
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Computer Science
and Engineering

Diploma Thesis

Implementation of DCA Compression Method

Martin Fiala

Supervisor Ing. Jan Holub, Ph.D.

Master Study Program: Electrical Engineering and Information Technology

Specialization: Computer Science and Engineering

May 2007

Prohlášeńı

Prohlašuji, že jsem svou diplomovou práci vypracoval samostatně a použil jsem pouze
podklady uvedené v přiloženém seznamu.

Nemám závažný d̊uvod proti užit́ı tohoto školńıho d́ıla ve smyslu §60 Zákona č. 121/2000
Sb., o právu autorském, o právech souvisej́ıćıch s právem autorským a o změně některých
zákon̊u (autorský zákon).

V Praze dne 14. června 2007 .

iii

Anotace

Komprese dat metodou antislovńıku je nová metoda komprese dat založená na faktu, že
některé posloupnosti znak̊u se v textu nikdy nevyskytuj́ı. Tato práce se zabývá imple-
mentaćı r̊uzných metod DCA (komprese dat metodou antislovńıku) založených na praćıch
Crochemore, Mignosi, Restivo, Navarro a daľśıch a srovnává výsledky na standardńıch
sadách soubor̊u pro vyhodnocováńı kompresńıch metod.

Je představena konstrukce antislovńıku pomoćı suffix array se zaměřeńım na sńıžeńı
pamět’ových nárok̊u statického zp̊usobu komprese. Dále je vysvětlena a implementována
dynamická DCA komprese, jsou testována některá možná vylepšeńı a implementované
DCA metody jsou porovnány z hlediska dosaženého kompresńıho poměru, pamět’ových
nárok̊u a rychlosti komprese a dekomprese. U každé z metod jsou doporučeny vhodné
parametry a nakonec jsou shrnuty klady a zápory srovnávaných metod.

v

Abstract

Data compression using antidictionaries is a novel compression technique based on the
fact that some factors never appear in the text. Various DCA (Data Compression using
Antidictionaries) method implementations based on works from Crochemore, Mignosi,
Restivo, Navarro and others are presented and their performance evaluated on standard
sets of files for evaluating compression methods.

Antidictionary construction using suffix array is introduced focusing on minimizing mem-
ory requirements of the static compression scheme. Also dynamic compression scheme is
explained and implemented. Some possible improvements are tested, implemented DCA
methods are evaluated in terms of compression ratio, memory requirements and speed of
both compression and decompression. Finally appropriate parameters for each method
are suggested. At the end pros and cons of evaluated methods are discussed.

vii

viii

Acknowledgements

I would like to thank my thesis supervisor Ing. Jan Holub, Ph.D., not only for the basic
idea of this thesis, but also for many suggestions and valuable contributions.

I would also like to thank my parents for their support.

ix

x

Dedication

To my mother.

xi

xii

Contents

List of Figures xv

List of Tables xvii

1 Introduction 1

1.1 Problem Statement . 1

1.2 State of The Art . 1

1.3 Contribution of the Thesis . 1

1.4 Organization of the Thesis . 2

2 Preliminaries 3

3 Data Compression Using Antidictionaries 9

3.1 DCA Fundamentals . 9

3.2 Data Compression and Decompression . 10

3.3 Antidictionary Construction Using Suffix Trie 12

3.4 Compression/Decompression Transducer 14

3.5 Static Compression Scheme . 15

3.5.1 Simple pruning . 15

3.5.2 Antidictionary self-compression . 16

3.6 Antidictionary Construction Using Suffix Array 17

3.6.1 Suffix array . 18

3.6.2 Antidictionary construction . 19

3.7 Almost Antifactors . 20

xiii

3.7.1 Compression ratio improvement . 21

3.7.2 Choosing nodes to convert . 21

3.8 Dynamic Compression Scheme . 23

3.8.1 Using suffix trie online construction 24

3.8.2 Comparison with static approach 25

3.9 Searching in Compressed Text . 26

4 Implementation 29

4.1 Used Platform . 29

4.2 Documentation and Versioning . 29

4.3 Debugging . 30

4.4 Implementation of Static Compression Scheme 32

4.4.1 Suffix trie construction . 33

4.4.2 Building antidictionary . 35

4.4.3 Building automaton . 36

4.4.4 Self-compression . 36

4.4.5 Gain computation . 37

4.4.6 Simple cruning . 37

4.5 Antidictionary Representation . 38

4.5.1 Text generating the antidictionary 39

4.6 Compressed File Format . 40

4.7 Antidictionary Construction Using Suffix Array 41

4.7.1 Suffix array construction . 41

4.7.2 Antidictionary construction . 41

4.8 Run Length Encoding . 44

4.9 Almost Antiwords . 44

4.10 Parallel Antidictionaries . 44

4.11 Used Optimizations . 45

4.12 Verifying Results . 45

4.13 Dividing Input Text into Smaller Blocks 45

xiv

5 Experiments 47

5.1 Measurements . 47

5.2 Self-Compression . 47

5.3 Antidictionary Construction and Optimization 49

5.4 Data Compression . 51

5.5 Data Decompression . 55

5.6 Different Stages . 57

5.7 RLE . 57

5.8 Almost Antiwords . 59

5.9 Sliced Parallel Antidictionaries . 64

5.10 Dividing Input Text into Smaller Blocks 66

5.11 Dynamic Compression . 68

5.12 Canterbury Corpus . 68

5.13 Selected Parameters . 71

5.14 Calgary Corpus . 76

6 Conclusion and Future Work 77

6.1 Summary of Results . 77

6.2 Suggestions for Future Research . 78

A User Manual 81

xv

xvi

List of Figures

2.1 Suffix trie vs. suffix tree . 7

3.1 DCA basic scheme . 10

3.2 Suffix trie construction . 12

3.3 Antidictionary construction . 13

3.4 Compression/decompression transducer 14

3.5 Basic antidictionary construction . 15

3.6 Antidictionary construction using simple pruning 16

3.7 Self-compression example . 17

3.8 Self-compression combined with simple pruning 18

3.9 Example of using almost antiwords . 22

3.10 Dynamic compression scheme . 23

3.11 Dynamic compression example . 27

4.1 Collaboration diagram of class DCAcompressor 30

4.2 Suffix trie generated by graphviz . 32

4.3 File compression/decompression . 33

4.4 Implementation of static scheme . 34

5.1 Memory requirements of different self-compression options 48

5.2 Time requirements of different self-compression options 48

5.3 Compression ratio of different self-compression options 49

5.4 Self-compression compression ratios on Canterbury Corpus 50

5.5 Number of nodes in relation to maxdepth 50

5.6 Number of nodes leading to antiwords in relation to maxdepth 51

xvii

5.7 Number of antiwords in relation to maxdepth 52

5.8 Number of used antiwords in relation to maxdepth 52

5.9 Relation between number of nodes and number of antiwords 53

5.10 Memory requirements for compressing “paper1” 53

5.11 Time requirements for compressing “paper1” 54

5.12 Compression ratio obtained compressing “paper1” 54

5.13 Compressed file structure created using static scheme compressing “paper1” 55

5.14 Memory requirements for decompressing “paper1.dz” 56

5.15 Time requirements for decompressing “paper1.dz” 56

5.16 Individual phases of compression process using suffix trie 57

5.17 Individual phases time contribution using suffix trie 58

5.18 Individual phases of compression process using suffix array 58

5.19 Individual phases time contribution using suffix array 59

5.20 Compression ratio obtained compressing “grammar.lsp” 60

5.21 Compression ratio obtained compressing “sum” 60

5.22 Memory requirements using almost antiwords 61

5.23 Time requirements using almost antiwords 61

5.24 Compression ratio obtained compressing “paper1” 62

5.25 Compressed file structure created using almost antiwords 62

5.26 Compression ratio obtained compressing “alice29.txt” 63

5.27 Compression ratio obtained compressing “ptt5” 63

5.28 Compression ratio obtained compressing “xargs.1” 64

5.29 Memory requirements in relation to block size compressing “plrabn12.txt” 65

5.30 Time requirements in relation to block size compressing “plrabn12.txt” . 66

5.31 Compression ratio obtained compressing “plrabn12.txt” 67

5.32 Compressed file structure in relation to block size 67

5.33 Dynamic compression scheme exception distances histogram 68

5.34 Exception count in relation to maxdepth 69

5.35 Compression ratio obtained compressing “plrabn12.txt” 69

5.36 Best compression ratio obtained by each method on Canterbury Corpus . 70

xviii

5.37 Average compression ratio obtained on Canterbury Corpus 71

5.38 Average compression speed on Canterbury Corpus 72

5.39 Average time needed to compress 1MB of input text 72

5.40 Memory needed to compress 1B of input text 73

5.41 Compression ratio obtained by selected methods on Canterbury Corpus . 73

5.42 Time needed to compress 1MB of input text 74

5.43 Memory needed by selected methods to compress 1B of input text 74

xix

xx

List of Tables

2.1 Canterbury Corpus . 4

3.1 Suffix array for text “abcaab” . 19

3.2 Suffix array used for antidictionary construction 20

3.3 Example of node gains as antiwords . 22

3.4 Dynamic compression example . 26

4.1 DCAstate structure implementation . 35

4.2 Compressed file format . 40

5.1 Parallel antidictionaries using static compression scheme 65

5.2 Parallel antidictionaries using dynamic compression scheme 65

5.3 Best compression ratios obtained on Canterbury Corpus 70

5.4 Compressed file sizes obtained on Canterbury Corpus 75

5.5 Compressed file sizes obtained on Calgary Corpus 75

5.6 Pros and cons of different methods . 75

xxi

xxii

Chapter 1

Introduction

1.1 Problem Statement

DCA (Data Compression using Antidictionaries) is a novel data compression method
presented by M. Crochemore in [6]. It uses current theories about finite automata and
suffix languages to show their abilities for data compression. The method takes advantage
of words that do not occur as factors in the text, i.e. that are forbidden. Thanks to
existence of these forbidden words, some symbols in the text can be predicted.

The general idea of the method is quite interesting, first input text is analyzed and all
forbidden words are found. Using binary alphabet Σ = {0, 1} symbols whose occur-
rences can be predicted using the set of forbidden words are erased. DCA is a lossless
compression method, which operates on binary streams.

1.2 State of The Art

Currently there are no available implementations of DCA, all were developed for experi-
mental purposes only. Some research is being done on using larger alphabets rather than
binary and on using compacted suffix automata (CDAWGs) for antidictionary construc-
tion.

1.3 Contribution of the Thesis

In the thesis dynamic compression using DCA is explained and implemented and anti-
dictionary construction using suffix array is introduced focusing on minimizing memory
requirements. Several methods based on data compression using antidictionaries idea are
implemented — static compression scheme as well as dynamic compression scheme and
static compression scheme with support for almost antifactors, that are words, which oc-
cur rarely in the input text. Their results compressing files from Canterbury and Calgary

1

2

corpus are presented.

1.4 Organization of the Thesis

In Chapter 2 basic definitions and terminology used in the thesis can be found. Chap-
ter 3 describes the way different methods of DCA are working, brings some examples and
also some new ideas. Furthermore dynamic compression scheme is described and anti-
dictionary construction using suffix array is introduced. Also basics of different stages in
static compression scheme are explained. In Chapter 4 possible implementation of differ-
ent DCA methods are presented along with some ideas of improving their performance or
limiting time and memory requirements. Chapter 5 focuses on experiments with different
parameters of implemented methods. Their comparison and results on Canterbury and
Calgary corpuses could be found here, provided with comments and recommendations
to their usage. The last chapter concludes the thesis and suggests some ideas for future
research.

Chapter 2

Preliminaries

Definition 2.1 (Lossless data compression)
A lossless data compression method is one where compressing a file and decompressing
it retrieves data back to its original form without any loss. The decompressed file and
the original are identical, lossless compression preserves data integrity.

Definition 2.2 (Lossy data compression)
A lossy data compression method is one where compressing a file and then decompressing
it retrieves a file that may well be different to the original, but is “close enough” to be
useful in some way.

Definition 2.3 (Symmetric compression)
Symmetric compression is a technique that takes about the same amount of time to
compress as it does to decompress.

Definition 2.4 (Asymmetric compression)
Asymmetric compression is a technique that takes different time to compress than it does
to decompress.

Note 2.1 (Asymmetric compression)
Typically asymmetric compression methods take more time to compress than to decom-
press. Some asymmetric compression methods take longer time to decompress, which
would be suited for backup files that are constantly being compressed and rarely decom-
pressed. But basically faster compression than decompression is what we want for usual
compress once, decompress many times behaviour.

Note 2.2 (Canterbury Corpus)
The Canterbury Corpus[15] is a collection of “typical” files for use in the evaluation
of lossless compression methods. The Canterbury Corpus consists of 11 files, shown
in Table 2.1. Previously, compression software was tested using a small subset of one
or two “non-standard” files. This was a possible source of bias to experiments, as the
data used may have caused the programs to exhibit anomalous behaviour. Running

3

4 CHAPTER 2. PRELIMINARIES

File Category Size
alice29.txt English text 152089
asyoulik.txt Shakespeare 125179
cp.html HTML source 24603
fields.c C source 11150
grammar.lsp LISP source 3721
kennedy.xls Excel spreadsheet 1029744
lcet10.txt Technical writing 426754
plrabn12.txt Poetry 481861
ptt5 CCITT test set 513216
sum SPARC Executable 38240
xargs.1 GNU manual page 4227

Table 2.1: Files in the Canterbury Corpus

compression software experiments using the same carefully selected set of files gives us a
good evaluation and comparison with other methods.

Note 2.3 (Calgary Corpus)
The Calgary Corpus[4] is the most referenced corpus in the data compression field espe-
cially for text compression and is the de facto standard for lossless compression evaluation.
It was founded in 1987. It is a predecessor of the Canterbury Corpus.

Definition 2.5 (Compression ratio)
Compression ratio is an indicator evaluating compression performance. It is defined as

Compression ratio =
Length of compressed data

Length of original data
.

Definition 2.6 (Alphabet)
An alphabet Σ is a finite non-empty set of symbols.

Definition 2.7 (Complement of symbol)
A complement of symbol a over Σ, where a ∈ Σ, is a set Σ \ {a} and is denoted ā.

Definition 2.8 (String)
A string over Σ is any sequence of symbols from Σ.

Definition 2.9 (Set of all strings)
The set of all strings over Σ is denoted Σ∗.

Definition 2.10 (Substring)
String x is a substring (factor) of string y, if y = uxv, where x, y, u, v ∈ Σ∗.

5

Definition 2.11 (Prefix)
String x is a prefix of string y, if y = xv, where x, y, v ∈ Σ∗.

Definition 2.12 (Suffix)
String x is a suffix of string y, if y = ux, where x, y, u ∈ Σ∗.

Definition 2.13 (Proper prefix, factor, suffix)
A prefix, factor and suffix of a string u is said to be proper if it is not u.

Definition 2.14 (Length of string)
The length of string w is the number of symbols in string w ∈ Σ∗ and is denoted |w|.

Definition 2.15 (Empty string)
An empty string is a string of length 0 and is denoted ε.

Definition 2.16 (Deterministic finite automaton)
A deterministic finite automaton (DFA) is quintuple (Q,Σ, δ, q0, F), where Q is a finite
set of states, Σ is a finite input alphabet, δ is a mapping Q×Σ→ Q, q0 ∈ Q is an initial
state, F ⊂ Q is the set of final states.

Definition 2.17 (Transducer finite state machine)
A transducer finite state machine is sixtuple (Q,Σ,Γ, δ, q0, ω), where Q is a finite set
of states, Σ is a finite input alphabet, Γ is a finite output alphabet, δ is a mapping
Q× Σ→ Q, q0 ∈ Q is an initial state, ω is an output function Q× (Σ ∪ {ε})→ Γ.

Definition 2.18 (Suffix trie [18])
Let T = t1t2 · · · tn be a string over an alphabet Σ. String x is a substring of T . Each
string Ti = ti · · · tn where 1 ≤ i ≤ n + 1 is a suffix of T ; in particular, Tn+1 = ε is the
empty suffix. The set of all suffixes of T is denoted σ(T). The suffix trie of T is a tree
representing σ(T).

More formally, we denote the suffix trie of T as STrie(T) = (Q ∪ {⊥},Σ, root, F, g, f)
and define such a trie as an augmented deterministic finite-state automaton which has a
tree-shaped transition graph representing the trie for σ(T) and which is augmented with
the so called suffix function f and auxiliary state ⊥. The set Q of the states of STrie(T)
can be put in a one-to-one correspondence with the substrings of T . We denote by x̂ the
state that corresponds to a substring x.

