MOLPRO

Installation Guide
Version 2012.1

H.-J. Werner

Institut fiir Theoretische Chemie
Universitdit Stuttgart
Pfaffenwaldring 55
D-70569 Stuttgart
Federal Republic of Germany

P. J. Knowles

School of Chemistry
Cardiff University
Main Building, Park Place, Cardiff CF10 3AT
United Kingdom

SHAI c4678c¢0bfb10df7al36fe8d2f70bbc43d96eab90

(Copyright (©2012 University College Cardiff Consultants Limited)

http://www.theochem.uni-stuttgart.de/~{}werner
http://www.theochem.uni-stuttgart.de/
http://www.uni-stuttgart.de/
http://www.cardiff.ac.uk/chemy/staff/knowles.html
http://www.cardiff.ac.uk/chemy
http://www.cardiff.ac.uk/

1 OBTAINING THE DISTRIBUTION MATERIALS i

1 Obtaining the distribution materials

MOLPRO is distributed to licensees on a self-service basis using the world-wide web. Those enti-
tled to the code should obtain it from https://www.molpro.net/download supplying the username
and password given to them. The web pages contain both source code and binaries, although
not everyone is entitled to source code, and binaries are not available for every platform.

Execution of MOLPRO, whether a supplied binary or built from source, requires a valid licence
key. Note that the key consists of two components, namely a list of comma-separated key=value
pairs, and a password string, and these are separated by ‘&’. In most cases the licence key will
be automatically downloaded from the website when building or installing the software.

2 Installation of pre-built binaries

Binaries are given as self-extracting tar archives which are installed by running them on the
command line. There are binaries tuned for several architectures. These also support parallel
execution. The parallel binaries are built using GA with MPI. There is a generic serial binary
which should run on all IA32 architectures.

The tar archives are fully relocatable, the location can be changed when running the script
interactively, the default is /usr/local.

If the script finds a licence key which has been cached in $SHOME/ .molpro/token from a
previous install then that key will be installed with the software. If the script cannot find a key or
automatically download it from the molpro website then the script will prompt that this part of
the install has failed. All files of Molpro are installed, but the user must then manually install the
key with the library files in a file named . token, e.g.: /usr/local/lib/molpro-mpptype-arch/1lib/ .t

Other configuration options as described in section [3.5]may also be specified in the script file:
/usr/local/bin/molpro

3 Installation from source files

3.1 Overview

There are usually four distinct stages in installing MOLPRO from source files:

Configuration A shell script that allows specification of configuration options is
run, and creates a configuration file that drives subsequent installa-
tion steps.

Compilation The program is compiled and linked, and other miscellaneous utilities

and files, including the default options file, are built. The essential
resulting components are

1. The molpro shell script which launches thge main executable.
In serial case one can directly run the main executable.

2. The molpro.exe executable, which is the main program. For
parallel computation, multiple copies of molpro . exe are started
by a single instance of molpzro shell script using the appropri-
ate system utility, e.g. mpirun, parallel, etc.

http://www.molpro.net/download

3 INSTALLATION FROM SOURCE FILES ii

3. Machine-ready basis-set, and other utility, libraries.

Validation A suite of self-checking test jobs is run to provide assurance that the
code as built will run correctly.

Installation The program can be run directly from the source tree in which it is
built, but it is usually recommended to run the procedure that installs
the essential components in standard system directories.

3.2 Prerequisites

The following are required or strongly recommended for installation from source code.

1. A Fortran 90 compiler. Fortran77-only compilers will not suffice. On HPC systems the
latest vendor-supplied compiler should be used. The program is regularly tested with
recent versions of GNU and Intel Fortran compilers.

2. GNU make, freely available from http://www.fst.org and mirrors. GNU make must be
used; most system-standard makes do not work. In order to avoid the use of a wrong
make, it may be useful to set an alias, e.g., alias make=’gmake -s’. A recent
version of GNU make is required, 3.80 or above.

3. About 10GB disk space (strongly system-dependent; more with large-blocksize file sys-
tems, and where binary files are large) during compilation. Typically 100Mb is needed
for the finally installed program. Large calculations will require larger amounts of disk
space.

4. One or more large scratch file systems, each containing a directory that users may write
on. There are parts of the program in which demanding I/O is performed simultane-
ously on two different files, and it is therefore helpful to provide at least two filesystems
on different physical disks if other solutions, such as striping, are not available. The
directory names should be stored in the environment variables STMPDIR, STMPDIR2,
$TMPDIR3,.... These variables should be set before the program is installed (preferably
in .profile or .cshrc), since at some stages the installation procedures will check
for them (cf. section [3.5).

