified but the value is missing, invalid, or out of range.

Hereis an example of a parameter specification file that resets the limits on the size of
problem reads and opens alog file named pr obl em | og.

read constraints 50
read vari abl es 100
read nonzeros 500
logfile probl em | og

ILOG CPLEX 7.5 — USER’'S MANUAL

A

absolute objective difference 179
absolute optimality tolerance 178, 179
accessing
basis information 39
current parameter value 36, 71
default parameter value 70
dua values 39
maximum parameter value 70
minimum parameter value 70
objective function value 39
parametersin Interactive Optimizer 338
reduced costs 39
slack values 39
solution quality 41
solution values 39
add member function
|| oMbdel class32,41
advanced basis
in networks 97
reading 102
saving 101
starting from 101, 224
starting parameter 102
aggregator
applying more than once 99
barrier preprocessing 141
preprocessing 98
use of substitution 98

ILOG CPLEX 7.5 —

Index

algorithm
choosingin LP 35
choosing nodein MIP 36
choosing root in MIP 35
controllingin| | oCpl ex 36
pricing 103

application
and Concert Technology 28
creating with Concert Technology 29
development steps 29

arc 220

architecture 55

arguments
null pointers 64
optional 64

array
creating multi-dimensional 46
extensible 32
using for 1/0 47

aspect ratio 328, 329

B

backtrack
in branching strategy 158
parameter 176
barrier log file
example 136
barrier optimizer
algorithm 130, 244

USER'S MANUAL 341

INDE X

algorithms and infeasibility 148
barrier display parameter 145
barrier growth parameter 147
centering corrections 145
column nonzeros parameter 142, 146
correction limit parameter 145
corrections limit 145
displaying solution 245
displaying solutions 245
growth parameter 147
infeasibility analysis 148
license 244
linear 129 to 149
log file 135
numerical difficulties and 146
out-of-core barrier 141
paralel 329
performance tuning 140
preprocessing 141
primal-dual 96, 97, 100
quadratic 239 to 261
row-ordering algorithms 142
simplex optimizer and 131
solution quality 138
solving LP problems 129
starting-point heuristics 143
unbounded optimal face and 147
unbounded problems 147
uses 130
working storage allocation 141
BASfileformat 102, 264
basis
accessing information 39
condition number 109, 114
crossover algorithms 131
current 57
file formats to save 264, 265
previous optimal 59
removing objects from 42
saving best so far 110
unstable optimal 113
see also advanced basis
bibliography 25
BIN file format 264
bound

342 ILOG CPLEX 7.5 —

violation 114
branch & bound
terminology 156
branch & bound algorithm
memory problems and 181
priority order 162
special ordered sets (SOS) 168
storing tree nodes 182
tree subproblems 187
branch & cut
algorithm 156
parameters 158
tree 156
branching
direction 158

C

call by value 60
Calable Library
categories of routines 56
core56
debugging and 90
description 17
linear optimizers 96
parallel optimizers 323
parameters 70
using 55 to 84
see also individual CPXxxx routines
callback
graphic user interface and 304
resetting to null 37, 71
using status variables 304
changing
limit on barrier corrections 145
maximization to minimization 225
minimization to maximization 224
pricing algorithm 224
problem type
network to LP 233
qp 242,244
tomip 155
zeroed_qp 242, 244
quadratic coefficients 243
variabletype 43

USER'S MANUAL

channel
example 272
character string
length requirements 65
check. c CPLEX file66
Cholesky factor
barrier iteration 130
barrier log fileand 137
barrier performance and 140
choosing
algorithmin LP 35
node agorithm in MIP 36
root algorithm in MIP 35
clique cuts
defined 159
cl oneK. | og 327
clones 327
log files 327
threads and 327
closing
application 59, 226
environment 59, 226
log files 269
column
dense 146
density 142
growth parameter 225
index number 64
name 64
nonzeros parameter 142, 146
referencing 64
columnwise modeling 46, 73
complementarity 130, 147
convergence tolerance 146
Component Libraries
defined 18
Concert Technology Library
accessing parameter values 36
application development steps 29
creating application 29
description 17
design 28
error handling 43
solving problem with 28
using 27 to 53

ILOG CPLEX 7.5 —

INDEX

writing programs with 27

see also individual Iloxxx routines
constraint

accessing dack values 39

cumulative 119, 120

cutsas 159

modeling linear 33

removing from basis 42

representing with | | oRange 31

violation 115
continuous relaxation 155, 156
conventions

character strings 65

in parameter specification file 339

naming 267

notation 22

numbering 93, 266

numbering rows, columns 93
convert CPLEX utility 268
converting

error code to string 225

file formats 268

network-flow model to LP 231

network-flow problemto LP 233
convex quadratic programming see quadratic programming

copying
varigble typesin MIP 62
variable typesin QP 62
correction limit parameter 145
cover cuts 159
defined 159
CPLEX
Component Libraries 18
core 56
licensing 28
parameters 36
cpl ex library 320
cpl ex object
creating 34
notifying changesto 41
cpl ex. h header file 68, 70, 92, 242
cpl ex. | ogfile
changing name 135
clonelogs 327

USER'S MANUAL 343

INDE X

default name 103, 269
cpl ex. par parameter specification file 339
CPLEXPARFI LE environment variable 339
CPX_ABORT_CROSSOVER symbolic constant 302
CPX_ABORT_DUAL _| NFEAS symbolic constant 302
CPX_ABORT_FEAS symbolic constant 302
CPX_ABORT_| NFEAS symbolic constant 302
CPX_ABORT_PRI M_DUAL _FEAS symbolic constant 302
CPX_ABORT_PRI M_DUAL_I NFEAS symboalic constant

