
Since

SIMSCRIPT III®

Graphics Manual

CACI Products Company

Copyright © 2007 CACI Products Company.

All rights reserved. No part of this publication may be reproduced by any means without written
permission from CACI.

For product information or technical support contact:

CACI Products Company
1455 Frazee Road, Suite 700
San Diego, CA 92108
Phone: (619) 881-5806
Email: simscript@caci.com

The information in this publication is believed to be accurate in all respects. However, CACI cannot
assume the responsibility for any consequences resulting from the use thereof. The information contained
herein is subject to change. Revisions to this publication or new editions of it may be issued to incorporate
such change.

ii

Table of Contents

PREFACE ...A
1. OVERVIEW ... 1

1.1 GETTING STARTED ... 1
1.2 OBJECTS FOUND IN GUI.M... 2

2. USING ITEMS CREATED IN SIMSTUDIO.. 5
3. WINDOWS ... 7

3.1 SIZE AND POSITION... 7
3.2 CANVAS.. 7

3.2.1 Canvas Coordinates... 7
3.2.2 Background Color.. 8
3.2.3 Printing the Canvas ... 8

3.3 TITLE AND STATUS BAR ... 8
3.4 SCROLL BARS.. 9
3.5 HANDLING USER INPUT .. 9
3.6 READING MOUSE INPUT SYNCHRONOUSLY .. 10
3.7 USING A WINDOW .. 11

4. VIEW OBJECT.. 15
4.1 VIEW BOUNDARIES ... 15
4.2 COORDINATE SYSTEM FOR GRAPHIC OBJECTS ... 15
4.3 OVERLAPPING VIEWS ... 16
4.4 PAN AND ZOOM .. 16

5. GRAPHICS IN A WINDOW .. 21
5.1 DRAWING SHAPE PRIMITIVES ... 21
5.2 POINTS, STYLE, AND COLOR.. 22
5.3 LOCATION, ROTATION, AND SCALE .. 23
5.4 RESPONDING TO CLICKS ON A GRAPHIC ... 25

6. GRAPHS ... 29
6.1 GRAPH OBJECTS.. 29
6.2 METER OBJECT: GRAPH A SINGLE VARIABLE... 30
6.3 CLOCK OBJECT: SHOW THE TIME.. 32
6.4 PLOT OBJECT: SHOWING HISTOGRAMS AND TRACE PLOTS... 33

6.4.1 Histograms... 33
6.4.2 Time Trace Plots .. 37
6.4.3 X-Y Plots ... 38
6.4.4 Setting up the X and Y axes.. 40

7. ICONS ... 41
7.1 CREATING AND LOADING AN ICON.. 41
7.2 BACKGROUND ICONS.. 41
7.3 DYNAMIC ICONS ... 42
7.4 ANIMATING AN ICON OBJECT IN A SIMULATION.. 43
7.5 SIMULATION TIME AND REAL TIME.. 44
7.6 CUSTOM ANIMATION .. 45

8. FORMS.. 47
8.1 USING FORM OBJECTS... 47
8.2 DIALOGBOX OBJECT... 47

iii

8.3 USING FIELD OBJECTS FOR DATA TRANSFER ... 48
8.4 EVENT NOTIFICATION... 51
8.4 ENABLE AND DISABLE FIELDS .. 53
8.5 TREES ... 54
8.6 TABLES... 56
8.7 MENU BARS .. 57
8.8 PALETTES ... 59

iv

Preface

This document contains information on CACI's new SIMSCRIPT III, Modular Object-
Oriented Simulation Language, designed as a superset of the widely used SIMSCRIPT II.5
system for building high-fidelity simulation models. It focuses on the description of the
SIMSCRIPT III Graphics.

CACI publishes a series of manuals that describe the SIMSCRIPT III Programming
Language, SIMSCRIPT III Graphics and SIMSCRIPT III SimStudio. All documentation is
available on SIMSCRIPT WEB site http://www.caciasl.com/products/simscript.cfm

• SIMSCRIPT III Graphics Manual —this manual – is a detailed description of the
presentation graphics and animation environment for SIMSCRIPT III.

• SIMSCRIPT III User’s Manual – A detailed description of the SIMSCRIPT III
development environment: usage of SIMSCRIPT III Compiler and the symbolic
debugger from the SIMSCRIPT development studio, Simstudio, and from the
Command-line interface.

• SIMSCRIPT III Programming Manual – A short description of the programming
language and a set of programming examples.

• SIMSCRIPT III Reference Manual - A complete description of the SIMSCRIPT III
programming language constructs in alphabetic order. Graphics constructs are
described in a separate SIMSCRIPT III Graphics Manual.

Since SIMSCRIPT III is a superset of SIMSCRIPT II.5, a series of manuals and text books
for SIMSCRIPT II.5 language, Simulation Graphics, Development environment, Data Base
connectivity, Combined Discrete-Continuous Simulation, can be used for additional
information:

• SIMSCRIPT II.5 Simulation Graphics User’s Manual — A detailed description of
the presentation graphics and animation environment for SIMSCRIPT II.5

• SIMSCRIPT II.5 Data Base Connectivity (SDBC) User’s Manual — A description
of the SIMSCRIPT II.5 API for Data Base connectivity using ODBC

• SIMSCRIPT II.5 Operating System Interface — A description of the SIMSCRIPT
II.5 APIs for Operating System Services

• Introduction to Combined Discrete-Continuous Simulation using SIMSCRIPT II.5
— A description of SIMSCRIPT II.5 unique capability to model combined discrete-
continuous simulations.

• SIMSCRIPT II.5 Programming Language — A description of the programming
techniques used in SIMSCRIPT II.5.

a

http://www.caciasl.com/products/simscript.cfm

• SIMSCRIPT II.5 Reference Handbook — A complete description of the
SIMSCRIPT II.5 programming language, without graphics constructs.

• Introduction to Simulation using SIMSCRIPT II.5 — A book: An introduction to
simulation with several simple SIMSCRIPT II.5 examples.

• Building Simulation Models with SIMSCRIPT II.5 —A book: An introduction to
building simulation models with SIMSCRIPT II.5 with examples.

The SIMSCRIPT language and its implementations are proprietary program products of the
CACI Products Company. Distribution, maintenance, and documentation of the SIMSCRIPT
language and compilers are available exclusively from CACI.

Free Trial Offer

SIMSCRIPT III is available on a free trial basis. We provide everything needed for a
complete evaluation on your computer. There is no risk to you.

Training Courses

Training courses in SIMSCRIPT III are scheduled on a recurring basis in the following
locations:

San Diego, California
Washington, D.C.

On-site instruction is available. Contact CACI for details.

For information on free trials or training, please contact the following:

CACI Products Company
1455 Frazee Road, suite 700
San Diego, California 92108
Telephone: (619) 881-5806
 www.caciasl.com

b

1. Overview

SIMSCRIPT III Graphics is implemented as a set of classes supplied in a GUI.M
subsystem/module, which is part of every SIMSCRIPT III distribution.

The GUI.M module contains classes that can be used to develop a graphical user
interface for a SIMSCRIPT III model. Included is support for windows, dialog boxes,
menu bars, palettes, graphics, icons and presentation graphs.

GUI.M is an interface to SIMGRAPHICS III and supports the same collection of features
offered by the display entities and procedural interface provided in SIMSCRIPT II.5.
GUI.M supports the loading of “.sg2” files containing icons, graphs and forms created
by the SimStudio. Existing dialog boxes, icons, palettes etc. created for a SIMSCRIPT
II.5 application are fully compatible with GUI.M. This allows an application to be fully
object-oriented and to provide all the capabilities supported in SIMSCRIPT graphics.

1.1 Getting Started

Using the objects provided in GUI.M, the application constructs a hierarchy of graphical
objects. This hierarchy constructed by filing instances of GUI.M objects into sets owned
by other instances of GUI.M objects. Generally speaking, GUI.M classes are used in the
following manner:

1. Create an instance of an object found in GUI.M, or a suitably derived object.
2. Assign attributes to the instance.
3. File the instance in a set owned by another object that is to contain it.
4. Call the object methods to view or perform other tasks.

