
MCDS User´s Guide

TRACE32 Online Help

TRACE32 Directory

TRACE32 Index

TRACE32 Documents .. 

 ICD In-Circuit Debugger .. 

 Processor Architecture Manuals .. 

 TriCore .. 

 MCDS User´s Guide ... 1

 Introduction ... 4

 Intended Audience 4

 How to read this Document 5

 Related Documents 5

 Background Information ... 7

 Trace Source 7

 Program Trace 7

 Trace Sink 8

 Trace Filter and Trigger 8

 The Emulation Device Concept 9

 TRACE32 Support for Emulation Devices .. 11

 Feature Overview 11

 Target Interface 12

 MCDS Licensing 12

 MCDS Basic Features ... 14

 MCDS Concept 14

 MCDS of XC2000ED and C166 14

 MCDS of TriCore 15

 MCDS Configuration 17

 General Settings 17

 Timestamp Setup 18

 Trace Buffer Configuration 18

 AGBT High-speed Serial Trace 18

 Trace Sources 18

 Example: Core Trace on TriCore AURIX 19

 Example: Bus Trace on TriCore AUDO-MAX 20

 Trace Control 21

 Trace States 21
 MCDS User´s Guide 1
©1989-2014 Lauterbach GmbH

 Trace Buffer Size and Usage 22

 Trace Modes 22

 Trace Trigger Configuration 22

 Other Trace Configuration Features 23

 Basic Trace Usage 23

 Trigger and Filter via Break.Set command 24

 MCDS Breakpoints 25

 Trace Filter 35

 Examples 35

 Watchpoints 38

 Example 38

 Benchmark Counters 39

 Counting Chip-internal Signals 40

 Example 40

 Counting User-defined Events 40

 Example 40

 Trace Decoding 41

 Searching the Trace 43

 Specific Cycles 43

 Special Events 44

 Exception Decoding 44

 Exception Decoding Using Tables 45

 Exception Decoding Using DCU Messages 45

 Trace Limitations and Restrictions 46

 MCDS Unlocking 47

 OCTL Complex Trigger Programming ... 48

 OCTL Features 48

 OCTL Example: Bus Trigger 48

 Clock System ... 50

 EEC Clock System 50

 Maximum Clock Frequency 51

 Allowed Clock Ratios 51

 Verifying the Clock Setup 52

 Device Specific Details 52

 XC2000ED and C166 53

 TriCore AUDO-NG (TC v1.3) 53

 TriCore AUDO-F, AUDO-S and AUDO-MAX (TC v1.3.1) 53

 TriCore AUDO-MAX (TC v1.6) 54

 TriCore AURIX (TC v1.6.1) 54

 MCDS Clock System 55

 MCDS Sampling 55

 MCDS Timestamps 55

 Clock Counters 56
 MCDS User´s Guide 2
©1989-2014 Lauterbach GmbH

 Timestamp Configuration 56

 Timestamp Decoding 57

 Example 57

 Timer and Periodic Trigger 57

 Emulation Memory .. 58

 Background Information 58

 EMEM Partitioning 59

 Memory Arrays and Tiles 59

 Trace Buffer Configuration 60

 GUI Integration 61

 PRACTICE Functions 62

 Co-operation with Third-party Usage 62

 Configuration Example 63

 Device Specific Details 64

 TriCore AUDO-NG 64

 TriCore AUDO-F 64

 TriCore AUDO-S and AUDO-MAX 65

 TriCore AURIX 65

 AGBT High-speed Serial Trace .. 66

 Background Information 66

 Xilinx Aurora 67

 Requirements 68

 AGBT Configuration 70

 Trace Streaming 71

 Limitations and Restrictions 72

 Advanced Emulation Device Access ... 74

 EEC Access 74

 EEC EMEM Access 75

 EEC Register Access 75

 Impact of Direct EEC Access 76

 Guarded MCDS Programming 76

 Timestamp Usage 77

 Trigger Program Example 77

 Example Scripts 79

 Known Issues and Application Hints .. 80

 Concurrent Usage of OCDS-L2 Off-chip Trace and On-chip Trace 80

 PCP Channel ID 80

 Workaround for the TASKING PCP C/C++ Compiler 80

 No Trace Content Displayed (TriCore AUDO only) 81

 Glossary ... 82

 Infineon Glossary 82

 Lauterbach Glossary 83
 MCDS User´s Guide 3
©1989-2014 Lauterbach GmbH

MCDS User´s Guide

Version 10-Sep-2014

08-Sep-14 New manual.

Introduction

The MCDS (Multi-Core Debug Solution) is an on-chip trigger and trace solution from Infineon, available for
the Infineon TriCore and C166/ XC2000 devices. It is used during the development stage of an embedded
system for debugging, tracing, profiling, and verification.

Using TRACE32, the user can set up the MCDS for performing on- and off-chip trace. Based on the
generated trace recording, the user can analyze, profile, and verify the behavior of his application.
Additionally, it is possible to program triggers for stopping program execution, redirecting them to device pins
or to influence the trace recording, e.g. for recording only the trace data of interest.

The on-chip memory used for storing the trace data can also be used for calibration, a technique that allows
the dynamic overlay of code and data memory with alternate code or parameters. Calibration is not
supported by Lauterbach tools. TRACE32 can be configured to cooperate with third-party tools to share
resources, e.g. the on-chip memory.

For using these features, a special version of the chip is required, the Emulation Device. But also some of
the Product Devices include the MCDS or at least a reduced variant of the MCDS, the so-called Mini-MCDS.
For related information, refer to the documentation of your device.

This MCDS User’s Guide is intended to guide the TRACE32 user through the configuration of the on-chip
trace, trigger and filter setup. Additionally it provides background knowledge. This User’s Guide is not
intended to replace the available training manuals or the TRACE32 command references.

Intended Audience

The reader of this document is assumed to have basic knowledge in using TRACE32 and has gathered
experience using it. Additionally specific knowledge of the architecture and the device is mandatory, see the
Infineon documentation. The MCDS User’s Guide is not a replacement for the Infineon documentation of the
Emulation Devices.
 MCDS User´s Guide 4 Introduction
©1989-2014 Lauterbach GmbH

How to read this Document

It is recommended to completely read the chapters Background Information and MCDS Basic Features
before reading the other ones. Developers responsible for the PLL setup are expected to read the EEC
Cock System chapter to understand why the application should program the EEC clocks.

It is not necessary to read this documentation completely for using the MCDS. This User’s Guide is
separated into independent chapters handling different topics. These chapters can be read independently
and in arbitrary order. Reading the first paragraph of a chapter gives the reader all the information to decide
whether it is important for his use case or not.

Some of the TRACE32 features require a deeper understanding of the MCDS and the Emulation Device
implementation. The related parts and chapters of this User’s Guide are indicated to be for MCDS Expert
Users only.

The MCDS on TriCore chips does not only support the TriCore cores, it also supports the PCP and the GTM.
When referring to TriCore in general, the entire TriCore device is addressed. This includes the TriCore cores
as well as the PCP or GTM cores.

From the user’s point of view the MCDS implementation for C166 and XC2000 devices is identical. Within
this document there is no differentiation between C166 and XC2000.

Related Documents

Before using the MCDS it is mandatory to know the architecture under debug. The most important
information on the device can be found in the Infineon Documentation:

• User’s Manual and/or Target Specification

• Emulation Device Target Specification (for MCDS Expert Users)

• Data-, Delta- and Errata Sheets

Please contact Infineon for this documentation.

This document assumes that the reader already knows how to use the TRACE32 debugger for the
corresponding device. The related information can be found in the Processor Architecture Manuals:

• ”TriCore Debugger and Trace” (debugger_tricore.pdf)

• ”PCP Debugger Reference” (debugger_pcp.pdf)

• ”GTM Debugger” (debugger_gtm.pdf)

• ”XC2000/XC16x/C166CBC Debugger” (debugger_166cbc.pdf)

For TriCore AURIX there is a trace training manual:

• ”AURIX Trace Training” (training_aurix_trace.pdf)
 MCDS User´s Guide 5 Introduction
©1989-2014 Lauterbach GmbH

For more information on the On-Chip Trigger Language (OCTL) for writing trigger programs, see:

• ”MCDS Trigger Programming” (mcds_trigger_prog.pdf)

Detailed information on the commands can be found in the General Commands Reference Guides. For
information about the MCDS commands, refer to the MCDS command group:

• ”General Commands Reference Guide M” (general_ref_m.pdf)
 MCDS User´s Guide 6 Introduction
©1989-2014 Lauterbach GmbH

Background Information

This chapter gives an overview of the related terms and definitions. To provide the necessary background
information it explains the Emulation Device concept and introduces the MCDS and its components.

It is highly recommended that every MCDS user reads this chapter prior to any other.

The Glossary at the end of this User’s Guide provides a description of the most important terms and
abbreviations.

Trace Source

A trace source is a chip component that generates one or more types of trace data. For example, a core
provides information about the executed instructions (program trace) or data accesses (data trace). A bus
provides information on the bus transactions (data trace). Other information may be the ownership, a
channel ID or status information.

Each trace type within a trace source can be enabled separately. So it is possible to record only the data
accesses to a variable without the corresponding program flow.

Program Trace

Program trace can be recorded using different strategies, depending on the use case:

• Flow Trace

A flow trace records the entire program flow, including all instructions. A trace message is only
generated in case the sequential execution of instructions is broken, e.g. in case of a jump or
branch instruction, a call or return or an exception. This reduces trace buffer consumption.

• Sync Trace

A sync trace generates a trace message on every MCDS clock cycle. Depending on fCPU:fMCDS
and the architecture (super-scalar or not) not all instructions will generate a dedicated trace
message. This consumes much more trace buffer, but higher accuracy is achieved for
timestamps and event assignment.

• Compact Function Trace (CFT)

The Compact Function Trace only generates trace messages on call and return instructions. All
intermediate jump instructions are omitted. In case the compiler uses regular jump instructions
for function entry and exit (jump-linked functions) these function calls and exits are also not
recorded. Additionally very small functions can be omitted from recording.

As timestamp information is only generated for a trace message, not all instructions have their own
timestamp information. The most accurate timing information is possible for the sync trace.
 MCDS User´s Guide 7 Background Information
©1989-2014 Lauterbach GmbH

Trace Sink

The trace data generated by the trace sources are recorded by a trace sink. Depending on where this
information is stored, the technology for recording the data is called on-chip trace or off-chip trace.

• Off-chip Trace

Microcontroller chips implementing an off-chip trace provide the trace data continuously via port
pins. An external tool, e.g. the PowerTrace II, constantly records this information in a huge trace
memory where it can be accessed for display and analysis purposes.

The off-chip trace is controlled using the Analyzer command group.

• On-chip Trace

Microcontroller devices implementing an on-chip trace store the trace data in a memory located
on the SoC instead of transferring it directly to an external tool. The trace buffer is later read by
the tool. An on-chip trace buffer is usually much smaller than the trace buffer of an off-chip trace
solution. A common size is 4 KB, TriCore devices have up to 1 MB of on-chip trace buffer.

The on-chip trace is controlled using the Onchip command group.

The other trace sinks supported by TRACE32 are not related to MCDS. For more information refer to
http://www.lauterbach.com/tracesinks.html and the Trace. METHOD command.

The Trace. METHOD command allows to use the Trace commands as an alias either for Analyzer or
Onchip. For MCDS the default trace method is Analyzer. If this is not available the default is Onchip.

Trace Filter and Trigger

While off-chip traces usually have enough memory for a long time recording, on-chip traces do not.
Consequently for on-chip traces, it is important to limit the recording to the information of interest. This can
be achieved by programming triggers and filters.

• A trace trigger is an event that results in a termination of the trace recording. The termination can
optionally be delayed.

For example, a trace trigger can be configured on an error condition to make sure that
information is recorded on how this error occurred. The optional delay between the event ant the
termination can be used to record how the application reacted on the error event.

• A trace filter only generates trace data for defined events.

Defining trace filters reduces the trace buffer consumption.

The configuration of a trace filter or trigger has an impact on the recorded data:

• In case no trace filter is programmed (unconditional trace) all enabled trace sources will generate
trace data.

• In case at least one trace filter is programmed (conditional trace), all enabled trace sources will
generate trace data as long as the condition for the trace recording is true.
 MCDS User´s Guide 8 Background Information
©1989-2014 Lauterbach GmbH

http://www.lauterbach.com/tracesinks.html

The Emulation Device Concept

For cost and power saving reasons, the trace and trigger features are only implemented in special SoC
versions, the Emulation Devices. The normal Product Devices for the mass-market do not contain them.

• The Product Device (PD) is for the mass production but also for development. It consists of a
single die, the Product Chip (PC), including all application and debug functionality.

• The Emulation Device (ED) is for development and field tests. It contains two dies, the
unmodified Product Chip (PC) and the Emulation Extension Chip (EEC) offering the additional
trace, trigger, and calibration features. Both dies are connected by bond wires.

The packages of Product and Emulation Devices almost have the same pinout. A single debug port is used
to access the PC and the EEC.

The EEC consists of the following main components:

• MCDS (Multi-core Debug Solution) for trace, trigger and filter

The MCDS is the basic module of the EEC, it collects status information from the various chip
components. Based on the status information, the MCDS generates debug events and trace
data.

For an overview, see chapter MCDS Concept.

• EMEM (Emulation Memory) for trace data storage and calibration

PC

Product Device

PC EEC

Emulation Device

PCPC

Product Device

PC

Product Device

Product Chip

Emulation Extension Chip

Back Bone Bus

EMEM

PMU/

LMU

Debug Cable

DAP/
JTAG

IO32

IO32

Bus 1BBBBuuuussss 1111Bus 0

Trace Signals

CPU 2CPU 1CCCCCCCCCCCCCCCCPPPPPPPPPPPPPPPPUUUUUUUUUUUUUUUU 222CCCCCCCPPPPUUUUU 1111CCCPPPUUU 222CCCPPPUUU 222
CPU 0

MCDS

Processor Bus

AGBT

Preprocessor
 MCDS User´s Guide 9 Background Information
©1989-2014 Lauterbach GmbH

The Emulation Memory is a dual-ported memory used for storing the generated on- and off-chip
trace data as well as calibration information. On some devices, the EMEM can be used as
additional application RAM via the LMU.

The EMEM is discussed in chapter Emulation Memory.

• AGBT (Aurora GigaBit Trace) for serial high-speed off-chip trace

The Aurora GigaBit Trace module uses the Aurora serial protocol to transfer the generated trace
data to the TRACE32 preprocessor. AGBT uses a part of the EMEM as FIFO.

The AGBT off-chip trace is discussed in chapter AGBT High-speed Serial Trace.

• BBB (Back Bone Bus) for connecting the EEC modules

The BBB is an FPI bus independent from the Product Chip for connecting all EEC components,
memories, and registers. It can be accessed by the debugger via the debug port.