302

CPX_ABORT_PRI M_| NFEAS symbolic constant 302
CPX_ALG_DUAL symboalic constant 134
CPX_ALG PRI MAL symbolic constant 134
CPX_DPRI | ND_AUTO symbolic constant 105
CPX_DPRI | ND_FULL symbolic constant 105
CPX_DPRI | ND_FULLSTEEP symboalic constant 105
CPX_DPRI | ND_STEEP symbolic constant 105
CPX_DPRI | ND_STEEPQSTART symbolic constant 105
CPX_NODEALG_BARRI ER symbolic constant 186
CPX_NODEALG_DUAL symbolic constant 186
CPX_NODEALG_PRI MAL symbolic constant 188
CPX_PARAM ADVI ND parameter 102
CPX_PARAM AGGFI LL parameter 99
CPX_PARAM AGG ND parameter 99, 164
CPX_PARAM BARALG parameter 138, 145, 148, 244
CPX_PARAM BARCOLNZ parameter 142, 146
CPX_PARAM BARDI SPLAY parameter 135, 146
CPX_PARAM _BAREPCOVP parameter 147
CPX_PARAM BARMAXCOR parameter 145
CPX_PARAM BAROBJRNG parameter 148
CPX_PARAM BAROCC parameter 141
CPX_PARAM_BARORDER parameter 143
CPX_PARAM BARSTARTALG parameter 144
CPX_PARAM BARTHREADS parameter 320, 327
CPX_PARAM BARVARUP parameter 147
CPX_PARAM BBI NTERVAL parameter 158
CPX_PARAM BNDSTRENI ND parameter 164
CPX_PARAM BRDI R parameter 158
CPX_PARAM BTTOL parameter 158
CPX_PARAM CLI| QUES parameter 160, 185
CPX_PARAM CLOCKTYPE parameter 70, 323
CPX_PARAM COEREDI ND parameter 164
CPX_PARAM COLGROWTH parameter 62, 225
CPX_PARAM_COVERS parameter 160, 185
CPX_PARAM_CRAI ND parameter 106

344 ILOG CPLEX 7.5

CPX_PARAM CUTLO parameter 157, 180, 181
CPX_PARAM CUTSFACTOR parameter 161
CPX_PARAM_CUTUP parameter 157, 180, 181
CPX_PARAM DEPI ND parameter 100, 142
CPX_PARAM DI SJCUTS parameter 160
CPX_PARAM DPRI | ND parameter 104
CPX_PARAM EPAGAP parameter 179
CPX_PARAM EPGAP parameter 179
CPX_PARAM EPMRK parameter 111
CPX_PARAM EPOPT parameter 115
CPX_PARAM EPPER parameter 111
CPX_PARAM EPRHS parameter 114
CPX_PARAM FLOWCOVERS parameter 161, 185
CPX_PARAM_FLOWPATHS parameter 161
CPX_PARAM_FRACCUTS parameter 161
CPX_PARAM_GUBCOVERS parameter 161, 185
CPX_PARAM HEURFREQ parameter 163, 176
CPX_PARAM | | SI ND parameter 116
CPX_PARAM | MPLBD parameter 161, 185
CPX_PARAM | NTSOLLI Mparameter 166
CPX_PARAM M PDI SPLAY parameter 171, 173
CPX_PARAM M PHYBAL G parameter 188
CPX_PARAM M PI NTERVAL parameter 171
CPX_PARAM M PORDI ND parameter 163
CPX_PARAM M PORDTYPE parameter 163
CPX_PARAM M PSTART parameter 165
CPX_PARAM M PTHREADS parameter 320, 324, 328
CPX_PARAM M RCUTS parameter 161
CPX_PARAM NETEPOPT parameter 223
CPX_PARAM NETEPRHS parameter 223
CPX_PARAM NETFI ND parameter 238
CPX_PARAM NCDEFI LEI ND parameter 166
CPX_PARAM_NODEL| Mparameter 166
CPX_PARAM NODESEL parameter 158
CPX_PARAM NZGROWI'H parameter 62
CPX_PARAM OBDI F parameter 157
CPX_PARAM OBJDI F parameter 180
CPX_PARAM PERI ND parameter 111
CPX_PARAM PERLI Mparameter 111
CPX_PARAM PPRI | ND parameter 104
CPX_PARAM PRECOVPRESS parameter 100
CPX_PARAM PREI ND parameter 98, 108, 164
CPX_PARAM PROBE parameter 175
CPX_PARAM_REDUCE parameter 113
CPX_PARAM REI NV parameter 106, 107