The Window object acts as a container for dialog boxes, palettes, a menu bar, as well as
graphics that appear within its canvas. More specifically, a window owns a form_set
containing objects derived from the Form and a view_set containing View objects. Form
objects include dialog boxes, menu bars and palettes that are attached to a window. View
objects represent a coordinate mapped region of the canvas of a window and act as
containers for graphs and icons.

The GUI.M module supports loading objects derived from Icon, Graph or Form classes
from the “graphics.sg2” file created by one of the SimStudio graphical editors. The
appearance attribute declared by these classes can be assigned before the object is
displayed, allowing the information saved by SimStudio to define the characteristics of
the Icon, Graph or Form .

A simple GUI application might perform the following steps:

1. Create an instance of a Window, assign its position, title attributes. Then call the
display method to show the window.

1

2. Create a View, assign its world coordinate system attributes, file it in the view_set
owned by the window.

3. Create an Icon, assign its appearnce, file it in the graphic_set owned by the view.
Then call the display method to show the icon.

The following program (Example1.sim) brings up a window to show an icon created by
the SimStudio icon editor.

''Example1.sim
preamble including the gui.m subsystems
end

main
 define my_window as Window reference variable
 define my_view as a View reference variable
 define my_icon as an icon reference variable

 ''create the window and show it on the screen
 create my_window
 let title(my_window) = "Example 1: Showing a simple icon"
 call display(my_window)

 ''create a view to hold the icons, graphics, and graphs
 create my_view
 file this my_view in view_set(my_window)

 ''create an icon, load its appearance from SimStudio
 create my_icon
 let appearance(my_icon) = Templates'find("simple icon")
 file this my_icon in graphic_set(my_view)

 ''show the icon in the canvas
 call display(my_icon)

 ''wait for user to close the window
 while 1=1
 call handle.events.r(1)
end

1.2 Objects Found in GUI.M

All objects that can be displayed on the computer screen are derived from a GuiItem
object. The diagram below shows the hierarchy. Derived objects are shown to the right
of their base classes.

2

The Form, GuiItem and Graph classes are to be used as base classes and are not meant to
be used in a create statement. The following table lists all classes defined in GUI.M.
These classes will be described in greater detail later.

Name Create Super-

classes
Belongs
In set

Description

Clock Yes Graph
Graphic
GuiItem

graphic_set A graph appearing inside a window that shows
simulation time.

Color No A utility class for creating and decomposing a
color.

DialogBox Yes Form
GuiItem

form_set Contains various data fields that can be viewed
and adjusted by the user.

Field Yes GuiItem field_set A data field contained in a dialog box, menu bar or
palette.

FillStyle Yes Defines patterns for drawing polygons, circles and
pies. Used by the Graphic class.

Form No GuiItem form_set Base class for dialog boxes, message box, menu
bar, and palette. Appearance must be defined
using SimStudio.

FormEvent No Passed to the action method during interaction
with form. Its attributes identify which data field
was clicked on or changed.

Graph No Graphic graphic_set Base class for all 2d charts, clock, dial, level

3

GuiItem meters, etc. Appearance must be defined in
SimStudio.

Graphic Yes GuiItem graphic_set Base class for all objects that can appear in the
window canvas. Can be used to draw polygons,
circles, lines, etc.

GraphicEvent No Passed to the action method when a graphic is
clicked on with the mouse.

GuiItem No Base class for all objects that can be displayed on
screen.

Icon Yes Graphic
GuiItem

graphic_set A movable icon created in the SimStudio icon
editor. Can be given a velocity and connected to a
Simulation.

LineFont Yes TextFont Predefined fonts for drawing scalable (vector
based) text. Used by the Graphic class.

LineStyle Yes Defines dash styles and widths for drawing arcs
and polylines. Used by the Graphic class.

MarkStyle Yes Defines types of markers that can be drawn. Used
by the Graphic class.

MessageBox Yes Form
GuiItem

form_set Simple dialog box that can be defined at runtime
or by SimStudio. Includes predefined response
buttons.

Meter Yes Graph
Graphic
GuiItem

graphic_set Graph that shows a single numerical value.

Palette Yes Form
GuiItem

form_set A palette or control panel attached to an edge of
the window containing rows of buttons. The
buttons can be toggled or dragged onto the canvas.
Derived objects can override the action method to
receive immediate notification of user input.

PieChart Yes Graph
Graphic
GuiItem

graphic_set A pie shaped graph representing a 1-dim array.

Plot Yes Graph
Graphic
GuiItem

graphic_set A 2-d chart that can display a histogram or trace
plot.

SystemFont Yes TextFont Contains font name, italic, point_size for drawing
non-scalable “raster” text. Used by the Graphic
class.

Template No An instance corresponds to an Icon, Graph or
Form appearance as defined in SimStudio. The
instance can be returned using the Templates’find
method.

Templates No Utility class for reading files created by
SimStudio. Creates a template for each graphical
item saved in SimStudio.

TextFont No Base class for both LineFont and SystemFont
classes.

View Yes Graphic
GuiItem

view_set Defines a coordinate system as well as a holding
area for Graphic objects. It can occupy a
rectangular region in the canvas.

Window Yes GuiItem A resizable, scrollable window containing graphics
and forms.

WindowEvent No Passed to the action method of a Window when
user does a click, drag, or adjusts the scrollbar.

4

2. Using Items Created in SimStudio

In SIMSCRIPT III icons, graphs, and forms are designed in one of the SimStudio
graphical editors. Definitions created by the graphics editors are saved in a file with the
extension “.sg2”. (When a new project is created, a default file named “graphics.sg2” is
created for the project). GUI.M provides a way for the application to load these saved
definitions and associate them with an existing object. An instance of a Template object
will represent the saved definition of a icon, graph, or form. A template instance can be
assigned to the appearance attribute of any object derived from Icon, Graph or Form.

Template objects are not created in the application code, but instead are returned by the
find method of a utility class called Templates. This class acts as a manager of templates
that have been read into the application from the “.sg2” file saved by SimStudio. During
initialization, the “graphics.sg2” file will be loaded automatically. At this time all icon,
graph and form definitions from this file will be stored in memory. The Templates’find
method can then be called to return a template. This method takes as its only argument
the name given to the item in SimStudio.

The Templates’read_sg2 method allows the application to read any “.sg2” file saved by
SimStudio. In the following example, three identical icons are shown in a window. A
template for these icons is obtained by the Templates class. The icons are saved in the
file “Example2.sg2” which is read by the Templates class.

''Example2.sim

preamble including the gui.m subsystems
end

main
 define window as Window reference variable
 define view as a View reference variable
 define dialog as a Dialogbox reference variable
 define icon1, icon2, icon3 as Icon reference variables
 define car_template, dialog_template as Template reference variables

 ''tell the template manager to load everything in "Example2.sg2"
 call Templates'read_sg2("Example2.sg2")

 ''get the templates to be used from the template manager
 let car_template = Templates'find("car icon")
 let dialog_template = Templates'find("quit dialog")

 ''create the window and show it on the screen
 create window
 let title(window) = "Example 2: Interfacing with SimStudio"
 call display(window)

 ''create a view to hold the icons
 create view
 file this view in view_set(window)

 ''create 3 icons

5

 create icon1, icon2, icon3

 ''set the template of each icon
 let appearance(icon1) = car_template
 let appearance(icon2) = car_template
 let appearance(icon3) = car_template

 file this icon1 in graphic_set(view)
 file this icon2 in graphic_set(view)
 file this icon3 in graphic_set(view)

 ''show the icons in the canvas
 call display_at(icon1)(5000.0, 15000.0)
 call display_at(icon2)(15000.0, 15000.0)
 call display_at(icon3)(25000.0, 15000.0)

 ''show a simple dialog box
 create dialog
 let appearance(dialog) = dialog_template
 file this dialog in form_set(window)

 ''wait for user to hit any button in the dialog
 call accept_input(dialog)
end

6

3. Windows

The Window class in GUI.M allows the application to create independent windows, each
having optional scroll bars, an optional status bar and a title. Subclassing a window and
overriding the action method allows the application to be notified immediately of user
interaction with the scrollbars, or of mouse input events.

