
Modelica Development Tooling for Eclipse

Elmir Jagudin
Andreas Remar

April 10, 2006

LITH-IDA-EX–06/024–SE

i

This work is licensed under the Creative Commons Attribution-ShareAlike
2.5 Sweden License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/2.5/se/ or send a letter
to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, Califor-
nia, 94105, USA.

ii

Summary

PELAB at Linköping University is developing a complete environment for
developing software in the Modelica language. Modelica is a computer lan-
guage for modelling and simulating complex systems that can be described
by using mathematical equations. The language is currently being extended
by PELAB to also support language modeling and meta-modeling. The en-
vironment that PELAB is developing is called OpenModelica.

An important part of this project is a textual environment for creating and
editing Modelica models. The Modelica Development Tooling is a collection
of integrated tools for working with Modelica projects. It is developed as a
series of plugins to the Eclipse environment.

One of the requirements of an integrated development environment (IDE)
is to provide the user with extra information that is helpful for developing
and understanding software. Some of the information provided by MDT is
package browsing and error marking. Modelica packages can be browsed
in much the same way as Java packages can be browsed in JDT, the Java
Development Tooling. JDT is in fact a source of inspiration for MDT. That
should be obvious given the name.

Some of the functionality that is provided by MDT is provided by the
OpenModelica Compiler. This compiler is a part of the OpenModelica En-
vironment developed at PELAB. It has support for storing loaded models
in memory and allowing queries to be performed on the model at runtime.
This is utilized in MDT to allow the Project Browser to display the classes
contained in Modelica files, and also to provide MDT with code completion
proposals.

In summary, MDT allows you to:

• Edit Modelica files with an editor that provides syntax highlighting.

• Discover syntax errors in files that you’re editing, and provide helpful
ways to find where these errors are located.

• Browse the package and class hierarchies that your project contains.

• Browse the Modelica Standard Library and inspect the source code.

• Type code faster by utilizing code completion.

Keywords

Modelica, Integrated Development Environment, Eclipse, OpenModelica

iii

Contents

1 Introduction 1
1.1 Intended Audience . 1
1.2 Thesis Contributions . 2
1.3 Thesis Outline . 2

2 Background 3
2.1 Software Development Environments 3

2.1.1 Language-centered Environments 3
2.1.2 Structure-oriented Environments 4
2.1.3 Toolkit Environments 4
2.1.4 Method-based Environments 5

2.2 Modelica . 5
2.3 Eclipse . 6

2.3.1 Eclipse History . 6
2.3.2 Eclipse Platform Architecture 7

2.4 OpenModelica Compiler . 9

3 Overview 10
3.1 Modelica Development Users Guide 10

3.1.1 Features . 10
3.1.2 Known Issues . 10
3.1.3 Requirements . 11

3.2 Getting Started . 11
3.2.1 Configuring the OpenModelica Compiler 11
3.2.2 Accessing the Modelica Perspective 11
3.2.3 The Modelica Wizards 11
3.2.4 Making a Project . 11
3.2.5 Importing a Project 12
3.2.6 Creating a Package . 12
3.2.7 Creating a Class . 12
3.2.8 Syntax Checking . 13
3.2.9 Code Completion . 13

3.3 Information Popups . 14
3.4 Building Modelica Projects . 14

3.4.1 Creating a Builder . 15

4 Architecture 19
4.1 org.modelica.mdt.core . 19

4.1.1 Modelica Elements Access Layer 20

iv

4.1.2 Modelica Projects . 20
4.1.3 Folders . 20
4.1.4 Source Files . 20
4.1.5 Plain Files . 21
4.1.6 Classes . 21
4.1.7 Components . 21
4.1.8 Imports . 21
4.1.9 Function Signatures . 22
4.1.10 Mapping to the Source Code 22
4.1.11 Reversed Mapping from the Source Code 22
4.1.12 Modelica Standard Library 23
4.1.13 Tracking Element Changes 23
4.1.14 Compiler Extension Point 23

4.2 org.modelica.mdt.omc . 24
4.2.1 Communicating with OMC 24
4.2.2 Starting OMC . 24
4.2.3 OMC Interactive API 25
4.2.4 OMC Communication Parser 25
4.2.5 Interfacing with the core Plugin 25

4.3 org.modelica.mdt.ui . 26
4.3.1 Modelica Development User Interface 26
4.3.2 Modelica Projects Browser 27
4.3.3 Opening Elements in an Editor 28
4.3.4 Wizards . 29
4.3.5 New Project Wizard 29
4.3.6 Abstract New Type Page 29
4.3.7 New Package Wizard 30
4.3.8 New Class Wizard . 30

4.4 Error Management . 31
4.4.1 Logging Errors and Warnings 31
4.4.2 Displaying Error Messages 31
4.4.3 Error Notification Policy 32
4.4.4 Compiler Exceptions 33

4.5 Bug Management . 34

5 Regression Testing of MDT 35
5.1 Testing Tools . 35
5.2 Tests Plugin Project . 35
5.3 Abbot Tags . 36
5.4 Utility Classes . 36
5.5 Untested Code . 37

v

5.6 Tests for Known Bugs . 37

6 Future Work 38
6.1 Filtering Support . 38
6.2 Link With Editor . 38
6.3 Standard Toolbar . 38
6.4 Source Code Navigation Support 38
6.5 Quickfixes . 39
6.6 Multiple Modelica Compilers 39
6.7 Running a Simulation . 39
6.8 Testing . 39

6.8.1 In General . 39
6.8.2 GUI Recording . 40

6.9 Move Wizards Code . 40
6.10 Integrated Debugger . 40

7 Discussion and Related work 41
7.1 Integrating the OpenModelica Compiler 41

7.1.1 The OMC Access Interface 41
7.1.2 Level of Information on Parsing 42
7.1.3 Distribution of MDT and OMC 43

7.2 Testing of GUI Code . 44
7.3 Modelica Compiler Interface 45
7.4 The Modelica Package Structure 45
7.5 Other Modelica Development Environments 46

7.5.1 Dymola . 46
7.5.2 MathModelica . 46
7.5.3 Free Modelica Editor 47
7.5.4 Modelica Mode for GNU Emacs 48
7.5.5 SciTE with Modelica Mode 49
7.5.6 UltraEdit with Modelica Keywords 50

8 Conclusions 52
8.1 Accomplishments . 52
8.2 What We Deliver . 52

8.2.1 The Plugins . 52
8.2.2 Documentation . 52
8.2.3 Source Code . 53

A Package Overview 54

vi

1 INTRODUCTION 1

1 Introduction

The creation of software is a complex and error prone task. To help the
programmers, tools have been developed that assist with the developing of
software. A programmer needs many tools to develop software in an efficient
way, some of these are editors, compilers, and debuggers. To utilize all these
tools in a nice way, and to get a better workflow, the tools are integrated
into a so called Integrated Development Environment (IDE).

An IDE can be seen as a collection of development tools glued into one
large program, so that they can be reached easily. This definition is a bit
oversimplified, see section 2.1 for a longer discussion on development envi-
ronments. For example, if the programmer would like to stop editing and
start compiling a program, she could just press the Compile button instead of
exiting the editor and giving the compile command. This compilation could
even be automatic (e.g. when the user saves a file) and immediately inform
the programmer when an error has been typed. This will hopefully save time
and allow the programmer to focus on the problem she’s trying to solve.

Two of the more popular IDE’s today are Visual Studio and Eclipse.
Visual Studio is Microsoft Software’s IDE, and is an IDE for C++, Visual
Basic, C#, and J#. As this thesis had quite strict requirements on what en-
vironment to develop in, i.e. Eclipse, Visual Studio was not of much interest
to this thesis. Eclipse is, at least from the beginning, an IBM project that
later got released to the public as free software[6]. As of now, the Eclipse
Foundation manages the Eclipse project. Eclipse is an “IDE for everything
and nothing in particular”. However, it is shipped by default with a set of
plugins that has very good support for developing Java software.

As Eclipse is a very good platform for creating even better IDE’s, we de-
veloped the Modelica Development Tooling with and for Eclipse. As Eclipse
has a plugin architecture where different parts are easily replacable, it’s pos-
sible to incrementally build a development environment.

The Modelica Development Tooling, or MDT for short, is a collection of
plugins for Eclipse that provides an environment for working with Model-
ica software. MDT integrates with the OpenModelica Compiler to provide
support for various features, for example package and class browsing and
code completion. These features will hopefully make it easier for the model
designer to create Modelica models.

1.1 Intended Audience

To get the most out of this report on the Modelica Development Tooling, the
reader should have some understanding of how plugins for Eclipse are imple-

1 INTRODUCTION 2

mented. Familiarity with the Modelica and Java languages is recommended.
Some CORBA terminology is used towards the end of the report. To get a
feel for how MDT works, the reader is encouraged to install MDT and read
the user manual. See section 8.2 on page 52 for details about how to install
MDT.

Contributing to Eclipse[28] is a good introduction on writing plugins for
Eclipse. A bit extensive but thorough work on the Modelica language is
Peter Fritzson’s book[26]. Chapter two “A Quick Tour Of Modelica” is suf-
ficient reading for understanding this text. As far as the authors know, no
good books exist on CORBA.

1.2 Thesis Contributions

This thesis gives an overview of the Modelica Development Tooling for Eclipse
that has been developed by the authors of this report with some help from
Adrian Pop and other members of PELAB. It also contains a comparison of
MDT and other Modelica programming environments.

1.3 Thesis Outline

The following is a short outline of the thesis:

• Chapter 2 starts off with a short background of software development
environments, Modelica, Eclipse, and the OpenModelica Compiler.

• Chapter 3 contains the Modelica Development Users Guide to get you
started using MDT.

• Chapter 4 has a quite detailed description of the architecture of the
Modelica Development Tooling plugins.

• Chapter 5 has a discussion about the testing framework and testing
tools that were used when developing MDT.

• Chapter 6 contains some suggestions on future work.

• Chapter 7 has discussions regarding the OpenModelica Compiler, the
testing of GUI code, and the Modelica Compiler interface. A short
walkthrough of other Modelica environments is also presented.

• Chapter 8 concludes this thesis by detailing what we’ve accomplished
and what we deliver.

2 BACKGROUND 3

2 Background

This chapter provides a short overview of general software development en-
vironments, the modeling language Modelica, the extensible development
environment Eclipse, and the OpenModelica compiler.

2.1 Software Development Environments

An “environment” refers to the collection of hardware and software tools a
system developer uses to build software systems. A “software development
environment” is an environment that augments or automates all the tasks
comprising the software development cycle, including configuration manage-
ment, and project and team management.[25]

To summarize some of the technological trends, the following is a list
of different categories of software development environments. A particular
environment may fit into many of these categories, as these categories are
not competing viewpoints.

