Dataguzzler: A Platform for High Performance Laboratory Data
Acquisition

Stephen D. Holland

Version 1.0.0-rc4-devel — September 14, 2007

Dataguzzler was written by Stephen D. Holland at the Iowa State University Center for Nondestructive Evaluation.

See the Dataguzzler web site at http://ahab.cnde.iastate.edu/~sdh4/dg_web/ for more information about
Dataguzzler.

Dataguzzler is Copyright (C) 2005-2006 by Iowa State University.

Dataguzzler is released under the GPL 2.0/LGPL 2.1 licenses, with exceptions. Go to
http://ahab.cnde.iastate.edu/~sdh4 /dg_web/dataguzzler/ COPYING.txt for more information on TERMS AND
CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION.

This material is based upon work supported by the Air Force Research Laboratory under Contract
#FA8650-04-C-5228 at Iowa State University’s Center for NDE.

This material is based upon work supported by the Federal Aviation Administration under Contract
#DTFA03-98-D-00008, Delivery Order #0037 and performed at Iowa State University’s Center for NDE as part of
the Engine Titanium Consortium Phase III Thermal Acoustic Studies program.

Thanks to Ricky Reusser for designing the original logo and Kira Scott for drawing the new logo. Thanks to David
Holland for suggestions on interfacing with the operating system.

Please take note of the warranty information as stated in the GPL v2.0 license:

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

Contents

Introduction

1 Building and Installing Dataguzzler

1.1 Software Requirements L e
1.2 Recommended Software L
1.3 Compatible measurement hardware L L L
1.4 Compile-time configuration Lo
1.5 Building dataguzzler
1.6 Imstallation e e

1.6.1 Security and permissions e e

2 System Construction (Software)

2.1 Overall architecture e
2.2 Configuration e e e
2.2.1 Specifying the configuration file Lo
2.2.2 Configuration file format
2.3 Documentationo e e e e e e

15

16

16

16

17

17

17

18

18

20

3 The dataguzzler kernel

3.1

3.2

3.3

3.4

Kernel functionality
Configuration parameters
Kernel commands.
SET ...

Kernel API and internals

3.4.1 The connection database

3.4.2 The module database . .
3.4.3 Multithreading
3.4.4 The rpc library

4 AnaGram, M4, and Syntax Files

4.1

AnaGram

5 System Control

5.1

5.2

5.3

Manual control
Oscilloscope display
Utilities
5.3.1 dg-save_settings.
5.3.2 dgrestore_settings
533 dggrab
5.3.4 dggrabtxt

23

23

23

24

25

26

26

27

28

28

30

30

31

31

33

5.3.5 dgemd ... e 37

5.3.6 dgoupload e e 37
5.3.7 dgoupload-txt e 37
5.3.8 dgupload_tiff L 37
5.3.9 dgwssnapshot L 37
5.3.10 dgload-snapshot L e 38

5.4 API Reference e e 38
6 Library Reference 39
6.1 wimstore.so L e e 39
6.1.1 Channels e 40
6.1.2 Waveforms oL e e 40

6.1.3 Transactions 41

6.1.4 Metadata 42
6.1.5 Physical storage e 42

6.2 fltwlink.so oL 42
6.2.1 Configuration parameters Lo e e e 43
6.2.2 Types e 43
6.2.3 Global variables 43
6.2.4 Functions 43
6.2.5 Notes 43

6.3 library_prototype.so L L e 44
6.4 metadata.so 44
6.4.1 Prerequisites L 44

6.4.2 Configuration parameters e e e 44

6.4.3 Commands e e e 45
metadata:SETSTATICMETADATUM . . 0 . e e 46
metadata:ADDQUERYMETADATUM . o . L. o e e e e e 47
metadata:DELMETADATUM . . . 0 e 48
6.5 multilo.so 49
6.5.1 Functions L 49
6.5.2 URID'S o e 49
6.6 dgpython.so L e 50
6.6.1 Introduction L 50
6.7 dio8bit.so e 51
6.7.1 Functions e 51
6.8 das4020dio.so e e 51
6.8.1 Prerequisites L e o1
6.8.2 Functions 52
Module Reference 53
7.1 auth.so. L e 53
7.1.1 Configuration parametersot e e e e e 54
7.1.2 Commands e e e e e 54
AUTH 55
7.2 module_prototype.So e 56
7.2.1 Configuration parameters e e 56
7.2.2 Commands e o6

moduleprototype:CHx:PROBEATTEN e 57

moduleprototype:FREQ 58
7.3 wimio.so L 99
7.3.1 Prerequisites e e 59
7.3.2 Configuration parameters L e e e 59
7.3.3 Commands 59
wimio:COPY e 60
wimio:DATA e 61
wimio:DATASHM L o 62
wimio:DELETEALL . . 63
wimio:DELETE . . o e 64
wimio:GLOBALREADYREV . 65
wimio:GLOBALREADYREVTIMEOUT e 66
wimio:GLOBALREV — © . e 67
wimio:GLOBALREVTIMEOUT e e e e 68
wimio:LIST o e 69
wimio:LISTREADY © . e 70
wimio:LISTLOCK . . e 71
wimio:LISTREADYLOCK . . o 72
wimio:METADATA e 73
wimio:REALSZ 74
wimio:REVISION L L e 75
wimio:REVISIONLOCK . . . e e e e 76

7.4

7.5

wimio:REVISIONREADYLOCK e 7

wimioc:RPCDATA e 78
wimioc:RPCDATADONE . o e 80
wimio:UNLOCK . e e 81
wimio:WEFMS L 82
wimmath.So L 83
7.4.1 Prerequisites L e e 83
7.4.2 Configuration parameters Lo e 83
7.4.3 Writing mathematical functions 83
744 Commands L e e e 85
wimmath:CLEARAVG . . o e 86
wimmath: CLEARACCUM . . e e e e 87
wimmath:DEF . o oL 88
wimmath:ENABLE . . . e 91
wimmath:ENABLED . . . o 92
wimmath:DISABLE . . . o 93
wimmath:UNDEF . .. 94
wimmath:UNDEFALL . . . 95
wimmath:-WAITAVG L .o e 96
das4020capture.SO e e 97
7.5.1 Prerequisites L e 97
7.5.2 Configuration parameters e e e e 98
7.5.3 Commands e e 99

7.6

7.7

das4020capture: ATRIGHIGH e 100

das4020capture: ATRIGLOW e e e 101
dasd020capture: ATRIGMODE 102
das4020capture:CALCSYNC . . o e e 103
das4020capture: CLKSRC o 104
das4020capture:DSFACTOR o o e 105
das4020capture:FIFOSIZE e 106
das4020capture: FREQ . . . oL 107
das4020capture: HWFREQ e 108
das4020capture: HWTRIGSRC e e 109
dasd020capturee NUMCHANNELS o 110
das4020capture:CHi:PROBEATTEN e 111
das4020capture:CH:RANGE o e 112
dasd020capture:SAMPLECNT . . o Lo 113
edtcapture.So L e 114
7.6.1 Prerequisites L L e e e e 114
7.6.2 Configuration parameters e e 114
7.6.3 Commands e e 115
edtcapture:CALCSYNC . . e 116
edtcapture: GEOMETRY . . . L o e 117
hp34401 _thermistor.so L 118
7.7.1 Prerequisites L e e e 118
7.7.2 Configuration parameters L e 118

7.8

7.9

773 Commands 118
hp34401thermistor: TEMP o 119
hp34401thermistor: TEMPREV o . o 120
hp34401thermistor: WAITTEMPREV e 121
agilent33x20aWg.50 oL e e 122
7.8.1 Prerequisites L e e 122
7.8.2 Configuration parameters L e e 122
7.8.3 Commands L 122
agilent33x20awg: AMPL . .. 123
agilent33x20awg: ARBCHAN . . . o 124
agilent33x20awg:NCYC . . o 125
agilent33x20awg: NUMPOINTS . 0 o o e 126
agilent33x20awg:OFFSET . . . 0 o e 127
agilent33x20awg:OUTPUT o 128
agilent33x20awg:SAMPLERATE 0o e 129
agilent33x20awg: TRIGSRC 0 . e 130
taborb061awg.S0 e e e e e e e 131
7.9.1 Prerequisites L e 131
7.9.2 Configuration parameterso e e e 132
7.9.3 Commands e e 132
taborb06lawg: AMPL . L 133
taborb061lawg:ARBCHAN L . o 134
taborb506lawg: EXTCLKFREQ 135

taborb5061awg:NCYC . e e 136

tabor5061awg:NUMPOINTS . . . o o e 137
taborb061awg:OFFSET 138
taborb061awg:OUTPUT . . . o e 139
710 Wien.so 140
7.10.1 Prerequisites L e e 140
7.10.2 Configuration parameters e e e 140
7.10.3 Commands e e 140
wimgen:BURST . . o e e 141
wimgen:DT L L e 142
wimgen:FUNC . . o o 143
wimgen:GAUSSTAN L L e 144
wimgen:SINC L o o 145
wimgen:SWEEP . 0 L 146
wimgen:SWEEPENVELOPE o o 147
wimgen: TIMEDELAY . . . e 148
wimgen:WINDOW © . e e 149
7.11 polytecvibrometer.so 150
7.11.1 Prerequisites e 150
7.11.2 Configuration parameters« . . it e e 150
7.11.3 Commands e e 151
polytecvibrometer: AUTOFOCUS e 152
polytecvibrometer:DELAY oL 153

10

7.12

7.14

7.15

polytecvibrometer: FOCUSPOSITION

polytecvibrometer: RANGE C

polytecvibrometer:SIGNALLEVEL

polytecvibrometer: WAITAUTOFOCUS

pyscript.so Lo Lo
7.12.1 Prerequisites
7.12.2 Configuration parameters

7.12.3 Commands

7.13.1 Prerequisites
7.13.2 Configuration parameters
7.13.3 Commands
time:DELAY
time: TIMESTAMP
simpletrigger.soo
7.14.1 Prerequisites
7.14.2 Configuration parameters
7.14.3 Commands
simpletrigger:-MODE
simpletrigger:RATE
simpletrigger:TRIGGER
isutriggen.so

7.15.1 Prerequisites

11

7.15.2 Configuration parameters e e e 166

7.15.3 Commands e e 166
isutriggen:CLOCKFREQ . . . o 167
isutriggen: TRIGGERENABLED 0o e 168
isutriggen: CAMFREERUN © . . oo 169
isutriggen: WAITINHIBITTRIGGER o e 170
isutriggent ALLOWTRIGGER . . 0 oo o e 171
isutriggen: TRIGMINDELAY oo e 172
isutriggen:FCNGENDELAY e 173
isutriggen: FCNGENLATENCY . . . e 174
isutriggen: CAMERALATENCY . . o L 175
isutriggen:CAMTRIGDELAY . . o o e 176
isutrigeen: CAMTRIGPERIOD 0 177
isutriggen: CAMTRIGFRAMES . . . L e 178
isutriggen: TRIGGER . L . 0 o o e 179
isutriggen:NEXTCAMFRAMETIME . . 0 0 oo e 180
isutriggen:RESETCAMFRAMETIME e e 181
7.16 dasd020dac.soo e 182
7.16.1 Prerequisites L e e 182
7.16.2 Configuration parametersot e e e e e 182
7.16.3 Commands L 182
das4020dac:GAIN e 183
das4020dac:VOLTAGE . . . o e 184

12

TA7 GENericsCPi-S0 . . . v o i e e e e 185

7.17.1 Prerequisites L e 185
7.17.2 Configuration parameters L e e e e 185
7173 Commandso e e e 185
7.18 acr9000.50 e 186
7.18.1 Prerequisites L e 186
7.18.2 Configuration parameters e e e e 186
7183 Commands e 187
acr9000:AXIS 188
acr9000:AXIS:CANCEL . e 189
acr9000:AXIS:MOVING Lo 190
acr9000:AXISINOM 191
acr9000:AXIS:REL o 192
acr9000:AXIS:STATUS o e 193
acr9000:WALT 194

719 SUbDroc.S0 e e 195
7.19.1 Prerequisites L e e e 195
7.19.2 Configuration parameters L e e e 195
7.19.3 Commands e 195

A Dataguzzler native binary file format 196
A1 Standardized file name extensions oL 198
A2 Fileaccess APL o o e 198
A.2.1 Reading a Dataguzzler file 198

A.2.2 Writing a Dataguzzler file 200

A.2.3 MATLAB/Octave file access library 200

A.2.4 Python file access library 201

B IR Camera Calibration 202
B.1 Blackbody calibration e 202
B.2 Graybody correction e e 202
B.3 Bad Pixel Correction e 204
B.4 IR Camera Calibration and Bad Pixel Correction in Dataguzzler 204

C License 205

14

Introduction

We have developed a new data acquisition software architecture with thermosonic nondestructive testing as its first
application. The architecture was designed for for optimal flexibility, robustness, and performance given the varied
requirements of thermosonic measurement. It consists of a communications protocol, an event driven dispatch loop,
and a set of libraries and modules for acquiring, processing, and communicating data.

15

Chapter 1

Building and Installing Dataguzzler

1.1 Software Requirements

(development components of all libraries are required)

e Linux 2.6 series or higher kernel.

A LaTeX distribution with PDF support (e.g. tetex) (for building the documentation).

libcap 1.10 or better (OS component)

OpenGL libraries (OS component)

FreeGLUT (OS component or freeglut.sourceforge.net)

1.2 Recommended Software

(development components of all libraries are required)

e FFTW 3.1 or higher, installed with both single- and double-precision support. (OS component or
www.{ftw.org)

e Octave 2.9.4 or higher (OS component or www.octave.org).

e Python 2.4 or higher (OS component or www.python.org)

16

1.3 Compatible measurement hardware

(these must be configured in dataguzzler.conf)

o Aglient 33120A and 33220A arbitrary waveform generators, over GPIB, RS-232, or TCP/IP as supported by
the instrument.

e Measurement Computing PCI-DAS4020/12 waveform capture card with Warren Jasper’s Linux driver from
ftp://1x10.tx.ncsu.edu/pub/Linux/drivers

e EDT PCI DV CLINK image capture card (grayscale only) with EDTpdv drivers (www.edt.com)
e HP 34401 Multimeter with a thermistor attached, used as a thermometer over GPIB or RS-232.
e PolyTec OFV-5000 Vibrometer Controller, over RS-232.

e Various GPIB cards supported by the linux-gpib project (linux-gpib.sourceforge.net) through the multiio.so
I/0O library (included in dataguzzler).

e Many SCPI compliant laboratory instruments with the genericscpi module.
e Tabor WW5061 Arbitrary Waveform Generator.
e Parker/Compumotor ACR-9000 Motion Controller.

1.4 Compile-time configuration

Inspect defs.mk for any parameters that might need adjustment (most parameters are set automatically). The
most commonly adjusted parameter is PREFIX, the install prefix (which defaults to /usr/local. You may also
want to adjust CFLAGS to disable debugging and turn on optimization or vice-versa.

1.5 Building dataguzzler

Use the 'make’ command to compile dataguzzler. After the build is completed, it will respond with the build
status, e.g.:

Build status

Developer’s reference guide doc/ref.pdf: built
dataguzzler server server/dataguzzler: built
FFTW support server/libraries/fftwlink.so: built

17

DAS4020 support server/modules/das4020capture.so: built
MultiIO library server/libraries/multiio.so: built

MultiIO library GPIB support: Enabled

EDT Camera Link support server/modules/edtcapture.so: built
dataguzzler library lib/libdataguzzler.a: built
oscilloscope display scope/dg_scope: built

Python support server/libraries/dg_python.so: built

Look for any components which should have been built but were not. Scroll back and look for error messages to
help troubleshoot.

The following make commands are supported:

e make all (default)

e make install Install dataguzzler into the PREFIX specified in defs.mk

e make clean Remove object, emacs backup, and core dump files.

e make distclean Remove object, emacs backup, and core dump files as well as binaries.

e make depend Recalculate dependencies

1.6 Installation

Type make install to install dataguzzler into the PREFIX specified in defs.mk. This will create a directory
PREFIX/dataguzzler-<version> containing the dataguzzler binaries. It will also put symbolic links to the
dataguzzler programs in PREFIX/bin and a symbolic link PREFIX/dataguzzler to
PREFIX/dataguzzler-<version>. It is suggested that you copy a dataguzzler configuration file into
PREFIX/dataguzzler-<version>/dataguzzler.conf. This configuration file probably needs to be selected or edited
to use only the hardware and software you have installed. See section 2.2 for more information on configuring
Dataguzzler.

1.6.1 Security and permissions

Dataguzzler by default installs as a setuid-root executable. While this technically is a security risk, such risk is
minimized by the fact that Dataguzzler immediately drops root permissions on startup (top of main() in main.c).
When run as a setuid-root program on Linux, Dataguzzler requests the following special permissions and
capabilities from the operating system before discarding its privledges:

o RLIMIT_MEMLOCK set to RLIM_INFINITY (see setrlimit(2)).

18

e CAP_SYS_NICE to allow the use of POSIX realtime priorities. (see capabilities(7)).

e CAP_SYS_RAWIO to allow direct hardware or direct USB bus access if necessary (see capabilities(7)). Note
that this capability is discarded for security reasons if dataguzzler is given an explicit path to a configuration
file.

Whether or not dataguzzler is run setuid-root, permissions should be properly set for the device nodes (in /dev) of
hardware devices so that they can be used. To make device node permissions persistent, configure udev in

/ete/udev.

19

Chapter 2

System Construction (Software)

2.1 Overall architecture

The primary software component of the data acquisition architecture is the dataguzzler program. The
dataguzzler program accepts commands from the keyboard or TCP/IP connections and passes these commands on
to loadable modules. The modules process commands, return results, and simultaneously interface with the data
acquisistion hardware. The modules can make use of loadable libraries as well as other modules. In addition,
external programs can communicate with the dataguzzler program by TCP/IP. For example, an oscillosope display,
scope, is commonly used to display live waveforms. The dg_grab and dg_upload programs are used to download
waveforms from and upload waveforms to the dataguzzler program.

2.2 Configuration

The dataguzzler program is configured at run time according to a configuration file. The configuration file specifies
which libraries and modules to load and allows passing configuration parameters to those modules.

2.2.1 Specifying the configuration file

The configuration file name is specified on the Dataguzzler command line. If no configuration file name is specified,
the default is “dataguzzler.conf”. If the configuration file name contains slashes, it is interpreted as a path to a
specific file (note that in this case the CAP_SYS_RAWIO capabilitity is relinquished. See sect. 1.6.1.). Otherwise
the configuration file is found by searching the following directories, in order:

20

1. /etc
2. <prefix>/etc (where <prefix> is the installation prefix, e.g. /usr/local)
3. <bindir>/.. (where <bindir> is the directory containing the dataguzzler binary)

4. <bindir> (as above)

2.2.2 Configuration file format

The syntax of the configuration file is best described by example:

library "libraries/wfmstore.so" { }
library "libraries/metadata.so" { }

module prototype("modules/module_prototype.so") {
cardname="/dev/mydevice"

}

module wfm("modules/wfmio.so") { }

module auth("modules/auth.so") {
AuthCode(127.0.0.1) = "xyzzy"
}
main {
TCPPort=1649
maxtimeout=100 ms

}

133

This example configuration file first loads the “wfmstore.so” library with no parameters, then loads the
“module_prototype.so” dummy module with the parameter “cardname” set to “/dev/mydevice”. It then loads the
“wfmio.so” waveform transfer module with no parameters and the “auth.so” remote authentcation module with
one authentication code defined. The order of entries in the configuration file determines the order in which the
modules and libraries are loaded. See the documentation for specific modules and libraries for specific prerequisites.
In general, libraries will not be dependent on modules, so libraries should appear at the top of the configuration file
and should be loaded first. Parameters for the dataguzzler kernel should be in a block preceded by the keyword
“main”. Documentation for the module parameters and dataguzzler kernel parameters is found in the relevant
section of the manual. If the dataguzzler binary is setuid root, then dataguzzler will relinquish root privledges after
reading the configuration file and initializing libraries and modules.

21

2.3 Documentation

Obviously architecture-oriented documentation such as this manual is useful for the data acquistions system
designer, not for the end-users of the data acquisition system. This manual is typeset in LaTeX and written in such
away that the data acquisition system designer can write a manual that extracts relevant information from this
manual and presents it in a form suitable for end-users.

22

Chapter 3

The dataguzzler kernel

3.1 Kernel functionality

The kernel consists of program initialization, including config file processing, the main event loop, command i/o
and processing, and various required libraries. The libraries in the kernel are:

e linklist: Used internally and by various modules for managing linked lists.
e library: Used for loading external libraries.

e mod: Used for loading external modules.

e multipoll: Improvement over the POSIX poll() system call, used internally.

e stringstack: A library for manipulating stacks of strings. Used internally by the configfile parser and by
various module command parsers.

e util: Miscellaneous convenience routines.

e rpc: Remote procedure call library for calling modules from within dataguzzler.

3.2 Configuration parameters

The kernel is configured by specifying parameters within a “main” section in the configuration file:

23

Parameter

Type

Value

SetQueryPrefix
SetQueryPostfix

TCPPort

maxtimeout

rt_priority

mlockall

initcommand

setqueryfilter

3.3 Kernel commands

(kernel commands begin on next page)

quoted string
quoted string

integer
float, opt. units

integer

boolean

string

string

A prefix to be placed in front of the response to all
SET queries

A postfix to be placed at the end of the response to all
SET queries

The TCP/IP port number for control input

The maximum timeout length for the main event loop.
Milliseconds are assumed if units are not specified.
POSIX SCHED_RR realtime priority. Default is non-
realtime SCHED_OTHER priority. Note that this
should be set in a main section at the top of the
configuration file so that threads started by the vari-
ous modules can inherit the realtime priority if they
so desire (some do, some don’t).

if TRUE, prevent dataguzzler memory from being
swapped out to disk. Default FALSE.

Execute the specified string during initialization,
before accepting external or keyboard commands.
initcommand can be specified multiple times and the
strings are concatenated with semicolons.

specifies a command which will be filtered from the
results of SET? queries.

24

SET

Syntax
SET?
Description
Query the settings of the dataguzzler server
Parameters
None
Notes

e This command returns most of the internal settings of the data acquisition server, formatted such
that they can be saved and resubmitted to restore the internal state.

e This command returns multiple responses to a single query.

See also

25

3.4 Kernel API and internals

3.4.1 The connection database

Each connection is defined by a struct Conn:

struct Conn {
struct Node Node;
int ReadSock,WriteSock;
int CloseReadSock,CloseWriteSock; /* set if we need to close() ReadSock/WriteSock when we close the conne
struct sockaddr *Addr;

/* Buffers for data pre-read from ReadSock */
struct ConnBuf *InStream;

/* Data waiting to go out to OutSock */
struct ConnBuf *QutStream;

/* data already extracted from InStream */
struct ConnBuf *CurCommand;
int CurCommandContinues; /* CurCommand ended with a semicolon, so the next command is part of the same se

/* current result under construction */
struct ConnBuf *CurResult;

int Auth; /* non-zero if authenticated */

int Closing; /* non-zero if closing in progress */

int LastErrorCode;

struct pollfd WakeupFd; /* poll() for this fd and event mask and retry processing of CurCommand.
WakeupFd.revent will be set with the received mask. */

struct timespec WakeupTime; /* (0,0) indicates no timeout req’d */

struct List CloseNotifyList;

This structure defines the data stored for each control connection, including stdin/stdout and any TCP/IP control
connections. Pending data is stored in struct ConnBuf:

struct ConnBuf {
char *Data;

26

int Size; /* allocated size. 1 extra byte beyond this always allocated for a O terminator */
int Len; /* amount actually used */

Once Conn.InStream contains a complete command to be processed, it is transfered to Conn.CurCommand for
processing. Then the target module is determined and the appropriate handling function is called. If the function
cannot return immediately, it returns -1 (PRS_RETRY) and will be called again on the next pass through the main
loop. The handling function writes its result to Conn.CurResult using the ResPrintf() function and when complete
Conn.CurResult is flushed to the output socket.

