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Abstract—In this paper we develop a framework for integrating real-time software modules that comprise a reconfigurable multi-
sensor based system. Our framework is based on the proposed concept of a global database of state information through whit¢h rea
time software modules exchange information. This methodology allows the development and integration of reusable software in a
complex multiprocessing environment. A reconfigurable sensor-based control system consists of many software modules, each of
which can be modelled using a simplified version of a port automaton. Our new state variable table mechanism can be used ih bot
statically and dynamically reconfigurable systems, and it is completely processor independent. Individual modules may also be
combined into larger modules to aid in building large systems, and to reduce bus and CPU utilization. An efficient implementati

of the siate variable table mechanism, which has been integrated into the Chimera Il Real-Time Operating System, is also de-
scribed.
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I. INTRODUCTION

Real-time sensor based control systems are complex. In order to develop such systems, control strategies are needeshtbdraega®
sensing information for generating control signals. There has been considerable effort devoted to addressing this &sipeeicoiteal
systems. However, even with robust control algorithms, a sophisticated software environment is necessary for efficientiioplérent
a robust system. The level of sophistication is even greater if this system is to be generalized sodtanfigisrableand can perform
more than a single task or application. Obviously, a real-time operating system (RTOS) is part of this software environevent.itHe
also necessary to have a layer of abstraction between the RTOS and control algorithms that makes the implementatidioe8iéent, a
easily expanding and/or changing the control strategies, and reduces development costs by incorporating the concepsaftweusable
The development of this layer of abstraction is further motivated by the realization that real-time control systems ranipfgoaénted

in open-architecture multiprocessor environments. Several issues, such as configuring reusable modules to perform mgpmadiocat
ules to processors, communicating between various modules, synchronizing modules running on separate processors, agadeterminin
rectness of a configuration, arise in this context.

In this paper we develop a framework for integrating real-time software modules that comprise a reconfigurable multi-sbagsielase
Our framework is based on the proposed concept of a global database of state information through which real-time sofesex-modul
change information. This methodology allows the development and integration of reusable software in a complex multiprodessing e
ment.

We define aontrol moduleas a reusable software module within a real-time sensor-based control subsystem. A reconfigurable system con-
sists of many control modules, each of which can be modelled using a simplified version of a port automaton [22], as ghdwBagctFi

module has zero or moirgout ports and zero or moreutput portsEach port corresponds to a data item required or generated by the control
module. A module which obtains data from sensors may not have any input ports, while a module which sends new data toagctuators
not have any output ports. We assume that each control module is a ma%am control module can also interface with other sub-
systems, such as vision systems, path-planners, or expert systems.

A link between two modules is created by connecting an output port of one module to an appropriate input of anotherlegzd gienA
figurationis obtained if for every input port in the system, there is one, and only one, output port connected to it. An extengiort of the
automata theory is presented in [12], whespli connectomllows a single output to be fanned into multiple output ports, @id aon-
nectorallows multiple input ports to be merged into a single input port. The split connector replicates the output multiplerttheemif
connector, a combining algorithm, such as a weighted average, is required to merge the data.
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2. We define gaskas a separate thread of control within a multitasking operating system. The definition is consistent with that of thel Reiafdriarie Operating System
[23], and is also known astlareadin Mach and POSIX, andlghtweight procesin some other operating systems.



Other environments developed for robot control ([1][2][3][5][14]) lack the flexibility required for the design and implemenftegicon-
figurable systems. The design of these programming environments is generally based on heuristics rather than on softivaseraochite
els, and lends itself only to single-configuration systems. The environments also do not make clear distinctions betweeterfamdse

and module content, thus lacking a concrete framework which would allow development of modules independent of the tatget applic
and target hardware.