USER'S MANUAL

CPX_PARAM RELAXPREI ND parameter 164

CPX_PARAM RELOBJDI F parameter 157, 180

CPX_PARAM_ROWGROWTH parameter 62, 225

CPX_PARAM_SCAI ND parameter 105

CPX_PARAM SCRI ND parameter 66, 92, 109, 123, 225,
271, 303

CPX_PARAM S| MTHREADS parameter 320, 327

CPX_PARAM S| NGLI Mparameter 110

CPX_PARAM STARTAL G parameter 187

CPX_PARAM_STRONGCANDL | Mparameter 178

CPX_PARAM STRONG TLI Mparameter 178

CPX_PARAM _STRONGTHREADL| Mparameter 320, 328

CPX_PARAM SUBAL G parameter 186, 188

CPX_PARAM TI LI Mparameter 166

CPX_PARAM TRELI| Mparameter 166, 182

CPX_PARAM VARSEL parameter 158, 176, 178

CPX_PARAM WORKDI R 184

CPX_PARAM WORKMEMparameter 141, 166, 183, 185

CPX_PPRI | ND_AUTO symbolic constant 104

CPX_PPRI | ND_DEVEX symbolic constant 104

CPX_PPRI | ND_FULL symbolic constant 104

CPX_PPRI | ND_PARTI AL symbolic constant 104

CPX_PPRI | ND_STEEP symbolic constant 104

CPX_PPRI | ND_STEEPQSTART symbolic constant 104,
105

CPX_SEM CONT 170

CPX_SEM I NT 170

CPXaddchannel routine 61, 272

CPXaddcol s routine58, 62, 87

CPXaddf pdest routine 68, 272, 273

CPXaddf uncdest routine67, 272, 273

CPXaddr ows routine 58, 62, 74, 87

CPXALG_BARRI ER symbolic constant 188

CPXALG_BARRI ER_NO_CROSSOVER symbolic constant
188

CPXALG_DUAL symbolic constant 188

CPXALG_DUAL_BARRI ER symbolic constant 188

CPXALG_NETWORK symbolic constant 188

CPXbar opt routine 133, 134, 244, 249, 257

CPXCHANNELpt r datatype 61

CPXCHARpt r datatype 68

CPXcheckaddcol s routine 66

CPXcheckaddr ows routine 66

CPXcheckchgcoef | i st routine 66

CPXcheckcopyct ype routine 66

ILOG CPLEX 7.5

INDEX

CPXcheckcopyl p routine 66

CPXcheckcopyl pwnanes routine 66

CPXcheckcopyqgsep routine 66

CPXcheckcopyquad routine 66

CPXcheckcopysos routine 66

CPXcheckval s routine 66

CPXchgcoef | i st routine 58, 87

CPXchgpr obt ype routine 168, 191, 242, 246

CPXchgqgpcoef routine 243, 244

CPXcl oseCPLEX routine 59, 123, 201, 226, 257, 273,
304

CPXcopybase routine 123

CPXcopyctt ype routine 170

CPXcopyct ype routine 62, 91, 153, 190

CPXcopy! p routine 58, 86

CPXcopynet t ol p routine 231

CPXcopyor der routine 170, 207

CPXcopyqgsep routine 62

CPXcopyquad routine 62, 248

CPXcopyset i nt par amroutine 171

CPXcopysos routine 170, 207

CPXcr eat epr ob 303

CPXcr eat epr ob routine 58, 61, 74, 123, 190, 201, 248,
257

CPXdel channel routine 272,273

CPXdel f pdest routine 68, 272, 273

CPXdel f uncdest routine272, 273

CPXdi sconnect channel routine271

CPXdi spl ayi i s routine 117

CPXdual opt routine 86, 96, 329

CPXENVpt r datatype61

CPXERR_NEGATI VE_SURPLUS symbolic constant 282

cpxerror message channel 271, 273

CPXf cl ose routine 68

CPXFI LEpt r datatype 68

CPXf i ndiis routine117

CPXf | ushchannel routine 271

CPXf open routine 68, 269

CPXf put s routine 68

CPXf r ee routine 68

CPXf r eepr ob routine 59, 123, 201, 257, 304

CPXget cal | backi nf o routine 67, 301, 302, 304

CPXget channel s routine 61, 271, 272, 273

CPXget col i ndex routine 64

CPXget col name routine 283, 286

USER'S MANUAL 345

INDE X

CPXget col s routine 281, 282, 283
CPXget ct ype routine 154

CPXget dbl par amroutine 64, 71
CPXget dbl qual ity routine 109, 115, 138, 245
CPXget error stri ng routine 225, 303
CPXget i nt par amroutine 64, 71
CPXget i nt qual i ty routine 138
CPXget nmi pobj val routine 190, 201
CPXget mi psl ack routine 190

CPXget nmi px routine 190, 201

CPXget nunctol s routine 63

CPXget r owi ndex routine 64

CPXget r ownane routine 63

CPXget sos routine 154

CPXget st at routine 190, 201, 302
CPXget st r par amroutine 64, 71
CPXget x routine 60, 61, 257
CPXhybbar opt routine 96, 131, 133, 134
CPXhybnet opt routine 86, 96, 237
CPXi i swriteroutinel17,233

CPXi nf odbl par amroutine 64, 70
CPXi nf oi nt par amroutine 64, 70
CPXi nf ost r par amroutine 64, 70, 71
cpx| og message channel 271

CPX| popt routine 74, 96, 304
CPXLPpt r datatype 61

CPXnal | oc routine 68

CPXnbasewr i t e routine 102

CPXment py routine 68

CPXM P_ABORT_FEAS symbolic constant 303
CPXM P_ABORT_| NFEAS symbolic constant 303
CPXmi popt routine 190, 201

CPXnpsr ead routine 68

CPXns(g routine 58, 67, 271, 272, 273
CPXnsgst r routine 68

CPXnmst wri t e routine 166
CPXNETaddar cs routine 225
CPXNETaddnodes routine 225
CPXNETcheckcopynet routine 66
CPXNETchgobj sen routine 225
CPXNETcr eat epr ob routine 61, 225
CPXNETdel nodes routine 225
CPXNETT r eepr ob routine 226
CPXNETpr i mopt routine 225, 233
CPXNETpt r datatype61