The WakeupFd specifies a file descriptor to poll() and WakeupTime specifies a time to wakeup to ensure that the
handling function is called again at the proper time.

The CloseNotifyList contains entries of struct ConnCloseNotify that will be used to notify modules if this
connection closes. This is used, for example, to ensure that locked waveforms are automatically unlocked if the
connection locking those waveforms dies.

3.4.2 The module database

The kernel maintains a master list of modules each defined by a struct Module:

struct Module {
struct Node Node;
int initializing;
int (*ProcessCommand) (struct Module *Mod, struct Conn *Conn,char *CmdBuf,int CmdBufLen);
char *Name;
struct timespec WakeupTime; /* this bounds waiting in the main event loop. zero indicates ignore */
void (*BackgroundJob) (struct Module *Mod); /* if non-NULL, executed every main loop, immediately after se
struct pollfd WakeupEvent; /* should poll() for this event */
void (*WakeupJob) (struct Module #*Mod,int evmask); /* Executed in response to WakeupEvent */

};

It should be mentioned that most modules actually use a longer structure which begins with a struct Module.
Therefore the module pointer can be equivalently treated either as a struct Module or as the module-specific
structure.

e initializing is a flag that indictates that the module’s initialization routine is still being called.

e ProcessCommand() is the routine called when the kernel has determined that the command in
Conn.CurCommand should be processed by this module. Return values are defined in mod.h PRS_. ...

e WakeupTime is used to bound the poll() timeout in the main loop.

27

e BackgroundJob() is called every pass through the main loop.
e WakeupEvent is a poll() criteron for the main loop, and

e WakeupJob() is called when a WakeupEvent has occured.

3.4.3 Multithreading

The kernel runs a single event-driven thread. Nevertheless, it is expected that modules or libraries will need to
spawn off threads in order to complete tasks asynchronously with the main kernel thread. Thread-safety of library
routines will be discussed in the documentation of that library; In general, kernel routines are NOT thread safe,
however there are some exceptions. The following routines are thread-safe.

e util.c

— FindEOL();
— PTimeDiff();

— my_infnan();
e main.c

— setnonblocking()
e linklist.c,stringstack.c

— All routines provided the list/stack involved is somehow locked by the thread.

The best way to notify the kernel that a thread has completed its duties is to write a character to a pipe that the
kernel has been told to wait on.

3.4.4 The rpc library

The RPC library provides routines that allow for “remote procedure calls” between modules. Both synchronous
and asynchronous calls are supported. The simplest routine is rpc_synchronous():

rpc_synchronous

int rpc_synchronous(char **res, char *fmt, ...)

This routine makes an immediate RPC call as specified with the printf() style format string fmt. The function
returns 1 for success, -1 for error, or 0 if the call did not complete because it would have had to wait (waiting is not
permitted in routines called throught rpc_synchronous()). rpc_synchronous returns a pointer to the result string in

28

(*res). The caller needs to free(*res) when the caller is done with it. Note that there is also a routine: int
rpc_synchronous(char **res, unsigned char *str); that takes a string argument instead of the printf() style
format string.

rpc_asynchronous

void rpc_asynchronous(struct Module *Mod,
struct Conn *Conn,
void *Param,
void (*Continuation) (int retval,
unsigned char *res,
struct Module *Mod,
struct Conn *Conn,
void *Param),
void (*ConnDestructor) (struct Module *Mod,struct Conn *Conn,void *Param),
char *fmt,...)

rpc-asynchronous() makes asynchronous RPC calls to modules. The command string is defined by the printf-style
“fmt” parameter and subsequent optional parameters. When rpc_asynchronous is called, it will attempt to complete
the call immediately, and may call Continuation() before returning. In general the provided Continuation()
routine will be called when the asynchronous command is complete. If neither Conn nor ConnDestructor are
NULL and the connection Conn is dropped before the asynchronous call completes, then the routine
ConnDestructor () will be called as the connection Conn is destroyed (and Continuation() will never be called).

Parameters to rpc_asynchronous

e Conn: Connection this asynchronous call is associated with (NULL OK).
e Param: Arbitrary pointer to be passed to Continuation() and ConnDestructor().

e Continuation: Function to be called when asynchronous call is complete. Note that the res parameter must
be copied and will be free()’d after the continuation function returns.

ConnDestructor: Function to be called if Conn is destroyed before asynchronous call is complete.

e fmt, ...: Printf style format string and optional parameters.

Note that there is a parallel call, rpc_asynchronous_str() that does not use the printf-style formatting.

29

Chapter 4

AnaGram, M4, and Syntax Files

4.1 AnaGram

The kernel needs to be able to parse (interpret) its configuration file. Modules need to be able to parse textual
commands issued to them. A parser generator known as AnaGram (formerly sold by Parsifal Software) generates
the parsers used by modules to parse commands and used by the kernel to parse its configuration file. This removes
the complexity of command and parameter parsing from the human-written code to computer generated code and
allows the modules to be written using what is known as “syntax-directed programming”. That is, code is
associated with “productions”. If the production is found in the input, then the corresponding code is executed.
For example:

(unsigned long)unsigned decinteger
-> DIGIT:d =(int) (d-’0’);
-> unsigned decinteger:i, DIGIT:d =(i*10)+(int) (d-’0’);

These three lines of code define the syntactic element “unsigned decinteger” (short for unsigned decimal integer).
They state that an unsigned decinteger (which has the C type of unsigned long) can consist of either a DIGIT or an
unsigned decinteger followed by a digit. As you can see, the definition is recursive, in that it can contain any
number of DIGITs. The productions are indicated by the arrow symbol “->”. When the production has been
identified in the input, the “reduction procedure” (the C code following the equals sign) is executed. Thus if the
characters “12345” are encountered, the first character is processed by the first production and the remaining
characters by the second production, and the result is that the numerical value 12345 is determined. It should be
warned that it is very easy to define an ambiguous syntax in this way. Readers are referred to the AnaGram
manual and the Parsifal Software web site, http://www.parsifalsoft.com for more information.

30

4.2 M4

While AnaGram is very effective at parsing, in a system such as this where there will be many independent parsers,
there will inevitably be a lot of duplication of primitive syntax elements (such as integers, floating point numbers,
quoted strings, etc.). To keep the amount of manually modified code under control the GNU M4 macro
preprocessor, http://www.gnu.org/software/m4/, is used to process include directives and other macros to
minimize the amount of code required in each module.

A variey of file name extensions are used by the M4-preprocessing and AnaGram. To avoid confustion these are
enumerated here.

1. “synm4”: Syntax file to be processed by M4. This is the primary specification of the parser, and is usually
the correct file to manually modify.

2. “syn”: Syntax file. In general, these files have already been processed by M4 and therefore should not be
manually edited. These are the input to AnaGram. Do not edit a .syn file if there is a corresponding .synm4
file.

3. “.synhm4”: Syntax file header to be included by M4. These files contain generic syntax used by multiple
parsers. They are incorporated by the use of the M4 “include” directive.

4. “.¢” and “h”: These may be manually written C code OR AnaGram generate parsers. Do not edit a .c or .h
file if there is a corresponding .syn or .synm4 file.

To avoid problems when writing .synm4 and .synhm4 files, the programmer must have an understanding of C,
AnaGram, and M4. For example, the C/AnaGram comment is /* This is a comment */ or // This is a comment to
the end of the line

The M4 comment is # This is a comment to the end of a line.

To completely comment out a line in this C/AnaGram/M4 hybrid language the string //# should be used to
introduce a comment to the end-of-line. This ensures that neigher M4 nor C/AnaGram will process anything in the
comment.

Certain commands are treated specially by M4 (unless they are preceded by a # comment initiator). These are
specified on the m4 man page. The most common are define, include, and ifdef. Be warned that if any of these
appear unintentionally in a .synm4 or .synhm4 file the results will be unexpected (and can be troubleshooted by
looking at the generated .syn file). A standard include file “stddef.synhm4” is provided that defines some standard
character sets but also changes the default M4 quote characters from ¢’ to something less likely to appear
unintentionally, [[]].

4.3 Module support code

The module source code directory include three files designed to be used in every module: module.c, module.h, and
module.synhm4. Together these three files provide the baseline code for an AnaGram/M4 module. See

31

module_prototype.synm4 for an example of their use.

32

Chapter 5

System Control

5.1 Manual control

Dataguzzler is command driven. Commands may be issued either on the terminal from which dataguzzler was run
or over a TCP/IP connection. A TCP/IP connection can be established with the telnet command, e.g.:

linuxY telnet localhost 1649
Trying 127.0.0.1...

Connected to marius (127.0.0.1).
Escape character is ’7]°.

auth xyzzy

200 00000009 AUTH_OK
wcapt:freq?

200 00000019 WCAPT:FREQ 10 MHz
wcapt:freq 1 MHz

200 00000018 WCAPT:FREQ 1 MHz
quit

Connection closed by foreign host.
linux%

Let’s examine the above transcript and learn how to issue commands. The text in boldface indicates what was
typed by the user, while the typewriter text was generated by the computer.

Upon connecting to port 1649 (the dataguzzler port), the first command issued was auth xyzzy. This
authenticates the user to the dataguzzler server and must be done before any commands can be issued
(authentication is not necessary when typing commands on the console). Information on the AUTH command can
be found in chapter 7 on page 55.

33

Dataguzzler then responds inititally with exactly 17 characters. The first 3 characters are the return code in
decimal. 200 indicates success, 500 or higher indicates an error. The return code is followed by a space and 12 more
characters which indicate the length of the response (not including the 17 character header), again in decimal. This
is followed by a space, then the remainder of the response, with the length as specified. The response ends in a
carriage return and linefeed. These characters are included in the length count. In the case of the AUTH
command, the specified length was 9 characters. The actual response was “AUTH_OK?”, 7 characters, plus the
carriage return and linefeed, for a total of 9.

The AUTH_OK response indicates that authentication has been successfully completed and that other commands
may be issued. The user then queries the waveform capture capture sample frequency (WCAPT:FREQ), pg. 107),
adjusts the capture frequency form 10 MHz to 1 Mhz, and exits.

The complete list of available commands can be found in chapter 7. It is important to realize that the oscilloscope
display program has no control capabilities whatsoever. Its sole purpose is to display the waveforms in the
dataguzzler memory. All acquisition parameter changes must be performed separately.

Normally each command transmitted is terminated by a carriage return, linefeed, or combination thereof. It is
possible to transmit a number of commands as a single atomic unit by separating them with semicolons instead.
The composite command must still have a linebreak at the end. The reply generated by the server will consist of a
single block containing the corresponding responses similarly separated by semicolons and with a carriage return /
linefeed pair at the end. In this situation all the specified commands will be executed together as an atomic unit
unless waiting is required by one of the commands. Commands that wait are documented as such in chapter 7. If
an error occurs while executing a command, the command’s reply may be replaced by an error message. The
substring “ERROR” should occur in this message before the first space.

5.2 Oscilloscope display

The oscilloscope display can be started with the dg_scope command. The oscilloscope display assumes dataguzzler
is running on host localhost port 1649 with authentication code xyzzy. If dataguzzler is running elsewhere, these
parameters can be provided on the command line:

scope <hostname> <port> <authcode>
Additional parameters defined by X and GLUT can also be provided. See
http://www.opengl.org/developers/documentation/glut /spec3/nodel0.html for a complete list

The oscilloscope display provides live viewing of the waveforms in the dataguzzler memory, and real-time
manipulation of that view. The oscilloscope display is a tool only for viewing the dataguzzler waveforms and

settings. The oscilloscope display cannot be used to change the dataguzzler settings.

The oscilloscope display is designed for keyboard or combined mouse and keyboard interaction. The keyboard
commands are as follows:

34

Enter Disable or enable display selected waveform
Tab Select next waveform
Cursor left | Increase Secs/Div, Hz/Div, or pixels/pixel (zoom out horizontally)
Cursor right | Decrease Secs/Div, Hz/Div, or pixels/pixel (zoom in horizontally)
Cursor down | Increase Volts/Div. (zoom out vertically) or decrease image contrast.
Cursor up | Decrease Volts/Div (zoom in vertically) or increase image contrast.

Home Increase to by one division (look later in waveform)

End Decrease to by one division (look earlier in waveform)
PgUp Increase display offset of waveform by one vertical division
PgDn Decrease display offset of waveform by one vertical division
Insert Increase image brightness
Delete Decrease image brightness

7

, Select previous frame of a multi-frame image.
Select next frame of a multi-frame image.

¢’ Cycle between colormaps for image displays
o’ Set the position or offset to the median value of the selected waveform or frame
'z’ Zero the position and offset of the selected waveform or frame

The oscilloscope window consists of the active oscilloscope area, surrounded by informational displays. The left
edge of the window lists the names of the waveforms available from the server. The currently selected waveform
name is highlighted. Clicking on a waveform name will select that waveform. If an attenuating probe was used and
configured in the server that information (e.g. 10x) will be recorded after the waveform name. Next to the
waveform name is a clickable box which controls whether that waveform is currently displayed.

The top line of the window provides the acquisition parameters for the currently selected waveform. t; is the time
of the first sample. Fs is the sample frequency. n is the total number of samples acquired, and rev is the waveform
revision. For AVG and AVGONCE waveforms, the status of the averaging is also indicated.

The bottom of the display lists the current display parameters. tg is the time corresponding to the vertical line in
the center of the waveform display. fj is is the frequency corresponding to the vertical line in the center of the
waveform display (for frequency domain waveforms). globalrev is the current overall waveform revision count.
Position is the vertical offset of the selected waveform.

The waveform display uses several techniques to reduce aliasing artifacts and improve signal comprehension. If
there are more than two waveform points corresponding to a particular vertical line of pixels on the display, then a
vertical line is drawn between the extreme pixels. For less than two points, the samples themselves are drawn. If
there is no waveform point corresponding to a particular point on the display, an interpolated value is drawn in a
lighter color. The user should be warned that the interpolation algorithm is approximate only. Proper interpolation
can be performed in post-processing using algorithms such as Matlab INTFILT.

A standalone version of the oscilloscope display can be run with the command dg_scope_sa. This version does not

require dataguzzler to be running, but instead displays one or more waveform file (.dgz) or snapshot file (.dgs)
specified on the command line.

35

5.3 Utilities

5.3.1 dg_save_settings

dg_save_settings is an external program that downloads the current state of dataguzzler and writes it to a file.
The general usage is:

dg_save_settings <settings_file.set>

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

dg_save_settings stores the results of the WFM:WFMS? and SET? commands to the output file.

5.3.2 dg restore_settings

dg_restore_settings is an external program that uploads a stored settings file to dataguzzler. The general usage
is:

dg_restore_settings <settings_file.set>

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.
dg_restore_settings assumes the file consists of two lines of commands. It passes both lines to dataguzzler to be
executed.

5.3.3 dg_grab

dg_grab is an external program that downloads waveforms from dataguzzler and writes them to dataguzzler format
binary files. See Appendix A for more information on the file format. The general usage is:

dg_grab <waveform_name> <file_name> <waveform_name2> <file_ name2> ...

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

As many (waveform_name, file_name) pairs as are desired can be specified.

5.3.4 dg_grab_txt

dg_grab_txt is an external program that downloads waveforms from dataguzzler and writes them to ASCII text
files. The general usage is:

dg_grab_txt <waveform_name> <file_name> <waveform_name2> <file_name2> ...

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

As many (waveform name, file_name) pairs as are desired can be specified.

36

5.3.5 dg.cmd

dg_cmd issues a single command to dataguzzler and prints the response to stdout. The general usage is:
dg_cmd <command>
Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

5.3.6 dg_upload

dg_upload uploads a binary dataguzzler format file to dataguzzler. See Appendix A for more information on the
file format. The general usage is:

dg_upload <waveform_name> <file_name> <waveform_name2> <file_name2> ...

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

As many (waveform_name, file_name) pairs as are desired can be specified.

5.3.7 dg_upload _txt

dg_upload_txt uploads an ASCII text waveform to dataguzzler. The general usage is:
dg-upload_txt <waveform_name> <file_name> <waveform_name2> <file_name2> ...
Additionally -h <host_name> and -a <authentication_code> parameters may be provided.
As many (waveform name, file_name) pairs as are desired can be specified.

5.3.8 dg_upload _tiff

dg-upload_tiff uploads a TIFF image to dataguzzler as a grayscale. The general usage is:

dg_upload_tiff <waveform_name> <file_name> <waveform_name2> <file_name2> ...

Additionally -h <host_name> and -a <authentication_code> parameters may be provided.

As many (waveform name, file_name) pairs as are desired can be specified. Note: dg upload tiff cannot read
grayscale images with more than 8 bits per pixel.

5.3.9 dg_snapshot

dg_snapshot saves a consistent snapshot of all waveforms (including dynamic waveforms) to the name (.dgs file)
specified on the command line.

37

5.3.10 dg_load_snapshot

dg_load_snapshot loads the waveforms in the .dgs file specified on the command line into dataguzzler. Please note
the potential for conflicts with pre-existing channels. Depending on the nature of the pre-existing channel, the
conflict may be resolved one way or the other. In general, only nonexistant channels or preexisting channels owned
by the WFMIO module can be overwritten by dg_load_snapshot.

5.4 API Reference

A library of C utility functions is installed in /usr/local/dataguzzler/lib, with include files in /usr/local/include. A
similar library of functions for Matlab or GNU Octave is installed in /usr/local/dataguzzler /matlab. These
libraries are used for convenient access to the dataguzzler server and provide routines for remote access and
waveform upload/download. Both APIs lack formal documentation at this time. Nevertheless, as the APIs are
simple and straightforward it should not be difficult to learn them anyway. All functions are prototyped in the
include files, and the source code for the utilities described above make excellent examples for the C library. For
the Matlab/Octave routines see the files dgf_testread.m and dgf_testwrite.m for simple examples, and proccalib.m
for a more complicated example.

38

Chapter 6

Library Reference

Introduction

Libraries are optional collections of routines that are loaded if specified in the configuration file. Unlike a module,
libraries are permitted static data (global variables). A library can be loaded only once — a second reference will
not load another copy of the library. In addition any global symbols (functions, global variables, etc.) defined in
the library are accessible to all other libraries and all modules.

Each library defines a function LibInit:
void LibInit(char *LibParams,int LibParamsLen) ;

This routine is called once when the library is loaded, and should be used by the library to perform any needed
global initializations.

6.1 wfmstore.so

The waveform store, wimstore.so, is used to maintain a database of waveforms and waveform data. Of particular
note is the distinction between waveforms and channels.

39

6.1.1 Channels

The waveform store maintains a list of channels, each defined by a struct Channel:

struct Channel {
struct Node Node; /* on ChannellList */
char #*ChannelName; /* Channel name (separate alloc) */
unsigned long long latestrevision; /* increment on every update (including delete) */
int Deleted; /* if non-zero, this waveform is deleted (but the structure is only
freed or removed from the ChannellList when it is recreated). If a waveform of the same name
is ever recreated, then store latestrevision, destroy this channel and create a new one with latestrevisi
struct List WfmList; /* list of waveforms in this channel */
struct List NotifyList; /* List of notifications (struct WfmNotify) to make
if new waveform is created */
int Volatile; /* does not need to be saved (OBSOLETE -- NOT USED) x*/
char *Creator; /* Creator module name */
void (*Destructor) (struct Channel *Chan); /* call this when channel deleted if not NULL x*/
void *ModSpecific; /* data owned by creator -- alternative to extending the structure */
/* may have creator-specific data beyond this point */

};

Each channel has a name (ChannelName) and a latestrevision. Latestrevision (except for a deleted channel) must
always indicate the revision number of an entry in the waveform list. Channels cannot be entirely erased — but the
channel will not appear when listed by the user if the Deleted flag is set. Channel.Creator is the name of the
module that created (and owns) the channel. Channel.Destructor() will be called when the channel is deleted.
Channel.NotifyList is a list of notifications to perform when a new waveform on this channel is created.

Use the CreateChannel() call to create a new (or reuse an old) channel. This will return the new channel or NULL
if a channel of the requested name already exists. A call to CreateChannel() MUST be followed immediately by a
call to CreateWfm() (see below)

6.1.2 Waveforms

The waveform store consists of each channel’s lists of waveforms, each defined by a struct Wfm:

struct Wfm {
struct Node Node; /* on WfmList */
char *ChannelName; /* separate alloc */
struct List MetaData;
int ReadyFlag; /* if zero, this is just a placeholder and no actual
data or metadata ready to be read in yet */

40

unsigned long long wfmrevision;

dg_real *data; /* pointer to mmap’d POSIX shared memory data */

size_t mmaplen; /* # of bytes for mmap/munmap() */

int len; /* total number of elements (=dimlen[0]*dimlen[1]*...*dimlen[ndim-1]) */
int ndim; /* number of dimensions */

int *dimlen; /* length of each dimension */

void (*Destructor) (struct Wfm *Wfm); /* call this on delete() if not NULL x*/

char *shm_name; /* POSIX shared memory file name */

int refcount; /* reference count for this waveform */

};

Essential to the definition of a waveform is whether the waveform is “ready”. A module should create a new
waveform when the meaningful event which defines the waveform has occurred by calling CreateWfm(). This is a
promise that the waveform data will be available soon. Once the waveform is complete, the creator should call
NotifyChannel() with WifmReady==1 to indicate that the waveform is ready. Modules can request notification
when specific channels get new waveforms and can use this to trigger updates. This is how the wfmmath.so module
works. When a waveform update is defined (WfmReady==0), wimmath.so processes its dependencies and defines
new versions of all the dependent waveforms. As the calculations complete, those waveforms become “ready”. Once
they are all ready, that updated list of waveforms would be available from wfmio with WFMIO:LISTREADY?.

The ChannelName specifies the channel this waveform is on. MetaData is a list of MetaDatums containing useful
information about the channel (see the metadata section below). ReadyFlag indicates whether the enclosed data is
“Final” or in progress. In progress data should not (in general) be read as it is incomplete. wfmrevision indicates
the revision of the enclosed data. data points to the storage area for the waveform data. ndim is the number of
dimensions (must be at least 1). dimlen points to an array of integers that define the lengths of each dimension.
Destructor will be called when the waveform is deleted (because it is no longer in use). shm name defines the name
of the shared memory object (for shm_open) for the waveform data. refcount is a reference count for the waveform.
It is automatically set to 1 when created to represent the fact that it is the current revision of its channel. When
another revision is created, this revisions reference count will be decremented and it will be automatically deleted
unless otherwise locked by a call to WimReference(). Note that once the ReadyFlag is set, Wfm’s are “Final” and
may not be changed.

A new waveform is created by a call to CreateWfm(). Each call to CreateWfm() must be matched (not necessarily
immediately) with a call to NotifyChannel(Chan,Wfm,1) once the data for the new waveform is ready. Note that
between CreateWfm() and NotifyChannel() a waveform listing will show this as the current revision even though it
is not available yet. Any attempt to download the waveform or its metadata will result in the command being
blocked until the data is available.