In this paper, we propose a method of using state variables for systematically integrating reusable control moduldmia muéadrd-
cessor environment. Our design can be used with both statically and dynamically reconfigurable systems. Section Il defsiges the
issues to be considered, and some of the assumptions we have made about the target environment. Section Il gives thedatetiisectu
of our control module integration. Section IV describes an efficient implementation of the state variable table mechanibas tdwgch
integrated into the Chimera Il Real-Time Operating System [23]. Finally, Section V summarizes the use of state variablds fatenodu
gration in a reconfigurable system.

II. DESIGN ISSUES AND ASSUMPTIONS

In order to design a general mechanism which can be used to integrate control modules in a multiprocessor environmdritesturag arc
knowledge of the target hardware is required. We assume an open-architecture multiprocessor system, which containserallfjple gen
pose processors (such as MC68030, Intel 80386, SPARC, etc.), which Reatalime Processing Units (RTPUsh a common bus (such
as VMEbus, Multibus, Futurebus, etc.). Each processor has its own local memory, and some memory in the system is giracesby all
sors.

Given an open-architecture target environment, the following issues must be considered:

Processor transparencyn order for a software module to be reusable, it must be designed and written independent of the RTPU on
which it will finally execute, since neither the hardware nor software configuration is kayanani.

Task synchronizatiorBensors and actuators may be operating at different rates, thereby requiring different tasks to have different fre-
quencies. In addition, system clocks on multiple processors may not be operating at the exact same rate, causing twbeasks with
same frequency to have skewing problems. The module integration must not depend on task frequencies or system clocks for syn-
chronization.

Data integrity: When two modules communicate with each other, a complete set of data must be transferred. It is not acceptable for
part of a data set to be from the current cycle, while the rest of the data set is from a previous cycle.

Predictability: In real-time systems, it is essential that the communication between modules is predictable, so that worst-case execution
and blocking times can be bounded. These times are required for analysis by most real-time scheduling algorithms.

Bus bandwidthtn an open-architecture system, a common bus is shared by all RTPUs. The communication between modules must be
designed to minimize the bus traffic.

implementation efficiencyThe design must lead to an efficient implementation. Communication mechanisms which incur large
amounts of overhead are not suitable for the high frequency tasks, and therefore cannot be used.

To address these issues, we propose a state variable table mechanism which allows the integration and reconfiguratemmotitdasabl
in a multiprocessor, open-architecture system.

IIl. DESIGN OF STATE VARIABLE TABLE MECHANISM

The structure of our state variable table mechanism is shown in Fig. 2. It is based on using global shared memory fogthefaletaan
between modules, thus providing communication with minimal overheglbbal state variable tablis stored in the shared memory. The
variables in the global state variable table are a union of all the input port and output port variables of the modujebelwanfigured
into the system. Tasks corresponding to each control module cannot access this table directly. Rather, every task beal itopyvofi
the table, called thiecal state variable table

Global State Variable Table
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Fig. 1: Port automaton model of a control module Fig. 2: Structure of state variable table mechanism
for control module integration



Only the variables used by the task are kept up-to-date in the local table. No synchronization is needed to accessiticis teibyea
single task has access to it. At the beginning of every cycle of a task, the variables which are input ports are transferiedahtable
from the global table. At the end of the task’s cycle, variables which are output ports are copied from the local tabiglabia table.
This design ensures that data is always transferred as a complete set.

When using the global state variable table for inter-module communication, the number of transfers p%(Z?)etmnnoduleM can be
calculated as follows:

on ™ 0
El SO + Y S(y) +AE
— _i=1 i=1
Zi B T @

J
wheren; is the number of input ports fod;, m is the number of output ports fivk, x; is input variable; for M;, y; is output variablg,
for M, é(X)IS the transfer size of varlabteT is the period oM;, andA is the overhead required for locking and releasmg the state variable
table durlng each cycle.

We assume that the entire global state variable has a single lock. It is possible for each variable to have its ownitdckasewtne
locking overhead increases(fo+n)A. The advantage of using a single lock is described in Section .A..