On TriCore the application can also access the BBB using the MLI bridge (TriCore AUDO) or the
LMU (TriCore AURIX). On XC2000 Emulation Devices the application cannot access the EEC
components.

• Cerberus IO Client (IO32)

The Cerberus IO Client (IO32) on the EEC enables the TRACE32 debugger to configure the
Emulation Device and to read out the EMEM via the debug port of the Product Device.

• Other peripherals

Depending on the device, the EEC may provide additional peripheral components. They are
mainly used for a specific purpose only, e.g. USB over Emulation Device or the Camera Interface
(CIF), and are not covered by this document.

Older TriCore devices up to AUDO-NG feature an OCDS-L2 off-chip trace port (parallel trace) to provide
information on the program flow via a dedicated protocol. This obsolete trace protocol was part of the
Product Chip and is not related to the Emulation Device or MCDS.
 MCDS User´s Guide 10 Background Information
©1989-2014 Lauterbach GmbH

TRACE32 Support for Emulation Devices

This chapter describes how TRACE32 supports the various Emulation Device features, the required
licenses, and the physical device connection. All MCDS users are advised to read this chapter.

The MCDS command group is used for configuring the MCDS, the AGBT, and the Emulation Memory.

Feature Overview

When trace is available, TRACE32 provides an out-of-the box trace configuration: the program flow trace for
the first core of the architecture is selected by default. As soon as program execution starts, recording is
started, too.

If the device supports off-chip trace and a suitable trace preprocessor is connected, off-chip trace is used is
used automatically (Trace.METHOD Analyzer). Otherwise on-chip trace is configured automatically
(Trace.METHOD Onchip).

The most important and most frequently-used features can easily be selected and configured with the
following commands:

NOTE: The MCDS of TriCore devices is restricted to generate trace and trigger
information only for up to two cores, even if the devices have more cores.

MCDS.state Opens the MCDS.state window, where you can quickly enable and disable
the different trace sources.

Break.Set Allows you to easily configure commonly used trace triggers and filters,
including OS-aware tracing (option /TraceData).

CTS CTS (Context Tracking System) allows debugging an application based on
its program trace recording.

BMC Benchmark Counters are used to count important events, e.g. cache hits and
misses, the number of calls to a function or exceptions.

OCTL Specific trigger and filter setups can be programmed using OCTL. MCDS
Expert users can get low level access to the MCDS as explained in chapter
Guarded MCDS Programming.
 MCDS User´s Guide 11 TRACE32 Support for Emulation Devices
©1989-2014 Lauterbach GmbH

Target Interface

No extra debug port is required for accessing and configuring the EEC. Only one debug cable is required for
debug and on-chip trace.

The debug port connector, the debug cables and available adapters and converters are described in the
following application notes:

• ”Application Note Debug Cable TriCore” (tricore_app_ocds.pdf)

• ”Application Note Debug Cable C166” (c166_app_ocds.pdf)

For the AGBT off-chip trace, the 22-pin ERF-8 trace connector is required. The trace connector also includes
the debug signals, so the debug cable and the trace preprocessor can be connected to the target via one
connector. For the pinout and the signals, refer to:

• http://www.lauterbach.com/ad3829.html

• ”ERF8 22-pin Power.org Connector” (debugger_tricore.pdf)

• Infineon Application Note AP32186 “Aurora Connector & Cable”

Lauterbach uses the Infineon TriBoards for development and verification. Their documentation contains
schematics and additional information on the debug and trace interfaces. Lauterbach recommends
using this information as reference for proprietary hardware.

In addition to the break pins at the debug port, most TriCore Emulation Devices have further package pins to
provide an external trigger signal. These pins are often also available via the GPIO ports. For more
information, see the Infineon User’s Manual and Data Sheet of your device.

MCDS Licensing

The use of the MCDS trigger features and the EEC access is covered by the architecture’s debug license.

Decoding the MCDS trace data requires an extra license:

• TriCore-MCDS for TriCore, including PCP and GTM.

• C166-MCDS for XC2000ED and C166.

The trace license is either stored in the debug cable or in the trace preprocessor and can be used for on- and
off-chip trace. For example, the TriCore-MCDS license stored in the preprocessor connected to the trace
module can be used for TriCore MCDS on-chip trace.

NOTE: • The Serial Trace preprocessor is architecture independent. In case origi-
nally purchased for PowerPC or ARM it does not contain an MCDS
license.

• The obsolete OCDS-L2 preprocessor (parallel trace) is not recognized as
an MCDS trace license as the trace protocols are completely different.
 MCDS User´s Guide 12 TRACE32 Support for Emulation Devices
©1989-2014 Lauterbach GmbH

http://www.lauterbach.com/frames.html?ad3829.html

The licenses available for your current setup are displayed in the VERSION.view window. A more detailed
list is displayed in the LICENSE.List window. The example below shows that the TriCore-MCDS license is
stored in the debug cable and in the preprocessor.

NOTE: For order information and prices, please contact your local Lauterbach
representative.
 MCDS User´s Guide 13 TRACE32 Support for Emulation Devices
©1989-2014 Lauterbach GmbH

http://www.lauterbach.com/sales.html
http://www.lauterbach.com/sales.html

MCDS Basic Features

This chapter introduces the basic features of the TRACE32 support for MCDS, especially the trigger and
filter configuration via the Break.Set command. All MCDS users using trace and trigger are strongly advised
to read this chapter.

MCDS Concept

The MCDS is the main module of the EEC, it collects status information of the various chip components.
Based on the collected status information, the MCDS generates debug and trace events as well as trace
data. Understanding the MCDS concept helps understanding its behavior.

The MCDS consists of one or more independent Observation Blocks receiving status and run-time
information from a core or bus. This information can be written to the trace buffer or used to generate debug
and trace signals:

• Debug signals are used to generate signals to the SoC, e.g. to stop a core or to toggle a pin.

• Trace signals together with optional trace filters are used to enable or disable trace data
generation, to generate a watchpoint message, or to count events.

- For information about watchpoint messages, see chapter Watchpoints.

- For information about event counters, see chapter Benchmark Counters.

The basic MCDS setup is identical for on- and off-chip trace.

MCDS of XC2000ED and C166

XC2000 and C166 Emulation Devices only have one observation block. Only the core can be observed.
 MCDS User´s Guide 14 MCDS Basic Features
©1989-2014 Lauterbach GmbH

MCDS of TriCore

TriCore has up to two Processor Observation Blocks (POB) to observe the cores (TriCore, PCP and GTM)
and two Bus Observation Blocks (BOB)) to observe the buses (LMB, SRI, SPB or RPB).

The trace data generated by the Observation Blocks is forwarded to the Memory Interface (MEM IF) where
all messages are sorted according their temporal order and then written to the Emulation Memory.

The POBs observe the program execution as well as the data accesses of the core (program- and data
trace). The BOBs observe the data transactions on the buses (data trace), also containing meta information
on the transaction, e.g. bus master, channel and priority.

The Multi-core Cross-connect (MCX) does not observe anything. It is used for generating the timestamp
messages and contains counters.

• The counters can be used to count internal evens (see chapter Benchmark Counters).
Alternatively counters can be used to implement state machines. This allows to implement trace
filters, e.g. record all bus transactions while a specific function is active.

• MCDS does not attach timestamp information to each trace message. Instead, the timestamps
are dedicated messages. So several messages generated at the same time share one
timestamp message to reduce trace buffer consumption.

• Timestamps can be enabled continuously or on demand to tag dedicated events only. The
Observation Blocks can signal the MCX to generate a timestamp in case an event happened.

NOTE: Restrictions for TriCore AUDO-NG:
• LMB cannot be traced.
Restrictions for TriCore AURIX:
• Only two out of four cores can be selected for trace and trigger.
• HSM cannot be traced, all related bus traffic is removed on SoC level.
• SCR cannot be traced, all related bus accesses available.

Product Chip

Emulation Extension Chip

MCDS
MEM IF

POBYPPPPPPOOOOOOBBBBBBYYYYYYPOBx BOBYBBBBBBOOOOOOBBBBBBYYYYYYBOBx

CPU 2CPU 1CCCCCCCCCCCCCCCCPPPPPPPPPPPPPPPPUUUUUUUUUUUUUUUU 222CCCCCCCPPPPPUUUUU 11111CCCPPPUUU 222CCCPPPUUU 222
CPU 0 Bus 1BBBBuuuussss 1111Bus 0

MCX
 MCDS User´s Guide 15 MCDS Basic Features
©1989-2014 Lauterbach GmbH

NOTE: For TriCore AUDO this signal from the Observation Block to the MCX is
delayed, so the timestamp messages are generated asynchronously, resulting
in incorrect timestamp information. To avoid this, TRACE32 only allows
continuous timestamp generation for TriCore AUDO. For TriCore AURIX this
issue is fixed. See chapter No Trace Content Displayed for more information.
 MCDS User´s Guide 16 MCDS Basic Features
©1989-2014 Lauterbach GmbH

MCDS Configuration

The MCDS command group is used to configure the MCDS. For a complete description of all MCDS
commands, see chapter “MCDS” in General Commands Reference Guide M, page 61
(general_ref_m.pdf).

The MCDS.state window shows the most important configuration options available for the selected device.
The following sections give an overview and introduction only, please refer to the corresponding chapters of
this User’s Guide to get more information.

General Settings

General MCDS configuration:

• The TRACE32 MCDS implementation has two states: ON and OFF.

The default is MCDS.ON. It is required for tracing and programming any triggers and filters. If
switched off (MCDS.OFF), TRACE32 does not access any MCDS register. This can be used to
avoid interference with third-party tools or applications.

• MCDS.RESet resets all MCDS configuration to the default.

• MCDS.CLEAR deletes all configuration made by the MCDS.Set command group. See chapter
Guarded MCDS Programming for details.

• MCDS.INFO provides information about the availability of hardware resources.

• MCDS.Register opens a peripheral access to all MCDS registers.
 MCDS User´s Guide 17 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Buttons as shortcuts to MCDS related features:

• CLOCK: SoC clock configuration, required for using timestamps.

• BMC: Count MCDS generated events using the Benchmark Counters.

• Trace: Configure the currently selected Trace method.

Timestamp Setup

Enabling and using the MCDS-generated on-chip timestamps requires two steps:

• Enable the MCDS timestamp generation: MCDS.TimeStamp ON.

• Use the CLOCK commands to verify the programmed clocks. CLOCK.ON tells TRACE32 to use
these clocks for calculating the timestamps.

Timestamp decoding requires the entire trace buffer to be processed. For huge trace buffers, e.g. off-chip
trace, this may take up to several minutes.

Trace Buffer Configuration

TRACE32 can be configured to share the EMEM with third-party tools or applications using the
MCDS.TraceBuffer commands. See chapter Emulation Memory for details.

As long as no sharing of the EMEM is required TRACE32 automatically chooses the most suitable EMEM
configuration.

AGBT High-speed Serial Trace

The commands MCDS.PortSIZE and MCDS.PortSPEED are used to configure the Aurora GigaBit Trace
(AGBT). See chapter AGBT High-speed Serial Trace for more information.

Trace Sources

Selecting a trace source enables the generation of the corresponding trace data. On TriCore, the trace
sources of the different cores and buses can be enabled independently. On XC2000 only the core can be
traced.

For the program trace different variants exist: program trace, sync trace, and CFT. For details please refer to
chapter Trace Sources in the Background Information section.

NOTE: A correct programming of the on-chip clocks is mandatory for a correct operation of
the MCDS hardware and timestamp generation. See chapter EEC Clock System
for details.

NOTE: XC2000 Emulation Devices do not allow configuring the EMEM.
 MCDS User´s Guide 18 MCDS Basic Features
©1989-2014 Lauterbach GmbH

TriCore AURIX is restricted to trace only two cores at the same time. Multiplexers are implemented to select
the cores to be traced. Use the command MCDS.SOURCE.CpuMux[0 | 1].Core to configure them.

The TriCore SRI is not a bus, it is a fabric that can perform more than one transaction per clock cycle. The
MCDS hardware is restricted to trace only two transactions in parallel. The command
MCDS.SOURCE.SRI.[1 | 2].SLAVE is used to select the corresponding bus slave. All transactions to
selected slaves are recorded. The masters that initiated these transactions are available from the recorded
trace data.
 MCDS User´s Guide 19 MCDS Basic Features
©1989-2014 Lauterbach GmbH

The GTM peripheral module is implemented as peripheral trace. So in addition to the executed instructions
and data accesses internal signals can be recorded, too. These signals can be displayed as a timing
diagram, implementing the feature of an on-chip logic analyzer. See ”GTM Debugger” (debugger_gtm.pdf)
and the TriCore-related GTM demos in demo/gtm/hardware/ for more information.

Example: Core Trace on TriCore AURIX

1. On TriCore TC277TE, the program flow of core 0 and core 1 are to be traced. Additionally all read
accesses of core 0 and all write accesses of core 1 are to be recorded:

2. On TriCore TC277TE, the program flow of core 1 and the performed read and write accesses are
to be traced. The sync trace is to be used to show the correct temporal order of the executed
instructions and performed accesses:

NOTE: OCTL and MCDS.Set have their own methods for selecting the trace sources.

MCDS.SOURCE.RESet

; configure trace for core 0
MCDS.SOURCE.CpuMux0.Core TriCore0
MCDS.SOURCE.CpuMux0.Program ON
MCDS.SOURCE.CpuMux0.PTMode FlowTrace
MCDS.SOURCE.CpuMux0.ReadAddr ON
; read data trace not implemented by MCDS

; configure trace for core 1
MCDS.SOURCE.CpuMux1.Core TriCore1
MCDS.SOURCE.CpuMux1.Program ON
MCDS.SOURCE.CpuMux1.PTMode FlowTrace
MCDS.SOURCE.CpuMux1.WriteAddr ON
MCDS.SOURCE.CpuMux1.WriteData ON

MCDS.SOURCE.RESet

; configure trace for core 0
MCDS.SOURCE.CpuMux0.Core TriCore1
MCDS.SOURCE.CpuMux0.Program ON
MCDS.SOURCE.CpuMux0.PTMode SyncTrace
MCDS.SOURCE.CpuMux0.ReadAddr ON
MCDS.SOURCE.CpuMux0.WriteAddr ON
MCDS.SOURCE.CpuMux0.WriteData ON
 MCDS User´s Guide 20 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example: Bus Trace on TriCore AUDO-MAX

1. On TriCore TC1798ED, all read accesses to PMU0 (internal Flash) and all write accesses to the
EBU area to be traced:

2. On TriCore TC1798ED, all accessed peripherals are to be traced:

MCDS.SOURCE.RESet
MCDS.SOURCE.NONE ; disable all trace sources

; trace all read accesses to PMU0
MCDS.SOURCE.SRI.1.SLAVE PMU0
MCDS.SOURCE.SRI.1.ReadAddr ON
MCDS.SOURCE.SRI.1.ReadData ON

; trace all write accesses to the EBU
MCDS.SOURCE.SRI.2.SLAVE EBU
MCDS.SOURCE.SRI.2.WriteAddr ON
MCDS.SOURCE.SRI.2.WriteData ON

MCDS.SOURCE.RESet
MCDS.SOURCE.NONE ; disable all trace sources

; trace all accessed peripherals
MCDS.SOURCE.SPB.ReadAddr ON
MCDS.SOURCE.SPB.WriteAddr ON
 MCDS User´s Guide 21 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Trace Control

TRACE32 provides two different methods for controlling the MCDS trace:

• The Analyzer commands are used to control the off-chip trace.