The initial state root node corresponds to the empty string ε, and the set F of the final
states corresponds to σ(T). The transition function g is defined as g(x̂, a) = ŷ for all x̂, ŷ
in Q such that y = xa, where a ∈ Σ.

The suffix function f is defined for each state x̂ ∈ Q as follows. Let x̂ 6= root. Then
x = ay for some a ∈ Σ, and we set f(x̂) = ŷ. Moreover, f(root) = ⊥.

Automaton STrie(T) is identical to the Aho-Corasick string matching automaton [1] for
the key-word set {Ti | 1 ≤ i ≤ n+ 1} (suffix links are called in [1] failure transitions.)

6 CHAPTER 2. PRELIMINARIES

Definition 2.19 (Suffix trie depth)
Suffix trie depth k is the maximum height allowed for the trie. We will denote it as
maxdepth k.

Note 2.4 (Suffix trie depth limit)
Due to the suffix trie depth limit k, suffix trie represents only suffixes S ⊂ σ(T), ∀x ∈ S :
|x| ≤ k.

Theorem 2.1 (Suffix trie [18])
Suffix trie STrie(T) can be constructed in time proportional to the size of STrie(T)
which, in the worst case, is O(|T |2).

Definition 2.20 (Suffix tree [18])
Suffix tree STree(T) of T is a data structure that represents STrie(T) in space linear
in the length |T | of T . This is achieved by representing only a subset Q′ ∪ {⊥} of the
states of STrie(T). We call the states in Q′ ∪ {⊥} the explicit states. Set Q′ consists of
all branching states (states from which there are at least two transitions) and all leaves
(states from which there are no transitions) of STrie(T). By definition, root is included
into the branching states. The other states of STrie(T) (the states other than root and ⊥
from which there is exactly one transition) are called implicit states as states of STree(T);
they are not explicitly present in STree(T).

Note 2.5 (Suffix link)
Suffix link is a key feature for linear-time construction of the suffix tree. In a complete
suffix tree, all internal non-root nodes have a suffix link to another internal node. Suffix
link corresponds to function f(r) of state r. If the path from the root to a node spells
the string bv, where b ∈ Σ is a symbol and v is a string (possibly empty), it has a suffix
link to the internal node representing v.

Note 2.6 (Suffix tree)
Suffix tree represents all suffixes of a given string. It is designed for fast substring search-
ing, each node represents a substring, which is determined by the path to the node. The
difference between suffix tree and suffix trie could be more obvious from Figure 2.1.

The large amount of information in each edge and node makes the suffix tree very ex-
pensive, consuming about ten to twenty times [11] the memory size of the source text in
good implementations. The suffix array reduces this requirement to a factor of four, and
researchers have continued to find smaller indexing structures.

Definition 2.21 (Antifactor [3])
Antifactor (or Forbidden Word) is a word that never appears in a given text.

Let Σ be a finite alphabet and Σ∗ the set of finite words of symbols from Σ, the empty
word ε included.

Let L ⊂ Σ∗ be a factorial language, i.e. ∀u, v ∈ Σ∗, uv ∈ L⇒ u, v ∈ L. The complement
Σ∗ \L of L is a (two sided) ideal of Σ∗. Denote by MF(L) its base: Σ∗ \L = Σ∗MF(L)Σ∗.

7

⊥
Σ

c

a

c

a

o

o

a o

oc

a

o

⊥
Σ

ca

cao

a o

caoo
o

Figure 2.1: Comparison of suffix trie (left) and suffix tree over string “cacao”

MF(L) is the set of Minimal Forbidden words for L. A word v ∈ Σ∗ is forbidden for L if
v /∈ L. The forbidden word is minimal if it has no proper factors that are forbidden.

Definition 2.22
The set of all minimal forbidden words we call an antidictionary AD.

Definition 2.23 (Internal nodes)
The internal nodes of the suffix trie correspond to nodes actually represented in the trie,
that is, to factors of the text.

Definition 2.24 (External nodes)
The external nodes correspond to antifactors, and they are implicitly represented in
the tree by the null pointers that are children of internal nodes. The exception are
the (forcedly) external nodes at depth k + 1, that are children of internal nodes at the
maximum depth k, which may or may not be antifactors.

Definition 2.25 (Terminal nodes)
Each external node of the trie that surely corresponds to an antifactor (i.e. at depth < k)
is converted into an internal (leaf) node. These new internal nodes are called terminal
nodes.

Note 2.7 (Terminal nodes)
Note that not all leaves are terminal, as some leaves at depth k are not antifactors.

Definition 2.26 (Almost antifactor [7])
Let us assume that a given string s appears m times in the text, and that s.0 and s.1,

8 CHAPTER 2. PRELIMINARIES

where ‘.’ means concatenation1, appear m0 and m1 times, respectively, so that m =
m0 +m1 (except if s is at the end of the text, where m = m0 +m1 + 1). Let us assume
that we need e bits to code an exception. Hence, if m > e ∗ m0, then we improve the
compression by considering s.0 as an antifactor (similarly with s.1). Almost antifactors
are string factors, that improve compression when considered as antifactors.

Definition 2.27 (Suffix array)
Suffix array is a sorted list of all suffixes of given text represented by pointers.

Note 2.8 (Suffix array [12])
When a suffix array is coupled with information about the longest common prefixes (lcps)
of adjacent elements in the suffix array, string searches can be answered in O(P + logN)
time with a simple augmentation to a classic binary search, P is searched string length.
The suffix array and associated lcp information occupy a mere 2N integers, and searches
are shown to require at most P + dlog2 (N − 1)e single-symbol comparisons.

The main advantage of suffix arrays over suffix trees is that, in practice, they use three
to five times less space.

Definition 2.28 (Stopping pair [6])
A pair of words (v, v1) is called stopping pair if v = ua, v1 = u1b ∈ AD, with a, b ∈
{0, 1}, a 6= b, and u is a suffix of u1.

Lemma 2.1 (Only one stopping pair [6])
Let AD be an antifactorial antidictionary of a text t ∈ Σ∗. If there exists a stopping pair
(v, v1) with v1 = u1b, b ∈ {0, 1}, then u1 is a suffix of t and does not appear elsewhere in
t. Moreover there exists at most one pair of words having these properties.

1The concatenation mark ‘.’ is omitted when it is obvious.

Chapter 3

Data Compression Using
Antidictionaries

3.1 DCA Fundamentals

DCA (Data Compression using Antidictionaries) is a novel data compression method
presented by M. Crochemore in [6]. It uses current theories about finite automata and
suffix languages to show their abilities for data compression. The method takes advantage
of words that do not occur as factors in the text, i.e. that are forbidden, we call them
forbidden words or antifactors. Thanks to existence of these forbidden words, we can
predict some symbols in the text.

Just imagine, that we have an antifactor w = ub, where w, u ∈ Σ∗, b ∈ Σ and while
reading text, we find occurence of string u. Because the next symbol can’t be b, we can
predict it as b̄. Therefore when we compress the text, we erase symbols that can be
predicted and in reverse when decompressing we predict the erased symbols back.

The general idea of the method is quite interesting, first we analyze input text and find all
antifactors. Using binary alphabet Σ = {0, 1} we erase symbols, whose occurrences can
be predicted using the set of antifactors. As we can see, DCA is a lossless compression
method, which operates on binary streams so far, i.e. it is working with single bits, not
symbols of larger alphabets, but some current research is dealing with this, too.

Example 3.1
Compress string s = u.1, s ∈ Σ∗, using antifactor u.0.

Because u.0 is an antifactor, the next symbol after u must be 1. So we can erase the
symbol 1 after u.

To be able to compress the text, we need to know the forbidden words. First we analyze
the input text and find all antifactors, which can be used for text compression (Figure 3.1).
For our purpose, we don’t need all antifactors, but just the minimal ones. The antifactor

9

10 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

Figure 3.1: DCA compression basic scheme

is minimal when it does not have any proper factor, that is forbidden. The set of all
minimal antifactors — the antidictionary AD is sufficient, because for every antifactor
w = uv, where u is a string over Σ, there exists a minimal antifactor v in antidictionary
AD.

Currently there is not any known good working implementation of the DCA compression
method. Yet we are trying to develop it, we are still far from practical use, due to the
excessive system resources needed to compress even a small file. However thanks to rapid
research progress of strings, suffix arrays, suffix automata (DAWGs), compacted suffix
automata (CDAWGs) and other related issues, we might be able to design a practical
implementation soon.

3.2 Data Compression and Decompression

Let w be a text on the binary alphabet {0, 1} and let AD be an antidictionary for w
[6]. By reading the text w from left to right, if at a certain moment the current prefix
v of the text admits as suffix a word u′ such that u = u′x ∈ AD with x ∈ {0, 1}, i.e. u
is forbidden, then surely the symbol following v in the text cannot be x and, since the
alphabet is binary, it is the symbol y = x̄. In other terms, we know in advance the next
symbol y, that turns out to be redundant or predictable.

The main idea of this method is to eliminate redundant symbols in order to achieve
compression. The decoding algorithm recovers the text w by predicting the symbol
following the current prefix v of w already decompressed.

Example 3.2
Compress text 01110101 using antidictionary AD = {00, 0110, 1011, 1111}:

step: 1 2 3 4 5 6 7 8
input: 0 01 011 0111 01110 011101 0111010 01110101

| |. |./ |./. |./.. |./... |./.... |./.....
output: 0 0 01 01 01 01 01 01

1. Current prefix: ε. There is no such word x in AD, so we pull 0 from input and push

3.2. DATA COMPRESSION AND DECOMPRESSION 11

it to output.

2. Current prefix: 0. There is word 00 in AD, so we erase the next symbol (1).

3. Current prefix: 01. There is no such word u = u′x in AD, where u is suffix of 01.
We read 1 from input and push it to output.

4. Current prefix: 011. There is word 0110 in AD, so we erase the next symbol (1).

5. Current prefix: 0111. There is word 1111 in AD, so we erase the next symbol (0).
...

The result of compressing text 01110101 is 01. To be able to decompress this text, we
need to store the antidictionary and the original text length also, which could be more
obvious from the following decompression example.

Example 3.3
Decompress text 01 using antidictionary AD = {00, 0110, 1011, 1111}.
Decompression is just an inversed compression algorithm:

1. Current prefix: ε. There is no such word x in AD, so we pull 0 from input and push
it to output.

2. Current prefix: 0. There is word 00 in AD, so we predict the next symbol as 1 and
push it to output.

3. Current prefix: 01. There is no such word u = u′x in AD, where u is suffix of 01.
We read 1 from input and push it to output.

4. Current prefix: 011. There is word 0110 in AD, so we predict the next symbol as 1
and push it to output.

5. Current prefix: 0111. There is word 1111 in AD, so we predict the next symbol 0
and push it to output.
...

step: 1 2 3 4 5 6 7 8
input: 0 0 01 01 01 01 01 01

| | | \ | \ | \ | \ | \ | \
output: 0 01 011 0111 01110 011101 0111010 01110101

After decompression of text 01 we get the original text 01110101. What is important is
that we don’t know exactly when to stop the algorithm by knowing just the compressed
text and the antidictionary. This means we need to know the length of the original text or
we could decompress even infinitely. Another possibility is to store the number of erased

12 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

⊥
Σ

c

⊥
Σ

c

a

a

⊥
Σ

c

a

c

a

c

⊥
Σ

c

a

c

a

a

c

a

⊥
Σ

c

a

c

a

o

o

a o

oc

a

o

Figure 3.2: Constructing suffix trie for text “cacao”

symbols after using the last input bit, which could be sufficient for most implementations,
but this supposes that we can determine exactly end of the input text.

For compression and decompression process, the antidictionary must be able to answer
the query on a word v, if there exists a word u = u′x, x ∈ {0, 1}, u ∈ AD such, that u′

is a suffix of v. The answer determines, if the symbol x will be kept or erased in the
compressed text. To speedup the queries, we can represent the antidictionary as a finite
transducer, which leads to fast linear-time compression and decompression. Then we can
compare it to the fastest compression methods. To build the compression/decompression
transducer, we need a special compiler, that builds the antidictionary first, and then
constructs the automaton over it.

3.3 Antidictionary Construction Using Suffix Trie

As it turns out later, the most complex task of the DCA method is just the antidictionary
construction. It’s natural to use suffix trie structure for collecting all factors of the given
text, although any other data structure for storing factors of words can be used, such
as suffix trees, suffix automata (DAWGs), compacted suffix automata (CDAWGs), suffix
arrays, . . .

Let’s consider text t = c1c2c3 . . . cn of length n, where ci is a symbol at position i. We
are adding words c1, c1c2, c1c2c3, . . . , c1c2c3 . . . cn step by step. Because we are adding
the words to a suffix trie structure representing all suffixes of the given words, we get all
factors of text t. See Figure 3.2 for example of constructing suffix trie for text “cacao”.

To construct an antidictionary from the suffix trie, we add all antifactors of the text. For
every factor u = u′x, we add an antifactor v = u′y, x 6= y, if factor v doesn’t already
exist. The resulting antidictionary won’t be minimal so we need to select only the minimal
antifactors. The antifactor v is minimal when there does not already exist an antifactor

3.3. ANTIDICTIONARY CONSTRUCTION USING SUFFIX TRIE 13

ε

00

1 10 101

01110

11

01

010

011

110

111

0101

0111

1010

1101

1110

11010

10101

11101

0

1

1

0
1

0

1 1

0

1

1 0

10

1

0 1

0

1

ε

00

1 10 101

1011

01110

11

00

01

010

011

100

110

111

0100

0101

0110

0111

1010

1100

1101

1110

1111

01111

10100

11010

10101

11011

11100

11101

0

0

1

1

0
1

0

1 1

0

1
0

0
1 0

1

10
1 0

0
1

0
1 0

1

0
1

0
1

ε

00

1 10 101

1011

01110

11

00

01

010

011

100

110

111

0100

0101

0110

0111

1010

1100

1101

1110

1111

01111

10100

11010

10101

11011

11100

11101

0

0

1

1

0
1

0

1 1

0

1
0

0
1 0

1

10
1 0

0
1

0
1 0

1

0
1

0
1

ε

00

1 10 101

1011

11

00

01 011

111

0110

1111

0

0

1

1

1

0

1 1
0

1

1

1

Figure 3.3: Antidictionary construction over text “01110101” using suffix trie

w such that v = v′w, i.e. there is no such antifactor w, that is a suffix of v. This can
be easily checked using suffix link (dashed line in Figure 3.2). The antifactor v = u′y
is minimal, when f(u′)y is an internal node, otherwise a shorter antifactor w certainly
exists.

Example 3.4
Build an antidictionary for text “01110101” with maximal trie depth k = 5.

We construct a suffix trie over the text, then we add all antifactors. Antifactors together
form a set {00, 100, 0100, 0110, 1011, 1100, 1111, 01111, 11100, 11011, 10100}, which is ob-
viously not antidictionary (set of minimal antifactors), e.g. 00 is a suffix of antifactors
100, 0100, 1100, 11100, 10100. We have to remove antifactors, that are not minimal. Re-
sulting set is antidictionary AD = {00, 0110, 1011, 1111}. See Figure 3.3 for suffix trie
construction process. On the final diagram we can see trie containing only necessary
nodes to represent the antidictionary, leaf nodes are antifactors.

14 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

ε

00

1 10 101

1011

11

00

01 011

111

0110

1111

0

0

1

1

1

0

1 1
0

1

1

1 ε

00

1 10 101

11

01 011

111

0/0

1/ε

0/0

1/1

1/ε

0/0

1/1 0/0

1/1

1/ε

0/ε

1/1

0/ε

Figure 3.4: Antidictionary AD = {00, 0110, 1011, 1111} and the corresponding compres-
sion/decompression transducer

For representing the antidictionary we don’t need the whole tree, so we keep only the
nodes and links, which lead to antifactors. This simplified suffix trie is going to be used
later for compression/decompression transducer building.

3.4 Compression/Decompression Transducer

As we have suffix trie of the antidictionary now, which is in fact an automaton accepting
antifactors, we are able to construct a compression/decompression transducer from it.
From every node r except terminal nodes we have to make sure that transitions for
both 0/1 symbols are defined. For a missing transition δ(r, x), x ∈ {0, 1}, we create this
transition as δ(f(r), x). As we do this in breadth-first search order, δ(f(r), x) is always
defined. The only exception is the root node, which needs special handling. Transducer
construction can be found in more detail in [6] as “L-automaton”.