The bus utilizatiorB for k modules in a particular configuration, in transfers per second, is then
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Thus using our state variable table design, we can accurately determine the CPU and bus utilization required for thdertermmadu

nication within a configuration.

A configuration is legal if the following holds true:
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The first term represents the intersection of all output variables from all modules. If two modules have the same oufpjois, tben
nector is required. Modules with conflicting outputs can modify their output port variables, such that they are two s&granatiata
variables. A join connector is a separate module which performs some kind of combining operation, such as a weighteid ayanage. |
ports are the intermediate variables, while its single output port is the output variable that was originally in confaadwWitttbrequired
can then be calculated by treating the join connector as a regular module. Split connectors are not required in oucdenigtipksin
tasks can specify the same input port, in which case data is obtained from the same location within the global stadbleardiasecond
term in (3) states that for every input port, there must be a module with a corresponding output port.

Using state variables for module integration is processor independent. Whether multiple modules run on the same RTPWddaleeach m
runs on a separate RTPU, the maximum bus bandwidth required for a particular configuration remains constant, as computed in (2).
next section we give more details on typical modules within a reconfigurable sensor-based control system.

A. Control Module Library

The state variable table mechanism is a means of integrating control modules, which have been developed with a reusatfig-and rec
urable interface. Once a module is developed, it can be placed into a library, and incorporated into a user’s appliedton Asample
control module library is shown in Fig. 3. The classification of different module types is for convenience only. Theredsenadlifi the
interfaces of say, a robot interface module and a digital controller module. We expect that existing robot control lipr§2i¢s0, can

be repackaged into reusable modules in order to use them in reconfigurable systems.

The following variable notation is used: The following subscript notation is used:
O: joint position X : Cartesian position d: desired (as input by user or path planner)
: joint velocity X Cartesian velocity r: reference (computed value, commanded on each cycle)
: joint acceleration X : Cartesian acceleration m: measured (obtained from sensors on each cycle)
T: joint torque f: Cartesian force/torque y: wild-card: match any subscript
u: control signal J: Jacobian

z: wild-card: match any variable

Robot interface modules communicate directly with robotic hardware. In general a robot is controlled by sending joir smguEs o-
priate input/output port, as represented bytdingue-mode robot interfacaodule. The current joint position and joint velocity of the robot
can also be retrieved from the hardware interface. With some robots, direct communication with the robot actuator isenGttpoesiiot
provides its own controller, to which reference joint positions must be senposhimn-mode robot interfads a module for this type of

3. We use “transfers per second” instead of CPU execution time or bus utilization time as a base measure for the resumgs@fuhe communication mechanism,
since it is a hardware independent measurement.



robot interface. Other actuators or computer controlled machinery may also have similar interface modules. The frequemmpdbitas
is generally dependent on the robot hardware; sometimes it is fixed, other times it may be set depending on the appiieatiemsequ

The sensor modules are similar to the robot interface modules, in that they communicate with device hardware, suchsmsdotaetden
sensors, and vision subsystems. In the case of a force/torque sé&B@Faforce/torque sensanodule inputs raw strain gauge values
and converts them into an array of force and torque valubigvitonsandNewton-metersespectively! For a visual servoing application

[18], much of the reading and preprocessing of images is performed by specialized vision subsystems. These systems raayngenerate
data, from which a new desired Cartesian position is derived, as illustratedvisuileservoing interfacenodule.

The teleoperation input modules are also sensor modules. They have been classified separately in order to distinguisfoosettieput
sensory input. In our control module library the teleoperation modules read from a 6 DOF trackball, thus both modules.af@esimila
difference is the type of preprocessing performed by each module, allowing the trackball to be used either for generadisgwieicic

can be integrated to obtain positions), or force, for when the robot is in contact with the environment.

Trajectory generators are another way of getting desired forces or positions into the control loop. The input may consédiedimeout
control loop, such as from the user (e.g. keyboard), from a predefined trajectory file, or from a path-planning subsystem.

