
Optimizing
Soft Modems

New Tools Speed
the Development
of Multi-DSP
ApplicationsSPRN154

Practical solutions for DSP system developers

June 2001

Practical solutions for DSP system developers

Software Radio
Tunes Modem
Parameters

Software Radio
Tunes Modem
Parameters

With new TMS320 DSPs coming out with dizzying regularity,

you need a development platform that stays up-to-date. Only the ultra-flexible

FleXDS from DSP Research lets you keep up with Texas Instruments! FleXDS is

a new breed of emulator – a reconfigurable platform that expands to become

a complete hardware and software development system and a powerful test

bed for your TMS320 applications. No one has more experience with TI DSP

development than DSP Research. So when TI puts you to the test with a new

DSP, look to FleXDS for answers! DSPR

“DSP Research, with its FleXDS product family, continues their strong com-

mitment by keeping up with TI’s torrid pace of introducing new products.”

◆ Mark Mattson, Texas Instruments marketing manager

Key FleXDS Features:

PCI-based in-circuit emulator

JTAG POD with detachable

cable and diagnostic LEDs

DSP and I/O Expansion modules

for TI’s C6000, C5000 and more

More than 15 modules available

Debug software before your

target system is ready

◗

◗

◗

◗

◗

www.f lexds.com/offer
p h o n e : 1 . 4 0 8 . 7 7 3 . 1 0 4 2

The right emulator won’t leave you
stranded when new DSPs come along.

Inside This Issue

Embedded Edge June 2001 3

Insighter: The Power of Cheese 4
The power of DSP capabilities can produce startling

wonders.

Breakpoints 6
News from the providers of embedded systems development

products and services.

Cover: Software Radio for Wireless Internet 8
With the latest DSP devices, you can design a software-configurable,

low-cost modem that’s very efficient and small.

Optimizing C-Baseline Modems 16
In just a few short phases, you can optimize C-coded reference

modems to meet higher-density targets.

Speeding Development of Multi-DSP Apps 22
New software tools are taking aim at multiprocessor DSP

systems, particularly for the TMS320C6000 DSP platform.

Profiler Boosts Code Optimization 30
A software-based statistical real-time profiler can help you

dramatically improve the performance of TMS320C62x DSP code.

A Texas Instruments Publication

Stan Runyon
Editor-in-Chief

testman2@earthlink.net

Mike Robinson
Managing Editor
mrobinso@cmp.com

Tim Moran
Creative Director

Donna Moran
Art Director

Genevieve Joerger
Director, Custom Solutions

gjoerger@cmp.com

Gregory Montgomery
Director of Sales
gmontgom@cmp.com

Grace Adamo
Project Manager

Robert Steigleider
Ad Coordinator
rsteigle@cmp.com

Susan Harper
Circulation Director

sharper@cmp.com

Embedded Edge is published by
Texas Instruments, Inc. and produced in cooperation with

CMP Media Inc. Entire contents Copyright © 2001
The publication of information regarding any other

company’s products or services does not constitute Texas
Instruments’ approval, warranty or endorsement thereof.

To subscribe on-line, visit:
www.edtn.com/customsolutions/edge/subscribe.fhtml

Code Composer Studio, TMS320, TMS320C6000, C6000,
TMS320C5000, C5000, TMS320C2000, C2000,

DSP/BIOS and eXpressDSP are trademarks of Texas
Instruments, Inc. All other trademarks are the property of

their respective owners.

June 2001

34

Volume 2 June 2001 Number 2

33 38

Wizards’ Corner 34
Answers to developers' questions from experts in embedded

systems development.

Launchings 35
New products and services for embedded systems developers.

On the Edge 38
Needed: New compilation tools to help optimize embedded code.

Insighter

4 June 2001 Embedded Edge

We’ve all seen the commercial: A precocious waif
leaves a plate of cheese for Santa instead of milk

and cookies, and lo and behold, Santa leaves behind a
roomful of luxury goods, ranging from top-line cars to
high-tech electronics. The commercial concludes with
the punch line rolling across the screen: “Behold the
power of cheese.”

Clever, the American Dairy Associations. Too bad the
semiconductor industry doesn’t have the equivalent to
similarly promote DSPs, for the power of DSP capabili-
ties can produce equally startling wonders.

Take modems for wireless Internet devices—a tech-
nical challenge if there ever was one. But base wireless
functions on digital signal processing and all of the
advantages of the digital domain accrue, and new algo-
rithms eager to exploit those advantages are appearing.

Basically, the design challenge is to achieve robust
communications at high data rates—10 to 100 Mb/s
wouldn’t be unusual—and decent spectral efficiency.
Naturally, minimal setup time, low maintenance, and a
competitive price go along, and provision for emerging
frequency bands.

Those goals are achievable, says Andrew Bateman,
the author of our cover story. Indeed, the power of
modern DSP devices and software can comfortably
embrace source and channel coding, pulse shaping,
modulation, demodulation, quadrature frequency
translation, power amplifier linearization, receiver
dynamic range extension, calibration of the in-phase
and quadrature signal components, automatic power
and frequency control, and direct digital synthesis.
Unfortunately, there isn’t enough room inside to focus
on everything, but you’ll get a good idea of how DSPs
and software can be tapped for pulse shaping, demodu-
lation, and PA linearization.

Are you more interested in using C-coded reference
modems? Want to stuff as many as possible onto a sin-
gle chip without assembly coding? Ah, the power of
Code Composer Studio’s optimizing compiler for DSP
platforms, especially when it’s tickled to up the density.
How dense? According to Commetrex, which went
through the optimizing process, C-baseline modems
can soar from 6 per 200-MHz DSP chip to 28 in four
short project phases. Need even more? A fifth phase

can take the number of channels to 48 per DSP. Get the
details from Ghassan Farah, who shows you exactly
how to go about it yourself.

As powerful as DSP chips are, bring them together
and stand back—your application is liable to take off on
you. OK, not quite, but new software tools—frame-
works—for multiprocessor DSP systems promise much
faster development of application software, plus a slew
of other benefits.

Each one has its own claim to fame, but generally the
tools are aimed at sorting out some common challenges
with multiprocessors—partitioning of the problem and
its data, processor commu-
nications and synchroniza-
tion, simulation, and debug-
ging. Fiona Culloch, from
3L, describes the two types
of frameworks—ones based
on writing C code and
graphical development envi-
ronments, with examples,
and details how the former
work.

While you’re beefing up
your DSP muscle, you could
deploy a software-based sta-
tistical real-time profiler to
dramatically boost the per-
formance of your applica-
tion even more. According
to Konstantin Merkher and
Jacob Bridger, of Surf Com-
munication Solutions, opti-
mizing code to boost perfor-
mance is one of the greatest
challenges in writing real-
time DSP code. But if you
write a real-time profiler,
you can do it—to the tune
of several orders of magni-
tude. Learn how inside.

More power to DSPs!
—Stan Runyon

testman2@earthlink.net

The Power of Cheese

6 June 2001 Embedded Edge

Linux kit for TI DSPs debuts
RidgeRun, Inc. (Boise, Idaho; www.ridgerun.-
com) has unveiled the DSPLinux Software
Development Kit (SDK) for the OMAP1510
and TMS320DSC21 processors from Texas
Instruments, which combine an ARM7 or ARM9 core with the TMS320C5000
DSP platform. Now available in beta, the kit includes a 2.4 version of the
Linux operating system optimized for embedded devices, standard GNU
development tools, and the Desktop Simulation Environment.

Mentor Graphics Corp. (Wilsonville,
Ore.; www.mentor.com) and Texas
Instruments, Inc. (Dallas, Texas;
www.ti.com) have agreed to deliver
coverification Processor Support
Packages (PSPs) for TI’s DSPs and
microcontrollers. The PSPs are
based on TI’s present instruction set
simulators and connect to Mentor

Graphics’ Seamless
C o - Ve r i f i c a t i o n
E n v i r o n m e n t

through an adapter layer. PSPs
included in the agreement model the
TMS320C27x, C54x, C55x, and
C2000 DSPs, as well as the ARM925
microcontroller core. They work
with all popular logic simulation
platforms and are compatible with
Mentor’s library of PSPs offered by
for use in multiprocessor systems.

Breakpoints

WOW audio enhancement technology
from SRS Labs, Inc. (Santa Ana, Calif.;
www.srslabs.com) has passed
eXpressDSP compliance test-
ing on the TMS320C54x and
TMS320C55x DSPs. The
technology, which is embed-
ded in Microsoft’s Windows Media Player
7, improves the dynamics and bass per-
formance of stereo audio played through
small speakers and headphones. The

announcement follows a similar one
regarding SRS Labs’ Voice Intelligibility
Processor (VIP) technology, which raises

the quality and intelligibility of
speech in voice communica-
tions equipment and speech
synthesis equipment, such as

conventional and cellular phones, VoIP
devices, headsets, and digital radios. VIP’s
small footprint fits easily on top of exist-
ing voice coder or processor applications.

eXpressDSP Compliance for Sound, Speech Techssc

I-Logix, Inc. (Andover, Mass., www.
ilogix.com) has rolled out a three-
phase plan to build a comprehensive
development platform for writing and
reusing seamless, component-based
embedded software. The strategy,
which will unfold during the course of
the year, will let developers snap exist-
ing software components into their
designs, similar to the way that IP
building blocks are assembled to con-
struct systems on chip and other ICs.

The first phase, available now in
Rhapsody 3.0, lets developers “com-
ponentize” and reuse legacy software
modules that can be viewed within
the UML graphical model. The sec-
ond phase will equip Rhapsody with
an intuitive visual metaphor for
assembling model-based executable
code components into embedded
real-time applications.