Objects derived from GuiItem must either be attached to the window, or attached to
another object that is itself attached to a window. An object can be attached by filing it
into one of the sets owned by a Window. Objects derived from Form (dialog boxes,
menu bar, palette) must be filed into the form_set. Another set owned by window called
the view_set contains View objects (which in turn contains objects derived from Graphic
such as the Icon and Graph).

Before being displayed assignment of the window’s properties should be made. Note that
even though some properties might be specifically defined as “methods”, the expression
referring to the property can be used on the left of the assignment operator (SIMSCRIPT
III allows this). The display method should be called to make the window visible.

3.1 Size and Position

The position_xlo, position_ylo, position_xhi, and position_yhi properties will specify the
geometry of the window. Coordinate values applied to these attributes should range
from 0 to 32767. The point (0,0) defines the lower left corner of the computer screen,
and (32767,32767) marks the upper right corner. Window size and position
specifications include title bar, border and menu bar, (a window whose position_yhi is
16383 will NOT overlap another window whose polsition_ylo is 16383).

3.2 Canvas

The “canvas” of a window is the rectangular area inside the frame. This represents the
drawing area for the application. Instances of View objects can appear in the canvas by
filing them into the view_set owned by the Window object. Each View encompasses a
rectangular section of the canvas and in turn contains Graphic objects (animated icons,
backgrounds, and presentations graphs, etc.). See chapter 4### for more information on
using the View.

3.2.1 Canvas Coordinates

7

Each View defines a coordinate system for the objects it contains. The View objects
themselves obey a fixed “canvas” coordinate system. The canvas coordinate system is
always square, and (0,0) is mapped to the lower left corner of the canvas, while
(32768,32768) maps to the upper right corner (if the window is square). The window,
however, may be sized to be non-square by the user. There are three choices as to how
to map the square canvas coordinates to a rectangular window canvas. The crop_mode
property can be assigned to one of the following values:
crop_none: Canvas coordinates will occupy the largest centered square within the
canvas. All of coordinate system will be visible, but there may be gaps at the ends
depending on how tall or wide the window is made.
crop_top: The maxium “x” coordinate (32768) is fixed to the right border. The top
portion of the canvas coordinates will not be visible if the window is wider than it is tall.
crop_bottom: The maxium “y” coordinate (32768) is fixed to the top border. The right
portion of the canvas coordinates will not be visible if the window is taller than it is
wide.
The get_viewable_area method can be called to discover the visible canvas coordinate
space in the window.

3.2.2 Background Color

The default background color for the window canvas is black. The color property of the
window can be assigned to change the background color. A suitable color value can be
returned from Color’RGB method. For example, to set the background color to red:

 let color(my_window) = Color’rgb(1.0, 0.0, 0.0)

3.2.3 Printing the Canvas

The print method can be called to send the entire graphical content of the canvas to a
printer. Pass “1” to the method to show a dialog box which allows the user to set
printing options.

3.3 Title and Status Bar

A title bar is included at the top of every window. The title property can be assigned to
change the text displayed in the title bar. A status bar can be shown at the bottom of the
window frame. The status bar is composed of several panes, each containing a short
text message that can be set at runtime.
The status_pane_count property must be set to a non-zero integer to enable the status
bar. Each pane in the status bar should be assigned a width (in characters) using the

8

status_pane_width property. The width of the first pane is determined automatically
based on the width of the window. Therefore, the width specification for the first status
pane (i.e. status_pane_width(window)(1)) is always ignored. The status_pane_text
property sets the text in an individual pane.

3.4 Scroll bars

Both horizontal and vertical scroll bars can be displayed in a window. Scroll bars can
provide a natural mechanism for panning across a scene too large to fit inside the
boundaries of your window. This is common after zooming into a rectangular section of
the canvas. To create the scrollable window, set the scrollable_h and/or scrollable_v
properties to “1 before displaying the window.
You can set the width of a scroll bar thumb before or after the window has been
displayed. This is accomplished via the thumb_size_h and thumb_size_v properties.
These values should range from 0.0 to 1.0. This represents the percentage of the total
scroll bar area you wish the thumb to occupy. If the scroll bars are used for pan and
zoom, the thumb size should be equal to the ratio of viewable area to total area.
The thumb_pos_h and thumb_pos_v attributes hold the distance between the thumb and
the left (or top) of the scroll bar. Possible values for thumb_pos_h and thumb_pos_v are
in the range [0.0 .. 1.0- thumb_size_h] and [0.0 .. 1.0- thumb_size_v], respectfully.

3.5 Handling User Input

When a user resizes, moves, scrolls, or closes a window, it may be necessary for the
program to take some sort of action. For example, if the user moves a scroll bar, you
may want to "pan" the contents of the window. Applications needing to implement
asynchronous notification should subclass the Window object and override the action
method. This method is called automatically whenever the user moves or clicks in the
window. Code can then be provided in this method to handle the event.

The action method takes a WindowEvent as a parameter. The id attribute of the
WindowEvent indicates the type of event. The id will contain one of the constants
defined in the WindowEvent class. The WindowEvent object holds additional event
specific data that can be utilized by the action method. The following table lists the id
constants, a description of the particular action, and which WindowEvent attributes can
be used by the application.

9

EVENT ID CAUSE OF EVENT EVENT ATTRIBUTES USED
_activate Window has been brought to

the front of all other
windows.

_close Window has been closed.
(User clicked on the “X” in
the upper corner.)

button_down 1 => click down
0 => click up

button_number 1 => left mouse button
2,3 => middle/right button

click_count 1 => single click
2 => double click

_mouse_click User has clicked up or down
inside the window canvas
with any button. Also called
after a double-click.

x,y Location of click in NDC
coordinates range [0..32768].

_mouse_move User has moved the mouse
inside the window canvas.

x,y Location of mouse in NDC
coordinates range [0..32768].

_reposition The window has been
dragged to a new location.

x,y Location in screen
coordinates. Range is
[0..32768]

_resize The window has been
resized.

x,y Size in screen coordinates.
Range is [0..32768].

_scroll_x The horizontal scroll bar has
been used.

x Location of horiz. Thumb.
Range is [0..1].

_scroll_y The vertical scroll bar has
been used.

y Location of vert. Thumb.
Range is [0..1].

3.6 Reading Mouse Input Synchronously

Input from a Window object can also be handled synchronously. The method
accept_input blocks execution until the user clicks in the canvas of the window. An
anchored rubber band cursor which tracks the pointer can be shown. accept_input
yields both the (x,y) coordinates of the mouse click, and a pointer to the View that was
clicked in. These coordinates are bounded by the coordinate system assigned to the
yielded View.
accept_input parameters include the (x,y) location (in NDC coordinates) of the anchor
point of the cursor as well as an integer representing the cursor style. Available cursors
are shown in the table below.

10

CONSTANT DESCRIPTION
_cursor_none Do not show a cursor.
_cursor_line Show a rubber band line anchored at the given anchor point. The line is

updated automatically as the mouse is moved.
_cursor_box Show a rubber band box anchored at the given anchor point. The corner of

the box is updated automatically as the mouse is moved.
_cursor_icon Use this cursor style if a Graphic object should be moved with the mouse.

The object should be provided as a parameter.

3.7 Using a Window

If the full features of a Window need to be employed in the application, the following
steps should be taken into account:

1. In your preamble, subclass the Window object and override its action method.
2. In the action method, write code to check the id attribute of the given

WindowEvent and respond accordingly.
3. In the program initialization, create your Window object and assign properties

such as position, title etc.
4. Add instances of View object(s) to the view_set. Add Graphic object(s) to the

graphic_set owned by the View.
5. Call the display method to show the window. Objects filed into the view_set

will also be shown.
The following example shows a window with scroll bars and a status bar. In this
example the action method is overridden, allowing the events and associated data to be
reported through a dialog box.