Then we remove the terminal states and assign output symbols to the edges. The output
sybols are computed as follows: if a state has two outgoing edges, output symbol is the
same as the input one; if a state has only one outgoing edge, output symbol is an empty
word (ε). An example is presented in Figure 3.4.

3.5. STATIC COMPRESSION SCHEME 15

Figure 3.5: Basic antidictionary construction

3.5 Static Compression Scheme

Antidictionary is needed to build the compression/decompression transducer, but in prac-
tical applications the antidictionary is not apriori given, we need to derive it from the
input text or from some “similar data source”. We build the antidictionary using one
of the techniques mentioned in Section 3.3. With bigger antidictionary we could obtain
better compression, but it grows with the length of input text and we need to control its
size, or its representation will be inefficient and the compression could be very slow. A
rough solution is to limit length of the words belonging into antidictionary, which is done
by limiting suffix trie depth during its construction. This will simplify and lower the sys-
tem requirements for building the antidictionary. This simple antidictionary construction
scheme is presented in Figure 3.5.

3.5.1 Simple pruning

In static compression scheme we compress and decompress the data with the same anti-
dictionary. However the decompression process has to know the original antidictionary,
that was used for compression. That’s why we need to store the used antidictionary
together with the compressed data. The question is, if the stored antiword will erase
more bits, than the bits needed to actually store the antiword. Possible antidictionary
representations will be discussed in Section 4.5.

Let’s consider that we know, how many bits are needed for representation of each an-
tiword, then we can compute the gain of each antiword and prune all antiwords with
negative gain. We call this simple pruning. After applying this function on the antidic-
tionary, we can improve the compression ratio of the static compression scheme by storing
only the “good” antiwords and using just them for compression. Our static compression
scheme will now look like Figure 3.6.

16 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

Figure 3.6: Antidictionary construction using simple pruning

3.5.2 Antidictionary self-compression

As with static approach we need to store the antidictionary together with the com-
pressed data, it might cross our minds, that there is a possibility to compress also the
antidictionary itself. This depends heavily in which form we are going to represent the
antidictionary list. Basically we have two options:

1. antiword list – antidictionary size, length of each antiword and the antiword itself.
With this we could use all previous antiwords to compress/decompress the following
antiwords, e.g. for AD = {00, 0110, 1011, 1110} we get AD′ = {00, 010, 101, 1110}.

2. antiword trie – trie structure represented in some suitable way. Using this method
we are actually saving a binary tree, of course the tree can be also self-compressed.
Longer antiwords can be compressed using shorter antiwords, but with some limi-
tations.

Let’s consider the following, w = ubv is an antiword, u, v ∈ Σ∗, b ∈ Σ. If we
compressed antiword w = ubv using antiword z = ub̄, it would become w′ = uv and
|w′| = |z| could happen, which means, that nodes representing antiwords z and w′

would be on the same level in the compressed suffix trie and could overlap. This is
generally not what we want, because we wouldn’t be able to reconstruct the original
tree. Reasonable solution is to erase symbol b from antiword w = ubv if and only
if there exists antiword y = xb̄, where x is a proper suffix of u, which makes sure,
that |w′| > |y|.

Example 3.5
Self-compress trie of the antidictionary AD = {00, 0110, 1011, 1110}:
Only 1011 antiword path can be compressed, we remove node 101 as it can be predicted
due to antiword 00 and connect nodes 10 and 1011. Antiword 1011 will actually become

3.6. ANTIDICTIONARY CONSTRUCTION USING SUFFIX ARRAY 17

ε

00

1 10 101

1011

11

00

01 011

111

0110

1111

0

0

1

1

1

0

1 1
0

1

1

1

1
(101)

Figure 3.7: Self-compression example

101 in the new representation. Antiword 0110 cannot be compressed, because compressing
01 to just 0 will lead to a nondeterministic antidictionary reconstruction. See Figure 3.7.
Self-compression algorithm will be explained thoroughly in Section 4.4.4.

With antidictionary self-compression we can further improve our static compression
scheme. And what about combining this technique with simple pruning? In fact it
makes things a bit harder, because self-compressing changes the antidictionary represen-
tation and influences antiword gains. For better precision we do simple pruning on a
self-compressed tree and after pruning we self-compress the antidictionary and consider
it as final.

However this simplification isn’t accurate, after self-compressing the trie still may not be
optimal, because on the other side simple pruning affects self-compression. We can fix
this by applying simple pruning and self-compressing iteratively as long as some nodes
are pruned from the trie. Both single and multiple self-compression/simple prune rounds
are demonstrated in Figure 3.8.

3.6 Antidictionary Construction Using Suffix Array

In previous sections we used suffix trie for antidictionary construction. One of the main
problems of suffix trie structure is its memory consumption, the large amount of informa-
tion in each edge and node make it very expensive. Even for depth k larger than 30 and
small input files, suffix trie size grows very fast and needs tens to hundreds Megabytes of
memory. Also creation and traversal through the whole trie is quite slow.

We can consider other methods for collecting all text factors. As we are dealing with

18 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

(a) (b)

Figure 3.8: Antidictionary construction using single (a) and multiple (b) self-
compression/simple prune rounds

binary alphabet, this limits usage of some of them — suffix trees, DAWGs or CDAWGs,
which are designed mainly for larger alphabets. Also antidictionary constructing algo-
rithms need to be modified fundamentally and an appropriate way for efficiently repre-
senting these structures has to be developed. This work focuses on usage of suffix arrays,
which were a favourite subject to study in recent years and many implementations are
already available.

3.6.1 Suffix array

The suffix trees were originally developed for searching for suffixes in the text. Later the
suffix arrays were discovered. They are used for example in Burrows-Wheeler Transfor-
mation [5] and bzip2 compression method. The suffix array is a sufficient replacement for
the suffix trees allowing some tasks that were done with suffix trees before. The major
advantage is much smaller memory requirements and also smaller complexity considering
some tasks performed during DCA compression, e.g. node visits counting. It is possible
to save even more space using compressed suffix arrays [9].

The suffix array is built on top of the input text, representing all text suffixes and
alphabetically sorted. In fact it contains indexes pointing into the original text. Because
for most algorithms, this is not enough, we also build lcp array on top of the input text
and suffix array. An example of suffix array can be seen in Table 3.1. Symbol # denotes
the end of the text, lexicographically the smallest symbol.

Lcp (Least Common Prefix) array contains the adjacent word prefix length common with
the previous word. With just these two structures we can do all needed operations, as we
will show later. String searches can be answered with a complexity similar to the binary

3.6. ANTIDICTIONARY CONSTRUCTION USING SUFFIX ARRAY 19

i 0 1 2 3 4 5 6
ti a b c a a b #

SA 6 3 4 0 5 1 2
LCP 0 0 1 2 0 1 0

a a a b b c
a b b # c a
b # c a a
a a b

a b #
b #
#

Table 3.1: Suffix array for text “abcaab”

search, a memory representation requires two arrays of pointers, one for suffix array and
one for lcps, their sizes are equivalent to the length of input text.

Let’s suppose we have an efficient algorithm for suffix array and lcp construction. What
we need to realize for antidictionary construction is, that we are constructing suffix array
over the binary alphabet, so the suffix array and lcp length will be 8 times length of
the input text. Still memory requirements for suffix array construction depends only on
the length of input text with O(N), instead of suffix trie almost exponential complexity,
depending on the trie depth.

3.6.2 Antidictionary construction

The suffix arrays offer text searching capabilities similar to suffix tries, thus why not
to use them for antidictionary construction. First mention of this idea can be found
in [19]. Now antidictionary construction using suffix array with asymptotic complexity
O(k ∗N logN) will be explained, k is maximal antiword length. The process takes two
adjacent strings at a time and finds antifactors. Special handling is needed for the last
item, which is not in pair.

1. Take two adjacent strings ui and ui+1 from suffix array, ui, ui+1 ∈ Σ∗.

2. Skip their common prefix c utilizing LCP, ui = cxv, ui+1 = cyw, x 6= y and test the
first differing symbol, c, v, w ∈ Σ∗, x, y ∈ Σ. If x = #, y = 1, then add antifactor
c.0.

3. For each symbol vj of string ui = cxv such, that vj = 0, add antifactor
cxv1 . . . vj−11.

4. For each symbol wj of string ui+1 = cyw such, that vj = 1, add antifactor
cyw1 . . . wj−10.

5. Repeat previous steps for all suffix array items.

20 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

i 0 1 2 3 4 5 6 7 8
ti 0 1 1 1 0 1 0 1 #

SA 8 6 4 0 7 5 3 2 1
LCP 0 0 2 2 0 1 3 1 2

0 0 0 1 1 1 1 1
1 1 1 # 0 0 1 1
0 1 1 1 0 1

1 1 # 0 1 0
0 1 0 1

Table 3.2: Suffix array for binary text “01110101” highlighting antifactor positions

6. For the last item un = v, for each symbol vj = 0, add antifactor v1 . . . vj−11.

This simple algorithm finds all text antifactors, we only need to limit antifactor length.
Using this technique we find all antifactors, but what we really want are minimal an-
tifactors. One possible way is to construct a suffix trie from the found antifactors and
then choose just the minimal antifactors using suffix links. Second option is to utilize the
suffix array ability for searching strings.

To check if antifactor u = av, a ∈ {0, 1} is minimal, try to find string v in the suffix array.
If string v appears in the text, then the antifactor u is minimal. Search for a string in
suffix array equipped with lcp array takes O(P + logN) time, where P is length of v.

Example 3.6
Build antidictionary for text “01110101” using suffix array.

First we build suffix array and lcp structure, it can be seen in the Table 3.2, suffix tree for
the same text can be found in Figure 3.3. Using algorithm introduced above we find pos-
sible antifactors, their positions are marked with a frame around symbols. Positions with
minimal antifactors are underlined. This leads to the set of minimal antifactors, anti-
dictionary AD = {00, 0110, 1011, 1111}, which corresponds with antidictionary computed
using suffix trie.

3.7 Almost Antifactors

The idea of almost antifactors was introduced in [7]. After more detailed examination
of antidictionaries we can discover also their odd behaviour. If we try to compress the
string 10n−1 with k ≥ 2, then the result is satisfying because we can use {01, 11} as our
antidictionary. This permits compressing the string to (1, n) plus the small antidictionary.
However, if we reverse the string to 0n−11, then for any k < n the set of antifactors
contains {10, 11}, which indeed does not yield any compression. The classical algorithm
produces an empty antidictionary. Yet, both strings have the same 0-order entropy.

3.7. ALMOST ANTIFACTORS 21

As we can see, the main problem is that a single occurrence of a string in the text (in
our second example the string “01”) outrules it as an antifactor. In a less extreme case,
it may be possible that a string sb, s ∈ Σ∗, b ∈ Σ appears just a few times in the text,
but its prefix s appears so many times, that it is better to consider sb as an antifactor.
Of course, to be able to recover the original text, we need to code somehow those text
positions where the bit predicted by taking the string as an antifactor is wrong. We
call exceptions the positions in the original text where this happens, that is, the final
positions of the occurrences of sb in the text.

3.7.1 Compression ratio improvement

Usage of almost antifactors can theoretically bring compression ratio improvement to
original DCA algorithm, but it’s not so easy, as it looks at the first sight. By introducing
some almost antifactors we can remove also “good” antifactors, whose gain was better
than of the newly introduced almost antiword. Also we completely prune branches con-
nected to factors we turned into antifactors. In contrast of improving gain, introducing
new almost antiwords we lose some gain elsewhere, the whole tree changes a lot.

The key problem [7] is that the decision of what is an almost antifactor depends in turn on
the gains produced, so we cannot separate the process of creating the almost antifactors
and computing their gains: creating an almost antifactor changes the gains upwards in
the tree, as well as the gains downwards via suffix links. So there seems to be no suitable
traversal order. It is not possible either to do a first pass computing gains and then a
second pass deciding which will be terminals, because if one converts a node into terminal
its gain changes and modifies those of all the ancestors in the tree. It is not possible to
leave the removal of redundant terminals for later because the removal can also change
previous decisions on ancestors of the removed node.

3.7.2 Choosing nodes to convert

In the original document two ways of solving this problem were introduced, one-pass and
multi-pass heuristics. Both heuristics work with the whole suffix trie, not with just the
trie with antifactors. This is very limiting for designing a fast DCA implementation,
multi-pass heuristics needs repetitious tree traversal over the whole suffix trie, which is
very expensive.

Although we can use the one-pass heuristics, according to [7] it doesn’t perform as well
as the multi-pass one. The one-pass heuristics first makes breadth-first top-down traver-
sal determining which nodes will be terminal, and then applies the normal bottom-up
optimization algorithm to compute gains and decide which nodes deserve belonging to
the antidictionary.

The problem of heuristics is that it’s not accurate, since considering that it may be a
bad decision to convert into terminal a node that turns out to have a subtree with a
large gain, we lose it, an also when we give the preference to the highest node, it is not
necessarily always the best choice. Even when testing one-pass heuristics with deeper

22 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

ε

00

1

00 000

0

1

0 0

01 001

1 1

[1]

[15] [14]

[13]

[1][1]
[16]

Figure 3.9: Example of using almost antiwords

Node Gain as an antiword
0 16− 5 ∗ 15 = 59
1 16− 5 ∗ 1 = 11
00 15− 5 ∗ 14 = −55
01 15− 5 ∗ 1 = 10
000 14− 5 ∗ 13 = −51
001 14− 5 ∗ 1 = 9

Table 3.3: Example of node gains as antiwords

suffix tries, we can get worse results than with the classical approach, it depends on the
particular file. Using multi-pass heuristics, k/2 passes count are recommended for good
results, but it is not suitable for us because of its time complexity.

Example 3.7
Compress text 0000000000000001 = 0151 using suffix trie depth limit k = 3 with classical
approach and with almost antiwords, then compare the results.

We build suffix trie from the text, as can be seen in Figure 3.9. Next to each node
there is a visit count written in brackets. Let’s suppose the following: representation of
every node in antidictionary trie takes A = 2 bits + 2 extra bits for coding root node,
representation of each exception takes E = 5 bits. Now we can compute gain of each
node r as an antiword using function g(r), p(r) is parent of r, v(r) is visit count of r,

g(r) = v(p(r))− E ∗ v(r).

After gain computation (see Table 3.3) we convert node 1 to a terminal node because of
its positive gain. Nodes 01 and 001 are not converted, because they would be not minimal
antifactors. We obtain antidictionary AD = {1}, which compresses the input data to ε.

Using classical approach we get an empty dictionary, which means no compression at all.
Our output will look like

lenclassical = empty AD(2b) + original length(5b) + data(16b) = 23b.

Using almost antiword approach we get the antidictionary with one word, one exception

3.8. DYNAMIC COMPRESSION SCHEME 23

Figure 3.10: Dynamic compression scheme

and empty compressed data, our output size will be

lenalmost-aw = AD(2b+ 2b) + original length(5b) + data(0b) + exception(1 ∗ 5b) = 14b.

As we can see, using almost antiword improvement we saved 9 bits in comparison with
classical approach and this could be even more interesting for longer texts.

3.8 Dynamic Compression Scheme

Till now we were considering static compression model, where the whole text must be
read twice, once when the antidictionary is computed and once when we are actually
compressing the input. Using this method we need to store the antidictionary separately.
To do it in an efficient way, we use techniques like simple pruning and self-compression.

But there is also another possible solution how to use DCA algorithm. With dynamic
approach we read text only once, we compress input and modify antidictionary at the
same time. Whenever we read some input, we recompute the antidictionary again and
use it for compressing the next input (Figure 3.10). The compression process can be
described in these steps:

1. Begin with an empty antidictionary.

2. Read input and compress it using the current antidictionary.

3. Add the read symbol to the factor list and recompute antidictionary.

24 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

4. Every exception that occurs, code and save into separate file.

5. Repeat steps until the whole input processed.

Because we don’t know the correct antidictionary in advance, we are making mistakes in
predicting the text. Every time we read a symbol that violates the current antidictionary
and brings a forbidden word, we need to handle this exception. We do it by saving
distances between the two adjacent exceptions. This can be represented by number of
successful compressions (bits erased) between the exceptions, there is no need to count
symbols just passed to the algorithm in non-determined transitions. Exception occurs
only when there exists a transition with ε output from the current state, but we don’t
take it.

Exceptions can be represented by some kind of universal codes, arithmetic or Huffman
coding. It needs to be stored along the compressed data in a separate file or when we use
output buffers large enough, they can be a direct part of compressed data.