In the third phase, the company will
provide a Web-based structure to
organize and catalogue software
components, encouraging the ex-
change of design information. As part
of the plan, I-Logix will also integrate
iNOTION product life-cycle technol-
ogy into its existing products. The
technology, acquired in March from
KLA-Tencor (San Jose, Calif.; www.kla-
tencor.com), will let embedded devel-
opment teams store, support, and
maintain design components in a cen-
tral repository.

I-Logix Plots
Software
Component
Strategy

Mentor, TI Team
for Coverification

Blue Wave Systems (Carrollton,
Texas; www.bluews.com), a long-
standing TI DSP Third Party Network
member, and Motorola, Inc.
(Schaumburg, Ill.; www.motorola
.com) have signed a definitive merger
agreement in which Blue Wave will
join the telecommunications business
of Motorola’s Computer Group
(Tempe, Ariz.; www.motorola.
com/computer).

Best known for its ComStruct soft-
ware environment, which includes
the use of DSP/BIOS as well as inte-
grated eXpressDSP-compliant algo-
rithms, Blue Wave will continue its
operations in Carrollton and
Loughborough, U.K.

Blue Wave Systems
to Join Motorola’s
Computer Group

More Breakpoints on page 33

Software Radio

8 June 2001 Embedded Edge

With the latest

DSP devices,

you can design

a software-

configurable,

low-cost

modem that’s

very efficient

and small.

By Andrew Bateman

CONNECTING
WIRELESS
INTERNET
DEVICES USING
DSP SOFTWARE

I
t’s a very exciting time if you’re designing a wireless

modem. The Internet is the fastest-growing sector of

the IT market, and high-speed wireless connection for

business and residential users is a huge business oppor-

tunity. You also have unprecedented flexibility in the

range of wireless functions that can be implemented in

the digital domain, and new algorithms that fully exploit this

advantage are appearing .

Figure 1. The architecture of a modern software radio is surprisingly simple,

comprising only a few core building blocks. Linearity in the power amplifier

and a good low-noise front end and synthesizer are essential, as of course are a

high-speed, low-cost, low-power DSP engine and data converters (highlighted).

Embedded Edge June 2001 9

Still, wireless modems present a serious technical
challenge, and that’s even truer for wireless LAN
(WLAN) devices. Cost-effectively distributing the
ultrahigh capacity of a fiber node (multiple gigabits per
second) to disparate users often requires a radio or
free-space optical transmission link. Data rates in
excess of 10 Mb/s are called for, with upward of 100
Mb/s a target for larger business users. In addition, a
point-to-multipoint network or a distributed network
is needed for distribution from a fiber hub.

For the WLAN terminal, your design challenge is to
achieve robust communications at those high data
rates, with good spectral efficiency (to maximize the
number of customers that can be served for a given fre-
quency allocation). Of course, minimal setup time, low
maintenance, and a competitive price are assumed.
From a manufacturing standpoint, the wireless plat-
form must be easily tailored to new frequency bands as
they become available and be able to flexibly exploit
and manage the characteristics of the channel and
variable data transfer demands.

Those goals are now achievable. By harnessing the
ever increasing performance/power potential of mod-
ern DSP devices such as the Texas Instruments
TMS320 DSP family, you can build a highly config-
urable, low-cost solution with minimal frequency-

selective components, high efficiency, and small size.
Unlike the cellular phone market, which is tightly

controlled by standards—GSM/IS95 and third-genera-
tion (3G) Universal Mobile Telephony Service (UMTS)
—the WLAN market has no dominant air interface
standard. Literally dozens of proprietary systems are
in play. This situation gives you the flexibility to work
with the latest modulation, coding, access, and equal-
ization formats, thus squeezing every last drop of
capacity out of the channel. However, the manufactur-
er has to build a degree of flexibility into its design (or
develop multiple versions) so that the product can
operate with multiple air interface standards across a
range of service providers and network types.

Achieving flexibility in a wireless platform
requires three key features: minimal frequency-
selective components, high linearity to minimize
self-induced signal distortion, and maximum soft-
ware-defined functionality.

The core building blocks of a modern software-
defined digital radio are a linear power amplifier (PA);
a wideband, low-noise front end; a good synthesizer;
and, of course, a high-speed DSP engine and data con-
verters (Figure 1). For maximum software configurabil-
ity, the analog signals should ideally be converted into
digital form at the RF carrier frequency. Unfortunately,

Software Radio

the conversion isn’t viable at frequencies much above
500 MHz; with most WLAN spectrum allocations in the
5-GHz-plus range, an analog intermediate-frequency
stage is still required. The digitization frequency used is
governed by component costs; the linearity, speed, and
dynamic range of D/A and A/D converter technology;
and power consumption constraints.

Both the linearity and the speed of converters have
improved significantly, with 14-bit, 100-megasample-
per-second, 80-dB SNR converters readily available.
These devices can easily support 40-MHz subsystems
using direct sampling and can extend toward 300-MHz
IF solutions using subsampling methods.

The power consumption of fast converters is signifi-
cant (several hundred milliwatts), and further reduc-
tion of IC feature size or other advances in process
technology are required to realize the power savings
needed to allow IF sampling in handheld equipment.
For fixed WLAN installations, however, power con-
sumption is less critical; instead, linearity and sam-
pling rate are likely to dominate the choice of fre-
quency.

DSP tasks for a high-speed wireless Internet modem
comprise core modem functionality (source and chan-
nel coding, pulse shaping, modulation, demodulation)
and more advanced software radio management tasks
(quadrature frequency translation, PA linearization,
receiver dynamic range extension, calibration of the
in-phase and quadrature [I-Q] components of the sig-
nal, automatic power and frequency control, and
direct digital synthesis, for example). We’ll focus here
on pulse shaping, demodulation, and PA linearization.

PULSE SHAPING
To maximize the data transmission rate over a wireless
link with finite bandwidth, you must shape the data
pulses modulating the carrier signal. For modems
using frequency shift keying (FSK), shaping tradition-
ally involved Gaussian filtering; for the more advanced
quadrature amplitude modulation (QAM) modems, a
root raised cosine (RRC) filter is commonly employed.
Whatever the pulse shaping, there are two core algo-
rithms for implementation: the classical filter and the
lookup table (LUT) method.

The filter approach is normally realized using an
infinite impulse response (IIR) filter for a Gaussian fil-
ter shape and a finite impulse response (FIR) filter for
the RRC shape. The FIR filter realization allows the
synthesis of a near-perfect RRC transfer function with
linear phase and controlled stopband attenuation. (IIR
approximation of an RRC filter can be used, but in the

Software Radio

10 June 2001 Embedded Edge

Figure 2. Although appearing more complex at first glance,

the lookup table (LUT) method of symbol pulse shaping,

using the data transitions to index the stored RRC pulse

shape, imposes little processing overhead. The output

waveform is synthesized from the summation of the pulse

samples for several preceding data bits.

Embedded Edge June 2001 11

Software Radio

majority of cases, the FIR structure yields a lower-
overhead algorithm than the compensated IIR design.)
The RRC filter shape is always an approximation of the
true Nyquist filter response, trading off filter length
(and hence delay and processor load) for stopband
attenuation and roll-off rate. Most filter design pack-
ages offer raised cosine (RC) and RRC filter options,
making it easy to explore the trade-off between the two
parameters.

In many cases, it may be preferable to cascade an
RRC filter with a second, FIR filter (possibly half-band
for ease of implementation). The second filter achieves
the desired level of out-of-band attenuation to meet a
given spectral mask while relaxing the requirements
on the first—and more processor-intensive—filter.

The alternative approach to pulse shaping makes
use of a lookup table, The table holds the precalculat-
ed values for the pulse response of the desired filter,
based on all possible input state transitions (Figure 2).
The state transition is used to index the correct stored
pulse response from the chosen filter, which is then

summed with the pulse responses from previous tran-
sitions to form the composite pulse-shaped waveform.

The lookup table method is preferred when execu-
tion time is at a premium, as lookup table indexing
carries very low overhead. Conversely, the real-time
filter realization of pulse shaping is used when memo-
ry space is at a premium and storage of the multiple fil-
ter pulse responses is impractical.

DATA DEMODULATION
Efficient algorithms for data demodulation are key to
the success of software-defined wireless modems. A
broad range of demodulation algorithms are in wide-
spread use, mirroring the multiple modulation formats,
coding strategies, carrier and symbol timing recovery
mechanisms, and equalization methods deployed.

We’ll look at one demodulation algorithm for fre-
quency discrimination that has widespread applica-
tion and is a good example of a DSP-optimized solu-
tion. Frequency discrimination has two primary uses:

12 June 2001 Embedded Edge

Software Radio

demodulation of the FSK family of waveforms, such
as Gaussian minimum shift keying (GMSK) used in
GSM cellular communications, and automatic fre-
quency control loops. The DSP frequency discrimi-
nator algorithm uses differentiation and cross multi-
plication to generate an output that directly corre-
sponds to the instantaneous frequency of the input
signal samples. An optional envelope normalization
block removes fading components present in the
input signal (Figure 3).

Mathematically, the operation of the quadrature dis-
criminator is as follows: For general complex input sig-
nals of the form:

where r(t) is the signal envelope and ø(t) is the angu-
lar phase/frequency, the signals at the outputs of the
two differentiators can be represented as:

By cross-multiplying and subtracting the signals as
shown in Figure 3, you obtain an output signal, given
by:

Further division by the (envelope)2 term yields a nor-
malized real-time measure of the instantaneous fre-
quency variations of the input signal. (In practice, it’s
much more efficient to use a lookup table to generate
1/r2(t), which is multiplied with the top path signal.)

Unlike conventional frequency discriminators
based on a phase-locked loop (PLL), the algorithm
doesn’t involve a feedback process. It also intro-
duces little or no bandwidth expansion into the signal,
thus ensuring that the Nyquist sample rate limit is not
violated.