2.1.1 Language-centered Environments

A language-centered environment is such an environment that is specially
built to support a particular language. Examples of language-centered envi-
ronments are Interlisp, Cedar, Smalltalk and the Rational Environment.[25]

Environments in the language-centered category encourage an exploratory
style of programming. The programming environment and the runtime en-
vironment are the same. Code can be developed and executed interactively,
both in a top-down and bottom-up style. This allows for rapid prototyping.

Language-centered environments support the exploratory, interactive mode
of programming by making available semantic information. Semantic infor-
mation is typically symbol-table information such as information about the
definition and use of variables and procedures and information about types.
This information is made available through, for example, browsers. Browsing
involves navigating through the set of program objects and their relation-
ships.

Browsers are very useful tools for exploratory software development. They
also have the potential of being very effective during program maintenance.
As the maintainers often are not the original developers, they often spend a
considerable amount of time browsing the code. Browsers help maintainers
to determine the scope of a change.

2 BACKGROUND 4

2.1.2 Structure-oriented Environments

A structure-oriented environment is a tool that lets the developer to enter a
program in terms of language constructs. The editor is the central component
of such environments. It is the interface through which all program structures
are manipulated.[25]

Structure-oriented environments have made alot of contributions to en-
vironment technology; direct manipulation of program structure, multiple
views of the program structure, incremental checking of static semantics,
and making semantic information available to the user.

In a structure-oriented environment there are several ways of entering and
manipulating structures. One involves only structural editing, it can be seen
as template-driven editing. The user selects programming constructs from
menus, and the user can not enter syntactically incorrect programs. This
menu-driven entering of code is quite cumbersome, so some environments
represents expressions as text.

Another approach is a mixed-mode operation, where the user either can
enter text as in a normal editor or work directly on the program structure
through a structure editor. The user enters program fragments as text and
asks the environment to complete the processing. The environment keeps
track of both the textual and structural representations of the code, and
keeps them consistently updated.

2.1.3 Toolkit Environments

A toolkit environment is a collection of small tools that are intended to
support the coding phase of software development. The approach is to start
with the operating system and add tools such as compiler, editor, assembler,
linker, and debugger. There are also tools for large-scale development tasks
such as version control and configuration management. The toolkit approach
is language-independent.[25]

Unix is an operating system that has encouraged extensions in the form
of programs. The data model of Unix is the ASCII byte stream. By using
this data model, different tools in the Unix environment can communicate.
Each tool must parse the text stream to extract a structured representation
of the data.

Toolkit environments provide tools for working with large-scale software
development that are independent of a particular programming language.
These tools help the programmers by recording version numbers for source
code. Some systems that help with versioning of source code are CVS, Sub-
version, and GNU Arch.

2 BACKGROUND 5

2.1.4 Method-based Environments

Method-based environments support particular methods for developing soft-
ware. There are two kinds of classes that these environments fall into: de-
velopment methods for particular phases in the software development cycle,
and methods for managing the development process.[25]

Development methods address various steps in the software development
lifecycle such as design, specification, validation, and verification. Different
methods has different degrees of formality. One method may be informal,
as in written natural text. Another method may be semiformal, as in both
written and graphical representations that has limited verifiability. And fi-
nally, a method can be formal, with an underlying theoretical model. When
using a formal method, there are ways to verify that a description is correct.

Managing the software development process consists of both managing
the product under development and managing the process for developing
and maintaining the product. Support for product management includes
facilities for version, configuration, and release management. Support for
managing the development process includes facilities for project management,
task management, communication management, and process modeling.

2.2 Modelica

It is often convenient to describe systems with equations instead of using the
algorithmic approach when doing simulations. Modelica was developed with
this fact in mind. Modelica[13][26] is an object-oriented simulation language
for modeling systems that can be described using differential and algebraic
equations. Some of the most important features of Modelica are:

• Models in Modelica can be described using equations instead of algo-
rithms. This means that the flow of the data is not specified, which
leads to better model reuse.

• Multidomain modeling, meaning that you can mix components from
different domains such as electrical, mechanical, and biological. This
brings great flexibility as you can specifiy large systems that contains
parts from many different areas of physics.

• Modelica has a general class concept, which further simplifies the reuse
of code in models.

• At PELAB, Modelica is being extended with meta-modeling capabili-
ties, allowing languages such as Modelica being modeled in Modelica[27].

2 BACKGROUND 6

See chapter 2 of Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1[26] for an introduction to Modelica model development.
This chapter is also available online at the OpenModelica website[18].

2.3 Eclipse

Eclipse[4] is an open source framework for creating extensible integrated de-
velopment environments (IDEs). The integration simplifies development and
avoids disturbing the“flow”[24] that a programmer can attain when program-
ming.

The goal of the Eclipse platform is to avoid duplicating common code that
is needed to implement a powerful environment for development of software.
By allowing third parties to easily extend the platform via the plugin concept,
the ammount of new code that needs to be written is decreased. The leverage
of an existing code base decreases time-to-market and creates new synergies
in the software tools ecosystem.

2.3.1 Eclipse History

In the mid 1990s the software developments tools were dominated by sys-
tems built around two technologies. A lot of of the tools were focused on
runtime environment developed and controlled by the Microsoft corporation.
The other was build around the Java platform. The Java platform is less
controlled by a single company and more open to industry and community
input.

IBM felt it was important to contribute to the growth of the more open
Java platform to avoid losing business to the Microsoft corporation. By
creating a common platform for development tools built on top of the Java
platform, IBM hoped to win over more developers from competing systems.

In late 1998, the software division at the IBM corporation began working
on the software project that is today known as Eclipse. The original work
was based on resources developed by Object Technology International labs.
In the beginning, work on a new Java IDE was done at the labs. At the same
time additional teams were setup by IBM to build other product on top of
the platform.

IBM knew that to achieve broad adaptation of the Eclipse platform in
the industry, third parties must be involved in the project. However, other
organizations were reluctant to invest resurces in the new unproven technol-
ogy. In order to increase the rate of adaptation of the platform and to instill
confidence in the Eclipse platform, IBM decided to release the code base
under an open source license, and to build a community around the project.

2 BACKGROUND 7

In 2001, IBM together with eight other organizations created an Eclipse
consortium. A website at eclipse.org was started in order to create and
coordinate a community around Eclipse. The goal was that source code
would be controlled and developed by the open source community and the
consortium would handle the marketing and business side of the project.
At that point, IBM was the largest contributor to both the open source
community and the consortium.

Two years later the first major public release of the Eclipse platform
was made. The release got a lot of attention from developers and was well-
received. However, industry analysts suggested that many were still per-
ceiving Eclipse as an IBM-controlled technology. Many key players in the
industry did not want to make commitments to a project controlled by the
International Business Machines corporation.

After discussions within the consortium it was decided that a new organi-
zation was needed to make the status of Eclipse as an open and community
driven project clear. At the EclipseCon 2004 gathering an announcement was
made that the Eclipse Foundation was formed. The foundation is an inde-
pendent not-for-profit organization. It has its own full time paid professional
staff, supported by foundation members.

The new organization have proven itself a success. At this point the
foundation have released version 3.0 and 3.1 of Eclipse since its birth. These
releases have gained more adaptation and recognition than any earliers ver-
sions. Today the foundation has more than 90 full-time developers on the
pay roll and receives more than $2 millions in funding each year.

Currently there are more than eighty member companies in the fundation
of which at least sixty-nine are providing add-on products to Eclipse. Today
there exists hundreds of proprietary and an even greater number of free plugin
products. Eclipse has gained a solid foothold in the industry and is one of
the major open source software development platforms.[1]

2.3.2 Eclipse Platform Architecture

By itself, Eclipse doesn’t provide alot of end-user functionality. The greatness
of Eclipse is based on the plugins. The smallest architectural unit of the
Eclipse platform is the plugin.

At the core of Eclipse is the Eclipse Platform Runtime. The Runtime in
itself mostly provides the loading of external plugins. The Java Development
Tooling is for example a collection of plugins that are loaded into Eclipse when
they are requested. That Eclipse is in itself written in Java and comes with
the Java Development Tooling as default often leads newcomers to believe
that Eclipse is a Java IDE with plugin capabilites. It is in fact the other way

2 BACKGROUND 8

around, with Eclipse being just a base for plugins, and the Java Development
Tooling plugging into this base. See Figure 1.

Figure 1: Eclipse Platform Architecture

To extend Eclipse, a set of new plugins must be created. A plugin is
created by extending a certain extension point in Eclipse. There are several
predefined extension points in Eclipse, and plugins can provide their own
extension points. This means that you can plug in plugins into other plugins.

An extension point can have several plugins attached, and what plugin
that will be used is determined by a property file. For example, the Modelica
Editor is loaded at the same time as the Java Editor is loaded. When a
user opens a Java file, the Java Editor will be used, based on a property
in the Java Editor extension. In this case, it’s the file name extension that
determines what editor that should be used.

As the number of plugins in Eclipse can be very large, a plugin is not
actually loaded into memory before its contribution is directly requested by
the user. This design assures us that the memory impact will be as low as
possible while running Eclipse.

A user-friendly aspect of Eclipse is the Eclipse Update Manager which

2 BACKGROUND 9

allows you to install new plugins just by pointing Eclipse to a certain website.
This website is provided by the developers of the plugin that you may wish to
install. An update site[22] is for example provided by the MDT Development
Team for easy installation of the latest version of MDT.

2.4 OpenModelica Compiler

The OpenModelica Compiler (OMC) is being developed at PELAB. It is a
part of an effort to produce a complete Modelica environment[17] for creating
and simulating Modelica models.

OMC keeps a representation of every model in memory so that they can
be queried interactively by the user. When defining a new model, it is sent
to OMC via the provided interactive API, see section 4.2 on page 24. This
interactive API is then used to provide MDT with information about Mod-
elica models and packages. This information is for example utilized in the
MDT interface for providing a tree view of packages and models.

3 OVERVIEW 10

3 Overview

To get you started with the Modelica Development Tooling, this chapter is
a short overview of what MDT provides. The Modelica Development Users
Guide can also be reached from Eclipse when MDT is installed by going
through the menus Help > Help Contents. A browser will open where you
will be able to select the Modelica Development Users Guide. The guide you
can find there will hopefully describe the most recent version of MDT.

3.1 Modelica Development Users Guide

The Modelica Development Tooling (MDT) Plug-In integrates the Open-
Modelica Compiler with Eclipse. MDT, together with the OpenModelica
Compiler provides an environment for working with Modelica projects.