• The Onchip commands are used to control the on-chip trace.

MCDS allows only one of these trace methods to be active at the same time. Unless stated differently the
commands described here can be applied to Analyzer as well as to Onchip.

This chapter describes the following features:

• Trace state and mode

• Trace buffer size and usage

• TraceTrigger configuration

Here, only the most important functions and features are described. For information on these commands as
well as those not mentioned here, please refer to section ”Trace” (general_ref_t.pdf).

Trace States

The DISable state prevents tracing at all. The EMEM is not configured so it can be used exclusively for
another purpose, e.g. calibration. Refer to chapter Emulation Memory for more information. Using the
MCDS for triggering is possible in this state, any trace data generated by the chip will be ignored.

The default trace state is OFF, which means that TRACE32 configures the necessary parts of the EMEM for
tracing. Note that in this state no trace data is recorded.

The EMEM is ready to capture trace data in the Arm state. Any generated trace data will be recorded.
 MCDS User´s Guide 22 MCDS Basic Features
©1989-2014 Lauterbach GmbH

The TRIGGER and break states are related to the TraceTrigger feature. TRIGGER means that the
configured event has occurred but the trace is still recording (transition from Arm to TRIGGER). When
recording has stopped, the trace switches to the break state to indicate that recording has stopped due to
the occurrence of the configured trigger. The delay between TRIGGER and break can be configured with
Trace.TDelay.

Trace Buffer Size and Usage

The SIZE box shows how many bytes of the trace memory are used as trace buffer:

• Trace method Analyzer

Trace buffer size of the Power Trace module.

• Trace method Onchip

Size of the EMEM used for tracing. Refer to chapter Emulation Memory for more information and
for changing the EMEM usage for trace and calibration.

The progress bar under used indicates the fill state of the trace buffer. The fill rate depends on the amount of
generated trace data and the configured clocks.

The trace buffer will normally not be filled completely with trace data. The reason is that the
decompression information is located at the beginning of a paragraph (usually 1 or 4 KB). Refer to
chapter EMEM Partitioning for details on the trace buffer organization.

Trace Modes

The trace memory can be operated in different modes, see Trace.Mode for details.

• In Fifo mode the trace recording is endless. Use this mode when you are interested in the data
up to the point where trace recording is stopped.

• In Stack mode recording is stopped when the trace buffer is full while program execution
continues. This mode is useful when the information of interest is assumed close to the start of
the recording and program execution must not be stopped.

• The Leash mode is similar to the Stack mode with the difference that program execution is
stopped when the trace buffer is full. This mode can be used to generate a seamless trace by
joining smaller trace recordings to a large one. For more information, see the Trace.JOINFILE
command. Leash mode is not supported by all Emulation Devices.

Trace Trigger Configuration

A TraceTrigger can be used to capture run-time information of what happened before and after an event.
This means that program execution must not be stopped, instead trace recording continues for some time
after the event. Using the TraceTrigger feature you can trigger on the event of interest, and with the
Trace.TDelay feature you can define which amount of the trace buffer is reserved for the trace data
generated after the event.

NOTE: Trace.TDelay is only available for Onchip.
 MCDS User´s Guide 23 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Programming the TraceTrigger event is performed via the TraceTrigger action of Break.Set, see chapter
Trace Trigger for an example.

Other Trace Configuration Features

• Trace.RESet resets all settings of the Trace command group to the defaults, the trace buffer is
initialized. Only the selected trace method is reset.

• Trace.Init initializes the trace buffer by discarding all recorded data.

• Trace.AutoArm will start and stop the trace recording simultaneously with the program
execution. Resuming program execution will automatically start trace recording (Arm state), a
break terminates trace recording (OFF state).

• Trace.AutoInit will initialize the trace buffer and discard all recorded data when resuming
program execution.

Basic Trace Usage

The default MCDS setup allows the user to perform unconditional tracing without additional configuration:

• The first core of the device is configured to generate trace data for the program flow. Data trace,
bus trace and timestamps are disabled.

• Trace recording automatically starts when the core starts execution and stops when the core
breaks. See command Trace.AutoArm for details.

• The EMEM is configured automatically depending on the device and the trace method. For on-
chip trace the maximum possible size is selected. Refer to chapter Emulation Memory if a
different configuration is required.

• Endless recording is configured so the program flow up to the break can be inspected. For
details, see command Trace.Mode Fifo.

NOTE: The TraceTrigger feature normally only makes sense in Fifo mode. It is not
available in Stack mode, configuration is silently ignored.

NOTE: The on-chip trace buffer is always cleared when a new trace recording is started. It
is not possible to attach a new recording to the previous one. Instead, save the
recording to a file, and attach the recording to the contents of the file using
Trace.JOINFILE.
 MCDS User´s Guide 24 MCDS Basic Features
©1989-2014 Lauterbach GmbH

For examples on the basic trace usage of TriCore AURIX devices, please refer to ”AURIX Trace Training”
(training_aurix_trace.pdf).

Trigger and Filter via Break.Set command

TRACE32 uses the MCDS to implement the following features:

• Breakpoint: stop program execution (break).

• Trace Filter: conditionally generate trace messages.

• Trace Trigger: terminate the generation of trace messages with an optional delay.

• Watchpoint: make an internal event visible without affecting the real-time behavior, e.g. generate
a special trace message or an external signal (pin event).

• Marker: use a certain event for a pre-defined, special action, e.g. for incrementing a counter. See
chapter Benchmark Counter for more information.

These features are implemented as trigger and filter via the Break.Set command with the corresponding
Break Action. The number of configurable Break Actions depends on the device and the MCDS resources
already used by other MCDS features, e.g. the Benchmark Counters or OCTL.

MCDS triggers and filters via the Break.Set command only have an effect in case the related core either
executes at the specified address (program breakpoint) or accesses the specified address (data address
and/or data value breakpoint). It depends on the device and the core or bus which kind of data access can
be triggered on.

The Break Actions define events which enable or disable the trace recording. The type of recorded
information is defined with the MCDS.SOURCE command group.

Available Break Actions:

NOTE: Using OCTL and MCDS.Set disables unconditional tracing.

stop Breakpoint

Delta, Echo Marker

WATCH Watchpoint

TraceEnable Sample only the specified event.

TraceData OS-aware trace: sample the complete program flow and the
specified data event.

TraceON Switch the sampling to the trace buffer on after the specified event
occurred.

TraceOFF Switch the sampling to the trace buffer off after the specified event
occurred.

TraceTrigger Terminate the sampling to the trace buffer at the specified event. A
delay between the trigger event and the termination is possible.
 MCDS User´s Guide 25 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Break Action TraceData is required for performing an OS-aware trace: the entire program flow is recorded.
Additionally all write accesses to the variable holding the task ID are traced. So all context switches can be
reconstructed by the trace decoder and a OS-aware performance analysis is possible. Trace Data
automatically enables the recording of the program flow and the data address and value.

MCDS Breakpoints

MCDS can be programmed to stop the program execution if specified conditions become true (MCDS
trigger). TRACE32 PowerView is using this MCDS capability to extend the breakpoint capabilities provided
by the debug logic.

The MCDS resources can be used:

• To allow complex breakpoints that cannot be implemented by the debug logic.

• To allow complex breakpoints that are otherwise implemented as intrusive breakpoints.

• To extend the number of on-chip breakpoints.

MCDS-based breakpoints have the following disadvantages:

• Due to the complex logic of MCDS, the program execution is not stopped exactly at the
breakpoint, but several cycles later (approximately 20 assembler instructions).

It is possible to identify which MCDS breakpoint caused the MCDS trigger by inspecting the trace
recording.

• If several MCDS breakpoints are set, it is not possible to indicate which MCDS breakpoint
caused the program execution to stop.

• A Read breakpoint together with a data value cannot be implemented on some MCDS devices,
especially not for the TriCore architecture (MCDS restriction). The following error message is
displayed, if you try to set this type of breakpoint:
data not allowed for this on-chip breakpoint.

If you want to use MCDS-based breakpoints, you have to enable the following MCDS resources:

MCDS.Option ProgramBreak ON Allow TRACE32 PowerView to use MCDS to set Program
breakpoints.

MCDS.Option AddrBreak ON Allow TRACE32 PowerView to use MCDS to set
Read/Write/ReadWrite breakpoints.

MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

TriCore: Allow TRACE32 PowerView to use MCDS to set
Write breakpoints when specified data values are written.

Others: Allow TRACE32 PowerView to use MCDS to set
Read/Write/ReadWrite breakpoints when specified data
values are written respectively to set Read breakpoints when
specified data values are read.
(if supported by MCDS)
 MCDS User´s Guide 26 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Complex Breakpoints

TRACE32 PowerView allows to configure a breakpoint that stops the program execution if an instruction of a
specified instruction range accesses a specified data range.

Example 1 (single-core): Stop the program execution if an instruction of the function sieve() writes 0x0 to
the variable flags[3].

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_demo.cmm

; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

; enable MCDS breakpoints on program addresses, data addresses
; and data values
MCDS.Option ProgramBreak ON
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set sieve /VarWrite flags[3] /DATA.Byte 0x0

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; find the MCDS trigger event in the trace recording
Trace.Find Address Var.RANGE(flags[3]) Data.B 0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 27 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 2 (single-core): Stop the program execution if an instruction outside of the function func10()
writes 0x0 to the variable flags[3].

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_demo.cmm

; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

; enable MCDS breakpoints on program addresses, data addresses
; and data valuess
MCDS.Option ProgramBreak ON
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set func10 /VarWrite flags[3] /DATA.Byte 0x0 /EXclude

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; find the MCDS trigger event in the trace recording
Trace.Find Address Var.RANGE(flags[3]) Data.B 0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 28 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 3 (SMP system consisting of three TriCore cores): Stop the program execution if an instruction
of the function sieve() writes 0x0 to the variable flags[3].

Please be aware that MCDS-based breakpoints can only be programmed to cores that are connected to the
trace multiplexer.

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_smp_demo_multisieve.cmm

; connect TriCore0 and TriCore1 to the trace multiplexer
; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state

MCDS.SOURCE.CpuMux0 Core TriCore0
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

MCDS.SOURCE.CpuMux1 Core TriCore1
MCDS.SOURCE CpuMux1 Program ON
MCDS.SOURCE CpuMux1 WriteAddr ON
MCDS.SOURCE CpuMux1 WriteData ON

; enable MCDS breakpoints on program addresses, data addresses
; and data values
MCDS.Option ProgramBreak ON
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set sieve /VarWrite flags[3] /DATA.Byte 0x0

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; Find the MCDS trigger event in the trace recording
Trace.Find Address Var.RANGE(flags[3]) Data.B 0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 29 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Real-time MCDS Breakpoints Instead of Intrusive Breakpoints

The debug-logic of the TriCore does not provide data value breakpoints. The following breakpoint is
implemented as an intrusive breakpoint by default.

The following commands allow TRACE32 PowerView to implement this type of breakpoint as a real-time
MCDS breakpoint. Please be aware that this is only possible for Write breakpoints.

Example 1 (single-core): Stop the program execution if 0x0 as a byte is written to the variable flags[12].

Var.Break.Set flags[12] /Write /DATA.Byte 0x0

MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Allow TRACE32 PowerView to use MCDS to set Write
breakpoints when specified data values are written.
(TriCore)

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_demo.cmm

; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

; enable MCDS breakpoints on data addresses and data values
; (write access only)
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set flags[12] /Write /DATA.Byte 0x0

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; find the MCDS trigger event in the trace recording
Trace.Find Address Var.RANGE(flags[12]) Data.B 0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 30 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 2 (single-core): Stop the program execution if a data value other than 0x0 is written as a byte to
the variable flags[12].

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_demo.cmm

; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

; enable MCDS breakpoints on data addresses and data values
; (write access only)
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set flags[12] /Write /DATA.Byte !0x0

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; find the MCDS trigger event is the trace recording
Trace.Find Address Var.RANGE(flags[12]) Data.B !0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 31 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 3 (SMP system consisting of three TriCore cores): Stop the program execution if 0x0 is written
as a byte to the variable flags[12].

Please be aware that a MCDS trigger can only be activated by a core that is connected to the trace
multiplexer.

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_smp_demo_multisieve.cmm

; connect TriCore0 and TriCore1 to the trace multiplexer
; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state

MCDS.SOURCE.CpuMux0 Core TriCore0
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

MCDS.SOURCE.CpuMux1 Core TriCore1
MCDS.SOURCE CpuMux1 Program ON
MCDS.SOURCE CpuMux1 WriteAddr ON
MCDS.SOURCE CpuMux1 WriteData ON

; enable MCDS breakpoints on data addresses and data values
; (write access only)
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set flags[12] /Write /DATA.Byte 0x0

; start program execution and wait until it stops at the breakpoint
Go
WAIT !STATE.RUN()

; find the MCDS trigger event is the trace recording
Trace.Find Address Var.RANGE(flags[12]) Data.B 0x0 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 32 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 4 (SMP system consisting of three TriCore cores): Stop the program execution if a data value
between 0x10--0x20 is written as a long (32-bit) to the variable nAbsSmall.

Please be aware that a MCDS trigger can only be activated by a core that is connected to the trace
multiplexer.

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_smp_demo_waveform.cmm

; connect TriCore0 and TriCore1 to the trace multiplexer
; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state

MCDS.SOURCE.CpuMux0 Core TriCore0
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

MCDS.SOURCE.CpuMux1 Core TriCore1
MCDS.SOURCE CpuMux1 Program ON
MCDS.SOURCE CpuMux1 WriteAddr ON
MCDS.SOURCE CpuMux1 WriteData ON

; enable MCDS breakpoints on data addresses and data values
; (write access only)
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set nAbsSmall /Write /DATA.Long 0x10..0x20

; find the MCDS trigger event is the trace recording
Trace.Find Address nAbsSmall Data.L 0x10--0x20 CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 33 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Example 5 (SMP system consisting of three TriCore cores): Stop the program execution if a data value
between less than 0x10 or greater than 0x20 is written as a long (32-bit) to the variable nAbsSmall.

Please be aware that a MCDS trigger can only be activated by a core that is connected to the trace
multiplexer.