''Example3.sim
''This example displays a window containing a status bar, scroll bars
''and a background image. Mouse and scroll bar interaction is reported
''immediately via a small dialog box.

preamble including the gui.m subsystem

''subclass the Window and override the action method

begin class MyWindow
 every MyWindow is a Window,
 overrides the action
end

define my_dialog as a DialogBox reference variable

end

''Action will be called upon user interaction with the window controls

11

''and with the mouse.
''Use a dialog box to list the WindowEvent attributes as user interacts
''with the window.
method MyWindow'action(event)

 let selected(find(my_dialog)("button_down")) = button_down(event)
 let value(find(my_dialog)("button_number")) = button_number(event)
 let value(find(my_dialog)("click_count")) = click_count(event)
 let value(find(my_dialog)("x")) = x(event)
 let value(find(my_dialog)("y")) = y(event)

 select case id(event)
 case WindowEvent'_activate
 let string(find(my_dialog)("id")) = "_activate"
 case WindowEvent'_close
 let string(find(my_dialog)("id")) = "_close"
 case WindowEvent'_mouse_click
 let string(find(my_dialog)("id")) = "_mouse_click"
 case WindowEvent'_mouse_move
 let string(find(my_dialog)("id")) = "_mouse_move"
 case WindowEvent'_reposition
 let string(find(my_dialog)("id")) = "_reposition"
 case WindowEvent'_resize
 let string(find(my_dialog)("id")) = "_resize"
 case WindowEvent'_scroll_x
 let string(find(my_dialog)("id")) = "_scroll_x"
 case WindowEvent'_scroll_y
 let string(find(my_dialog)("id")) = "_scroll_y"
 endselect

 call display(my_dialog)

 return with 1
end

main
 define my_window as a MyWindow reference variable
 define my_view as a View reference variable
 define my_icon as an Icon reference variable

 create my_window

 ''for non-square window, crop the top portion
 let crop_mode(my_window) = Window'_crop_top

 ''Place the window on the right side of screen
 let position_xlo(my_window) = 8000
 let position_ylo(my_window) = 2000
 let position_xhi(my_window) = 32768
 let position_yhi(my_window) = 32768

 ''Make the window scrollable in both the horizontal and
 ''vertical directions
 let scrollable_h(my_window) = 1
 let scrollable_v(my_window) = 1

 ''Make the thumbs 10% the size of the scroll bar.
 ''Position the top/left of the thumb to the 50% position.
 let thumb_size_h(my_window) = 0.10
 let thumb_size_v(my_window) = 0.10
 let thumb_pos_h(my_window) = 0.5
 let thumb_pos_v(my_window) = 0.5

12

 ''Specify 3 status bar panes. Set the pane sizes to hold
 ''text strings 10, and 15 characters respectfully.
 ''(The width of pane 1 is determined automatically)
 let status_pane_count(my_window) = 3
 let status_pane_width(my_window)(2) = 10
 let status_pane_width(my_window)(3) = 15
 let status_pane_text(my_window)(1) = "Pane 1 text"
 let status_pane_text(my_window)(2) = "Pane 2 text"
 let status_pane_text(my_window)(3) = "Pane 3 text"

 ''set the text displayed on the title bar
 let title(my_window) = "Example 3: A full featured window"

 ''create a view to appear in the window
 create my_view
 file this my_view in view_set(my_window)

 ''create an icon to appear in the view
 create my_icon
 let appearance(my_icon) = Templates'find("background")
 file this my_icon in graphic_set(my_view)

 ''display window and contents of canvas
 call display(my_window)

 ''dialogs are explained later
 create my_dialog
 let appearance(my_dialog) = Templates'find("example3 dialog")
 file this my_dialog in form_set(my_window)
 call display(my_dialog)

 while visible(my_dialog) <> 0
 call handle.events.r(1)
end

13

4. View Object

Each instance of a View object occupies a rectangular sub-region of the canvas. This
feature allows multiple views to share the same canvas. A view should be “added” to a
window canvas by filing it into the view_set owned by the window. Since the View
object is derived from GuiItem, the display and erase methods can be used to show or
hide all objects in the view_set.

4.1 View boundaries

The region occupied by the view is defined by calling the set_boundaries method.
Arguments to set_boundaries specify a rectangle in the canvas and are given in window
canvas coordinates (range: 0 to 32768).

call set_boundaries(view)(xlo, xhi, ylo, yhi)

The default boundaries for a view will encompass the entire window canvas (i.e. xlo=0,
xhi=32768, ylo=0, yhi=32768). If the view should take up the entire window canvas,
then it is not necessary to call set_boundaries.

4.2 Coordinate System for Graphic Objects

Each view also defines a coordinate system, of which applies to the Graphic objects filed
into its graphics_set. All Graphic objects contained by the view will be positioned and
scaled in size relative to this world coordinate system. The set_world method is called to
provide the range of coordinates to the View object.

call set_world(view)(xmin, xmax, ymin, ymax)

There are no restrictions on the magnitude of these coordinates. However, if using an
Icon object loaded from the SimStudio icon editor, the world coordinate system defined
by the view should match the “SETWORLD.R parameters” found in the “Icon
Properties” dialog box.

15

4.3 Overlapping Views

If two overlapping View objects occupy the same canvas, the stacking order is always
defined by the ordering of the views in the view_set owned by the window. View objects
filed last in the set will appear on top. All Graphic objects filed into a view obey the
stacking order defined by the view, in other words objects contained by different views
will not be shown interleaved.

4.4 Pan and Zoom

The set_world method can be used to implement panning and zooming for a background.
A pan can be implemented by shifting the boundaries of the coordinate system to the left
to pan left, and to the right to pan right. Specifying a smaller range of coordinate
boundaries will appear to “zoom in”. In the following figure, a scene showing an original
coorinate system of xmin=0, xmax=1000, ymin=0, ymax=1000 is zoomed by specifying
a new coordinate system of xmin=300, xmax=700, ymin=500, ymax=900.

16

The following example shows a window with horizontal and vertical scrollbars. A View
object containing a background is placed inside the canvas. When the user clicks in the
canvas with the left mouse button, the view is “zoomed in” by a factor of 2. The click
location is used as a center point for the zoom operation. Clicking with the right mouse
button will zoom out all the way. Moving the scroll bars will “pan” the zoomed scene in
the direction of the thumb movement. Both pan and zoom operations are implemented
with the View’set_world method.

''Example4.sim
''This example displays a window containing scroll bars
''and a background image. Moving the scroll bar thumbs will pan,
''clicking with the left mouse button will zoom in, clicking with the
''right mouse button will zoom out all the way.

preamble including the gui.m subsystem

''subclass the Window and override the action method

begin class MyWindow
 every MyWindow is a Window, and
 overrides the action
end

begin class MyView
 every MyView is a View and has
 a zoom_factor,
 a zoom method,
 a pan method
 define zoom as a method given
 1 double argument, ''zoom factor
 2 double arguments ''center of zoom area

17

 define pan as a method given
 2 double arguments ''x,y position of world
 define zoom_factor as a double variable
end

''globals and constants
define scene_xlo=0, scene_ylo=0, scene_xhi=1000, scene_yhi=1000 as constants
define theWindow as a MyWindow reference variable
define theView as a MyView reference variable

end ''preamble

''"Action" will be called upon user interaction with scroll bars and
''the mouse.

method MyWindow'action(event)
 define view_x, view_y as double variables

 ''if user clicks down on the left mouse button, zoom into that spot
 ''each click will zoom in by a factor of 2
 if id(event) = WindowEvent'_mouse_click and button_down(event) <> 0 and
 button_number(event) = 0
 call get_view_xy(x(event), y(event)) yielding view_x, view_y, view
 call zoom(theView)(zoom_factor(theView) * 2, view_x, view_y)
 always

 ''if user clicks down on the right mouse button, zoom out
 if id(event) = WindowEvent'_mouse_click and button_down(event) <> 0 and
 button_number(event) <> 0
 call zoom(theView)(
 1.0, (scene_xhi-scene_xlo) / 2.0, (scene_yhi-scene_ylo) / 2.0)
 always

 ''handle scroll bar movement by user. This will cause the
 ''scene to pan
 if id(event) = WindowEvent'_scroll_x or id(event) = WindowEvent'_scroll_y
 call pan(theView)(
 x(event) * (scene_xhi-scene_xlo) + scene_xlo,
 y(event) * (scene_yhi-scene_ylo) + scene_ylo)
 always

 return with 0
end

''This method uses the "set_world" method of the View object to
''zoom in and out.