5. If the program is to be built for parallel execution then the Global Arrays toolkit or the
MPI-2 library is needed. For building MOLPRO with the Global Arrays toolkit, we rec-
ommend the latest stable version (although earlier versions may also work). This is avail-
able from http://www.emsl.pnl.gov/docs/global and should be installed prior to compil-
ing MOLPRO. For building MOLPRO with the MPI-2 library, we recommend to use the
built-in MPI-2 library, which may have advantages of optimization on some platforms.
If there is no built-in one on the platform, a fresh MPI-2 library (e.g.: MPICH2, see
http://http://www.mpich.org/) should be installed prior to compiling MOLPRO. Many
MPI-2 libraries, including Intel MPI, Bull MPI, MPICH2, and Open MPI, have been
tested, and others untested could also work.

6. The source distribution of MOLPRO, which consists of a compressed tar archive with a
file name of the form molpro.2012.1.tar.gz. The archive can be unpacked using
gunzip and tar.

http://www.fsf.org
http://www.emsl.pnl.gov/docs/global
http://http://www.mpich.org/

3 INSTALLATION FROM SOURCE FILES iii

3.2.1 Fedora packages

To build using GNU compilers one should ensure the following packages are installed (via
yum):

gce-c++ provides GNU C and C++ compiler,

gcc-gfortran provides GNU Fortran compiler,
Optionally one can choose to install:

blas-devel provides a BLAS library,
lapack-devel provides a LAPACK library,

which will be used instead of compiling the equivalent MOLPRO routines.

3.2.2 openSUSE packages

To build using GNU compilers one should ensure the following packages are installed (via
YaST):

gee-c++ provides GNU C and C++ compiler,
gcc-fortran provides GNU Fortran compiler,
make provides GNU make

Optionally one can choose to install:

blas provides a BLAS library,
lapack provides a LAPACK library,

which will be used instead of compiling the equivalent MOLPRO routines.

3.2.3 Ubuntu packages

To build using GNU compilers one should ensure the following packages are installed via (apt-
get):

build-essential provides GNU C++ compiler,
gfortran provides GNU Fortran compiler,

curl provides curl for downloading patches
openssh-server provides ssh access to localhost

Optionally one can choose to install:

libblas-dev provides a BLAS library,
liblapack-dev provides a LAPACK library,

which will be used instead of compiling the equivalent MOLPRO routines. Set up password-less
ssh by running the following commands and not entering a password when prompted:

ssh-keygen -t rsa
cat “/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys

This must be done for each user account which will be running MOLPRO.

3 INSTALLATION FROM SOURCE FILES v

3.3 Configuration

Once the distribution has been unpacked, change to the Mo1pro directory that has been created.
Having changed to the Molpro directory, you should check that the directory containing the
Fortran compiler you want to use is in your PATH. Then run the command

./configure -batch

which creates the file CONF IG. This file contains machine-dependent parameters, such as com-
piler options. Normally CONFIG will not need changing, but you should at the least examine
it, and change any configuration parameters which you deem necessary. Any changes made to
CONFIG will be lost next time . /configure is invoked, so it is best to supply as many of
these as possible via the command line.

The configure procedure may be given command line options, and, if run without ~batch
, additionally prompts for a number of parameters:

1. On certain machines it is possible to compile the program to use either 32 or 64 bit in-
tegers, and in this case configure may be given a command-line option —14 or —18
respectively to override the default behaviour. Generally, the 64-bit choice allows larger
calculations (files larger than 2Gb, more than 16 active orbitals), but can be slower if the
underlying hardware does not support 64-bit integers. Note that if —14 is used then large
files (greater than 2Gb) are supported on most systems, but even then the sizes of MOL-
PRO records are restricted to 16 Gb since the internal addressing in MOLPRO uses 32-bit
integers. If —18 is used, the record and file sizes are effectively unlimited. Normally we
recommend using the default determined by configure.

2. In the case of building for parallel execution, the option —mpp must be given on the com-
mand line. This enables both mpp and mppx parallelism; for the distinction between these
two parallelism modes, please refer to the user manual, section 2. The option -mppbase
must also be given followed by the location of the Global Arrays build directory or the
MPI-2 library include directory.

For the case of using the Global Arrays toolkit, one example can be

./configure -mpp -mppbase /usr/local/ga-[version]

If using a Global Arrays build with an MPI library the appropriate MPI executable should
appear first in PATH when more than one is available.