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_smp_demo_waveform.cmm

; connect TriCore0 and TriCore1 to the trace multiplexer
; configure MCDS to generate trace information for the instruction
; execution sequence and all write accesses
MCDS.state

MCDS.SOURCE.CpuMux0 Core TriCore0
MCDS.SOURCE CpuMux0 Program ON
MCDS.SOURCE CpuMux0 WriteAddr ON
MCDS.SOURCE CpuMux0 WriteData ON

MCDS.SOURCE.CpuMux1 Core TriCore1
MCDS.SOURCE CpuMux1 Program ON
MCDS.SOURCE CpuMux1 WriteAddr ON
MCDS.SOURCE CpuMux1 WriteData ON

; enable MCDS breakpoints on data addresses and data values
; (write access only)
MCDS.Option AddrBreak ON
MCDS.Option DataBreak ON

Var.Break.Set nAbsSmall /Write /DATA.Long !0x10..0x20

; find the MCDS trigger event is the trace recording
Trace.Find Address nAbsSmall Data.L 0x0--0x0f OR Data.L 0x21--0xffffffff

CYcle Write /Back
IF FOUND()
 Trace.List TRACK.RECORD()
 MCDS User´s Guide 34 MCDS Basic Features
©1989-2014 Lauterbach GmbH

More On-chip (MCDS) Breakpoints

The number of Onchip Breakpoints provided by the debug logic is limited.

For details refer to chapter “On-chip Breakpoints” in TriCore Debugger and Trace, page 21
(debugger_tricore.pdf).

If more than the available number of Onchip breakpoints is set, the following error message is displayed:
no on-chip breakpoint of this type possible.

The following commands can be used to extend the number of Onchip breakpoints:

TRACE32 PowerView applies the following rule: Onchip breakpoints are sorted by their addresses.
Breakpoints are implemented by their sorting order. Lower address breakpoints are programmed via the
debug logic. After all available resources are used, the higher address breakpoints are programmed into
MCDS.

Example:

MCDS.Option ProgramBreak ON Allow TRACE32 PowerView to use MCDS to set Program
breakpoints.

MCDS.Option AddrBreak ON Allow TRACE32 PowerView to use MCDS to set
Read/Write/ReadWrite breakpoints.

DO ~~\demo\tricore\hardware\triboard-tc2x5\tc275tf\tc275tf_demo.cmm

MCDS.Option ProgramBreak ON

; OCDS breakpoints
Break.Set func1 /Program /Onchip ; func1 at address 0x70100A10
Break.Set func20 /Program /Onchip ; func20 at address 0x70100C86
Break.Set func26 /Program /Onchip ; func26 at address 0x70100CA0
Break.Set func27 /Program /Onchip ; func27 at address 0x70100CA8
Break.Set func2a /Program /Onchip ; func2a at address 0x70100CD4
Break.Set func47 /Program /Onchip ; func47 at address 0x70100D90
Break.Set func7 /Program /Onchip ; func7 at address 0x70100E20
Break.Set func9 /Program /Onchip ; func9 at address 0x701010CC
; MCDS breakpoint
Break.Set sieve /Program /Onchip ; sieve at address 0x701012E8
 MCDS User´s Guide 35 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Trace Filter

When programming trace filters, remember to enable the trace data generation for the trace sources you are
interested in. By default, only program trace for the first core is enabled. If you configure a trace filter on a
variable, manually enabling WriteAddr and WriteData is required for recording the data accesses.

Examples

• Enable the trace as long as code within an address range is executed

Trace sieve() function without recording sub-functions:

• Trace function sieve() including all sub-functions and exceptions.

Configure a TraceON action on the first assembler instruction of function sieve() and a TraceOFF
action on the last one:

• Delayed stop of the trace recording when a certain address is executed.

Reserve 10 % of the trace buffer for recording the program trace after function sieve() has been
exited the first time. Stop trace recording, but continue program execution:

After the function sieve() is exited for the first time not more than the defined 10 % of the trace
buffer will be used for recording. There is no possibility to cancel or restart this process. See the
Onchip.TDelay command for details.

MCDS.SOURCE TriCore Program ON
Break.Set Var.RANGE(sieve) /Program /Onchip /TraceEnable

MCDS.SOURCE TriCore Program ON
Break.Set sieve /Program /Onchip /TraceON
Break.Set Var.END(sieve) /Program /Onchip /TraceOFF

MCDS.SOURCE TriCore Program ON
Break.Set Var.END(sieve) /Program /Onchip /TraceTrigger
Onchip.TDelay 10%

NOTE: The AGBT off-chip trace does not support this feature.
 MCDS User´s Guide 36 MCDS Basic Features
©1989-2014 Lauterbach GmbH

• Trace all write accesses to a certain data address.

All writes to the flags[3] variable are traced (data address and value):

• Trace all write accesses of a defined value to a data address.

Trace when 0x01 is written to the flags[3] variable. The code that triggered the access is also
traced:

Note that the exact opcode triggering the data access may not be included in the trace, but the
recorded address specifies the location where to look for.

MCDS.SOURCE TriCore Program OFF
MCDS.SOURCE TriCore WriteAddr ON
MCDS.SOURCE TriCore WriteData ON
Var.Break.Set flags[3] /Write /Onchip /TraceEnable

MCDS.SOURCE TriCore Program ON ; enable Program Flow Trace

MCDS.SOURCE TriCore WriteAddr ON
MCDS.SOURCE TriCore WriteData ON
Var.Break.Set flags[3] /Write /Data.Byte 0x01 /Onchip /TraceEnable
 MCDS User´s Guide 37 MCDS Basic Features
©1989-2014 Lauterbach GmbH

• Trace all write accesses of a defined value to a data address triggered from a certain address
range.

In case the CPU executes within the function sieve(), all occurrences are traced where 0x01 is
written to the flags[3] variable. The code that triggered the access is also traced:

The TraceTrigger is marked in the trace as a special watchpoint (A) and can be searched in the trace listing
like a watchpoint. For more information, see chapter Watchpoints.

MCDS.SOURCE TriCore Program ON
MCDS.SOURCE TriCore WriteAddr ON
MCDS.SOURCE TriCore WriteData ON
Break.Set Var.RANGE(sieve) /MemoryWrite flags+0x0C \
/Data.Byte 0x01 /Onchip /TraceEnable

A

 MCDS User´s Guide 38 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Watchpoints

TRACE32 can be programmed to generate a signal or a trace message in case a certain event has occurred
by using watchpoints. They are configured as breakpoints with break action WATCH.

Example

Set a watchpoint on the entry of function sieve():

The trace listing will show the name and the type of the watchpoint (A):

Watchpoints can be searched, see chapter Searching the Trace.

Break.Set sieve /Program /WATCH

NOTE: The watchpoint message is independent of other messages, so it is not
possible to assign it to a certain program flow or data message.

A

 MCDS User´s Guide 39 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Benchmark Counters

The MCDS has several counters that can be used to count events, e.g. the number of function entries or
write accesses to a variable. Other countable events are predefined internal events, e.g. number of executed
instructions or cache and memory accesses.

A. MCDS provides 16-bit counters, which may be insufficient in some cases. It is possible to cascade two or
more counters to a bigger one. Cascading counters reduces the number of independent events that can be
counted. Counters used for another purpose, e.g. a state machine in an OCTL trigger program or the
TraceON and TraceOFF triggers cannot be used for BMC any more.

B. If the product chip provides the counters CLOCKS, ICNT, and MxCNT, then they are also available for
selection in the BMC.state window.

For a detailed description of the BMC command group see ”BMC” (general_ref_b.pdf). Some MCDS
specific examples are given below. Information on the Product Chip’s Benchmark Counters can be found in
”BenchMarkCounter” (debugger_tricore.pdf).

NOTE: All TriCore AUDO Emulation Devices before use CNTx as counter names.
For TriCore AURIX BMC counters are named PMNx (Performance Monitor).

A

B

 MCDS User´s Guide 40 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Counting Chip-internal Signals

Chip-internal signals are pre-defined events inside the chip that are not accessible otherwise. For example, it
is possible to count the number of executed core instructions, memory accesses, cache hits and misses,
acknowledged interrupts and many others. The availability of the chip-internal signals is device dependent.

Example

This example sets up a 32-bit counter CNT0 counting the number of executed TriCore instructions:

Counting User-defined Events

User-defined events, e.g. entries into a function or write accesses to a variable can be also be counted. They
are set up as a breakpoint using the Delta or Echo marker. They are linked to a BMC counter by selecting
the Delta or Echo marker as BMC counter event.

Example

This example shows how to count the entries into function sieve() and the write accesses to flags[3]:

BMC.CNT0.EVENT TC_NINST
BMC.CNT0.SIZE 32BIT

NOTE: For counting core-related internal events on TriCore AURIX devices the core-
multiplexers need to be configured accordingly. For details, see the chapter
Trace Sources.

NOTE: The Alpha-, Beta- and Charlie markers cannot be used for counting.
 MCDS User´s Guide 41 MCDS Basic Features
©1989-2014 Lauterbach GmbH

1. Set aDelta marker breakpoint on sieve() and an Echo marker breakpoint on flags[3]:

2. Connect Delta and Echo events to MCDS counters:

Trace Decoding

The recorded trace data can be displayed using the Trace.List command. TRACE32 reads the recorded
trace data from the trace buffer and starts decoding the trace data. When decoding is completed, the results
are shown in the Trace.List window as a continuous flow of the executed instructions.

Break.Set sieve /Program /Delta
Var.Break.Set flags[3] /Write /Echo

BMC.CNT0.EVENT Delta
BMC.CNT1.EVENT Echo
 MCDS User´s Guide 42 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Depending on the recorded data and the device, TRACE32 tries to improve the decoding results:

• Data Cycle Assignment

In case of an unconditional program flow trace, the trace decoder tries to assign the recorded
data accesses made by the core to their corresponding assembler instructions. Successfully
assigned data cycles are displayed in black, otherwise in red.

• Data Cycle Reordering (TriCore only)

In some cases the recorded data cycles will not appear in the order they were executed on the
device. If timestamps are available, the trace decoder is able to reconstruct the correct order.
Data Cycle Reordering is mandatory for Data Cycle Assignment.

The content shown in the Trace.List window can be defined. Each kind of trace information is represented
by a trace channel. Trace channels with related information are grouped, see the Trace.List command
description for details.

When no trace channel is specified, the DEFault trace channel group is displayed. For MCDS the following
trace channels are of interest:

• BusMaster

Displays the originator (Bus Master) of a bus access. This information is only provided by MCDS
if the bus address trace has been enabled.

• BusMODE

Displays whether the bus was accessed in User or Supervisor mode. This information is only
provided by MCDS if the bus address trace has been enabled. BusMaster and BusMODE
information are displayed in light grey if the access was made in User mode, otherwise in dark
grey.

• TP

Displays the raw trace data. Only of interest for MCDS experts, e.g. for verifying the decoder.

• MCDS

Displays the decoded message information, e.g. message source, trace type, and trace payload.
This information is useful for MCDS expert users having access to the Infineon ED
documentation. The message sources correspond to the MCDS unit names as defined by
Infineon.

NOTE: • TRACE32 will not read the trace buffer and start decoding until requested
by the user, e.g. by opening the Trace.List window.

• Only the trace buffer required for displaying the results will be read and
decoded. When MCDS timestamps are enabled, the entire trace buffer is
decoded.

NOTE: Bus cycles cannot be assigned to instructions.
 MCDS User´s Guide 43 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Searching the Trace

You have the following options to search the trace data:

• A text search within the Trace.List window

For a text search, press Ctrl+F. The text search ranges from the current trace record up to the first
occurrence of the search item.

The text search compares the content of the Trace.List window with the search item and will find any
occurrence. Because of the text comparison, the text search is very slow.

• A command-based search

Events in the trace decoding can quickly be found using Trace.Find and Trace.FindAll. For a
general description, please refer to the descriptions of the commands. Only options of special
relevance for MCDS are described here.

Clicking the Find button in the Trace.List window will enable implicit tracking of the Trace.Find and
Trace.FindAll results with the Trace.List window. Otherwise tracking can be enabled with the Track option.

Specific Cycles

Read- and write accesses of a specific CPU are rare and hard to find, especially if a certain value is of
interest. In addition to the pre-defined cycle types, all cycle types listed in the cycle column of the Trace.List
window can be searched. The example shows a search for an SPB write access:

If necessary the search can be restricted to specific data values and access widths and types.
 MCDS User´s Guide 44 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Special Events

For MCDS, the following expert options are available for finding special events, depending on the device:

Exception Decoding

The MCDS flow trace protocol does not provide any information about entries into the exception handler so
displaying this event requires extra setup. For TriCore there are two methods available:

1. Tables: They specify the locations of the exception handler

2. DCU messages: They enable generation of extended trace data

Events: TRACEENABLE, WATCHPOINT, COUNTER

Exceptions: EXCEPTION, INTERRUPT, TRAP, RESET

Error: FIFOFULL, FLOWERROR

NOTE: For watchpoints it is currently only possible to show the internal ID in the data
column but not the breakpoint configuration name. As watchpoints are
independent messages, it is also not possible to display the related symbol.
 MCDS User´s Guide 45 MCDS Basic Features
©1989-2014 Lauterbach GmbH

Exception Decoding Using Tables

For each TriCore core, one address range for an interrupt handler table and another one for a trap handler
table can be specified. By default, these tables are filled automatically by evaluating the BIV and BTV
registers of the cores before the trace decoding starts. For interrupts, it is assumed that all interrupts are
used.

In some cases, e.g. when BIV and BTV are destroyed or not all interrupts are used, it might be necessary to
specify the handler areas manually using the MCDS.Option eXception TABLE command:

In the example above, the size of an exception handler entry is fixed to 32 bytes. In the example below, the
TriCore AURIX CPU uses a non-default entry size:

In case of multicore configurations, up to three address ranges can be specified, one for each core starting
with core 0.

The advantage of tables is that in case of a static exception configuration all exceptions are identified.
Additionally it is possible to distinguish between interrupts and traps.

If the exception configuration changes during run-time, only one exception configuration is valid. This is
either the automatically evaluated BIV and BTV configuration or the manually entered table configuration. As
BIV and BTV are normally only changed during the startup and configuration process where no interrupts
and traps occur the use of tables for exception decoding is the preferred solution.

For more information on disabling the tables completely or re-enabling automatic configuration, see
MCDS.Option eXception.

Exception Decoding Using DCU Messages

TriCore devices implementing TriCore v1.6 architecture or later (AUDO MAX, AURIX) have a flag
implemented in the debug messages (DCU messages) that indicates whether an exception is currently
active. When found in the trace data, this flag is evaluated and assigned to the corresponding program flow
message. With MCDS.Option eXception DCU ON the unconditional generation of debug messages can
be enabled for all cores handled by the current GUI.

The advantage of DCU messages is that more exceptions can be identified in a dynamic system.