346 ILOG CPLEX 7.5

CPXNETsol ut i on routine 225
CPXnewcol s routine 58, 74, 87
CPXnewr ows routine 58, 87
CPXopenCPLEX routine 57, 61, 71, 74, 123, 224, 257,
271,272
CPXor dwr i t e routine 207
CPXpr i nopt routine 69, 86, 96, 191
CPXPROB_FI XED symbolic constant 191
CPXPUBLI C symbolic constant 67
CPXPUBVARARGS symbolic constant 67
CPXgpwri t e routine 241
CPXr eadcopybase routine 102
CPXr eadcopymi pst art routine 154
CPXr eadcopyor der routine 154
CPXr eadcopypr ob routine 58, 154, 241, 284, 286
CPXr eadcopysos routine 154
CPXr eal | oc routine 68
cpxr esul t s message channel 271
CPXsavwr i t e routine 90
CPXset dbl par amroutine 64, 71, 102, 161, 179, 185
CPXset def aul t s routine 71
CPXset i nt par amroutine 64, 71, 92,102, 123, 138,
165, 173, 185, 187, 188, 225, 238, 323
CPXset | ogfi | e routine 66, 68, 92, 135, 269, 270, 271
CPXset | pcal | backf unc routine 67, 302, 304
CPXset mi pcal | backf unc routine 67, 302
CPXset st r par amroutine 64, 71
CPXsol uti on routine 74, 191, 245, 302
CPXsoswri t e routine 207
CPXst r cpy routine 68
CPXst r | en routine 68
CPXt reewri t e routine 167
CPXvecwri t e routine 245
CPXVO Dpt r datatype 68
cpxwar ni ng message channel 271
CPXwr i t epr ob routine 74, 90, 100, 110, 207
CPXwri t esol routine 65
crash parameter 106
creating
application with Concert Technology 29
CPLEX environment 224
log file 269
network flow problem object 225
parameter specification file 339
problem object 58

USER'S MANUAL

crossover
fileformat 134
how to 133
infeasibility finder and 116
irreducibly inconsistent set (11S) and 149
options 134
verifying barrier solutions 144
cumulative constraint 119, 120
cuts 159
adding 160
clique 159
cover 159
digunctive 159
flow cover 159
flow path 160
Gomory fractional 160
GUB cover 160
implied bound 160
memory problems and 185
MIR 160
recorded in MIP node log file 172
re-optimizing 160
what are 159

D

data
entering 58
data types
special 61
debugging
Callable Library and 90
diagnostic routines and 66
heap 93
Interactive Optimizer and 90
return values and 92
defined 56
degeneracy 110
dual 186
deleting
model objects 42
dense column 142
dependency checker 100
destroying
CPLEX environment 59

ILOG CPLEX 7.5 —

nodes 225
problem object 59
detecting redundant constraints 100
devex pricing 104
diagnosing
infeasibility in QPs 246
network infeasibility 233
diagnostic routine 66
log fileand 66
message channels and 66
redirecting output from 66
DIMACS 264
dimensions, checking 93
digunctive cuts 159
displaying
barrier information 133, 135
barrier log file 136
barrier solution quality 138
basis condition 109
bound infeasibilities 114
column-nonzeros parameter 146
histogram 132
infeasibilities on screen 114, 116, 117
messages 272
MIP information 325
MIP information periodically 173
MIP nodefile 171
MIP progress reports 171
MIP solution information 167
MIPs 154
network objective values 222
network solution information 224
network solution on screen 225
optimization progress 304
parameter settings 338, 339
problem dimensions 93
problem statistics 93
QP solution information 245
reduced-cost infeasibilities 114
simplex solution quality 140
solution quality 113
solutions on screen 273
variables 266
DPE file format 186, 264
DUA fileformat 264

USER'S MANUAL

INDEX

347

INDE X

dual feasibility 130
dual formulation 100
dual residual 114
dual simplex optimizer
command 96
perturbing objective function 110
routine 96
selecting 96
stalling 110
see also simplex
dual variable
solution data 39
duality gap 130

E

EMB file format 264
end member function
Il oEnv class 30
ent er Interactive Optimizer command 153
entering 153
datain QPs 241
LPsfor barrier optimizer 132
mixed integer programs (MIPs) 153
network arcs 225
network data 225
network datafrom file 233
network nodes 225
enumeration
Al gorithm35
Basi sSt at us 40
Bool Par am36
I nt Par am36
NunPar am36
Quality 41
St at us 37, 38
String Param36
environment
initializing 57
multithreaded 58
parameter specification file 339
releasing 59
variable 339
environment object
constructing 30

348 ILOG CPLEX 7.5 —

error checking
diagnostic routines for 66
MPSfile format 267
problem dimensions 93
error handling
in Concert Technology Library 43
example
barrier log file 136
columnwise modeling 46, 73
contents of 11Sfile 118
creating multi-dimensional arrays 46
FORTRAN 68
LP with advanced starting basis 121
message handler 272
MIP nodelog file 172
MIP optimization 189
MIP problem from file 199
MIP with SOS and priority orders 205
network optimization 221
optimizing QP 246
output channels 272
output from infeasibility finder 117
parameter specification file 340
reading QP from file 257
rowwise modeling 45, 72
using arraysfor 1/0 47
exception
querying 92
export Model member function
I I oCpl ex class100, 110
expression
building 31
linear 31
piecewise linear 31
external variables 60
extrarim vectors 267

F

feasibility
analysis and barrier optimizer 148
dual 106, 130
network flows and 221
primal 130
progresstoward 111, 221

USER'S MANUAL

tolerance 114
file format
converting 268
described 264
example of quadratic program 257
numerically accurate 265
file reading routine
defined 57
file writing routine
defined 57
fill parameter 99
flow cover cuts
defined 159
flow path cuts
defined 160
FORTRAN 69, 93
fractional cuts
defined 160
freerow 267