method MyView'zoom(factor, cx, cy)
 define sizex, sizey as double variables

 let zoom_factor = factor
 let sizex = (scene_xhi - scene_xlo) / factor;
 let sizey = (scene_yhi - scene_ylo) / factor;

 ''setting a new world will zoom in or out
 call set_world(cx - sizex / 2.0, cx + sizex / 2.0,
 cy - sizey / 2.0, cy + sizey / 2.0)

 ''update the scroll bar thumb size and position
 let thumb_size_h(theWindow) = 1.0 / factor
 let thumb_size_v(theWindow) = 1.0 / factor
 let thumb_pos_h(theWindow) =
 ((world_xlo - scene_xlo) / (scene_xhi - scene_xlo))

18

 let thumb_pos_v(theWindow) =
 (scene_yhi - world_yhi) / (scene_yhi - scene_ylo)
 call display(theWindow)
end

''This method uses the "set_world" method of the View object to
''pan left, right, up and down.

method MyView'pan(x, y)
 ''to show the effect of panning, change the world boundaries
 call set_world(
 scene_xlo + x, scene_xlo + x + (world_xhi-world_xlo),
 scene_yhi - y - (world_yhi-world_ylo), scene_yhi - y)
end

main
 define theIcon as an Icon reference variable

 create theWindow

 ''for non-square window, crop the top portion
 let crop_mode(theWindow) = Window'_crop_top

 ''Make the window scrollable in both the horizontal and
 ''vertical directions
 let scrollable_h(theWindow) = 1
 let scrollable_v(theWindow) = 1

 ''set the text displayed on the title bar
 let title(theWindow) = "Example 4: Implementing Pan and Zoom"

 ''create a view to appear in the window
 create theView
 let zoom_factor(theView) = 1
 call set_world(theView)(scene_xlo, scene_xhi, scene_ylo, scene_yhi)
 file theView in view_set(theWindow)

 ''create an icon to appear in the view
 create theIcon
 let appearance(theIcon) = Templates'find("floor.icn")
 file theIcon in graphic_set(theView)

 ''display window and contents of canvas
 call display(theWindow)

 while visible(theWindow) <> 0
 call handle.events.r(1)
end

19

5. Graphics in a Window

The GUI.M module allows the application to not only animate icons created in
SimStudio, but also custom defined graphics. The Graphic object provides the base class
for all objects that can both appear in the canvas, and can be composed of a group of
shape primitives. This includes the Icon and Graph objects. In order to draw into a
window, the Window object must contain at least one View object (filed into its view_set).
A Graphic object can then be made to appear inside a particular window by filing it into
the graphic_set owned by one of the View objects belonging to the window. The Icon
object inherits the capabilities of the Graphic, but can be constructed off-line in the
SimStudio Icon editor. Icons can also be animated, in other words they can have a
velocity and/or movement which is linked to the advancing simulation time.

5.1 Drawing Shape Primitives

Using the methods and attributes of the Graphic object, the application can draw groups
of shape primitives and position them in the View. The shapes can also be rotated and
scaled. Each shape has a unique color. “Style” objects can be created and are used in
conjunction with draw methods to specify text font, line width, hatch styles, etc. The
following table shows which shapes can be drawn:

21

Method name Description
draw_arc Draws a semi-circular arc. The points array should contain 3 points.

The first point is the center, the second point is any point on the
circumference and marks the starting point of the arc. The arc is drawn
counter-clockwise to the third point.

draw_circle Draws a circle. The points array should contain 2 points. The first point
identifies the center of the circle, the second is any point on the
circumference.

draw_polygon Adds an n-sided polygon to the icon. The first dimension of the points
argument selects the X or Y coordinate. The second dimension contains
the point number.

draw_polyline Adds an n-point connected line segment to the graphic. First and last
points are not connected. (Format of points array is identical to
draw_polygon)

draw_polymark Adds point markers to the Graphic object. (Format of points array is
identical to draw_polygon)

draw_pie Draws a filled pie slice. The first point is the center, the second point is
any point on the circumference and marks the starting point of the slice.
The slice is drawn counter-clockwise to the third point.

draw_text Draws a text string using the attributes given in the TextStyle argument.
A single point should be provided in the points array which specifies the
starting point for the drawing the string.

All calls to drawing methods made by a Graphic object instance should be bracketed by a
call to the begin_drawing method and the end_drawing method. The begin_drawing
method will eliminate all shapes previously drawn. The end_drawing method marks the
end of a sequence of calls to draw_ methods.

5.2 Points, style, and color

A 2-dim array of doubles is used to represent the points defining the shape of the draw
primitive. In this array, the first index defines which of the coordinate (x or y) the value
refers to. The second index is the point number. For example, to create an array of
points for a triangle formed by the verticies (-50,-50), (50,-50), (0,50) use the following
code:

Reserve points(*,*) as 2 by 3
let points(1,1) = -50 let points(2,1) = -50 ‘‘south west corner
let points(1,2) = 50 let points(2,2) = -50 ‘‘south east corner
let points(1,3) = 0 let points(2,3) = 50 ‘‘north corner

Style objects can be created, initialized and passed as an argument to the drawing
methods. If a “0” is passed instead of the style object, default values are used. As a
convenience, the built in global value for each style object is created automatically. (For
example, the global variable name FillStyle can be passed directly to draw_polygon
without being created by the application.)

22

Style Object Drawing

methods
Attribute Possible values

FillStyle draw_circle
draw_polygon
draw_pie

pattern _hollow, _solid, _narrow_diagonal,
_medium_diagonal, _wide_diagonal,
_narrow_crosshatch, _medium_crosshatch,
_wide_crosshatch (default=_hollow)

pattern _solid, _long_dash, _dotted, _dash_dotted,
_medium_dash, _dash_dot_dotted, _short_dash,
_alternate (default = _solid)

LineStyle draw_arc
draw_polyline

width integer in Canvas coordinates (default=0)
type _dot, _cross, _asterisk, _square, _x, _diamond

(default=dot)
MarkStyle draw_polymark

size Integer size in Canvas units. (default=500)
font _basic, _simple, _roman, _bold_roman, _italic,

_script, _greek, _gothic, (default= _basic)
angle Integer rotation of text in 0 to 360 degrees.

(default=0)

LineFont draw_text

size Height of text characters in Canvas coordinate units.
(default=560).

bold 1 to indicate a bold face. 0 indicates plain.
direction _right=0, _up, _left, _down
family Name of font face. i.e. "Arial", "Courier", etc...

(default is system dependant)
italic 1 to indicate an italic face, 0 for non-italics

SystemFont draw_text

point_size Size in points of the text. (default =12)

All drawing methods accept a color argument that can be used to paint the primitive.
Colors are stored as integer values, but are generally specified as percentages of red,
green, and blue components (range 0.0 to 1.0). The Color class provided class methods
that can convert between this single integer value and the three RGB components. The
Color’rgb method returns a color value given its RGB components. This value can be
passed to a drawing method. The Color’red, Color’green and Color’blue methods return
the RGB component value of a color value.

For example, to draw a dark green solid triangle (using the points supplied above):

call begin_drawing(myGraphic)
let pattern(FillStyle) = FillStyle’_solid
call draw_polygon(myGraphic)(points, Color’rgb(0.0, 0.5, 0.0), FillStyle)
call end_drawing(myGraphic)

5.3 Location, Rotation, and Scale

Using the location, rotation, and scale attributes allows several different Graphic object
instances to share the same “points” but still be shown in different locations with a
different geometry. A Graphic object is positioned relative to the coordinate system
assigned to the View object that it is attached to. The location_x and location_y

23

properties contain the “x” and “y” offset to the center of the graphic (0,0) from the (0,0)
coordinate in the View that the Graphic is filed into.

Setting the rotation property of a Graphic object will rotate all shapes drawn into the
object counter-clockwise about the (0,0) point. The angle is specified in radians. The
position of drawn text will be rotated, but the text itself will remain horizontal.

A scale factor can be applied to a Graphic object as well. All points in the drawn shapes
are multiplied by this factor before the Graphic object is displayed. Setting the scale
property to a value between 0 and 1 will therefore make the object smaller while values
greater that 1 will make it big.