Differentiator and integrator modules perform time differential and integrals respectively. For example, joint velocitesbtaynéd by
differentiating joint positions. Only the value of the current cycle is supplied as input. Previous values are not retherethdades are
designed with memory, and keep track of the positions and velocities of previous cycles. The current time is assumedntdpalknow
modules.

Digital controller modules are generally the heart of any configuration. In our sample library, we have trajectory integBlidgosnt
position controller, a resolved acceleration controller [11], an impedance controller [6], and other supporting modulésrawzcd asd
inverse kinematics, Jacobian operations [19], inverse dynamics [8], and a damped least squares algorithm [29]. Givelinihet @rager
output port matching, various controller modules can be integrated to perform different types of control. Sometimes aquautticlla
configuration will not need all of its inputs. Those inputs are often set to zeraefdmodule provides a constant valliéo an input
stream. Theoretically this would be a single task which always copies the constant variable to the global state vartdblectadylein
practice, the global state variable table only has to be updated once, after which time the module no longer has tagesaineg, dm
both RTPU and bus bandwidth. This practice is equivalent to setting the frequencyzefrtasknfinity.

Many of the modules require initialization information. For exampleRtBecontrollermodule requires gains, and floeward kinematics

and Jacobiarmodule requires the robot configuration. These values can also be passed via the global state variable table, and are read only
once from the table. However, for simplicity in our diagrams, we have not shown these initialization inputs.
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Fig. 3: Sample Control Module Library

4. For consistency among modules, all input and output variables have units definedylsyetime international&l).



Given a library of modules, several legal configurations may be possible. Fig. 4 shows one possible configuration for adelebperat
with a torque-mode interface. Each module is a separate task and can execute on its own RTPU, or multiple modules magrskare the
RTPU, without any code modification. The state variable table mechanism allows the frequency of each task to be diffelentiofhe s

of frequencies will often be constrained by the available hardware. For example, the robot interface may require thajLee tenstgr-

plied every 2 msec cycle time (500 Hz frequency), while the trackball may only supply data every 33.3 msec (30 Hz frequealcy). Digit
control modules do not directly communicate with hardware, and can execute at any frequency. Generally the frequencytifor the co
modules will be a multiple of the robot interface frequency. When using the state variable table for communication betveskhethe

any combination of frequencies among tasks will work. This allows frequencies to be set as required by the applicatisadds bpjg
constrained by the communications protocol.

3.2  Reusable Modules and Reconfigurable Systems

The primary goal of the global state variable table mechanism is to integrate reusable control modules in a reconfigipattessuilt
system. The previous section gave examples of control modules, and a sample configuration. In this section, we will gipke arfi exam
reconfiguring a system to use a different controller, without changing the sensor and robot interface modules.

Fig. 5 shows two different visual servoing configurations demonstrating the concept of reusable modules. Both configuratenswbtai
desired Cartesian position from a visual servoing subsystem, and supply the robot with new reference joint positions Lfét#ooanfig
(a) uses standard inverse kinematics, while the configuration in (b) uses a damped least squares algorithm to prevertrthgoiigpt f
through a singularity [29]. Theisual servoing, forward kinematics and Jacobiangposition-mode robot interfacaodules are the same
in both configurations. Only the controller module is different..

The change in configurations can occur either statically or dynamically. In the static case, only the task modules reqpéart didar
configuration are created. In the dynamic case, the union of all task modules required are created during initializasigsteohthies-
suming we are starting up using configuration (a), theintlese kinematictgask is turne@n immediately after initialization, causing it

to run periodically, while thdamped least squaresidtime integratortasks remain blocked, off. At the instant that we want the dynamic
change in controllers, we block theverse kinematictask and turn on th@amped least squaremdtime integratortasks. On the next
cycle, the new tasks will automatically update their own local state variable table, and execute a cycle of their load, timstexdrse
kinematics task doing so. Assuming tireandoff operations are fairly low overhead (which they are in our implementations) the dynamic
reconfiguration can be performed without any loss of cycles. Note that for a configuration to properly execute, the sesohusbtdide
schedulable on the available RTPUs, as described in [24].