G

generalized upper bound (GUB) 160
see also GUB
get BoundSA member function
Il oCpl ex class40
get Cpl exSt at us member function
Il oCpl ex class40
get Def aul t member function
Il oCpl ex class 36
get Dual member function
Il oCpl ex class 39
get Dual s member function
Il oCpl ex class 39
get I I S member function
Il oCpl ex class40, 117
get Max member function
Il oCpl ex class 36
get Message member function
I | oExcepti on class92
get M n member function
11 oCpl ex class 36
get NodeAl gor i t hmmember function
Il oCpl ex class 36
get Obj SA member function

ILOG CPLEX 7.5 —

INDEX

I I oCpl ex class40
get Obj Val ue member function
I I oCpl ex class 39
get Par ammember function
I I oCpl ex class 36
get Qual i t y member function
Il oCpl ex class41, 109, 138, 245
get ReducedCost member function
Il oCpl ex class 39
get ReducedCost s member function
Il oCpl ex class 39
get RHSSA member function
Il oCpl ex class40
get Root Al gori t hmmember function
I I oCpl ex class 36
get Sl ack member function
Il oCpl ex class 39
get Sl acks member function
Il oCpl ex class 39
get St at us member function
I oCpl ex class37
I oCpl ex: : Excepti on class 92
get St at uses member function
Il oCpl ex class 39, 121
getting
See accessing
get Val ue member function
I I oCpl ex class 39
get Val ues member function
I I oCpl ex class 39, 245
globa variables 60
Gomory fractional cuts
defined 160
gradient parameter
performance and 103
primal simplex optimizer 329
graphic user interface (GUI) 304
GUB
constraint 160
cover cuts 160

H

head 220
header file 92

USER'S MANUAL 349

INDE X

heap, debugging 93
heuristics
starting point 143

I1Sfile format 264
ill-conditioned
basis 115
factorsin 115
problem 113
ILM
see ILOG License Manager (ILM)
| | oAdd template class 48
I I oAl gorithm : Exception class44
I I oAl gorithm: Status enumeration 37
I | 0And class 34
I | 0Arr ay template class 33
I 1 oConver si on class 30, 33, 43
Il oCpl ex
objectsin user application 28
I I oCpl ex class
expor t Model member function 100, 110
get BoundSA member function 40
get Cpl exSt at us member function 40
get Def aul t member function 36
get Dual member function 39
get Dual s member function 39
get | I S member function 40, 117
get Max member function 36
get M n member function 36
get NodeAl gori t hmmember function 36
get Obj SA member function 40
get Obj Val ue member function 39
get Par ammember function 36
get Qual i t y member function 41, 109, 138, 245
get ReducedCost member function 39
get ReducedCost s member function 39
get RHSSA member function 40
get Root Al gori t hmmember function 36
get SI ack member function 39
get Sl acks member function 39
get St at us member function 37
get St at uses member function 39, 121
get Val ue member function 39

350 ILOG CPLEX 7.5

get Val ues member function 39, 245

i mport Mbdel member function 102, 241

set Def aul t s member function 37

set Par ammember function 37, 102, 179

set Root Al gor i t hmmember function 35, 86, 96, 133

sol ve member function 35, 37, 38, 40, 41, 42, 49, 96,
244

sol veZer oedQP member function 242

Il oCpl ex: : Advl nd parameter 102

Il oCpl ex: : AggFi I | 99

Il oCpl ex: : Aggl nd 99

Il oCpl ex: : Al gori t hmenumeration 35
11 oCpl ex: : Bar Al g 145, 148

Il oCpl ex: : Bar Col Nz 142, 146

Il oCpl ex: : Bar EpConp 147

Il oCpl ex: : Bar MaxCor 145

Il oCpl ex: : Bar Cbj Rng 148

11 oCpl ex: : Bar Or der 143

Il oCpl ex:: Barrier 133

Il oCpl ex: : BarrierDual 133

Il oCpl ex::BarrierPriml 96,133
Il oCpl ex::BarStartAl g144

Il oCpl ex: : Bar Var Up 147

Il oCpl ex: : Basi sSt at us enumeration 40
Il oCpl ex: : Bool Par amenumeration 36
Il oCpl ex: : Cral nd 106