Software Radio

14 June 2001 Embedded Edge

PA LINEARIZATION
Pulse shaping and multisymbol modulation are wast-
ed if the waveform is overly distorted after passing
through the analog transmitting or receiving func-
tions. Designers often sacrifice linearity because
they’re trying to maximize PA efficiency and power
output, so some distortion often results. The conven-
tional solution—backing off the PA drive to operate
within a linear portion of the PA characteristic—
wastes considerable power. It’s much more efficient
to use DSP techniques to predistort the waveform of
the signal driving the PA, in a complementary man-
ner to the PA nonlinearity.

The source waveform is passed through a lookup
table, which stores the correction factor for the ampli-
tude (and phase) of the waveform at any given PA drive
level (Figure 4). For most applications, the PA charac-
teristic isn’t stable enough (for example, temperature,
supply voltage, output load) for the process to be pure-
ly open-loop. A feedback path from the PA output is
therefore usually employed to allow the residual PA
distortion to be measured and the lookup table coeffi-
cients to be updated.

For the high-bit-rate solutions required in WLANs
and the LUT-specific nature of the processing tasks
involved, it’s often best to implement adaptive predis-
tortion using dedicated ASICs or FPGAs.

A/D AND D/A CONVERSION
Many manufacturers, including Texas Instruments, are
competing aggressively in the area of high-speed digi-
tal IF converter solutions, and new devices are appear-
ing on the market almost weekly.

Digital up and down conversion. The initial task
for the digital processing unit is to convert the IF sig-
nal into a complex baseband form (down conversion)
and from complex baseband to IF (up conversion).
Down conversion ensures minimum sampling rate
processing for the remaining radio functions. The
tasks involve mixing (multiplication) with quadra-
ture versions of a digital oscillator. In addition,
a process of interpolation and decimation is
needed in the up converter and down converter,
respectively, to optimize the sampling rate between
the digital IF requirements and the complex base-
band requirements.

Because the two functions (frequency mixing and
sample rate conversion) are common to all digital IF
solutions, various manufacturers have produced dedi-
cated ICs optimized for digital up and down conver-
sion. The high-sample-rate processing associated with
the digital-to-analog interface can be accommodated in
these hardwired devices, allowing the (comparatively)
slower digital signal processing of the wireless signal
content to be undertaken in cheaper, lower-power,
software-programmable DSPs.

An alternative route that maintains full flexibility of
design is to implement the mixing and sample rate

Figure 4. DSP-based adaptive baseband predistortion can

greatly simplify the design of the RF power amplifier and

enhance its efficiency. The solution shown here uses feed-

back from the PA output to update a lookup table operat-

ing on the baseband samples.

Figure 3. Obtaining an instantaneous measure of the fre-

quency of a signal is very difficult using analog methods.

In contrast, the algorithm for frequency discrimination

shown here uses quadrature processing to recover the

instantaneous (normalized) frequency of the input signal

with very low processing overhead.

Embedded Edge June 2001 15

Software Radio

conversion processing in software, using high-speed
DSPs or user-programmable gate arrays. Some compa-
nies offer FPGAs suited to that task, and TI and others
offer DSPs with sufficient processing speed, such as
the TMS320C6000 and C5000 DSP platforms. Addi-
tionally, numerous third-party suppliers, including TI
Third Party Network Members, are providing custom
algorithms or development tools.

Digital signal processing engines. When the IF sig-
nal is in complex baseband form, you can process the
signals using a dedicated ASIC (very limited flexibili-
ty), an off-the-shelf DSP solution (or a DSP core), or
one or more FPGAs. Again, the maximum flexibility
sought in our software-programmable WLAN solution
is achieved using the DSP or FPGA option. A growing
number of high-speed DSP devices can handle data
rates of several megabits per second, including the
C5000 platform of ultralow-power devices for
portable use and the C6000 platform for very fast
applications. ◆

REFERENCES
Bateman, Andrew, Digital Communications: Design for the Real
World, Addison-Wesley, London, 1998.

Bateman, Andrew, and Iain Paterson-Stephens, The DSP
Handbook, Prentice-Hall, Upper Saddle River, N.J., forthcoming.

Kenington, Peter B., High Linearity RF Amplifier Design, Artech
House, Boston and London, 2000.

Andrew Bateman is the CEO of Avren Ltd., a design and con-
sultancy company that advises communications and IC com-
panies on technologies, standards, and partnerships for next-
generation wireless systems, and of DSPStore.com. Previously,
he was a professor of communications and signal processing
at Bristol (U.K.) University and cofounded Wireless Systems
International Ltd., where he was the business development
director. He is also the author of three books on digital com-
munications and digital signal processing.

Optimizing Soft Modems

16 June 2001 Embedded Edge

Optimizing Modems
Using Code Composer
Studio and TI Resources

nels to 48 per DSP.
In fact, for the MSP MEDIA

Gateway line of DSP resource boards
based on C6000 DSPs, Commetrex
undertook the four phases, and the
process worked. Our MSP-320 PCI
board, with two C6201 DSPs and a
quad E1/T1 network interface, need-
ed 48 to 60 channels of processing
from each DSP. For many of the gen-
eral telephony stream-processing
tasks, the C6000 C optimizer gave us
the densities we needed with no
assembly coding.

“Out-of-the-box”C-coded mo-
dems, which are a reference design

and written for understandability
rather than efficiency, might com-
pile to, say, six simultaneous
modems. You should be able to dou-
ble that by guiding the modems
through the Code Composer Studio
(CCS) optimizer and by ensuring
that your memory layout takes
advantage of the C6000’s on-chip
RAM.

CCS includes an optimization
tutorial that provides a recommend-
ed code development flow consisting
of four phases (Figure 1). (A similar
tutorial is in the TMS320C6000
Programmer’s Guide.)

Phase 1 involves compiling and
profiling your baseline C code.
Before you begin any optimization
effort, use the profiling tools to iden-
tify the performance-critical areas
in your code.

Phase 2 involves compiling with
the appropriate optimization op-
tions and analyzing the feedback
provided by the compiler to improve
the performance of your code.

Phase 3 is a critical phase during
which you use a number of tech-
niques to tune your C code for bet-
ter performance.

Phase 4 is needed if the perfor-
mance of certain areas of your code
must be improved beyond the tun-
ing phase. After yet another profile
of the code, you can extract the per-
formance-critical areas and rewrite
them in linear assembly language.

THE FIRST THREE PHASES
Phase 1 establishes your baseline.
You have a goal—for example, your
system requirement might be a sta-
tistical mix of 48 modems on one

In just a few short phases, you can optimize C-coded

reference modems to meet higher-density targets.

By Ghassan Farah

F
or many of the general telephony stream-processing

tasks, the C optimizer for the Texas Instruments

TMS320C6000 DSP platform can yield higher densi-

ties with no assembly coding. Other technologies

require a healthy dose of optimization to reach tar-

get densities.

You can take steps to optimize C-coded reference modems to

meet higher-density targets. How high? C-baseline modems, for

example, can soar from 6 per 200-MHz C6201 to 28 in four short

project phases. A fifth project phase can take the number of chan-

Optimizing Soft Modems

200-MHz C6201. Always maintain
the C-coded baseline as your refer-
ence code. Because it’s often devel-
oped very straightforwardly, leav-
ing it as a reference will be valuable
if you have to diagnose a problem.
Make your improvements there,
then factor them into the opti-
mized version to produce a bit-
exact version.

Phase 2 involves compiling using
the optimization options. The opti-
mizer, combined with a judicious
memory layout, can more than dou-
ble the number of modems on one
chip. Allocate a few weeks for the
effort. But note that the optimizer is
capable of “breaking” the modems
in a few places, so you may have to
modify some pieces of the C code.
Also, you may find that some of the
changes you make to the C code to
improve the optimizer’s results
when using CCS 1.1 aren’t required
when using the release 1.2 optimiz-
er; therefore move to 1.2 if you can.

In phase 3, you tune the C code.
There are a number of techniques to
refine your C code and greatly
increase its efficiency. The goal is to
allow the compiler to schedule as
many instructions as possible in par-
allel, especially for MIPS-intensive
loops, by providing information con-
cerning the dependencies between
instructions. You can use certain key
words that give the compiler hints as
it tries to determine dependencies.

Another useful technique in the
tuning phase is to use intrinsics,
which are special functions that
map directly to C6000 assembly
instructions. These functions are
usually not easily expressed in C.
They allow you to have more precise
control over the selection of instruc-
tions by the compiler.

For example, some intrinsics
operate on data stored in the low
and high portions of a 32-bit regis-
ter. Consequently, if you’re operat-
ing on a stream of 16-bit values, you

Embedded Edge June 2001 17

Figure 1. The Code Composer Studio optimization tutorial recommends a code

development flow consisting of four phases. The first three phases focus on utiliz-

ing the optimization abilities of the TMS320C6000 compiler to achieve high code

performance while maintaining the code in C. The last phase involves linear

assembly coding of those portions of the code whose performance needs to be

improved further. (This figure is based on the one on p. 1-4 of the TMS320C6000

Programmer’s Guide).

Optimizing Soft Modems

18 June 2001 Embedded Edge

can use word (32-bit) accesses to
read and process two 16-bit values
at a time.

Even though phases 2 and 3 may
double the number of simultaneous
instances of the code running on
one chip, the modems are still coded
in C that’s easy to understand and
maintain.