6.1.3 Transactions

The StartTransaction() and EndTransaction() calls are used to ensure that if multiple waveforms are to be updated
as an atomic event, that the event is indeed treated as atomic. For example the CreateWfm() calls for each channel
of a multichannel waveform acquisition should be treated atomically. This is achieved by placing the CreateWfm()

41

calls between StartTransaction() and EndTransaction(). This results in update notifications being postponed until
EndTransaction() is called at which all of the new waveforms have been created. Transactions can be nested, but
notifications will only be generated once EndTransaction is called for the last time. Be warned that multiple
Update() calls can happen during EndTransaction, but that only the last is guaranteed to have all the latest
relevant versions defined.

6.1.4 Metadata

Each waveform is stored along with various metadata. Some of this metadata is standardized. Metadata can be of
type string, real, or integer. The standardized metadata elements are:

Name Type Value

ProbeAtten double Attenuation factor of probe

MinLevel double minimum level achievable in this waveform
MaxLevel double maximum level achievable in this waveform
CoordN string Axis label for dimension N

UnitsN string units for dimension N

IniValN double Coordinate of first element of dimension N
StepN double Element step size of dimension N

6.1.5 Physical storage

The acquired waveforms are stored in POSIX shared memory. On Linux this means the virtual directory
/dev/shm. By default, /dev/shm is limited in size to half the physical memory. When acquiring large waveforms or
large numbers of images or performing large amounts of averaging with AVG instead of AVGONCE this can fill up,
leading to a “Bus error”. Solutions include fixing any bug causing waveforms to stay in memory, using AVGONCE
instead of AVG, cleaning out cruft in /dev/shm (rm ‘¢/dev/shm/dg_*’’), or expanding /dev/shm. /dev/shm can
be expanded by editing /etc/fstab and changing the options entry from defaults to size=4g or the size of your
choice.

6.2 fftwlink.so

fftwlink serves as a link to the FFTW library. It does four things:

1. Provides centralized configuration management.
2. Link in the FFTW library (version 3).
3. Provides uniform function names regardless of whether USE_SINGLE_PRECISION is set.

4. Provides a mutex to lock when calling fftw functions (except fftw_execute()).

42

6.2.1 Configuration parameters

Parameter Type Value

nthreads integer number of threads to use for fftw calculations authen-
tication code (default 2).

fitw_estimate () flag to enable FFTW_ESTIMATE type planning

fftw_measure () flag to enable FFTW_MEASURE type planning

fftw_patient (none) flag to enable FFTW_PATIENT type planning

(none)

fftw_exhaustive flag to enable FFTW_EXHAUSTIVE type planning

6.2.2 Types

o fftwlink_plan_t: USE_SINGLE_PRECISION-independent replacement for fftw_plan

6.2.3 Global variables

e int fftwlink_nthreads: User configured number of threads
e pthread_mutex_t fftwlink_mutex: Mutex to lock while calling fftw routines other than fftw_execute.

o fftwlink_planning flags: User specified flags to OR when creating a plan.

6.2.4 Functions

o fftwlink _destroy_plan(): USE_SINGLE_PRECISION-independent replacement for fftw_destroy_plan()

e fitwlink_plan_r2r_1d(): USE_SINGLE_PRECISION-independent replacement for fitw_plan_r2r_1d()

o fftwlink_execute(): USE_SINGLE_PRECISION-independent replacement for fitw_execute()

e fftwlink_plan_many r2r(): USE_SINGLE_PRECISION-independent replacement for fftw_plan_many r2r()

6.2.5 Notes

e You must pthread_mutex_lock() fitwlink_mutex before making fftw calls. You should then
pthread _mutex_unlock() fitwlink_mutex before calling fftwlink_execute() on your plan so that other threads
can build plans while yours executes.

o If fitw_measure, fftw_patient, or fftw_exhaustive are set, expect to wait a while for fftw to build wisdom.
During this time fitwlink_mutex must be locked, so any other thread that tries to use fftw will block.

43

6.3 library_prototype.so

This is an example library that uses an AnaGram parser to read its configuration file. The editable source file is
library_prototype.synm4.

6.4 metadata.so

The metadata library extends the metadata-handling capabilities of wfmstore.so. It has two main functions:

1. Providing support routines for reading and writing metadata: EscapeMetaDatumString and
ParseEscapedMetaDatumString

2. Assisting modules that import external metadata when they create a waveform. Such modules create a
struct MetaData to store a list of preset metadata and a list of queries for dynamic metadata. When the
module creates a new waveform, it calls GrabNextMetaData() to snapshot the preset metadata and query the
dynamic metadata. As dynamic metadata may not be instantly available, the parameter DoneCallback() will
be called once all the dynamic metadata has been collected (but may be called immediately).

An illustrative example of AnaGram code for specifying metadata is in the comments at the start of metadata.c

6.4.1 Prerequisites

e Library rpc.so

6.4.2 Configuration parameters

The following configuration parameters are used not by the metadata library itself, but by modules which subscribe
to its services:
Parameter Type Value

setstaticmetadatum(identifier) — metadatum value Specify a metadatum name (identifier) and value to be
specified with new waveforms created by this module.
The metadatum value can be a quoted string to create
a string metadatum, can be an integer (no decimal
point) to create an integer metadatum, or can be a
number with a decimal point to create a floatin point
metadatum.

addquerymetadatum(identifier) quoted string Specify that the module should issue the command
specified by the quoted string and interpret the result
as the value of a metadatum named by the identifier.

44

6.4.3 Commands

Since metadata.so is a library, not a module, it cannot accept commands directly. However, the following
commands are accepted by modules which subscribe to metadata.so’s services:

(commands begin on next page)

45

metadata: SETSTATICMETADATUM

Syntax

metadata:SETSTATICMETADATUM <metadatum name> <metadatum value>

Description

Specify that the module should add a piece of metadatum to each acquisition.

Parameters
<metadatum The name of the metadatum to add.
name>
<metadatum The value the metadatum should have.
value>

Notes

e The type of the metadatum is determined syntactically. If <metadatum value> is a quoted string,
then the metadatum will be of string type. If it is a number with a decimal point, then the metadatum
will be of real (floating point) type. If it is a number without a decimal point it will be an integer.

See also

e metadata:DELMETADATUM (pg. 48)

46

metadata: ADDQUERYMETADATUM

Syntax

metadata:ADDQUERYMETADATUM <metadatum name> <query command>

Description

Specify that the module should add a piece of metadatum to each acquisition by querying another module.

Parameters
<metadatum The name of the metadatum to add.
name>
<query command > The query command to issue.
Notes

e The type of the metadatum is determined syntactically. If the result of the query command is a
quoted string, then the metadatum will be of string type. If it is a number with a decimal point, then
the metadatum will be of real (floating point) type. If it is a number without a decimal point it will
be an integer.

See also

e metadata:DELMETADATUM (pg. 48)

47

metadata:DELMETADATUM

Syntax

metadata:DELMETADATUM <metadatum name>

Description

Specify that the module should no longer add the specified piece of metadatum to each acquisition.

Parameters

<metadatum The name of the metadatum to no longer add.
name>

Notes

See also

e metadata:SETSTATICMETADATUM (pg. 46)
e metadata:ADDQUERYMETADATUM (pg. 47)

48

6.5 multiio.so

MultilO is a library for controlling instruments that use text- or binary-based serial commands. A key advantage is
that it presents the same API regardless of the underlying transport mechanism. For example, a benchtop
voltmeter can be controlled over serial or GPIB. Code for MultilO can be transformed from using serial to using
gpib simply by changing the “URI” used to open the voltmeter. For example,

mio_open(‘ ‘serial:///dev/ttyS0:9600:8:n:1°’) would connect using the serial port /dev/ttyS0 at 9600 baud.
The only change to support gpib (using the linux-gpib.sourceforge.net driver) would be to change that line to
mio_open(‘ ‘gpib://0:4:0:1:10°) if the voltmeter is at gpib primary address 10 (decimal).

For gpib support to work correctly, the file “/etc/gpib.conf” must exist, the driver for your card must be loaded
(e.g. modprobe tnt4882) and the program gpib_config must have been run. Typically these things are done on
boot in /etc/rc.d/rc.local.

Timeouts can be specified with mio_settimeouts() for the readline() and writetmo() calls.

6.5.1 Functions

MultilO provides just a handful of routines that together provide a complete API to communicate with laboratory
devices or software packages.

e struct multiio *mio_open(char *uri) — Open a connection with the specified URI

e int mio_printf(struct multiio *fh, char *Fmt,...) — Print a text string to the device. Returns
number of characters output or negative to indicate an error or EOF.

e int mio_scanf(struct multiio *fh, char *Fmt,...) — Wait for a linefeed-terminated text string from
the device, process with scanf. Returns number of conversions performed, otherwise negative in case of error
or EOF.

e char #*mio_readline(struct multiio *fh) — Wait for a linefeed-terminated text string from the device.
Returns string to be free()’d, or NULL for error or EOF.

e int mio_read(struct multiio *fh,void *buf,size_t nbytes) Read nbytes bytes of binary data from
the device. Returns length read, 0 for EOF, or negative for error.

e int mio write(struct multiio *fh,void *buf,size_t nbytes) Write nbytes bytes of binary data to the
device. Returns length written, 0 for EOF, or negative for error.

e void mio_close(struct multiio *fh) Close access to the device.

6.5.2 URI’s

e tcp://hostname:portnumber to open a TCP/IP connection to the specified host and port.

49

e fd://readfd:writefd to use the already-open file descriptors (pipes) readfd and writefd.

e serial://device:baud:databits:parity:stopbits:flags to use a serial port (e.g.
serial:///dev/ttyS0:9600:8:n:1). Flags are delimited by the vertical bar ("—’), and the only flag
currently supported is 'nortscts’, which disables the use of RTS/CTS handshaking.

e gpib://board_index:pad:sad:send_eoi:eos to use gpib with the specified board index, primary address,
secondary address, send_eoi flag, and eos character and flags. See the comment at the front of
mio_gpib_setup() for more details.

All URI formats in addition accept trailing slash-delimited flags to enable specific modes. The only current such
mode is “debug”, which will cause all transmitted and received data to be logged to stderr. For example,
tcp://1.2.3.4:56/debug.

6.6 dg_python.so

6.6.1 Introduction

dg_python.so provides a common interface to python scripting for modules. It has the following functions:

1. Import the libpython.so shared object.
2. Configure the python interpreter for a multithreaded environment

3. Maintain the main thread state (stored in the global variable pythonmainThreadState), with its reference to
the main interpreter state.

4. Import a few common modules (currently thread, sys, StringlO)

5. Provide a means to define common Python functions and class definitions through the initialization
parameter block of the library

6. Provide a replacement for sys.stdout that stores output strings on a per-thread basis if configured by the
thread with sys.stdout.register().

Initialization commands, function definitions, class definitions, etc. can be provided in the configuration block of
dg_python.so when the module is initialized. Any variables defined there will be within the scope of the
“dg_python” python module (i.e. can be accessed following import dg_python).

This library substitutes sys.stdout with a newly defined class dgp_ThreadWriter. Call sys.stdout.register (instance
of StringlO.StringIO) to store stdout for your thread in a string. The StringlO instance can be then be obtained
from sys.stdout.getwriter(). When done with the thread, please cleanup by calling sys.stdout.unregister().

It also provides a routine called dg_python.rpc_async() for making rpc calls to dataguzzler modules. A routine
called dg_python.findmodule () can be used to report whether a module exists.

50

6.7 dio8bit.so

dio8bit.so is a library for generically accessing 8 bit digital I/O ports. It alone does not support any hardware, but
libraries that do can register with dio8bit.so so that their ports are accessible through the dio8bit.so interface. It is
generally acceptible to open a specified port multiple times, and the lower level interfaces handle sharing. Be wary
of DDR conflicts, however. Some underlying hardware does not support independent directions for each bit. If this
is the case, all code accessing a given port should set the DDR identically.

6.7.1 Functions

e struct dio8port *dio8open(char *classname,char *devname) — Open a port with the specified driver
class (e.g. das4020dio) and devicename (e.g. /dev/das4020-12/dio0_-0B).

e void dio8setddr(struct dio8port *port, uint8_t readWRITE,uint8_t mask) — Set the DDR bits
specified by mask to the value readWRITE (1 indicates read, 0 indicates write).

e void dio8close(struct dio8port *port) — Close the specified port

e void dio8writeport(struct dio8port *port,uint8_t val) — Write the specified byte out to the output
bits of the port

e uint8_t dio8readport(struct dio8port *port) — Read out the current state of the port (input bits)
OR’d with the currently specified output bits.

e struct dio8class *dio8createclass(char *Name,int structlen) — Allocate a dio8class structure.

e void dio8addclass(struct dio8class *newclass) — Add a newly created dio8class structure to the
master list

6.8 das4020dio.so

das4020dio.so is a library for accessing the 8 bit digital I/O ports build into the PCI-DAS4020/12 data acquisition
card. It registers with dio8bit.so so that its ports are accessible through the dio8bit.so interface with the classname
“das4020dio”. It is generally acceptible to open a specified port multiple times. Be wary of DDR conflicts, however,
because the underlying hardware does not support independent directions for each bit. All code accessing a given
port should therefore set the DDR identically.

6.8.1 Prerequisites

e Library dio8bit.so

51

6.8.2 Functions

e struct das4020dioport *das4020dioopen(char *devname) — Open a port with the specified driver class
(e.g. das4020dio) and devicename (e.g. /dev/das4020-12/dio0_0B).

e void das4020diosetddr(struct das4020dioport #*port, uint8_t readWRITE,uint8_t mask) — Set the
DDR bits specified by mask to the value readWRITE (1 indicates read, 0 indicates write).

e void das4020dioclose(struct das4020dioport *port) — Close the specified port

e void das4020diowriteport(struct das4020dioport *port,uint8_t val) — Write the specified byte out
to the output bits of the port

e uint8_t das4020dioreadport(struct das4020dioport *port) — Read out the current state of the port
(input bits) OR’d with the currently specified output bits.

52

Chapter 7

Module Reference

Introduction

Modules are optional command processors. When specified in the configuration file, a module is loaded, given a
specific name, and initialized. When commands using that name are issued, the module is called to process those
commands. A single module may be included more than once under different names. Modules are not permitted
static data (global variables), but should instead attach any necessary data to the module structure (struct
Module). Symbols defined in a module are not accessible in libraries or other modules, but modules may use
symbols defined in libraries (provided the library was specified before the module in the configuration file).

7.1 auth.so

The authentication module, auth.so, authenticates TCP/IP connections to the dataguzzler kernel so that they can
issue commands. This module is treated specially by the kernel and must have the name “AUTH” to work properly.

53

7.1.1 Configuration parameters

Parameter

Type

Value

AuthCode(domain name)
AuthCode(IP address)

AuthCode(IP address/IP netmask)

7.1.2 Commands

(commands begin on next page)

quoted string
quoted string

quoted string

o4

Enables access from the specified domain name or it
subdomains with the specified authentication code.
Enables access from the specified IP address with thi
specified authentication code.

Enables access from the specified IP subnet with th
specified authentication code.

AUTH

Syntax

AUTH <authcode>
Description

Authenticates an incoming TCP/IP connection
Parameters

<authcode> Authentication password

Notes

e You must use an authentication code that is valid for the IP address you are connecting from.
Authentication is configured using the file /etc/daqg_auth.conf. If this file does not exist, internal
defaults allow connections only on the loopback address (127.0.0.1) using xyzzy as the
authentication code.

See also

95

7.2 module_prototype.so

module_prototype.so is an example module that doesn’t do anything useful.

7.2.1 Configuration parameters

Parameter Type Value

cardname quoted string Dummy initialization parameter

7.2.2 Commands

(commands begin on next page)

56

moduleprototype:CHx: PROBEATTEN

Syntax

moduleprototype:CHx:PROBEATTEN <attenuation factor>
CHx : PROBEATTEN?

Description
Set or query dummy multichannel parameter

Parameters

<attenuation Dummy attenuation factor
factor>

Notes

e This is just a test. Don’t use it in any actual systems

See also

o7

moduleprototype:FREQ

Syntax

moduleprototype:FREQ <frequency>
FREQ?

Description
Set or query dummy frequency
Parameters

<frequency> Dummy frequency

Notes

e This is just a test. Don’t use it in any actual systems

See also

o8

7.3 wifmio.so

wfmio.so allows uploading and downloading of waveform data as well as listing of waveforms in the wfmstore.so
library.

7.3.1 Prerequisites

e library wfmstore.so

e library metadata.so

7.3.2 Configuration parameters

Parameter Type Value
(none)

7.3.3 Commands

(commands begin on next page)

59

wfmio:COPY

Syntax
wfmio:COPY <waveform name> <copy name>
Description

Copy the specified waveform.

Parameters
<waveform name> Name of the original waveform
<copy name> Name for the copy

Notes

e The copy can be deleted with the wifmio:DELETE command.

See also

e wimio:DELETE (pg. 64)

60

wfmio:DATA

Syntax

wfmio:DATA <waveform name> <revision> <metadata> <data length>
<waveform data>
DATA? <waveform name> <revision>

Description

Obtain the sample data of a waveform

Parameters
<waveform name> Name of the waveform of interest
<revision> Revision of interest
<data length> Waveform dimensions (see below)
<waveform data> Binary encoded waveform data
<metadata> Waveform metadata

Notes

e <data length> is the number of dimensions followed by a series of integers, each in square brackets,
that define the dimensions of the waveform in samples. For example 3 [65536] [32] [32] specifies that
the data is 32x32 waveforms of 65536 points each.

e <waveform data> is binary IEEE floating point (either single or double precision according to the
result of wimio:REALSZ) that has been encoded with a binary NOT with (post-inversion) characters
0-32, 77, and "%’ replaced with escape sequences. The escape sequence is initiated by the "%’
character and consists of '%’ followed by the escaped character + 0x80.

See also

o wimio:REALSZ (pg. 74)
e wimio:METADATA (pg. 73)

61

wfmio:DATASHM

Syntax

wfmio:DATASHM <waveform name> <revision> <metadata> <data
length> <posix shm name>
DATASHM? <waveform name> <revision>

Description

Obtain the sample data of a waveform through POSIX shared memory

Parameters
<waveform name> Name of the waveform of interest
<revision> Revision of interest
<metadata> Waveform metadata (see wimio:METADATA).
<data length> Waveform dimensions (see below)
<posix shm name> Specification of the POSIX shared memory name for access to the binary
waveform data.
Notes

e Query only. Command syntax indicates format of response.

e <data length> is the number of dimensions (an integer) followed by a series of integers, each in
square brackets, that define the dimensions of the waveform in samples. For example
3 [65536] [32] [32] specifies that the data is 32x32 waveforms of 65536 points each.

e <posix shm name> is the name of a POSIX shared memory area that can be passed to shm_open()
to obtain access to the waveform data. The data itself is stored as binary IEEE floating point (either
single or double precision according to the result of wfmio:REALSZ)

See also
o wimio:REALSZ (pg. 74)

e wimio:DATA (pg. 61)
o wimio:METADATA (pg. 73)

62

wimio:DELETEALL

Syntax
wfmio:DELETEALL
Description
Delete all user-uploaded or user-copied waveforms from the waveform memory.

Parameters

Notes

See also
e wfmio:DELETE (pg. 64)

e wimio:COPY (pg. 60)
e wimio:DATA (pg. 61)

63

wfmio:DELETE

Syntax

wfmio:DELETE <waveform name>
Description

Delete the specified waveform.
Parameters

<waveform name> Name of the waveform

Notes

e Any revisions of the waveform that are locked will remain in memory, but will not be shown by
wimio:LIST or wimio:LISTLOCK.

e Only waveforms created by the user can be deleted with the wfmio:DELETE command.
See also
e wimio:DELETEALL (pg. 63)

e wimio:COPY (pg. 60)
e wimio:DATA (pg. 61)

64

wfmio:GLOBALREADYREV

Syntax

wfmio:GLOBALREADYREV <global revision>
GLOBALREADYREV?

Description
Wait for a specific global revision to be ready or query the latest ready global revision.
Parameters

<global revision> The global waveform revision

Notes

See also

e wimio:GLOBALREV (pg. 67)
e wimio:GLOBALREADYREVTIMEOUT (pg. 66)

65

wifmio:GLOBALREADYREVTIMEQUT

Syntax
wfmio:GLOBALREADYREVTIMEQUT <global revision> <timeout>
Description

Wait for a specific global revision to become ready with a timeout (optional units, default ms)

Parameters

<global revision> The global waveform revision

<timeout> The timeout, in ms unless otherwise specifed
Notes

e The specified global revision is not locked into memory so it may have been discarded in favor of a
more recent (ready) waveform by the time you manage to read it.

See also

e wimio:GLOBALREVTIMEOUT (pg. 68)
o wimio:GLOBALREADYREV (pg. 65)

66

wfmio:GLOBALREV

Syntax

wfmio:GLOBALREV <global revision>
GLOBALREV?

Description
Wait for a specific global revision or query the current global revision.
Parameters

<global revision> The global waveform revision

Notes

See also

e wfmio:GLOBALREVTIMEOUT (pg. 68)
e wfmio:GLOBALREADYREV (pg. 65)

67

wimio:GLOBALREVTIMEQUT

Syntax
wfmio:GLOBALREVTIMEQOUT <global revision> <timeout>
Description

Wait for a specific global revision with a timeout (optional units, default ms)

Parameters

<global revision> The global waveform revision

<timeout> The timeout, in ms unless otherwise specifed
Notes
See also

e wimio:GLOBALREV (pg. 67)
e wimio:GLOBALREADYREVTIMEOUT (pg. 66)

68

wfmio:LIST

Syntax
wfmio:LIST <waveform count> <global revision> <waveforml name>
<waveforml revision> <waveform?2 name> <waveform?2
revision> ...
LIST?
Description

List the current revisions of all waveforms

Parameters
<waveform count> Number of waveform descriptions to follow
<global revision> Global revision count corresponding to this waveform revision set.
<waveforml name> Name of the first waveform
<waveform1 Revision of first waveform
revision>
Notes

e Query only. Command syntax indicates format of response.

e Since this routine does not lock the waveforms into memory there is no guarantee that the specified
waveforms or revisions will remain in memory

See also

e wimio:METADATA (pg. 73)
e wimio:DATA (pg. 61)

e wimio:LISTLOCK (pg. 71)
o wimio:LISTREADY (pg. 70)

69

wfmio:LISTREADY
Syntax

wfmio:LISTREADY <waveform count> <global revision> <waveforml
name> <waveforml revision> <waveform2 name> <waveform?2
revision> ...
LISTREADY?

Description

List the current “ready” revision state of all waveforms

Parameters
<waveform count> Number of waveform descriptions to follow
<global revision> Global revision count corresponding to this waveform revision set.
<waveforml name> Name of the first waveform
<waveforml Revision of first waveform
revision>
Notes

e Query only. Command syntax indicates format of response.

e Since this routine does not lock the waveforms into memory there is no guarantee that the specified
waveforms or revisions will remain in memory

e The current “ready” revision state corresponds to a consistent set of waveforms for which all
calculations have been completed.