; 256 interrupt handler entries
MCDS.Option eXception TABLE Interrupt 0xC0001000++0x2FFF

; 8 trap handler entries
MCDS.Option eXception TABLE Trap 0xC0002000++0xFF

; 256 interrupt handler entries, 8 B entry size
MCDS.Option eXception TABLE Interrupt 0x70001000++0x7FF 8.

; 8 trap handler entries, 32 B entry size
MCDS.Option eXception TABLE Trap 0x70002000++0xFF
 MCDS User´s Guide 46 MCDS Basic Features
©1989-2014 Lauterbach GmbH

DCU messages do not support nested exceptions. For example, a trap that occurs while an interrupt handler
is active is not identified. It is not possible to differentiate between traps and interrupts either, both are
marked as interrupts.

Both exception decoding methods can be combined to allow a differentiation of traps and interrupts using
the tables, and to identify more exceptions in case of a dynamic exception handler configuration.

Trace Limitations and Restrictions

The observation logic does not directly write the generated trace messages into the EMEM. Instead MCDS
processes these messages internally. If too many messages are generated, some internal FIFO will
overflow. In this case, an error message is generated and shown in the trace listing:

To display where the error occurred, include the MCDS item in the Trace.List DEFault command:

The first FIFO overflow is WTU_MCX, so one or more watchpoint messages generated by the MCX are
missing. The second FIFO overflow is TSU_MCX, here timestamp information is lost.
 MCDS User´s Guide 47 MCDS Basic Features
©1989-2014 Lauterbach GmbH

MCDS Unlocking

This chapter describes how TRACE32 handles access to a device where MCDS is protected against
unauthorized access. Such a system cannot be traced or used for triggering unless the correct key for
unlocking is provided.

Normally TRACE32 itself specifies this session key, so no user configuration is required. In some cases the
target application specifies this key, and TRACE32 needs to know it in order to unlock.

If you get an error message MCDS Session Key authentication failed please contact your
responsible colleague for more information and the session key. The 64-bit session key is passed to the
command MCDS.SessionKEY.

NOTE: TRACE32 cannot access a secured system without the corresponding keys.

NOTE: The application can only set a session key when TRACE32 did not yet set its own
key. This means that the application must do this before the debugger gets access
to the device. This is for example possible with an enabled tuning protection.
 MCDS User´s Guide 48 MCDS Basic Features
©1989-2014 Lauterbach GmbH

OCTL Complex Trigger Programming

OCTL (On-Chip Trigger Language) can be used for advanced trigger and trace filter programming. It is
designed to allow any possible MCDS programming without requiring knowledge about the MCDS
registers.

OCTL Features

While the triggers and filters via the Break.Set command only trigger on accesses made by the CPU, OCTL
additionally allows triggering on accesses or events performed by any other component, e.g. a bus. Instead
of registers or abstract identifiers, the component names can be used.

OCTL also allows to implement state machines, e.g. “Break on any write access to a certain address after
component “C” has been initialized”.

OCTL programs can be written with an external editor or the internal editor MCDS.Program. Already
existing OCTL programs can be compiled using the MCDS.ReProgram command.

For creating simple TriCore OCTL programs, see demo/tricore/etc/mcds/mcdsdlg.cmm

The default file name extension for an on-chip trigger program is “octl”. If no file name is specified, the file
t32.octl is used. See ”MCDS Trigger Programming” (mcds_trigger_prog.pdf) for more information on
writing OCTL trigger programs.

OCTL Example: Bus Trigger

A common error scenario is that a peripheral module, e.g. the DMA controller, overwrites a variable in the
data RAM. Trigger and filter via the Break.Set command e.g., the CPU’s on-chip breakpoints, cannot be
used in this case, as they only trigger on data accesses performed by the CPU. Instead a bus trigger is
required.

NOTE: OCTL currently only supports TriCore devices, so users of C166 and XC2000 can
skip this chapter.

NOTE: ”MCDS Trigger Programming” (mcds_trigger_prog.pdf) is currently under
preparation. Please contact your Lauterbach representative for more information.
 MCDS User´s Guide 49 OCTL Complex Trigger Programming
©1989-2014 Lauterbach GmbH

The following example sets a bus trigger to the LMB of a TC1797ED:

For TriCore AUDO, the MCDS break request is an external signal that needs to be enabled:

The same trigger program can be implemented using MCDS.Set commands, see Trigger Program
Example in chapter Advanced Emulation Device Access. OCTL is much more convenient in this case.

MCDS.INFO provides information about the availability and usage of hardware resources. This helps an
OCTL programmer to understand which on-chip resources are used by his trigger program and which
possibilities he has to implement a certain setup or configuration. For more information, see chapter
Guarded MCDS Programming.

DATAADDRESSWRITE.LMB WriteLocation D:0xD000A1EC++0x3

TRACE.ONCE DATAADDRESSWRITE.LMB IF WriteLocation
TRACE.ONCE DATAVALUEWRITE.LMB IF WriteLocation
BREAK IF WriteLocation

TrOnchip.EXTernal ON ; enable TriCore to break on MCDS event

NOTE: If you want the debugger to simulate a bus access, you have to write to this
location. Then use Trace.Mode.SLAVE OFF to enable the display of the
debugger accesses in the Trace.List window.
 MCDS User´s Guide 50 OCTL Complex Trigger Programming
©1989-2014 Lauterbach GmbH

Clock System

The Emulation Extension Chip is a separate die operating with dedicated clocks. For synchronizing with the
signals from the Product Chip, the EEC clocks are mostly generated by the PC’s PLLs. For proper operation
only dedicated ratios and maximum frequencies are allowed.

If you only intend to enable and use timestamps, you can skip this chapter; instead refer to chapter
Timestamp Setup of the MCDS Basic Features.

If you want to program timing related trigger and filter configurations, e.g. a periodic trigger or want to use
alternative timestamp information, then continue reading.

If you are the engineer responsible for the clock setup and PLL/CCU programming, then read the EEC
Clock System chapter. The EEC clocks depend on the system clocks and are configured in the PC part of
the Emulation Device.

EEC Clock System

The EEC has up to three clocks used for different purposes:

• MCDS clock fMCDS

The MCDS clock is used for clocking the MCDS trace and trigger logic. The high-resolution
timestamps (relative timestamps and ticks) are also generated from the MCDS clock.

The MCDS clock is also called Emulation Clock.

• BBB clock fBBB

The BBB clock is used for clocking the FPI bus which connects the EEC modules. The main
impact is on the read and write performance when accessing the EEC registers and the EMEM
by the debugger or the application.

On many devices the BBB clock is fixed or coupled to the MCDS clock.

• Reference clock fREF

The reference clock is used for a periodic trigger (programmable timer) and low-resolution
timestamps (absolute timestamps).

Each clock must not exceed its device dependent maximum frequency. Additionally only certain ratios to
other clocks on the Product Chip or the EEC are allowed to ensure a proper operation.

All EEC-related clocks are configured by the Clock Control Unit (CCU) of the Product Chip’s System Control
Unit (SCU). Programming is in the responsibility of the application to completely fulfill all constraints.
Otherwise a proper operation of the EEC is not possible, especially when the application changes the clock
configuration. For more information refer to chapter Device Specific Details.

Implementation hint: The MCDS hardware is able to handle a change of the MCDS clock while generating
trace data and triggering. The information whether the MCDS frequency changed is not available to the
trace decoder, so timestamps will not be displayed correctly throughout the trace recording. When using
timestamps, it is recommended not to change the MCDS frequency.
 MCDS User´s Guide 51 Clock System
©1989-2014 Lauterbach GmbH

Maximum Clock Frequency

Operating a component above its maximum frequency will result in an erroneous behavior, even if the device
seems to be operating fine at first glance.

Allowed Clock Ratios

The MCDS observes various components of the SoC, e.g. the CPUs and the buses. Their signals are used
to generate trace messages, triggers, and filters. Therefore, the MCDS clock and the clocks of the observed
components need to be synchronized. As the MCDS clock is derived from the system clock, their phases
are already in sync. They do not have to have the same frequency, but it is mandatory that the clocks must
have dedicated clock ratios.

The observed component may run with a higher clock than the MCDS. For some TriCore devices, e.g. from
the AURIX family, this is even mandatory when the CPU clock is higher than the maximum MCDS clock. In
this case a 2:1 ratio is to be used.

This 2:1 ratio works fine as long as the observed component does not provide more information than MCDS
can capture. Whether this happens or not depends on the application. Anyway some observation blocks are
prepared to the situation that more information arrives:

• A program flow trace only generates messages in case of a discontinuity of the linear instruction
execution, e.g. on a branch instruction or an exception. So only multiple consecutive jumps could
overrun the observation logic, e.g. in short loops executing only one or no instructions. The
observation logic is able to detect this and generates an appropriate error message.

• For the core- and bus data traces of TriCore devices the observation logic has Duplex Data Trace
Units implemented that can process incoming data accesses in parallel.

NOTE: In case of such short loops, the error message contains the information how
many repetitions of the loop are missing. The current trace decoders do not
evaluate this information, an error information is displayed instead.

NOTE: The trace messages of data accesses processed in parallel may not be in the
correct order. When timestamps are enabled, the trace decoder is able to sort
them correctly. For details, see chapter Trace Decoding.
 MCDS User´s Guide 52 Clock System
©1989-2014 Lauterbach GmbH

Verifying the Clock Setup

On TriCore devices, the CLOCK commands can be used to set up and verify the configuration of the clock
systems. CLOCK.view opens an overview. To display the clock configuration of the device, perform the
following steps:

1. Establish the debug connection, e.g. by SYStem.Up.

2. Run application until clock setup is completed by application.

3. Enable the computation of clock frequencies using CLOCK.ON.

4. Specify the correct base frequencies, depending on your device.

The eec panel displays the EEC-related clocks of an Emulation Device.

Device Specific Details

Each device and device family has its own clock system and distribution. For a quick reference the most
important facts are summarized here. For details, especially the maximum frequencies and the allowed
ratios, please refer to the following documents:

• The corresponding Infineon User’s Manual

• The Infineon Emulation Device’s User’s Guide

• The Target Specification

NOTE: CLOCK.view displays the current clock frequencies of the device, i.e. the
settings made by the user and information obtained from the chip.
• Your application should have completed the clock setup.
• There is no checking whether any clock or ratio requirement is violated.
 MCDS User´s Guide 53 Clock System
©1989-2014 Lauterbach GmbH

XC2000ED and C166

For C166 and XC2000 devices, the EEC clocks are directly derived from the system PLL and cannot be
configured.

TriCore AUDO-NG (TC v1.3)

• The BBB clock is fixed and not configurable.

• The MCDS clock is always identical to the CPU clock, there is no MCDS frequency limitation.

• fREF == fUSB can only be selected when fMCDS >= 100 MHz.

TriCore AUDO-F, AUDO-S and AUDO-MAX (TC v1.3.1)

• The BBB clock is fixed and not configurable.

• There is no MCDS clock limitation, the maximum ratio for fCPU : fMCDS is 2:1.

• Select the System PLL as source for fREF when FlexRay PLL is disabled or not available.

fREF

fMCDS

/ 4

USB Clock

System PLL

CT.RC

fMCDS

FlexRay PLL

System PLL

fREF

REFCLK

REFCLK

MCDSDIV
 MCDS User´s Guide 54 Clock System
©1989-2014 Lauterbach GmbH

TriCore AUDO-MAX (TC v1.6)

• The maximum MCDS clock is 160 MHz, the maximum ratio for fCPU : fMCDS is 2:1.

• Select the System PLL as source for fREF when FlexRay PLL is disabled or not available.

TriCore AURIX (TC v1.6.1)

• Only TC27x A-step devices have a dedicated MCDS clock. All other devices use the BBB clock
for clocking the MCDS. The maximum BBB/MCDS clock is 167 MHz, the maximum ratio for
fCPUx : fMCDS is 2:1.

• Select the System PLL or the Backup Clock as source for fREF when FlexRay PLL is disabled or
not available.

• The AURIX Demonstrator devices TC2Dx have a configurable divider REFDIV for fREF instead of
the fixed /24 divider (not shown here).

fMCDS

fBBB

FlexRay PLL

System PLL

fREF

REFCLK

REFCLK

EDBBBDIV

MCDSDIV

TC27x A-step only

fREF

/ 24

FlexRay PLL

Backup Clock

System PLL

fBBB

BBBDIV

MCDSDIV
fMCDS

CCUCON0.CLKSEL

MUX.RC

ON0.C
 MCDS User´s Guide 55 Clock System
©1989-2014 Lauterbach GmbH

MCDS Clock System

The MCDS uses the MCDS clock fMCDS and the reference clock fREF. They are used to operate the MCDS
logic, for generating timestamps and to drive a periodic trigger.

MCDS Sampling

The MCDS clock fMCDS is used to sample the signals coming from the SoC, e.g. information on the program
flow, on data access, status information, …

With every MCDS clock cycle, information from the SoC is captured and processed:

• When the observed module operates with the same or a lower clock than the MCDS, no
information is lost.

• When the observed module operates at a higher clock than the MCDS, information is lost when
the module provides multiple data within the same MCDS clock cycle. For some modules, e.g.
the program flow traces of the CPU and the data traces of the CPUs and the processor buses,
MCDS provides mechanisms to guarantee that no information is lost for 2:1 clock ratios. For
more information, see chapter Allowed Clock Ratios.

The sampled information is used to generate trace message, triggers, and filters.

MCDS Timestamps

The following background information is intended for expert users. But other users might also benefit from it.

When the user enables the generation of timestamps, TRACE32 performs the necessary configuration.
MCDS provides different types of timestamps:

Ticks and relative timestamps are sample-accurate high-resolution timestamps. Both have the same
resolution but differ in the message format.

• Ticks are short and suitable when trace messages are continuously generated. When no trace
data is recorded for 255 MCDS clock cycles, the generation of a tick message is forced.
Extended periods with no recorded data will cause the trace buffer to be flooded with tick
messages.

• Relative timestamps are much larger than ticks. They have a higher capacity, so they can be
used to bridge extended periods with no data recorded. Due to their higher minimum length, they
need much more trace memory when they are used for a trace that constantly creates trace data.

TimeStamp Clock Capacity Message Length Resolution

Tick fMCDS 8 bit 4 or 12 bit high

Relative fMCDS 32 bit 20 to 44 bit high

Absolute fREF 32 bit 20 to 44 bit low
 MCDS User´s Guide 56 Clock System
©1989-2014 Lauterbach GmbH

Absolute timestamps are asynchronous low-resolution timestamps. They are suitable for tagging dedicated
events but not for sample-accurate continuous trace data.

Timestamp information is generated based on the MCDS clock fMCDS and the reference clock fREF.

• The MCDS clock is used to generate sampling-accurate high-resolution timestamps. This means
that the resolution of the timestamp corresponds to the resolution of the MCDS clock.
Timestamps do not depend on the clock of the observed trace source, e.g. a core or a bus. This
is especially important for observed sources that operate with a faster clock than the MCDS. If
the CPU and MCDS operate with a ratio of 2:1, the timestamps might have an inaccuracy of one
CPU clock cycle.