3.1.1 Features

MDT is still in an early stage of development but already provides a use-
ful environment for the Modelica programmer. The following features are
implemented so far:

• browsing support for Modelica classes

• syntax color highlighting

• syntax checking

• syntax error highlighting

• code completion

• wizards for creation of projects, packages, and classes

• Modelica System Library browsing support

3.1.2 Known Issues

The following are some know issues with MDT:

• Due to compatibility problems between the Eclipse Framework and
the OMC parser, tab characters in the source code are not supported.
This problem arises because Eclipse sees a tab character as a single
character, whereas OMC sees a tab character as 8 characters. This leads
to a conflict when trying to find out where in a document something

3 OVERVIEW 11

resides. When tabs are present in the sourcecode some MDT features,
such as error markers and code completion, will not work properly.
Avoid using tabs when possible.

3.1.3 Requirements

MDT requires at least the OpenModelica compiler version 1.3.2, Eclipse 3.1,
and Java 1.5. Other versions of Eclipse may work, but have not been tested.

3.2 Getting Started

3.2.1 Configuring the OpenModelica Compiler

MDT needs to be able to locate the binary of the OpenModelica Compiler.
It uses the environment variable OPENMODELICAHOME to do so. If you
have problems using MDT make sure that OPENMODELICAHOME is set
to the folder where the OpenModelica Compiler is installed. In other words,
OPENMODELICAHOME should point to a folder where there is a subfolder
named “bin” that contains the OpenModelica Compiler binary. This binary
is named omc.exe on Windows platforms and omc on Unix platforms.

3.2.2 Accessing the Modelica Perspective

A perspective is a collection of views that are useful when developing software.
A view can for example be an editor frame, a project browser or a list of
problems. To access the Modelica perspective, choose the Window menu
item, pick Open Perspective followed by Other... Select the Modelica option
from the dialog presented and click OK.

3.2.3 The Modelica Wizards

The following sections describes the wizards that are a part of MDT. A wizard
is a user dialog that automates a repetitive and complex task.

3.2.4 Making a Project

To start a new project, use the New Modelica Project Wizard. It is accessible
through File > New > Modelica Project. After creating a project you can
add files and folders to the project by selecting the corresponding wizard
found in the File > New menu subsection. Files having an extension of .mo
will be treated as Modelica source code files by MDT. See Figure 2 on page
12.

3 OVERVIEW 12

Figure 2: Creating a new Modelica project

3.2.5 Importing a Project

To import an existing Modelica project you need to create an empty Modelica
project and populate it with existing files. Create a new Modelica project
with the wizard. Use the file system import wizard on that project to copy
the files to the project’s folder. The import wizard is available by selecting
File > Import... with a Modelica project selected.

3.2.6 Creating a Package

To create a new Modelica package, use the New Modelica Package Wizard.
You can access it by going through File > New > Modelica Package or by
right-clicking in a project and selecting New > Modelica Package. Enter the
desired name of the package and a description about what it contains. See
Figure 3 on page 13.

3.2.7 Creating a Class

To make a new Modelica class, select where in the hierarchy that you want
to add your new class and select File > New > Modelica Class. When
creating a Modelica class you can add different restrictions on what the class
can contain. These can for example be model, connector, block, record, or
function. When you have selected your desired class restriction type, you

3 OVERVIEW 13

Figure 3: Creating a new Modelica package

can select modifiers that add code blocks to the generated code. Include
initial code block will for example add the line initial equation to the class.
See Figure 4 on page 14.

3.2.8 Syntax Checking

Whenever a Modelica (.mo) file is saved in the Modelica Editor, it is checked
for syntactical errors. Any errors that are found are added to the Problems
view and also marked in the source code editor. Errors are marked in the
editor as a red circle with a white cross, a squiggly red line under the prob-
lematic construct, and as a red marker in the right-hand side of the editor. If
you want to reach the problem, you can either click the item in the Problems
view or select the red box in the right-hand side of the editor. See Figure 5
on page 15.

3.2.9 Code Completion

MDT will try to help you with writing code. Code completion starts at
strategic positions in the code (when you type a dot (.)) or when you type
Ctrl+Space. If you for example type Modelica., a list of the packages and
classes that are available in the Modelica package will be displayed. See
Figure 6 on page 16 to see how this looks like. You can narrow down the
matches by typing in the first characters of the class or package that you

3 OVERVIEW 14

Figure 4: Creating a new Modelica class

want to type in. Thus, if you’ve first typed Modelica. you can then continue
typing Me and MDT will propose Mechanics and Media as completions. You
can always backtrack the narrowing by erasing characters.

Code completion uses imported packages and the Modelica Standard Li-
brary when figuring out what code completion to propose. Make sure that
you save (Ctrl+S) when you’ve typed an import statement, as then that
import will be available when completions are proposed.

3.3 Information Popups

Whenever MDT thinks you’re starting to type the arguments to a function
call, the system will try to help you by displaying the types of the parameters.
See Figure 7 on page 16.

3.4 Building Modelica Projects

Building Modelica projects, e.g. translating the Modelica files to machine
code to run simulations, is not supported out of the box right now. However,
it is possible to instruct Eclipse to use an external program for building. This
is done by creating a so called project builder.

3 OVERVIEW 15

Figure 5: Syntax errors

3.4.1 Creating a Builder

To create a builder, select a project and select Project > Properties. Select
the Builders option and then click New... Choose Program as configuration
type. On the next screen, enter the path to the make binary in the Location
field. To select the Working Directory, click Browse Workspace... and select
your project from the list. See Figure 8 on page 17.

If you’re building the OpenModelica Compiler you will also need to set
up some environment variables. Click on the Environment tab to view the
current variables. To add a new variable, simply click New... The variables
that are needed for building OpenModelica are ANTLRHOME, CLASSPATH
and RMLHOME. Refer to the OpenModelica README file for details. See
Figure 9 on page 18 for an illustration.

When you’re finished, click OK and close the Properties dialog. Now you
have to disable the automatic build feature by deselecting Build Automati-
cally in the Project menu item. See Figure 10 on page 18.

Now you can build the project by selecting the project and clicking Project
> Build Project. Automatic incremental building of Modelica project exe-
cutables is not supported at this time, but may be added in the future.

3 OVERVIEW 16

Figure 6: Code completion

Figure 7: Information popup

3 OVERVIEW 17

Figure 8: Properties for Modelica Project Builder

3 OVERVIEW 18

Figure 9: Environment properties

Figure 10: Deselect automatic building

4 ARCHITECTURE 19

4 Architecture

The Modelica Development Tooling package is composed out of three sepa-
rate Eclipse plugins. These three plugins are org.modelica.mdt.core, org.mode-
lica.mdt.ui, and org.modelica.mdt.omc. These plugins contributes core Mod-
elica functionality, user interface and OpenModelica Compiler access services
respectively. Together these plugins adds Modelica-specific functionality to
the Eclipse IDE and creates an environment for working on Modelica projects.

Figure 11: MDT Plugins Architecture

The omc plugin plugs in into the core plugin to provide compiler services.
The ui plugin uses the services provided by the core plugin. To fullfill some
requests the core plugin must employ services provided by the omc plugin.

4.1 org.modelica.mdt.core

The core plugin provides main functionality for MDT. It provides services
needed by the ui plugin to implement the Modelica specific user interface.
These services are Modelica elements hierarchies browsing, querying a map-
ping to the source code of the element, reversed querying of elements at a
particular location in the source code, and a mechanism to track changes to
elements.

4 ARCHITECTURE 20

4.1.1 Modelica Elements Access Layer

The classes and interfaces that provides access to the Modelica elements hi-
erarchies are defined in the org.modelica.mdt.core package. All client plugins
should only use the API defined in that package to access Modelica elements.

The elements contained in each project are made accessible by wrapping
the IProject object with an instance of the IModelicaProject class. To obtain
a wrapped versions of all projects in the workspace the method IModelica-
Root.getProjects() should be used. To obtain an instance of the IModelica-
Root interface, the static method ModelicaCore.getModelicaRoot() is avail-
able.

4.1.2 Modelica Projects

IModelicaProject provides access to the wrapped version of its root folder via
the getRootFolder() method. The method returns an instance of the IModel-
icaFolder interface. User created Modelica and other types of resources are
contained in the root folder of their respective project.

A special case of Modelica resources are classes defined in the standard
library. These classes are accessible from the IStandardLibrary interface. See
section 4.1.12 for more information.

4.1.3 Folders

IModelicaFolder is a wrapper for a regular folder represented by an instance
of IFolder. A Modelica folder can contain, besides other folders and plain
files, Modelica source code files and packages. Any file with the extension
mo in the file name is treated as a Modelica source code file.

The Modelica language specification defines a standard to map a Modelica
package to a folder structure, see section 10.3.3.2 in Peter Fritzson’s book[26].
Any such folders are so called folder packages and are treated as packages by
IModelicaFolder.

Modelica source files are represented by the IModelicaSourceFile interface.
Modelica packages are represented by implementations of the IModelicaClass
class. The reason that there is no special interface type for a Modelica pack-
age is due to the fact that Modelica packages are defined in the language as
regular classes of the special restriction package.

4.1.4 Source Files

A Modelica source code file contains hierarchies of Modelica classes. The
list of references to top-level classes are provided by the method IModeli-

4 ARCHITECTURE 21

caFile.getChildren().

4.1.5 Plain Files

All the files that does not have the extension mo are treated as plain files.
Such files are represented by a wrapper interface IModelicaFile. This interface
does not provide any additional services over the regular IFile interface,
however it became apperent that it was convinient to be able to treat a
plain file as a Modelica element.

4.1.6 Classes

The Modelica language defines 7 restrictions of classes. These restrictions
are model, function, record, connector, block, type and package. The restric-
tion type defines what restrictions are imposed on the class structure. There
is also a special restriction called class which means that there are no re-
strictions on the contents of the class. See section 3.11.1 in Peter Fritzson’s
book[26] for more information on class restrictions.

Classes of all restrictions are represented by the IModelicaClass inter-
face. The method getRestriction() can be used to query for the restriction
of the class. A class can contain a myriad of Modelica elements. However at
this point only a subset of possible elements are accessible. Subclasses and
components are made accessible via the getChildren() method. The imports
statments are returned by getImports(). If the class defines a function, the
method getSignature() returns the input and output arguments.

4.1.7 Components

A component in the Modelica language can be compared to a member vari-
able in a conventional object-oriented programming language. Modelica de-
fines two levels of visibility of class components, public and protected. The
visibility affects how the components can be accessed outside of the class def-
inition. See section 3.11.1 in Peter Fritzson’s book[26] for more information
on component visibility.

Components are represented by the IModelicaComponent interface. Cur-
rently only the visibily and name of a component can be accessed via the
getVisibility() and getElementName() methods.