See also

e wimio:METADATA (pg. 73)

e wimio:DATA (pg. 61)

e wimio:LISTREADYLOCK (pg. 72)
e wimio:LISTREADY (pg. 70)

70

wfmio:LISTLOCK

Syntax
wfmio:LISTLOCK <waveforml name> <waveforml revision>
<waveform?2 name> <waveform2 revision> ...
LISTLOCK?
Description

List the current revisions of all waveforms and lock those revisions in memory

Parameters
<waveforml name> Name of the first waveform
<waveforml Revision of first waveform
revision>

Notes

e Query only. Command syntax indicates format of response.

e You must call wfmio:UNLOCK on each of the waveform/revision combinations returned, lest they be
stuck in memory. A dropped TCP/IP connection automaticall unlocks all waveforms locked by that
connection.

See also

o wimio:METADATA (pg. 73)
e wimio:DATA (pg. 61)

e wimio:UNLOCK (pg. 81)

e wimio:LIST (pg. 69)

71

wfmio:LISTREADYLOCK

Syntax
wfmio:LISTREADYLOCK <waveforml name> <waveforml revision>
<waveform2 name> <waveform2 revision> ...
LISTREADYLOCK?
Description

List the current “ready” revision state of all waveforms and lock those revisions in memory

Parameters
<waveforml name> Name of the first waveform
<waveforml Revision of first waveform
revision>

Notes

e Query only. Command syntax indicates format of response.

e The current “ready” revision state corresponds to a consistent set of waveforms for which all
calculations have been completed.

e You must call wfmio:UNLOCK on each of the waveform/revision combinations returned, lest they be
stuck in memory. A dropped TCP/IP connection automaticall unlocks all waveforms locked by that
connection.

See also

o wimio:METADATA (pg. 73)
e wimio:DATA (pg. 61)

e wimio:UNLOCK (pg. 81)

e wimio:LISTREADY (pg. 70)
o wimio:LISTLOCK (pg. 71)

72

wfmio:METADATA

Syntax
wfmio:METADATA? <waveform name> <revision>
Description

Obtain the metadata for a waveform

Parameters
<waveform name> Name of the waveform of interest
<revision> Revision of interest

Notes

e The response is of the form wfmio:METADATA <waveform name> <revision> { <metadatum
name>: <type>=<value> <metadatum name>:<type>=<value> ...} <data length>

e <data length> is the number of dimensions (an integer) followed by a series of integers, each in
square brackets, that define the dimensions of the waveform in samples. For example
3 [65536] [32] [32] specifies that the data is 32x32 waveforms of 65536 points each.

e Valid types are:

— integer: <value> is an integer.
— string: <value> is a quoted string
— real: <value> is a floating point number.

See also

73

wfmio:REALSZ

Syntax

wfmio:REALSZ <bytes per floating point number>
REALSZ?

Description
Returns the number of bytes per floating point number returned by wfmio:DATA or wimio:DATASHM.

Parameters

<bytes per floating Number of bytes per floating point number.
point number>

Notes

e Query only. Command syntax indicates format of response.
e Should be either 4 (IEEE single precision) or 8 (IEEE double precision).

See also

o wimio:DATA (pg. 61)
e wimio:DATASHM (pg. 62)

74

wfmio:REVISION

Syntax

wfmio:REVISION <waveform name> <waveform revision>
REVISION? <waveform name>

Description

List the current revision of the specified waveform

Parameters
<waveform name> Name of the waveform
<waveform Revision of the waveform
revision>

Notes

e Query only. Command syntax indicates format of response.

e Since this routine does not lock the waveforms into memory there is no guarantee that the specified
waveforms or revisions will remain in memory

See also

o wimio:METADATA (pg. 73)

e wimio:DATA (pg. 61)

o wimio:LIST (pg. 69)

o wimio:REVISIONLOCK (pg. 76)

75

wimio:REVISIONLOCK

Syntax

wfmio:REVISIONLOCK <waveform name> <waveform revision>
REVISIONLOCK? <waveform name>

Description

List the current revision of the specified waveform and lock that revision in memory, or wait for at least a
specific revision and lock it in memory

Parameters
<waveform name> Name of the waveform
<waveform Revision of the waveform
revision>

Notes

Query format finds the latest (not necessarily ready) revision of the specified waveform. The
command format waits for the specified revision (or a later version) to become available.

e In both cases the name and revision of the locked waveform are returned.

e You must call wfmio:UNLOCK on the waveform/revision combinations returned, lest it be stuck in
memory. A dropped TCP/IP connection automaticall unlocks all waveforms locked in memory by
that connection.

e This attempts to obtain the specified revision, but may return a more recent version than specified.

o wimio:METADATA (pg. 73)
e wimio:DATA (pg. 61)

e wimio:LIST (pg. 69)

e wimio:REVISION (pg. 75)

76

wimio:REVISIONREADYLOCK

Syntax
wfmio:REVISIONREADYLOCK <waveform name> <waveform revision>
Description

Wait for at least a specific revision of a waveform to become ready, and lock it in memory

Parameters
<waveform name> Name of the waveform
<waveform Revision of the waveform
revision>

Notes

e The command format waits for the specified revision (or a later version) to become available and
ready.

e In both cases the name and revision of the locked waveform are returned.

e You must call wfmio:UNLOCK on the waveform/revision combinations returned, lest it be stuck in
memory. A dropped TCP/IP connection automaticall unlocks all waveforms locked in memory by
that connection.

e This attempts to obtain the specified revision, but may return a more recent version than specified.
See also

o wimio:METADATA (pg. 73)

e wimio:DATA (pg. 61)

e wimio:LIST (pg. 69)
e wimio:REVISION (pg. 75)

7

wfmio:RPCDATA

Syntax

wfmio:RPCDATA <channel name>
RPCDATA <host name>: <pid>:0x<hexadecimal address>

Description

Ask wimio:to allocate a struct Wfm so that data can be provided to a wfmio:-owned waveform. (RPC USE

ONLY)
Parameters
<channel name> The channel on which to create a new struct Wim
<host name> Host name of the wfmio:module
<pid> Process ID wfmio:module
<hexadecimal Address of the struct Wfm
address>
Notes

e The first syntax specified above is the command syntax. The second syntax is the specification of the
response from the server.

e This command will complete immediately.

e Host name and PID are provided for checking purposes. Don’t use the returned address unless host
name and PID match.

e This call provides an empty struct Wfm. The caller must WfmAlloc() and write data and metadata.

e Once the waveform has been written (or if it couldn’t be written because of a hostname mismatch or
other error), the caller must call wimio:RPCDATADONE to issue the WfmNotify() that this
waveform is ready.

e To repeat, wimio:RPCDATADONE MUST be issued shortly after a successful call to
wimio:RPCDATA.

o If wimio:RPCDATA cannot be used because of a host name or pid mismatch, wfmio:DATA can be
used to upload a waveform.

See also

78

e wimio:RPCDATADONE (pg. 80)

79

wfmio:RPCDATADONE

Syntax

wfmio:RPCDATADONE <host name>: <pid>:0x<hexadecimal address>
RPCDATADONE <channel name> <revision>

Description

Respond following a wimio:RPCDATA indicating that the struct Wfm is complete. (RPC USE ONLY)

Parameters

<host name> Host name of the wfmio:module

<pid> Process ID wfmio:module

<hexadecimal Address of the struct Wfm

address>

<channel name> The channel on which to create a new struct Wim

<revision> revision of the waveform which was just created
Notes

e The first syntax specified above is the command syntax. The second syntax is the specification of the
response from the server.

e This command will complete immediately.

e Host name and PID should be those provided by the response from wfmio:RPCDATA.

See also

o wimio:RPCDATA (pg. 78)

80

wfmio :UNLOCK

Syntax
wfmio:UNLOCK <waveform name> <waveform revision>
Description

Unlock the specified revision of the specified waveform.

Parameters
<waveform name> Name of the waveform
<waveform Revision of the waveform
revision>

Notes

e The specified waveform and revision must have been previously locked in memory by
wimio:REVISIONLOCK or wimio:LISTLOCK.

See also

e wimio:LISTLOCK (pg. 71)
e wimio:REVISIONLOCK (pg. 76)

81

wfmio:WFMS

Syntax
wfmio:WFMS?
Description
Download the full set of user-defined waveforms.

Parameters

Notes

e The response begins with wimio:DELETEALL; and continues with semicolon-deliniated wfmio:DATA
commands containing the data and metadata.

e The output is intended to be fed back in to recreate the waveforms

See also

o wimio:DATA (pg. 61)

82

7.4 wifmmath.so

wfmmat.so allows creation of additional channels that are automatically recalculated mathematical functions of
pre-exisiting channels.

7.4.1 Prerequisites

e library wfmstore.so

e library fftwlink.so (if any fftw-using functions are included)

7.4.2 Configuration parameters

Parameter Type Value
numthreads unsigned decimal integer number of worker threads.

7.4.3 Writing mathematical functions

A new mathematical function is built into wfmmath.so by adding the newly created .synhm4 file for the
mathematical function to the dependencies of wfmmath.syn in the Makefile in the modules directory, e.g.:

wimmath.syn: wfmmath.synm4 wfmmath_avg.synhm4 wfmmath_my_new_module.synhm4

The new module is defined in a synhm4 file and must obey the rules of M4-preprocessed syntax files (e.g. use //#
for comments, etc.) Typically the new module begins with the definition of a new production of the token “math
function”, for example

(struct MathFcn *)math function
-> "CORR",’(’,identifier,’,’,identifier,’)’ =CreateMath(
"CORR",STK,"O1","",
0,0,0.0,0.0,
&CalcCorr,&PrintCorr,NULL,NULL,NULL,NULL) ;

The function CreateMath creates a struct MathFen (defined in wfmmath.synm4) with the specified parameters.
The third and fourth parameters are called “dependencyparams” and “stringparams”, respectively. These two
parameters are strings of digits that indicate which strings to be popped off the string stack count as dependencies
or strings. For example, stringparams="13" indicates that parameters #1 and #3 (the 2nd and 4th parameters)
should be interpreted as strings, not module dependencies.

83

The last six parameters to CreateMath are functions (or optional functions) which should be defined in an
embedded C section inside the .synhm4 file. CalcFen(struct ModData *md,struct MathFcn *p) Defines the
function to call withiin a worker thread to perform the calculation. Note that because it is in a thread, the things it
can read or write are very much restricted. It may read the data and metadata from waveforms which are ready
(ReadyFlag == 0) and have already been locked into memory by a WifmReference(). It may write to the MetaData
and data of GenWim. PrintFcn(struct ModData *md,struct Conn *c,struct Channel *Chan,struct
MathFcn *fcn) should do a ResPrintf() of the parameters needed to recreate this function. PrepareFcn(struct
ModData *md,struct MathFcn *m) is called from the main thread context to prepare the MathFcn m for
calculation. It is called just before m is placed on the PendingComputation list. If NULL, no such function is called.
CleanupFcn(struct ModData *md,struct MathFcn *m) is called from the main thread context after the
calculation of MathFcn m has completed and immediately after it has been removed from the
CompletedComputation list. This function should do any necessary cleanups of data from the computation.
CopyConstructor (struct MathFcn *orig,struct MathFcn *copy) is called when the use #2 (see below)
MathFcn is made from the use #1 MathFcn. This routine can copy any function-specific data if necessary.
Destructor(struct MathFcn #*m) is called then a MathFen (either use #1 or use #2) is no longer needed.

Be sure to lock the fitwlink_mutex when making fftw calls (except fftwlink_execute).

struct MathFcn

struct MathFcn {
struct Node Node;
char *FcnName;
char *Dependencies[MAX_DEPENDENCY_PARAMS]; //# these are the parameters that depend on other waveforms
unsigned long long DependencyRevisions[MAX_DEPENDENCY_PARAMS]; //# These are the revisions of the depende
struct Wfm *WfmDependencies[MAX_DEPENDENCY_PARAMS]; //# Only used in use#2 (above), NULL otherwise. WfmRe
char *StringParams[MAX_STRING_PARAMS];
int queuedflag; //# Indicate that this calculate has been queued on the PendingComputation List
int Disabled; //# Use #1 only. If non-zero, do not define new revisions
long IntegerParamil;
long IntegerParam2;
double RealParamil;
double RealParam?2;
struct List NotifyPtrList; //# Empty unless this is the struct MathFcn pointed to by Chan->ModSpecific
void (*CalcFcn) (struct ModData *md,struct MathFcn *p); //# function to perform calculation (runs in diffe
void (*¥PrintFcn) (struct ModData *md,struct Conn *c,struct Channel *Chan,struct MathFcn *m);
void (*PrepareFcn) (struct ModData *md,struct MathFcn *m);
void (*CleanupFcn) (struct ModData *md,struct MathFcn *m);
void (*CopyConstructor) (struct MathFcn *orig,struct MathFcn *copy); //# Called when the wfm-specific copy
void (*Destructor) (struct MathFcn *m);
void *FcnSpecific;
struct MathFcn *ChanFcn; //# Pointer to the MathFcn of the channel (use #2 only)
int UseCnt; //# Count of the number of currently pending computations. We can’t free up this MathFcn
//# until the UseCnt goes to zero. (use #1 only)

84

struct Wfm *GenWfm; //# Waveform to be written (context #2 only)
};

The struct MathFcn is used to define a mathematical operation. It is used in two separate contexts:

1. To define the math function of a struct Channel. In this case Chan-;ModSpecific points to the MathFcn and
the MathFcn is not on a list.

2. To define a pending or completed computation. In this case the MathFcn may be on a list and it is also
pointed to by Wfm-; ModSpecific.

struct ModData

struct ModData {

struct Module Mod;

//# Module static data goes here

volatile struct List PendingComputation; //# NOTE: WorkNotifyMutex must be locked to access or modify this

volatile struct List CompletedComputation; //# NOTE: WorkNotifyMutex must be locked to access or modify thi
struct List ThreadList;

int numthreads;

pthread_cond_t WorkNotify; //# used to notify threads that there is work to be done

pthread_mutex_t WorkNotifyMutex; //# Also locks PendingComputation and CompletedComputation lists

int parentnotifypipel[2]; //# Write a byte to parentnotifypipel[l] to notify main process that a computation

};

wifmmath has a private struct ModData structure that is accessible from the code used to define new math
functions.

7.4.4 Commands

(commands begin on next page)

85

wfmmath : CLEARAVG

Syntax

wfmmath:CLEARAVG <waveform name>
Description

Reset averaging channel <waveform name>
Parameters

<waveform name> Name of the math waveform to reset.

Notes

See also

86

wfmmath : CLEARACCUM

Syntax

wfmmath:CLEARACCUM <waveform name>
Description

Reset ACCUM channel <waveform name>
Parameters

<waveform name> Name of the wfmmath:ACCUM waveform to reset.

Notes

e The the ACCUM channel will be reset and will be empty until a new version of the waveform it is
dependent on appears.

See also

87

wfmmath :DEF

Syntax
wfmmath:DEF <waveform name>=<function name>(<parameters ...>)
DEF? <waveform name>
Description

Define a new channel to be a mathematical function of other channel(s), or query the mathmatical function
of such a channel

Parameters
<waveform name> Name of the waveform to define of query.
<function name> Name of mathematical function to use
<parameters ...> Parameters to the mathematical function
Notes

e Allowable functions are:

— result=AVG(<channel name>,<number of averages>) or

— (result,stddev)=AVG(<channel name>,<number of averages>): Running average (and
optional standard deviation) of <channel name>.

— result=AVGONCE(<channel name>,<number of averages>) or

— (result,stddev)=AVGONCE(<channel name>,<number of averages>): Average of (and
optional standard deviation) of <channel name>.

— ampl=FFT(<channel name>,<transform dimensions>) or

— (ampl,phase)=FFT(<channel name>,<transform dimensions>): Fourier Transform of
<channel name>. If <transform dimensions> is not specified the transform will be over the
first (minor) dimension of the data. <transform dimensions> can either be an integer,
specifying which dimension to transform over (0 being the first — minor — dimension), or it can be
a list of comma separated such integers enclosed within square brackets, in which case the
transform will be over all the specified dimensions, e.g. FFT(chanl,[0,2,3]) will cause a Fourier
transform over the first, third, and fourth dimension. The highest transformed dimension (fourth
dimension in the previous example) will have size (n/2) + 1 where n is the pre-existing length of
that dimensions and the result of the division is truncated to the next lower integer, not rounded.
All other dimensions will have their pre-existing sizes.
There can be either one or two result parameters. The first (or only) result parameter is the
amplitude of the Fourier transform. The second result parameter is the phase (in radians) of the

88

Fourier transform. The transform is normalized by multiplying by the product of the step sizes of
the transformed dimensions. .

result=CORR(<channel 1> <channel 2> <dimensions>), or

result=CONV(<channel 1>,<channel 2> <dimensions>): CORR and CONV perform
cross-correlation and convolution respectively of <channel 1> with <channel 2> over
dimensions <dimensions>. <dimensions> can be an integer, specifying which dimension to
correlate/convolve over (0 being the first — minor — dimension), or it can be a list of comma
separated such integers enclosed within square brackets, in which case the correlation/convolution
will be over all the specified dimensions. If <dimensions> is not specified, it will be over the
first (minor) dimension.

result=ACCUM(<channel name>,<number of waveforms>: Accumulate a series of
waveforms into a “waveform” with an extra dimension. For example, if <channel name> is
two-dimensional 640x512 and <number of waveforms> is 6 then the result will be a “cube” of
data 640*512*6. Note that all the input waveforms must be the same size or the generated result
will be empty. Also note that ACCUM will not include the current revision in its series, but will
start accumulating with the next version.

result=ACCUMONCE(<channel name>,<number of waveforms>): Like ACCUM but
doesn’t automatically reset when full. Need to call wimmath:CLEARACCUM manually.
result=ADD(<channel a>,<real number b>) or

result=ADD(<channel a>,<channel b>): Compute result=a+b. b may be of lower
dimensionality than a, but the dimensions of b must match the first dimensions of a. The result
gets a copy of a’s metadata.

result=SUB(<channel a>,<real number b>) or

result=SUB(<channel a>,<channel b>): Compute result=a-b. b may be of lower
dimensionality than a, but the dimensions of b must match the first dimensions of a. The result
gets a copy of a’s metadata.

result=MUL(<channel a>,<real number b>) or

result=MUL(<channel a>,<channel b>): Compute result=a*b. b may be of lower
dimensionality than a, but the dimensions of b must match the first dimensions of a. The result
gets a copy of a’s metadata.

result=DIV(<channel a> ,<real number b>) or

result=DIV(<channel a>,<channel b>): Compute result=a/b. b may be of lower
dimensionality than a, but the dimensions of b must match the first dimensions of a. The result
gets a copy of a’s metadata.

result=INT(<channel>) or

result=INT(<channel>,<dimension>): Integrate <channel> over <dimension> (default 1).
The result has the same dimensionality as <channel> and is the running integral over the
specified dimension.

result=DIFF(<channel>) or

result=DIFF(<channel>,<dimension>): Differentiate <channel> over <dimension>
(default 1). The result has the same dimensionality as <channel> and is the derivative over the
specified dimension. The resulting waveform will be shifted by exactly 1/2 sample in the forward
direction and its last sample will have a value of 0.0.

89

See also

result=INTEGRAL(<channel>) or

result=INTEGRAL(<channel>,<dimension>): Calculate the integral of <channel> over the
specified dimension (default 1). The result will have one less dimension than <channel> and is
the integral over all the samples along the specified dimension.
result=SUBEARLYAVG(<channel>,<threshold>) or
result=SUBEARLYAVG(<channel>,<threshold>,<dimension>): Subtract the average of
the first elements (up to <threshold>) along <dimension> of <channel> from <channel>.
<dimension> is from 0 (minor dimension) to (ndim-1) (major dimension), with the major
dimension used by default.

result=FILTEREDINT(<channel>,<freq 1> ,<freq 2>): Integrate the one-dimensional
waveform in <channel>, then subtract out its average slope, then high-pass filter it with a
frequency-domain raised-cosine that starts at 0.0 at <freq 1> and reaches 1.0 at <freq 2>.
result=MAX(<channel>): Find the scalar maximum value (over all dimensions) of the specified
channel.

result=CROP (< channel>,[axislmin,axislmax],[axis2min,axis2max],...): Crop the specified
waveform or image.

result=DECIMATE(<channel>,<first axis decimate factor>,<second axis decimate
factor>, ...): Downsample the specified channel by the specified factors in each axis.
result=DBABS(<channel>): Convert to dB (return 20log 10(abs(<channel>)))

e wimmath:UNDEF (pg. 94)

90

wfmmath : ENABLE

Syntax

wfmmath:ENABLE <waveform name>
Description

Enable math channel <waveform name>
Parameters

<waveform name> Name of the math channel to enable.

Notes

e Math channels are enabled by default.

e Enabling one result channel of a function with multiple outputs enables all result channels of that
function

See also

e wimmath:ENABLED (pg. 92)
e wimmath:DISABLE (pg. 93)

91

wfmmath : ENABLED

Syntax

wfmmath:ENABLED? <waveform name>
Description

Determine whether math channel <waveform name> is enabled.
Parameters

<waveform name> Name of the math channel to check.

Notes

e Returns response of the form wimmath:ENABLE <waveform name> or wimmath:DISABLE
<waveform name> depending on whether <waveform name> is enabled.

See also

e wimmath:ENABLE (pg. 91)
e wimmath:DISABLE (pg. 93)

92

wfmmath:DISABLE

Syntax

wfmmath:DISABLE <waveform name>
Description

Disable math channel <waveform name>
Parameters

<waveform name> Name of the math channel to disnable.

Notes

e Math channels are enabled by default.

e Disabling one result channel of a function with multiple outputs disables all result channels of that
function

See also

o wimmath:ENABLE (pg. 91)
e wimmath:ENABLED (pg. 92)

93

wfmmath : UNDEF

Syntax

wfmmath:UNDEF <math channel name>
Description

Remove the math channel <math channel name>

Parameters

<math channel Name of the math channel to remove.
name>

Notes

See also

e wimmath:DEF (pg. 88)
e wimmath:UNDEFALL (pg. 95)

94

wifmmath : UNDEFALL

Syntax

wfmmath:UNDEFALL <math channel name>
Description

Delete all math channels

Parameters

Notes

See also

e wimmath:DEF (pg. 88)
o wimmath:UNDEF (pg. 94)

95

wifmmath:WAITAVG

Syntax

wifmmath:WAITAVG <waveform name>
Description

Wait for averaging channel <waveform name> to have performed a complete set of averages
Parameters

<waveform name> Name of the math averaging channel to wait for.

Notes

e This waits for a complete and ready averaging channel. It does not lock the completed version in
memory.

See also

96

7.5 das4020capture.so

das4020capture.so provides waveform acquisition from the analog inputs of the Measurement Computing
PCI-DAS4020/12 board. It requires Warren Jasper’s DAS4020 driver from
ftp://1x10.tx.ncsu.edu/pub/Linux/drivers. For this module to work, the driver must be inserted into the kernel
(insmod) and permissions on the /dev/das4020-12/ device nodes must be set correctly (see udev rules in the driver
README). The driver include file pci-das4020.h must exist in /usr/include or /usr/local/include for this module
to compile. Please note that the maximum samplecnt is limited by the size of the driver’s buffer. This can be
changed by adjusting ADC_BUFF_PHY _SIZE in a2dc.h and recompiling the driver. The das4020 card is ready to
accept triggers once the previously captured waveform is READY (CALCSYNC FALSE) or once all dependencies
of the previously captured waveform are READY (CALCSYNC TRUE).