• The reference clock is used to generate asynchronous low resolution timestamps.

Clock Counters

The timestamps are derived from two 32-bit counters within the Timestamp Unit (TSU):

• The Emulation Counter TSUEMUCNT is based on fMCDS. From its least significant 8 bits the tick
timestamp messages are generated, the entire counter value is used to generate the relative
timestamp messages.

• The Reference Counter TSUREFCNT is based on fREF. The entire counter values is used to
generate the absolute timestamp messages.

The TSU also provides the TSUPRESCL register (pre-scaler) used for implementing the Timer and
Periodic Trigger.

The counters and the pre-scaler are accessible via the peripheral file, see EEC Register Access.

Timestamp Configuration

The command MCDS.TimeStamp ON enables the generation of timestamps:

• For a continuous trace, e.g. unfiltered program trace ticks are used.

• For a filtered trace, ticks and relative timestamps are combined.

• TRACE32 never configures absolute timestamps. They can be added manually using Guarded
MCDS Programming.

NOTE: TriCore only supports MCDS.TimeStamp [OFF | ON], other methods have been
removed. XC2000 and C166 still support them.
 MCDS User´s Guide 57 Clock System
©1989-2014 Lauterbach GmbH

Timestamp Decoding

For a correct computation of the timing information the MCDS clock has to be known.

XC2000ED users have to specify the CPU clock using the Onchip.CLOCK command. These devices do
not support the CLOCK command group.

For all other devices, the easiest way is to use the CLOCK command group. After enabling the clock
frequency computation with CLOCK.ON, check the configuration and configure the base clock(s) if
necessary. For details, see chapter Verifying the Clock Setup.

In special cases where low-resolution timestamps are used, the MCDS clock has to be directly configured
as follows: After the clock frequency computation has been deactivated with CLOCK.OFF, the MCDS clock
can be configured with Onchip.CLOCK.

Example

Enable timestamps:

Timer and Periodic Trigger

The reference clock provides the base frequency for the MCDS timer, which can be used to periodically
trigger an event. The frequency of the trigger is displayed in the CLOCK.view window.

Use MCDS.CLOCK Timer to set up the trigger. The event to be triggered can be configured using
MCDS.Set commands (see also Guarded MCDS Programming).

NOTE: Changing the MCDS clock while recording will result in incorrect timestamps.
Do not run a performance analysis based on a recording where the MCDS
clock has changed.

NOTE: It is not possible to decode high- and low resolution timestamps at the same time.

SYStem.CPU TC275TE

CLOCK.OSCillator 20.0MHz ; frequency of on-board oscillator
CLOCK.ON

SYStem.Mode Up
Data.LOAD.Elf myapplication.elf /NoCODE
Go PLL_ConfigDone

CLOCK.view ; manually verify clock setup

MCDS.TimeStamp ON ; enable timestamp generation
 MCDS User´s Guide 58 Clock System
©1989-2014 Lauterbach GmbH

Emulation Memory

The Emulation Memory (EMEM) is one of the main components of the EEC and related to some key
features of the Emulation Device. It is used as

• Trace buffer for on-chip trace

• FIFO for the AGBT off-chip trace

• Calibration RAM

• Extra code and data RAM for use by the application

TRACE32 automatically configures the EMEM for the use as on-chip trace buffer or AGBT FIFO. Users that
do not plan to use the EMEM for any other purpose than tracing may also skip this chapter. TRACE32
will automatically find the most suitable memory configuration.

Continue reading this chapter if you want to use the EMEM for any other purpose, especially when using the
EMEM for more than one purpose at the same time.

Users of pre-configured hard- and software from a supplier should double-check that the supplier
software does not use the EMEM for its own purpose. Destroying this configuration may lead to
unpredictable behavior. If so, make TRACE32 aware of the third-party configuration and contact your
supplier for more information. Continue reading this chapter.

Background Information

The size of the EMEM varies from 4 KB on XC2000 to more than 2 MB for TriCore AURIX. It is possible to
configure parts of the EMEM for different use cases. For example, calibration and trace can be performed in
parallel using different tools. Some parts of the EMEM may be restricted to a specific use case, and some
devices only allow one use case:

• C166 and XC2000 Emulation Devices can use the EMEM for trace only.

• TriCore Emulation Devices can use the EMEM for trace, calibration, and application.

TRACE32 supports trace and trigger, but not calibration. By default it will configure all suitable EMEM
for use as on-chip trace buffer or as FIFO for AGBT off-chip trace. This allows tracing out-of-the-box.

NOTE: C166 and XC2000 users can skip this chapter. For these devices there is only
the use case “trace buffer” and so nothing to configure.
 MCDS User´s Guide 59 Emulation Memory
©1989-2014 Lauterbach GmbH

Calibration can be performed using a third-party tool (calibration tool) or by some code embedded in the
target application (calibration task). In this case and also in case the user application uses parts of the
EMEM, TRACE32 needs to be aware of its configuration and offers mechanisms for a conflict-free sharing of
the EMEM.

EMEM Partitioning

The Emulation Memory features a physical and logical partitioning.

Physically the entire EMEM consists of one or more memory arrays of different size and purpose. Each
memory array is partitioned into one or more memory tiles of equal size. Each of the memory tiles can be
configured independently for a specific use case, e.g. calibration or trace.

In trace mode, each memory tile is logically partitioned into paragraphs of 4 KB (TriCore). At the beginning of
each paragraph, the trace encoder writes un-compressed MCDS messages to allow a sync-in of the trace
decoder at these locations. This allows an efficient usage of the trace buffer when it is used in FIFO mode.
The logical partitioning is fixed by hardware and cannot be configured. Except for trace message
synchronization it has no further relevance.

When the decompression information at the beginning of a paragraph is overwritten with new trace
information, the older trace data from the rest of the paragraph cannot be decoded anymore. TRACE32 will
recognize this part of the paragraph as “free”. So in FIFO mode the trace buffer will practically never be filled
completely.

Memory Arrays and Tiles

The type of a memory array already indicates how it can be used:

• TCM (Trace and Calibration Memory)

TCM can be configured to be used as trace buffer or calibration RAM. It is even possible to
assign some tiles to the trace buffer and some tiles to calibration RAM. The TCM is normally a
relatively big memory array, e.g. 50 - 100 % of the EMEM.

• XM (Extended Memory), consisting of XCM and/or XTM

XCM (Extended Calibration Memory) is a relatively big memory array, e.g. 50 % of the EMEM,
and can be used as calibration RAM only. It may be a single memory tile or partitioned into
several small memory tiles. TRACE32 does not configure the XCM.

XTM (Extended Trace Memory) is a relatively small memory array, e.g. 16 KB, and consists of
two tiles. It is primarily used as a trace FIFO, e.g. for AGBT or on-chip trace streaming. But it can
also be configured as calibration RAM.

In an Emulation Device, the TCM is always available while the XM is optional.

NOTE: This chapter does not distinguish between the non-trace use cases. For
simplification they are all referred to as third-party usage.
 MCDS User´s Guide 60 Emulation Memory
©1989-2014 Lauterbach GmbH

Each of the memory arrays is further partitioned into memory tiles of equal size. In case the memory array
allows more than one use case each of the tiles can be assigned to an operation mode separately. This is
not only a convention between TRACE32 and the third-party tool, it also configures the hardware to allow
the trace message encoder, the CPU or the debugger to access the memory. This assures that trace and
calibration can be performed in parallel and that the tools are kept separate from each other.

The size of a memory tile is fixed by hardware and cannot be changed, typical values are 8, 32 or 64 KB. A
tile can either be in trace mode, calibration mode, or unused mode.

Trace Buffer Configuration

Using the EMEM as trace buffer requires that the following conditions are met:

• Only one memory array can be used for tracing. The chosen memory array must support the
usage as trace buffer.

• Within the selected array, the trace buffer must be configured as a range of continuous memory
tiles, fragmentation is not allowed. Tiles not used for tracing can be used for any other purpose.

• Off-chip trace requires an EMEM tile to be used as AGBT FIFO. If XTM is available, XTM is
selected, otherwise TCM. Only tile 0 can be used as AGBT FIFO.

• Only one trace method can be configured at the same time: on-chip or off-chip.

In other words, the trace buffer can be configured to use an entire memory array or only a part of it. In case
of a partial configuration, it can be located anywhere.

TRACE32 uses the following parameters for describing the trace buffer configuration:

• Array: memory array that is being used as trace buffer.

• Trace buffer size: size of the trace buffer in bytes.

• Lower and upper gap: tiles of the selected memory array which are not used as trace buffer as
size in bytes.

Use the MCDS.TraceBuffer commands for setting up the trace buffer configuration:

NOTE: Not all modes are supported by all memory arrays and devices. This has an
impact on the configuration, especially on the MCDS.TraceBuffer.NoStealing
command, as well as on the cooperation with third-party tools and applications.

lower gap upper gap

... ...0 n-1 m+1 zn m...
trace buffer
 MCDS User´s Guide 61 Emulation Memory
©1989-2014 Lauterbach GmbH

1. MCDS.TraceBuffer.SIZE to set the size of the trace buffer

Setting the trace buffer size as first step will adjust the lower and/or upper gap accordingly.

2. MCDS.TraceBuffer.UpperGAP or MCDS.TraceBuffer.LowerGAP to configure the upper and
lower gap.

When modifying the upper gap, the lower gap is adjusted accordingly and vice versa. The trace buffer
size is only changed when it would not fit any more. For detailed information, refer to the descriptions
of the above commands.

Use Onchip.DISable and Analyzer.DISable to prevent TRACE32 from configuring the EMEM at all.
Accessing the EMEM using the memory class EEC is still possible, see chapter EEC Access for more
information.

GUI Integration

The current trace buffer can be configured via the TRACE32 command line, PRACTICE scripts, or the
MCDS.state window:

The MCDS.INFO window summarizes the EMEM usage, the Onchip.state window shows the current on-
chip trace buffer size.

NOTE: Please do not use these deprecated commands any more:
• MCDS.GAP is replaced by MCDS.TraceBuffer.UpperGAP
• MCDS.SIZE is replaced by MCDS.TraceBuffer.SIZE
These commands are still available for backwards compatibility in scripts and
may be removed in future versions without prior notice.
 MCDS User´s Guide 62 Emulation Memory
©1989-2014 Lauterbach GmbH

Expert users can use the peripheral file to obtain the most detailed information about the current EMEM
partitioning. However, this requires a detailed knowledge of the meaning of this device’s registers and their
bits.

• For more information on accessing these registers, see chapter EEC Access.

• For more information on how to interpret the register contents, refer to the Infineon
documentation.

PRACTICE Functions

The following PRACTICE functions can be used to determine the trace buffer configuration:

• MCDS.TraceBuffer.SIZE() returns the trace buffer size.

• MCDS.TraceBuffer.LowerGAP() and MCDS.TraceBuffer.UpperGAP() returns the lower and
upper gap.

Example for checking whether the EMEM can be used as trace buffer:

Co-operation with Third-party Usage

For a better co-operation with third-party tools TRACE32 provides a mechanism to automatically detect
which tiles can be used for tracing, and how to handle a conflicting situation.

MCDS.TraceBuffer.DETECT allows to automatically detect which arrays and tiles can be used as trace
buffer or AGBT FIFO. For on-chip trace, TCM is preferred and the first possible trace buffer tile set is used.
For off-chip trace, XTM is preferred. Trace buffer detection by TRACE32 requires that the third-party tool has
already configured the EMEM for its own purpose.

MCDS.TraceBuffer.DETECT
IF MCDS.TraceBuffer.SIZE()==0.
(

PRINT "no trace buffer available, disabling trace"
Trace.DISable

)

NOTE: Please do not use these deprecated functions any more:
• MCDS.GAP() is replaced by MCDS.TraceBuffer.UpperGAP()
• MCDS.SIZE() is replaced by MCDS.TraceBuffer.SIZE()
These functions are still available for backwards compatibility in scripts and may
be removed in future versions without prior notice.
 MCDS User´s Guide 63 Emulation Memory
©1989-2014 Lauterbach GmbH

MCDS.TraceBuffer.NoStealing controls whether tiles already configured to calibration mode can be
switched to trace mode. This prevents that any third-party tool configuration is destroyed unintentionally.
When no-stealing mode is active and a conflicting trace buffer configuration is selected by the user, the most
suitable configuration for this array is auto-configured by TRACE32. If no suitable configuration is found, the
trace buffer is configured to zero-size (on-chip trace) or the trace method is disabled (off-chip trace).

Requirements for third-party tools:

• Third-party tools must not change the trace buffer configuration while the trace is recording. If
they do so, TRACE32 will not be able to access the trace memory:
unable to read on-chip trace state.

• If the device supports an unused mode, third-party tools must not use the trace mode. In general
only one tool is allowed to perform trace recording.

Configuration Example

From an automotive supplier you have got an ECU hardware with a TC1797ED device:

• The supplier’s application uses the uppermost tile 15 for an internal measurement purpose.

• Your calibration tool uses a continuous range of 384 KB of the EMEM, starting from tile 0.

• The rest of the memory should be used by TRACE32 for on-chip trace.

TriCore TC1797ED has 512 KB of Emulation Memory in total: 256 KB TCM and 256 KB XCM (calibration-
only). The tile size is 32 KB. So the memory configuration results in:

NOTE: See the command descriptions for detailed information on the detect and no-
stealing mechanisms and their interactions.

NOTE: There are devices that do not support an unused mode for the tile configuration.
For these devices, auto-detection and no-stealing only make sense if the third-
party tool switches the tiles not used by it to trace mode.

EMEM tiles used for array size

0 - 7 calibration XCM 256 KB

8 - 11 calibration TCM, lower gap 128 KB

12 - 14 on-chip trace TCM, trace buffer 96 KB

15 application TCM, upper gap 32 KB
 MCDS User´s Guide 64 Emulation Memory
©1989-2014 Lauterbach GmbH

The required configuration steps in TRACE32 are:

Device Specific Details

Each device family or device has a specific memory array and tile implementation. For a quick reference, the
most important details are summarized here. For more details, please refer to the chip manufacturer’s
documentation.

TriCore AUDO-NG

TCM does not support the unused mode. A tile not needed for trace is switched to the calibration mode. A
lower gap is not supported, the trace buffer must start with tile 0. XCM is only available on TC1796ED.

TriCore AUDO-F

TCM does not support the unused mode. A tile not needed for trace is switched to the calibration mode.
XCM is only available on TC1797ED.