PHASE 4: CIRCULAR
ADDRESSING
At this point, if your performance
requirements are not yet met, you
go on to phase 4: converting MIPS-
intensive portions of the code into
linear assembly code. This form of
assembly code doesn’t require that
you provide functional unit selec-

tion, pipelining, parallelization, or
register allocation; those tasks will
still be performed by the compiler. It
will, however, give you more control
over the exact C6000 instructions to
be used. You can also pass more use-
ful information to the tools, such as
which memory bank is to be used.

Modems use a number of delay
lines for the different filters, resulting
in MIPS-intensive memory shifting.
You can avoid that by employing the
circular addressing feature of the
C6000 in your linear assembly code.
It’s not unreasonable to set a goal of
doubling the number of modems
from 12 to 24 in this step alone.

For the most part, a modem is a
series of filters. Each filter is com-
puted from a sequence of input data,
or taps, and an equal number of
coefficients. A multiply-accumulate
operation is performed with each
tap and a corresponding coefficient.
After the computation, the taps are
shifted to make room for the new
input (Figure 2a). Circular address-
ing changes the starting point for
the MAC cycle, eliminating the shift-
ing altogether (Figure 2b).

Without hardware support for this
operation, the C code for the itera-
tive loop is of the form in Listing 1.
The C6000 has hardware support
for circular addressing, though. By
setting the addressing mode register
(AMR) appropriately, you can speci-
fy the general-purpose register or
registers that will be used for circu-
lar addressing, as well as the size of
the memory block that will be
addressed circularly (Listing 2).

Just as using the optimizer has its
challenges, so can adding circular
addressing. You might find that you
add circular addressing and then the
optimizer breaks it. It turns out the
optimizers in both CCS 1.1 and 1.2
don’t take circular addressing into
account. For example, the optimizer
will often move an address from a
register configured for circular

Optimizing Soft Modems

Embedded Edge June 2001 19

addressing to another register before
performing address manipulations.

When using the optimizer with
circular addressing, you might have
to experiment with a number of
alternative codings to arrive at a
solution that the optimizer respects.
(The new Code Composer Studio
2.0 from TI supports circular ad-
dressing directly from C code.)

You should see a significant
improvement with circular address-
ing. Take our V.29 receiver (9,600
b/s) as an example: After the first
three phases of our project, it con-
sumed 222,188 cycles for each 10
ms of PCM data (80 samples). By
modifying just the first two sec-
tions—the pulse-shaping and
Hilbert filters—for circular address-
ing, we brought that down to
185,759 cycles. Changing the inter-
polating and baud timing recovery
filters to the circular addressing
mode reduced it to 155,677. Finally,
changing the adaptive filtering and
update routines shrank the cycle
count down to 101,429—a reduc-
tion of better than 55 percent. (For
a more in-depth discussion of circu-
lar addressing on the C6000, refer to
the TI Application Report Circular
Buffering on TMS320C6000 [SPRA-
645.PDF].)

Since a V.17 receiver (14,400 b/s)
is essentially the same code as the
V.29 receiver but executes from dif-
ferent tables, these changes cause
similar reductions to the V.17
receiver. However, we still need to
optimize the Viterbi decoder. (Of
the three common modems used to
transfer fax-image data, only the
V.17 modem uses Viterbi decoding.)

Trellis coding is a forward error
correction scheme that reduces a
modem’s bit-error rate for a given
amount of channel noise by adding
certain redundant information to
the channel. The information
reduces the chance that noise will
create data errors, in effect increas-

ing the distance between code
points. The Viterbi decoder decodes
the Trellis sequence and determines
the most likely set of transmitted
points. However, it’s expensive in
terms of MIPS. C-coded Viterbi
decoder alone took 140 percent of
the cycles that the entire V.29
receiver took. In other words, the
V.17 receiver was 2.4 times as
expensive as the V.29.

Fortunately, help is available on
the TI Web site (www.ti.com). When
you download Implementing
V.32bis Viterbi Decoding on the
TMS320C6200 DSP (SPRA-
444.PDF), you’ll find the decoder in
very tight assembly code. You can’t
just drop it in, though. You’ll have to
adapt it to your environment.

To make the decoder reentrant,
change global variables to per-chan-
nel contexts and watch for bugs. You

should achieve spectacular results:
A straight C-coded Viterbi con-
sumes approximately 150,000
cycles for 80 samples. Substituting
TI’s assembly code takes that down
to an incredible 8,000 cycles. Our
V.29 receiver is now 101,429 cycles,
and the V.17 receiver only
108,840—and we haven’t begun to
“vectorize.”

Using a statistical mix of modems
yields 28 simultaneous channels. In
worst-case nonblocking terms, that’s
18 simultaneous V.17 receivers. You
should receive similar results for
similar algorithms by using the opti-
mizer and circular addressing.

BEYOND PHASE 4:
‘VECTORIZE’
If you still haven’t reached your
performance requirements, you

Figure 2. A new sample, x5, is added to the delay line of a four-tap filter (x1 is

the oldest sample in time) using the sample-shifting method. Three shifts are

needed before x5 is placed at the top of the delay line (a). Using circular

addressing, register A4 (set up to be used in circular mode) automatically wraps

back to the beginning of the delay line after x4 is added and the end of the delay

line is reached. When x5 is added, it overwrites the oldest available sample, x1,

thereby eliminating the shifting altogether (b).

Optimizing Soft Modems

20 June 2001 Embedded Edge

might consider going on to phase
4: changing the flow of data
through your code to reduce func-
tion calls and utilize more loops
that can be optimized easily. For
modems, one approach to accom-
plish that is to “vectorize” the
algorithm’s implementation.

The sample rate section of the
receiver consists of the following
components in series: the pulse-
shaping filter, the Hilbert trans-
former, the demodulator, and the
interpolator. Without vectorization,
the sample rate section of the
receiver processes one sample at a
time, taking it through each succes-
sive section. Consequently, the
overhead of calling each filter in the
sample rate section is incurred 80
times for each 80-sample buffer.
With vectorization, the sample rate
section is called once for each 80-
sample buffer. An input buffer of 80
samples is then passed to the pulse-
shaping filter, which produces 80
samples to be passed to the Hilbert
filter, which in turn produces 80
outputs, and so on. In the sample
rate section, the number of function
calls required to process 80 samples
is reduced from 320 to just 4. In
addition, processing the input buffer
in a loop format as opposed to sam-
ple by sample allows the optimizer
to do a better job of pipelining, sig-
nificantly improving efficiency.

We haven’t completed the vector-
ization phase of this project, but we
will report the results on our Web
site (www.commetrex.com) when
we do. ◆

Ghassan Farah (Ghassan_Farah@comme-
trex.com) is manager, signal processing
technologies, at Commetrex Corp-
oration in Norcross, Ga. He has four
years’ experience in designing and imple-
menting a variety of DSP algorithms. His
technical interests include data and fax
modems, telephony, speech coding, and
signal classification.

Multiprocessor Frameworks

22 June 2001 Embedded Edge

Speeding the
Development of
Multi-DSP Applications

A lthough many of the latest top-
of-the-line processors are

extremely fast—and the 1.1-GHz
TMS320C6000 from Texas Instru-
ments is extremely fast—some cus-
tomers still have performance
requirements that mandate a multi-
processor solution That’s why many
multiprocessor C6000 systems are
already in the field.

New software tools like TI’s Code
Composer Studio (CCS) are helping
to speed software development, but
for the most part they’re targeted at
the DSP device. Although CCS sup-
ports loading and debugging multi-
processor target systems via JTAG,
its focus is understandably the DSP
chips, not the additional board-spe-
cific hardware involved in inter-
processor communications.

Complementary software tools
are needed to truly unlock the
promise of faster software develop-
ment for multiprocessor DSP sys-
tems. Indeed, software tools for mul-
tiprocessor C6000 development are
now emerging, such as Diamond
from 3L, Virtuoso from Eonic

Systems, Pegasus from Jovian
Systems, and Accelera from
Spectrum Signal Processing (which
is specific to the company’s boards).

Diamond and Virtuoso ease the
software burden of coordinating
many processors with features like
Eonic’s Virtual Single Processor
model and 3L’s “virtual channels.”
These features free you from the
protocol complexities of forwarding
messages among a network of
processors and the interface details
of your particular communications
hardware. This class of products
also provides ready-made software
that lets a range of off-the-shelf DSP
development boards communicate
with user-written GUI code on a
host PC.

Pegasus and Accelera are higher-
level tools: graphical development
environments for multi-DSP appli-
cations. Instead of writing C code to
implement DSP algorithms and
interprocessor communications,
you can simply choose from a
palette of predefined functional
blocks (or add your own) and visual-

ly place the blocks onto processors.
Both kinds of tool are useful,

since you often want to work at both
levels. In fact, Pegasus can use
either Diamond or Virtuoso as its
underlying communications frame-
work. Accelera uses Spectrum’s own
quicComm software as its commu-
nications layer, as it targets propri-
etary communications hardware.

COMMON PROBLEMS
WITH MULTIPROCESSORS
Ever since computers became inex-
pensive enough to use more than
one on the same problem, the indus-
try has gained a lot of experience
about the significant software prob-
lems introduced by multiprocessing.

Partitioning of the problem and
its data. Getting multiple processors
to work together effectively on the
same task involves splitting the job
into chunks that can be efficiently
processed independently or with
minimum communications. Except
in special cases, partitioning is as
much art as science. Creative engi-

New software tools are taking aim at multiprocessor

DSP systems, particularly for the C6000 DSP platform.

By Fiona Culloch

Multiprocessor Frameworks

Embedded Edge June 2001 23

neering is needed here, and software
is of little help.

Processor communications and
synchronization. Although some
systems can consist of multiple,
completely independent activities,
in most cases the processors must
exchange data via shared memory
or point-to-point links.