The das4020 driver versions prior to 1.18 used different device node names. You will have to edit the config files to
use the older device node names if you are using an old driver version.

7.5.1 Prerequisites

e library wfmstore.so
e library metadata.so

e library rpc.so

97

7.5.2 Configuration parameters

Parameter Type Value
cardname quoted string DAS4020 analog capture device base name (default
is “/dev/das4020-12/ad0_"). The channel number is
appended to this base name
numchannels unsigned integer Number of channels to use, 1-4 (default is 4).
samplecnt unsigned integer Number of samples to record per waveform, default is
100000
range<i> “1V” or “5V7 Voltage range for channel <i> (default 1V)
capturefreq real number Capture frequency in default units of Hz (default 10
MHz). Note that 20 MHz capture supports only two
channels
hwtrigsrc “ext”,“int”, or “chl” through hardware trigger source: external connector (“ext”,
“ch4” default), 40 pin header (“int”), or analog triggering on
channel 1 through 4
channelprefix quoted string prefix of created channel names (default “CH”)
probeatten<i> real number attenuation factor of the probe on channel <i> (de-
fault 1.0).
atrigmode “POS_HIST”, “NEG_HIST”, Analog trigger slope and mode (see
“POS_SLOPE”, “NEG_SLOPE”, das4020capture:ATRIGMODE (pg. 102)).
or “WINDOW?”
chan<i>name quoted string Channel name for channel <i>, overriding channelpre-
fiz (above).
atrighigh Voltage High voltage level for analog triggering
atriglow Voltage Low voltage level for analog triggering
calcsync boolean (true or false) If true, don’t allow new acquisitions until computa-
tions resulting from the previous acquisition are com-
plete. (default is false)
clksrc “INTERNAL”, “EXTBNC”, or clock source for the waveform acquisition: IN-
“ADSTARTTRIG” TERNAL means use the internal 40 MHz crystal.
EXTBNC means the bottom BNC connector, and AD-
STARTTRIG means use the ADSTARTTRIG pin on
the IDC header.
dsfactor<i> unsigned decimal integer Downsampling factor. If this is greater than 1, it will
cause downsampling of channel <i>
hwecapturefreq frequency (Hz) if clksrc is not INTERNAL, hwcapturefreq controls the
internal frequency divider. Set hwcapturefreq to the
capture frequency you would get with the desired di-
vider setting if your clock was 40 MHz. For example,
if you want a /4 divider, you would set hweapturefreq
to 10 MHz. Note that the divider must be at least 2
for two channel or 4 for 4 channels.
fifosize Fifo size, in 24-bit words Controls the DAS4020 capture FIFO size, default

32768. Reduce this if the DAS4020 is using too much
PCI bandwidth and causing other cards to overflow
their FIFO’s. Powers of 2 between 256 and 32768 are
ad®ptible.

Das4020capture also supports the standard metadata initialization configuration parameters setstaticmetadatum
and addquerymetadatum. The metadata provided by these methods is attached to the captured waveforms (all
channels). It also supports configuration parameters of the form chl:setstaticmetadatum to set metadata
parameters for a single channel.

7.5.3 Commands

In addition to the commands described on the next pages, das4020capture also supports the standard metadata
specification parameters setstaticmetadatum, addquerymetadatum, and delmetadatum. The metadata provided
by these methods is attached to the captured waveforms (all channels). It also supports commands of the form
das4020capture:chl:setstaticmetadatum, etc. to set metadata parameters for a single channel.

(commands begin on next page)

99

das4020capture: ATRIGHIGH

Syntax

das4020capture: ATRIGHIGH <trigger voltage>
ATRIGHIGH? <trigger voltage>

Description
Specify or query the low analog trigger voltage.
Parameters

<trigger voltage> Desired trigger voltage

Notes

e The high analog trigger voltage is used for rising-edge triggering, the hysteresis of falling edge
triggering, and window triggering.

e Changing the analog trigger voltage will cancel any acquisition currently in progress on the capture
card.

e The actual quantized trigger voltage will be returned

e Changing the gain setting or trigger source may cause the the trigger level to be re-quantized to
match the new setting.

See also
e das4020capture: HWTRIGSRC (pg. 109)

e das4020capture: ATRIGLOW (pg. 101)
e das4020capture:ATRIGMODE (pg. 102)

100

das4020capture: ATRIGLOW

Syntax

das4020capture: ATRIGLOW <trigger voltage>
ATRIGLOW? <trigger voltage>

Description
Specify or query the low analog trigger voltage.
Parameters

<trigger voltage> Desired trigger voltage

Notes

e The low analog trigger voltage is used for falling-edge triggering, the hysteresis of rising edge
triggering, and window triggering.

e Changing the analog trigger voltage will cancel any acquisition currently in progress on the capture
card.

e The actual quantized trigger voltage will be returned

e Changing the gain setting or trigger source may cause the the trigger level to be re-quantized to
match the new setting.

See also
e das4020capture: HWTRIGSRC (pg. 109)

e das4020capture:ATRIGHIGH (pg. 100)
e das4020capture:ATRIGMODE (pg. 102)

101

das4020capture: ATRIGMODE

Syntax

das4020capture:ATRIGMODE <trigger mode>
ATRIGMODE? <trigger mode>

Description
Specify or query the analog trigger slope/mode.
Parameters

<trigger mode> Desired trigger mode

Notes

Valid trigger modes are:

POS_HIST Trigger on analog voltage rising above ATRIGHIGH voltage with ATRIGLOW
hysteresis (i.e. Schmitt trigger)

NEG _HIST Trigger on analog voltage falling below ATRIGLOW voltage with ATRIGHIGH
hysteresis (i.e. Schmitt trigger)

POS_SLOPE Trigger on analog voltage rising above ATRIGHIGH voltage.
— NEG_SLOPE Trigger on analog voltage falling below ATRIGLOW voltage.
— WINDOW Trigger on analog voltage between ATRIGLOW and ATRIGHIGH voltages.

Changing the analog trigger mode will cancel any acquisition currently in progress on the capture
card.

See also
e o das4020capture:HWTRIGSRC (pg. 109)

e das4020capture:ATRIGHIGH (pg. 100)
e das4020capture: ATRIGLOW (pg. 101)

102

das4020capture:CALCSYNC

Syntax

das4020capture:CALCSYNC <sync_enabled>
CALCSYNC? <sync_enabled>

Description

Set whether new acquisitions should be inhibited until computation from the previous acquisition is
complete

Parameters

<sync_enabled> Whether new acquisitions should be inhibited, true or false

Notes

o Effective following the next trigger. Computations currently in progress will not be waited for before
allowing a trigger.

See also

103

Syntax

das4020capture:CLKSRC

das4020capture:CLKSRC <clock source> Hz

CLKSRC?

Description

Specify or query the clock source for waveform capture A/D

Parameters

<clock source> Desired clock source

Notes

See also

<clock source> may be INTERNAL, EXTBNC, or ADSTARTTRIG to select the internal 40 MHz source,
the bottom BNC connector, or the A/D Start Trig pin on the IDC header, respectively.

Changing the clock source will cancel any acquisition currently in progress on the capture card.
The card is designed for a maximum clock rate of 40 MHz.

Internal limitations of the card require divisors of at least 2 (1 or 2 channels) or 4 (4 channels), so
depending on the number of channels the maximum sample rate will be 1/2 or 1/4 of the frequency of
the external clock.

Use das4020capture: HWFREQ to set the divisor and das4020capture:FREQ to set the actual divided
clock frequency when not in INTERNAL mode.

das4020capture:SAMPLECNT (pg. 113)
das4020capture:NUMCHANNELS (pg. 110)
das4020capture:FREQ (pg. 107)
das4020capture: HWFREQ (pg. 108)

104

das4020capture:DSFACTOR

Syntax

das4020capture:CH<i>:DSFACTOR <factor>
CH<i>:DSFACTOR?

Description
Specify or query the downsampling factor for channel <i>
Parameters

<factor> Desired downsampling factor.

Notes

e If the downsampling factor is d, only one of every d samples will be recorded, and the time step will
be d times the actual sample period.

e This is useful primarily for waveforms that are slow changing, or if due to unavoidable clocking
restraints it is necessary to oversample.

See also

das4020capture:SAMPLECNT (pg. 113)
das4020capture:NUMCHANNELS (pg. 110)
das4020capture:FREQ (pg. 107)
das4020capture: HWFREQ (pg. 108)

105

das4020capture:FIFOSIZE

Syntax

das4020capture:FIFOSIZE <fifo size>
FIFOSIZE? <fifo size>

Description
Specify or query the amount of the DAS internal FIFO to use.
Parameters

<fifo size> Desired FIFO size, in 24-bit words

Notes

e The default value of 32768 corresponds to 32768 24 bit words in each of the two (X and Y) FIFOs, for
a memory-equivalent of 256 kilobytes.

e This may be set lower to avoid conflicts with other devices that have smaller FIFO’s. By reducing the
FIFO size, data transmissions are sent in smaller chunks that are less likely to overflow the FIFO of
another device that is writing data to memory at the same time.

e Only powers of 2 starting at 256 and going up to 32768 are permitted
See also

e das4020capture:SAMPLECNT (pg. 113)
e das4020capture:NUMCHANNELS (pg. 110)

106

das4020capture:FREQ

Syntax

das4020capture:FREQ <sample frequency> Hz
FREQ? <sample frequency> Hz

Description
Specify or query the number of samples to acquire per second

Parameters

<sample Desired sample rate (default Hz)
frequency>

Notes

e Changing the sample frequency will cancel any acquisition currently in progress on the capture card.

e Only integer fractions of 20 MHz are permitted. When specifying the sample frequency, check the
response from the server to determine the actual sample rate.

e The maximum sample rate is 20 MHz (1 or 2 channels) or 10 MHz (4 channels)

e If CLKSRC is not INTERNAL then this must be set to the actual divided clock frequency. In that
case the clock devision is determined by das4020capture: HWFREQ.

See also
e das4020capture:SAMPLECNT (pg. 113)

o das4020capture:NUMCHANNELS (pg. 110)
e das4020capture: HWFREQ (pg. 108)

107

das4020capture: HWFREQ

Syntax

das4020capture:HWFREQ <sample frequency> Hz
HWFREQ? <sample frequency> Hz

Description
Specify or query the capture frequency to program the DAS4020 card with

Parameters

<sample Desired capture frequency
frequency>

Notes

e Changing the sample frequency will cancel any acquisition currently in progress on the capture card.

e Only integer fractions of 20 MHz are permitted. When specifying the sample frequency, check the
response from the server to determine the actual sample rate.

e The maximum HWFREQ is 20 MHz (1 or 2 channels) or 10 MHz (4 channels)
o If CLKSRC is INTERNAL, this will not be adjustable and will track das4020capture:FREQ.

o If CLKSRC is not INTERNAL then this is used to determine the clock division of the external clock.
Program this with the frequency you would use to get the desired division if the external clock were
40 MHz. For example, to get a division of 4, program this to 10 MHz. To get a division of 12,
program this to 3.33 MHz.

See also
e das4020capture:SAMPLECNT (pg. 113)

o das4020capture:NUMCHANNELS (pg. 110)
e das4020capture: HWFREQ (pg. 108)

108

das4020capture:HWTRIGSRC

Syntax

das4020capture:HWTRIGSRC <trigger source>
HWTRIGSRC? <trigger source>

Description

Specify or query the trigger source

Parameters
<trigger source> Desired trigger source: “EXT” for the bottom BNC connector on the
card or “INT” for the trigger line on the 40 pin header, or “CH1”
through “CH4” for triggering from the analog input channels.
Notes

e Changing the trigger source will cancel any acquisition currently in progress on the capture card.

See also

e das4020capture:ATRIGMODE (pg. 102)

109

das4020capture: NUMCHANNELS

Syntax

das4020capture:NUMCHANNELS <number of channels>
NUMCHANNELS? <number of channels>

Description
Specify or query the number of channels to acquire

Parameters

<number of Desired number of channels
channels>

Notes

e Changing the number of channels will cancel any acquisition currently in progress on the capture card.
e 1, 2, or 4 channels are allowed.
e A sample rate of 20MHz requires 2 or fewer channels

See also

o das4020capture:SAMPLECNT (pg. 113)
e das4020capture:FREQ (pg. 107)

110

das4020capture:CHi:PROBEATTEN

Syntax

das4020capture:CH<i>:PROBEATTEN <attenuation factor>
CH<i>:PROBEATTEN? <attenuation factor>

Description

Specify or query the attenuation factor of the probe attached to channel <i>.

Parameters
<i> Channel number: 1-4
<attenuation Desired attenuation factor (default 1.0)
factor>

Notes

See also

e das4020capture:CHi:RANGE (pg. 112)

111

das4020capture:CHi:RANGE

Syntax

das4020capture:CH<i>:RANGE <input range>
CH<i>:RANGE? <input range>

Description

Specify or query input gain/attenuation setting for the capture card

Parameters

<i> Channel number: 1-4

<input range> Desired input range: 1V or 5V
Notes

e Changing the input range will cancel any acquisition currently in progress on the capture card.

e Current (as of Jan 2006) versions of the driver do not correctly handle the case of different gain
settings on different channels. Hopefully this will be fixed eventually. In the mean time, be sure to use
the same setting on all four channels.

See also

e das4020capture:CHi:PROBEATTEN (pg. 111)

112

das4020capture: SAMPLECNT

Syntax

das4020capture:SAMPLECNT <number of samples>
SAMPLECNT? <number of samples>

Description
Specify or query the number of samples to acquire per waveform

Parameters

<number of Number of samples to acquire
samples>

Notes

e Changing the number of samples will cancel any acquisition currently in progress on the capture card.

e The maximum permissible SAMPLECNT is determined when the das4020 driver is compiled by the
symbol ADC_BUFF_PHY SIZE specified in a2dc.h. To increase ADC_BUFF_PHY _SIZE you must
change that parameter and recompile and reinstall the driver.

See also

e das4020capture:FREQ (pg. 107)

113

7.6 edtcapture.so

edtcapture.so provides image capture with the EDT PCI-DV CLINK CameralLink framegrabber
(http://www.edt.com) and possibly other capture cards supported by the EDT PCI-DV driver.

To use this module, you must have the EDT PCI-DV driver installed in /usr/local/EDTpdv or /opt/EDTpdv. The
edtinit shell script (provided with the driver) should be run on system boot, and you need may in addition need to
run the initcam program to complete initialization of the driver before using this module (e.g.
/usr/local/EDTpdv/initcam -f /usr/local/EDTpdv/camera _config/sc6000.cfg). Also be sure that
/dev/pdv0 has appropriate permissions.

7.6.1 Prerequisites

e library wfmstore.so
e library metadata.so

e library rpc.so

7.6.2 Configuration parameters

Parameter Type Value

devname quoted string PDV device name for pdv_open() (default is “pdv”).

unit unsigned integer Unit number for pdv_open() (default is 0)

channel unsigned integer Channel number for pdv_open() (default is 0)

width unsigned integer Width of camera image, in pixels (default is 640)

height unsigned integer Height of camera image, in pixels (default is 512)

numbufs unsigned integer Size of the ring buffer in frames (default is 10)

channelname quoted string Name of the channel to contain the images (default is
“EDT”)

calcsync boolean (true or false) If true, don’t allow new acquisitions until computa-

tions resulting from the previous acquisition are com-
plete. (default is false)

discardtopline boolean If true, always ask the EDT library for one extra line,
then discard the first line of each image capture

Edtcapture also supports the standard metadata initialization configuration parameters setstaticmetadatum and
addquerymetadatum. The metadata provided by these methods is attached to the captured waveforms.

114

7.6.3 Commands

In addition to the commands described on the next pages, edtcapture also supports the standard metadata
specification parameters setstaticmetadatum, addquerymetadatum, and delmetadatum. The metadata provided
by these methods is attached to the captured images.

(commands begin on next page)

115

edtcapture:CALCSYNC

Syntax

edtcapture:CALCSYNC <sync_enabled>
CALCSYNC? <sync_enabled>

Description

Set whether new acquisitions should be inhibited until computation from the previous acquisition is

complete
Parameters
<sync_enabled> Whether new acquisitions should be inhibited, true or false
Notes
e Enabling or disabling CALCSYNC will cancel any acquisition currently in progress on the
framegrabber.
See also

116

edtcapture:GEOMETRY

Syntax

edtcapture:GEOMETRY <width>*<height>
GEOMETRY? <width>*<height>

Description

Specify or query the image size expected from the camera.

Parameters
<width> Width of the image, in pixels.
<height> Height of the image, in pixels.
Notes

e Changing the geometry will cancel any acquisition currently in progress on the framegrabber.

See also

117

7.7 hp34401_thermistor.so

hp34401_thermistor.so transforms a thermistor and HP 34401A benchtop multimeter into a temperature meter.
The computer sets the multimeter to resistance mode, transforms the resistance to temperature using a lookup
table and linear interpolation, and displays the temperature on the hp34401 display. The temperature can also be

read out through the dataguzzler command interface.

7.7.1 Prerequisites

e library multiio.so

7.7.2 Configuration parameters

Parameter Type Value
uri quoted string multiio URI for HP 34401A. Use URI
‘‘serial:///dev/ttyS0:9600:7:e:2°° for

rt_priority unsigned integer

inttime real number

timer_period real number

thermistor_calibration_in_celsius boolean (true or false)

thermistor_calibration

timeoutms integer

7.7.3 Commands

(commands begin on next page)

array of real numbers

118

HP34401A serial or ‘‘gpib://0:8:0:0:10°° for
HP34401A gpib address 8

POSIX real time priority of data collection thread (de-
fault 0)

Measurement integration time in power line cycles. Al-
lowed values are .02, .2, 1, 10, or 100. The longer the
inttime, the longer the GPIB bus is tied up by the
measurement thread waiting for the voltmeter.
Desired time between measurments, in seconds.

Set to true if the temperatures in the calibration table
are in deg. C. Set to false if the temperatures are in
deg. K.

Thermistor calibration data. Should consist of alter-
nating values of resistance (Ohms) and temperature
(deg. K or C), both of which should be monotonic.
communications timeout, in milliseconds. Negative in-
dicates wait forever

hp34401thermistor:TEMP

Syntax

hp34401thermistor:TEMP? <temperature> C

Description
Query the last temperature measured by the termistor.
Parameters

<temperature> The measured temperature in degrees Celsius.

Notes

See also

e hp34401thermistor:TEMPREV (pg. 120)

119

hp34401thermistor: TEMPREV

Syntax

hp34401thermistor: TEMPREV? <temperature> C <revision> <timestamp_sec>
<timestamp_nsec>

Description

Query the last temperature measured by the termistor.

Parameters
<temperature> The measured temperature in degrees Celsius.
<revision> Revision count of temperature.
<timestamp_sec> Seconds component of the timestamp.
<timestamp_nsec> Nanoseconds component of the timestamp.

Notes

See also

e hp34401thermistor:TEMP (pg. 119)
e hp34401thermistor:WAITTEMPREV (pg. 121)

120

hp34401thermistor:WAITTEMPREV

Syntax

hp34401thermistor:WAITTEMPREV? <revision> WAITTEMPREV <temperature> C
<revision> <timestamp_sec> <timestamp_nsec>

Description

Wait for the specified revision, then query the last temperature measured by the termistor.

Parameters
<temperature> The measured temperature in degrees Celsius.
<revision> Revision count of temperature.
<timestamp_sec> Seconds component of the timestamp.
<timestamp_nsec> Nanoseconds component of the timestamp.
Notes

e The first syntax above is the format of the query, the second is the format of the response

e The obtained revision may be later than the requested revision.

See also

e hp34401thermistor:TEMP (pg. 119)
e hp34401thermistor: TEMPREV (pg. 120)

121

7.8 agilent33x20awg.so

agilent33x20awg.so uses an Agilent 33220A (or an older HP/Agilent 33120A) function generator as an arbitrary
waveform generator. It places the 33220A in arbitrary waveform burst mode, and uploads a named wavefrom from
wimstore.so as the arbitrary waveform. Note that the named waveform should have no more samples than the
amount of storage in the function generator (see agilent33x20awg:NUMPOINTS (pg. 126)). The named waveform
should go between voltages of +1V and -1V.

7.8.1 Prerequisites

e library multiio.so

e library wfmstore.so

7.8.2 Configuration parameters

Parameter Type Value

uri quoted string multiio URI for function generator. Use
URI serial:///dev/ttyS0:9600:8:n:2 for
HP33120a serial or ‘‘gpib://0:10:0:0:10°°
for 33120A or 33220A gpib address 10 decimal or
tcp://fengen: 5025 for agilent 33220a tep/ip on host

fengen.

arbchan channel name Name of wimstore.so channel to use as source to up-
load to waveform generator (default ARB)

ampl voltage (Volts) The desired peak-to-peak amplitude (into 50 ohms)
(default 100 mV).

offset voltage (Volts) Desired voltage offset (into 50 ohms) (default 0 V).

ncyc integer desired number of cycles of the arbitrary waveform per
trigger

trigsrc BUS, EXT, or IMM desired trigger source: BUS (or trigger button on

front), EXTernal connector on rear, or IMMedate au-
tomatic triggering.

output ON or OFF Desired initial output state: ON or OFF

lockout TRUE or FALSE should the instrument front panel (excluding the LO-
CAL button) be locked out?

7.8.3 Commands

(commands begin on next page)

122

agilent33x20awg: AMPL

Syntax

agilent33x20awg:AMPL <voltage amplitude> V
AMPL? <voltage amplitude> V

Description
Specify or query the arbitrary waveform generator peak-to-peak output voltage.

Parameters

<Voltage The desired amplitude (Volts)
amplitude>

Notes

e This assumes the arbitrary waveform (see agilent33x20awg:ARBCHAN) has minimum value -1.0 and
maximum value 1.0.

See also

e agilent33x20awg:ARBCHAN (pg. 124)
e agilent33x20awg:OFFSET (pg. 127)

123

agilent33x20awg: ARBCHAN

Syntax

agilent33x20awg:ARBCHAN <channel name>
ARBCHAN? <channel name>

Description
Specify or query the channel used to upload to the arbitrary waveform generator.
Parameters

<channel name > Name of the wfmstore.so channel.

Notes

See also

124

agilent33x20awg:NCYC

Syntax

agilent33x20awg:NCYC <number of cycles>
NCYC? <number of cycles>

Description
Specify or query the number of arbitrary waveform cycles per trigger.
Parameters

<number of cycles> The desired number of cycles

Notes

See also

125

agilent33x20awg: NUMPOINTS

Syntax
agilent33x20awg:NUMPOINTS? <number of points>
Description
Query the function generator memory size.
Parameters
<number of points> Function generator memory size
Notes

e 16000 for HP33120, 65536 for Agilent 33220A.

e This module will refuse to upload waveforms longer than the function generator memory size.
Waveforms shorter than the function generator memory size will be zero-padded.

See also

126

agilent33x20awg: OFFSET

Syntax

agilent33x20awg:0FFSET <voltage offset> V
OFFSET? <voltage offset> V

Description
Specify or query the arbitrary waveform generator output voltage offset.
Parameters

<Voltage offset> The desired offset (Volts)

Notes

See also

e agilent33x20awg:AMPL (pg. 123)

127

agilent33x20awg: OUTPUT

Syntax

agilent33x20awg:0UTPUT <output status>
OUTPUT? <output status>

Description

Set or query whether the function generator output is enabled (Agilent 33220A only).