Note that open-ended outputs are fine (@gvard kinematics and Jacobianodule output pord in (a)) as the module simply generates a
value that is not used. These open-ended outputs generally result when a module must perform intermediate calculatomedidie int
values can sometimes be used by other modules, and hence they are made available as outputs. The outputs are northallpealved in
state variable table, and copied to the global table at the end of the cycle. To save on bus bandwidth, these unusetbbhiguasalbe
updated in the global state variable table, since they are never required as input by the other modules.
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Fig. 4: Example of module integration: Cartesian teleoperation
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Fig. 5: Example of system reconfiguration: visual servoing using position-mode robot interface

C. Combining Modules
The model of our control modules allows multiple modules to be combined into a single module. This has two major benefits:

1. complex modules can be built out of smaller, simpler modules, some or all of which may already exist, and hence be reused; an
2. the bus and processor utilization for a particular configuration can be improved.

For maximum flexibility, every component is a separate module, hence a separate task. This structure allows any compautertrio exe
any processor, and allows the maximum number of different multiprocessor configurations. However, the operating systerafoverhead
switching between these tasks can be eliminated if each module executes at the same frequency on the same processoduldslitiple m
then make up a single larger module, which can be defined to be a single task.

The bus utilization and execution times for updating and reading the global state variable table may also be reduaedn lhdaitatér-
connecting ports of the modules forming the combined modules is not needed by any other module, the global state vatisentible
have to be updated. Since the modules are combined into a single task, they have a single local state variable tabletiQobetweaa
those tasks remains local, and thus reduces the bus bandwidth required by the overall application.

Thecomputed torque controll¢t3] is an example of a combined module. It combine®tBejoint position computatiomodule with the

inverse dynamicsodule, as shown in Fig. 6. The resulting module has the inputs of the PID joint position computation, and the output of
the inverse dynamic module. The intermediate variabiees not have to be updated in the global state variable table. In addition, the mea-
sured joint position and velocity is only copied into the local state variable once, since by combining the two modulesiuteghuse

the same local table. Note that combining modules is only desirable if they can execute at the same frequency on the atzati¢iREBU

as a single module cannot be distributed among multiple RTPUs.



IV. IMPLEMENTATION

We have implemented a state variable table mechanism (which vevagland integrated it with the Chimera Il Real-Time Operating
System [23]. Our target hardware architecture is a VMEbus-based [17] single-board computers, with multiple MC68030 piarcisssor bo
Functional and syntactic details of thear mechanism can be found in [25].

First, the global state variable table is created in shared memory. A configuration file which contains the union of afitptesséniables
within the system is then read. Once the global state variable table is created, any task can attach to it, at whidktirhieegblmemory
is allocated and initialized for the task. Data for a specific variable can then be transferred between the global ateslocal tab

In our implementation, we give the ability to transfer multiple variables by preprogramming the list of variables thatestraniddsred
from the global table at the beginning of a task’s cycle, and to the global table at the end of its cycle. A typical rkeduédttsen have
the following format:

call module initialization
preprogram list of input and output variables
begin loop
copy input variables from global table to
local table
execute one cycle of module
copy output variables from local table to
global table
pause until beginning of next cycle
end loop

The preprogramandcopystatements are provided by awarimplementation. The pausing and looping are handled by the operating sys-
tem. Therefore, modules can be defined as subroutine components with a standard interface, which are called at theiaygpbyyttiate t
above generic framework.