With shared memory, each
processor has access to a shared
bank of memory, often through a
common bus. The processors signal
the availability of data by interrupts.
Point-to-point links provide a dedi-
cated hardware path between each
pair of processors that need to com-
municate. Some DSP hardware
directly supports that model, such
as TMS320C4x communications
ports (comports) or C6000 multi-
channel buffered serial ports
(McBSP).

Simulation. It’s hard to develop
the software for a multiprocessor
application on custom hardware
before the hardware is available and
substantially debugged. The usual
single-processor solution—develop-
ing and testing software on a host
platform, then porting it to the tar-
get system—isn’t feasible if the soft-
ware must assume the presence of
the target hardware’s interprocessor
communications features.

Debugging. The only practical
way to debug some common failure
modes of multiprocessor systems,
especially deadlocks caused by a
particular pattern or ordering of
communications, is to log the inter-
processor communications (rather
than single-stepping code, which is
next to useless for some problems).
As mentioned, that can require
sophisticated software support in a
system built from point-to-point
links.

The key element for solving com-
munications, simulation, and debug-
ging problems is abstraction of
interprocessor communications and

synchronization. Unfortunately, the
opposite happens in most DSP pro-
jects. Instead of keeping the details
of the communications hardware
out of the application code, develop-
ers tend to tie them as closely
together as possible, in a misguided
quest for “efficiency.” Consider
some concrete examples.

The SMT3xx range of modular
C6000 DSP hardware from Sun-
dance Multiprocessor Technology is

based on point-to-point Sundance
Digital Links (SDLs) implemented
by an on-board FPGA. There are
various implementations of the
technology: 20-Mb/s versions back-
ward-compatible with TI’s TMS-
320C4x TIM-40 module comport
standard, as well as faster ones that
take advantage of more recent tech-
nologies. From a software point of
view, to send data over a link, code
must correctly initialize both the
FPGA and the C6000 External
Memory Interface (EMIF) CE1 con-
trol register, assign a CPU interrupt
line to the transfer (avoiding any in
use by concurrent I/O operations),
initialize a C6000 DMA channel to
transfer the data between memory
and the FPGA data port (the
addresses of the FPGA control regis-
ters, and the bits within them, are

different for different modules in the
range), and field the interrupt gen-
erated by the DMA channel on com-
pletion of the transfer.

Although the code isn’t particular-
ly complex, it’s usually slow to write.
Not only do you have to completely
absorb all the low-level details of the
hardware before writing any code,
but you must also account for
“kinks” in the hardware that may
not have been fully documented.

That’s a simple case compared
with Spectrum Signal Processing’s
Daytona and Barcelona (dual and
quad) C6000 boards, which use
shared PCI SRAM blocks for com-
munications. The equivalent code to
send a message from one processor
to another must correctly initialize
the dedicated communications
ASIC (Hurricane), which imple-
ments a point-to-point link and has
64 individual control registers, as
well as shared-memory buffer data
to ensure that the buffer addresses
are valid in the address space of
each processor. It must chop the
data to be transferred into chunks
that fit into the SRAM bank visible
to the Hurricane ASIC and, for each
chunk, create a DMA channel con-
trol program in memory to drive
Hurricane and start it. last, it must

Figure 1. Device driver software provides plug-in knowledge of the specific hard-

ware and maps between a common, device-neutral API and actual interprocessor

communications hardware, which may differ for each DSP.

Multiprocessor Frameworks

field interrupts from the ASIC when
channel program operation is com-

plete, either moving on to the next
chunk (which may involve copying

further data into the Hurricane
SRAM) or signaling the user code
that the transfer is completed.

Although the managing code is
often scattered throughout a pro-
ject’s application-level programs, it’s
obvious that the same abstract oper-
ation is performed in both cases:
Send this much data from here in
local memory to a receiver on
another processor.

Abstraction decouples the appli-
cation software—the DSP algo-
rithms—from the communications
hardware and contrasts with the
point solutions used on many multi-
processor projects, where you try to
tackle interprocessor communica-
tions by directly manipulating the
underlying hardware in the applica-
tion code. Although that approach

Figure 2. A four-stage pipeline can be developed on a single-processor board,

then deployed without source changes on a four-DSP board for a 4x speedup.

24 June 2001 Embedded Edge

26 June 2001 Embedded Edge

works after a fashion, in most pro-
jects time inevitably limits the scope
of the sophisticated code required to
assist development. Support for
tasks like debugging I/O from a node
to a host system and the hardware
independence required for simula-
tion are omitted in the rush to get
something working. Ironically, lack-
ing simulation facilities, the project
is likely to take much longer than if
you used a tool that supports hard-
ware-independent communications.
Such tools offer many benefits.

Complete, off-the-shelf solutions.
Solutions for communications, sim-
ulation, and debugging problems are
feasible if the project is able to take
advantage of commercial off-the-
shelf (COTS) multiprocessor hard-

ware in conjunction with software
tools that abstract interprocessor
communications. For example,
Diamond software runs out of the
box with multiprocessor C6000
boards from Spectrum Signal
Processing and Sundance Multi-
processor Technology; it includes
drivers for the different interproces-
sor communications hardware used
by the boards, removing a require-
ment for scarce driver development
skills from the project’s critical path.

Simple communications API.
High-level tools for multiprocessor
software development solve commu-
nications problems by providing a
clean, simple API for application
code.

Software development for cus-
tom hard-
ware using
COTS boards.
When you use
tools that
d e c o u p l e
a p p l i c a t i o n
code from the
communica-
tions hard-
ware, you can
develop soft-
ware with
COTS hard-
ware, even if
the final tar-
get uses cus-
tom multi-
p r o c e s s o r
boards. Good
multiproces-
sor develop-
ment tools let
you port the
working code
to the target
system with-
out applica-
tion source
changes, thus
addressing the
s i m u l a t i o n

problem, provided that multiproces-
sor COTS hardware is available.

Multiprocessor software develop-
ment on a single-processor plat-
form. Being able to develop multi-
processor software on a single-
processor platform means that not
only is the application code inde-
pendent of the communications
hardware that connects the proces-
sors, it also can be independent of
the number of processors and their
connectivity. In particular, you can
take a multiprocessor application
consisting of separate programs for
several processors and run it
unchanged on a single processor, as
long as there is adequate memory.
The software automatically relo-
cates each program to a separate
position in the single processor’s
memory. An RTOS kernel time-
shares the processor between the
programs and transforms what were
previously interprocessor communi-
cations into intertask communica-
tions calls to the kernel.

More interestingly, it’s equally pos-
sible to go the other way: Develop a
system of independent programs
(processes) on one processor—for
example, a simple evaluation module
(EVM) from a DSP silicon vendor—
and then later distribute the process-
es to separate DSPs when real target
hardware appears, again with no
application software changes (Figure
1). That feature widens the range of
options for solving the simulation
problem. The same flexibility that
supports switching between single-
processor and multiprocessor config-
urations without recoding also sup-
ports boosting the performance of
properly designed applications by
simply adding more processors,
again without code changes.

Development under Windows. A
corollary of independence from the
underlying communications hard-
ware is that, with software processes
in a host environment like Windows

Multiprocessor Frameworks

Multiprocessor Frameworks

Embedded Edge June 2001 27

NT, it’s possible to simulate multiple
processors during development,
expanding your armory of tech-
niques for developing working mul-
tiprocessor software in parallel with
custom hardware development
(simulation problem). The trade-off
is the increased availability of soft-
ware tools on the host system versus
difficulties introduced by simulating
the target system on a CPU with a
different architecture (assembly
functions can’t be directly tested,
for example).

Framework for multiprocessor
development. As you can see, you
must watch out for a number of pit-
falls in multiprocessor systems be-
fore achieving application speedup.
Most high-level multiprocessor de-
velopment tools help by providing a

ready-made working framework for
multiprocessor application design.
The abstract model of several such
tools, including Diamond, is based
on C. A. R. Hoare’s Communicating
Sequential Processes (Prentice-Hall,
Englewood Cliffs, N.J., 1985). Soft-
ware based on communicating se-
quential processes (CSP) has been
widely employed in the industry for
at least ten years. Using such a road-
tested model in place of ad hoc twid-
dling of hardware control registers
eliminates many design and imple-
mentation errors and helps with
communications and debugging.

The abstraction that produces the
benefits is almost entirely conceptu-
al—you have no implementation
overhead above that of the tradi-
tional hardware-specific approach,

other than selecting the required
hardware-specific implementation
of each communications function
with a pointer rather than directly.
The extra memory load required is
orders of magnitude less than the
amount of time required for the
communications itself.

AN IMPLEMENTATION
How is the framework concept pre-
sented to you, the application devel-
oper? We’ll focus on frameworks
based on writing C code, using 3L’s
Diamond as an example, but most of
the underlying concepts also apply
to other high-level multiprocessor
development frameworks. Note that
a graphical tool like Pegasus essen-
tially acts as a “wizard” to generate

28 June 2001 Embedded Edge

C code from a visual block diagram,
but it still allows you to work with
the generated code at that level.

The key to most of the framework
benefits is the hardware-indepen-
dent API for interprocessor commu-
nications. Some multiprocessing
aspects of Diamond and Virtuoso
were influenced by Occam, the
native language of the Inmos trans-
puter, which was itself an imple-
mentation of Hoare’s CSP concept.
The CSP notation expresses concur-
rency by mathematical operators
denoting synchronized message
passing. Like other languages based
on the CSP model, Occam has a spe-
cial syntax for transmitting mes-
sages (! to send, ? to receive).