3.8.1 Using suffix trie online construction

For compressing text using the dynamic compression model we don’t need a pruned
antidictionary or even a set of minimal antifactors, because the compressor and the
decompressor share both the same suffix trie, they can use all available antifactors directly.
With advantage we can use suffix tries for representing already collected factors as well
as for compressing the input online. We use the suffix trie as an automaton, maintaining
suffix links. For this we can use the following algorithm:

1 Dynamic−Build−Fact (int maxdepth > 0)
2 root ← new state;
3 level(root) ← 0;
4 cur ← root;
5 while not EOF do
6 read(a);
7 p ← cur;
8 if level(p) = maxdepth then
9 p ← fail(p);

10 while p has no child and p 6= root do
11 p ← fail(p);
12 if p has only one child δ(p, x) then
13 if x = a then
14 erase symbol a
15 else
16 write exception;
17 else
18 write a to output;
19 cur ← Next(cur,a,maxdepth);
20 return root;

1 Next (state \textit{cur}, bool a, int maxdepth > 0)
2 if δ(cur, a) defined then

3.8. DYNAMIC COMPRESSION SCHEME 25

3 return δ(cur, a)
4 else if level(\textit{cur}) = maxdepth then
5 return Next(fail(\textit{cur}), a, maxdepth)
6 else
7 q ← new state;
8 level(q) ← level(\textit{cur}) + 1;
9 δ(cur, a)← q;

10 if cur = root then fail(q) = root;
11 else fail(q) ← Next(fail(\textit{cur}),a,maxdepth);
12 return q;

Function Dynamic-Build-Fact() builds suffix trie and compresses data at once, function
Next() takes care of creating suffix links and missing nodes up to the root node. For
dynamic compression we need to know only δ(p, a) transitions, fail function and current
level of the node, where p is some node, a ∈ {0, 1}. This is less than half information
needed for each node and edge in comparison with suffix trie representation in static ap-
proach, which means less memory requirements. Considering time asymptotic complexity
of Dynamic-Build-Fact() gives us only O(N ∗k), which is identical to suffix trie construc-
tion complexity in Section 4.4.1, but already compressing text where static compression
scheme starts.

Example 3.8
Compress text 11010111 using dynamic compression scheme.

We start compressing from the beginning, but it could be useful to skip some symbols and
get the suffix trie filled a bit. It’s typical to get many exceptions at the beginning, because
the suffix trie is only forming at first. This is subject for further experiments. Suffix trie
construction process with antifactors found in every step can be seen in Figure 3.11.

Compression process in steps can be seen in Figure 3.4. We get output: “0 E 1 . E . E .”,
where C means compressed, E means exception and ‘.’ is an empty space after erased sym-
bol. Totally 3 exceptions, 3 compressions occurred and 2 symbols were passed. What
we can see, is that antidictionary changes only when we pass a new symbol or when an
exception occurs, while the set of all antifactors can change any time.

3.8.2 Comparison with static approach

We can think about advantages of this method: we don’t have to separately code the
antidictionary, do self-compression or even to simple prune it. We simply use all antifac-
tors found yet. Memory requirements are smaller, method is quite fast, as it does not
need to do breadth first search for building antidictionary or any other tree traversal for
computing gains. Even it is very simple to implement it if we don’t bother with suffix
trie memory greediness and we don’t need to read the text twice as in the static scheme.

There are some disadvantages, too, decompression will be slower, it makes the method
symmetric, because decompression process must do almost the same as compression. As
we build antidictionary dynamically, parallel compressors/decompressors are not possible

26 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

input read text output antidictionary all antifactors
0 1 0 1 1
1 01 (E) except 00 00
1 011 1 00, 10 00, 10, 010
1 0111 (C) 00, 10 00, 10, 010, 110, 0110
0 01110 (E) except 00, 010, 0110, 1111 00, 010, 0110, 1111, 01111
1 011101 (C) 00, 010, 0110, 1111 00, 010, 100, 0110, 1100,

1111, 01111, 11100
0 0111010 (E) except 00, 0110, 1011, 1111 00, 100, 0110, 1011, 1100,

1111, 01111, 11011, 11100
1 01110101 (C) 00, 0110, 1011, 1111 00, 100, 0110, 1011, 1100,

1111, 01111, 10100, 11011,
11100

Table 3.4: Dynamic compression example

to use, also we lose one of DCA strong properties — pattern matching in compressed
text. Efficient representation of the exceptions is a problem, but can be solved using
some universal coding or e.g. Huffman coding and storing the exceptions separately.

With this method, it is possible to reach better compression ratios than with the static
compression scheme. These results were presented in the original paper [6]. But as this
method is not asymmetric and the decompression has the same complexity as compres-
sion, this method is not suitable for compress once, decompress many times behaviour.

3.9 Searching in Compressed Text

Compressed pattern matching is a very interesting topic and many studies have been
already made on this problem for several compression methods. They focus on linear time
complexity proportional not to the original text length but to the compressed text length.
And one of the most interesting properties of text compressed using antidictionaries is
just its ability of pattern matching in compressed text.

This data compression method doesn’t transform the text in a complex way, but just
erases some symbols. From the single point of view it could be possible to erase just
some symbols from the searched pattern and look for it. This is really possible, but with
some limitations, because what symbols we erase depends also on the current context.
If we search for a long pattern, we can utilize its synchronizing property, from which we
obtain:

3.9. SEARCHING IN COMPRESSED TEXT 27

ε

00

1

0

1
ε

00

1

00

01

0

0

1

1

ε

00

1 10

11

00

01

010

011

0

0

1

1

0

1 1

0

ε

00

1 10

11

00

01

010

011

110

111

0110

0111

0

0

1

1

0
1

0

1 1

0 0
1

ε

00

1 10

01110

11

00

01

010

011

110

111

0110

0111

1110

1111

011110

0

1

1

0
1

0

1 1

0 0
1 0

1

0
1

ε

00

1 10 101

01110

11

00

01

010

011

100

110

111

0110

0111

1100

1101

1110

1111

01111

11100

11101

0

0

1

1

0
1

0

1 1

0 0
1 0

1

0
1

0
1 0

1

0
1

ε

00

1 10 101

1011

01110

11

00

01

010

011

100

110

111

0110

0111

1010

1100

1101

1110

1111

01111

11010

11011

11100

11101

0

0

1

1

0
1

0

1 1

0 0
1 0

1

0
1

0
1

0
1 0

1

0
1

0
1

ε

00

1 10 101

1011

01110

11

00

01

010

011

100

110

111

0100

0101

0110

0111

1010

1100

1101

1110

1111

01111

10100

11010

10101

11011

11100

11101

0

0

1

1

0
1

0

1 1

0

1
0

0
1 0

1

10
1 0

0
1

0
1 0

1

0
1

0
1

Figure 3.11: Suffix trie construction over text 01110101 for dynamic compression

28 CHAPTER 3. DATA COMPRESSION USING ANTIDICTIONARIES

Lemma 3.1 (Synchronizing property [17])
If |w| ≥ k − 1, then δ∗(u,w) = δ∗(root, w) for any state u ∈ Q such that δ∗(u,w) /∈
AD, where w is the searched pattern, k is length of the longest forbidden word in the
antidictionary, Q is the set of all compression/decompression transducer states, function
δ∗(u,w) is the state reached after applying all transitions δ(ui, bi), i = 1 . . . i|w|, u1 =
u, ui = δ(ui−1, bi−1), w = b1b2 . . . b|w|, b ∈ {0, 1}.

Unfortunately this works only for patterns longer than k, so we need to search the com-
pressed text using a different technique presented in [17], which solves the problem in
O(m2 + ‖M‖+ n+ r) time using O(m2 + ‖M‖+ n) space, where m and n are the pat-
tern length and the compressed text length respectively, ‖M‖ denotes the total length of
strings in antidictionary M , and r is the number of pattern occurrences.

This is achieved using a decompression transducer with eliminated ε-states similar to the
one mentioned in [8] and an automaton build over the search pattern. The algorithm
has a linear complexity proportional to the compressed text length, when we exclude the
pattern processing. This pattern searching algorithm can be used on texts compressed
using static compression method, because it needs to preprocess the antidictionary before
searching starts, not on texts produced by dynamic method, which also lacks synchro-
nization property of static compressed texts.

Chapter 4

Implementation

4.1 Used Platform

The main target of this thesis was to implement a working DCA implementation, try
different parameters of the method and choose the most appropriate. Program was
intended to work on command line and be as efficient as possible. Many tests were
needed to run as a batch, the program was to be licensed under some public licence,
and that’s why GNU/Linux platform for selected for development. Also small memory
requirements, low CPU usage and other optimization factors were demanded.

As C/C++ is a native language for development on most platforms, C++ language using
gcc compiler (g++ respectively), which also suits best for its built-in optimizations, was
preferred. Using C++ we have memory management of dynamically allocated memory in
our hands, we don’t need to rely on a garbage collector. The program was developed for
32 bit platforms, it would need further modifications to work under 64 bit environment.
For good portability GNU tools Automake and Autoconf were used, that automatically
generate build scripts for target platform. The program was tested only under i586
platform, which uses little endian, for big endian platforms modifications would be needed.
Nevertheless this program serves still rather for research and testing purposes, it is not
usable as a production tool, despite the efforts it is not practically usable because of its
high system resources requirements. As the code is published under GNU/GPL, everyone
can use the code, experiment with it and try to improve it.

4.2 Documentation and Versioning

Because program code was changing a lot during development, a versioning system Sub-
version, which remembers all the changes, can find differences to the current version or
provide a working version from the past, was used. This ability was used more than
once, as to get the algorithm working correctly is quite difficult. Huge data structures
are built in the memory, suffix tries are modified online, traversed in different ways and

29

30 CHAPTER 4. IMPLEMENTATION

dca::DCAcom pressor

dca::DCAantidict

ad

dca::DCAstateC

com pTrie

next

asc

dca::DCAstate

stPoolLim it

trie

stPool

original

snext

next

epsilon

asc

fail

Figure 4.1: Collaboration diagram of class DCAcompressor

directions and it is a challenge to debug what is really going on. Although we can verify
compressed data by decompressing them, this doesn’t tell us anything about optimal
selection of forbidden words or correct and complete building of the data structure for
representing all text factors.

Documentation was written along with the code using documentation generator Doxygen.
This documentation generator takes the program source code, extracts all classes, func-
tions and variables definitions and provides them with comments specified in the source,
output formats are HTML and LATEX. Unlike offline documentation systems Doxygen
keeps the documentation up-to-date. An example of collaboration diagram of class DCA
created by Doxygen in cooperation with Graphviz can be seen on Figure 4.1.

We can’t rely just on this type of documentation, as it does not describe, how the al-
gorithms work in common, only describes the meaning of each variable and how the
functions are called. For that type of documentation some Wiki system, LATEX or an-
other kind of offline documentation is more appropriate. It should also support including
tables and graphics for better descriptions of used data structures and algorithms. At
this point this text is serving for this purpose.

4.3 Debugging

As was mentioned before, it was needed to debug, how the program was really performing
some tasks, including building trie and its online modification. Normal program debug-
gers as gdb are not very useful, as we need to see the program outputs and contents of

4.3. DEBUGGING 31

large data structures contained in memory. Therefore the program was equipped with
different debugging options to provide information about each part of the process, they
can be turned on in compile time by defining the following macros:

• DEBUG – if not set, turns off all debugging messages, otherwise shows debugging
messages according to LOG_MASK filter; also enables counters of total nodes and
nodes deleted during simple pruning,

• DEBUG_DCA – enables trie and antidictionary debugging, every node contains also
its complete string representation, which enlarges memory requirements a lot,

• PROFILING – turns on/off profiling info designated for performance measurements.

Profiling is using POSIX getrusage() function and reads ru_utime and ru_stime repre-
senting user time and system time used by the current process. These times are measured
at the beginning and at the end of the measured program part, if the procedure runs
more times, the measured time is accumulated. For this purpose classes TimeDiff_t and
AccTime_t are provided, the first measures time interval, the second measures accumu-
lated time. What we need to know, is that using getrusage() function also influences the
program performance, especially the accumulated time measurement of a program part
repeated many times. With --verbose option the program reports the whole time taken
to perform the operation as well as antidictionary size and compression ratio achieved.

CPU time consumption is just one part of system requirements, what we are very inter-
ested in, too, is a memory consumption. It was measured using memusage utility that
comes from the GNU libc development tools and it is a part of many GNU/Linux dis-
tributions. This tool reports the peak memory usage of heap and stack extra. What
we are interested in more is the heap peak size, as the most memory used is allocated
dynamically. Also the amount of allocated and correctly deallocated memory could be
seen. But in fact we don’t really need to check it as the program compresses only one file
at a time and the memory is automatically deallocated when the program terminates.

For debugging purposes LOG_MASK was introduced to have the ability to select what we
really want to debug and not to be choked up with other extensive useless debug messages.
LOG_MASK is a set of the following items:

• DBG_MAIN – print information about which part of the algorithm is currently being
run,

• DBG_TRIE – debug suffix trie data structures and displays its contents in different
parts of algorithm; it also exports the contents into graphviz graph file language for
drawing directed graphs using dot tool,

• DBG_COMP – debug compression process, shows read symbols, used transitions in
compression transducer, compressed symbols,

• DBG_DECOMP – debug decompression process, shows read symbols, used transitions
and symbol output,

32 CHAPTER 4. IMPLEMENTATION

00

0110

01010

11011

e

0

0

1

1

0

01
1

10
0

11

1

010

0

011
1

0101

1

0

0111

1

0

01011

1

101

111

1011

1

110
0

1

10100

1

10101

1

10111
1

1101
1

1

11010
0

Figure 4.2: Suffix trie for text “11010111” generated by graphviz

• DBG_PRUNE – debug simple pruning process, gain computation, traversal over the
suffix trie, tested and pruned nodes,

• DBG_AD – prints antidictionary and self-compressed antidictionary contents in dif-
ferent stages of algorithm, such as before and after simple pruning,

• DBG_STATS – print some useful statistics, like results of simple pruning, antidic-
tionary self-compression and overall algorithm performance,

• DBG_ALMOSTAW – debug almost antifactors related information,

• DBG_PROFILE – show profiling info.

One of the most useful options is the antidictionary debugging, which stores antidictionary
state in different stages to an external file for later examination. From this we can find out
if the antidictionary construction is working properly or which antiwords are problematic.
With this we have an essential hint for finding implementation errors.

Another important option is the trie debugging, which outputs a trie structure in a text
format as well as in a graphical format created using graphviz1. It is possible to even watch
the suffix trie construction step by step. Regardless these graphs are drawn automatically
and are not so nice as diagrams drawn by hand, they can be still very handy. An example
of a suffix trie graph generated by graphviz can be seen on Figure 4.2.

4.4 Implementation of Static Compression Scheme

In Section 3.5 has been already outlined how the antidictionary and compression trans-
ducer is prepared for static compression scheme. Let’s look at overview what we actually

1Graph Visualization Software — open source graph (network) visualization project from AT&T Re-
search, http://www.graphviz.org/

4.4. IMPLEMENTATION OF STATIC COMPRESSION SCHEME 33

(a) (b)

Figure 4.3: File compression (a) and file decompression (b) schemes

do with a ready-made transducer. In Figure 4.3 both compression and decompression
process schemes can be found, examining both processes further.

With static compression scheme after building the antidictionary and compression trans-
ducer we have already read the whole text, we know its length and we can easily compute
its CRC32 checksum while building the antidictionary. As the decompression process
needs to know the length of original data, we save this, along with CRC32 for verifying
data integrity, into the output file. Then we save the antidictionary using one of the
methods discussed in Section 4.5. And only after this we start compressing the input
data using the compression transducer and writing its product to the output file.

The decompression process should be clear. First we read the data length, CRC32 and
we load the antidictionary into the memory in a suffix trie representation. Then we self-
decompress the trie updating all suffix links and creating decompression transducer at a
time. With prepared transducer we run decompression until we get originalLen amount
of data, writing the product to output file and calculating CRC32 of decompressed data.
At the end we verify the checksum and notify user of decompression result (CRC OK or
description of which error occurred).

In Section 3.5 antidictionary construction process has been presented, but it was not
complete. Actually “Build Automaton” phase must be executed one more time just after
“Build Antidictionary” stage to fix all incorrect suffix links and forward edges pointing to
removed nodes, as they are required for self-compression. After this correction, antidic-
tionary construction with single self compression and single simple pruning round looks
like this: Figure 4.4. Now individual stages will be described in more detail.