In the following example, a green triangle is drawn into a view with the coordinate
system (xlo=0,ylo=0, xhi=100, yhi=100). The triangle is rotated and scaled continuously
to make it appear to be “spinning away” from the viewer.

''Example5.sim
''This example shows a spinning triange created by program code only.

preamble including the gui.m subsystem
end

main

define theWindow as a Window reference variable
define theGraphic as a Graphic reference variable
define theView as a View reference variable
define points as a 2-dim double variable

create theWindow
let title(theWindow) = "Example 5: Location, Rotation and Scale"

''create a view to appear in the window
create theView
call set_world(theView)(0, 100, 0, 100)
file theView in view_set(theWindow)

''create the points necessary to define the triangle
''design points so that (0,0) is the center of the triangle
Reserve points(*,*) as 2 by 3
let points(1,1) = -50 let points(2,1) = -50 ''south west corner
let points(1,2) = 50 let points(2,2) = -50 ''south east corner
let points(1,3) = 0 let points(2,3) = 50 ''north corner

''create the graphic to hold the triangle
create theGraphic

''start the drawing, draw the polygon, then end the drawing
call begin_drawing(theGraphic)
let pattern(FillStyle) = FillStyle'_solid
call draw_polygon(theGraphic)(points, Color'rgb(0.0, 0.5, 0.0),
FillStyle)
call end_drawing(theGraphic)

''put the graphic in the middle of the View
let location_x(theGraphic) = 50.0
let location_y(theGraphic) = 50.0

24

file theGraphic in graphic_set(theView)

''display window and contents of canvas
call display(theWindow)

''loop until the user dismisses the window
while visible(theWindow) <> 0 and scale(theGraphic) > 0.01
do
 ''update rotation and scale with each loop
 let rotation(theGraphic) = rotation(theGraphic) + 0.02
 let scale(theGraphic) = scale(theGraphic) * 0.999

 call display(theGraphic) ''redisplay after changes to geometry

 call handle.events.r(0) ''handle any mouse events
loop

end

5.4 Responding to Clicks on a Graphic

Occasionally, the application will need to allow the user to click on a Graphic object
while the simulation is running. The program can then for example display a dialog box
containing information about the object, or perform other actions in response to the
selection.
To allow users to click on a Graphic object, a new class must be derived from Graphic
and the action method should be overridden, as is shown here:

preamble including the gui.m subsystem

begin class MyGraphic
 every MyGraphic is a Graphic and overrides the action
end

end

method MyGraphic’action(event)
 write as “MyGraphic was selected!”, /
end

Note that the “event” argument is not used here. It has been included as a formal
parameter to the action method for future enhancements. The following is a complete
example showing the seven different shapes that can be created with the Graphic object.
Graphic objects in this program can be clicked on.

''Example6.sim
''This example shows a all the different shapes that can be
''created using the Graphic object. Clicking on a shape with
''the mouse will display it.

preamble including the gui.m subsystem
 begin class MyGraphic
 every MyGraphic is a Graphic and has
 a name, and
 overrides the action
 define name as a text variable
 end
 define theWindow as a Window reference variable

25

 define theView as a View reference variable
 define message_graphic as a Graphic reference variable
end

method MyGraphic'action(event)
 define points as a 2-dim double variable

 ''create a little message that will show the name of the object
 call begin_drawing(message_graphic)
 reserve points(*) as 2 by 1
 let points(1,1) = 250.0
 let points(2,1) = 950.0
 call draw_text(message_graphic)(points, Color'_white, 0,
 name + " was selected")
 call end_drawing(message_graphic)
 call display(message_graphic)
 release points
 return with 0
end

main
 define aGraphic as a MyGraphic reference variable
 define points as a 2-dim double variable

 create theWindow
 let title(theWindow) = "Example 6: Shapes that a Graphic object can draw"

 ''create a view to appear in the window
 create theView
 call set_world(theView)(0, 1000, 0, 1000) ''world from 0 to 1000
 file theView in view_set(theWindow)

 ''create a message to appear when objects are clicked on
 create message_graphic
 file this message_graphic in graphic_set(theView)

 ''1) draw a square polygon. First, define points, style
 Reserve points(*,*) as 2 by 4 ''define corner points
 let points(1,1) = 100 let points(2,1) = 800
 let points(1,2) = 200 let points(2,2) = 800
 let points(1,3) = 200 let points(2,3) = 900
 let points(1,4) = 100 let points(2,4) = 900

 ''now create a "MyGraphic" instance.
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "blue polygon"
 call begin_drawing(aGraphic)
 let pattern(FillStyle) = FillStyle'_solid
 call draw_polygon(aGraphic)(points, Color'rgb(0,0,1.0), FillStyle)
 let pattern(FillStyle) = FillStyle'_hollow
 call draw_polygon(aGraphic)(points, Color'_cyan, FillStyle)
 call end_drawing(aGraphic)

 ''2) draw a polyline. Use the same points as above
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "red polyline"
 call begin_drawing(aGraphic)
 let pattern(LineStyle) = LineStyle'_long_dash
 call draw_polyline(aGraphic)(points, Color'rgb(1.0,0,0), LineStyle)
 call end_drawing(aGraphic)
 let location_x(aGraphic) = 350 ''shift position of this shape

26

 ''3) draw a polymark. Use the same points as above
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "green polymark"
 call begin_drawing(aGraphic)
 let type(MarkStyle) = MarkStyle'_diamond
 let size(MarkStyle) = 600
 call draw_polymark(aGraphic)(points, Color'rgb(0,1.0,0), MarkStyle)
 call end_drawing(aGraphic)
 let location_x(aGraphic) = 700 ''shift position of this shape

 ''4) draw an arc. define center, start, and end points
 release points
 Reserve points(*,*) as 2 by 3 ''define arc points
 let points(1,1) = 150 let points(2,1) = 150 ''center
 let points(1,2) = 200 let points(2,2) = 200 ''start pt on arc
 let points(1,3) = 100 let points(2,3) = 200 ''end pt on arc

 ''now create a "MyGraphic" instance.
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "cyan arc"
 call begin_drawing(aGraphic)
 let pattern(LineStyle) = LineStyle'_solid
 call draw_arc(aGraphic)(points, Color'_cyan, LineStyle)
 call end_drawing(aGraphic)

 ''5) draw a pie. Reuse the same points
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "majenta pie"
 call begin_drawing(aGraphic)
 let pattern(FillStyle) = FillStyle'_narrow_diagonal
 call draw_pie(aGraphic)(points, Color'_majenta, FillStyle)
 call end_drawing(aGraphic)
 let location_x(aGraphic) = 350 ''shift position of this shape

 ''6) draw a circle. Reuse the same points
 create aGraphic
 file this aGraphic in graphic_set(theView)
 let name(aGraphic) = "yellow pie"
 call begin_drawing(aGraphic)
 let pattern(FillStyle) = FillStyle'_wide_crosshatch
 call draw_circle(aGraphic)(points, Color'_yellow, FillStyle)
 call end_drawing(aGraphic)
 let location_x(aGraphic) = 700 ''shift position of this shape

 ''display window and contents of canvas
 call display(theWindow)

 ''loop until the user dismisses the window
 while visible(theWindow) <> 0
 call handle.events.r(1) ''handle any mouse events
end

27

6. Graphs

This chapter describes features of the SIMSCRIPT III language which support both the
display of numerical information in a variety of static and dynamic chart formats, and
the representation of changing values using a variety of graphs. Several classes are
provided in GUI.M that can be created by the application and used to display a specially
defined variable or attribute. (These classes will be referred to as “graph” objects since
they are derived from a common object named Graph.) Graph objects are constructed
in SimStudio, and loaded into the program at runtime.

All Graph object contain methods that can be called to update the value shown in the
graph. However, the display variables and dynamic histograms described in
SIMSCRIPT II.5 are supported in SIMSCRIPT III. SIMSCRIPT III also allows for
object attributes and class attributes to be declared as a DISPLAY variable or as a
DYNAMIC HISTOGRAM. This means that as the attribute or histogram can be
“hooked up” to a Graph object such that the magnitude shown in the graph
automatically reflects the current value of the attribute. This lifts the necessity for the
programmer to locate every assignment of the attribute (both direct and indirect) then
make a method call to update the value shown in graph.