11 oCpl ex: : Depl nd 100, 142

Il oCpl ex:: DPri |l nd 104

Il oCpl ex: : Dual 96

Il oCpl ex: : EpMk 111

Il oCpl ex: : EpOpt 115

Il oCpl ex: : EpPer 111

Il oCpl ex: : EpRHS 114

Il oCpl ex: : Excepti on class44, 92

get St at us member function 92

11 oCpl ex: : export Model 100
I1oCplex::11SInd116

Il oCpl ex: : | nt Par amenumeration 36
11 oCpl ex: : Kappa 109

Il oCpl ex: : Net wor kDual 96

11 oCpl ex: : NunmPar amenumeration 36
Il oCpl ex:: Perlnd111

Il oCpl ex: : PerLi m111

Il oCpl ex: : PPril nd 104

Il oCpl ex: : PreConpress 100

USER'S MANUAL

Il oCpl ex: : Prel nd 98,108
Il oCpl ex::Primal 96
I oCpl ex: : Qual i ty enumeration 41
I oCpl ex: : Reduce 99, 113
I I oCpl ex: : Rel nv 106, 107
I I oCpl ex: : Scal nd 105
Il oCpl ex: : Si ngLi m110
I I oCpl ex: : St at us enumeration 38
I I oCpl ex: : St ri ngPar amenumeration 36
I I oEnv class 30
end member function 30
I | oExcepti on class
get Message member function 92
I | oExpr class31
ILOG License Manager (ILM)
CPLEX and 28
I | oMaxi m ze function 32
Il oM ni m ze function 32, 48
I | ovbdel class31, 32
add member function 32, 41
r enmove member function 32, 41
Il oNumAr r ay class 32
Il oNunVar class 30, 33
I I oNunVar Arr ay class 31
Il oObj ecti ve class31, 33, 48
set Expr member function 243
i | ogpex1. cpp example
example
i | ogpex1. cpp 246
I | oRange class 31, 33
I I oSem Cont Var class 33
Il 0Sol uti on class 34
Il 0SOS1 class 34
Il 0SOS2 class 34
implied bound cuts
defined 160
i mpor t Mbdel member function
11 oCpl ex class102, 241
includefile 92
inconsistent constraints 116
incumbent
node 157
solution 157
index number 64
infeasibility

ILOG CPLEX 7.5

barrier optimizer and 148
diagnosing in network flows 233
diagnosing in QPs 246
displaying on screen 114
dual 138, 144, 148
during preprocessing 116
maximum bound 114
maximum reduced-cost 114
network flow 221
network optimizer and 233
norms 137
primal 138, 144, 148
ratio in barrier log file 137
reports 112
scaling and 113
unscaled 113
infeasibility finder 116, 149
crossover and 116
multiple [1Ss 117
network-flows and 233
preprocessing and 121
sample output 117
setting time limit on 120
infeasible problem
analyzing 40
initiaizing
CPLEX environment 224
problem object 58, 225
input operator 32
instantiating
CPLEX environment 224
problem object 58, 225
Interactive Optimizer
accessing parametersin 338
commands 331 to 338
customized parameter settings 339
debugging and 90
description 17
experimenting with optimizers 88
improving application performance 90
Setting parameters 338
testing codein 86
irreducibly inconsistent constraints 116
irreducibly inconsistent set (11S) 117
algorithms 120

USER'S MANUAL

INDEX

351

INDE X

example, cumulative constraint 119
example, network 233

file format for 264

network flows and 233

samplefile 118

K

knapsack constraint 159, 160

L

I'i bepl ex. a 320
I'i bparcpl ex. a 320
license
barrier optimizer (linear) 129
barrier optimizer (quadratic) 239
CPLEX 28
mixed integer programming (MIP) 152
parallel 319
threads and 321
limiting
network iterations 224
strong branching candidate list 178
strong branching iterations 178
linear expression 31
Linear Programming (LP) problem
seelLP
linear relaxation
MIPs 155
network flow and 233
QPs 246
logfile
barrier optimizer 135
barrier, example 136
Cholesky factor in 137
clonesand 327
closing 269
contents 103, 138
creating 269
default 269
description 269
diagnostic routines and 66
iteration 108
MIPs171

352 ILOG CPLEX 7.5 —

naming 269
network 223
node 171
paralel MIP optimizer and 327
parameter 269
parameter specifications and 339
records 11Ss 117
records infeasibilities 114
records infeasibility information 116
records singularities 109
relocating 269
renaming 269
LP
barrier optimizer 129
choosing algorithm 35
memory use and 266
network optimizer 219
problem formulation 18, 130
solving 95 to 149
solving with I | oCpl ex 35
LPfile format
defined 264
entering barrier problem 132
l1Ssand 118
QPsand 241
row, column order 266
special considerations 266

M

managing

log file 269
Markowitz tolerance 110, 111
maximal cliques

recorded in MIP node log file 172
maximization

concave QPs 240

lower cutoff parameter 180

network flow and 224

see also optimization
maximum bound infeasibility 114
maximum dual residual 115
maximum reduced-cost infeasibility 114
maximum row residual 115
memory leaks 30

USER'S MANUAL

memory management 103, 107, 181
paging 107
refactoring frequency and 108
virtua 107
message channel
diagnostic routines and 66
message handler (example) 272
MIN file format 264
minimal covers
recorded in MIP node log file 172
minimization
convex QPs 240
network flow and 224
see also optimization
upper cutoff parameter 180
MIP 151 to 217
branch & bound algorithm 156
changing problem type 155
changing variable type 155
choosing node algorithm 36
choosing root algorithm 35
continuous relaxation of 155
displaying 154
memory problemsand 181
optimizer 151
paralelism and 328
problem formulation 152
progress reports 170
relaxation agorithm 187
solution information 167
solving with I | oCpl ex 35
subproblem algorithm 187
subproblems 186
supplying first integer solution 165
terminating optimization 166
MIP optimizer
paralel 324
solution information 167
MIR
cuts 160
Mixed Integer Programming (MIP) problem
see MIP
model
adding objects 41
adding submodels 32