Queries regarding Global Arrays installations should be sent directly to the Global Arrays
team, any Molpro related queries will assume a fully functional Global Arrays suite with
all internal tests run successfully.

For the case of using the MPI-2 library, one example can be

./configure -mpp -mppbase /usr/local/mpich2-install/include

and the —mppbase directory should contain file mpi.h. Please ensure the built-in or
freshly built MPI-2 library fully supports MPI-2 standard and works properly.

For desktop or single node installations, there are a series of options prefixed with —auto
which build any prerequisites, and can be used in place of -mppbase, eg.

./configure -mpp —auto—-ga-mpich

3 INSTALLATION FROM SOURCE FILES v

3. If any system libraries are in unusual places, it may be necessary to specify them explicitly
as the arguments to a —L command-line option.

4. configure asks whether you wish to use system BLAS subroutine libraries. MOLPRO
has its own optimised Fortran version of these libraries, and this can safely be used. On
most machines, however, it will be advantageous to use a system-tuned version instead.
On the command line one can specify the level of BLAS to be used from the system,
e.g. ~blas?2. For example if you specify 2, the system libraries will be used for level 2
and level 1 BLAS, but MOLPRO’s internal routines will be used for level 3 (i.e., matrix-
matrix multiplication). Normally, however, one would choose either O or 3, which are the
defaults depending upon whether a BLAS library is found.

A special situation arises if 64-bit integers are in use (-i8), since on many platforms the
system BLAS libraries only supports 32-bit integer arguments. In such cases (e.g., IBM,
SGI, SUN) either O or 4 can be given for the BLAS level. BLAS=0 should always work
and means that the MOLPRO Fortran BLAS routines are used. On some platforms (IBM,
SGI, SUN) BLAS=4 will give better performance; in this case some 32-bit BLAS routines
are used from the system library (these are then called from wrapper routines, which
convert 64 to 32-bit integer arguments. Note that this might cause problems if more than
2 GB of memory is used).

For good performance it is important to use appropriate BLAS libraries; in particular, a
fast implementation of the matrix multiplication dgemm is very important for MOLPRO.
Therefore you should use a system tuned BLLAS library whenever available.

MoLPRO will automatically detect the most appropriate BLAS library in many cases. In
certain cases, in particular when the BLAS library is installed in a non-default location,
configure should be directed to the appropriate directory with:

./configure -blaspath /path/to/lib/dir

Specification of BLAS libraries can be simplified by placing any relevant downloaded
libraries in the directory blaslibs; configure searches this directory (and then, with
lower priority, some potential system directories) for libraries relevant to the hardware.

For Intel and AMD Linux systems we recommend the following BLAS libraries:

MKL The Intel Math Kernel Library (MKL)

ATLAS The Automatically Tuned Linear Algebra Software (ATLAS)
library. You must use the atlas library specific to your proces-
Sor:
Pentium III Linux PITIISSE]
Pentium 4,Xeon Linux_P4SSE2
AMD Athlon Linux_ ATHLON
AMD Opteron Linux_HAMMER64SSE2_2 (64 bit)

When using atlas MOLPRO will automatically compile in the
extra lapack subroutines which do not come by default with
the package and so the liblapack.a which comes with Atlas is
sufficient.

ACML For Opteron systems then AMD Core Math Library (ACML) is
the preferred blas library.

SGI Altix can use the scs1 library is preferred. HP platforms can use the m1ib math
library. IBM Power platforms can use the ess1 package.

3 INSTALLATION FROM SOURCE FILES vi

5. configure prompts for the optional bin directory (INSTBIN) for linking MOLPRO.
This directory should be one normally in the PATH of all users who will access MOLPRO,
and its specification will depend on whether the installation is private or public.

6. configure prompts for the Molpro installation directory (PREF IX).

7. configure prompts for the destination directory for documentation. This should nor-
mally be a directory that is mounted on a worldwide web server. This is only relevant if
the documentation is also going to be installed from this directory (see below).