Parameters

<output status> The output status: ON or OFF

Notes

See also

128

agilent33x20awg: SAMPLERATE

Syntax
agilent33x20awg:SAMPLERATE? <sample rate>
Description
Query the function generator hardware sample rate.
Parameters
<sample rate> Sample rate in Hz
Notes

e 40 MHz for HP33120, 50 MHz for Agilent 33220A.

e For best results, the arbitrary waveform should use a sample rate that is a factor of the function
generator hardware sample rate.

See also

129

agilent33x20awg: TRIGSRC

Syntax

agilent33x20awg:TRIGSRC <trigger source>
TRIGSRC? <trigger source>

Description

Specify or query the function generator trigger source.

Parameters
<trigger source> BUS (Button on console), EXTernal trigger, or IMMediate automatic
trigger.
Notes
See also

130

7.9 tabor506lawg.so

tabor5061lawg.so controls a Tabor WW5061 as an arbitrary waveform generator. It places the wwb061 in arbitrary
waveform burst mode, and uploads a named wavefrom from wfmstore.so as the arbitrary waveform. Note that the
named waveform should have no more samples than the amount of storage in the function generator (see
tabor5061awg:NUMPOINTS (pg. 137)). The named waveform should go between voltages of +1V and -1V.

Please note that the 5061 firmware (v1.61 as of this writing) is rather buggy. GPIB waveform upload/download
does not seem to work properly for unknown reasons, and despite the documentation the instrument does not
support waveform upload/download in SCPI over TCP. Instead the instrument switches to a proprietary (and
buggy) UDP protocol that doesn’t deal with all of the possibilities for dropped packets (hence there’s a chance the
upload could fail). Also please note to enable the UDP transfers any software or hardware firewall between the
computer and the WW5061 must allow UDP packets from the instrument on port 7501. For example (using Linux
iptables):

iptables -A INPUT -i ethl -p udp -m udp --dport 7501 -j ACCEPT

7.9.1 Prerequisites

e library multiio.so

e library wfmstore.so

131

7.9.2 Configuration parameters

Parameter Type Value

uri quoted string multiio URI for function generator. Use URI
“‘tcp://hostname:23’’ tcp/ip on host hostname.
GPIB should work also, but currently firmware bugs
in the instrument seem to cause it to fail during the
waveform upload process.

arbchan channel name Name of wimstore.so channel to use as source to up-
load to waveform generator (default ARB)

ampl voltage (Volts) The desired peak-to-peak amplitude (into 50 ohms)
(default 100 mV).

offset voltage (Volts) Desired voltage offset (into 50 ohms) (default 0 V).

ncyc integer desired number of cycles of the arbitrary waveform per
trigger

output ON or OFF Desired initial output state: ON or OFF

memsize integer Installed memory (max waveform storage) size, in
bytes, default 1000000

extelk boolean Enable external clock input (SMA connector)

extclkfreq frequency (Hz) The initial frequency of the external clock

udphostname quoted string the function generator host name (should be the
same as in the TCP URI) for UDP waveform up-
load/download

udplisteninterface quoted string IP address or host name of ethernet interface for lis-

7.9.3 Commands

(commands begin on next page)

tening for UDP data from the function generator. If
not specified, will listen on all interfaces.

132

taborb06lawg: AMPL

Syntax

tabor5061awg:AMPL <voltage amplitude> V
AMPL? <voltage amplitude> V

Description
Specify or query the arbitrary waveform generator peak-to-peak output voltage.

Parameters

<Voltage The desired amplitude (Volts)
amplitude>

Notes

e This assumes the arbitrary waveform (see tabor5061awg:ARBCHAN) has minimum value -1.0 and
maximum value 1.0.

See also

e tabor506lawg:ARBCHAN (pg. 134)
e tabor5061awg:OFFSET (pg. 138)

133

taborb061lawg: ARBCHAN

Syntax

tabor5061awg: ARBCHAN <channel name>
ARBCHAN? <channel name>

Description
Specify or query the channel used to upload to the arbitrary waveform generator.
Parameters

<channel name > Name of the wfmstore.so channel.

Notes

See also

134

taborb061lawg: EXTCLKFREQ

Syntax

tabor5061awg:EXTCLKFREQ <frequency>
EXTCLKFREQ DISABLED
EXTCLKFREQ?

Description
Set or query the currently assumed external clock frequency.
Parameters

<frequency> The currently assumed external clock frequency (default Hz)

Notes

e Changing the external clock frequency triggers a new waveform upload. But you need to update the
waveform first. The best sequence is:

1. Set tabor5061lawg: ARBCHAN to a nonexistent/empty waveform.

2. Adjust the hardware frequency source for the external clock.

3. Issue tabor5061lawg: EXTCLKFREQ with the new clock frequency

4. Update the correct channel with a waveform with the new clock frequency
5. Set tabor5061awg: ARBCHAN back to the correct channel

e tabor5061lawg: EXTCLKFREQ DISABLED disables use of the external clock.

e When no external clock is in use, the waveform generator generates an internal clock based on the
sample period from tabor5061lawg:ARBCHAN

See also

135

taborb5061lawg:NCYC

Syntax

tabor5061awg:NCYC <number of cycles>
NCYC? <number of cycles>

Description
Specify or query the number of arbitrary waveform cycles per trigger.
Parameters

<number of cycles> The desired number of cycles

Notes

See also

136

taborb061lawg: NUMPOINTS

Syntax

tabor5061awg: NUMPOINTS? <number of points>

Description
Query the function generator memory size.
Parameters

<number of points> Function generator memory size

Notes

e 524288 or 1048576, depending on model (must be properly set in config file).

e This module will refuse to upload waveforms longer than the function generator memory size.

See also

137

taborb506lawg: OFFSET

Syntax

tabor5061awg:OFFSET <voltage offset> V
OFFSET? <voltage offset> V

Description
Specify or query the arbitrary waveform generator output voltage offset.
Parameters

<Voltage offset> The desired offset (Volts)

Notes

See also

e tabor5061lawg:AMPL (pg. 133)

138

taborb061lawg: OUTPUT

Syntax

tabor5061awg:0UTPUT <output status>
OUTPUT? <output status>

Description
Set or query whether the function generator output is enabled.
Parameters

<output status> The output status: ON or OFF

Notes

See also

139

7.10 wfmgen.so

wimgen.so creates custom-specified burst, sweep, or noise waveforms. If the wfmioname is specified, wfmgen
donates ownership of created waveforms/channels to the specified WFMIO-compatible module. Otherwise it
maintains ownership itself and reports a list with every SET query, regenerates every waveform with every SET
command, and regenerates every waveform if DT is changed.

7.10.1 Prerequisites

e library rpc.so

e library wfmstore.so

7.10.2 Configuration parameters

Parameter Type Value

wfmioname quoted string name of the wimio module (gets ownership of the gen-
erated waveforms), default WEM (must be within the
same process!)

dt time (sec) step time for the generated waveforms (default 1 us)
npoints unsigned integer number of points per waveform (default 65536)
timedelay time (seconds) time delay before first point. (default 0)

ampl voltage (Volts) amplitude of waveforms to generate (half the desired

peak-to-peak amplitude) (default 0.5 V)

7.10.3 Commands

(commands begin on next page)

140

wimgen:BURST

Syntax

wimgen:BURST <waveform name> <f> <t0> <tl1> <t2> <t3>

Description

Create a waveform containing a modulated tone burst

Parameters
<waveform name> Name of the waveform to create
<f> Frequency of the burst

<t0>,<tl>,<t2>,<t3> Parameters of the raised-cosine envelope

Notes

e The zero-phase point is t=0

o See wimgen:WINDOW for information on the raised-cosine envelope parameters.
See also

o wimgen:WINDOW (pg. 149)

141

wimgen:DT

Syntax

wimgen:DT <time_step>
DT?

Description
Set or query the time step used for waveform creation
Parameters

<time_step> The time step (default seconds)

Notes

e If the wfmgen:module is programmed to store its own waveforms (the wfmioname configuration
parameter is not set), then changing DT will cause the module to regenerate all of its own waveforms
with the new time step.

See also

e wfmgen: TIMEDELAY (pg. 148)

142

wimgen:FUNC

Syntax

wifmgen:FUNC? <waveform name>

Description
Obtain the specification of waveform <waveform name>
Parameters

<waveform name> Name of preexisting wfmgen: waveform.

Notes

e The response is in the form wimgen:< WFMGENCMD> <waveform name> <parameters...>

See also

143

wimgen:GAUSSIAN

Syntax

wimgen:GAUSSIAN <waveform name> <t> <width>

Description

Create a waveform containing a Gaussian pulse

Parameters
<waveform name> Name of the waveform to create
<t0> Time of the center of the pulse
<width> Width of the pulse, in units of time.
Notes

e The waveform is truncated to the time range specified in the module configuration

~5ut):

e The function generated is: exp(

See also

e wimgen:SINC (pg. 145)

144

wimgen:SINC

Syntax

wimgen:SINC <waveform name> <t> <width>

Description

Create a waveform containing a sinc pulse

Parameters
<waveform name> Name of the waveform to create
<t0> Time of the center of the pulse
<width> Width of the pulse, in units of time.
Notes

e The waveform is truncated to the time range specified in the module configuration

sin(mw(t—to)/w))

e The function generated is: =

See also

o wimgen:GAUSSIAN (pg. 144)

145

wimgen:SWEEP

Syntax

wfmgen:SWEEP <waveform name> <fl1> <f2> <t0> <tl1> <t2> <t3>

Description

Create a waveform containing a frequency sweep (chirp)

Parameters
<waveform name> Name of the waveform to create
<fo> Starting frequency
<fl> Ending frequency

<t0>,<tl>,<t2>,<t3> Parameters of the raised-cosine envelope

Notes

e The reference phase is -PI/2 at t=t0
o See wimgen:WINDOW for information on the raised-cosine envelope parameters.

e The waveform is zero for t < t0. It increases to the configured amplitude at t1 following a
raised-cosine envelope and stays at the configured amplitude until t2. Then it decreases following a
raised cosine envelope to zero at and after t3

See also

o wimgen:WINDOW (pg. 149)
o wimgen:SWEEPENVELOPE (pg. 147)

146

wimgen: SWEEPENVELQOPE

Syntax

wimgen: SWEEPENVELOPE <waveform name> <fl1> <f2> <t0> <tl> <t2>
<t3> <envt0> <envVO0> <envtl> <envVO> ...

Description

Create a waveform containing a frequency sweep (chirp), with an extra multiplicative envelope defined by
an arbitrary series of (t,V) pairs.

Parameters
<waveform name> Name of the waveform to create
<fo> Starting frequency
<f1> Ending frequency
<t0>,<tl>,<t2>,<t3> Parameters of the raised-cosine envelope
<envt<i>>, Time and voltage pair #<i> of the extra linear interpolation envelope
<envV<i>>
Notes

e The extra multiplicative envelope is multiplied by the raised cosine envelope defined by <t0>, <t1>,
<t2>, and <t3>

e The reference phase is -PI/2 at t=t0
e See wimgen:WINDOW for information on the raised-cosine envelope parameters.

e The waveform is zero for t < t0. It increases to the configured amplitude at t1 following a
raised-cosine envelope and stays at the configured amplitude until t2. Then it decreases following a
raised cosine envelope to zero at and after t3

e The extra envelope is defined by a series of (time, voltage) pairs following <t3>. Voltage at
intermediate times will be linearly interpolated. Units are assumed to be seconds and volts by default,
respectively.

See also

o wimgen:WINDOW (pg. 149)
e wimgen:SWEEP (pg. 146)

147

wimgen: TIMEDELAY

Syntax

wimgen:TIMEDELAY <time_delay>
TIMEDELAY?

Description
Set or query the time of the first sample generated in created waveforms
Parameters

<time_delay> The time delay of the first sample (default seconds)

Notes

e If the wfmgen:module is programmed to store its own waveforms (the wfmioname configuration
parameter is not set), then changing TIMEDELAY will cause the module to regenerate all of its own
waveforms with the new time delay.

See also

o wimgen:DT (pg. 142)

148

wimgen:WINDOW

Syntax

wimgen:WINDOW <waveform name> <t0> <t1> <t2> <t3>
Description

Create a waveform containing a split raised-cosine window

Parameters

<waveform name> Name of the waveform to create
<t0>,<tl>,<t2>,<t3> Parameters of the raised-cosine envelope

Notes

e The waveform is zero for t | t0. It increases to the configured amplitude at t1 following a raised-cosine
envelope and stays at the configured amplitude until t2. Then it decreases following a raised cosine
envelope to zero at and after t3

See also

149

7.11 polytecvibrometer.so

polytecvibrometer.so supports laser vibrometers based on the PolyTec OFV-5000 vibrometer controller. As
currently implemented it operates exclusively using the first velocity decoder module inside the OFV-5000. It has
two main functions: (Focus monitoring and control), and (gain adjustment and waveform capture interfacing). It
can supply a “Probe Attenuation” and appropriate metadata to a waveform capture driver so as to make the
acquired waveforms appear in units of doppler velocity. It also can extract the vibrometer delay and use that to
apply a temporal offset the acquired velocity waveforms. If the probe attenuation and static metadata
configuration parameters are supplied then this functionality will be enabled. Note that whatever module(s) those
commands refer to should be initialized prior to polytecvibrometer.so in the configuration file.

7.11.1 Prerequisites

e library rpc.so

e library multiio.so

7.11.2 Configuration parameters

Parameter Type Value

uri quoted string URI for communicating with the laser vibrometer,
typically serial:///dev/ttyS0:57600:8:n:1:nortscts (de-
fault none)

staticmetadatacmd quoted string command for setting static metadata
of the waveform capture device, e.g.
WCAPT:CH4:SETSTATICMETADATUM (default
none)

probeattencmd quoted string command for setting the probe attenua-

tion of the waveform capture device, e.g.
WCAPT:CH4:PROBEATTEN (default none)

probeattenfactor real number additional probe attenuation scale factor, to account
additional attenuation on the waveform capture input,
for example

timeoutms integer communications timeout, in ms. (default 3000)

lockout boolean whether to lockout the instrument console (default
false)

range real number initial range setting, in mm/s/V

150

7.11.3 Commands

(commands begin on next page)

151

polytecvibrometer: AUTOFOCUS

Syntax

polytecvibrometer: AUTOFOCUS
AUTOFOCUS? <autofocus status>

Description
Initiate an autofocus or query the autofocus status.
Parameters
<autofocus status> “FOCUSING”, “FOCUSED”, or “FAILED”

Notes

e The parameter to the query format illustrates the format of the response to a query.

See also

e polytecvibrometer: WAITAUTOFOCUS (pg. 157)

152

polytecvibrometer:DELAY

Syntax

polytecvibrometer :DELAY?
DELAY <delay> us

Description
Query the vibrometer’s inherent delay for the current sensitivity setting.
Parameters

<delay> Delay induced by the vibrometer, in microseconds

Notes

e The command format given above is provided to illustrate the format of the response to a query.

e The delay is a function of the range setting, polytecvibrometer: RANGE.

See also

e polytecvibrometer:RANGE (pg. 155)

153

polytecvibrometer:FOCUSPOSITION

Syntax

polytecvibrometer:FOCUSPOSITION?
FOCUSPOSITION <position>%

Description
Query the vibrometer’s focus position.
Parameters

<position> The position response from the vibrometer.

Notes

e The command format given above is provided to illustrate the format of the response to a query.

See also

e polytecvibrometer: AUTOFOCUS (pg. 152)

154

polytecvibrometer:RANGE

Syntax

polytecvibrometer:RANGE <range>
RANGE?

Description
Set or query the vibrometer sensitivity setting.
Parameters

<range> One over the sensitivity, in mm/s/V

Notes

e The units of mm/s/V may optionally be supplied

e If the staticmetadatacmd and/or probeattencmd parameters are set, this will trigger adjustment of
the probe attenuation, delay, etc. as appropriate

e The allowable range settings depend on the velocity decoder in use. This routine asks the contoller for
the list of range settings and picks the closest one to the requested value. The requested value is
returned.

e Different ranges may have different inherent delays (see polytecvibrometer:DELAY).

e Different ranges may have different analog bandwidths (see the user manual).

See also

e polytecvibrometer:DELAY (pg. 153)

155

polytecvibrometer:SIGNALLEVEL

Syntax

polytecvibrometer:SIGNALLEVEL?
SIGNALLEVEL <percent>}

Description
Query the vibrometer’s optical signal level.
Parameters

<percent> Percent of maximum signal level (may be logarithmic).

Notes

e The command format given above is provided to illustrate the format of the response to a query.

e The signal level depends dramatically on the quality of the focus.

See also

e polytecvibrometer: AUTOFOCUS (pg. 152)

156

polytecvibrometer:WAITAUTOFOCUS

Syntax

polytecvibrometer:WAITAUTOFOCUS
WAITAUTOFOCUS <autofocus status>

Description
Wait for an autofocus to complete.
Parameters

<autofocus status> “FOCUSED?”, or “FAILED”

Notes

e The parameter in the second syntax line illustrates the format of the response when focusing is
complete.

e An autofocus should have been initated with polytecvibrometer: AUTOFOCUS.

See also

e polytecvibrometer: AUTOFOCUS (pg. 152)

157

7.12 pyscript.so

pyscript.so provides a mechanism for Python-based scripting. The initialization block consists of two
brace-delimited sets of python code. The first such set is for module initialization. It executes in the context of a
newly created python module with the same name as the dataguzzler module, and usually contains import
statements and variable and function definitions. The special global variable pys_.modname is initialized to the
name of the script module (capitalized). Please note that the first set of code is not permitted to call
dg_python.rpc_async(). It may, however, check for existance of other modules with dg_python.findmodule(). If the
initialization code sets the global variable disabled to True, then module initialization will be cancelled and the
module will not be available.

The second set of python code is executed when this module is called. The variable “cmd” is initialized to the
command to be parsed. You can use sys.stdout.write() (avoid the print statement) to send a single line of output to
the client (never transmit a linefeed!). Global variables can be read directly from the python code, but modifying
them requires declaring them with a global statement. A special variable ‘retcode’ is pre-initialized to 200, and can
be used to set an alternative return code for the script. The script will execute atomically within the dataguzzler
kernel context, except for calls to dg_python.rpc_async() that require waiting, which allow other kernel
commands to be processed and execute, until the call is complete.

If the connection dies, rpc_async() will throw an exception and additional attempts to call rpc_async() will fail. The
script should end at this point.

7.12.1 Prerequisites

e library rpc.so

e library dg_python.so

7.12.2 Configuration parameters

(The configuration section is a series of two python scripts, each enclosed in braces and indented. The first is
executed on module initialization. The second is executed when the module is called. Neither script section may be
empty. If no code is to be provided, give the python statement “pass”.)

7.12.3 Commands

(none)

158

7.13 time.so

time.so provides support for waiting specified amounts of time, and may provide further timing functionality in the
future. Currently, its primary purpose is to allow python script modules (pyscript.so) to wait for a specified
amount of time while allowing the dataguzzler kernel to continue executing.

7.13.1 Prerequisites

(none)

7.13.2 Configuration parameters

(none)

7.13.3 Commands

(commands begin on next page)

159

time:DELAY

Syntax

time:DELAY <time>
DELAY?

Description
Wait for a specified amount of time.
Parameters

<time> The amount of time to wait, in units of time (default seconds)

Notes

e This command does not occupy the dataguzzler kernel. Commands issued from other connections can
execute during the wait.

See also

160

time: TIMESTAMP

Syntax

time: TIMESTAMP?
Description

Obtain a timestamp

Parameters

Notes

e The form of the result is a single quoted string, e.g. ”2007-06-27T18:43:59-0500”. This is believed to
be ISO-8601 compliant.

See also

161

7.14 simpletrigger.so

simpletrigger.so provides support for simple trigger generation using a digital output

7.14.1 Prerequisites

e Library dio8bit.so

e Digital I/O driver library.

7.14.2 Configuration parameters

Parameter Type Value
portclass quoted string Name of the digital I/O driver class to use (e.g.
das4020dio)

portdevice quoted string
triggermask unsigned integer

ddr unsigned integer

ddrmask unsigned integer

mode INTERNAL or COMPUTER
rate frequency (Hz)

7.14.3 Commands

(commands begin on next page)

Device name to pass to the digital I/O driver
bitmask of bits to use for triggering, usually in hex
(e.g. $20)

data direction register, usually in hex. Cleared bits
indicate write, set bits indicate read.

mask of ddr bits to set (usually in hex)

trigger mode

Initial trigger rate for internal trigger. Also maximum
rate for computer-trigger

162

simpletrigger :MODE

Syntax

simpletrigger:MODE <trigger mode>
MODE?

Description
Set the mode for the trigger generator.
Parameters

<trigger mode> The desired trigger mode: INTernal or COMPuter

Notes

See also

e simpletrigger:RATE (pg. 164)

163

simpletrigger:RATE

Syntax

simpletrigger:RATE <trigger frequency>

Description
Set the frequency of the trigger generator.
Parameters

<trigger frequency> The desired trigger frequency (default units of Hz)

Notes

e This frequency controls the minimum period between triggers (simpletrigger:MODE COMPUTER),
or acts as an upper bound on the frequency of internally generated triggers (simpletrigger:MODE
INTERNAL)/

See also

e simpletrigger: TRIGGER (pg. 165)
e simpletrigger:MODE (pg. 163)

164

simpletrigger: TRIGGER

Syntax

simpletrigger:TRIGGER

Description
Issue a trigger on the configured digital output.

Parameters

Notes

e Triggers will only be generated as fast as specified in simpletrigger:RATE. If you attempt to retrigger
too quickly the simpletrigger: TRIGGER command will wait until the trigger period has passed before
generating the trigger and returning.

See also

e simpletrigger:RATE (pg. 164)

165

7.15 isutriggen.so

isutriggens.so provides support for the ISU/CNDE trigger generator circuit board. This board uses an array of
LS7366 timer IC’s plus discrete logic to generate a master trigger pulse, with hardware-enforced holdoff, plus a
delayed function generator trigger and a series of camera frame trigger pulses.

7.15.1 Prerequisites

e library dio8bit.so

e (usually) library das4020dio.so

7.15.2 Configuration parameters

Parameter Type Value

trigmindelay real number minimum holdoff between master triggers (default sec-
onds)

delay between master trigger and function generator
trigger (default seconds)

delay between master trigger and first camera frame
trigger (default seconds)

delay between camera frame triggers (default seconds)
number of camera frame triggers per master trigger

fengendelay real number
camtrigdelay real number

camtrigperiod real number
camtrigframes integer

portadevice quoted string device file for DAS4020dio porta (typically
/dev/das4020-12/dio0_0A)

portbdevice quoted string device file for DAS4020dio portb (typically
/dev/das4020-12/dio0-0B)

portbdevice quoted string device file for DAS4020dio portc (typically

/dev/das4020-12/dio0-0C)

portclass quoted string class library for ports a, b, and ¢ (typically das4020dio)

clockfreq real number frequency of master clock, (default Hz)

triggerenabled boolean initial trigger enable state (default TRUE)

fecngenlatency real number initial assumed function generator latency (default 0
seconds)

cameralatency real number initial assumed camera latency (default 0 seconds)

7.15.3 Commands

(commands begin on next page)

166

isutriggen:CLOCKFREQ

Syntax

isutriggen:CLOCKFREQ <frequency>
CLOCKFREQ?