4.4.1 Suffix trie construction

For suffix trie construction an algorithm very similar to the one presented in [6] is used.
Function Build-Fact() reads input and builds suffix trie adding new nodes, fvis(r) is
direct visits count of node r. Function Next() takes care of creating all suffix links and

34 CHAPTER 4. IMPLEMENTATION

Figure 4.4: Real implementation of static scheme antidictionary construction with self-
compression and single simple pruning

missing nodes up to the root node. b(r) is the input symbol leading to node r, visited(r)
is total visits of the node, used later for gain computation, asc(r) is parent of node r,
fail(r) is suffix link of node r. antiword(r) and deleted(r) indicate node status, awpath(r)
indicates, if there exists a path from root node to some antiword through node r. Time
asymptotic complexity of Build-Fact() is O(N ∗ k).

1 Build−Fact (int maxdepth > 0)
2 root← new state;
3 level(root) ← 0; fvis(root) ← 0; visited(root) ← 0;
4 deleted(root) ← false; antiword(root) ← false; awpath(root) ← false;
5 cur ← root;
6 while not EOF do
7 read(a);
8 cur ← Next(cur, a, maxdepth);
9 fvis(cur) ← fvis(cur) + 1;

10 return root;

1 Next (state cur, bool a, int maxdepth > 0)
2 if δ(cur, a) defined then
3 return δ(cur, a)
4 else if level(cur) = maxdepth then
5 return Next(fail(cur), a, maxdepth)
6 else
7 q ← new state;
8 level(q) ← level(cur) + 1; fvis(q) ← 0; visited(q) ← 0; b(q) ← a;
9 deleted(q) ← false; antiword(q) ← false; awpath(q) ← false;

10 δ(cur, a)← q;
11 if cur = root then fail(q) = root;
12 else fail(q) ← Next(fail(cur), a, maxdepth);
13 return q;

4.4. IMPLEMENTATION OF STATIC COMPRESSION SCHEME 35

struct DCAstate
DCAstate* next[0..1]
DCAstate* snext[0..1]
DCAstate* fail
DCAstate* asc
DCAstate* epsilon
int visited, fvis, level
bool b, awpath, antiword

(a)

struct DCAstateC
DCAstateC* next[0..1]
DCAstateC* asc
DCAstate* original
int gain
bool b

(b)

Table 4.1: DCAstate structure (a) representing a suffix trie node and DCAstateC struc-
ture (b) representing a node in self-compressed trie

Suffix trie nodes are represented by DCAstate structure (Figure 4.1a), next represents δ
transitions, snext represents δ′, epsilon represents ε transitions, other variables represent
functions with corresponding names. For representation of nodes in self-compressed trie
there is used another structure — DCAstateC (Figure 4.1b), which is more efficient,
meaning of variables is similar to DCAstate variables, original is a pointer to an original
node in non-compressed trie.

4.4.2 Building antidictionary

Function Build-AD() walks through the tree and adds all minimal antifactors. Using
function MarkPath() it marks all nodes in the path from root node to the antiword.
Then using traversal in depth-first order it computes node total visits and removes all
nodes, that does not lead to any antiword. We also omit stopping pair antifactors as they
don’t bring any compression. Time asymptotic complexity of Build-AD() is O(N ∗ k2),
which makes it strongly dependant on maxdepth k.

1 Build−AD (root)
2 for each node p, level(p) < k in breadth−first order do
3 for a ∈ {0, 1} do
4 if δ(p, a) defined then
5 δ′(p, a) = δ(p, a)
6 else if δ(fail(p), a) defined and δ(p, ā) defined then
7 q ← new state;
8 δ′(p, a)← q;
9 antiword(q) ← true;

10 MarkPath(q);
11 for each node p, not antiword(p) in depth−first order do
12 if fvis(p) > 0 then
13 vis ← 0;
14 q ← p;
15 while q 6= root
16 if fvis(q) > 0 then
17 vis ← vis + fvis(q);
18 fvis(q) ← 0;

36 CHAPTER 4. IMPLEMENTATION

19 q ← fail(q);
20 visited(q) ← visited(q) + vis;
21 if not awpath(p) then
22 if asc(p) defined then
23 δ′(asc(p), b(p)) ← NULL;
24 deleted(p) ← true;

1 MarkPath(p)
2 while p defined and not awpath(p) do
3 awpath(p) ← true;
4 p ← asc(p);

4.4.3 Building automaton

After building antidictionary and removing all nodes not leading to antiwords, the trie
is not consistent, some of the suffix links are pointing to deleted nodes. This has to be
fixed before self-compressing the trie. At the same time we correct the suffix links, we
also define new δ transitions and ε transitions creating a compression transducer. Time
asymptotic complexity of Build-Automaton is O(N ∗ k).

1 Build−Automaton (root)
2 for a ∈ {0, 1} do
3 if δ′(root, a) defined and not deleted(δ′(root, a)) then
4 δ(root, a)← δ′(root, a);
5 fail(δ(root, a))← root;
6 else
7 δ(root, a)← root;
8 if antiword(δ(root, a)) for a ∈ {0, 1} then
9 ε(root)← δ(root, ā);

10 for each node p, p 6= trie in breadth−first order do
11 for a ∈ {0, 1} do
12 if δ′(p, a) defined and not deleted(δ′(p, a)) then
13 δ(p, a)← δ′(p, a);
14 fail(δ(p, a)) ← δ(fail(p), a);
15 else if not antiword(p)
16 δ(p, a)← δ(fail(p), a);
17 else
18 δ(p, a)← p;
19 if not antiword(p) then
20 if antiword(δ(p, a)) for a ∈ {0, 1} then
21 ε(p)← δ(p, ā);

4.4.4 Self-compression

Using self-compression we create a new compressed trie from the original trie and initialize
gain values g′(r) of all nodes to −1. This is necessary for the simple-pruning algorithm, as
it walks the trie bottom-up and needs to know, if both subtrees were already processed.

4.4. IMPLEMENTATION OF STATIC COMPRESSION SCHEME 37

The original(r) value is a pointer to the original code in non-compressed suffix trie. Time
asymptotic complexity is O(N ∗ k).

1 Self−Compress (root)
2 rootCompr ← new state;
3 add (root, rootCompr) to empty queue Q;
4 while Q 6= ∅ do
5 extract (p,p′) from Q;
6 if q0 and q1 are children of p then
7 create q′

0 and q′
1 as children of p′;

8 original(q′
0) ← q0; original(q′

1) ← q1;
9 g′(q′

0)← −1; g′(q′
1)← −1;

10 add (q0, q′
0) and (q1, q′

1) to Q;
11 else if q is a unique child of p, q = δ(p, a), a ∈ {0, 1} then
12 if antiword(δ(p, ā)) then
13 add (q, p′) to Q;
14 else
15 create q′ as a−child of p′;
16 original(q′) ← q;
17 g′(q′)← −1;
18 add (q, q′) to Q;
19 return rootCompr;

4.4.5 Gain computation

Gain computation is based on the fact, that we can estimate gain of a node being an
antifactor, if we know how much costs its representation. For this 2 + 2 representation
is used for antidictionary storage, described in Section 4.5. Gain g′(S) of subtree S is
defined as in [6]:

g′(S) =

0 if S is empty,
c(S)− 2 if S is a leaf (antiword),
g′(S1)− 2 if S has one child S1,
M if S has two children S1 and S2,

where M = max(g′(S1), g′(S2), g′(S1) + g′(S2)) − 2. It is clear, that it is possible to
compute gains in linear time with respect to the size of the trie in a single bottom-up
traversal of the trie. But how the self-compression affects our gain computation? The
answer is, that it doesn’t in fact, we simply compute the gains using the self-compressed
tree!

4.4.6 Simple cruning

Simple pruning function prunes from the trie all nodes which does not have positive
gain. Gain function is computed using the self-compressed trie. As we are walking
the trie bottom-up from terminal nodes, the traversal is not deterministic and it’s not

38 CHAPTER 4. IMPLEMENTATION

guaranteed, that in each node we process, gains of both subtrees are already computed.
For this we have set g′(r) of each node r to value −1, which means uninitialized value,
if we hit a node with an uninitialized subtree, we stop walking bottom-up and continue
with the next antiword. After processing all antiwords, all trie nodes will have a defined
gain.

Whenever we find a node with negative gain, we prune it with the whole subtree belonging
to it and at the same time we prune also the subtree from the orginal trie. As we forbid
nodes with negative gains, we can simplify function M = max(g′(S1), g′(S2), g′(S1) +
g′(S2))− 2 from Section 4.4.5 to M ′ = g′(S1) + g′(S2).

Because this is not the only one possibility of static compression scheme implementa-
tion, for testing purposes simple-pruning was implemented also without self-compression.
Because it is very similar to the version using self-compression, only the more interest-
ing version of simple pruning the self-compressed trie is going to be presented. Using
O(N) for antidictionary size according to [14] and O(2k) for pruning subtree we get time
asymptotic complexity O(N ∗ k ∗ 2k).

1 Simple−Prune (rootCompr)
2 for each node p, antiword(p) do
3 while p 6= rootCompr do
4 q ← asc(p);
5 if antiword(original(p)) then
6 g′(p)← visited(asc(original(p))) − 2
7 else if p has children p1, p2 then
8 if g′(p1) = −1 or g′(p2) = −1 then
9 break;

10 g′(p)← g′(p1) + g′(p2)− 2
11 else if p has child pp then
12 if g′(pp) = −1 then
13 break;
14 g′(p)← g′(pp)− 2;
15 if g′(p) <= 0 then
16 prune subtree p; prune subtree original(p);
17 p← q;

4.5 Antidictionary Representation

In static compression scheme we need to provide the compressed data with the andic-
tionary used for compression in order to be able to decompress it. And as the antidic-
tionary size reaches about 50% of the compressed data length, we know antidictionary
is really important and has a great significance to the final compression ratio. As in the
original paper 2+2 representation is used, but other possibilities are also discussed.

• antiword list – probably the least efficient storage for antiwords, it is not using
any common prefixes, but has better abilities for self-compression, as mentioned in
Section 3.5.2.

4.5. ANTIDICTIONARY REPRESENTATION 39

• 2+2 – binary tree with k nodes is encoded using 2k bits for the whole tree. Using
depth-first order we encode in each node, if it has both subtrees, only the right
subtree, only the left subtree or no subtree, by the strings 00, 01, 10, 11.

• 3+1 – representation introduced in [7], we traverse the tree in depth-first order and
write a 1 bit each time we find an internal node and a 0 bit each time we find an
external node. Therefore, a binary tree of m internal nodes will need exactly 2m+1
bits, which is almost identical to the 2+2 scheme.

• Hamming coding – first we walk the trie in depth-first order and count the times
we go left, right and up. Then we compute Hamming coding for these directions
and encode the trie by a depth-first walk. After experiments with this coding, we
found, that it is better only on very unbalanced trees, in other cases it performs
worse then 2+2.

• Text Generating the Antidictionary – an interesting idea, of how to code an anti-
dictionary, is to supply some short text, that generates the target antidictionary.
This representation could be very efficient, this option is going to be discussed more
thoroughly.

In this DCA implementation 2+2 representation was used with the following meaning:

code meaning
00 no subtree
01 only the right subtree
10 only the left subtree
11 both subtrees

4.5.1 Text generating the antidictionary

While playing with antidictionaries and their automata a new possibility of representing
antidictionaries was thought up. It seems to be feasible to code the antidictionary even
more efficiently. Such antidictionary would be generated from a special text and then
this antidictionary would be used for text decompression. The idea is based on fact,
that for an antidictionary AD 6= ∅ generated from string Tx, whose automaton contains
cycles, there exists some string Ty, which generates the same antidictionary AD, Tx 6= Ty,
|Ty| ≤ |Tx|.
To be more efficient than representation R, we need to find a text Ty generating antidic-
tionary AD, |Ty| < rsize(R,AD), where rsize is number of bits used by representation R
to code antidictionary AD. Problem is that this method probably won’t work for general
pruned antidictionaries. An in-depth future research on this topic is needed. Another
problem is, that the generating text Ty should contain the original stopping pair. Dif-
ferent text ending could lead to new unwanted antiwords. An example of antidictionary
whose compression/decompression transducer contains a loop is provided.

40 CHAPTER 4. IMPLEMENTATION

size item description
3B “DCA” text identificator to unambiguously identify DCA com-

pressed file
4B original length length of the original input text, this length is important

when decompressing data to determine end of the decom-
pression process

4B CRC32 cyclic redundancy check of the original data, it is computed
and checked during decompression

* antidictionary antidictionary representation as specified in Section 4.5
* compressed data data with bits erased using DCA compression

Table 4.2: Compressed file format

Example 4.1
Let’s suppose that we have an antidictionary AD built over string “01010101”, AD =
{00, 11}. If we encodeded it using 2+2 representation, we would get antidictionary size
|AD| = 2 ∗ k = 10 bits, as the trie has k = 5 nodes. It is easy to see, that the text “010”
generates the same antidictionary, while it needs only 3 bits for coding the generating
text and a few bits for coding the text length.

Two promising ways of generating text Ty were found. The first uses compression trans-
ducer processing input text Tx avoiding loops, that don’t bring new nodes into suffix
trie. The second walks back from the stopping pair using transitions and suffix links
in inversed directions until it walks through all nodes. Both methods may not work on
general suffix tries, rather on the non-pruned constructed from a real text string, but this
needs more experiments.

Disadvantage of this representation is slower decompression, because we need to build
the antidictionary first from text Ty, also the decompressor must use the same method
as compressor to reconstruct the antidictionary. Another problem could be complexity
of constructing text Ty in compression process. Still antidictionary representation using
a generating text looks promising.

4.6 Compressed File Format

To be able to store the files compressed using DCA, a compressed file format had to be
developed. The proposed file format is similar to the one used by gzip and contains only
the necessary fields, targeting it to representing files compressed by static compression
scheme. CRC32 is used to check integrity of the decompressed data. See Table 4.2.

4.7. ANTIDICTIONARY CONSTRUCTION USING SUFFIX ARRAY 41

4.7 Antidictionary Construction Using Suffix Array

4.7.1 Suffix array construction

In these days we have a choice between many algorithms for suffix array construction.
They were a subject to test in [16], according which the used implementation were chosen.
Problem is that these algorithms are designated to 8 bit symbols, while we need just 0’s
and 1’s for antidictionary construction. It was obvious that it was necessary to make
some modifications to the existing implementation to handle binary alphabet.

According to the paper [16], none of the new linear time construction algorithm would
be a good choice for their large constants and memory requirements, instead a highly
optimized Manzini-Ferragina implementation [13] with non-linear asymptotic complexity
in almost all the tests performed better in both memory consumption and CPU time used.
Their implementation using C was modified to compile under C++ and also adjusted the
algorithm to use just 1 bit symbols, instead of 8 bits in input text. Corrections were
applied to deep sort, shallow sort and bucket sort subroutines. LCP algorithm did not
need this adjustment. But because the whole algorithm wasn’t examined well, after this
8 bit to 1 bit modification, the whole algorithm could be not optimal now. This would
need a further study and may be some more optimal algorithm for computing suffix array
of a bit array could be developed.

The whole byte is now used for representation of just a single bit, that means the algorithm
is now wasting 7 bits for each single bit of input text. Addressing single bits in bytes was
not tested, but it is very likely that addressing a single bit and swapping bits would need
more CPU time, while memory occupied by the whole input text expanded 8 times is still
marginal in comparison with the total memory needed for representing the compression
transducer.

4.7.2 Antidictionary construction

Anyway we have a working suffix array construction algorithm and we are going to use
it for antidictionary construction. An outline of antidictionary construction using the
suffix array was already presented in Section 3.6. In this implementation functions Build-
AD-SA(), SA-Bin-Search() and Add-Antiword() are used, where the first one is the most
important doing most of the job finding all possible antifactors, SA-Bin-Search() checks
if the antifactor is minimal and Add-Antiword() adds the new antiword to the suffix trie
and computes visit counts of the added nodes. Symbol ’#’ denotes end of string, function
substr(str, ind, len) returns substring of string str starting at position ind of length len,
functions makeSA() and makeLCP() return suffix array and LCP array for specified text.

Time asymptotic complexity of Build-AD-SA is O(k ∗ N(logN + k)), which is similar
to complexity of building antidictionary from suffix trie, but with memory requirements
O(N) thanks to suffix array representation. This assumpts, that we are able to count
number of node visits in O(k), which can be done during walking through the suffix+lcp
array. In this implementation it is O(N) in worst case, but in average it is much smaller,

42 CHAPTER 4. IMPLEMENTATION

this implies total asymptotic complexity O(k ∗N(N + logN)).