However, for a CSP-based concur-
rency framework to operate suc-
cessfully with standard C tools like
CCS, that syntax must give way to
function calls. In Diamond’s case,
the API is basically two functions
that operate on abstract, point-to-
point channels, represented by the
CHAN data type:

void chan_in_message(int length, void
*buffer, CHAN *channel);

void chan_out_message(int length, void
*buffer, CHAN *channel);

Those primitive operations han-
dle both message-based communi-
cations and (implicitly) synchro-
nization: After calling chan_out_mes-
sage, the sending thread is blocked
until the message is received.
Similarly, a thread that calls chan_
in_message is suspended until the
incoming data arrives on the speci-
fied channel. Virtuoso generally

uses channels directly only for sys-
tem processes; its application-level
tasks use mailbox and FIFO objects
that the system constructed from
channels. But with those frame-
works, calling a simple function
encapsulates all the hardware-spe-
cific work required on a particular
board—for example, on the
Sundance SMT3xx modules, setting
up and driving the FPGA, fielding
the interrupts it generates, and con-
trolling a C6000 DMA channel (and
its interrupts) to move the data
between memory and the FPGA that
handles interprocessor I/O.

A code-based framework presents
its hardware-independent commu-
nications services as API functions

in the usual way, with a header file
and corresponding run-time library.
C code using the API is compiled
and linked by CCS’s tools, as usual.
Thus, just as the CCS optimizing C
compiler frees you from explicitly
coding DSP instructions, a code-
based framework frees you from
coding board-level interprocessor
communications at the hardware
register level.

Frameworks differ significantly
in the area of system configuration.
Generally, a framework has a con-
figuration file that governs the
mapping of software tasks onto the
physical topology of the processor
network. Code-based systems like
Diamond or Virtuoso use a text file;
graphical systems like Pegasus gen-
erate the file automatically from
the system block diagram on
screen.

The underlying configuration
technology also varies. Virtuoso

uses the standard linker to bind
tasks, producing one executable file
for each node so that tasks on the
same node share a single namespace
for external variables and functions.
Diamond, on the other hand, can
bind multiple separately linked
images for each node into a single
bootable file for the whole network.
Any node can run multiple pro-
grams, each with its own name-
space, like a process in Unix or
Windows NT. An RTOS kernel com-
ponent with full preemptive sched-
uling of dynamically created threads
is loaded onto each target processor.
Basic debugging takes place via
JTAG with CCS, as usual. In fact,
you can view a communications
framework like Diamond as comple-
mentary to CCS, extending it with
mechanisms for simplified handling
of multiprocessor applications that
have significant interprocessor com-
munications requirements.

As well as sending and receiving
messages, the other primitive
required by systems based on the
CSP model is waiting until a mes-
sage arrives over one of several
alternative channels, where the
source of the message is not known
in advance (similar to the select
operation in some Unix variants):

i = alt_wait(n, &chan_1, &chan_2, ...,
&chan_n);

The communications channels
can be implemented with any hard-
ware that allows for some form of
communications and synchroniza-
tion. For example, 3L previously
implemented the same API on bit-
serial transputer links, TMS320C4x
comports, C6000s using PCI-bus
shared memory and interrupts for
signaling, and C6000s using VMEbus
shared memory and interrupts.
Applications can run unchanged on
all of them.

What do you do to take advantage

Multiprocessor Tools

The key to most of the framework
benefits is the hardware-independent
API for interprocessor communications.

Multiprocessor Frameworks

Embedded Edge June 2001 29

of the leverage provided by that
framework? With supported COTS
multiprocessor hardware—nothing.
The implementation of the frame-
work’s abstract communications
primitives in terms of the supported
hardware is built into the system.
For other custom hardware, you
create a link device driver for the
framework.

DRIVERS FOR
CUSTOM HARDWARE
To make use of a high-level frame-
work for multiprocessor application
development on custom hardware,
you must write a device driver that
maps from the framework’s abstract
communications API to the available
hardware (Figure 2). Three ap-
proaches are possible: porting kits,

fee-based service, and IP licensing.
With the first approach, you write

the driver based on a porting kit
provided by the framework vendor
that documents the interfaces
between the driver and the rest of
the system. The porting kit must
contain sufficient software compo-
nents so that you can link your cus-
tom drivers into the system.

With the second, you go to the
framework vendor. In most cases,
the vendor has a great deal of expe-
rience writing drivers that interface
their software to the COTS boards
that it supports and is willing to
write custom drivers for a fee.

IP licensing is an intermediate
approach to speed up driver devel-
opment based on a porting kit. You
license working source code for

existing implementations from the
framework vendor and use that code
as a base for development.

In all cases, as soon as a working
driver exists for the custom hard-
ware, multiprocessor code written
with the framework—either on a
supported COTS board, on a single-
processor EVM, or on Windows—
should run unchanged on the new
hardware. ◆

Fiona Culloch (fc@3L.com) is technical
support director at 3L Limited in
Edinburgh, Scotland, where she has been
involved with real-time kernel develop-
ment and software to simplify integration
of DSPs with host GUI applications. From
1985 to 1987, she was software develop-
ment manager for the compilers group at
Lattice Logic Limited.

Real-Time Profiler

30 June 2001 Embedded Edge

Optimizing software code to boost
the performance of an applica-

tion is one of the greatest challenges
in writing real-time DSP software. At
Surf Communication Solutions,
we’ve found that the impact of effec-
tive code optimization can be dra-
matic: We’ve achieved remarkable
performance gains of several orders
of magnitude during a project’s devel-
opment cycle.

DSP software development fol-
lows Pareto’s rule, also known as
the 80/20 rule. Translated into soft-
ware terms, it stipulates that 80
percent of the DSP resources are
used by less than 20 percent of the
code. For our highly complex sig-
nal-processing applications, the
rule is closer to 95/5. That phenom-
enon is extremely encouraging: It
means that isolating and optimizing
the voracious 5 percent of code
reduces DSP MIPS usage and boosts
application performance.

You can develop finely tuned, tight
DSP code by identifying the few sec-
tions that overextend the MIPS bud-
get. One tool commonly used for that
purpose is a hardware profiler that is
part of or added to an in-circuit emu-
lator. A hardware solution, however,
has two drawbacks: expense and

obtrusion. Buying the tool for one
development station may not be a
major expense for a typical company,
but purchasing it for dozens is typi-
cally too great an expense. Moreover,
hardware-based solutions may add
extra noise and slow down full-speed,
real-time processes, skewing the true
profile and possibly preventing the
application from running correctly in
real time.

To overcome those drawbacks,

we’ve developed a software-based
statistical real-time profiler for inter-
nal use. It’s easy to implement and
requires no additional hardware.

THE CONCEPT
The fundamental concept of the sta-
tistical real-time software profiler is
to take periodic snapshots of the
DSP’s instruction pointer (program
counter). The captured information

Real-Time Profiler Aids
Code Optimization

A software-based statistical real-time profiler can help you

vastly improve the performance of TMS320C62x DSP code.

By Konstantin Merkher
and Jacob Bridger

Embedded Edge June 2001 31

Real-Time Profiler

shows where the DSP spends most
of its MIPS resources. Over time,
these periodic (but random) snap-
shots typically converge on the true
distribution function of the applica-
tion. To learn how much processing
time a DSP spends in each software
function, you need to write an inter-
rupt service routine (ISR) to handle
the timer interrupt and sample the
instruction pointer.

You can program the internal
timer on the Texas Instruments
TMS320C62x generation of DSPs to
provide interrupts at given intervals.
The actual rate of interrupts depends
on the resolution and the speed of
profile convergence you want. The
ISR must find the return vector and
record or store it for future use
(Listing 1). However, the interrupts
should occur infrequently; otherwise,
they’ll hamper the smooth operation
of the application. The key to obtain-
ing an accurate profile is to run the
application for a long time.

Although software development
tool sets with profiling options
already exist, almost none operate
in real-time systems. Such profilers
consume large amounts of DSP
resources, and the local system
can’t synchronize with the host sys-
tem because it can’t manage the
real-time interface under the added
burden. In contrast, DSP overcon-
sumption is insignificant in our sys-
tem because it adds only 0.1 percent
overhead to the main application.

Software-based profilers do have
limitations, though. For one, if you
program the timer to perform inter-
rupts at short intervals and the time
slot is too short, the profiler dis-
rupts normal operation of the appli-
cation. The longer the interrupt
interval, the more time the system
needs to get an accurate picture. We
find that a 0.1-ms frequency is suf-
ficient for modem, voice-over-IP
(VoIP), and fax-over-IP (FoIP) appli-
cations that have computing cycles

ranging from 5 to 30 ms.
What’s more, since our statistical

profiler converges over time, it isn’t
appropriate for tracking MIPS
demands that occur infrequently or
during initialization. In that case,
you can write special support rou-
tines that loop the routines many
times until the profiler converges.

IMPLEMENTING
THE PROFILER
The C62x DSP is equipped with pro-
grammable timers. Some of the
timers are active and perform vari-
ous functions while the application
is running; others are dormant and
available for use. To implement a
software-based profiler, the DSP
must have an unused timer that is
capable of implementing interrupts.

In addition, the host system
should be able to collect the record-
ed entries from the DSP and decode
memory addresses (according to the
function names to which they
belong). To do so, the host system
must initially parse a map file pro-
duced by a linker. When the system
is running, the DSP sends the

recorded addresses as packets. The
addresses point to the functions,
and therefore their usage value (in
percentage points) can be updated
or recalculated. The output is a
table that includes the names of
functions and a percentage value of
CPU consumption.

The process can be implemented
on any host platform. We use
Windows NT as a development plat-
form for the profiler host and inter-
nally developed C62x-based PCI tar-
get boards for the target software.

IMPLEMENTING
THE DSP SIDE
The ISR identifies the returned vec-
tor and records it in a buffer for
future transfer to the host. A special
flag in the host or target API indicates
whether recording is enabled or dis-
abled. By using the flag, the host
application can isolate specific func-
tion branches of the overall target
application to be profiled. Although
enabling and disabling interrupts
could also achieve that, the method
isn’t recommended, since it synchro-
nizes code sections with the timer.