The full list of command-line options recognized by configure are:

-af90

—auto-ga-hpmpi

—auto-ga-mpich

use Absoft Pro Fortran compiler
auto-build GA with MPI and HP MPI
auto-build GA with MPI and MPICH

—auto—ga-mvapich2ib auto-build GA with MPI and MVAPICH?2 over Infiniband
—auto—ga—-openmpi auto-build GA with MPI and Open MPI

—auto-ga—-openmpi-sge auto-build GA with MPI and Open MPI with SGE support

—auto-mpich

—auto-mvapich2ib

—auto—-openmpi

auto-build MPICH
auto-build MVAPICH? over Infiniband
auto-build Open MPI

—auto-openmpi-sge auto-build Open MPI with SGE support

—-batch
-blas
-blaspath
-Block
-cc
—-clang
—cuda
-£90

—-fcc
—force-link
—fort
-frt

-g95

—-gcc
—gforker
—gfortran
-1386

-i4

-1686

-i8

-icc

run script non-interactively

use external BLAS library

specify blas library path

compile Block code

use C compiler named cc

use Clang C compiler

try to get settings for compiling CUDA code
use f90 Fortran compiler

use Fujitsu C compiler

Force linking of main executable

use fort Fortran compiler

use frt Fortran compiler

use G95 Fortran compiler

use GNU Compiler Collection C compiler
Use settings for mpich2 configured with gforker option
use gfortran Fortran compiler

use settings for i386 machine

Makes default integer variables 4 bytes long
use settings for i686 machine

Makes default integer variables 8 bytes long

use Intel C compiler

3 INSTALLATION FROM SOURCE FILES

—-ifort
—inst-pl
—intel-mpi-1sf
=

—-lapack
—lapackpath
—letter

—mpp
—-mppbase
—-nagfor
—natom
—-nbasis
—-noaims
—-noblas
—noboost
—nocuda
—Nnocxx
-nolapack
-nolargefiles
—noneci
—noopenmp
-noxml2
-nprim

-nrec
-nstate
—nsymm
—-nvalence
-nvce
—opencc
—-openf9ol
—openmp
—openmp-mismatch
—openmpi
—openmpi-sge
—pathcc
-pathf9o0
—pgcc

-pgf90

-prefix

use Intel Fortran compiler

append PL to PREFIX when running make install
Use settings for Intel MPI with LSF

number of make threads for building prerequisites
use external LAPACK library

specify LAPACK library path

specify letter latex paper size

produce parallel Molpro

specify mpp base path for includes and libraries
use NAG Fortran compiler

max number of atoms

max number of basis functions

do not compile aims code

Don’t use external BLAS library

Do not use binary part of Boost library

don’t compile CUDA code

do not compile C++ code

don’t use external LAPACK library

Do not use largefiles

do not compile neci code

compile without openmp

do not use libxml2

max number of primitives

max number of records

max number of states per symmetry

max number of state symmetries

max number of valence orbitals

use NVIDIA CUDA C compiler

use Open64 C compiler

use Open64 Fortran compiler

compile with openmp

Override exit with mismatched compilers
Use settings for standard openmpi

Use settings for openmpi compiled with SGE
use Pathscale C compiler

use Pathscale Fortran compiler

use Portland C compiler

use Portland Fortran compiler

Specify top-level installation directory

vii

3 INSTALLATION FROM SOURCE FILES viii

-slater compile slater code

-sm_13 Use settings for sm_13 architecture for CUDA compilation
-sm_20 Use settings for sm_20 architecture for CUDA compilation
-suncc use Sun C compiler

-sunf90 use Sun Fortran compiler

-x86_64 use settings for 64-bit x86 machine

-x1lc use IBM compiler

-x1f use IBM Fortran compiler

3.4 Compilation and linking

After configuration, the remainder of the installation is accomplished using the GNU make
command. Remember that the default make on many systems will not work, and that it is
essential to use GNU make (cf. section [3.2). Everything needed to make a functioning program
together with all ancillary files is carried out by default simply by issuing the command

make

in the MOLPRO base directory. Most of the standard options for GNU make can be used safely;
in particular, —j can be used to speed up compilation on a parallel machine. The program can
then be accessed by making sure the bin/ directory is included in the PATH and issuing the
command molpro. If MPI library is used for building Global Arrays or building MOLPRO
directly, please be aware that some MPI libraries use mpd daemons to launch parallel jobs. In
this case, mpd daecmons must already be running before make.

3.5 Adjusting the default environment for MOLPRO

The default running options for MOLPRO are stored in the script bin/molpro. After program
installation, either using binary or from source files, this file should be reviewed and adjusted,
if necessary, to make system wide changes.

3.6 Tuning

MOLPRO can be tuned for a particular system by running in the root directory the command
make tuning

This job automatically determines a number of tuning parameters and appends these to the file
bin/molpro. Using these parameters, MOLPRO will select the best BLAS routines depending
on the problem size. This job should run on an empty system. It may typically take 10 minutes,
depending on the processor speed, and you should wait for completion of this run before doing
the next steps.