Description
Set or query the frequency of the master clock used by the trigger generator.
Parameters

<frequency> The master clock frequency (default Hz)

Notes

e The master clock is not generated by the trigger generator. It is merely used by the trigger generator.
This command should be used to ensure that the trigger generator knows the actual frequency of the
master clock. If CLOCKFREQ is set incorrectly, the trigger generator will not generate triggers at
the correct times.

e The current trigger generator hardware operates properly for master clock frequencies up to 5 MHz

e Adjusting the master clock frequency will requantize the trigger delays and periods to fit the new
master clock. Resetting the master clock frequency to the original generally does not restore the
original delays/periods.

See also

167

isutriggen: TRIGGERENABLED

Syntax

isutriggen:TRIGGERENABLED <enabled>
TRIGGERENABLED?

Description
Set or query whether the trigger generator will accept new triggers.
Parameters

<enabled> Boolean (TRUE or FALSE) indicating whether triggering is enabled.

Notes

¢ TRIGGERENABLED and CAMFREERUN are mutually exclusive
o WAITINHIBITTRIGGER can also be used to temporarily inhibit triggering

See also

e isutriggen: CAMFREERUN (pg. 169)
o isutriggen:WAITINHIBITTRIGGER (pg. 170)

168

isutriggen: CAMFREERUN

Syntax

isutriggen:CAMFREERUN <enabled>
CAMFREERUN?

Description
Set or query whether the trigger generator is in camera freerun mode.

Parameters

<enabled> Boolean (TRUE or FALSE) indicating whether camera freerun is en-
abled.

Notes

e TRIGGERENABLED and CAMFREERUN are mutually exclusive

See also

e isutriggen: TRIGGERENABLED (pg. 168)

169

isutriggen:WAITINHIBITTRIGGER

Syntax
isutriggen:WAITINHIBITTRIGGER
Description

Temporarily lockout triggering

Parameters

Notes

o isutriggen: WAITINHIBITTRIGGER gives the client a lock which can be held by only one client at a
time.

e Fach call to isutriggen: WAITINHIBITTRIGGER should be followed shortly thereafter by a call to
isutriggen: ALLOWTRIGGER to release the lock and reenable triggering.

o isutriggen: WAITINHIBITTRIGGER waits asynchronously for the aforementioned lock to become
available. Theoretically, this could take some time.

e To disable triggering for a long time, use isutriggen: TRIGGERENABLED FALSE instead of
isutriggen: WAITINHIBITTRIGGER

See also

o isutriggen: ALLOWTRIGGER (pg. 171)
e isutriggen: TRIGGERENABLED (pg. 168)

170

isutriggen: ALLOWTRIGGER

Syntax
isutriggen:ALLOWTRIGGER
Description
Reenable triggering following isutriggen: WAITINHIBITTRIGGER.

Parameters

Notes

See also

e isutriggen: TRIGGERENABLED (pg. 168)
o isutriggen:WAITINHIBITTRIGGER (pg. 170)

171

isutriggen: TRIGMINDELAY

Syntax

isutriggen:TRIGMINDELAY <minimum holdoff>
TRIGMINDELAY?

Description
Set or query the hardware-enforced minimum holdoff between triggers.
Parameters

<minimum holdoff> The minimum holdoff (default seconds)

Notes

e The actual value (returned) is rounded up to the nearest multiple of the trigger generator master
clock period.

e This time must be longer than the delay to the function generator trigger and the delay to the last
camera frame trigger. While this constraint is not currently enforced, violating it may cause the
system to malfunction.

See also

172

isutriggen:FCNGENDELAY

Syntax

isutriggen:FCNGENDELAY <function generator delay>
FCNGENDELAY?

Description
Set or query the delay from the master trigger to the function generator trigger.

Parameters

<function generator The function generator trigger delay (default seconds)
delay>

Notes

e The actual delay function generator trigger is reduced by the value of the
isutriggen: FCNGENLATENCY.

e The value returned is rounded to the nearest multiple of the trigger generator master clock period and
then adjusted by the function generator latency.

See also

e isutriggen:CAMTRIGDELAY (pg. 176)

e isutriggen:CAMTRIGFRAMES (pg. 178)
e isutriggen: CAMTRIGPERIOD (pg. 177)
e isutriggen:FCNGENLATENCY (pg. 174)

173

isutriggen:FCNGENLATENCY

Syntax

isutriggen:FCNGENLATENCY <function generator latency>
FCNGENLATENCY?

Description
Set or query the assumed latency of the function generator trigger.

Parameters

<function generator The function generator latency (default seconds)
latency>

Notes

e A positive latency reduces the time between master trigger and function generator trigger

o If the resulting delay is smaller than the hardware can handle (a few isutriggen: CLOCKFREQ
periods), the isutriggen:FCNGENDELAY will be silently increased.

See also

e isutriggen:FCNGENDELAY (pg. 173)

174

isutriggen: CAMERALATENCY

Syntax

isutriggen:CAMERALATENCY <camera latency>
CAMERALATENCY?

Description
Set or query the assumed latency of the camera trigger.
Parameters

<camera latency> The camera latency (default seconds)

Notes

e A positive latency reduces the time between master trigger and first camera trigger.
e The camera frame period is not affected by this parameter.

e If the resulting delay is smaller than the hardware can handle (a few isutriggen: CLOCKFREQ
periods), the isutriggen: CAMTRIGDELAY will be silently increased.

See also

e isutriggen:CAMTRIGDELAY (pg. 176)
o isutriggen: CLOCKFREQ (pg. 167)

175

isutriggen: CAMTRIGDELAY

Syntax

isutriggen:CAMTRIGDELAY <camera trigger delay>
CAMTRIGDELAY?

Description

Set or query the delay from the master trigger to the first camera frame trigger.

Parameters
<camera trigger The delay from the master trigger to the first camera trigger (default
delay> seconds).

Notes

e The actual hardware trigger delay is reduced by the specified isutriggen: CAMERALATENCY.

e The actual value (returned) is rounded to the nearest multiple of the trigger generator master clock
period before the latency is added.

See also

e isutriggen:CAMERALATENCY (pg. 175)
o isutriggen: CAMTRIGFRAMES (pg. 178)
e isutriggen:CAMTRIGPERIOD (pg. 177)
e isutriggen:FCNGENDELAY (pg. 173)

176

isutriggen:CAMTRIGPERIOD

Syntax

isutriggen:CAMTRIGPERIOD <camera trigger period>
CAMTRIGPERIOD?

Description
Set or query the delay between camera frame triggers.

Parameters

<camera trigger The delay between camera frame triggers (default seconds).
period>

Notes

e The actual value (returned) is rounded to the nearest multiple of the trigger generator master clock
period.

See also
e isutriggen:CAMTRIGDELAY (pg. 176)

e isutriggen: CAMTRIGFRAMES (pg. 178)
e isutriggen:FCNGENDELAY (pg. 173)

177

isutriggen: CAMTRIGFRAMES

Syntax

isutriggen:CAMTRIGFRAMES <numtriggers>
CAMTRIGFRAMES?

Description
Set or query the number of camera frame triggers per master trigger.
Parameters

<numtriggers> The number of camera frame triggers.

Notes

See also
e isutriggen:CAMTRIGDELAY (pg. 176)

e isutriggen: CAMTRIGPERIOD (pg. 177)
e isutriggen:FCNGENDELAY (pg. 173)

178

isutriggen:TRIGGER

Syntax

isutriggen:TRIGGER

Description
Generate a trigger.

Parameters
Notes

e This will wait for the holdoff timer to expire, if necessary. It is therefore non-atomic.
See also

o isutriggen:TRIGGERENABLED (pg. 168)
o isutriggen: TRIGMINDELAY (pg. 172)

179

isutriggen: NEXTCAMFRAMETIME

Syntax

isutriggen:NEXTCAMFRAMETIME <frametime>
NEXTCAMFRAMETIME?

Description
Query the time of the next frame in the sequence.
Parameters

<frametime> The time of the next frame

Notes

e Query only; command syntax to illustrate result syntax only.
o isutriggen:NEXTCAMFRAMETIME returns camera frame times in a round-robin fashion.
e Use isutriggen:RESETCAMFRAMETIME to return to the first frame.

See also

e isutriggen:RESETCAMFRAMETIME (pg. 181)

180

isutriggen: RESETCAMFRAMETIME

Syntax

isutriggen:RESETCAMFRAMETIME

Description
Reset the frame sequence counter.

Parameters

Notes

o After isutriggen:RESETCAMFRAMETIME, isutriggen:NEXTCAMFRAMETIME returns the time of
the first frame after a master trigger.

See also

e isutriggen:NEXTCAMFRAMETIME (pg. 180)

181

7.16 das4020dac.so

das4020dac.so provides support for the digital to analog converters on the Measurement Computing
PCI-DAS4020/12 data acquisition board. The board supports +/- 1V and +/- 10V ranges. In the past we have
found that capacitive cable loading makes the output amplifier unstable for the 1V setting. For this reason the
default gain setting is 10V. Please note that you MUST set the ndacs configuration parameter and the device0,
devicel parameters (usually ndacs=2, device0="/dev/das4020-12/da0-0” and devicel="/dev/das4020-12/da0_1").
Please note that the output voltage will be set briefly to 0V during module initialization before being adjusted to
the selected level.

7.16.1 Prerequisites

(none)

7.16.2 Configuration parameters

Parameter Type Value

ndacs integer number of DACs to control (this MUST be set first,
and is usually 2)

device<i> quoted string the device file to use to access DAC <i> for 0 <=1 <
ndacs.

gain<i> 1V or 10V the initial gain setting for DAC <i>.

voltage<i> Voltage (volts) the initial voltage setting for DAC <i>.

7.16.3 Commands

(commands begin on next page)

182

das4020dac:GAIN

Syntax

das4020dac:GAIN<channel number> <gain setting>
GAIN<channel number>?

Description

Specify or query the gain setting of DAC channel <channel number>.

Parameters
<channel number> The channel number for which to set or query the gain.
<gain setting> The gain setting, 1V or 10V

Notes

e When the gain is changed, the output voltage on that channel will briefly drop to 0V.

e Capacitive loading such as a long cable may cause the DAC output amplifier to become unstable for
the 1V gain setting.

See also

o das4020dac:VOLTAGE (pg. 184)

183

das4020dac:VOLTAGE

Syntax

das4020dac:VOLTAGE<channel number> <voltage>
VOLTAGE<channel number>?

Description

Specify or query the output voltage of DAC channel <channel number>.

Parameters
<channel number> The channel number for which to set or query the voltage.
<voltage> The voltage to set (default units of Volts)

Notes

See also

o das4020dac:GAIN (pg. 183)

184

7.17 genericscpi.so

genericscpi.so provides simple support for SCPI compliant laboratory instruments over GPIB, TCP/IP, or RS-232
serial connections. Most modern laboratory instruments conform to the SCPI standard. See
http://www.scpiconsortium.org/ for more information and a copy of the specification.

There are several restrictions to this implementation foremost are the inability to save instrument settings (SET? is
not implemented) and the inability to transfer binary blocks (binary blocks may contain semicolons or newlines,
which are used as message terminators by Dataguzzler). A future version may automatically detect binary blocks
and escape them as used by wfmio.so, as well as using *LRN and SYST:SET to implement ‘ SET?.

Please note that queries are done synchronously in the main Dataguzzler thread. That is, if the instrument is slow
to respond, all input processing will be held up. Commands are issued asynchronously and the fact that a
command has been issued and Dataguzzler has responded does not mean the instrument has completed processing
or that no error has occurred. To be sure a command has been completed, issue *WATI followed by *0PC? and issue a
query to determine the actual state of the instrument.

It is expected that system developers may test out a new instrument using genericscpi.so. The source file

genericscpi.synm4 may be copied to a new name, and then custom processing can be inserted into the syntax and
the ScpiCommand syntax production can be removed to create a fully custom module.

7.17.1 Prerequisites

e library multiio.so

7.17.2 Configuration parameters

Parameter Type Value

uri quoted string multiio URI for the SCPI instrument. See the mul-
tiio.so library documentation (above)

timeout time (seconds) communications timeout value

7.17.3 Commands

genericscpi.so directly transcribes incoming commands to the instrument. See the manual of your instrument for
details of the commands it accepts.

Suppose an instrument has a command FREQ:START, and you have a module SWEEPER implemented with
genericscpi.so that connects to this instrument. Then when you type SWEEPER:FREQ:START 1 MHz, genericscpi.so

185

will transmit :FREQ:START 1 MHz to the instrument and respond with SWEEPER:FREQ:START 1 MHz. For any
command given (i.e. no question mark present), the response will be exactly what was sent..

If a query is given, e.g. SWEEPER:FREQ:START? then the query will be sent to the instrument (:FREQ:START? in this
case). The response will be of the form of the query, truncated at the question mark, followed by a space and
whatever response was received from the instrument. Supposing the instrument responded with 1.e6, the response
from Dataguzzler would be SWEEPER:FREQ:START 1.e6.

7.18 acr9000.so

acr9000.so provides support for the Parker/Compumotor ACR-9000 motion controller. This module will probably
also work with other motion controllers in the Parker/Compumotor AcroLoop series.

In order to work with this module your motion controller must already have its axes configured, using one or more
“program levels” of the ACR-9000. One “program level” must be left available for the exclusive use of this module.
This defaults to “proglb”, but may be set with the “spareprog” configuration parameter.

On module initialization, acr9000.so will automatically probe the motion controller to find configured axes. It will
list the axes that it finds to stderr in the form:
ACR9000: Configured axis X on PROGO AXISO PPU 1000

acr9000.so can communicate with the motion controller over TCP/IP or serial using tcp:// or serial:// URI’s. To
connect over TCP/IP to the factory default IP address, use “tcp://192.168.10.40:5002” as the URI.

7.18.1 Prerequisites

e library multiio.so

7.18.2 Configuration parameters

Parameter Type Value

uri quoted string multiio URI for the ACR-9000. Should be tcp:// or
serial://

spareprog unsigned integer spare program level for controlling the ACR~9000 (de-
fault 15)

axisunits:<axis> units for the axis: in, mil, ft, mm,
cm, m, deg, rad, etc.

186

7.18.3 Commands

(commands begin on next page)

187

acr9000: AXIS

Syntax

acr9000: <AXIS> <position> <units>
<AXIS>?

Description

Specify or query the position of a motion controller axis.

Parameters
<AXIS> The axis to control or query.
<position> Desired or actual position of the axis
<units> Units of <position>

Notes

If units are not specified, the default units for this axis are assumed

The query form always returns a number in the default units for this axis.
The axis cannot move unless it is turned on with acr9000:<AXIS>:STATUS.

Multiple axes may move simultaneously. Multiple moves on a single axis will queue up and execute in
sequence. Avoid queueing large numbers of moves.

See also

e acr9000:AXIS:REL (pg. 192)
e acr9000:AXIS:STATUS (pg. 193)

188

acr9000:AXIS:CANCEL

Syntax

acr9000: < AXIS> :CANCEL
ALL:CANCEL

Description
Stop and cancel motion on the specified axis
Parameters

<AXIS> The axis to stop, or ALL

Notes

e This permanently cancels any current or pending motion on the specified axis.

See also
e acr9000:AXIS (pg. 188)

e acr9000:AXIS:MOVING (pg. 190)
e acr9000:WAIT (pg. 194)

189

acr9000: AXIS:MOVING

Syntax

acr9000: <AXIS> :MOVING?

Description
Specify or query the position of a motion controller axis.
Parameters

<AXIS> The axis to query.

Notes

e The response will be of the form <AXIS>:MOVING YES or <AXIS>:MOVING NO.

See also
e acr9000:AXIS (pg. 188)

e acr9000:AXIS:STATUS (pg. 193)
e acr9000:WAIT (pg. 194)

190

acr9000:AXIS:NOM

Syntax

acr9000: <AXIS>:NOM?

Description
Query the current nominal position
Parameters

<AXIS> The axis for which to get the position.

Notes

e The nominal position is the intended position according to the trajectory currently being executed. In
contrast acr9000:<AXIS>? returns the actual position of the axis, which may be slightly away from
the nominal position.

See also

e acr9000:AXIS (pg. 188)
e acr9000:AXIS:MOVING (pg. 190)

191

acr9000: AXIS:REL

Syntax

acr9000: <AXIS>:REL <position> <units>

Description

Initiate a relative position move..

Parameters
<AXIS> The axis to control or query.
<position> Desired relative position of the axis
<units> Units of <position>

Notes

e If units are not specified, the default units for this axis are assumed
e The axis cannot move unless it is turned on with acr9000:<AXIS>:STATUS.

e The position is relative to the current axis position at the instant this command is processed.

See also

e acr9000:AXIS (pg. 188)
e acr9000:AXIS:MOVING (pg. 190)

192

acr9000:AXIS:STATUS

Syntax

acr9000: <AXIS>:STATUS <axis status>
<AXIS>:STATUS?

Description

Specify or query the status of a motion controller axis.

Parameters
<AXIS> The axis to control of query.
<axis status> The axis status, ON or OFF
Notes

o <AXIS> may be ALL to control all axes simultaneously.

See also

e acr9000:AXIS (pg. 188)

193

acr9000:WAIT

Syntax

acr9000: <AXIS>:WAIT
ALL:WAIT
WAIT <axis list>

Description

Wait for one or more axes to stop.

Parameters

<AXIS> The axis to wait for.

<axis list> A list of axes to wait for, separated with spaces.
Notes

e This waits for all the specified axes to stop (reach their target positions.

o If a WAIT command gets stuck, you can release the wait with the acr9000:<AXIS>:CANCEL
command on all the axes being waited for.

o If multiple moves are queued up, the WAIT may return at the end of any of the moves. When
programming, always maintain a 1:1 mapping between moves and waits.

See also

e acr9000:AXIS (pg. 188)
o acr9000:AXIS:MOVING (pg. 190)

194

7.19 subproc.so

subproc.so enables nested sub-processes. By using a subprocess, you can reduce the chance that a slow module will
clog the main event loop. The disadvantage of subprocesses is that since they have their own copies of libraries,
waveforms cannot be readily shared between the subprocess and the main dataguzzler process.

7.19.1 Prerequisites

e library multiio.so

7.19.2 Configuration parameters

The configuration section is transmitted verbatim to the subprocess. In addition, an extra parameter (quoted
string) can be added (separated by a comma) within the parentheses of the module specification. This extra
parameter is an alternative command to run to start the subprocess. It can be used to, for example, start the
subprocess remotely through a script that exec’s a remote dataguzzler over ssh.

7.19.3 Commands

Commands are passed directly through to the remote dataguzzler. To avoid excess levels of indirection in the
command names, you may want to use an empty module name for the module within the subprocess dataguzzler.
This way, you can refer to the module within the subprocess just by using the subprocess module name.

195

Appendix A

Dataguzzler native binary file format

The dataguzzler native file format is that written by the dg_grab download program and that read by the
dg_upload program. The dataguzzler native file format consists of a header followed by a series of chunks. The
header is the 8 bytes DATAGUZZ (big endian architectures) or ZZUGATAD (little endian architectures). (recall
that all Intel-architecture PC’s are little endian). The next 16 bytes is the 8 byte header of the first chunk followed
by the 8 byte integer length of the first chunk (not including the length of its header). The first chunk data follows
its header. The header for the second chunk follows, etc. Note that all chunks are implicitly padded to be multiples
of 64 bits (8 bytes) in size. That is, the written size is the actual size, but zeros are added after the chunk to make
an even multiple of 8 bytes before the next chunk is written. Note that on little endian architectures the chunk
headers specified below are reversed.

196

Chunk header

contents

DATAGUZZ
GUZZNWFM

WAVENAME
GUZZWFMD

METADATA
METDATUM

METDINTV

METDSTRV

METDDBLV
WFMDIMNS

DATARRYF

DATARRYD

SNAPSHOT

SNAPSHTS
VIBRDATA

VIBFCETS
VIBFACET

wrapper around entire file.

Data describing a named waveform. Should contain a
WAVENAME chunk followed by a GUZZWFMD chunk
String containing the name of the waveform.

Data describing a single waveform. Should contain a
METADATA chunk followed by a WEFMDIMNS chunk fol-
lowed by a DATARRYF or DATARRYD chunk

a series of METDATUM subchunks.

a METDNAME subchunk containing the metadatum
name followed by a METDINTV, METDSTRV, or MET-
DDBLV subchunk

Integer metadatum value, 64 bit signed integer (int64_t)
String metadatum value. The size of the chunk is the
length of the string

Double precision metadatum value, type double
Waveform dimensions. Starts with two 64 bit integers
(uint64_t): The product of the dimensions and the num-
ber of the dimensions (ndim). This is followed by ndim
uint64_t’s containing the lengths of the individual dimen-
sions

single-precision array data. The first index changes most
rapidly

double-precision array data. The first index changes most
rapidly

Snapshot of an experiment (results for a specific set of
parameters). This consists of a METADATA chunk with
the parameters of the experiment, followed by a series of
GUZZNWFM chunks with the data from the snapshot
series of SNAPSHOT chunks

SNAPSHOT chunk containing configuration parameters
and results from vibration measurement: Two SNAP-
SHOT chunks followed by a VIBFCETS chunk. See
boundary_collect_procedure.pdf for more information.
One or more VIBFACET chunks

Parameters/results of a facet: SNAPSHOT, followed
by a series of GUZZNWFM chunks. See bound-
ary_collect_procedure.pdf for more information.

197

A.1 Standardized file name extensions

Extension MIME type contents
dgz application/x-dataguzzler- Single unnamed waveform (GUZZWFMD)
waveform
dga application/x-dataguzzler-array Array of unnamed waveforms (series of GUZZWFMD
chunks)
dgs application/x-dataguzzler- Snapshot of named waveforms (SNAPSHOT chunk, typi-
snapshot cally with the METADATA section empty) (older version
was a series GUZZNWFM chunks)
degd application/x-dataguzzler-data Data from a series of experiments (SNAPSHTS chunk)
set application/x-dataguzzler-settings ~ This is not a chunked format. It is a raw dump of the
output of WFM:WFMS? followed by the output of SET?
vibr application/x-dataguzzler- Data from a series of vibration measurements (VIBRDATA

vibration

A.2 File access API

chunk)

Dataguzzler file I/O has been implemented in libraries written in C, MATLAB/Octave, and Python+Numpy. The
bulk of this API documentation describes the C library. The API is similar in the other languages.

A.2.1 Reading a Dataguzzler file

Open a Dataguzzler file for reading with the dgf_open() function:

struct dgf_file *infile;

infile=dgf_open(char *filename);

dgf_open() returns an opaque file handle or NULL if the file could not be opened. After opening the file, the first
step is reading the first chunk header. This is done with dgf_checknextchunk() or dgf nextchunk() depending on
whether or not you know for certain the type of the first chunk.

struct dgf_Chunk *Chunk;

Chunk=dgf_nextchunk(struct dgf_file *infile);
Chunk=dgf_checknextchunk(struct dgf_file *infile, char *chunkname);

198

dgf nextchunk() opens the next available chunk, or returns NULL if there are no chunks left.
dgf _checknextchunk() opens the next available chunk if chunkname matches its eight character name. Otherwise
it skips the chunk and returns NULL. If there are no chunks left it also returns NULL.