MCDS.TraceBuffer.SIZE 96.KB ; set on-chip trace buffer size

MCDS.TraceBuffer.UpperGAP 32.KB ; set upper gap
; lower gap is set automatically

set size set upper gap

0x00x400000x7FFFF MCDS address

tile size: 64 KB

XCM

0 1 2 3
TCM

BBB address offset

tile size: 32 KB

TCM XCM

... ...815 07
0x00x400000x7FFFF

TCM

... 07
all, except TC1797ED

TC1797ED only
 MCDS User´s Guide 65 Emulation Memory
©1989-2014 Lauterbach GmbH

TriCore AUDO-S and AUDO-MAX

TCM does not support the unused mode. A tile not needed for trace is switched to the calibration mode.

TriCore AURIX

All tiles are initially assigned to the unused mode. TRACE32 never switches a tile to the calibration
mode. When changing the trace buffer configuration the EMEM tiles are handled as follows:

• Tiles not needed for tracing are left in their current state. If their current mode is trace, they are
switched to unused.

• Tiles required for tracing are checked for their current mode. In case they are unused- or in trace
mode they are assigned to trace mode. If they are in calibration mode and the no-stealing
configuration is disabled, the tiles are switched to trace mode and a warning is displayed. If the no-
stealing option is enabled, configuration of a tile already in use is not possible.

BBB address offset

TCM

tile size: 64 KB... 0n
0x0(n * 0x10000) - 1

n = 5, 7, 11

BBB address offset

tile size:

 TCM: 64 KB

 XTM: 8 KB

0x00x100000n

TCMXTM XCM

... 01501

XM

optional:

 XCM, XTM
 MCDS User´s Guide 66 Emulation Memory
©1989-2014 Lauterbach GmbH

AGBT High-speed Serial Trace

The AGBT (Aurora GigaBit Trace) is an off-chip trace interface using the Xilinx Aurora protocol for
transferring MCDS trace data to an external recording device, e.g. a TRACE32 preprocessor and a Power
Trace module.

Background Information

The trace messages for MCDS on- and off-chip trace are identical. Both are written to the trace buffer in
EMEM. From the MCDS point of view there is no difference between on- and off-chip trace.

• For an on-chip trace, the entire EMEM or a part of it is used as trace buffer. The debugger reads
from it when trace recording is completed.

• For an off-chip trace, only a small and dedicated part of the EMEM is used as AGBT FIFO. The
on-chip AGBT module reads from it during recording, processes the data and provides it at the
trace port pins where it is received by the TRACE32 Serial Trace preprocessor.

EMEM configuration for use as AGBT FIFO is done automatically: in case the device has an XTM array this
is used as AGBT FIFO, otherwise TCM tile 0. For more information, see chapter Emulation Memory.

Also from the user’s point of view there is not much difference in MCDS configuration for on- and off-chip
trace. Some settings related to the EMEM, e.g. the trace trigger, are not applicable or behave differently.

The Serial Trace preprocessor is also responsible for providing external timestamps. As these timestamps
are very inaccurate, internal timestamps generated by MCDS can be used. For more information, see
chapter Limitations and Restrictions.

NOTE: Users of XC2000 and TriCore AUDO Emulation Devices can skip this chapter,
these devices do not provide AGBT.

Product Chip

Emulation Extension Chip

MCDS EMEM AGBT

Bus 1BBBBuuuussss 1111Bus 0
CPU 2CPU 1CCCCCCCCCCCCCCCCCPPPPPPPPPPPPPPPPPUUUUUUUUUUUUUUUUU 22CCCCCCCPPPPUUUUU 1111CCCPPPUUU 222CCCPPPUUU 222

CPU 0

Trace Signals

DAP/
JTAG

IO32

Back Bone Bus

Debug Cable

Preprocessor
 MCDS User´s Guide 67 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

Xilinx Aurora

Aurora is a serial high-speed link and protocol designed by Xilinx.

For data transmission, it uses one or more independent lanes, each consisting of one differential LDVS
signal, allowing transfer rates of up to several GBit/s. Depending on the requirements, the number of lanes
can be adjusted as well as the lane speed.

For communication on each lane, an 8b10b encoding is used for error detection and correction. Additionally
the communication is CRC protected. Before any data can be transferred, sender and receiver synchronize
by performing a channel training. The channel training is performed automatically and does not require any
user interaction.

Aurora is not MCDS or TriCore specific. MCDS trace data is transferred as Aurora payload.

For example, TriCore AURIX uses 1 lane with a maximum lane speed of 2.5 GBit/s. A reference clock of
100 MHz is provided by the TRACE32 hardware.
 MCDS User´s Guide 68 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

Requirements

For performing AGBT off-chip trace, the TriCore device and the target board need to support it:

• TriCore AURIX Emulation Device

Non-Emulation Devices and non-AURIX devices do not support AGBT. Some members of the
AURIX family, e.g. TC22x and TC23x, do not support AGBT off-chip trace, even if they are
Emulation Devices.

• Device Package

Only BGA devices and LQFP packages in the Fusion Quad variant support AGBT off-chip trace.
Standard LQFP packages do not support this. LQFP packages have additional pads at the
bottom side and a ‘Q’ in the chip identifier. For more information, please refer to the Infineon
documentation.

The picture shows a normal LQFP package on the left side and a Fusion-Quad package on the
right side. Please note the extra pads and the ‘Q’ marking.

• Target board with 22-pin ERF-8 connector

A description of the pinout can be found on http://www.lauterbach.com/ad3829.html

For documentation on the target connectors, see chapter Target Interface.
 MCDS User´s Guide 69 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

http://www.lauterbach.com/ad3829.html

The following TRACE32 hardware is required for AGBT off-chip trace:

• Supported Power Trace modules:

• Lauterbach Serial Trace V2 preprocessor or newer

A lane speed of less than 625 MBit/s and frame repetition due to CRC errors are not supported.
See VERSION.view to find out the version of your Serial Trace preprocessor.

• Trace Converter LA-3829 “Conv. Samtec40 to Samtec22 TriCore AGBT”

The trace converter is mandatory for providing the correct reference clock to the Aurora logic of
the AGBT. Optionally the debug cable can be connected to this converter.

• MCDS trace license

The MCDS trace license may be stored inside the preprocessor or the debug cable. For details,
see chapter MCDS Licensing.

Device Trace Buffer Size

Power Trace Ethernet 256 MB, 512 MB

Power Trace II 1 GB, 2 GB, 4 GB
 MCDS User´s Guide 70 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

The AGBT off-chip trace requires the debugger for configuration, setup and trace control as well as for
concurrent debugging. The picture below shows the recommended combination of Power Debug II, Power
Trace II with the Automotive debug cable and the Serial Trace V2 preprocessor.

AGBT Configuration

The preprocessor is detected and configured automatically by TRACE32. If the attached TriCore device
supports AGBT, Analyzer is selected as the default trace method. Lane- and port speed are set to the
maximum of the device.
 MCDS User´s Guide 71 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

To change the number of used lanes and their speed, use the following commands:

• MCDS.PortSIZE <number of used Aurora lanes>

Change this value to the number of lanes used by your target board, e.g. if there are fewer lanes
connected than the device supports.

• MCDS.PortSPEED <Aurora lane speed>

Change this value in case of electrical issues, e.g. transmission errors or initialization issues
during channel training.

Disable the Analyzer in case the preprocessor is attached to the Power Trace hardware but not to the target
device to avoid unwanted configuration and related error messages.

Trace Streaming

In the trace streaming mode, the recorded trace data is written directly to a file on the host computer instead
of being stored in the Power Trace module. The trace buffer of the Power Trace module is only used as a
large FIFO to compensate load peaks. See http://www.lauterbach.com/tracesinks.html for the basic
concept.

• Both Power Trace II and Power Trace Ethernet support trace streaming. Recommendation is to
use Power Trace II because of its Gigabit Ethernet interface.

• Use of the 64-bit version of TRACE32 is mandatory.

• The disk where the file is stored and the architecture of your host computer must be fast enough
to store the incoming trace data without any delay.

For configuration of trace streaming, please refer to chapter “STREAM Mode (PowerTrace hardware
only)” in AURIX Trace Training, page 62 (training_aurix_trace.pdf).

The trace buffer of the Power Trace module only compensates load peaks depending on the buffer size. The
average trace data rate must not exceed the physical limitations of the connection between the Power
Debug module and the host computer as well as the system components of the host computer.

NOTE: Whether the trace method Analyzer can be used or not only depends on the
attached TRACE32 tool hardware and the selected CPU. It does not matter
whether the device package supports trace pins or if the preprocessor is
connected to the board.

Analyzer.DISable

Device Host Connection Streaming Compression

Power Trace Ethernet USB 2, 100 MBit Ethernet Software

Power Trace II USB 2, 1 GBit Ethernet Software, Hardware (default)
 MCDS User´s Guide 72 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

http://www.lauterbach.com/tracesinks.html

The command Analyzer.STREAMCompression configures on which level the trace data is compressed
before and after streaming. At the expense of CPU power, the compression rate can be increased before the
streamed data is stored to the hard disk. This will improve write performance.

Limitations and Restrictions

The AGBT has some restrictions and limitations that affect trace recording and may require a workaround.

External Timestamp Resolution

By default, the Serial Trace preprocessor adds timestamps to the trace messages as they arrive. For Aurora-
based serial trace implementations, these timestamps are generally very inaccurate due to the amount and
size of the chip-internal FIFOs.

Aurora internally processes the data in various stages, each implementing a FIFO where several trace
messages are collected before they are processed collectively. Although the message order is preserved,
they arrive in bursts at the preprocessor. As the preprocessor cannot reconstruct the original time
information, all messages of a burst get the same timestamp. This is the reason why it seems as if hundreds
of assembler instructions (or other operations) have been executed at the same time while the next bunch of
instructions has been delayed dramatically.

For accurate timestamps, use the internally generated MCDS timestamp messages. The MCDS uses
relative timestamps so decoding the entire trace buffers is required. For huge trace recordings this is very
time consuming. For more information on timestamp generation, see Timestamp Setup.

AGBT FIFO Overflow

The MCDS is able to generate more trace messages than AGBT is able to transfer even at the highest
possible data rate. If this happens, trace information is lost. TRACE32 can detect this and display an error
message.

NOTE: The compression rate is highly dependent on the application and the
transferred data, e.g. program flow trace, data trace, …

NOTE: Interpolation of the missing timestamps is not supported.
 MCDS User´s Guide 73 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

To avoid AGBT FIFO overflows:

• Only generate trace messages with data of interest.

For example, this can be done by de-selecting unrelated trace sources.

• Make sure your application does not spend too much time in short loops.

One example of a short loop is an idle task that consists only of one or few NOP instructions. In
this case, too many program flow messages are generated. To avoid this, extend the idle task
with more NOP instructions to reduce the number of generated flow messages.
 MCDS User´s Guide 74 AGBT High-speed Serial Trace
©1989-2014 Lauterbach GmbH

Advanced Emulation Device Access

Expert users will need low-level access to the EEC, e.g. to EMEM or MCDS. Low-level access can be
established by:

• Using the EEC and EMEM for a proprietary task, e.g. by the application (TriCore only).

In this case the EMEM and the EEC registers need to be accessed directly, either by the
application or the user for debugging the application.

• Programming the MCDS, e.g. for special trigger setups.

The trigger setup may be used in addition to the triggers and filters via the Break.Set command
or the OCTL.

Only few expert users will need to do this, so most users can skip this chapter.

EEC Access

On the EEC, all components are accessible via memory mapped registers connected to the Back Bone Bus
(BBB) of the EEC. The BBB is completely independent of the SoC’s buses. On all Emulation Devices, the
debugger can access these components. On TriCore devices the application can access them, too.

• The debugger uses the IO32 (Cerberus IO Client) which is selected on JTAG or DAP level. This
mechanism does not only eliminate the need of a dedicated debug port for the EEC, it also
prevents any interference of the debugger and the application in accessing the EEC because of
separated access paths.

NOTE: This chapter does not replace the Infineon Emulation Device Target
Specification. Read this document to learn how to use the EEC resources and
features.

Product Chip

Emulation Extension Chip

Back Bone Bus

EMEM

PMU/

LMU

Debug Cable

DAP/
JTAG

IO32

IO32

Bus 1BBBBuuuussss 1111Bus 0

Trace Signals

CPU 2CPU 1CCCCCCCCCCCCCCCCPPPPPPPPPPPPPPPPUUUUUUUUUUUUUUUU 222CCCCCCCPPPPUUUUU 1111CCCPPPUUU 222CCCPPPUUU 222
CPU 0

MLI

MLI

MCDS

Processor Bus
 MCDS User´s Guide 75 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

For accessing the EEC via the debugger, use memory class EEC. It is only available if the device
under debug is an Emulation Device, and the user has selected the ED using the SYStem.CPU
command.

Selecting a non-ED device will completely disable all EEC-related commands and accesses,
even if the attached device is an ED. This behavior allows the user to let his application access
the EEC without any interference from TRACE32.

• The application accesses the EEC resources via the MLI bridge modules (TriCore AUDO) or the
LMU (TriCore AURIX). The IO Client path is not available, even if the debugger is not connected.

• Overlay support is provided via the PMU or LMU (device dependent).

EEC EMEM Access

The main use case for a raw memory dump is to access the contents of the EMEM when debugging a
calibration task:

To find out where the EMEM is mapped on your Emulation Device, refer to Infineon’s TriCore ED Target
Specification for the EEC’s address map.

Use Onchip.DISable and Analyzer.DISable to prevent TRACE32 from configuring the EMEM at all. It is still
possible to access the EMEM using the memory class EEC.

EEC Register Access

All EEC registers are memory mapped and can be accessed as a memory dump (see EEC EMEM
Access). However, it is much easier to view and modify the EEC registers using the peripheral file. There
are different ways to access the peripheral file:

• Use the command PER.view to open the default peripheral file and scroll down to the top-level
tree entry Emulation Extension Chip (EEC).

• Alternatively, select the desired EEC module from the TriCore menu.

• To access MCDS specific registers, use the PER.view or the MCDS.Register command.

To find out where the registers of a component are mapped on your Emulation Device, refer to Infineon’s
TriCore ED Target Specification for the EEC’s address map.

NOTE: On TriCore AUDO, the LMU path is only used to access the EMEM for
calibration purpose. Register access is not possible, MLI has to be used
instead. For more information on accessing the EEC via MLI, refer to the
Infineon documentation.

Data.dump EEC:0xAFF40000 ; show the EMEM content of a
; TriCore TC1797ED device
 MCDS User´s Guide 76 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

Impact of Direct EEC Access

A read access to the EEC registers and memories does not have any impact on the behavior of the Product
Chip part of the SoC or the application running on it. A direct modification of the EEC registers by the user is
possible, but may have unwanted effects because:

• TRACE32 may overwrite the user’s modification at a later point of time.

TRACE32 internally caches settings for performance reasons and writes them to the target
device when required, e.g. before program execution.

• The modification may change the behavior of a setting or feature programmed by TRACE32.

TRACE32 internally keeps track of the configuration of registers it assumes under its exclusive
control. Modifications of such registers are not monitored, the behavior is unpredictable.