3.7 Testing

At this stage, it is essential to check that the program has compiled correctly. The makefile target
test (i.e., command make test) will do this using the full suite of test jobs, and although this
takes a significantly long time, it should always be done when porting for the first time. A
much faster test, which checks the main routes through the program, can be done using make

3 INSTALLATION FROM SOURCE FILES ix

quicktest. For parallel installation, it is highly desirable to perform this validation with more
than one running process. This can be done conveniently through the make command line as,
for example,

make MOLPRO_OPTIONS=-n2 test

If any test jobs fail, the cause must be investigated. If, after due efforts to fix problems of a local
origin, the problem cannot be resolved, the developers of MOLPRO would appreciate receiving
areport. There is a web-based mechanism at https://www.molpro.net/bugzillal at which as many
details as possible should be filled in. It may also be helpful to attach a copy of the CONFIG
file along with the failing output. Please note that the purpose of such bug reports is to help the
developers improve the code, and not for providing advice on installation or running.

3.8 Installing the program for production

Although the program can be used in situ, it is usually convenient to copy only those files needed
at run time into appropriate installation directories as specified at configuration time (see section
and stored in the file CONF IG. To install the program in this way, do

make install

The complete source tree can then be archived and deleted. The overall effect of this is to
create a shell script in the INSTBIN directory. The name should relate to the architecture, type
of build, integer etc. Symbolic links relating to the type of build are then made, and finally
providing that INSTBIN/molpro is not a file, a symbolic link is created to the new script. In
some cases it is preferable to create a localized script in INSTBIN/molpro which will not be
over written. The overall effect of this cascade of links is to provide, in the normal case, the
commands molpro and one or both of molpros (serial) and molprop (parallel) for normal
use, with the long names remaining available for explicit selection of particular variants.

For normal single-variant installations, none of the above has to be worried about, and the
molpro command will be available from directory INSTBIN.

During the install process the key from $HOME / .molpro/tokeniscopied to PREFIX/ .token
so that the key will work for all users of the installed version.

3.9 Installation of documentation

The documentation is available on the web at http://www.molpro.net/info/users. It is also in-

cluded with the source code. The PDF user’s manual is found in the directory Molpro/doc/manual . pdf,
with the HTML version in the directory Molpro/doc/manual/index.html. After make

install the documentation is installed in the doc subdirectory of PREFIX specified in

CONFIG file generated by the configure command. Numerous example input files are in-

cluded in the manual, and can alternatively be seen in the directory Molpro/examples.

3.10 Simple building for single workstations Linux or Mac OS X

The following instructions are quick instructions for installing MOLPRO on a single-workstation
Linux or Mac OS X system. The instructions assume GNU compilers have been installed (de-
tails of getting GNU compilers for common Linux distributions are contained in the prerequi-
sites section), but these can be substituted with alternative compilers. For serial MOLPRO:

./configure -batch -gcc -gfortran
make

https://www.molpro.net/bugzilla
http://www.molpro.net/info/users

3 INSTALLATION FROM SOURCE FILES X

For parallel MOLPRO one can use:

./configure -batch -gcc -gfortran -mpp -mppbase /path/to/ga/build
make

if Global Arrays has already been built. There is a simpler option, providing the curl utility is
installed, and the machine is connected to the internet:

./configure -batch -gcc -gfortran -mpp —-auto-ga-mpich
make

which will automatically download and install MPICH and Global Arrays.

3.11 Installation on a Cygwin system

On a Windows machine Cygwin should be installed. In addition to the default package list
one should also install the packages listed in table |1} If undertaking development work table

Package Package Group Reason

gce-core Devel compiling C files
gcc-fortran Devel compiling Fortran files
gcc-g++ Devel compiling C++ files
make Devel need GNU make
ca-certificates Net download boost

curl Net token download

libgmp3 Libs bug? needed by make.exe
libltdl7 Devel bug? needed by make.exe

Table 1: Cygwin requirments for user install

contains a list of potentially useful packages.

Package Package Group Reason

bison Devel bison
gdb Devel gdb

git Devel git
libxslt Libs xsltproc
openssh Net ssh

vim Editors vi

Table 2: Cygwin packages for developers

With the above steps, configure can be run and the Molpro built in the normal way.

	Obtaining the distribution materials
	Installation of pre-built binaries
	Installation from source files
	Overview
	Prerequisites
	Fedora packages
	openSUSE packages
	Ubuntu packages

	Configuration
	Compilation and linking
	Adjusting the default environment for Molpro
	Tuning
	Testing
	Installing the program for production
	Installation of documentation
	Simple building for single workstations Linux or Mac OS X
	Installation on a Cygwin system