The dgf Chunk structure contains several useful members: Name, ChunkLen, and ChunkPos

struct dgf_Chunk { /* on ChunkStack */
struct dgl_Node Node;
char Name[9]; /* 8 characters + O terminator so we can use strcmp() et al. */
int64_t ChunkStart;
int64_t ChunkLen; /* used only in read routines */
int64_t ChunkPos; /* relative to ChunkStart */
};

e Name is a null-terminated copy of the 8-character chunk name string.
e ChunkLen is the length of the chunk contents, not including any headers and/or padding.

e ChunkPos is the number of bytes that have been read from the chunk.

The chunk can contain either binary data or nested chunks. dgf_readdata() can be used to read binary data or
dgf nextchunk() can be used to open nested chunks. When done reading the contents of the chunk, you must call
dgf _chunkdone () to close the chunk. Once the last chunk is closed, call dgf_close() to close the file.

void dgf_readdata(struct dgf_file *infile,void *Buf,int64_t nbytes);
void dgf_chunkdone(struct dgf_file *infile,struct dgf_Chunk *Chunk); /* 2nd parameter may be NULL */
void dgf_close(struct dgf_file *infile);

dgf _readdata() reads the specified number of bytes from the current chunk into the specified buffer.
dgf _chunkdone () closes the most recent open chunk so that following calls to dgf_<check>nextchunk() open the
following chunk, not nested chunks. dgf_close() closes the file after the last chunk is done.

Special-purpose processing routines are included for a few chunk types. These routines should be called
immediately after dgf_<check>nextchunk() and include calls to dgf_chunkdone () to close the chunk.

struct dg_wfminfo *dgf_procGUZZWFMD(struct dgf_file *file,char *WfmName) ;
struct dg_wfminfo *dgf_procGUZZNWFM(struct dgf_file *file);
void dgf_procMETADATA(struct dgf_file *file,struct dgl_List *MetaData);

dgf _procGUZZWFMD () processes an unnamed waveform GUZZWFMD chunk. A name (WfmName) or NULL may be
provided as a parameter. The routine returns a struct dg_wfminfo * containing the waveform data. Similarly,
dgf _procGUZZNWFM() processes a named waveform GUZZNWFM chunk, also returning a struct dg_wfminfo *.
dgf_procMETADATA () reads a METADATA chunk, adding the metadata elements to the pre-existing and pre-initialized
MetaData list.

199

A.2.2 Writing a Dataguzzler file
Open a Dataguzzler file for writing with the dgf_creat () function:

struct dgf_file *outfile;

outfile=dgf_creat(char *Name);

dgf_creat () returns an opaque file handle or NULL if the file could not be opened. After opening the file, chunks
and nested chunks may be written. Create a chunk with dgf_startchunk()

void dgf_startchunk(struct dgf_file *outfile,char *chunkname);

The chunkname parameter gives the eight-character null-terminated chunk ID. The chunk can contain nested
chunks (create with dgf _startchunk()) or binary data (write with dgf _writedata()). When done writing the
chunk, end it with dgf_endchunk().

void dgf_writedata(struct dgf_file xoutfile,void *buf,int64_t nbytes);
void dgf_endchunk(struct dgf_file *outfile);

When done with the last chunk, close the file with dgf_close().
void dgf_close(struct dgf_file *infile);

Special-purpose writing routines are included for a few chunk types. These routines start the chunk, write the
contents, and end the chunk.

void dgf_writenamedwfm(struct dgf_file *file,struct dg_wfminfo *wfm);
void dgf_writewfm(struct dgf_file *file,struct dg_wfminfo *wfm);
void dgf_writemetadata(struct dgf_file *file,struct dgl_List *MetaData);

These routines write GUZZNWFM, GUZZWFMD, and METADATA chunks respectively with the provided
waveform/metadata.

A.2.3 MATLAB/Octave file access library

The MATLAB API is essentially similar to the C API. You will need to place the .m files somewhere in MATLAB’s
path. This can be done with the MATLAB path() function or with the MATLABPATH environment variable. The

200

primary difference between the MATLAB and C APIs is that since MATLAB parameters are passed exclusively by
value rather than by reference, the filehandle structure is processed by each routine and a new filehandle is
returned by each routine as an extra result of the function. See dgf_testread.m for an example.

A.2.4 Python file access library

The Python API is essentially similar to the C API. The Numpy (numerical python) library is required.

You will need to import dg_-file. Then you can access the routines such as infile=dg file.dgf _open(filename).

A.2.5

201

Appendix B

IR Camera Calibration

B.1 Blackbody calibration

The blackbody calibration maps the value from the IR camera A/D converter to blackbody temperature Ty. The
blackbody calibration is performed by pointing the camera at a (presumed perfect) blackbody with a

thermistor /thermocouple attached to measure the temperature. The blackbody is then slowly heated and IR
images are recorded as a function of temperature. The response of the camera is modeled by a polynomial that
approximates temperature as a function A/D converter value. The order of this polynomial must be selected in
advance and the coefficients (one set of coefficients per pixel) are calculated with a least-squares fit to the measured
A/D converter value vs. temperature curve.

One the calibration is loaded, the camera gives images of blackbody temperature T} instead of images of A/D
converter value.

B.2 Graybody correction

The total radiant emittance of a graybody is given by the Stefan-Boltzmann law:
® =eoT? (B.1)

where ® is the energy flux in J/(m?s), € is the graybody coefficient, o is the Stefan-Boltzmann constant,
5.670 x 1078J/(°K*m?s), and T is the temperature °K.

The camera is calibrated against a blackbody. The calibration maps the value from the camera A/D converter to
blackbody temperature T,. Therefore the energy flux ® that corresponds to a camera reading of T}, is 0T}

202

Suppose the camera is pointed instead at a graybody, with coefficient e. The measured flux ® comes from two
places (ignoring the effect of the atmosphere):

1. Emittance of the graybody
2. Infrared light reflected by the graybody

®=eoT* + (1 —€)oT? (B.2)
where T is the actual temperature of the graybody and Ty, is the ambient temperature of the surroundings (as
reflected by the graybody). The camera, calibrated against a blackbody, gives T}, and we can calculate ® from Tj:
® = 0T}, Therefore, solving for T, our estimate of the graybody temperature T is:

41 1—c¢

T4 (B.3)
Therefore to perform the graybody correction, two values are needed: The graybody coefficient €, and the ambient
temperature 7.

Because of the variation in the emissivity and temperature of the surroundings and the potential for specular
reflections, the absolute temperature calculated from Eq. B.3 will not be very accurate unless the graybody
coefficient is close to 1.0. Nevertheless, as long as € is known accurately, Eq. B.3 should give temperature changes
quite accurately. Assuming there are no movements that change what is reflected by the object under test, the
second term under the fourth root in Eq. B.3 will be constant. Therefore small changes in T" map directly to

changes in T}, independent of T,:
dr 1 1 173
_ (> - 1T (B.4)

T, é/ngl_ﬁT;L e) b €T3

In order to perform this correction, we need estimates of both the graybody coefficient € and the ambient
temperature Ty, each of which may be functions of position in the image. To estimate € we attach a thermistor (or
thermocouple) and a power resistor to the specimen (all sides of the power resistor not in contact with the
specimen should be insulated). The specimen is assumed to be a good thermal conductor and therefore of uniform
temperature. We record the camera image and temperature. Then we apply current to the power resistor and allow
the part to heat up a few degrees. Then we record the new camera image and temperature (from the

thermistor /thermocouple). From the two images at the two temperatures, we can solve Eq. B.3 for € and T, (which
should be close to the ambient air temperature):

T,
Ty

| T — €T}
T, = [—" el (B.6)
— €

This correction can be done independently for each pixel because the emissivity can vary spatially and the effective
ambient temperature is a function of whatever is reflected into each pixel.

(B.5)

and

203

B.3 Bad Pixel Correction

Bad pixels are identified as those with very low or very high A /D values, or those with particularly large standard
deviations. The bad pixels are replaced (after calibration and correction) with an average of their 4 nearest
neighbors. To accomodate clusters of bad pixels, this replacement is applied iteratively (with bad pixel
replacements used in the new calculations as soon as they have been set — even in the same iteration) until no pixel
changes by more than .003% (approx. .01 deg. K at room temperature).

B.4 IR Camera Calibration and Bad Pixel Correction in Dataguzzler

A utility program dg_calibrate_camera is used to record calibration images and temperatures. Calibration images
are stored in a .dga (Dataguzzler array) file as a series of unnamed frames (GUZZWFMD chunks) with the
temperature specified as the third coordinate (after the X and Y pixel coordinates). An Octave script,
proccalib.m, calculates the best-fit coefficients and transforms the .dga file into a .dgs file that can be loaded
into dataguzzler with dg_load_snapshot and used as the second parameter of the IRCALIB math function. This
same script identifies bad pixels and the IRCALIB math function also corrects those bad pixels. A second utility
program dg_correct_graybody can be run while the power resistor mentioned in section B.2 is heating the
specimen and this program will upload its measured T, and € images into Dataguzzler. It is suggested that
laboratory personnel leave the laboratory while dg_correct_graybody is running so that reflections of moving
people do not contaminate the graybody calculations.

204

Appendix C

License

The Dataguzzler main program and modules are licensed in parallel
under the GNU General Public License version 2 (or any later version)
and the GNU General Public License version 2 (or any later version)
with the following exception: Third party data acquisition libraries
or hardware drivers may be treated as if they were a major component
of the operating system; therefore the special exception in GPLV2,
section 3 applies to them. Please note that this exception applies
only to dataguzzler code and libraries, and not any 3rd party code
that might be used or linked-to by dataguzzler.

The Dataguzzler libraries are licensed in parallel under the GNU
Lesser General Public License version 2.1 (or any later version) and
the GNU Lesser General Public License version 2.1 (or any later
version) with the following exception: Third party data acquisition
libraries or hardware drivers may be treated as if they were a major
component of the operating system; therefore the special exception in
GPLV2, section 3 applies to them. Please note that this exception
applies only to dataguzzler code and libraries, and not any 3rd party
code that might be used or linked-to by dataguzzler.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

205

675 Mass Ave, Cambridge, MA 02139, USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation’s software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors’ reputations.

Finally, any free program is threatened constantly by software

206

patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the

Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

207

b) You must cause any work that you distribute or publish, that in
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,

and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based

on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the

entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections

1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three

208

years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

209

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates

210

the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. OQOur decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

211

Appendix: How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate
parts of the General Public License. O0f course, the commands you use may
be called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if

212

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

GNU LESSER GENERAL PUBLIC LICENSE
Version 2.1, February 1999

Copyright (C) 1991, 1999 Free Software Foundation, Inc.

51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

[This is the first released version of the Lesser GPL. It also counts
as the successor of the GNU Library Public License, version 2, hence
the version number 2.1.]

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
Licenses are intended to guarantee your freedom to share and change
free software--to make sure the software is free for all its users.

This license, the Lesser General Public License, applies to some
specially designated software packages--typically libraries—-of the
Free Software Foundation and other authors who decide to use it. You
can use it too, but we suggest you first think carefully about whether
this license or the ordinary General Public License is the better
strategy to use in any particular case, based on the explanations below.

213

When we speak of free software, we are referring to freedom of use,
not price. Our General Public Licenses are designed to make sure that
you have the freedom to distribute copies of free software (and charge
for this service if you wish); that you receive source code or can get
it if you want it; that you can change the software and use pieces of
it in new free programs; and that you are informed that you can do
these things.

To protect your rights, we need to make restrictions that forbid
distributors to deny you these rights or to ask you to surrender these
rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the library or if you modify it.

For example, if you distribute copies of the library, whether gratis
or for a fee, you must give the recipients all the rights that we gave
you. You must make sure that they, too, receive or can get the source
code. If you link other code with the library, you must provide
complete object files to the recipients, so that they can relink them
with the library after making changes to the library and recompiling
it. And you must show them these terms so they know their rights.

We protect your rights with a two-step method: (1) we copyright the
library, and (2) we offer you this license, which gives you legal
permission to copy, distribute and/or modify the library.

To protect each distributor, we want to make it very clear that
there is no warranty for the free library. Also, if the library is
modified by someone else and passed on, the recipients should know
that what they have is not the original version, so that the original
author’s reputation will not be affected by problems that might be
introduced by others.

Finally, software patents pose a constant threat to the existence of
any free program. We wish to make sure that a company cannot
effectively restrict the users of a free program by obtaining a
restrictive license from a patent holder. Therefore, we insist that
any patent license obtained for a version of the library must be
consistent with the full freedom of use specified in this license.

Most GNU software, including some libraries, is covered by the
ordinary GNU General Public License. This license, the GNU Lesser
General Public License, applies to certain designated libraries, and
is quite different from the ordinary General Public License. We use
this license for certain libraries in order to permit linking those
libraries into non-free programs.

214

When a program is linked with a library, whether statically or using
a shared library, the combination of the two is legally speaking a
combined work, a derivative of the original library. The ordinary
General Public License therefore permits such linking only if the
entire combination fits its criteria of freedom. The Lesser General
Public License permits more lax criteria for linking other code with
the library.

We call this license the "Lesser" General Public License because it
does Less to protect the user’s freedom than the ordinary General
Public License. It also provides other free software developers Less
of an advantage over competing non-free programs. These disadvantages
are the reason we use the ordinary General Public License for many
libraries. However, the Lesser license provides advantages in certain
special circumstances.

For example, on rare occasions, there may be a special need to
encourage the widest possible use of a certain library, so that it becomes
a de-facto standard. To achieve this, non-free programs must be
allowed to use the library. A more frequent case is that a free
library does the same job as widely used non-free libraries. 1In this
case, there is little to gain by limiting the free library to free
software only, so we use the Lesser General Public License.

In other cases, permission to use a particular library in non-free
programs enables a greater number of people to use a large body of
free software. For example, permission to use the GNU C Library in
non-free programs enables many more people to use the whole GNU
operating system, as well as its variant, the GNU/Linux operating
system.

Although the Lesser General Public License is Less protective of the
users’ freedom, it does ensure that the user of a program that is
linked with the Library has the freedom and the wherewithal to run
that program using a modified version of the Library.

The precise terms and conditions for copying, distribution and
modification follow. Pay close attention to the difference between a
"work based on the library" and a "work that uses the library". The
former contains code derived from the library, whereas the latter must
be combined with the library in order to run.

GNU LESSER GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License Agreement applies to any software library or other

215

program which contains a notice placed by the copyright holder or
other authorized party saying it may be distributed under the terms of
this Lesser General Public License (also called "this License").

Each licensee is addressed as "you".

A "library" means a collection of software functions and/or data
prepared so as to be conveniently linked with application programs
(which use some of those functions and data) to form executables.

The "Library", below, refers to any such software library or work
which has been distributed under these terms. A "work based on the
Library" means either the Library or any derivative work under
copyright law: that is to say, a work containing the Library or a
portion of it, either verbatim or with modifications and/or translated
straightforwardly into another language. (Hereinafter, translation is
included without limitation in the term "modification".)

"Source code" for a work means the preferred form of the work for
making modifications to it. For a library, complete source code means
all the source code for all modules it contains, plus any associated
interface definition files, plus the scripts used to control compilation
and installation of the library.

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running a program using the Library is not restricted, and output from
such a program is covered only if its contents constitute a work based
on the Library (independent of the use of the Library in a tool for
writing it). Whether that is true depends on what the Library does
and what the program that uses the Library does.

1. You may copy and distribute verbatim copies of the Library’s
complete source code as you receive it, in any medium, provided that
you conspicuously and appropriately publish on each copy an
appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any
warranty; and distribute a copy of this License along with the
Library.

You may charge a fee for the physical act of transferring a copy,
and you may at your option offer warranty protection in exchange for a
fee.

2. You may modify your copy or copies of the Library or any portion

of it, thus forming a work based on the Library, and copy and
distribute such modifications or work under the terms of Section 1

216

above, provided that you also meet all of these conditions:
a) The modified work must itself be a software library.

b) You must cause the files modified to carry prominent notices
stating that you changed the files and the date of any change.

c) You must cause the whole of the work to be licensed at no
charge to all third parties under the terms of this License.

d) If a facility in the modified Library refers to a function or a
table of data to be supplied by an application program that uses
the facility, other than as an argument passed when the facility
is invoked, then you must make a good faith effort to ensure that,
in the event an application does not supply such function or
table, the facility still operates, and performs whatever part of
its purpose remains meaningful.

(For example, a function in a library to compute square roots has
a purpose that is entirely well-defined independent of the
application. Therefore, Subsection 2d requires that any
application-supplied function or table used by this function must
be optional: if the application does not supply it, the square
root function must still compute square roots.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Library,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Library, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Library.

In addition, mere aggregation of another work not based on the Library
with the Library (or with a work based on the Library) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

217

3. You may opt to apply the terms of the ordinary GNU General Public
License instead of this License to a given copy of the Library. To do
this, you must alter all the notices that refer to this License, so
that they refer to the ordinary GNU General Public License, version 2,
instead of to this License. (If a newer version than version 2 of the
ordinary GNU General Public License has appeared, then you can specify
that version instead if you wish.) Do not make any other change in
these notices.

Once this change is made in a given copy, it is irreversible for
that copy, so the ordinary GNU General Public License applies to all
subsequent copies and derivative works made from that copy.

This option is useful when you wish to copy part of the code of
the Library into a program that is not a library.

4. You may copy and distribute the Library (or a portion or
derivative of it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you accompany
it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a
medium customarily used for software interchange.

If distribution of object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the
source code from the same place satisfies the requirement to
distribute the source code, even though third parties are not
compelled to copy the source along with the object code.

5. A program that contains no derivative of any portion of the
Library, but is designed to work with the Library by being compiled or
linked with it, is called a "work that uses the Library". Such a
work, in isolation, is not a derivative work of the Library, and
therefore falls outside the scope of this License.

However, linking a "work that uses the Library" with the Library
creates an executable that is a derivative of the Library (because it
contains portions of the Library), rather than a "work that uses the
library". The executable is therefore covered by this License.
Section 6 states terms for distribution of such executables.

When a "work that uses the Library" uses material from a header file
that is part of the Library, the object code for the work may be a
derivative work of the Library even though the source code is not.
Whether this is true is especially significant if the work can be
linked without the Library, or if the work is itself a library. The

218

threshold for this to be true is not precisely defined by law.

If such an object file uses only numerical parameters, data
structure layouts and accessors, and small macros and small inline
functions (ten lines or less in length), then the use of the object
file is unrestricted, regardless of whether it is legally a derivative
work. (Executables containing this object code plus portions of the
Library will still fall under Section 6.)

Otherwise, if the work is a derivative of the Library, you may
distribute the object code for the work under the terms of Section 6.
Any executables containing that work also fall under Section 6,
whether or not they are linked directly with the Library itself.

6. As an exception to the Sections above, you may also combine or
link a "work that uses the Library" with the Library to produce a
work containing portions of the Library, and distribute that work
under terms of your choice, provided that the terms permit
modification of the work for the customer’s own use and reverse
engineering for debugging such modifications.

You must give prominent notice with each copy of the work that the
Library is used in it and that the Library and its use are covered by
this License. You must supply a copy of this License. If the work
during execution displays copyright notices, you must include the
copyright notice for the Library among them, as well as a reference
directing the user to the copy of this License. Also, you must do one
of these things:

a) Accompany the work with the complete corresponding
machine-readable source code for the Library including whatever
changes were used in the work (which must be distributed under
Sections 1 and 2 above); and, if the work is an executable linked
with the Library, with the complete machine-readable "work that
uses the Library", as object code and/or source code, so that the
user can modify the Library and then relink to produce a modified
executable containing the modified Library. (It is understood
that the user who changes the contents of definitions files in the
Library will not necessarily be able to recompile the application
to use the modified definitioms.)

b) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (1) uses at run time a
copy of the library already present on the user’s computer system,
rather than copying library functions into the executable, and (2)
will operate properly with a modified version of the library, if

219

the user installs one, as long as the modified version is
interface-compatible with the version that the work was made with.

c) Accompany the work with a written offer, valid for at
least three years, to give the same user the materials
specified in Subsection 6a, above, for a charge no more
than the cost of performing this distribution.

d) If distribution of the work is made by offering access to copy
from a designated place, offer equivalent access to copy the above
specified materials from the same place.

e) Verify that the user has already received a copy of these
materials or that you have already sent this user a copy.

For an executable, the required form of the "work that uses the
Library" must include any data and utility programs needed for
reproducing the executable from it. However, as a special exception,
the materials to be distributed need not include anything that is
normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies
the executable.

It may happen that this requirement contradicts the license
restrictions of other proprietary libraries that do not normally
accompany the operating system. Such a contradiction means you cannot
use both them and the Library together in an executable that you
distribute.

7. You may place library facilities that are a work based on the
Library side-by-side in a single library together with other library
facilities not covered by this License, and distribute such a combined
library, provided that the separate distribution of the work based on
the Library and of the other library facilities is otherwise
permitted, and provided that you do these two things:

a) Accompany the combined library with a copy of the same work
based on the Library, uncombined with any other library
facilities. This must be distributed under the terms of the
Sections above.

b) Give prominent notice with the combined library of the fact

that part of it is a work based on the Library, and explaining
where to find the accompanying uncombined form of the same work.

220

8. You may not copy, modify, sublicense, link with, or distribute
the Library except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense, link with, or
distribute the Library is void, and will automatically terminate your
rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

9. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Library or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Library (or any work based on the
Library), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Library or works based on it.

10. Each time you redistribute the Library (or any work based on the
Library), the recipient automatically receives a license from the
original licensor to copy, distribute, link with or modify the Library
subject to these terms and conditions. You may not impose any further
restrictions on the recipients’ exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties with
this License.

11. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Library at all. For example, if a patent
license would not permit royalty-free redistribution of the Library by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Library.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply,
and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system which is

221

implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

12. If the distribution and/or use of the Library is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Library under this License may add
an explicit geographical distribution limitation excluding those countries,
so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if
written in the body of this License.

13. The Free Software Foundation may publish revised and/or new
versions of the Lesser General Public License from time to time.
Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Library
specifies a version number of this License which applies to it and
"any later version", you have the option of following the terms and
conditions either of that version or of any later version published by
the Free Software Foundation. If the Library does not specify a
license version number, you may choose any version ever published by
the Free Software Foundation.

14. If you wish to incorporate parts of the Library into other free
programs whose distribution conditions are incompatible with these,
write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status
of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY
15. BECAUSE THE LIBRARY IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE LIBRARY, TO THE EXTENT PERMITTED BY APPLICABLE LAW.

EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE LIBRARY "AS IS" WITHOUT WARRANTY OF ANY

222

KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE
LIBRARY IS WITH YOU. SHOULD THE LIBRARY PROVE DEFECTIVE, YOU ASSUME
THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE LIBRARY AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE
LIBRARY (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING
RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A
FAILURE OF THE LIBRARY TO OPERATE WITH ANY OTHER SOFTWARE), EVEN IF
SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Libraries

If you develop a new library, and you want it to be of the greatest
possible use to the public, we recommend making it free software that
everyone can redistribute and change. You can do so by permitting
redistribution under these terms (or, alternatively, under the terms of the
ordinary General Public License).

To apply these terms, attach the following notices to the library. It is
safest to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least the
"copyright" line and a pointer to where the full notice is found.

<one line to give the library’s name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public

223

License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA

Also add information on how to contact you by electronic and paper mail.
You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the library, if

necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the
library ‘Frob’ (a library for tweaking knobs) written by James Random Hacker.

<signature of Ty Coon>, 1 April 1990
Ty Coon, President of Vice

That’s all there is to it!

224