When directly modifying EEC resources, make sure to disable the corresponding TRACE32 feature for
avoiding any interference and unwanted effects.

Use the command MCDS.RESet, MCDS.CLEAR or MCDS.Init to discard direct modifications to MCDS
registers. Modifications to comparator registers will not be discarded if they are not used by TRACE32;
however, triggering will not have any effect any more.

Guarded MCDS Programming

MCDS experts can use the MCDS.Set commands to program the MCDS pretrigger-, event-, action- or
counter registers within the MCDS Observation Blocks or the Multi-core Cross-connect (MCX). Trigger- and
filter setups made by using this command will be remembered by TRACE32; the programmed resources will
not be overwritten. The programming made by this command are discarded by the MCDS.CLEAR or
MCDS.RESet command.

The MCDS.Set command makes sense in the following cases:

• Programming an MCDS feature that is not yet supported by TRACE32.

• Writing a trigger program that cannot be implemented by using OCTL.

• Verifying the MCDS implementation.

TRACE32 keeps track of the user’s MCDS.Set configuration and uses the resources specified by the user.
Other trace- or trigger setups, programmed later or prior to an MCDS.Set command will not use these
resources. Instead TRACE32 will try to find an alternative solution.
 MCDS User´s Guide 77 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

A summary of the used resources is displayed in the MCDS.INFO window. For each Observation Block and
the MCX, the used and available actions, cross-triggers, and counters are shown:

Timestamp Usage

When using MCDS.Set commands, automatic timestamp configuration might fail, especially when only
trace filters are programmed. In this case the timestamp programming has to be done manually, using
MCDS.Set commands.

Trigger Program Example

Let’s assume a user observes that some location in the TriCore’s local data RAM is erroneously overwritten
(TC1797ED). Setting a write-breakpoint at the corrupted location does not catch the event. Since the on-
chip breakpoints of the Product Chip only trigger on write accesses caused by the CPU, the defective write
must be triggered by some peripheral. So it is necessary to observe the Local Memory Bus.

NOTE: When routing trigger signals between the MCX and Observation Blocks, please
be aware that this routing requires one MCDS clock cycle. This means that
there will be a delay between trigger and result.

NOTE: On TriCore AUDO devices, it is not possible to generate a timestamp enable or
disable signal synchronous to the rising or falling edge of a filter. It is
recommended that only unconditional timestamps are used.

NOTE: If the device under debug, supports OCTL, then use OCTL to solve a problem
like the following one. For details, see OCTL and OCTL Example: Bus Trigger.

Without OCTL support, the following problem can only be solved with the
commands suggested in this example.
 MCDS User´s Guide 78 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

The address of the illegal write access is 0xD000A1EC:

Configure a trigger on any write access to the LDRAM location:

The information about what triggers the write access can be obtained by the LMB bus trace:

Stop TriCore execution on first illegal access:

&ldram_address="D:0xD000A1EC++0x00000003" ; address in LDRAM

MCDS.Set LMB EAddr0 &ldram_address
MCDS.Set LMB ACCess0 /Write
MCDS.Set LMB EVT0 EAddr0
MCDS.Set LMB EVT0 ACCess0
MCDS.Set LMB ACT MCX_TRG0 aisAUTO EVT0

; pretrigger on address
; pretrigger on write
; EVT0 will AND both
; pretriggers

MCDS.SOURCE NONE
MCDS.Set LMB ACT DTU_WADR aisAUTO EVT0
MCDS.Set LMB ACT DTU_WDAT aisAUTO EVT0

; disable defaults
; show details of the
; illegal LMB write

MCDS.Set LMB ACT MCX_TRG0 aisAUTO EVT0
MCDS.Set MCX EVT0 LMB_TRG0
MCDS.Set MCX ACT BREAK_OUT aisAUTO EVT0

; enable TriCore to break on MCDS event
TrOnchip.BreakOUT MCDS BreakBus0
TrOnchip.BreakIN TriCore BreakBus0
TrOnchip.EXTernal ON

; route trigger to MCX
; get trigger in MCX
; generate break signal
 MCDS User´s Guide 79 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

The information about what caused the unwanted access can be obtained from the Trace.List window. In
this case the access was caused by the debugger writing 0x12345678 to this address.

Example Scripts

For examples on how to access and configure the EEC directly and independently of TRACE32, see
demo/tricore/etc/mcds/

• emem_aurix.cmm

The script shows the access and manual configuration of the EMEM on TriCore AURIX
Emulation Devices.

• trigger_lmb_write.cmm (TC1797ED)

The script implements the above trigger program example.

NOTE: If you want the debugger to simulate a bus access, you have to write to this
location. Then use Trace.Mode.SLAVE OFF to enable the display of the
debugger accesses in the Trace.List window.
 MCDS User´s Guide 80 Advanced Emulation Device Access
©1989-2014 Lauterbach GmbH

Known Issues and Application Hints

This chapter is a summary of known issues that may arise when using MCDS. It explains the reason behind
the issues and provides solutions and workarounds. Not all workarounds may be suitable for all applications.

Concurrent Usage of OCDS-L2 Off-chip Trace and On-chip Trace

The TriCore AUDO-NG devices TC1766ED and TC1796ED provide the parallel OCDS-L2 off-chip trace and
the MCDS on-chip trace. It is possible to use both trace methods at the same time.

To avoid trigger programming conflicts, the trace filter and trigger setup will not have any effect on the off-chip
trace. The OCDS-L2 trace hardware will generate only unconditional program flow trace. Trace filter and
trigger programming will only have an impact on the MCDS on-chip trace.

TriCore AURIX devices use the AGBT high-speed serial trace as MCDS off-chip trace method. For these
devices a concurrent usage of on- and off-chip trace is not possible.

PCP Channel ID

The MCDS can use the PCP Channel ID (a single ID or a range of IDs) for

• Sampling it to the trace recording

• Triggering an event or action based on it

• Filtering trace data based on it, e.g. recording write cycles triggered by a certain trace channel
only

The MCDS derives the PCP Channel ID from the CPPN (Current PCP Priority Number), which is part of the
R6 Register. Since R6 may be used as General Purpose Register, the CPPN may contain arbitrary data. In
this case the channel ID will also have arbitrary data. Triggering on the channel ID will result in unpredictable
behavior.

Workaround for the TASKING PCP C/C++ Compiler

In case of the TASKING PCP C/C++ compiler, use the interrupt-enable compiler option to make the CPPN
available in R6:

• Command line switch:

--interrupt-enable

• IDE menu entry:

1) Select Global Options Channel Configuration.

2) Enable the option Allow channel to be interruptible.
 MCDS User´s Guide 81 Known Issues and Application Hints
©1989-2014 Lauterbach GmbH

This has the disadvantage that interrupts become interruptible. Interrupted channels will still have a wrong
channel ID when resuming because the CPPN is only stored in R6 on channel start and exit.

Additionally add the function qualifier __cppn(CPPN) to the function declaration of your channel program
to define the interrupt priority of an interruptible function:

For further information, see the TASKING PCP C/C++ compiler documentation.

No Trace Content Displayed (TriCore AUDO only)

Although TRACE32 shows that the trace buffer is filled almost completely, the Trace.List window is empty or
contains only a few samples. Instead of the record number “??????” is displayed.

The trace was configured to record only the accesses to a specific variable, no program flow. The variable is
accessed every 1 ms or even less frequent. Timestamp generation has been enabled.

The problem is in the timestamp generation, see chapter MCDS Timestamps for details:

• Ticks indicate how much time has passed since the last tick information (delta value). Ticks are
very small so they have to be generated constantly. In this trigger configuration, the events are so
far apart from each other that the trace buffer will be filled up with ticks. TRACE32 shows the
“??????” to indicate that there is information recorded that cannot be displayed directly.

• Relative timestamps can be used to provide full timestamp information. They are can be
generated on demand, e.g. when an event occurred. If this event, e.g. the access to a variable by
the core, is observed in the POB, then the resulting signal has to be routed to the MCX, where
the generation of the relative timestamp is enabled. For more information, refer to chapter MCDS
of TriCore. On TriCore AUDO this routing is delayed.

This delay in the routing is the cause why the relative timestamp would be generated after the message of
the access to the variable. The consequence would be an incorrect assignment of the timestamp. To avoid
incorrect timestamps, TRACE32 enables unconditional tick messages in this case.

Workaround: If possible, disable the generation of timestamps.

For TriCore AURIX, relative timestamps can be enabled without any delay.

void __interrupt(channel_number) __cppn(CPPN) isr(void)
{

...
}

 MCDS User´s Guide 82 Known Issues and Application Hints
©1989-2014 Lauterbach GmbH

Glossary

The glossary contains a description of the most important terms used by Infineon and Lauterbach.

Infineon Glossary

• Aurora GigaBit Trace (AGBT)

Implemented in AURIX Emulation Devices. The Xilinx Aurora protocol is used to provide the
MCDS trace data at an external trace port.

• Emulation Memory (EMEM)

Used to store the recorded trace data, e.g. as trace buffer for on-chip trace or as AGBT FIFO for
off-chip trace. Also holds calibration data.

• Emulation Device (ED)

When the Product Chip (PC) is combined with the Emulation Extension Chip (EEC), the resulting
chip is called Emulation Device (ED). The ED has all the features of the PC and the EEC.

• Emulation Extension Chip (EEC)

The Emulation Extension Chip is a silicon which is combined with the corresponding Product
Chip (PC) to form the Emulation Device (ED). Depending on the device, it adds features like
MCDS trace, trigger and filter, as well as trace- and calibration memory, on-chip trace and
additional debug features. AURIX devices also feature the AGBT off-chip trace.

• Multi-core Debug Solution (MCDS)

On-chip logic provided by the Emulation Extension Chip (EEC) to implement trace data
generation, trigger and trace filter functionality.

• On-chip Debug Solution (OCDS)

On-chip logic on the Product Chip (PC) to implement execution control as well as register and
memory access. For a definition of the OCDS levels, see chapter ”Introduction”
(debugger_tricore.pdf).

• Product Chip (PC)

The Product Chip is the silicon that is used in mass production SoCs. It has OCDS-L1 debug
functionality, older devices up to AUDO-NG also the deprecated parallel OCDS-L2 off-chip trace.

• Product Device (PD)

The Product Device is the chip used for mass production. It just contains the Product Chip
without the EEC.
 MCDS User´s Guide 83 Glossary
©1989-2014 Lauterbach GmbH

Lauterbach Glossary

• Benchmark Counter (BMC)

BMC is a TRACE32 feature that allows an easy setup for counting triggers or on-chip events, e.g.
interrupts, cache hits or misses, memory accesses. Based on the results of the individual
counters, a performance analysis can be made.

• Complex Trigger

A Complex Trigger is a trigger setup that cannot be made using the triggers and filters via the
Break.Set command e.g., a bus trigger or trigger setups requiring a state machine. For MCDS,
such complex trigger setups can be programmed using OCTL.

• Filter

A filter is a trigger setup that reduces the amount of generated trace data.

• Off-chip Trace

The chip provides the trace data by an external trace port. The amount of trace data that can be
stored depends on the external trace hardware. Currently TRACE32 tools can store up to 4 GB
on their Power Trace modules or theoretically unlimited trace data on the workstation’s hard disk
when using the streaming mode.

• On-chip Trace

The trace data generated by the chip is stored on the chip itself and later read out by the
debugger.

• Trigger and Filter via the Break.Set Command

These triggers and filters are pre-defined combinations of events and the resulting actions that
happen when the event occurs, for example a breakpoint. These triggers and filters can only be
programmed on events triggered by the CPU.
 MCDS User´s Guide 84 Glossary
©1989-2014 Lauterbach GmbH

	MCDS User´s Guide
	Introduction
	Intended Audience
	How to read this Document
	Related Documents

	Background Information
	Trace Source
	Program Trace

	Trace Sink
	Trace Filter and Trigger
	The Emulation Device Concept

	TRACE32 Support for Emulation Devices
	Feature Overview
	Target Interface
	MCDS Licensing

	MCDS Basic Features
	MCDS Concept
	MCDS of XC2000ED and C166
	MCDS of TriCore

	MCDS Configuration
	General Settings
	Timestamp Setup
	Trace Buffer Configuration
	AGBT High-speed Serial Trace
	Trace Sources
	Example: Core Trace on TriCore AURIX
	Example: Bus Trace on TriCore AUDO-MAX

	Trace Control
	Trace States
	Trace Buffer Size and Usage
	Trace Modes
	Trace Trigger Configuration
	Other Trace Configuration Features

	Basic Trace Usage
	Trigger and Filter via Break.Set command
	MCDS Breakpoints
	Trace Filter
	Examples

	Watchpoints
	Example

	Benchmark Counters
	Counting Chip-internal Signals
	Example

	Counting User-defined Events
	Example

	Trace Decoding
	Searching the Trace
	Specific Cycles
	Special Events

	Exception Decoding
	Exception Decoding Using Tables
	Exception Decoding Using DCU Messages

	Trace Limitations and Restrictions

	MCDS Unlocking

	OCTL Complex Trigger Programming
	OCTL Features
	OCTL Example: Bus Trigger

	Clock System
	EEC Clock System
	Maximum Clock Frequency
	Allowed Clock Ratios
	Verifying the Clock Setup
	Device Specific Details
	XC2000ED and C166
	TriCore AUDO-NG (TC v1.3)
	TriCore AUDO-F, AUDO-S and AUDO-MAX (TC v1.3.1)
	TriCore AUDO-MAX (TC v1.6)
	TriCore AURIX (TC v1.6.1)

	MCDS Clock System
	MCDS Sampling
	MCDS Timestamps
	Clock Counters
	Timestamp Configuration
	Example

	Timer and Periodic Trigger

	Emulation Memory
	Background Information
	EMEM Partitioning
	Memory Arrays and Tiles
	Trace Buffer Configuration
	GUI Integration
	PRACTICE Functions
	Co-operation with Third-party Usage
	Configuration Example

	Device Specific Details
	TriCore AUDO-NG
	TriCore AUDO-F
	TriCore AUDO-S and AUDO-MAX
	TriCore AURIX

	AGBT High-speed Serial Trace
	Background Information
	Xilinx Aurora
	Requirements
	AGBT Configuration
	Trace Streaming
	Limitations and Restrictions

	Advanced Emulation Device Access
	EEC Access
	EEC EMEM Access
	EEC Register Access
	Impact of Direct EEC Access

	Guarded MCDS Programming
	Timestamp Usage
	Trigger Program Example

	Example Scripts

	Known Issues and Application Hints
	Concurrent Usage of OCDS-L2 Off-chip Trace and On-chip Trace
	PCP Channel ID
	Workaround for the TASKING PCP C/C++ Compiler

	No Trace Content Displayed (TriCore AUDO only)

	Glossary
	Infineon Glossary
	Lauterbach Glossary