4.1.8 Imports

The Modelica language defines three types of import statements: qualified,
unqualified and renaming. All imports make available a new package in the

4 ARCHITECTURE 22

current class under a shorter name. The renaming import also provide the
possibility to give the imported package a new name in the class where it is
used, see a suitable resource for more information on import statements in
Modelica.

Import statments are represented by the IModelicaImport interface. The
type of import is available with the getType() method. The imported package
is available via the getImportedPackage(). For the renaming imports, the new
name of the package is available with getAlias().

4.1.9 Function Signatures

Function signatures are represented by objects implementing the ISignature
interface. The signature is basically a tuple of input and output parameters.
Input parameters are queried with getInputs() and output parameters with
getOutput(). Both methods returns arrays of IParameter objects.

The IParameter interface simply provides access to textual representa-
tions of a parameter’s name and type. Use the self-documenting methods
getName() and getType(), which both returns strings.

4.1.10 Mapping to the Source Code

All interfaces that represent Modelica elements are derived from the common
grandparent IModelicaElement. This interface defines methods to query for
common attributes of Modelica elements, for example the element’s name via
getElementName().

IModelicaElement also defines methods that allow determining the source
code location where the element is defined. getResource() returns the resource
where the element is defined. This can either be a folder or a file based on
the type of the Modelica element. If the element is defined outside of the
workspace, for example a standard library element, getResource() returns a
null value. When such information is available, the path to the source code
file can be obtained with the getFilePath() method.

For elements that are defined inside a file, the method getLocation() re-
turns the region of the file where the element is defined.

4.1.11 Reversed Mapping from the Source Code

The interface IModelicaSourceFile provides the getClassAt() method to query
class definition at some position in the source file. This reversed mapping
feature is used for example to provide code completions and infopops in the
Modelica source code editor.

4 ARCHITECTURE 23

4.1.12 Modelica Standard Library

The Modelica specification defines a standard library of packages. To provide
access to packages in the standard library, the method getStandardLibrary()
in the IModelicaRoot interface is defined. The method returns an instance of
the IStandardLibrary interface. Such an object provides methods to browse
and search for classes defined in the standard library. The exact contents of
the standard library is determined by the currently used compiler plugin.

4.1.13 Tracking Element Changes

To allow tracking changes to Modelica elements, clients can register a lis-
tener. Such a listener must implement the IModelicaElementChangeListener
interface. IModelicaRoot.addModelicaElementChangeListener() can be used
to register a listener. Whenever clients wish to stop receiving notification on
element changes, the removeModelicaElementChangeListener() method can
be employed.

The method elementsChanged() on the listener will be invoked whenever
changes to the Modelica elements are detected and a list of changes are
passed along. Each change to an element is encoded as an instance of the
IModelicaElementChange interface. Such an object contains information on
the changes nature and the element that have been changed. The change
nature is one of added, removed or modified. For project elements there are
also changes of the type opened and closed defined. On change type added a
parent element of the newly added element is accessible via the getParent()
method.

It should be noted that unlike Eclipse resource deltas, an element change
list is a flat structure. No hierarchical information is made available.

4.1.14 Compiler Extension Point

The core plugin defines the extension point org.modelica.mdt.compiler. This
extension point is used by the core plugin to load the class that is used to
access a Modelica compiler. Currently the core plugin only accepts a single
plugin that extends the compiler extension point. If there is none or more
than one extension of the compiler extension point, the core plugin returns
an error to the clients on any calls that require access to a Modelica compiler.

The extension point requires that the extender specifies a class that will
provide an interface to a Modelica compiler. The specified class must imple-
ment the org.modelica.mdt.compiler.IModelicaCompiler interface. The core

plugin will create an instance of the specified class via its default constructor
and invoke the methods as defined in the interface to access the compiler.

4 ARCHITECTURE 24

See the source code documentation of the IModelicaCompiler interface and
org.modelica.mdt.compiler extension point documentation for details on im-
plementing a compiler plugin.

4.2 org.modelica.mdt.omc

The omc plugin provides access to the OpenModelica Compiler (OMC) for
the core plugin. It does that by extending the org.modelica.mdt.compiler
extension point. The class that extends the extension point is called OM-
CProxy. The plugin acts as a proxy and redirects all the requests to OMC
and translates back the replies for the core plugin.

4.2.1 Communicating with OMC

OMCProxy is the main class of org.modelica.mdt.omc. This class takes care
of starting, connecting to and communicating with OMC. To communicate
with OMC, a CORBA interface is utilized. This interface has a single func-
tion, sendExpression(), that takes a String as argument and returns a String
containing the OMC reply. The first time that an expression is going to be
sent, communication with OMC will be established. If OMC can’t be found
when trying to contact it, it will have to be started.

There exists two interfaces that can be utilized to access OMC, one based
on CORBA and one based on TCP sockets. We choose to utilize the CORBA
interface as it gave us a higher level of abstraction, and the other components
of the OpenModelica Environment uses the CORBA interface.

4.2.2 Starting OMC

If an OMC session cannot be found when communication with OMC is
needed, a new session will be started. This is handled by the startServer()
method in OMCProxy. This method uses one of two possible ways to find
the OMC executable. It either looks at the OPENMODELICAHOME en-
vironment variable, or it looks at the preference setting found by accessing
PreferenceManager.getCustomOmcPath().

The method used to start omc is determinded by the setting returned by
the PreferenceManager.getUseStandardOmcPath() method, where the value
provided by the OENMODELICAHOME environment variable is consid-
ered the standard path. The PreferenceManager class is defined in the
org.modelica.mdt.core.preferences package.

4 ARCHITECTURE 25

4.2.3 OMC Interactive API

The interactive OMC API[16] is entirely textual. This means that commands
must be formulated as strings, and returned strings must be parsed to be
able to get the actual returned information. The next subsection describes a
parser for parsing returned strings.

The API is called an interactive API as it can be used interactively by a
program (or a user) to query OMC for information about the contents of its
database of stored models.

By using the API you can load models into OMC and get information
about previously loaded models. This information is used by MDT for pro-
viding a range of features, for example to provide a tree view of packages
and models, code completion when typing in code, and finding and reporting
errors found in models.

4.2.4 OMC Communication Parser

The OMC communication parser is quite simple. The returned string from
OMC either contains a list of objects, or a list of errors. An object is either
a string or a list. The object lists and the error lists look a bit different, but
are quite easy to parse.

The list of objects is the most difficult to parse as there can be lists
within a list. This recursivity makes it hard to just split the string on some
given character or character sequence. Instead the parser tries to match up
parentheses and sending each substring recursively to the parser. The parsed
list is represented as a List that can contain both Lists and ListElements.
A List is basically a wrapper around a standard linked list. The method
for parsing lists is called parseList() and resides in the ModelicaParser class
found in the core plugin.

The list of errors are much easier to take apart as it’s just a newline-
separated list of errors in a specific format. Each error is easily parsed as
long as it follows the standard error format in OMC. It turns out that many
error messages from OMC don’t follow any format, and will therefore not
be parsed, and thereby generate an error. The error parser method is called
parseErrorString() and can be found in the OMCParser class in the omc

plugin.

4.2.5 Interfacing with the core Plugin

To be able to get information to the core plugin about models, a few func-
tions exist in OMCProxy. These functions are mapped relatively directly to
OMC API function calls.

4 ARCHITECTURE 26

The method getClassNames() will return the names of classes and pack-
ages that are contained in a class or a package. It uses the OMC API function
call with the same name.

The method getRestriction() will ask OMC about what kind of restriction
a class has. A restriction can, for example, be class, model, package, or
function.

The method loadSourceFile() takes a file name as argument and tries to
load that file into OMC. This method will return a list of classes and packages
found in the file along with any errors that are reported when loading the
file.

The method getClassLocation() will try to locate where in a file a class is
defined. This is for example used when clicking a classname in the package
browser that opens the editor with the correct file at the correct position.

The predicate method isPackage() simply asks OMC if a given classname
is a package. This is a specialized version of the method getRestriction().

The method getElements() gets information about the elements that are
contained in a class. In a class, there can be both elements and annotations,
and this function returns both kinds as a long list. The types of elements
that can be contained in a class are classdef (definition of a class), extends
(what this class extends), import (what this class imports), and component
(a component is kind of a member variable). For all these kinds of elements,
the file and position information can be retrieved. Alot more information
is available from this API function call, but are not used by MDT. See the
documentation contained in the OMC source tree for a longer explanation of
this and other API function calls.

4.3 org.modelica.mdt.ui

The ui plugin implements the graphical interface for working with Modelica
resources. The ui plugin uses the services provided by the core plugin. In
a sense, the ui plugin extends the core plugin by adding a user interface to
the core Modelica services.

4.3.1 Modelica Development User Interface

Most of the functionality provided by the ui plugin is grouped in the Modelica
perspective, see figure 12.

The Modelica perspective contains the Modelica projects browser, the
Modelica source code editor and the problems view. The ui plugin also
provides wizards to create new Modelica projects, classes and packages.

4 ARCHITECTURE 27

Figure 12: Modelica Perspective

4.3.2 Modelica Projects Browser

The ui plugin contributes a Modelica projects view. The view is largely
inspired by the Java package browser. The Modelica projects view allows
the user to browse projects, folders, packages, source code files and classes.
It also provides cognitive shortcuts to open the source code in the editor,
via the double click mechanism, and wizards to create new elements, via the
context menu.

The projects view displays a tree of projects in the workspace, basically
the same way that the Java package view does. The tree presents the hi-
erarchical structure provided by the core plugin graphically. By using the
mapping to the source code it enables a fast way to open the underlying
source code for reading and modifing in the Modelica text editor.

The code that implements the view is housed inside the org.modelica.mdt.-
ui.view package. The project views code structure is largely architectured
after the resource navigator view code. The class ProjectsView is the class

4 ARCHITECTURE 28

that implements the view part interface. It initializases the view and sets up
the listeners and actions to animate the view.

The ProjectsView class sets up a tree viewer. It configures the tree viewer
to use an instance of the ModelicaElementContentProvider class as a content
provider, and the standard instance of IModelicaRoot as the input source.
The labels and icons of the elements in the tree are provided by an instance
of WorkbenchLabelProvider from the org.eclipse.ui.model package.

The ModelicaElementContentProvider provides contents by simply expos-
ing the resource tree as presented by the core plugin via the IModelicaRoot
interface. The ModelicaElementContentProvider also updates the tree viewer
when the underlying Modelica elements changes. It does that by registering
itself as a Modelica element change listener with IModelicaRoot in its con-
structor.