A. Locking Mechanism

So far we have assumed that tasks can transfer data as needed. However, since the global state variable table musyltasiccessed
multiple RTPUs, appropriate synchronization is required to ensure data integrity. A task which is updating the table |loukstt fitst
ensure that no other task reads the data while it is changing. Two locking possibilities exist:

1. keep a single lock for the entire table
2. lock each variable separately

The main advantage of the single lock is that locking overhead is minimized. A module with multiple input or output peatstoriyck
the table once before transferring all of its data. There appear to be two main advantages of locking each variable Semantijréy:
tasks can read or write different parts of the table simultaneously, and 2) transfers of data for multiple variables fxyrigyltasl can
be preempted by a higher priority task. Closer analysis, however, shows that locking each variable separately does setldxesthe
tages. First, because the bus is shared, only one of multiple tasks holding a per-variable lock can access the tablénae aSgaumel,
we will show later that the overhead of locking the table, which in effect is the cost of preemption, is often greatetitteufotha task

to complete its transfer. A single lock for the entire table is thus recommended.

Next, an appropriate locking mechanism must be selected. Simple mechanisms like local semaphores and only locking thé I@PU canno
used, because they are only valid for single-processor applications. Multiprocessor mechanisms available include sgimtesisafEs
passing, remote semaphores [23], and the multiprocessor priority ceiling protocol [20].

The message passing, remote semaphores, and multiprocessor priority ceiling protocol all require significant overhedgpiwailgh is
an order of magnitude greater than the data transfer itself. For example, the remote semaphores in Chimera Il take a Adnisaam of
for the locking and unlocking operations, and as much as280if the lock is not obtained on the first try and forces the task to block
[23]. A typical transfer, on the other hand, may consist of 6 joint positions and 6 joint velocities, for a total of 112 t@nsfetypical
VMEDbus system, the raw data transfer (i.e. excludihgverhead) takes approximately d€ec. The message passing and the multipro-
cessor priority ceiling protocol would require significantly more overhead than the remote semaphores. It is thus not teasmttise
higher level synchronization primitives for locking the state variable table.

The simplest multiprocessor synchronization method isghrelock which uses an atomiest-and-sefTAS) operation. The TAS instruc-
tion reads the current lock value from memory, then wiitego that location. If the original value @ then the task acquires the lock,
otherwise the lock is not obtained, and the task must try again. The read and write portions of the instruction are tubeatestc,
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Fig. 6: Example of combining modules:



even among multiple processors. To release the @iskwritten to the memory location. The number of bus transfers required to acquire
and release the spin-lockAs= 2r +1 , whetis the number of retries needed to obtain the lock.

If a task does not get the lock on the first try, it must continually retrspforhence the name spin-lock). If it retries as fast as possible,

then the task may use up bus cycles which can instead be used by the task holding the lock to transfer the data. Awhieltl delag|l

thepolling time should be placed between each retry. The polling time can be arbitrarily set, and usually some form of compromise is cho-
sen. A polling time too short results in too much bus bandwidth being used for retry operations, while a polling timeresultrge

waiting much longer for a lock than necessary, hence wasting valuable CPU cycles. In our system, the polling fiisee,isvB&h has

so far been satisfactory for all of our experiments.

Unfortunately using a simple locking mechanism like the spin-lock does not guarantee a bounded execution time while walitold-for

ing the lock. In [15], several schemes are described which do offer bounded execution time. However, each of these réquiteo§ome
hardware support that is not available. In particular, all methods require a round-robin bus arbitration policy. The VMiEmasiof-

robin bus arbitration for a maximum of 4 bus masters (every RTPU is a bus master, and some special purpose processarearatygirec
access (DMA) devices may also be bus masters). More than 4 bus masters causes some of the bus masters to be daisityctidined prior
en. In some installations, the system controller only has single-level arbitration, and no round-robin arbitration isQmssé#gaently,

the bounded locking mechanisms break down. To bound the waiting time for a spin-lock, we have implemented the mechamidm describ
below.