6.1 Graph objects

The Graph objects found in GUI.M support all graphs constructed in SimStudio. The
following table summarizes these objects.

Graph object SimStudio

Appearance
Description

Clock Analog clock
Digital clock

A clock showing the current time. Can be adjusted in
SimStudio for 12 or 24 hour mode.

Meter Dial
Level meter
Digital display

Show the current value of a single variable.

Plot 2D chart 2-dimensional chart and can either show a histogram or a time
trace plot (where TIME.V is plotted on x axis).

Piechart Pie chart Each slice represents a data value. It is sized based on its
percentage of the sum of all slices.

After creating an instance of a Clock, Meter, Plot or Piechart object, the program
should assign the appearance property to a Template object obtained from the
Templates class. The assignment will link this instance to the graph constructed by
SimStudio and saved in the graphics.sg2 file. The instance should then be filed into the

29

graphic_set owned by a View object. Call the display method to make the graph
visible, or to update it after a change has been made. For example, suppose a “Level
meter” is constructed in SimStudio and saved under the name “value 1”. The code to
show the meter in a program might look something like this:

define myMeter as a Meter reference variable

…
create myMeter

let appearance(myMeter) = Templates'find("value 1")

file myMeter in graphic_set(myView)

call display(myMeter)

6.2 Meter Object: Graph a Single Variable

Setting the data value or values shown in a graph varies depending on which graph
object is being used. The value shown in a Graph object can be updated directly by
calling Meter’set_value, Plot’plot_data, Piechart’set_slice, or Clock’set_time. Graphs
that have been properly connected to a “display variable” or dynamic histogram will be
updated automatically when the variable changes.

Figure 6.1: Meters

The Meter object is used to show the value of a single variable, object attribute or class
attribute. This variable or attribute quantity must be defined as a “display variable”.
Display variables must be defined in the PREAMBLE using the following syntax:

DISPLAY VARIABLES INCLUDE variable1, variable2....

This declaration is made in addition to normal variable declarations. In other words the
variables used in this statement must be known to SIMSCRIPT at the time the

30

declaration is made. If the variables referenced above are object or class attributes, the
statement must appear within the same BEGIN CLASS..END block that the attribute is
declared in. Implicitly defined variables and attributes can be graphed. For example,
the number of entities in a set call “queue” could be graphed even though “N.QUEUE”
is not explicitly declared in the program.
The connection between the attribute and the Meter object is bridged using the
SIMSCRIPT “SHOW WITH” statement. Instead of providing a text string after
“WITH” as is done in SIMSCRIPT II.5, the Meter object reference can be specified.
This is the generalized mechanism by which Graph objects are hooked up to display
variables and dynamic histograms, i.e.

SHOW variable WITH graph_object_reference

In the following example suppose a “Level meter” is constructed in SimStudio and
saved under the name “queue length”. We want the level meter to show the number of
items in the set named “queue” owned by the class Owner. The bar in the level meter
should rise as objects are filed into the set.

''Example7.sim
''Uses a level meter to show the number of objects in a set

preamble including the gui.m subsystem
 begin class Member
 every Member may belong to a queue
 end
 begin class Owner
 the class owns a Member'queue
 display variables include n.queue
 end
end

main
 define myMeter as a Meter reference variable
 define myWindow as a Window reference variable
 define myView as a View reference variable
 define i as an integer variable

 create myWindow, myView, myMeter
 file this myView in view_set(myWindow) ''set up graphics hierarchy
 file myMeter in graphic_set(myView)
 let appearance(myMeter) = Templates'find("queue length")
 show myClass'n.queue with myMeter ''connect n.queue to myMeter
 call display(myWindow) ''draw everything
 for I = 1 to 10000
 do
 create a Member
 file this Member in Owner'queue ''this will update myMeter's bar
 call handle.events.r(0)
 loop
end

31

6.3 Clock object: Show the Time

GUI.M provides a Clock object that can be used to show simulation time. Both analog
(circular with hands) and digital clocks. The clocks are dynamic in nature and update
automatically whenever the display variable (containing time) changes in value.

Figure 6.2: clocks

A Clock object is initialized in the same manner as any other Graph (such as the Meter
explained previously). The set_time method may be called to update the time value given
the hours, minutes and seconds. A Clock object can also be used like a Meter, where a
single double or real variable is declared as a DISPLAY VARIABLE and graphed. This
value indicates the number of “days”, and is converted automatically to the hours,
minutes and seconds shown on the clock. For example:

define clocktime as a double variable
display variables include clocktime

To have clocktime updated as the simulation time is advanced, a time synchronization
routine can be written and assigned to the TIMESYNC.V system variable. This routine
will then be called whenever SIMSCRIPT is about to update the value of time.v and will
allow you to update the clock by assigning your display variable to the given TIME.
The clock will be updating regardless of the number of concurrent processes. The
following example shows how an automatic clock can be used in the simulation.

''Example8.sim
''Shows a clock that is updated as the simulation goes forth

preamble including the gui.m subsystem
 define clocktime as a double variable
 display variables include clocktime
 processes include dummy
end
routine clock_update given time yielding newtime
 let newtime = time
 let clocktime = time ''update the time shown by the Clock object
end
process dummy
for i = 1 to 4000
 wait 1.25 / (24. * 60.) units ''wait 1.25 simulated minute
end
main

32

 create a Window, View, Clock
 file this View in view_set(Window)
 file this Clock in graphic_set(View)
 let appearance(Clock) = Templates'find("analog clock")
 show clocktime with Clock
 call display(Window)
 let timescale.v = 100 * 24 * 60 ''1 real sec. per sim. minute
 let timesync.v = 'clock_update'
 activate a dummy now
 start simulation
end

6.4 Plot object: Showing Histograms and Trace Plots

The Plot object can be used for Histograms (dynamic and static), time trace plots, and
X-Y plots. A Plot object can contain one or more datasets, each representing some
statistic compiled on a global variable, object attribute or class attribute. Each dataset
can contain a fixed number of "cells" (bar-graph, histogram, surface chart representation
in SimStudio) or can collect a new data point each time the monitored value changes
(continuous representation).

A Plot object is created at runtime, but must be loaded from the graphics.sg2 file created
by SimStudio. Within SimStudio, a “2D-chart” must be constructed and saved to enable
a Plot object to be used.

6.4.1 Histograms

The purpose of a histogram is to show the user how often a variable or quantity takes on
a particular value, or range of values. For example, a bar located at X=15 with a height
of Y=30 would mean that the graphed quantity Q is equal to 15 on 30 separate
occasions. (If the histogram for Q is defined in an “accumulate” statement instead of a
“tally”, then “Y=30” would instead refer to the number of units of simulation time when
“Q=15”.) Histogram names should not be included in a DISPLAY VARIABLES
INCLUDE… statement, but are instead declared through a TALLY or ACCUMULATE
statement.

TALLY hist_name (low TO high BY interval) AS THE DYNAMIC
HISTOGRAM OF var_name

or

ACCUMULATE hist_name (low TO high BY interval) AS THE DYNAMIC
HISTOGRAM OF var_name

(where var.name is defined as an attribute or global variable).

33

In Figure 6.3 a histogram (constructed as a "2-D Chart" in SimStudio) is shown which
was obtained from the example called "bank" which simulates bank customers waiting
in line for a fixed number of "teller" resources. Each bar in the histogram shows the
number of "customers" that waited between (n) and (n+1) minutes for a teller, where the
number of minutes (n) is shown on the x-axis.

Figure 6.3 Bank model histogram.

The “SHOW HISTOGRAM” statement is used to link the histogram defined in an
ACCUMULATE or TALLY statement with the Plot object. If the Plot object was
saved by SimStudio while containing more than one dataset, the multiple histograms
can be shown in the same Plot by including their names in the same “SHOW
HISTOGRAM” statement. A reference to the Plot object should be supplied after the
word “WITH”.

SHOW HISTOGRAM hist.name1,hist.name2,... WITH plot_object_reference

The above statements must be invoked before any values are assigned to the tallied
variable (and before any other reference is made to the histogram name). Assignments
to the tallied variable will automatically update the bars in the Plot object.