The WorkbenchLabelProvider provides labels and icons for elements in
the tree by trying to convert them to IWorkbenchAdapter via the Eclipse
adapter mechanism, see chapter 31 in Contributing to Eclipse[28] for more
information. The ui plugin makes it possible to convert Modelica elements
by installing an instance of ModelicaElement-AdapterFactory as an adapter
factory. This is done in the Plugin.start() method. When the WorkbenchLa-
belProvider tries to convert a Modelica element to an IWorkbenchAdapter,
an instance of ModelicaElementAdapter is returned by the adapter factory.
ModelicaElementAdapter implements a mapping between Modelica elements
and text labels and icons for graphical representation according to the defi-
nition of the IWorkbenchAdapter interface.

4.3.3 Opening Elements in an Editor

As noted earlier, it is possible to open the source code of Modelica elements
directly from the projects view by invoking an open action, usually double
clicking on the element. This functionality is implemented by adding an
anonymous open listener on the projects tree viewer. This listener invokes
the method handleOpen(). The method retrieves the element that the open
action was invoked upon and forwards it to the openInEditor() method in
the EditorUtility class in the org.modelica.mdt.ui.editor package.

The method openInEditor() handles the details of opening an element in
the correct editor. Non-Modelica elements are opened in their respective de-
fault editor. When a request is made to open a Modelica element, the method
tries to determine the source file and region in the file where the element is
defined. On success the file is opened and the region is sharklighted.

It should be noted that there is a separate double click listener registered
on the Modelica projects tree viewer, an instance of the class ProjectsView-

4 ARCHITECTURE 29

DoubleClickAction. However this listener only adds behaviour to the tree
where some elements expand and collapse on double click. Do not confuse it
with the open action listener!

4.3.4 Wizards

The wizards that the ui plugin contributes are implemented in the org.mode-
lica.mdt.ui.wizards package. The wizards are made accessible to the user via
Eclipse’s standard wizards access points, such as the main menu and the
context menu in the Modelica projects view.

4.3.5 New Project Wizard

The wizard is implemented by the NewProjectWizard class. The class is
mostly a wrapper around the inner class NewProjectPage and ModelicaCore’s
createProject() method. NewProjectPage implements the first and only page
of the wizard. This page contains all the widgets for entering information on
the new project. The NewProjectPage also implements the logic that defines
when enough information is entered to be able to create a new project. It
also implements checks so that entered information is valid, e.g. that the
projects name is unique. When NewProjectPage contains valid information
of the right amount, the “Finish” button is enabled.

The method performFinish() in the NewProjectWizard class handles the
situations where the user decides to go ahead and click on the finish button.
It extracts the information from the NewProjectPage widgets and forwards
it to the ModelicaCore.createProject() method. The createProject() method
handles all the details of creating a Modelica project in the workspace.

4.3.6 Abstract New Type Page

To create a new Modelica type, either a package or a class, the user must
enter information on where this element should be created. Currently the
user can specify the folder or the parent package. The user only need to
specify either the folder or package, as the system is able to infer the other
piece of the information automatically. The mapping between source folder
and parent package is one to one, as currently creating packages inside the
classes is not supported.

The above functionality is needed both in the new package and the new
class wizards. To avoid duplication of the code, this functionality is imple-
mented in an abstract wizard page defined in the NewTypePage class. This
page defines two fields, Source folder and Package, and implements all the
logic needed for these fields. It also implements some convenience functions

4 ARCHITECTURE 30

such as prefilling of the values based on the current selection, choosing folders
and packages from special browse dialogs and other neatness.

The NewTypePage is not intended for direct use and therefore marked as
an abstract class. The page is extended by the new package and new class
wizards by adding specific fields suitable for package and class creation.

4.3.7 New Package Wizard

The new package wizard is implemented by the NewPackageWizard class.
It contains two inner classes, NewPackagePage and PackageCreator. The
NewPackagePage implements the only page present in the wizard. The page
contains widgets for entering information on the new, soon to be created,
Modelica package.

When the finish button is clicked, information from the fields are har-
vested and fed to a new instance of the inner class PackageCreator. This
object is run in a separate thread to avoid blocking the UI queue thread.
PackageCreator creates the new folder for the package, it also creates a pack-
age.mo file inside that folder with proper definitions.

4.3.8 New Class Wizard

The wizard is implemented by the NewClassWizard class. Figure 4 displays
the new class wizard. The inner class NewClassPage implements the wizards
only page. The wizard allows the user to select the restriction type of the
class to be created. Based on the restriction type the wizard enables a set of
modifiers on the class. For example, for a class of restriction type function,
the user can select if it will have an external body. Based on the restriction
type and modifiers selected, the wizard generates the source code.

The logic for enabling the modifiers checkboxes is implemented in the
NewClassPage.restrictionChanged(). The method is invoked from an anony-
mous listener on the restriction widget.

The code generation is launched from the NewClassWizard.performFinish()
method when the user clicks on the finish button. The method gathers in-
formation from the widgets and passes it along to the doFinish() method as
arguments. doFinish() is run in a separate thread to avoid blocking the UI
thread. Contents of the new source code file are generated by the generate-
ClassContents() method, which doFinish() invokes. doFinish() then creates
the file in the specified source folder and writes the generated source code
there.

4 ARCHITECTURE 31

4.4 Error Management

The are two primary sources of errors in MDT, the operation on the file
system and the Modelica compiler. When designing the code that handles
the error conditions, some important design goals must be kept in mind.
The environment should fail gracefully. The user must be notified of the error
condition and, most importantly, user created data must not be lost. It is also
important to make errors traceable to aid troubleshooting. See also chapter
20 in Contributing to Eclipse[28] for a discussion on error management in
Eclipse plugins.

The general design pattern on error management in MDT is to forward
the error condition to the client. On errors in the omc plugin, generally an
exception of the subtype of org.modelica.mdt.compiler.CompilerException is
thrown. This exception is then forwarded via the core plugin to the client,
i.e. the ui plugin. When the core plugin interacts with the file system,
or some other Eclipse runtime services, errors are signalled by throwing the
org.eclipse.core.runtime.CoreException exception. This exception is gener-
ally forwarded to the invoking client.

When the error exceptions reaches the ui plugin we tried to follow the
philosophy outlined in chapter 20 in Contributing to Eclipse[28]. We display
errors to the user whenever it is clear it was triggered by some specific user
action. In all cases the errors are logged in the Eclipse system log. The code
to display errors to the user and write errors to the log is contained in the
org.modelica.mdt.internal.core.ErrorManager class.

4.4.1 Logging Errors and Warnings

In some situations it is not appropriate to show an error message to the
user. However it can become tricky to troubleshoot problems if occurred
errors never leave a visible trace. In such situations it is appropriate to log
the error to the problems log. It’s also possible to write more detailed and
more technically formulated error messages, because the average users is not
expected to read the problems log. The ErrorManager class provides logging
facilities in such situations.

4.4.2 Displaying Error Messages

Whenever the decision is to notify the user about the error, the meth-
ods showCompilerError() or showCoreError() in the ErrorManager class are
called. The method called depends on the type of the exception caught.
Subtypes of the CompilerException class are handled by the showCompil-

4 ARCHITECTURE 32

erError() method and subtypes of CoreException by the showCoreError()
method.

The showCompilerError() and showCoreError() methods logs the errors,
formulates the error message and displays the message to the user. Both the
error message and the log message are formulated by using the type of the
exception and any extra information on the error which may be embedded in
the exception object. These methods also implements the logic of the error
notification policy.

4.4.3 Error Notification Policy

Displaying the error messages to the user presents an interesting usability
dilemma. On one hand the user should not be bombarded with error dialogs.
For example while expanding the Modelica node in the standard library sub
tree in the projects view, the showCompilerError() can be invoked one time
for each child under the node if an error condition occures. Depending on
the version of the standard library it can be more then 10 times under less
than a second. On the other hand the plugin should not fail silently, the user
must understand why the computer does not do what it was told to do.

We decided to resolve the dilemma by creating a policy where the number
of repeated identical error messages is limited. Errors signalled by excep-
tions of the types CommunicationException, ConnectException and Compi-
lerInstantiationException are only shown once. If such exceptions are for-
warded multiple times to the ErrorManager.showCompilerError() they are
only logged but no error dialog is shown to the user a second time. The ratio-
nale is that the MDT after such errors lacks access to the Modelica compiler,
which practically makes it useless. In the face of such errors, the only thing
the user would be interested in is to fix the compiler problem and restart
Eclipse.

Errors signalled by exceptions of the types InvocationError and Unexpect-
edReplyException have a minimal timeout period between appearances. The
timeout is defined by a constant in the ErrorManager class and currently is
set to 1 minute. These types of errors are of a more transient nature and
MDT may as well be fully functional later on. In this case you are mostly
interested in avoiding seeing more than one error message from the cluster
generated by some specific action.

Errors signalled by the exception of some subtype of CoreException, which
are handled by the showCoreError() method, are always shown to the user
and noted in the problem log.

Maybe a more elegant solution can be found to the above outlined us-
ability dilemma. However the authors of this report were not able to arrive

4 ARCHITECTURE 33

at any other workable solutions.

4.4.4 Compiler Exceptions

org.modelica.mdt.core.compiler.CompilerException is the super class of ex-
ceptions that signal errors that occurs while communicating or trying to
establish a connection to the Modelica compiler.

• CompilerInstantiationException

CompilerInstantiationException is thrown when there was an error in-
stantiating the compiler object specified by the plugin in the declara-
tion of the extension org.modlica.mdt.compiler. The exception object’s
method getProblemType() provides more details on the problem en-
countered. For example, if there was more than one extension defined
of the compiler extension point, this exception is thrown.

• ConnectException

ConnectException is thrown when there is an error while trying to
establish a connection to the Modelica compiler. This exception can
be thrown from many methods due to the fact that connecting to the
compiler is implemented lazily. For example if the omc plugin fails to
find the compiler binary this exception is thrown.

• CommunicationException

CommunicationException is thrown when there was problems sending
a request to the compiler or receiving the reply. This can happen for
example if the compiler crashes and dumps core on some particularly
nasty request.

• UnexpectedReplyException

The UnexpectedReplyException exception is thrown when the compiler
replies with something not quite expected. For example if the compiler
replies with a string instead of the expected integer. This is typically a
sign of compatibility problems with the compiler or bugs in the compiler
or the plugin code.

• InvocationError

InvocationError is thrown when the compiler returns an error reply
instead of the usual reply. This can happen for example if the method
IModelicaCompiler.loadSourceFile() is invoked with a path to a non-
existent file.

4 ARCHITECTURE 34

4.5 Bug Management

Whenever the MDT code reaches an illegal internal state, for example a point
in the code that never should be executed, then it is an almost certain sign
of a bug. To help troubleshooting, and to help expose less obvious bugs, all
such illegal internal states should be logged. The bugs are logged with the
ErrorManager.logBug() method. Description of the illegal state and location
in the source code where it was encountered are written to the log to help
tracking down the problem causing the bug. In all locations where it is
obvious that an illegal state is reached, a call to logBug() should be made.