Real-Time Profiler

32 June 2001 Embedded Edge

The law of averages permits conver-
gence only if the timer and applica-
tion remain uncorrelated.

Every CPU can receive interrupts
and store the return vector in a spe-
cific manner; some have a special-
purpose register—in the C62x
device, the interrupt return pointer
(IRP). The addresses can be
accessed and recorded. To prevent
the host system from being overbur-
dened with profile data, you should
use a buffer for recording addresses
and transfer them to the host in
extended time cycles. Our address-
es, for example, are transferred to
the host every 10 ms.

When the C62x DSP target soft-
ware is compiled and linked, several
files are produced, one of which is a
map file. The map file contains the
entire target memory map, includ-
ing symbol information (such as
global variables and function
names) and the addresses of the

symbols relative to the physical
memory map (Listing 2). The sym-
bols are arranged in ascending
order, so that the last address of a
function is the one before the first
address of the next function. Once a
map file is produced, initial parsing
can be performed.

After recording the vectors and
receiving the buffer of addresses, the
host begins the decoding process. It
selects each address from the buffer
and finds the specific function it
belongs to (relative to the memory
map). It then increases the access
counter of that specific function,
enabling the profiler to recalculate
the relative DSP MIPS consumption
value of the function. The value is
calculated by dividing the number of
hits for a specific function by the
number of received addresses.

The host system periodically
receives packets of recorded
addresses through the DSP or host

interface. Therefore it must be able
to receive blocks of data according
to a preconfigured size.

After the decoding phase and
matching the instruction counter
data with the map file addresses, the
recalculated values are displayed in
a results table with two or (optional-
ly) more columns. The first column
displays the function name and the
second displays the percentage
value of DSP MIPS consumption
(see the figure). The data should be
arranged in descending order,
according to the percentage of the
accumulated run time. Thus the
function that the DSP spends the
most time on is displayed first.

Our mature development envi-
ronment—including a highly func-
tional and robust Windows NT-
based host control and monitoring
application—greatly facilitated
implementing the profiler. Using it,
our R&D team optimized the most
widely used functions in the Surf
Multi-access Pool (SMP) application
for terminating the V.90 modem,
G.7xx VoIP, and V.17/T.38 FoIP. As a
result, more channels were able to
run simultaneously on a single DSP
chip. For example, in the case of
Viterbi decoders consumption
decreased by one half in the modem
data pump, enabling us to reach our
target of 15 fully convergent chan-
nels on a single TMS320C6202 DSP.

Konstantin Merhker (kostikm@surf-com.
com) is a software engineer for Surf
Communication Solutions, Ltd. in
Yokne’am, Israel, responsible for system
analysis and the optimization of Surf ’s
products and solutions.

Jacob Bridger (jbridger@surf-com.com) is
Surf ’s vice president of corporate market-
ing. He has 15 years’ experience in R&D
and management of DSP-based real-time
embedded software and signal-processing
projects , spending the last several years in
global high-tech business development.

The profiler’s recalculated values should be displayed in a table of at least two

columns. The first column lists the function names, and the second the percent-

age value of DSP MIPS consumption. Arranging the table using the values in col-

umn 2 in descending order shows the functions that the DSP spends the most

time on displayed first.

Embedded Edge June 2001 33

PCTEL, Inc. (Milpitas, Calif.; www.pctel.com) has formed a
strategic alliance with Groupe SAGEM (Paris,
www.sagem.com), France’s second-largest telecommuni-
cations equipment maker.The aim of the deal is to devel-
op a reference design for use in digital TV set-top boxes.
The design will feature PCTEL’s Solsis embedded modem
for accessing the Internet and include the TMS320C5000
DSP platform.The set-top boxes will be sold or licensed
to European television service providers, like France’s
Canal+, which will then sell or rent them to customers.

PCTEL and Groupe
SAGEM Collaborate

Texas Instruments, Inc. (Dallas, Texas; www.ti.com)
has started an on-line monthly newsletter called e-
Tech Innovations, Digital Signal Processing Edition.
Readers can subscribe at www.ti.com/sc/docs/dsps/
etechdsp.htm for an easy way to keep informed of
the latest DSP news and trends from TI.

Breakpoints

DSP Helps Kodak With
Upgradable Product
A TMS320DSC21 DSP from Texas
Instruments, Inc. (Dallas, Texas;
www.ti.com) sits at the heart of
Kodak’s mc3, a multifunction con-
sumer imaging and audio product
that captures video, still images, and
audio. The chip lets Kodak customers
upgrade the product, via software downloads from
the Web, with the latest audio and video compres-
sion formats. The mc3 can record video at 20
frames/s for the highest resolution or 10 frames/s for
virtually unlimited recording to removable memory
cards. It also captures still color images having VGA
resolution and can store up to 90 minutes of MP3
music on a 64-MB CompactFlash memory card.

TI Launches On-line
DSP Newsletter

Continued from page 6

34 June 2001 Embedded Edge

Using Code Composer, can I debug a target board
containing two DSPs of different platforms in a
single JTAG scan path?

In this case, you’ll need to launch two separate
instances of Code Composer to support each of

the DSP platforms. Two separate directories should be
created for Code Composer files; the

set-up utility will need to be run in
each of these directories, and

the DSP not being targeted in
one instance of Code
Composer should be
bypassed. Do the same
for the remaining DSP.
Bypassing DSPs and scan

chain devices is discussed
in Chapter 1, “Setting Up

Code Composer,” of Code
Composer User’s Guide.

Should I use the interrupt keyword when imple-
menting an interrupt service routine in a
DSP/BIOS application?

You can’t use the C compiler’s interrupt keyword
in DSP/BIOS programs. DSP/BIOS interrupt rou-

tines must be written in assembly language and must
use the HWI_enter and HWI_exit macros. The C6000 ver-
sion of DSP/BIOS has an interrupt dispatcher that
allows you to write interrupt routines in C. You can
also write a C interrupt service routine by making a
small .asm file that includes just HWI_enter, call cfxn, and
HWI_exit.

Can I define my own linker command (.cmd) file
instead of one created by the DSP/BIOS configura-
tion tool?

Since the Code Composer Studio build tool allows
only a single linker command file per project, the

best approach is to list the DSP/BIOS linker command
file at the top of the user-defined linker command file.
To list the DSP/BIOS linker command file in the user
defined CMD, add the following line to the top of the
file (replacing it with the actual design name):

-l yourappcfg.cmd

Can DSP/BIOS run on the simulator?
Yes, DSP/BIOS runs on the simulator. The simula-
tors currently do not contain a timer interrupt

source, so the clock (CLK) and the periodic function
(PRD) are effectively disabled.

What is the relationship between CIO’s malloc/free
and MEM_alloc and MEM_free?

DSP/BIOS overrides the standard malloc and free
functions with calls to MEM_alloc and MEM_free. The

segment allocated by malloc is controlled by the segment
for malloc()/free() inside the MEM Manager properties.

How much memory does the memory manage-
ment system require?

As long as no heaps are defined, no memory is
used by the MEM Module. If your application

requires dynamic memory allocation, a small number
of words are required for each heap defined. Beyond
that, only memory defined as a heap is required.

How can I control in what memory sections
DSP/BIOS objects are placed?

The DSP/BIOS Configuration tool lets you place
all the objects in different memory locations

declared in the Memory Manager through each
manger module.

Can DSP/BIOS run in extended memory on C54x
processors?

Yes, the DSP/BIOS Configuration tool allows you
to select the appropriate library under Global

Setting. DSP/BIOS requires that the bios, .sysinit, and
.vect sections be placed on the overlay (OVLY=1) sec-
tion of memory (0x000000[EN]0x008000). These
sections contain wrappers to support extended mem-
ory and are expected in the start-up sequence. All
other sections and objects can be placed anywhere in
memory. For more information on extended memory
with DSP/BIOS, go to www.ti.com/sc/docs/apps/
dsp/tms320c5000app.html and locate document
SPRA599.

Experts Answer Your Questions

Wizards’ Corner

Launchings

Embedded Edge June 2001 35

High-Density G.726 Vocoder
Available for TMS320C54x and
C6000 DSPs, G.726 vocoder soft-
ware compresses 64-kb/s packet
voice data for 40-, 32-, 24-, or 16-

kb/s rates. It can
implement 20
channels on a
C5400 using 5
MIPS and up to
190 channels on a

300-MHz C6203. The vocoder is
available in versions that comply
with the TMS320 DSP Algorithm
Standard or MSP Consortium
M.100, as well as on the company’s
MSP Media Gateway DSP boards.
Licensing fees are $20,800 for the
object code and $26,000 for limited-
use source code. Commetrex
Corporation, Norcross, Ga.; (770)
449-7775, www.commetrex.com

eXpressDSP-Based Library
Version 5 of SigLib, a highly portable
ANSI-C source DSP library, touts
compatibility with the TMS320 DSP
Algorithm Standard. It includes
many of the low-level routines used
in today’s telecommunications algo-
rithms and accommodates many of
the fundamental telecom operations
found in modems, mobile phones,
and other network access devices. It
comes with comprehensive exam-
ples and documentation and sells for
$350. Numerix, Ltd., Leicestershire,
U.K.; +44 (0)-7050-803996, www.
numerix-dsp.com

DSP Development Kit
The Developer’s Kit for Texas
Instruments Digital Signal
Processing combines MATLAB 6 and
Simulink 4 with eXpressDSP Real-
Time Software Technology to simu-
late, generate, and validate designs
build around TMS320C6000 and
C5000 DSPs. Features include MAT-
LAB links for Code Composer Studio

and Real-Time Data Exchange and
Simulink targets for CCS and the
TMS320C6701 EVM. The kit is avail-
able for Windows 95, 98, and NT and
works with CCS version 1.2. Prices
start at $1,000 for an individual PC
license. The MathWorks, Inc.,
Natick, Mass.; (508) 647-7589,
www.mathworks.com

DSP Imaging Evaluation Kit
A tool for building real-time audio
and video compression applica-
tions, the Imaging Evaluation Kit
addresses four phases of develop-
ment: evaluating available technolo-
gies, assessing a DSP platform’s suit-
ability for an application, functional
prototyping, and bringing re-
designed systems to market quickly.
A basic version sells for $2,995 and
includes a TMS320C6111-based
board and drivers, sample algo-
rithms, and Code Composer Studio.
Another version, which adds a cam-
era, microphone, and speakers, sells
for $6,495. A.T.E.M.E., Velizy,
France; +33-1-46-01-55-72, www.
ateme.com

USB Emulator
for TMS320C54x
The SB-USB, a self-powered high-

speed emulator,
connec t s
to a PC’s
USB port
to debug

systems built
around one or more TMS320C54x
DSPs. Featuring two programmable
counter-timers, it occupies a 4- x
2.5-in. circuit board and operates
seamlessly with Code Composer
Studio. The emulator sells for
$3,000 and includes cables, soft-
ware drivers, and a user manual.
Custom versions are available.
Domain Technologies, Plano,
Texas; (972) 578-1121, www.