ILOG CPLEX 7.5 —

INDEX

deleting objects 42

extracting 34

notifying changesto cpl ex object 41

removing objects 41

solving 28, 33, 35

solving with I | oCpl ex 49
modeling

columnwise 46, 73

objects 28

rowwise 45, 72
MP_NUMBER _OF THREADS 329
MPSfile format

BASfilesand 264

CPLEX extensions 267

defined 264

DUA format 264

entering barrier problem 132

proprietary information in 265

reference row values 170

REW 265

saving basis 264

saving dual 264

saving embedded network 264

saving modifications 268

saving QP 241

weights 170
MST fileformat 264
multithreaded application

needs licensed processes 58

needs multiple environments 58

N

namespace conflicts 60
naming

arcsin network flow 225

conventions 267

log file 269

nodefile 184

nodes in network flow 225
nested parallelism 327
NET fileformat 225, 265
network

converting to LP model 231

embedded 237

USER'S MANUAL 353

INDE X

infeasibility in 221
modeling variables 220
problem formulation 220, 221
network extractor 237
Network Flow problem
see network
network object 220
network optimizer 97, 219 to 238
column growth parameter 225
command 96
file format to save extracted network 264
preprocessing and 99, 238
problem formulation 221
routine 96
row growth parameter 225
turn off preprocessing 99, 238
nexanpl e. net 222
node
demand 221
from 220
head 220
sink 221
source 221
supply 221
tail 220
to 220
transshipment 221
node file 182
Ccpx name convention 184
limiting size of 185
nodelog 170
node selection
parameter in branching strategy 158
node selection strategy
best estimate 185
depth-first search 185
nondeterminism 322
nonseparable 240
notation 22
notation in this manual 22
notifying
changesto cpl ex object 41
numbering conventions
Cco93
Fortran 93

354 ILOG CPLEX 7.5 —

row, column order 266
numerical difficulties 108, 146
barrier growth parameter 147
basis condition number and 109
complementarity 146
convergence tolerance 146
dense columns removed 146
infeasibility and 111
sensitivity 109
unbounded optimal face 147
unbounded variables 147
numerical variable 33

O

objective coefficients
crash parameter and 106
modified in log file 222
network flows and 222
priority and 163

objective difference
absolute 179
relative 179

objective function 33
accessing value 39
changing sense 225
freerow as 267
inlog file 222
in MPSfile format 268
maximization 268
maximize 32
minimize 32
network flows and 220
representing with I | oObj ecti ve 31
signreversal in 268

objective value
inlog file 222
network flows and 220
object range parameter 148
unbounded 148

operator << 32

operator >> 32

optimality
basis condition number and 109
cutoff parameters 180

USER'S MANUAL

duality and 186
infeasibility ration 138
normalized error and 140
singularitiesand 110
tolerance 113, 114, 115, 178
absolute 179
relative 178
tolerance, absolute 178
tolerance, relative 178
optimization
interrupting 304
stopping 166, 304
optimization problem
defining with modeling objects 28
representing with | | oModel 31
optimization routine 56
optimizer
barrier (linear) 129 to 149
barrier (quadratic) 239 to 261
choosing 35
commands to invoke 96
differences between Barrier, simplex 131
dual simplex 97
MIP 151, 156
network 97, 219 to 238
paralel 319 to 330
primal simplex 97
primal-dual barrier 97
routines to call 96
optimizing
cuts 160
ORD fileformat 170, 265
out-of-core barrier 141
output
channel parameter 270
debugging and 92
redirecting 270
output operator 32

P

PARALLEL 329
parale
library 320
license 319, 320

ILOG CPLEX 7.5 —

INDEX

measuring time 323
nested optimizers 327
optimizers 319 to 330
platform 330
speed 323
threads 320
parameter
accessing current value 36, 71
accessing default value 70
accessing maximum value 70
accessing minimum value 70
advanced starting 102
algorithmic 140
barrier corrections 145
barrier growth 147
barrier starting algorithm 148
Callable Library and 70
controlling branch & cut strategy 158
crash 106
customized 339
fill 99
gradient 103
iisfind 120
log file 269
mipstart 165
netfind 237
node file storage 185
object range 147
optimality cutoff 180
output channel 270
perturbation limit 111
preprocessing 99
preprocessing aggregator 99
preprocessing dependency 141
preprocessing fill 98
refactoring frequency 106
saving 102
screen indicator 225
setting 37, 71, 338
setting all defaults 37, 71
specification file 339
symboalic constants as 70
tree memory 182
working memory 182
parameter routine

USER'S MANUAL 855

INDE X

defined 57
parameter specification file 339, 340
creating 339
example 340
syntax in 339
parameters
customized 339
par cpl ex 320, 323
perturbing
file format to save perturbed problem 264, 265
objective function 110
variable bounds 110
piecewise linear expression 31
populating problem object 58, 225
portability 67
PPE file format 265
PRE file format 132, 265
preprocessing
aggregator parameter 99
barrier optimizer 141
dense columns removed 146
dependency parameter 141
fill parameter 98, 99
I1ISfilesand 120
infeasibility detected in 116
infeasibility finder and 121
memory management and 108
MIPs 164
network optimizer and 99, 238
starting-point heuristicsand 143
switching from primal to dua 100
to savefile 100
to turn off 98
to turn on dependency checker 100
when to use 98
presolve compression parameter 100
presolver 98
barrier preprocessing 141
file format to save reduced problem 265
preprocessing 98
to turn off 98
pricing algorithms 224
primal feasibility 130
primal infeasibility 246
primal simplex optimizer 97

356 ILOG CPLEX 7.5 —

command 96
perturbing variable bounds 110
routine 96
stalling 110
see also simplex
primal variables 106
primal-degenerate problem 97
primal-dual barrier optimizer
see barrier optimizer
priority 163
branching strategy 158
derived from set members 170
file format for orders 265
order 162, 169, 170
special ordered sets (SOSs) and 169
probing parameter 175
problem
analyzing infeasible 40
solving with Concert Technology Library 28
problem formulation
barrier 130
dual 130, 132
explicitly solving dual 100
ill-conditioned 113
infeasibility reports 112
linear 18
network 221
network-flow 220
primal 130, 132
removing dense columns 142
switching from network to LP 231, 233
problem modification routine
defined 56
problem object
creating 58
destroying 59
freeing 59
initializing 58
instantiating 58
network 220
populating 58, 225
problem query routine
defined 56
problem type
changing from network to LP 233