5 REGRESSION TESTING OF MDT 35

5 Regression Testing of MDT

We believe that scripted regression testing is an important tool to improve
both the user perceived quality of the product and the maintainability of the
code. By making it easy to run the full set of tests, more bugs and other issues
can be detected early and fixed. A more systematic approach to testing also
allows to detect defects which otherwise would be easily overlooked and could
be hard to track down and reproduce. If there is a set of regression tests that
covers the code it also gives the developer more freedom to refactor that code
without fear of introducing new defects. This helps to improve readability
and maintainability of the code. For a longer discussion on the role of scripted
testing and refactoring in a development process see [23].

5.1 Testing Tools

For running the regression tests on MDT, two special sets of Eclipse plugins
are required, the JUnit PDE plugin and the Abbot plugin.

JUnit PDE is a set of plugins that integrates the unit testing framework
JUnit into the Eclipse environment. It allows running the regression tests on
plugins from a special instance of Eclipse. The Eclipse SDK package, version
3.0 and later, include all required JUnit plugins to run MDT regression tests.
See [9] for more information on creating and running tests with the JUnit
framework.

Abbot is the plugin that allows writing scripted tests of GUI compo-
nents. The plugin mimics the real user input such as key presses and mouse
clicks and allows for realistic testing. The Abbot plugin must be installed
separately, see [11] for details on obtaining and installing it.

See section 7.2 for a discussion about GUI testing and the tools used in
the process.

5.2 Tests Plugin Project

The regression tests for MDT are all placed and run as the separate plugin
project org.modelica.mdt.test. All tests are implemented as JUnit test cases.
Each test class subclasses the junit.framework.TestCase class. The test class
groups the tests which are run in the same environment. The testing envi-
ronment is set up by the protected method setUp() in each test class. The
method is automatically called by the JUnit framework before running the
test code. The tests are implemented by the public methods with names that
begin with the lower case word test, e.g. testParseList().

5 REGRESSION TESTING OF MDT 36

If a test case class is written to perform tests on a specific class a conven-
tion exists to name the test case class after the tested class. For example if
tests are written for the class Foo then the test case class is named TestFoo.
This convention is intended to help navigate among tests.

5.3 Abbot Tags

To direct simulated user input to the widgets in the regression tests you first
need to get a reference to the widget. Abbot provides multiple methods to
acquire such references. One way is to attach a so called tag on the widget
and ask Abbot to fetch the widget by tag. This method is by far the simplest
and most predictable. The downside is that it requires support in the code
that is tested. We believe that the time saved by being able to write test
code faster and with less hassle is worth the extra trouble of modifying the
tested code. The tagging of widgets is used whenever it is possible.

Abbot tags are attached to the widgets by setting an attribute “name” to
a specific string. Widgets attributes are set by calling the setData() method
on the widget object. A convenience method, MdtPlugin.tag(), is defined to
handle the details of tagging widgets. Widgets that regression tests need
access to are tagged by the code that creates them. The convention is to
define a constant named after the widget in the class that sets the tag. For
example the sourceFolder widget, in the new class wizard, have the tag con-
stant SOURCE FOLDER TAG. The constants value is set to the tags value
and referred to by the regression test code.

In some cases, test code need access to a widget created outside of the
MDT code. For example the tests on new class wizard need to simulate the
click on the wizard’s finish button. In such cases more elaborate code needs
to be written to acquire the widget reference. Typically such attributes of
the widget as caption, type or contents are used to find the desired widget.
For example to find the finish button, a widget of type push button with
caption ’Finish’ is searched for. Here you always run the risk of finding the
wrong button if there are two finish buttons displayed simultaneously.

5.4 Utility Classes

The package org.modelica.mdt.test.util contains the helper classes for writing
regression tests. Common code is collected in classes defined in this package.

Many test cases require either a Modelica or a plain project or both to
exist in the workspace. To avoid writing the same project creation code in
multiple test cases, the class Area51Projects was created. The class contains

5 REGRESSION TESTING OF MDT 37

code to setup two fully populated projects. The Area51Projects.createPro-
jects() method creates a Modelica and a plain project. Projects are instan-
tiated with a rich hierarchy of elements suitable to run tests on. The class
keeps track of if it has already created the project and avoids trying to create
them a second time. This makes it safe to call the createProjects() method
multiple times from different test cases.

5.5 Untested Code

Unfortunately writing regression tests for MDT often was given low priority
due to lack of discipline and external pressures. In particular writing new
GUI regression tests was abandoned during the second half of the project.
This means that a lot of code is not tested by the regression tests and a
number of bugs undiscovered. See the discussion on GUI testing in section
7.2 for more information. Also the fact that for one line of regression tests
code there exists two lines of the production code suggests that there are
large areas of untested code. Some of the known white spots of the tests are
the GUI code for the Modelica projects view and the Modelica text editor.
It is probably a good idea to otain some testing coverage data to know for
sure what areas need more testing.

5.6 Tests for Known Bugs

The ambition while working on MDT was that each time a new bug was
discovered to write a regression test that triggers that bug. That ambition has
largely gone unfulfilled. However it is noted in the docs/BUGS file whether
a regression test exists for the bugs listed there. Also, in the source code
comments for the regression tests, it is noted if the test triggers a particular
bug.

6 FUTURE WORK 38

6 Future Work

No program is complete, and MDT is no exception. Below is a list of different
parts of MDT that is either missing completely or need to be improved.

6.1 Filtering Support

When working with many projects in MDT, you should be able to filter out
the projects that you’re not interested in at the moment. This should be
accomplished by defining filters in the Modelica Projects View. You should
for example be able to filter out non-Modelica projects from the Modelica
Projects View.

6.2 Link With Editor

A standard feature in Eclipse is to link the project browser with the editor.
This means that when the user selects an editor window among the open
editor windows, that document is highlighted in the project browser.

6.3 Standard Toolbar

The standard buttons Back, Forward, Up, Collapse All, Link With Edi-
tor, and the Filters/Working set menu should all be added to the Modelica
Projects View.

6.4 Source Code Navigation Support

JDT allows users to browse the source code in the workspace. For example
to see the definition of a method the user can simply press CTRL and click
on the function’s name anywhere it is used in the source code. The file where
the method is defined will be opened in the text editor and the methods body
will be made visible.

We believe that this feature is a major time saver while working with any
source code of non-trivial size. Such feature should be implemented in MDT
sooner rather then later. To be able to do this, OMC must be able to provide
more information on the source code structure than it does now. See section
7.1.2 for a detailed discussion on the type of information that is required.

6 FUTURE WORK 39

6.5 Quickfixes

Quickfixes should work like in JDT, where fixes to errors are proposed by
the plugin. Quickfixes is a really neat feature and speeds up the workflow
considerably. To be able to implement this feature, OMC will have to report
more detailed error messages. Currently some kind of more structured error
management in OMC is being worked on. This can hopefully be used in the
future to implement quickfixes.

6.6 Multiple Modelica Compilers

If multiple Modelica Compiler plugins, i.e. plugins that extends the org.mode-
lica.mdt.compiler extension, are available, an error message is displayed and
nothing works until exactly one compiler is available. This should be changed
to allow the user to configure which compiler to use on a per project basis. It
will probably be a good idea to add a default compiler setting as well. This
is a rather farfetched feature as currently there is no pressing need to use any
other compiler besides OMC with MDT.

6.7 Running a Simulation

To make a complete environment out of MDT, the simulation of models will
have to be supported. This can for example consist of a model setup wizard
(where one changes the starting values of the model), a report window with
simulation values, and a graphical plot of selected functions. Dymola[2] is an
example of how a Modelica simulation environment with a graphical UI can
look like.

This additional functionality requires that the Modelica Compiler has
support for running simulations. OMC has this functionality, so one can add
support for simulating models by only modifiying the MDT source code.

6.8 Testing

6.8.1 In General

There are some things that are not tested at all, and these should of course
have tests written for them. Some of these are the Modelica Projects View
and large parts of the Modelica Editor code. To get a complete picture of
what tests are missing, testing coverage data should be generated.

6 FUTURE WORK 40

6.8.2 GUI Recording

To create regression tests for the GUI some extra tools should be used. Us-
ing a GUI recording tool, rather than write the tests by hand via Abbot,
would save a lot of time and hassle. The TPTP suite of tools[3] should be
investigated for the presence of a GUI recorder.

6.9 Move Wizards Code

The code that creates new packages, new classes, and new projects should be
moved from the wizard classes to org.modelica.mdt.code.internal and made
accessible through a public API in org.modelica.mdt.core.

6.10 Integrated Debugger

Another big thing that’s missing to make MDT a little more complete is an
integrated debugger. The authors are not sure how Modelica is debugged,
but they know there has been some work done on creating a stand alone
Modelica debugger. This debugger should be investigated before starting
work on an embedded debugger in MDT.

7 DISCUSSION AND RELATED WORK 41

7 Discussion and Related work

7.1 Integrating the OpenModelica Compiler

As described earlier, the org.modelica.mdt.omc plugin provides access to the
OpenModelica Compiler (OMC) for the core plugin. At this point MDT
mostly needs access to a Modelica parser. By parsing the contents of the
Modelica source code files it’s possible to implement a number of features.
For example, browsing definitions in a source code file in the projects view
is dependent on the ability to parse the file.

In the future other OMC features should be accessed. For example, it
would be nice to be able to run simulations directly from the MDT environ-
ment. To do that the OMC modules that handle the simulation needs to be
accessed.

7.1.1 The OMC Access Interface

The OMC defines two quite similar ways to access its functionality. The
access is available through either a TCP socket or a CORBA-defined inter-
face. We have chosen to use the CORBA interface as described earlier in the
Architecture chapter. However there exist some problems with the way that
the interface is designed.

The IDL-defined interface only consists of one function, sendExpression(),
which takes one argument of type string. The function returns a string as
well. All communication with OMC is done by sending special text messages
via the sendExpression() function and parsing the reply, see the description
earlier in this report for details on communicating with OMC.

Here a custom text based protocol, on top of CORBAs provided facilities,
is defined to access the compiler. For example to retrieve the contents of
the “Modelica” package the following actions need to take place. A text
expression for querying of class contents must be formulated and passed on to
the sendExpression() CORBA stub. The stub code marshals the expression
into the wire format and sends it over to the server stub function in the OMC.
The server stub unmarshals the received expression to a string and invokes
the local implementation of sendExpression(). Now OMC needs to parse the
received expression before it knows what to do. After the service is performed
the reply text must be constructed and sent over the CORBA stack. Once
again the reply is marshaled, sent over the wire protocol, unmarshaled and
handed over to the MDT code. Now the reply must be parsed to retrieve the
contents of the “Modelica” package.