NFO Evaluation Board
An evaluation board that operates
with a three-phase induction motor
takes advantage of the natural-field-
oriented (NFO) control algorithm
stored in the flash memory of
TMS320LF2406A 40-MIPS DSPs.
The algorithm gives accurate, sen-
sorless torque control over a wide
speed range. The board can work in
a stand-alone mode, with speed or
position sensors feeding on-board
control loops, or connected to a PC
through an optically coupled serial
link. Available in July and bundled
with a Labview user interface that
controls the motor and modifies
motor and control parameters, it
sells for $500. NFO Control AB,
Lund, Sweden; +46-46-286-29-26,
www.nfo.se

Prototyping Daughterboards
Two prototyping daughterboards,
ProtoPlus and ProtoPlus Lite let
developers construct a prototype
circuit that plugs into the TMS-
320C2000 and C6000 DSP plat-
forms, the C54x, and the DSK and
EVM development systems. The
boards give access to all signals and
power rails.
They accept
external ±12-
V power. The
P r o t o P l u s
Lite, a two-
layer board, sells for $125. The
ProtoPlus, a six-layer board, has
separate ground, and 3.3- and 5-V
planes; it sells for $225. DSP
Global, Inc., Warwick, R.I.; (401)
737-9900, www.dspglobal.com

36 June 2001 Embedded Edge

Launchings

TCAP/ISUP signaling stacks and
internetworking functions. Prices

start at $3,000. Voiceboard
Corporation, Oxnard, Cal-

if.; (805) 985-6200, www.
voiceboard.com

Assistant Enhances
Development Tools
Development Assistant for C works
independently or alongside Code
Composer Studio. The assistant uses
an ActiveX interface to communicate
with Code Composer Studio and
debugger commands. Among its fea-
tures are an editor with structured
and nonstructured flowcharts, start
debugger commands for Code
Composer Studio, symbol browser,
call- and type-hierarchy graph,

Single-Board Media
and Signaling Gateway
SuperSpan II is a com-
pletely integrated sin-
gle-board embedded
hardware and software
platform for imple-
menting carrier-class
media gateway, SS7 signaling gate-
way, cellular infrastructure, and uni-
fied messaging systems. Included are
octal T1/E1 network access ports,
i860 signaling controller, PowerPC
750 protocol controller, high-density
DSP resource mezzanine board, and
embedded software for convergent
voice and data applications. Besides
sporting VoIP, wireless, V.90, and G3
fax software for the TMS320C5000
DSP platform, SuperSpan II embeds
H.323, MGCP, SIP, TCP/IP, SS7, and

makefile generator, software metrics,
interface to version control systems,
project manager, and static code
analyzer. Starting prices range from
$295 to $660 each, depending on the
target DSP. RistenCASE GmbH,
Wallisellen, Switzerland; +41-1-883-
35-70, www.ristancase.ch

IP Phone Chip
The IP Phone, a chip
built around a 100-
MHz TMS320C549,
delivers the features of a standard
PBX-based phone, including call
transfer and caller ID. Accom-
panying software includes G.723 and
G.729 voice compression and auto-
matic echo cancellation algorithms,
as well as IP, UDP, RTP, and DHCP

Embedded Edge June 2001 37

cations. Digital Voice Systems,
Inc., Burlington, Mass.; (781) 272-
5606, www.dvsinc.com

Ada Suite Teams Up with TI
DSPs for Military Service
The 83/95 Ada Compiler, an Ada
software suite that targets Texas
Instruments’ SMJ32C6000 DSP plat-
form for military applications,
includes a full Ada symbolic debug-
ger and Ada run-time options that
include tight integration with the
DSP/BIOS kernel. The suite fits
tightly into Code Composer Studio.
It works with SMJ32C6000, SMJ-
32C6201, and SMJ32C6701 DSPs
and runs on Windows 95, 98, 2000,
and NT machines. The 83/95 Ada
Compiler costs $25,000 for the first

Launchings

network protocols; SIP signal proto-
col; and DES encryption. Prices start
at $300 each. ADtech, Boncelles,
Belgium; +32-4-338-13-30, www.
adtech.com

Low Data-Rate
AMBE+2 Vocoder
A low-data-rate AMBE+2 vocoder
operates at 2.0 to 9.6 kb/s for appli-
cations where low bandwidth and
high-quality speech performance
are high priorities. Its model-based
multiband excitation algorithm car-
ries distinct advantages over con-
ventional CELP-based vocoders,
including higher mean opinion
scores. The software runs on the
TMS320C5000 DSP platform. The
price depends on customer specifi-

seat and $20,000 per seat there-
after. A maintenance program costs
$5,000 annually. Irvine Compiler
Corporation, Irvine, Calif.; (949)
250-1366, www.irvine.com

Libraries Tuned
to C6000 DSP Platform
The GD-100 DSP vector library for
the TMS320C6000 DSP platform
comprises over 100 functions and
macros, including transforms, filters,
and vector operations. The GD-200
math library for the C67x consists of
algebraic and trigonometric func-
tions and utilities. They sell for
$3,500 and $2,450 respectively.
Kane Computing, Cheshire, U.K.;
+44 (0) 1606 351006, www.
kanecomputing.com

38 June 2001 Embedded Edge

For embedded software program-
mers, the performance of code

generated from a high-level language
is becoming increasingly important.
At the same time, code size is often
a critical concern. Three trends—
the leaps in the capability of embed-
ded processors, the significantly
greater complexity of em-
bedded software, and
the mushrooming of a
variety of handheld
devices—are dri-
ving a huge and
rapidly expand-
ing need for tools
to help automate
programming. In
order to keep
up with these
changes, embedded
software programmers
clearly need a set of
accessible and easy-to-use
tools to optimize their code for per-
formance and size demands.

Many embedded compilation tools
already possess the sophistication to
highly optimize applications. The
difficulty is extracting that capability
from the tools. Consider the task of
scheduling code for a VLIW DSP that
supports eight parallel instructions
per cycle. Applying “parallelism-gen-
erating” transformations results not
only in faster code, but also in a larg-
er code size. In the embedded envi-
ronment, though, programmers are
usually limited by real-time and cost
constraints—that is, by cycle counts
and code size.

Because of these conflicting con-

straints, most compilers for embed-
ded processors contain some mech-
anism for controlling the optimiza-
tions that affect size versus speed.
However, simply managing this
mechanism can be a daunting chal-
lenge. Given the simplified situation
of a compiler switch with two

states—best performance or
best code size—and a

very small application
with 20 units of

code (such as a file
or function), 220

—or roughly 1
million—combi-
nations would
exist.

A more realistic
situation would

involve a compiler
switch with many

states along a size-to-
speed continuum and hun-

dreds of code units. Obviously, pro-
grammers can’t search the entire
solution space for the optimum map-
ping of options to code units. Instead,
they typically use the 80/20 rule,
which states that 80 percent of an
application’s cycle requirements are
in 20 percent of the code. The exact
percentages can be debated, but the
premise is usually true. Using this
rule and knowledge of the applica-
tion, programmers can quickly prune
much of the solution space. Indeed,
such a manual, iterative process is
still used to determine a satisfactory
solution. What’s more, this problem
is only one example; developing pro-
duction-quality embedded code with

old compilation tools involves many
trial-and-error processes.

Fortunately, compiler tools are
appearing that address this level of
interaction between the tools and
their users. A profile-based compiler
uses criteria supplied by the pro-
grammer to automatically build and
profile multiple sets of options for
coding all the software’s key func-
tions; then it plots the most favor-
able option combinations on a curve
that represents different trade-off
values between performance and
code size. Using the graph, program-
mers can select the right trade-off
for the design’s requirements, like
the tightest code for a given cycle
count or the fastest execution at a
given memory size. Thus this type of
compiler can save weeks of effort
and assure developers that they
have the best solution for reconcil-
ing performance with code size.

Other examples of new or upcom-
ing compilation tools include ones
that structure code sequences to
better map to the underlying
processor and ones that experiment
with the memory layout of code or
data to utilize on-chip memory or
cache most effectively.

Needed: New Compilation Tools
to Help Optimize Embedded Code

By Alan S.Ward

Alan Ward is the
C6000 DSP com-
piler tools manager
and a distinguished
member of the
technical staff at
Texas Instruments,
Inc. in Houston.

On the Edge