First, to ensure that a task is not swapped out while it holds a lock, it will disable all interrupts on its own RTP Qwtimgsittid perform

the transfer uninterrupted. Considering that the resolution of the system clock is generally on the order of millisecaitdgharaks-
sumption that transfers are relatively short (i.e. less than a few tens of microseconds), disabling preemption whilertieedcansfing

will have negligeable effect on most real-time scheduling algorithms. Interruptions in using the bus may come from othteyiRg RJs
gain the lock. In the worst case, each other RTPU will perform one TAS instruction during every polling cycle. The maximemofnumb
interruptions is thus controllable by setting an appropriate polling time.

Without a bounded waiting time locking mechanism, it is not possible to guarantee that tasks will get the data they tiewglievery

time. As an alternative, a time-out mechanism is used, so that if the lock is not gained within a pre-specified time of netmelsetioen

the transfer is not performed. The maximum waiting time for the lock is then the time-out period, which is alsopeilirag ttime *
max_number_of_retrie§or most tasks in a control system, missing an occasional cycle is not be critical. In such a case, the value from the
previous cycle still remains in the local table, and will be used during the next cycle. When using the time-out mectartismdliens

should be installed to detect tasks that suffer successive time-out errors. Discussion on handling these errors is lcependf ttnéss

paper.

B. Performance

A summary of the performance of awarimplementation is shown in Tables | and Il, Measurements were taken from an Ironics 1V3230
single board computers [7], with a 25MHz MC68030 processor, on a VMEbus, using a VMETRO 25 MHz VBT-321 VMEbus analyzer
[27]. The bus arbitration scheme of the Ironics 1V3230 is sef¢ase-on-requesThe global state variable table is stored within the dual-
ported memory of a second 1V3230 RTPU.

Tablel: Breakdown ofvMEbus TransfertTimes
andCommunicatioroverhead

Operation Execution Timeu§ec)

obtaining global state variable table lock using TAS 5
releasing global state variable table lock 2
locking CPU 8
releasing CPU lock 8
initial subroutine call overhead 4
Icopy()subroutine call overhead 7
total overhead for single variable read/write 34
additional overhead, per variable, for multivariable copy 5

raw data transfer over VMEbus, 6 floats 9
raw data transfer over VMEDbus, 32 floats 31
raw data transfer over VMEbus, 256 floats 237

As seen from the Table I, a significant overhead is incurred in VMEbus transfers, even when using the simplest of synchnenization
nisms. The time to obtain the global state variable table lock using TAS involves a subroutine call to an assembly latiigeageaiou
performs the MC68030 TAS instruction [16], and checking the return value for a 1 or 0. Releasing the lock involves resettinngking
and unlocking the CPU is performed by trapping into kernel mode, modifying the processor priority level, then returningoteuJdre
subroutine call overhead involves passing one pointer argument on the stack.

Thelcopy() routine is used to perform a block transfer. It is an optimized form of the standard C boofgé) It can only transfer mul-
tiples of 4 bytes (the width of the VMEbus data paths). Blocks are 16 bytes (4 transfers) each. The time in Table | is the sabrout
overhead, which includes passing three arguments on the stack. If the transfer is not a multiple of the block size, itiwmab8 jaskt



Table II: Sample Times For Transfers Between Global And Local State Variable Tables

Single-Variable Transfers Multi-Variable (M-V) Transfers M-V Savings
Transfer Size time raw data  overhead time raw data  overhead
(Hsec) (%) (%) fisec) (%) (%) fisec) (%)
1 * float[6] 43 37 63 48 33 67 -5 -12
1 * float[32] 65 68 42 72 56 44 -7 -11
1 * float[256] 264 90 10 273 87 12 -9 -3
2 * float[6] 86 37 63 64 42 58 22 26
2 * float[32] 130 68 42 100 63 37 30 23
2 * float[256] 528 90 10 505 93 7 23 4
6 * float[6] 258 37 63 120 52 44 138 53
6 * float[32] 390 68 42 250 77 23 140 36
6 * float[256] 1584 90 10 1480 96 4 104 9