USER'S MANUAL

changing to MIP 155

changing to mip 155

changing to gp 242, 244
changing to zeroed_gp 242, 244
detecting MIPs 155

Q

QP
example 246, 257
problem formulation 240
solution example 257
solving 239 to 261

QPfileformat 241, 265

quadratic coefficient
changing 243

Quadratic Programming (QP) problem
see QP

query routine 283, 286

R

ranged row 267
reading
advanced basis 102
advanced basis from file 102
fixed MIP 156
MIP problem data 199
MIP problem data from file 153
MIP starter information 165
MIP tree from TRE file 166
network data from file 233
perturbed problem from DPE file 186
preprocessed problem from SAV file 132
problem datafor QPs 241
problem datafrom file 132
problem datafrom VEC file 134
QP problem data from file 257
relaxed MIP 156
SOS problem data 155
start values from MST file 165
redirecting
diagnostic routines 66
log file output 270
oputput 92

ILOG CPLEX 7.5 —

screen output 270
reduced costs

accessing 39
reduced-cost pricing 104
redundance, detecting 100
redundant constraints, detecting 100
reference row values 170
reflection scaling 237
relative objective difference 179
relative optimality tolerance 178
relaxation 155

algorithm applied to 187

continuous 156

continuous of MIPs 155

fixed MIP 155, 156

LPin branch & cut 156

of MIP problem 156
relocating

log file 269
r enove member function

I | oModel class32, 41
renaming

log file 269
residual

dual 114

maximum dual 115

maximum row 115

row 114
return value 63

debugging with 92

routines to access parameters 70
REW file format 265
RHS

see right-hand side
right-hand side (RHS)

file formatsfor 267
rim vectors 267
root relaxation 324
row

growth parameter 225

index number 64

name 64

referencing 64

residual 114
row-ordering algorithms 142

USER'S MANUAL

INDEX

357

INDE X

approximate minimum degree (AMD) 142
approximate minimum fill (AMF) 142
automatic 142
nested dissection (ND) 142

rowwise modeling 45, 72

S

SAV fileformat 102, 132, 241, 265
saving
advanced basis 101
best factorable basis 110
DPE file 186
MIPtree 166
parameter specification file 102, 339
parameters 102
perturbed problem 186
preprocessed file 100
preprocessed problem 100
SAV file 186
TRE file 167
scaling 113, 115
alternative methods of 105
definition 105
in network extraction 237
infeasibility and 113
singularitiesand 110
semi-continuous variable 33, 170
sengitivity analysis
barrier optimizer 131
MIPs 155, 167
performing 40
separable 240
set Interactive Optimizer command 338
set Def aul t s member function
Il oCpl ex class37
set Expr member function
Il oObj ecti ve class243
set Par ammember function
Il oCpl ex class 37,102,179
set Root Al gor i t hmmember function
Il oCpl ex class 35, 86, 96, 133
setting
al default parameters 37, 71
callbacksto null 37, 71

358 ILOG CPLEX 7.5 —

customized parameters 339
parameter specification file 339
parameters 37, 71, 338
see also changing
simplex
dual 97
optimizer 131
primal 97
see also dual simplex optimizer
see also primal simplex optimizer
simplex optimizer
paralel 329
singularity 109
slack variable
accessing vaues 39
slack variables 106
solution
accessing quality information 41
barrier 245
basic infeasible primal 112
basis 131
binary filesfor 264
complementary 130
differences between barrier, simplex 131
example QP 257
feasiblein MIPs 165
file format for nonbasis 265
incumbent 157
infeasible basis 148
midface 131
nonbasis 131
pure barrier 244
quality 138, 144, 155, 245
supplying first integer in MIPs 165
text file for 265
unbounded dual 112
verifying 144
solution value
accessing 39
sol ve member function
Il oCpl ex class 35, 37, 38, 40, 41, 42, 49, 96, 244
sol veZer oedQP member function
I I oCpl ex class 242
solving
model 35

USER'S MANUAL

SOS
branching priority 169
file format for 265
in branching strategy 158
type 1l 34
type 2 34
using 168
weightsin 170
SOS file format 169, 265
Specia Ordered Set (SOS)
see SOS
stalling 110
static variables 60
status variables, using 304
steepest-edge pricing 104, 182, 186
strong branching 177
surplus argument 281
symbolic constants 63, 70

T

tail 220
terminating
barrier iterations 132
because of singularities 110
because of stalling 111
because of time limit 120
MIP optimization 166
network optimizer iterations 224
threads 320
clones 327
example 321
licenses 321
parallel optimizers 320
performance and 321
platform considerations 321
thread-safe 60
tolerance
absolute optimality 179
feasibility 114, 223
Markowitz 110, 111
optimality 114, 115, 223
relative optimality 178
TRE fileformat 167, 182, 265
TXT fileformat 265

ILOG CPLEX 7.5 —

U

unbounded optimal face 131, 147
utility routine
defined 56

Vv

variable
accessing dual 39
changing type 30, 43
external 60
global 60
in expressions 31
numerical 33
order 266
removing from basis 42

representing with | | oNunVar 30

semi-continuous 33, 170
static 60
type 153

variable selection

parameter in branching strategy 158

variable selection strategy
strong branching 177, 185
VEC fileformat 134, 245, 265
vectors, rim 267
violation
bound 114
constraint 115

USER'S MANUAL

INDEX

359

INDE X

360 ILOG CPLEX 7.5 — USER’'S MANUAL