1 Build−AD−SA (root, int crc, int maxdepth > 0)
2 read whole input → bittext;
3 crc ← computeCRC32(bittext);
4 expand each single bit in bittext to 1 byte;
5 sa ← makeSA(bittext); lcp ← makeLCP(bittext, sa);
6 root ← new state; level(root) ← 0; fail(root) ← root;
7 for i ← 0 to |sa| do
8 lo← 1; hi← |sa|; l← lcp[i+ 1];
9 if l = maxdepth then

10 continue;
11 wcur ← substr(bittext, sa[i],maxdepth);
12 wnext ← substr(bittext, sa[i+ 1],maxdepth);
13 if wcur[l] = ’#’ then {end of current word}
14 if wnext[l] = ’1’ then {’#’→’1’}
15 aw← substr(wnext, 0, l) . ’0’;
16 if SA−Bin−Search(bittext, sa, aw, lo, hi) then
17 Add−Antiword(root, lcp, aw, i+ 1);
18 else if wnext[l] = ’#’ then {end of next word}
19 if wcur[l] = ’0’ then {’0’→’#’}
20 aw← substr(wcur, 0, l) . ’1’;
21 if SA−Bin−Search(bittext, sa, aw, lo, hi) then
22 Add−Antiword(root, lcp, aw, i);
23 lo2← lo; hi2← hi;
24 for ll← l + 1 to |wcur| − 1 do
25 if (wcur[ll] = ’0’) then
26 aw← substr(wcur, 0, ll) . ’1’;
27 if SA−Bin−Search(bittext, sa, aw, lo, hi) then
28 Add−Antiword(root, lcp, aw, i);
29 for ll← l + 1 to |wnext| − 1 do
30 if wnext[ll] = ’1’ then
31 aw← substr(wnext, 0, ll) . ’0’;
32 if SA−Bin−Search(bittext, sa, aw, lo2, hi2) then
33 Add−Antiword(root, lcp, aw, i+ 1);
34 if |sa| > 0 then {process the last word}
35 lo← 1; hi← |sa|;
36 wcur ← substr(bittext, sa[|sa| − 1],maxdepth);
37 for l← 0 to |wcur| − 1 do
38 if wcur[l] = ’0’ then
39 aw← substr(wcur, 0, l) . ’1’;
40 if SA−Bin−Search(bittext, sa, aw, lo, hi) then
41 Add−Antiword(root, lcp, aw, |sa| − 1);

1 SA−Bin−Search (bittext, sa, aw, lo, hi)
2 pos← 0;
3 tofind← substr(aw, 1, |aw| − 1);
4 while hi ≥ lo do {at first find |tofind| − 1 characters}
5 pos← (hi + lo)/2;
6 if sa[pos] + |tofind| − 1 < |sa| then
7 str← substr(bittext, sa[pos], |tofind| − 1);
8 if str = substr(tofind, 0, |str|) then
9 break;

4.7. ANTIDICTIONARY CONSTRUCTION USING SUFFIX ARRAY 43

10 else if str < substr(tofind, 0, |str|) then
11 hi← pos− 1;
12 else
13 lo← pos + 1;
14 else
15 str← substr(bittext, sa[pos], |sa| − sa[pos]);
16 if str < substr(tofind, 0, |str|) then
17 hi← pos− 1;
18 else
19 lo← pos + 1;
20 if hi < lo then
21 return false;
22 lo2← lo; hi2← hi;
23 while hi2 ≥ lo2 do {find exact string}
24 pos← (hi2 + lo2)/2;
25 if sa[pos] + |tofind| < |sa| then
26 str← substr(bittext, sa[pos], |tofind|);
27 if str = substr(tofind, 0, |str|) then
28 break;
29 else if str < substr(tofind, 0, |str|) then
30 hi2← pos− 1;
31 else
32 lo2← pos + 1;
33 else
34 str← substr(bittext, sa[pos], |sa| − sa[pos]);
35 if str < substr(tofind, 0, |str|) then
36 hi2← pos− 1;
37 else
38 lo2← pos + 1;
39 if hi2 < lo2 then
40 return false;
41 return true;

1 Add−Antiword (root, lcp, aw, saPos)
2 p← root;
3 for i← 0 to |aw| − 1 do
4 if δ′(p, aw[i]) not defined then
5 q ← new state; asc(q) ← p; level(q) ← i+ 1;
6 δ′(p, aw[i])← q;
7 p← q;
8 else
9 p← δ′(p, aw[i]);

10 antiword(p) ← true;
11 j ← saPos; k ← saPos;
12 len← |aw| − 1;
13 while lcp[j] ≥ len do
14 j ← j − 1;
15 while k < n and lcp[k + 1] ≥ len do
16 k ← k + 1;
17 visited(asc(p)) ← k − j + 1;

44 CHAPTER 4. IMPLEMENTATION

4.8 Run Length Encoding

As discussed before, classical DCA approach has a problem with compressing strings of
type 0n1, although it compresses well string 1n0. We can improve these simple repetitions
handling by including RLE compression before the input of the DCA algorithm. Run
length encoding is a very simple form of lossless data compression in which runs of data,
i.e. sequences of the symbol, are stored as a single data value and count, rather than as
the original run. We compress all sequences with length ≥ 3 with count encoded using
Fibonacci code [2]. Sequences shorter than 3 are kept untouched.

Example 4.2
Compress text “abbaaabbbbbbbbbbbbbbba” = ab2a3b15a using RLE.

In the input text there are two sequences with length ≥ 3, a3 and b15. We compress the
first as “aaa0”, zero means no other “a” symbols. We compress the second sequence in a
similar way, resulting in “bbb12”. Our compressed text will be “abbaaa0bbb12a”.

4.9 Almost Antiwords

In order to improve the compression ratio also the almost antiwords improvement dis-
cussed in Section 3.7 was tested implementing the one-pass heuristics. It is based on
the suffix trie implementation, but an algorithm for building antidictionary with almost
antiwords support could be probably also developed.

The results were little disappointing at the beginning, later showed up that the modified
algorithm performs very good on some types of texts, while being worse than classical
approach on others. Another significant issue is, that the gain of almost antiwords is based
on an unknown factor of exception length, which can be only roughly estimated. Fine
tuning this implementation would probably lead to better results. For coding exceptions
Fibonacci code [2] was used again.

4.10 Parallel Antidictionaries

Unlike classical dictionary compression algorithms working with symbols, DCA is working
with a binary stream, where each considered symbol can gain only values ‘0’ and ‘1’. This
is very limiting, because we lose notion of symbol boundaries in text, as most English text
documents use only 7 bit symbols and we could just forget about the 7th bit, as it remains
‘0’. What was subject to test, was to slice a file lengthwise creating 8 files “fileN” with 0th
bit in “file0”, 1st bit in “file1” and so on, and then compressing these portions separately
using different antidictionaries. Using these approach 8 parallel antidictionaries over a
single file were simulated.

4.11. USED OPTIMIZATIONS 45

4.11 Used Optimizations

To optimize the code, some well-known optimizations as pointer arithmetics when working
with arrays, loop unrolling, dynamic allocation in large pools of prepared data were used.
Dynamic allocation has a significant impact on the performance, that’s why more memory
than needed is allocated at a time. Compiler optimizations were used, too, it is even
possible to use profiler log to gain better performance.

4.12 Verifying Results

During development many compression problems occurred. For verifying results extensive
logging was used and also some tools for checking the algorithm performance had to be
written, such as antidictionary generation, self-compression results and gain computation.
The best verification we have is, that after decompression we get the original text, however
this tells us nothing about the optimality of the used antidictionary. It has to be checked
some other way.

After antidictionary construction using suffix array was implemented, there has been an
advantage of two completely different methods for generating the antidictinary. Compar-
ing outputs of these two different algorithms gives us a very good hint, if the generated
antidictionary is correct. So to verify the complete antidictionary is quite easy, but ver-
ification of the simple pruning process is impossible in fact, as there is no algorithm for
constructing the most efficient antidictionary available.

It’s much easier with self-compression. Self-compression check was implemented using a
dummy python script, which compresses all antiwords using all shorter ones. Performance
is quite slow, but the result is sufficient.

Also after code rewriting or implementing something new the new code has to be tested
every time on a set of files if it compresses and decompresses them correctly. This all was
possible thanks to strong scripting abilities of the GNU/Linux environment and without
all the verification tools it would not be so easy.

4.13 Dividing Input Text into Smaller Blocks

Earlier the memory greediness of DCA method and some options of reducing these re-
quirements were discussed. Still one of the simplest options is to divide the file into
smaller blocks and compress them separately. This will reduce memory requirements
a lot, as the trie memory size depends strongly on the length of input text. On the
other hand we need to realize that this will affect compression ratio, which will be worse,
because the antidictionary will be smaller and the gains of antifactors will be lower.

46 CHAPTER 4. IMPLEMENTATION

Chapter 5

Experiments

5.1 Measurements

All measurements were executed on an AMD Athlon XP 2500+, 1024MB RAM, with
Mandriva Linux and kernel version 2.6.17 i686. All time measurements were made 5
times, for time measurements the minimal achieved value was selected, for memory mea-
surements only one measurement was sufficient, as the algorithm is deterministic and use
the same amount of memory every time for the same configuration. Memory was mea-
sured using memusage from GNU libc development tools summarizing heap and stack
peak usage. Time was measured using getrusage() as a sum of user and system time
used. Program was compiled with “-O3” and DEBUG, PROFILING, MEASURING op-
tions turned on and all debug logging turned off. Program was called with “-v” option
displaying summary with compressed data length, antidictionary size, compression ratio
achieved and total time taken.

We are going to choose appropriate parameters for static as well as dynamic compression
scheme. In static compression scheme we have parameters maxdepth, how to use self-
compression and whether to use suffix array. In dynamic compression scheme we can
affect only maxdepth.

5.2 Self-Compression

Self-compression is one of the static compression scheme parameters. Using self-
compression is not mandatory, so we can skip it and use simple pruning only. Another op-
tion is to use it together with simple pruning, we will denote it as single self-compression.
For better precision we can use self-compression and simple pruning as long we prune
some antiwords from the trie, we call this multiple self-compression.

Following tests were performed over “paper1” file from “Calgary Corpus”. In Figure 5.1
we can see that simple pruning only requires more memory than methods using self-
compression. In Figure 5.2 we can see, that simple pruning only is the fastest, but the

47

48 CHAPTER 5. EXPERIMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 15 20 25 30 35 40

u
s
e
d
 m

e
m

o
ry

 [
M

B
]

maxdepth

simple pruning only
single self-compression

multiple self-compression

Figure 5.1: Memory requirements of different self-compression options

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 30 32 34 36 38 40

ti
m

e
 [
s
]

maxdepth

simple pruning only
single self-compression

multiple self-compression

Figure 5.2: Time requirements of different self-compression options

5.3. ANTIDICTIONARY CONSTRUCTION AND OPTIMIZATION 49

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

simple pruning only
single self-compression

multiple self-compression

Figure 5.3: Compression ratio obtained compressing “paper1” for different self-
compression options

difference is not very interesting in comparison with the whole time needed. Finally in
Figure 5.3 we can see compression ratio achieved, where both self-compression versions
performed about 5% better. According to worse compression ratios, more memory used
and similar time needed we can rule out option simple pruning only.

We can not judge about single and multiple self-compression from just one file. The
most interesting difference should be in compression ratios, so the tests were performed
on Canterbury Corpus with maxdepth = 40 (Figure 5.4). Again compression ratios were
practically the same, so we can choose single self-compression as the better one, because
it needs less memory and time to achieve the same compression ratio.

5.3 Antidictionary Construction and Optimization

Another important part is to understand why is the DCA algorithm so greedy, when
constructing suffix trie. In Figure 5.5 we can see how much nodes we create when building
suffix trie and how their count decrease to almost negligible count, that we really use
for compression. Number of nodes drops at most just after antidictionary construction
and selection of only nodes leading to antiwords. Another reduction follows with self-
compression and subsequent simple pruning. We can see, that both are quite effective.

In Figure 5.6 is this showed in more detail. Notice also the lowest node count plot rep-
resenting simple pruning only option without self-compression. More nodes are pruned,
because their gains are not improved using self-compression.

50 CHAPTER 5. EXPERIMENTS

 30

 40

 50

 60

 70

 80

 90

 100

x
a
rg

s
.1

s
u
m

p
tt
5

p
lr
a
b
n
1
2
.t
x
t

lc
e
t1

0
.t
x
t

g
ra

m
m

a
r.

ls
p

fi
e
ld

s
.c

c
p
.h

tm
l

a
s
y
o
u
lik

.t
x
t

a
lic

e
2
9
.t
x
t

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

no self-compression
single self-compression
multi self-compression

Figure 5.4: Compression ratios on Canterbury Corpus for different self-compression op-
tions

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 15 20 25 30 35 40

n
o
d
e
s

maxdepth

all nodes
nodes leading to antiwords

self-compressed
simple-pruned

Figure 5.5: Number of nodes in relation to maxdepth

5.4. DATA COMPRESSION 51

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 10 15 20 25 30 35 40 45 50

n
o
d
e
s

maxdepth

nodes leading to antiwords
simple pruned
self-compress

self-compress + prune
self-compress + prune + self-compress

Figure 5.6: Number of nodes leading to antiwords in relation to maxdepth

Dependency of antiword count on maxdepth is shown in Figure 5.7 with lower part en-
larged in Figure 5.8. You can notice a similarity between Figure 5.6 and Figure 5.7, which
is caused by antiword count dependendency on node count. This relation can be more
obvious from 5.9.

5.4 Data Compression

Now we are going to look at the more interesting part. Compression and decompression
performance of static and dynamic compression scheme in relation to maxdepth. These
results are again measured on “paper1” from Canterbury Corpus.

Figure 5.10 shows some expected behaviours of the implemented methods. Memory re-
quirements are worst for static compression scheme using suffix trie, while dynamic com-
pression scheme requires only about half of the memory. Suffix array static compression
scheme’s performance is definitely superior to both others, as its memory requirements
almost don’t grow with maxdepth. Also its initial requirements below maxdepth=25 are
not very important, since below this value we don’t get usable compression ratios. This
is, what suffix array is really designed for.

However compression time is no longer so good for suffix array in Figure 5.11, still it
outperforms suffix trie for maxdepth > 25. Dynamic compression scheme is much faster
here, as it does not need to read text twice, do simple pruning and self-compression,
compute gains or count visits, even to construct an antidictionary. It’s much faster even
for large maxdepth values.

52 CHAPTER 5. EXPERIMENTS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 15 20 25 30 35 40 45 50

a
n
ti
w

o
rd

s

maxdepth

total found
simple pruning only

single self-compression
multiple self-compression

Figure 5.7: Number of antiwords in relation to maxdepth

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 15 20 25 30 35 40 45 50

u
s
e
d
 a

n
ti
w

o
rd

s

maxdepth

simple pruning only
single self-compression

multiple self-compression

Figure 5.8: Number of used antiwords in relation to maxdepth

5.4. DATA COMPRESSION 53

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 15 20 25 30 35 40 45 50

n
o
d
e
s

maxdepth

nodes leading to antiwords
antiwords

nodes after pruning
antiwords after pruning

Figure 5.9: Relation between number of nodes and number of antiwords

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 15 20 25 30 35 40 45 50

u
s
e
d
 m

e
m

o
ry

 [
M

B
]

maxdepth

suffix trie
suffix array

dynamic DCA

Figure 5.10: Memory requirements for compressing “paper1”

54 CHAPTER 5. EXPERIMENTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

suffix trie
suffix array

dynamic DCA

Figure 5.11: Time requirements for compressing “paper1”

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
dynamic DCA

Figure 5.12: Compression ratio obtained compressing “paper1”

5.5. DATA DECOMPRESSION 55

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50

s
iz

e
 [
k
B

]

maxdepth

total
compressed data

antidictionary

Figure 5.13: Compressed file structure created using static scheme compressing “paper1”

Another thing which playes for dynamic compression scheme is compression ratio (see
Figure 5.12, utilizing its main advantage, not needing to store the antidictionary sep-
arately. But notice the algorithm’s instability — whereas compression ratio of static
compression scheme is improving for increasing maxdepth, compression ratio of dynamic
DCA is floating for maxdepth > 30. This is caused by compressing more data, but at
the same time getting more exceptions, which are expensive to code. Summarizing the
results, dynamic compression scheme achieves about 5% better compression ratios than
static compression scheme.