Single-variable transfers are usisMprRead(andsvarWrite() Multi-variable transfers use a program operation to predefine
which variables to copy on each cycle. The table lock is only obtained once for all variables. The multi-variable savthgs show
relative performance of using multi-variable transfers over single-variable trafd@rslatas the percentage of time spent
copying data, whileverheads the communications overhead for subroutine calls, argument passing, and locking the table.

overhead results for the incomplete block, but that time is incorporated into the raw data transfer time. The raw ddimé& @siertime

for sending the specified amount of data. Note that each float is exactly one transfers@ha@nsfer time for 6 floats includes thesgc
overhead because the transfer is not a multiple of 16 bytes.

Our svarmechanism gives the ability to preprogram a set of variables to transfer on every cycle. Multiple variables are theml transferre

together as a single block, hence the lock is only acquired once per cyaeditienal overhead per variabls time to update the pointers
between transfers of each individual variable.

Table Il gives a summary of the times for various transfer between the global and local state variable tables, usinqgtetvthi@abie

and multivariable transfers. When using the single-variable transfer, a subroutine call and variable locking is requitegdtalele.

Therefore for the cage* float[32], the routine is called six times, and the transfer size each time is 32 floats. For the multivariable transfer,
the subroutine call and locking overhead is only incurred once for all the variables. In theGcadleat{32], 192 floats are sent consec-

utively. Note that the multivariable transfer requires a preprogram operation, which is performed during initializatidakdt aaywhere

from 25pusec to a few milliseconds, depending on the number of variables being programmed, and the size of the state variable table. The
overhead savings of using the multivariable transfer is greatest when modules have a large number of variables witfestsimetrans

In our experiments using this implementation, all modules use the multivariable transfer. The small loss in performamsferfamdra
single variable is negligeable compared to the gains of the multivariable transfer if more than one variable is trardfienr¢oe aon-
sistency that all modules use the same transfer mode.

V. SUMMARY

In this paper we first presented a simplified port automaton model for the definition of reusable and reconfigurable coltsolgabis.
model we developed a state variable table mechanism, based on global shared memory, to integrate control modules iessanultiproc
open-architecture environment. Using the mechanism, control modules can be reconfigured, both statically and dynamiczilhguiihe ma
bus bandwidth required for the interprocessor communication can be calculated exactly, based on the module definitionaniEhe mech
allows control tasks of arbitrary frequencies to communicate with each other without the need for any special provisichanismie

also robust when clocks on multiprocessors suffer skewing problems.

We showed examples of a control module library, a teleoperation control module configuration, and a reconfigurable appicitios. T
variable table mechanism has been implemented as part of the Chimera Il Real-Time Operating System. Several implemestation issue
were also considered, the most prominent being the locking mechanism used to ensure proper control module synchroneation and d
integrity. We chose to lock the entire state variable table with a single lock, using a high-performance spin-lock witki@P Dé&iailed
performance measurements are given, highlightingteeneadversusaw data transfeexecution times.

The multiprocessor control module integration using state variables has proven to be an extremely valuable method fi@cbuiiiding
urable systems. This method is being used at Carnegie Mellon University with the Direct Drive Arm |l [8][28], the Reconfitpdalale
Manipulator System Il [21], the Troikabot System for Rapid Assembly [9], and the Self-Mobile Space-Manipulator [4], aret &rthe J
pulsion Laboratory, California Institute of Technology, on a Robotics Research 7-DOF redundant manipulator [26]. Thesdl SysteEms

the same software framework. In many cases, the systems also share the same software modules. The sensors and cosituskdlgorithm
for any particular experiment on any of these systems can be reconfigured in a matter of seconds, and in some cases dynamically.
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