This means that in addition to the CORBA provided marshalling layer a

7 DISCUSSION AND RELATED WORK 42

hand written layer needs to be created both in MDT and in OMC. Creating
a custom marshalling layer has a number of drawbacks. First it takes time to
write, debug and maintain the marshalling code. It adds extra complexity to
the code base, and that’s never a good idea. Also, the extra layer consumes
additional computing resources such as processor time and volatile storage.

A TCP socket protocol does not define a marshalling layer and thus ne-
cessitates a custom defined layer. The same text protocol is used for both
socket and CORBA based access interfaces.

We think that it is a mistake to provide both access interfaces to OMC.
Right now all the drawbacks of both socket and CORBA interfaces are
present but none of the advantages. You need a custom design marshalling
layer to support the socket layer. However you also have drawback of the over-
head and the extra hassle it means to have your code depend on a CORBA
package.

Our recommendation on future development of OMC is to drop one of
the interfaces. If the support for the socket interface is dropped, the full IDL
interface can be defined and the wonders of automatic marshalling can be en-
joyed. If the support for CORBA interface is dropped the dependency on the
CORBA package will be eliminated and the overhead of double marshalling
layers avoided.

Of course, dropped support of one of the interfaces means that backward
compatibility will be broken. This would require some work on OMC clients
that were using the deprecated protocol. This must be taken into consider-
ation before removing support.

We think that dropping the socket interface and moving marshalling fea-
tures from the custom defined layer to the CORBA layer is the best approach.

7.1.2 Level of Information on Parsing

The amount of information OMC provides is not sufficient to implement some
features that are desirable to have available in MDT. Features such as refac-
toring, code navigation directly from the text editor, quickfixes suggestions
and others requires access to quite detailed information on the source code.
Basically you need access to the abstract syntax tree in many cases. Many
times you need to know the tokens that are present in some text area. The
type and start and end of the token are needed information. Some work
in this area has been discussed among the OMC developers team, and will
hopefully be performed in the foreseeable future. Also see section 6 on which
possible feature would require what type of extra information from OMC.

Also, error reporting from the parsing phase should become more stan-
dardized. To implement quickfixes suggestions in MDT, the error messages

7 DISCUSSION AND RELATED WORK 43

should contain such information as severity of the error, type of error, the
area in source code where this error is found and so on.

The work on redesigning the error reporting facilities of OMC is done as
this report is written. Hopefully this section will be obsolete by the time you
read this, but don’t hold your breath.

7.1.3 Distribution of MDT and OMC

Currently setting up a fully functional MDT environment is quite a lot of
hassle. You need to obtain and install the OpenModelica Compiler package.
You need to obtain and install the Eclipse SDK package, and finally you need
to instruct Eclipse to download the MDT feature from the update site. The
amount of trouble required probably scares away a number of potential users.
There is at least two ways to streamline the process a bit.

One possibility is to create a single package that bundles OMC, Eclipse
and MDT in one single swoop. This type of package would be of interest
to users looking for a complete Modelica development environment. The big
downside of this solution is the size of the package, which would be at least a
couple of hundreds megabytes. Also users who are already using some other
third party Eclipse plugins would not like this solution. They would be faced
with the alternative of either having two copies of Eclipse installed or trying
to merge the two provided distributions by hand.

Another solution would be to create a special Eclipse plugin that would
contain the OMC native binary. Such a plugin would be included in the MDT
feature. Then setting up the MDT environment would be a two step process,
install Eclipse and install the MDT feature. The downside of this solution is
that a separate OMC binary plugin for each supported platform is needed.
One for Windows, one for each flavour of Linux and so on. Another drawback
is that the users who would want to use OMC outside of the Eclipse platform
would need to have two installation of the OMC binaries as the MDT bundled
binaries whould not be usable outside of Eclipse.

The above problems whould go away if OMC and MDT whould be dis-
tributed on a platform that already ships Eclipse, supports dependencies
among packages and provides package repositories. An example of such a
platform is Fedora Core 4 which is built around an rpm packaging system
and supports yum repositories. MDT could be destributed in the following
way. OMC is packaged as an rpm. MDT is packaged as a second rpm which
specifies a dependency on the Eclipse and OMC packages. Both OMC and
MDT are uploaded to a yum repository. Eclipse is already bundled with
Fedora Core.

Installing a fully functional MDT would be as easy as typing yum install mdt.

7 DISCUSSION AND RELATED WORK 44

Unfortunately this is not possible at the moment because MDT would not
run on the free Java implementation bundled with Fedora. Distributing the
proprietary Java implementation in a user friendly way with Fedora Core is
not possible due to licensing restrictions.

Anyway, this report is not trying to solve the world’s packaging problems,
this is someone else’s work.

7.2 Testing of GUI Code

Writing regression tests for the GUI code turned out to be quite a bit more
problematic than expected.

The first problem was to find a library that provides hooks for simulating
user input for SWT. Information available on the Internet on how to do GUI
testing with SWT and in particular in the Eclipse environment is hard to
come by. There seems to exist two libraries, Abbot for Eclipse and TPTP[3].

We chose Abbot mostly because we did not manage to figure out for sure
that TPTP provides such functionality. As a matter of fact we are still not
quite sure, however we managed to secure a copy of a TPTP user manual.

Abbot basically lacks any sort of documentation besides the partial API
documentation and some bits of outdated tutorials and code examples. How-
ever, on the plus side, it’s not too hard to figure out how to use Abbot even
with the small scraps of information available. The API is pretty much
straight forward. The existing regression tests are probably useful illustra-
tions. Tests on wizards are good examples to look at.

Besides troubles with learning how to use the Abbot library, writing GUI
regression tests turned out to be quite complex and time consuming work.
While doing GUI testing, the threading model of the toolkit must be consid-
ered. There exists some rules on actions that must be done on and off the
thread that processes the GUI event queue, see SWT threading issues[20]
for more information. Also, due to the threading model of SWT, some tests
must run in multiple threads which need to synchronize with each other.

Due to the complex nature of writing GUI tests and due to the fact that
the MDT development team lack solid understanding of threading issues at
hand, the writing of new GUI tests was halted during later stages of the
project. Our recommendation to the future MDT developers is to gain a
solid understanding of the SWT and Eclipse threading model early in the
project.

Writing the GUI tests by hand should probably be avoided. There prob-
ably exist some GUI recording tools that can be employed instead. Such a
tool can save a lot of time. We recommend to take a close look at the TPTP
project and consider migrating current regression tests to it. To stop using

7 DISCUSSION AND RELATED WORK 45

Abbot is probably a good idea. It would certainly be nice to remove all the
abbot widget tags, look for string constants who’s name ends with TAG in
GUI-classes.

7.3 Modelica Compiler Interface

The interface that the core plugin uses for accessing the Modelica compiler is
quite OMC-centric. The methods defined in the IModelicaCompiler interface
mirrors quite closely the functionality provided by OMC’s interactive API.
It relies heavily on the concept of a memory database of Modelica elements.
The interface assumes that elements are loaded into the compiler’s memory
from files and that the compiler later on can be queried on the contents of
the database.

The errors that can be singled out by the interface also makes assump-
tions based on the way OMC works. For example the“unexpected reply”error
assumes that communication with the compiler is done via a text based pro-
tocol. If communication were to be performed by utilizing a more CORBA-
oriented interface, “unexpected reply” would never occur.

All these assumptions makes it hard to add support for other Modelica
compilers. The interface should be reworked if support for some other com-
piler than OMC is needed. However, currently there is no need to support
any other compilers, so this task is not of pressing nature. Also making a
more general interface could be tricky and cause inefficient code.

7.4 The Modelica Package Structure

The Modelica package structure is quite different to other programming lan-
guages packages structures, and we will compare it with how Java does in
this section.

In Java, the package structure is directly mapped to the file system. This
means that a class that is in the package org.modelica.mdt will be found in
the folder org/modelica/mdt. This one-to-one mapping makes it easy to find
classes and easy for an environment to browse classes found in a package.

In Modelica, a package is just a restriction of a normal class. This means
that a package can be a part of a class. But this is not the only way that a
package can be defined, it can also be defined as a directory in the filesystem
that contains a file named package.mo. This means that there are several
different ways that entities on disk will be represented as packages in Modelica
and in MDT.

If Modelica dropped support for having packages inside of classes and only
supported packages that were directories, the Modelica package structure

7 DISCUSSION AND RELATED WORK 46

would more resemble the Java package structure.
Having packages as part of classes is the wrong way around, classes should

be placed inside of packages. As a package is just a name-space divider, it
should not be a part of the class-restriction hierarchy.

7.5 Other Modelica Development Environments

There are many other environments for developing Modelica projects. Some
of the environments are proprietary and commercial, while others are only
proprietary. Some are free software[6].

The following descriptions of other environments also point out the dif-
ferences between the environments and MDT. Many of the following environ-
ments are just editors with only some of the features that we feel are needed
for a good Modelica environment. Another important aspect of software is its
portability, and a couple of the environments are only available for Microsoft
Windows.

7.5.1 Dymola

Dymola is developed and maintained by the company Dynasim[2]. It is a
complete modeling and simulation environment which also has support for
graphical modeling. As Dymola is commercial and proprietary software,
MDT is not exactly in its league.

The two essential things that are missing from MDT to make it somewhat
equal to Dymola are simulation and graphical editing of models. These fea-
tures are probably also the most useful features of a modeling environment.

To get an idea of how Dymola looks like, see Figure 13 on page 47.

7.5.2 MathModelica

MathModelica is a Modelica environment developed by MathCore[10]. It is,
as Dymola, a complete modeling and simulation environment. The old ver-
sion of MathModelica uses the Dymola kernel to actually do the simulations,
whereas the new version will use OpenModelica with some extensions. The
current graphical editor used in MathModelica depends on Microsoft Visio.
Another graphical editor has been developed that is not dependent on pro-
prietary software. See Figure 14 on page 48 to see how this new graphical
editor looks like.

As MathModelica currently depends on Microsoft Visio, it is not portable
to anything else than various versions of Windows.

7 DISCUSSION AND RELATED WORK 47

Figure 13: Dymola

7.5.3 Free Modelica Editor

The Free Modelica Editor[5] (FME) was created by Falko Jens Wagner at
the Technical University of Denmark. Among the features found are syntax
highlighting, object browsing, and code templates. See Figure 15 on page
49 for an example of how a session with FME can look like. FME is only
available for Microsoft Windows.

In comparison with MDT, the Free Modelica Editor only works on source
files and not whole projects. This means for example that the object browser
only displays Modelica classes and packages that are found in the current file
that is being edited. When another file is selected, only that files contents
will be displayed. This is a big drawback when working on larger projects
with several files.