In Figure 5.13 we can see structure of the compressed file retrieved using static com-
pression scheme. With growing maxdepth antidictionary size increases to shorten the
compressed data, together we have got decreasing total file size.

5.5 Data Decompression

In turn in Figure 5.14 we can see that static compression scheme requires only a little
amount of memory to decompress data, while dynamic compression scheme requires as
much memory as during compression process. Smaller difference we can see in Figure 5.15
in time required to decompress file “paper1”, static compression scheme is much faster
again. Decompression speed and low memory requirements are an apparent advantage
of static compression scheme.

56 CHAPTER 5. EXPERIMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 15 20 25 30 35 40 45 50

u
s
e
d
 m

e
m

o
ry

 [
M

B
]

maxdepth

static DCA
dynamic DCA

Figure 5.14: Memory requirements for decompressing “paper1.dz”

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

static DCA
dynamic DCA

Figure 5.15: Time requirements for decompressing “paper1.dz”

5.6. DIFFERENT STAGES 57

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

build suffix trie
build antidictionary

count visits
build automaton

self-compress
simple prune

self-compress
build automaton

save antidictionary
compress data

Figure 5.16: Time consumption of individual phases during compression process using
suffix trie static compression scheme

5.6 Different Stages

For optimizing the implementation and for future research it is needed to know, how
long each phase of the compression process lasts. This measurement was performed over
“paper1” using suffix trie and suffix array. Graphs in Figure 5.16 illustrate time needed
by each phase, graphs in Figure 5.17 display time contribution of each phase to the total
compression time.

Looking at the graphs we can see, that building antidictionary and counting visits are
the most expensive phases and their times are rising exponentially with maxdepth, while
building suffix trie time rises only lineary.

Also looking at suffix array graphs (Figure 5.18 and Figure 5.19) we see constant com-
plexity of building suffix array and least common prefix array, as they don’t depend on
maxdepth, while time of building antidictionary from suffix array rises exponentially. It
looks like most efforts should be targeted on speeding up antidictionary construction
whether using suffix trie or suffix array.

5.7 RLE

For experiments static and dynamic compression version with RLE (run length encoding)
filter on input were also implemented. This filter compresses all “runs” of characters

58 CHAPTER 5. EXPERIMENTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

compress data
save antidictionary

build automaton
self-compress
simple prune

self-compress
build automaton

count visits
build antidictionary

build suffix trie

Figure 5.17: Suffix trie static compression scheme compression phases’ contribution to
total compression time

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

build suffix array
build lcp array

build antidictionary
build automaton

self-compress
simple prune

self-compress
build automaton

save antidictionary
compress data

Figure 5.18: Time consumption of individual phases during compression process using
suffix array static compression scheme

5.8. ALMOST ANTIWORDS 59

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

compress data
save antidictionary

build automaton
self-compress
simple prune

self-compress
build automaton

build antidictionary
build lcp array

build suffix array

Figure 5.19: Suffix array static compression scheme compression phases’ contribution to
total compression time

longer than 3 and encodes the sequence length using Fibonacci coding [2]. Using of
RLE has practically no influence to time or memory needed to compress a file, but it
has significant impact to compressing particular files. Generally it slightly improves the
compression ratio for smaller maxdepth values, but with larger maxdepth on the contrary
it can make it slightly worse as in Figure 5.20. The main advantage comes with a
particular type of files, where RLE improves compression ratio significantly as in Figure
5.21.

5.8 Almost Antiwords

For testing purposes almost antiwords implementation was developed using one pass
heuristics based on suffix trie. As we can see in Figure 5.22 and Figure 5.23, for the same
maxdepth value this method needs more time and memory due to more complicated
antidictionary construction.

More interesting is compression ratio in Figure 5.24, where almost antiwords technique
is better for smaller maxdepth values, but for maxdepth > 30 it is unable to improve
compression ratio further. This implementation is not fine tuned and using multi-pass
heuristics could lead to better values. In Figure 5.25 we can see structure of the com-
pressed file, exceptions coding takes less space than antidictionary.

On many files almost antiwords technique surprisingly outperforms all the others (Fig-
ure 5.26) which makes this method very interesting for future experiments. For example

60 CHAPTER 5. EXPERIMENTS

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
static DCA + RLE

dynamic DCA
dynamic DCA + RLE

almost antiwords

Figure 5.20: Compression ratio obtained compressing “grammar.lsp” from Canterbury
Corpus

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
static DCA + RLE

dynamic DCA
dynamic DCA + RLE

almost antiwords

Figure 5.21: Compression ratio obtained compressing “sum” from Canterbury Corpus

5.8. ALMOST ANTIWORDS 61

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 20 25 30 35 40 45 50

u
s
e
d
 m

e
m

o
ry

 [
M

B
]

maxdepth

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.22: Memory requirements using almost antiwords

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 10 15 20 25 30 35 40 45 50

ti
m

e
 [
s
]

maxdepth

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.23: Time requirements using almost antiwords

62 CHAPTER 5. EXPERIMENTS

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
dynamic DCA

almost antiwords

Figure 5.24: Compression ratio obtained compressing “paper1”

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 15 20 25 30 35 40 45 50

s
iz

e
 [
k
B

]

maxdepth

total
compressed data

antidictionary
exceptions

Figure 5.25: Compressed file structure created using almost antiwords compressing “pa-
per1”

5.8. ALMOST ANTIWORDS 63

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
dynamic DCA

almost antiwords

Figure 5.26: Compression ratio obtained compressing “alice29.txt”

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
static DCA + RLE

dynamic DCA
dynamic DCA + RLE

almost antiwords

Figure 5.27: Compression ratio obtained compressing “ptt5”

64 CHAPTER 5. EXPERIMENTS

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
dynamic DCA

almost antiwords

Figure 5.28: Compression ratio obtained compressing “xargs.1”

on “ptt5” file it gives better compression ratio than standard compression programs such
as gzip or bzip2 (Figure 5.27). However not everything is good using this technique, it
looks like it has problem with small files and it is not stable, as it gets quickly to good
compression ratio at maxdepth about 25, but then it is not able to improve the ratio fur-
ther (Figure 5.28), it even gets worse compression ratios with increasing maxdepth. Most
important on this method is, that we can get compression ratios similar to the ratios
obtained by other compression schemes, but at lower maxdepth, requiring less memory.

5.9 Sliced Parallel Antidictionaries

This test is based on idea from Section 4.10. It was tested to compress bits from one
byte separately using 8 parallel antidictionaries. The results for both static and dynamic
compression scheme can be found in Tables 5.1 and 5.2. This measurement was performed
on Canterbury Corpus with maxdepth = 40. Columns b0 . . . b7 represent compression
ratio obtained by compressing files created from the n-th bit of the original file only.
Column total represents overall compression ratio obtained using parallel antidictionaries,
column orig contains compression ratio obtained by not using parallel antidictionaries.

Static compression scheme using parallel antidictionaries reached much worse compression
ratios in almost all cases. Dynamic compression scheme performed in a similar way
with the exception for “ptt5” file, where it surprisingly obtained significantly better
compression ratio. The experiment demonstrated, that there exists some type of files,
where this method would be useful. Also compression the 7-th bit separately could lead

5.9. SLICED PARALLEL ANTIDICTIONARIES 65

file b0 b1 b2 b3 b4 b5 b6 b7 total orig
alice29.txt 99.9 99.8 99.9 99.7 99.5 85.3 93.6 0.0 84.7 39.9

asyoulik.txt 99.9 99.5 99.9 99.8 99.5 85.7 94.6 0.0 84.9 42.4
cp.html 89.7 92.4 91.7 91.7 90.2 75.4 76.0 100.0 88.4 45.1
fields.c 99.3 98.3 98.4 98.8 94.7 78.3 88.5 0.1 82.1 42.9

grammar.lsp 100.2 96.3 100.0 99.6 97.4 73.8 89.5 0.2 82.3 49.7
lcet10.txt 99.0 98.9 99.2 99.1 99.0 89.1 91.5 0.0 84.5 36.3

plrabn12.txt 99.9 100.0 100.0 100.0 99.9 90.3 88.1 0.0 84.8 39.9
ptt5 91.1 91.5 91.2 91.3 93.2 93.3 93.3 92.9 92.2 97.3
sum 87.1 85.5 84.6 78.9 77.2 71.6 67.4 80.7 79.1 62.8

xargs.1 100.0 100.2 100.2 100.2 99.4 85.6 90.4 0.2 84.6 60.1

Table 5.1: Parallel antidictionaries using static compression scheme

file b0 b1 b2 b3 b4 b5 b6 b7 total orig
alice29.txt 124.8 120.1 127.8 122.2 108.7 73.2 104.3 0.0 97.6 39.4

asyoulik.txt 127.1 123.3 128.8 125.9 113.4 71.8 103.6 0.0 99.2 44.0
cp.html 95.8 99.1 99.0 100.0 93.5 61.8 75.1 2.3 78.3 39.0
fields.c 99.3 97.5 97.3 97.2 84.6 59.7 79.5 0.0 76.8 33.1

grammar.lsp 104.3 100.5 99.1 101.5 92.5 56.7 81.6 0.0 79.5 38.1
lcet10.txt 122.4 120.1 124.1 119.2 110.2 82.7 96.4 0.0 96.9 35.5

plrabn12.txt 128.2 125.0 130.6 126.2 113.4 83.1 101.4 0.0 101.0 41.5
ptt5 74.9 74.7 74.1 74.8 77.8 83.2 87.9 77.7 78.1 94.8
sum 66.7 68.7 68.1 62.2 61.7 57.6 51.6 76.9 64.2 50.0

xargs.1 118.8 118.9 117.8 119.5 110.8 64.7 93.9 0.0 93.0 49.8

Table 5.2: Parallel antidictionaries using dynamic compression scheme

 0

 50

 100

 150

 200

 250

 1024 4096 16384 65536 262144

u
s
e
d
 m

e
m

o
ry

 [
M

B
]

block size

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.29: Memory requirements in relation to block size compressing “plrabn12.txt”

66 CHAPTER 5. EXPERIMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 1024 4096 16384 65536 262144

ti
m

e
 [
s
]

block size

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.30: Time requirements in relation to block size compressing “plrabn12.txt”

to better compression ratios. However in general it can’t be recommended.

5.10 Dividing Input Text into Smaller Blocks

Huge memory requirements of DCA method were already presented, that’s why we can’t
build antidictionary over whole large files, but we should rather divide them into smaller
blocks and compress them separately. Tests were made on “plrabn12.txt” file from Can-
terbury Corpus with maxdepth = 40, splitting the file into blocks of particular size and
then compressing all these parts separately, summarizing the results.

Influence of block size on time and memory can be found in Figure 5.29 and Figure 5.30
respectively, but be careful, the x-axis is logarithmic. For suffix array memory require-
ments double with double file size, suffix trie and dynamic DCA need more memory but
with higher block sizes their requirements grow slower. Considering time, larger files
are better, as it is not needed to run some phases, such as building antidicionary, self-
compression and simple pruning, more times. It looks that for files larger than 512kB
suffix array will be the slowest, but for smaller files it is the fastest from static compression
scheme methods.

Selected block size has a significant influence on compression ratio as shows Figure 5.31,
this means we should use block as large as possible. A little surprise is improvement of
almost antiwords’s method with growing block size. In Figure 5.32 we see structure of the
compressed file, with smaller blocks many information in antidictionaries are duplicated,
that’s why the antidictionary size is getting lower.

5.10. DIVIDING INPUT TEXT INTO SMALLER BLOCKS 67

 0

 20

 40

 60

 80

 100

 1024 4096 16384 65536 262144

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

block size

static DCA
dynamic DCA

almost antiwords

Figure 5.31: Compression ratio obtained compressing “plrabn12.txt”

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1024 4096 16384 65536 262144

s
iz

e
 [
k
B

]

block size

total
compressed data

antidictionary

Figure 5.32: Compressed file structure created using static compression scheme in relation
to block size compressing “plrabn12.txt”

68 CHAPTER 5. EXPERIMENTS

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 10 20 30 40 50

e
x
c
e
p
ti
o
n
s
 c

o
u
n
t

exceptions distance

Figure 5.33: Dynamic compression scheme exception distances histogram

5.11 Dynamic Compression

In dynamic compression scheme we need to deal with exceptions, but before that we
need to know something about them. Figure 5.33 is a histogram of exceptions distances
for maxdepth = 40 compressing file “paper1” from Calgary Corpus. We can see, that
most distances have value below 10. Fibonacci coding [2] was picked, but other universal
coding or even Huffman coding could be useful, too. In Figure 5.34 we can see exception
count in relation to maxdepth, which explains strange compression ratio dependency on
maxdepth mentioned in Section 5.4. Generally dynamic compression scheme achieves
good compression ratios, e.g. with “fields.c” (Figure 5.28), but sometimes things can go
worse with increasing “maxdepth” like with “plrabn12.txt” in Figure 5.35.

5.12 Canterbury Corpus

All tests were run on the whole Canterbury Corpus and found the best compression
ratios obtained by each compression method. They can be found in Table 5.3 and also in
Figure 5.36. Static compression scheme stays in back, only with “plrabn10.txt” is better,
while dynamic compression and almost antiwords alternately give the best compression
ratios, but both have some odd behaviour on particular files.

Some interesting evaluation can be seen from graph averaging compression ratios over
Canterbury Corpus in relation to maxdepth (Figure 5.37). Here looks dynamic com-
pression scheme with RLE as the best followed by almost antifactors and later by static

5.12. CANTERBURY CORPUS 69

 0

 5000

 10000

 15000

 20000

 25000

 30000

 10 15 20 25 30 35 40 45 50

e
x
c
e
p
ti
o
n
s
 c

o
u
n
t

maxdepth

Figure 5.34: Exception count in relation to maxdepth

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
dynamic DCA

almost antiwords

Figure 5.35: Compression ratio obtained compressing “plrabn12.txt”

70 CHAPTER 5. EXPERIMENTS

method almostaw dynamic dynamic-rle static static-rle
alice29.txt 37.23 39.25 38.95 38.90 38.54
asyoulik.txt 41.19 43.48 43.49 41.66 41.67
cp.html 44.37 38.68 38.83 44.69 44.81
fields.c 43.47 32.84 33.44 42.50 43.11
grammar.lsp 48.99 37.92 38.46 49.48 50.01
kennedy.xls 25.04 26.36 27.18 25.85 25.91
lcet10.txt 34.36 35.17 34.64 34.90 34.30
plrabn12.txt 36.96 41.37 41.34 38.40 38.39
ptt5 8.88 93.44 16.49 96.78 18.36
sum 51.01 46.88 43.42 61.39 55.15
xargs.1 62.67 49.58 49.58 60.04 60.04

Table 5.3: Best compression ratios obtained on Canterbury Corpus

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

x
a
rg

s
.1

s
u
m

p
tt
5

p
lr
a
b
n
1
2
.t
x
t

lc
e
t1

0
.t
x
t

k
e
n
n
e
d
y
.x

ls

g
ra

m
m

a
r.

ls
p

fi
e
ld

s
.c

c
p
.h

tm
l

a
s
y
o
u
lik

.t
x
t

a
lic

e
2
9
.t
x
t

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

almost AW
static DCA

dynamic DCA
static DCA + RLE

dynamic DCA + RLE

Figure 5.36: Best compression ratio obtained by each method on Canterbury Corpus

5.13. SELECTED PARAMETERS 71

 0

 20

 40

 60

 80

 100

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

maxdepth

static DCA
static DCA + RLE

dynamic DCA
dynamic DCA + RLE

almost antiwords

Figure 5.37: Average compression ratio obtained by each method on Canterbury Corpus

compression scheme with RLE. Another interesting evaluation are average compression
speed and time (input characters compressed per second) in Figure 5.38 and in Fig-
ure 5.39. What we are also interested in is memory needed to compress 1 byte of input
text in Figure 5.40.

5.13 Selected Parameters

Results on Canterbury Corpus were analyzed and all is prepared for the final test. The
smallest memory and time requirements were claimed while still obtaining reasonable
compression ratios. For each method appropriate maxdepth k were selected and compared
their results are to be compared. The selection follows:

• almost antiwords, k = 30

• dynamic DCA + RLE, k = 32

• static DCA + RLE, k = 30 (suffix trie/suffix array)

• static DCA + RLE, k = 34 (suffix trie/suffix array)

• static DCA + RLE, k = 40 (suffix trie/suffix array)

From the results presented in Figures 5.41, 5.42 and 5.43 we can make some conclusions.
Exact values obtained can be found in Table 5.4.

72 CHAPTER 5. EXPERIMENTS

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 10 15 20 25 30 35 40 45 50

c
o
m

p
re

s
s
io

n
 s

p
e
e
d
 [
M

B
/s

]

maxdepth

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.38: Average compression speed (compressed characters per second) of each
method on Canterbury Corpus

 0

 10

 20

 30

 40

 50

 60

 10 15 20 25 30 35 40 45 50

ti
m

e
 n

e
e
d
e
d
 t
o
 c

o
m

p
re

s
s
 1

M
B

 o
f
in

p
u
t
te

x
t
[s

]

maxdepth

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.39: Average time needed to compress 1MB of input text on Canterbury Corpus

5.13. SELECTED PARAMETERS 73

 0

 500

 1000

 1500

 2000

 2500

 3000

 10 15 20 25 30 35 40 45 50

m
e
m

o
ry

 n
e
e
d
e
d
 t
o
 c

o
m

p
re

s
s
 1

 b
y
te

 [
B

]

maxdepth

suffix trie
suffix array

dynamic DCA
almost antiwords

Figure 5.40: Memory needed in average by each method to compress 1 byte of input text
on Canterbury Corpus

 0

 10

 20

 30

 40

 50

 60

 70

x
a
rg

s
.1

s
u
m

p
tt
5

p
lr
a
b
n
1
2
.t
x
t

lc
e
t1

0
.t
x
t

k
e
n
n
e
d
y
.x

ls

g
ra

m
m

a
r.

ls
p

fi
e
ld

s
.c

c
p
.h

tm
l

a
s
y
o
u
lik

.t
x
t

a
lic

e
2
9
.t
x
t

c
o
m

p
re

s
s
io

n
 r

a
ti
o
 [
%

]

almost antiwords (k=30)
dynamic DCA + RLE (k=32)

static DCA + RLE (k=30)
static DCA + RLE (k=34)
static DCA + RLE (k=40)

Figure 5.41: Compression ratio obtained by selected methods on Canterbury Corpus

74 CHAPTER 5. EXPERIMENTS

 0

 10

 20

 30

 40

 50

 60

x
a
rg

s
.1

s
u
m

p
tt
5

p
lr
a
b
n
1
2
.t
x
t

lc
e
t1

0
.t
x
t

k
e
n
n
e
d
y
.x

ls

g
ra

m
m

a
r.

ls
p

fi
e
ld

s
.c

c
p
.h

tm
l

a
s
y
o
u
lik

.t
x
t

a
lic

e
2
9
.t
x
t

ti
m

e
 n

e
e
d
e
d
 t
o
 c

o
m

p
re

s
s
 1

M
B

 o
f
in

p
u
t
te

x
t

almost antiwords (k=30)
dynamic DCA (k=32)

suffix array (k=30)
suffix trie (k=30)

suffix array (k=34)
suffix trie (k=34)

suffix array (k=40)
suffix trie(k=40)

Figure 5.42: Time needed to compress 1MB of input text

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

x
a
rg

s
.1

s
u
m

p
tt
5

p
lr
a
b
n
1
2
.t
x
t

lc
e
t1

0
.t
x
t

k
e
n
n
e
d
y
.x

ls

g
ra

m
m

a
r.

ls
p

fi
e
ld

s
.c

c
p
.h

tm
l

a
s
y
o
u
lik

.t
x
t

a
lic

e
2
9
.t
x
t

m
e
m

o
ry

 n
e
e
d
e
d
 t
o
 c

o
m

p
re

s
s
 1

 b
y
te

 [
B

]

almost antiwords (k=30)
dynamic DCA (k=32)

suffix array (k=30)
suffix array (k=34)
suffix array (k=40)

suffix trie (k=30)
suffix trie (k=34)
suffix trie(k=40)

Figure 5.43: Memory needed by selected methods to compress 1 byte of input text on
Canterbury Corpus

5.13. SELECTED PARAMETERS 75

file original gzip bzip2 almostaw-30 dynamic-rle-32 rle-34
alice29.txt 152089 54423 43202 58965 61365 63386
asyoulik.txt 125179 48938 39569 52550 54462 54756
cp.html 24603 7991 7624 10927 9743 11250
fields.c 11150 3134 3039 4865 3784 4885
grammar.lsp 3721 1234 1283 1823 1441 1880
kennedy.xls 1029744 206767 130280 268827 431929 384241
lcet10.txt 426754 144874 107706 158887 159724 164221
plrabn12.txt 481861 195195 145577 187914 207005 205967
ptt5 513216 56438 49759 45556 95175 100432
sum 38240 12920 12909 19655 17527 21619
xargs.1 4227 1748 1762 2659 2102 2543

Table 5.4: Compressed file sizes obtained on Canterbury Corpus

file original gzip bzip2 almostaw-30 dynamic-rle-32 rle-34
bib 111261 35059 27467 40247 38078 41177
book1 768771 313370 232598 306609 360005 363396
book2 610856 206681 157443 237339 242923 253609
geo 102400 68489 56921 77219 88801 78570
news 377109 144835 118600 173141 164269 180022
obj1 21504 10318 10787 16154 13160 14544
obj2 246814 81626 76441 132067 108350 130868
paper1 53161 18570 16558 24496 21408 24146
paper2 82199 29746 25041 33499 34076 35792
pic 513216 56438 49759 45556 95175 100432
progc 39611 13269 12544 18602 15961 18496
progl 71646 16267 15579 24898 21711 25339
progp 49379 11240 10710 18670 14157 17256
trans 93695 18979 17899 34159 24166 32223

Table 5.5: Compressed file sizes obtained on Calgary Corpus

Method Advantages Disadvantages
almost antiwords good compression ratios, de-

compression speed
hard implementation, com-
pression speed and memory
requirements, algorithm in-
stability

static DCA memory requirements (when
using suffix array), decom-
pression speed, compressed
pattern matching

compression speed, slightly
worse compression ratios

dynamic DCA good compression ratios, fast
compression speed, compres-
sion memory requirements

slow decompression and de-
compression memory require-
ments

Table 5.6: Pros and cons of different methods

76 CHAPTER 5. EXPERIMENTS

If we have only little amount of memory, antidictionary construction using suffix array
would be the right choice. When we are not interested in low decompression time, dy-
namic DCA gives us the best performance. If we are interested in compression ratio,
we can choose from almost antiwords or dynamic DCA. Methods overview is presented
in Table 5.6, algorithm instability means, that it does not give better compression ratio
with increasing k.

Looking at static compression performance, maxdepth k = 34 looks the best, it gives
better compression ratio than for k = 30 comparable to ratios obtained using almost
antiwords or dynamic DCA, also it runs in much shorter time than for k = 40. Using
suffix array for antidictionary construction is generally a good idea, not only considering
memory requirements but it is also faster at k = 34 than antidictionary construction
using suffix trie.

5.14 Calgary Corpus

Results for Calgary Corpus are presented, too, as it is still broadly used for evaluating
compression methods, see Table 5.5.

Chapter 6

Conclusion and Future Work

6.1 Summary of Results

In this thesis data compression using antidictionaries with different techniques was im-
plemented and their performance on standard sets of files for evaluating compression
methods were presented. This work extends research of Crochemore, Mignosi, Restivo,
Navarro and others [6, 7], who introduced the original idea of data compression using
antidictionaries, described the static compression scheme thoroughly with antidictionary
construction using suffix trie and also introduced almost antifactors improvement. This
thesis has introduced antidictionary building using suffix array structure instead of suffix
trie, also dynamic compression scheme was explained and some suggestions of how to
improve compression ratios and how to solve huge memory requirements were provided.

Several data compression using antidictionaries methods were implemented — static com-
pression scheme using suffix trie or suffix array for antidictionary construction, dynamic
compression scheme using suffix trie and static compression scheme with almost antiwords
using suffix trie. Their results compressing files from Canterbury and Calgary corpuses
were evaluated.

It turned out that one of the biggest problems concerning data compression using an-
tidictionaries is actually building the antidictionary, it requires not only much time but
even much memory. Using suffix array for antidictionary lowers memory requirements
significantly. As the antidictionary is usually built over the whole input file, it is a good
idea to restrict block length processed in one round and to split the file into more blocks
using different antidictionaries. This limit depends on the memory available, as larger
blocks mean better compression ratio and lower the time requirements.

The most important parameter of all considered methods is maxdepth k limiting the
length of antiwords. A suitable value of this parameter was selected for each method.
For static compression scheme an idea of representing antidictionary by text generating
it is introduced, which could improve compression ratio by reducing space needed for
antidictionary representation.

77

78 CHAPTER 6. CONCLUSION AND FUTURE WORK

Another improvement is to use RLE (run length encoding) as an input filter to hide
static and dynamic compression scheme inability of compressing strings of form 0n1,
respectively their repetitions in case of dynamic compression scheme. According to the
experiments methods equipped with RLE performed better.

It is not possible to pick the best method for everything, different usage scenarios have
to be considered. If we need fast decompression speed, we can use static compression
scheme or almost antiwords, dynamic compression scheme is not appropriate as its time
and memory requirements for decompressing text are the same as when compressing.
Nevertheless dynamic compression scheme could be useful for its best compression speed,
good compression ratios and easy implementation.

Somewhat different it is when we need fast compressed pattern matching, then currently
we have only choice of static compression scheme. If we have only little amount of
memory available, static compression scheme with suffix array construction has the least
memory requirements. And finally for best compression ratios we can choose from almost
antifactors or dynamic compression scheme equipped with RLE in dependence to our
decompression speed demands.

Based on the measurements some candidates were selected and compared with stan-
dard compression programs “gzip” and “bzip2”. DCA showed, that on particular files it
could be a good competitor to them, but still with much larger resources requirements.
However DCA is an interesting compression method using current theories about finite
automata and data structures for representing all text factors. Its potential could be in
the compressed pattern matching abilities.

6.2 Suggestions for Future Research

Almost antiwords technique performed surprisingly well even using one-pass heuristics,
but its time and memory requirements for building antidictionary from suffix trie were
too greedy. More research could be done to reduce them as well as in compressed pattern
matching in texts compressed using almost antiwords.

Another possible improvement concerns static compression scheme, where representing
the antidictionary by text generating it seems promising, improving the compression
ratio. In the considered methods Fibonacci code was used for storing exception distances
or lengths of runs in RLE, but may be some more optimal code could be used.

The suffix array construction is using modified Manzini-Ferragina implementation for
sorting text with binary alphabet, whereas it was originally developed for larger alpha-
bets, which means that the used suffix array and lcp array construction may be not
optimal.

Finally some more work could be done on optimizing the codes, as they were developed
rather for testing and research purposes with many customizable parameters than for
good performance.

Bibliography

[1] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic
search. Commun. ACM, 18(6):333–340, 1975.

[2] A. Apostolico and A. S. Fraenkel. Robust transmission of unbounded strings using
fibonacci representations. IEEE Transactions on Information Theory, 33(2):238–245,
1987.

[3] M.-P. Béal, F. Mignosi, and A. Restivo. Minimal forbidden words and symbolic
dynamics. In C. Puech and R. Reischuk, editors, STACS, volume 1046 of Lecture
Notes in Computer Science, pages 555–566. Springer, 1996.

[4] T. C. Bell, I. H. Witten, and J. G. Cleary. Modeling for text compression. Computer
Science Technical Reports, pages 327–339, 1988.

[5] M. Burrows and D. Wheeler. A block-sorting lossless data compression algorithm.
SRC Research Report 124, Digital Equipment Corporation, 1994.

[6] M. Crochemore, F. Mignosi, A. Restivo, and S. Salemi. Text compression using
antidictionaries. In J. Wiedermann, P. van Emde Boas, and M. Nielsen, editors,
ICALP, volume 1644 of Lecture Notes in Computer Science, pages 261–270. Springer,
1999.

[7] M. Crochemore and G. Navarro. Improved antidictionary based compression. In
SCCC, pages 7–13. IEEE Computer Society, 2002.

[8] M. Davidson and L. Ilie. Fast data compression with antidictionaries. Fundam.
Inform., 64(1-4):119–134, 2005.

[9] R. Grossi and J. S. Vitter. Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.

[10] IEEE Computer Society. 2005 Data Compression Conference (DCC 2005), 29-31
March 2005, Snowbird, UT, USA. IEEE Computer Society, 2005.

[11] S. Kurtz. Reducing the space requirement of suffix trees. Softw., Pract. Exper.,
29(13):1149–1171, 1999.

[12] U. Manber and G. Myers. Suffix arrays: A new method for on-line string searches.
In SODA, pages 319–327, 1990.

79

80 BIBLIOGRAPHY

[13] G. Manzini and P. Ferragina. Engineering a lightweight suffix array construction
algorithm. In R. H. Möhring and R. Raman, editors, ESA, volume 2461 of Lecture
Notes in Computer Science, pages 698–710. Springer, 2002.

[14] H. Morita and T. Ota. A tight upper bound on the size of the antidictionary of a
binary string. In C. Mart́ınez, editor, 2005 International Conference on Analysis of
Algorithms, volume AD of DMTCS Proceedings, pages 393–398. Discrete Mathemat-
ics and Theoretical Computer Science, 2005.

[15] M. Powell. Evaluating lossless compression methods, 2001.

[16] S. J. Puglisi, W. F. Smyth, and A. Turpin. The performance of linear time suffix
sorting algorithms. In DCC [10], pages 358–367.

[17] Y. Shibata, M. Takeda, A. Shinohara, and S. Arikawa. Pattern matching in text
compressed by using antidictionaries. In M. Crochemore and M. Paterson, editors,
CPM, volume 1645 of Lecture Notes in Computer Science, pages 37–49. Springer,
1999.

[18] E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.

[19] B. Zhao, K. Iwata, S. Itoh, and T. Kato. A new approach of DCA by using BWT.
In DCC [10], page 495.

Appendix A

User Manual

Usage: dca [OPTION]... <FILE>
Compress on uncompress FILE (by default, compress FILE).

-d decompress
-f <filename> output file
-l <level> maximal antiword length
-h show help
-v be verbose

Options:

-d Decompress specified FILE.
-f <filename> Save output data to the specified file, in case of compression that is

antidictionary + compressed data + checksum, when decompress-
ing it is the original uncompressed data. If file is not specified,
output is directed to standard output.

-l <level> Compression level, this option can take values from 1 up to 40
or even more, but larger values don’t improve compression much,
only require excessive system resources. Default: 30

-h Show help.
-v Be verbose, displaying compression ratio, antidictionary and com-

pressed data size and time taken. This is useful for measurements.

Examples:

Compress file “foo” and save it to “foo.dz”:
dca -f foo.dz foo

Decompress file “foo.dz” to “foo”:
dca -d -f foo foo.dz

Compress file “foo” using level 40 and save it to “foo.dz”:
dca -l40 -f foo.dz foo

81

	List of Figures
	List of Tables
	Introduction
	Problem Statement
	State of The Art
	Contribution of the Thesis
	Organization of the Thesis

	Preliminaries
	Data Compression Using Antidictionaries
	DCA Fundamentals
	Data Compression and Decompression
	Antidictionary Construction Using Suffix Trie
	Compression/Decompression Transducer
	Static Compression Scheme
	Simple pruning
	Antidictionary self-compression

	Antidictionary Construction Using Suffix Array
	Suffix array
	Antidictionary construction

	Almost Antifactors
	Compression ratio improvement
	Choosing nodes to convert

	Dynamic Compression Scheme
	Using suffix trie online construction
	Comparison with static approach

	Searching in Compressed Text

	Implementation
	Used Platform
	Documentation and Versioning
	Debugging
	Implementation of Static Compression Scheme
	Suffix trie construction
	Building antidictionary
	Building automaton
	Self-compression
	Gain computation
	Simple cruning

	Antidictionary Representation
	Text generating the antidictionary

	Compressed File Format
	Antidictionary Construction Using Suffix Array
	Suffix array construction
	Antidictionary construction

	Run Length Encoding
	Almost Antiwords
	Parallel Antidictionaries
	Used Optimizations
	Verifying Results
	Dividing Input Text into Smaller Blocks

	Experiments
	Measurements
	Self-Compression
	Antidictionary Construction and Optimization
	Data Compression
	Data Decompression
	Different Stages
	RLE
	Almost Antiwords
	Sliced Parallel Antidictionaries
	Dividing Input Text into Smaller Blocks
	Dynamic Compression
	Canterbury Corpus
	Selected Parameters
	Calgary Corpus

	Conclusion and Future Work
	Summary of Results
	Suggestions for Future Research

	User Manual