There are some things that FME can do that MDT can’t. FME can do
simulations of Modelica files by sending the file and different parameters to
Dymola[2]. That this feature is missing from MDT is a big downside, as
simulation of models is a big part of Modelica development. As a side note,
you can actually do simulations from MDT but it requieras a hack. You can

7 DISCUSSION AND RELATED WORK 48

Figure 14: MathModelica

create an Eclipse external program builder that runs any program you like,
and thereby run a simulation. This is not at all as helpful as actually having
simulations available from the interface.

Another thing that FME can do is hiding of annotations. A problem
is that this feature is implemented by rewriting the file, inserting a place-
holder for the annotation with a short code. An annotation can for example
be replaced by the string “//ann.01”. If you by mistake remove some part
of this coded replacement, the annotations that are held in memory can be
destroyed.

A final problem with FME is that it is quite old and outdated (last up-
dated in 2000). MDT will hopefully be kept up-to-date with new develop-
ments in the Modelica community.

7.5.4 Modelica Mode for GNU Emacs

GNU Emacs[7] is an extensible editor originally created by Richard Stallman[8].
As it is a free software project, many other developers have contributed
throughout the years. It can easily be extended by using a variant of Lisp.

A Modelica mode for Emacs has been developed by Ruediger Franke.
This mode has support for syntax highlighting, annotation hiding and object
browsing by using the OO-Browser[15]. See Figure 16 on page 50. The

7 DISCUSSION AND RELATED WORK 49

Figure 15: The Free Modelica Editor

Modelica mode can be found on the OpenModelica website[17].
Installing the Modelica mode is alot of hassle, you have to update some

files and also change some of the code in the OO-Browser. Another downside
is that you have to be rather familiar with Emacs to be able to use this mode.

As GNU Emacs runs on most modern operating systems, this environ-
ment is probably portable.

7.5.5 SciTE with Modelica Mode

SciTE is the Scintilla Text Editor[12] and has been developed by the MOSILAB[14]
group. Scintilla can be seen as a framework for creating text editors for com-
puter languages, and SciTE is an editor that is implemented by using this
framework. As Scintilla is aimed at both the Win32 API and GTK+, it’s
widely portable and should be able run on most modern operating systems.
See Figure 17 on page 51.

A mode for editing Modelica is available, and it has a couple of features.
As can be expected, syntax highlighting is available. There is also support for
code folding, including annotations, and some support for code completion
in the form of Modelica keywords and identifiers.

7 DISCUSSION AND RELATED WORK 50

Figure 16: Modelica mode for GNU Emacs

There’s no syntax checking, and no project browser is made available.
These two features are missing from most editors as this requires access
to a Modelica parser. SciTE probably has a parser to be able to perform
code folding, and it could probably have been used for some kind of error
notification.

7.5.6 UltraEdit with Modelica Keywords

UltraEdit[21] is an advanced editor for programmers. It handles text, HTML,
PHP, Java, Perl and Javascript. A Modelica “mode” for UltraEdit can be
found at the Modelica Association website[13]. This mode only contains syn-
tax highlighting of Modelica keywords, comments and Modelica identifiers.

To get the Modelica features to work, you have to manually copy text from
the file found at the Modelica Association to a specific file in the UltraEdit
installation. We find this installation method quite awkward.

As UltraEdit is only an editor, it has no real idea of how Modelica code
can and should look like. There’s no project browser and no syntax checking,

7 DISCUSSION AND RELATED WORK 51

Figure 17: SciTE

making it a lot less useful than other Modelica environments.
UltraEdit is only available for Microsoft Windows.

8 CONCLUSIONS 52

8 Conclusions

8.1 Accomplishments

In the original thesis proposal, a complete IDE with refactoring and debug-
ging support should have been made. This has not been accomplished, but
what we’ve accomplished is hopefully a start for a complete IDE for Modelica
development.

MDT allows you to:

• Edit Modelica files with an editor that has syntax highlighting.

• Discover syntax errors in files that you’re editing.

• Browse the package and class hierarchies that your project contains.

• Browse the Modelica Standard Library and inspect the source code.

• Type code faster by utilizing code completion and information popups.

Many of these feature depend on the OpenModelica Compiler, and some
features that we didn’t implement, for example refactoring, depend on fea-
tures that are missing in OMC. See the discussion about the CORBA inter-
face in section 7.1.1.

8.2 What We Deliver

As is always the case with the development of a relatively complex system, a
lot of artifacts have been produced. Below is a little detail about the various
parts that we deliver.

8.2.1 The Plugins

The three plugins (core, ui, omc) that we provide can be easily fetched by
using the provided update site[22]. You can visit the update site with a web
browser to get instructions on how to use the update site from Eclipse.

8.2.2 Documentation

We provide two kinds of documentation, the user manual and the develop-
ment documents. The user manual can be reached from within Eclipse when
MDT is loaded by simply selecting Help Contents from the menu item Help.
From the Help Contents page you can reach the Modelica Development Users
Guide.

8 CONCLUSIONS 53

The development documents are located in the MDT directory of the
OpenModelica subversion repository. The OpenModelica website[18] pro-
vides details about reaching this repository.

8.2.3 Source Code

The source code of MDT is available in the OpenModelica subversion reposi-
tory. See the OpenModelica website[18] for details about accessing the repos-
itory. Each plugin (core, ui, omc) is available as separate Eclipse projects.
A tip is to use Subclipse[19] from within Eclipse to access the subversion
repository.

A PACKAGE OVERVIEW 54

A Package Overview

This is an overview of the Java packages that compose the MDT plugins and
regression tests. A short description of each package is provided. For full
information about packages and their contents, please see the source code.

org.modelica.mdt.core Plugin

org.modelica.mdt.core

This package defines the public interface to the services provided by the
core plugin. All clients should access the core functionality only through
this interface.

org.modelica.mdt.core.builder

This package contains the implementation of the Modelica syntax checker
which is configured to run as an incremental builder.

org.modelica.mdt.core.compiler

This package defines the Modelica compiler extension point access interface.
Plugins that wish to contribute access to a Modelica compiler should use the
classes in this package.

org.modelica.mdt.core.preferences

This package contains the preference manager which allows reading and writ-
ing user preferences.

org.modelica.mdt.internal.core

Here is the implementation of the public interface defined in the org.mode-
lica.mdt.core package.

org.modelica.mdt.omc Plugin

org.modelica.mdt.omc

This package implements the Modelica compiler extension point to provide
access to the OpenModelica Compiler.

A PACKAGE OVERVIEW 55

org.modelica.mdt.omc.internal

This package contains implementation details of the org.modelica.mdt.omc
package, which are not suitable to expose to clients.

org.modelica.mdt.omc.internal.corba

This package contains the automatically generated code from the CORBA
IDL definition file. This definition file is part of the OpenModelica Compiler
source code distribution. In the unlikely event of changes to the CORBA
interface of the OpenModelica Compiler, the classes in this package should
be replaced with newly generated files from the definition file.

org.modelica.mdt.ui Plugin

org.modelica.mdt.ui

This package contains generic code that is used by other packages in this
plugin.

org.modelica.mdt.ui.editor

The Modelica source code editor is implemented in this package. Code for
code completion, context information, syntax highlighting, and support for
opening Modelica elements from the Modelica Project view.

org.modelica.mdt.ui.preferences

This package contributes the Modelica Preference page.

org.modelica.mdt.ui.view

This package contains the Modelica Project view that allows package brows-
ing.

org.modelica.mdt.ui.wizards

This package contains wizards for creation of Modelica projects, packages,
and classes.

A PACKAGE OVERVIEW 56

org.modelica.mdt.test Plugin

org.modelica.mdt.test

This package contains the regression tests for MDT. They are implemented
as JUnit test cases.

org.modelica.mdt.test.util

This package contains some helper code for running and writing testcases.

REFERENCES 57

References

[1] A brief history of eclipse. http://www-128.ibm.com/developerworks/
rational/library/nov05/cernosek/.

[2] Dynasim. http://www.dynasim.se.

[3] The eclipse test & performance tools platform website.
http://www.eclipse.org/tptp/.

[4] Eclipse website. http://www.eclipse.org.

[5] Free modelica editor. http://www.et.web.mek.dtu.dk/FME/index.html.

[6] Free software definition. http://www.gnu.org/philosophy/free-sw.html.

[7] Gnu emacs. http://www.gnu.org/software/emacs/.

[8] Homepage of richard stallman. http://www.stallman.org/.

[9] Junit website. http://www.junit.org/index.htm.

[10] Mathcore. http://www.mathcore.com.

[11] Mdt hacking manual. Located inside the MDT source code repository,
docs/HACKING.

[12] Modelica editor. SciTE http://www.mosilab.de/downloads/

software/modelica-editor-scite.

[13] Modelica website. http://www.modelica.org.

[14] Mosilab at fraunhofer-berlin. http://www.mosilab.de/.

[15] The oo-browser. http://sourceforge.net/projects/oo-browser/.

[16] Openmodelica system documentation. http://www.ida.liu.se/labs/pelab/modelica/
OpenModelica/Documents/OpenModelicaSystem-050830.pdf.

[17] Openmodelica users guide. Included with the OpenModelica Compiler
package, http://www.ida.liu.se/~pelab/modelica/OpenModelica/.

[18] Openmodelica website. http://www.ida.liu.se/labs/pelab/

modelica/OpenModelica.html.

[19] Subclipse. http://subclipse.tigris.org/.

REFERENCES 58

[20] Swt threading issues. http://help.eclipse.org/help31/index.jsp

?topic=/org.eclipse.platform.doc.isv/guide/swt_threading.htm.

[21] Ultraedit. http://www.ultraedit.com/.

[22] Update site. http://www.ida.liu.se/labs/pelab/modelica/OpenModelica/MDT/.

[23] Kent Beck and Cynthia Anders. Extreme Programming Explained : Em-
brace Change. Addison-Wesley Professional, 2004.

[24] Mihaly Csikszentmihalyi. Flow: The Psychology of Optimal Experience.
Harper Perennial, 1991.

[25] Susan A. Dart, Robert J. Ellison, Peter H. Feiler, and A. Nico Haber-
mann. Software development environments. In E. J. Chikofsky, editor,
Computer-Aided Software Engineering (CASE). IEEE Computer Soci-
ety Press, 1989.

[26] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation
with Modelica 2.1. IEEE Press, 2004.

[27] Peter Fritzson, Adrian Pop, and Peter Aronsson. Towards compre-
hensive meta-modeling and meta-programming capabilities in modelica.
2005. http://www.modelica.org/events/Conference2005/.

[28] Erich Gamma and Kent Beck. Contributing to Eclipse. Addison-Wesley,
2004.