The boundaries (low and high) specified in the “TALLY HISTOGRAM” statement
should match the Minimum and Maxiumum values defined for the X axis in SimStudio.
The “cell width” for each dataset added to the Plot in SimStudio should match the
interval specified in the TALLY statement. If variable names are used for the histogram
limits (low to high by interval) these will be automatically initialized from the X-axis
graduations specified on the chart. If the value being tallied is an object attribute, these
low, high and interval variables must be declared as class attributes of the same class.

34

Should the displayed bounds on the Y-axis be exceeded during the simulation, the
histogram will rescale automatically. The X-axis will not be rescaled. Data points
whose X value is greater than the maximum of the X-axis are plotted to the last
(rightmost) cell. When the X value is less than the minimum of the X-axis are plotted to
the first (leftmost) cell.

Dynamic histograms may be destroyed by specifying their names in an ERASE
HISTOGRAM statement:

ERASE HISTOGRAM name1, ...

SIMSCRIPT will allow you to show more than one histogram in the same Plot object.
Assuming you have added multiple datasets to your plot in the 2-d Chart editor, each of
these data sets is connected to one of the histogram names listed in the SHOW
statement. The following is a program to show two histograms in the same chart. The
first histogram will show a uniform random distribution while the second shows a
normal distribution.

The following example shows how to use a Plot object for a histogram. A Plot is shown
at the top of the window containing a single histogram, while a second plot contains 2
histograms. The Tallied data for variable “randvar1” is linked to the first Plot, while
data for both “randvar2” and “randvar3” are shown in dataset #1 and #2 (respectfully) in
the second Plot. Each time either of these variables is assigned, the corresponding plot
is updated automatically. Notice that each SHOW statement precedes the assignments
to randvar1, randvar2 and randvar3. Histogram limits for both “histo2” and “histo3” are
declared in terms of variables. These variables obtain their values from either the data
set cell width, or (if that value is 0) the X-axis tic interval (major) of the 2-d chart
created in SimStudio.

''Example9.sim
''Display one simple dynamic histogram, and another dynamic
''histogram containing 2 data sets

Preamble including the gui.m subsystem
 define randvar1, randvar2, randvar3, lo, hi, delta as double variables
 tally histo1(0 to 10 by 1) as the dynamic histogram of randvar1
 tally histo2(lo to hi by delta) as the dynamic histogram of randvar2
 tally histo3(lo to hi by delta) as the dynamic histogram of randvar3
end

main
 define count as integer variables
 define plot1, plot2 as Plot reference variables
 create Window, View, plot1, plot2
 file this View in view_set(Window)
 file this plot1 in graphic_set(View)
 file this plot2 in graphic_set(View)
 let appearance(plot1) = Templates'find("histogram1")
 let appearance(plot2) = Templates'find("histogram2")
 show histo1 with plot1 ''link HISTO1 and the Plot1 object

35

 show histo2,histo3 with plot2 ''link histo2 and 3 with Plot2 object
 call display(Window) ''show everything
 for count = 1 to 50
 let randvar1 = exponential.f(5.0,1)
 for count = 1 to 500
 do
 let randvar2 = uniform.f(lo, hi, 1)
 let randvar3 = normal.f((hi + lo) / 2, (hi - lo) / 10, 1)
 loop
 while visible(Window) <> 0
 call handle.events.r(1)
end

Accumulated statistics are weighted by the duration of simulated time for which the
value remains unchanged. The following example uses a process method to generate the
sample data, waiting for simulation time to elapse between each sample. In this
example, the ACCUMULATE statement is used in the declaration instead of the
TALLY statement.

''example10.sim
''Shows how to ACCUMULATE a dynamic

preamble including the gui.m subsystem

begin class Holder
 every Holder has
 a randvar,
 a sample process method
 the class has
 a lo, a hi, and a delta
 accumulate hist(lo to hi by delta) as the dynamic histogram of randvar
 define randvar, lo, hi, delta as double variables
end
end

process method Holder'sample
 until time.v gt 500
 do
 wait exponential.f(5.0, 1) units
 let randvar = uniform.f(lo, hi, 2)
 loop
end

main
 create a Window, View, Plot, Holder
 file View in view_set(Window)
 file Plot in graphic_set(View)
 let appearance(Plot) = Templates'find("histogram3")
 show histogram hist(Holder) with Plot
 call display(window)
 activate a sample(Holder) now
 let timescale.v = 10
 start simulation
end

36

6.4.2 Time Trace Plots

SimStudio will allow you to create a Plot object that shows the value of a single
variable plotted on the Y-axis while simulation time is plotted on the X-axis. In this
case, instead of using a histogram a display variable is used in conjunction with the Plot
object. Essentially the time trace plot allows the user to see how a single variable has
changed over the duration of the simulation.

Include a trace plot by using SimStudio to create a “2-D Chart”. The following changes
should be made in the editor: From the "Chart Properties" dialog box, check the "trace
plot" check box. Also, ensure that every dataset in the graph has the "Continuous
Surface" representation.

There are two options for when simulation time becomes greater than the maximum
value on the chart. The first option is to "scroll" previous data to the left thus making
room for more data. When TIME.V exceeds the X-axis maximum, a constant is added
automatically to both the X-axis minimum and maximum. Therefore, time value data at
the beginning (right side) of the plot is discarded. If this "scrolling window" is not
appropriate, check the "Compress Data" box in the "X-Axis Properties" dialog box in
SimStudio. Under this option, SIMSCRIPT will not increase the X-axis minimum when
TIME.V becomes too large, thereby keeping all previous data points.

In the following example, an object attribute (defined as a display variable) is linked to
a Plot object and incremented after waiting a random amount of time. The attributes
history can be seen in the plot.

Figure 6.4 Time trace plot

37

''Example11.sim
''Using a Plot object for a time trace of a single variable

preamble including the gui.m subsystem

begin class Holder
 every Holder has
 a var,
 a sample process method
 display variables include var
 define var as a double variable
end
end

process method Holder'sample
until time.v gt 300
do
 wait exponential.f(5.0, 1) units
 add 1 to var ''this will automatically update the Plot
loop
end

main
 create a Window, View, Plot, Holder
 let color(Window) = Color'_white
 file View in view_set(Window)
 file Plot in graphic_set(View)
 let appearance(Plot) = Templates'find("trace plot")
 call display(window)
 show var(Holder) with Plot
 activate a sample(Holder) now
 let timescale.v = 10 '' 0.1 sec per unit

 start simulation

end

6.4.3 X-Y Plots

The Plot object can be used to generate a simple line, surface, or bar graph without
using display or histogram variables. The Plot’plot_data method can be called
explicitly to either add a point to a “continuous surface” graph or change an existing bar
in a bar, discrete surface or histogram type graph. (See the “Data set representation”
section on the “Data Set Properties” dialog in the 2-d Chart editor). The Plot’plot_data
method takes as parameters the data set number and the X and Y coordinates of the data
point. (Data sets are numbered starting from one.) The Plot’clear_data method can be
called to eliminate all data in the Plot.
In this example the function y = 100 / x+1 is plotted. There are no display variable or
histogram declared, and the SHOW statement is not needed.

Preamble including the gui.m subsystem
end

main
 create Plot, View, Window

38

 file View in view_set(Window)
 file Plot in graphic_set(View)
 let appearance(Plot) = Templates'find("x-y plot")
 for x = 1.0 to 100.0
 call plot_data(Plot)(1, x, 100.0 / x) ''add data to the plot
 while visible(Window) <> 0
 call handle.events.r(1)
 call clear_data(Plot)
end

Bar charts and discrete interval surface charts can also be used to show the elements of
an array declared as a DISPLAY VARIABLE. The value of each individual element of
the array is plotted to the Y value of a bar in the chart. The index of an element is
mapped not to the X axis, but to the cell number. Cells in this case are numbered from
the left starting at “1”. The data set representation should be either “Bar graph”,
“Discrete surface”, or “Histogram”. This example shows the elements of an object
array attribute being graphed in real time using a bar graph.

Preamble including the gui.m subsystem

 begin class Engine
 every Engine has a piston_y,
 and a piston process method
 define piston as a process method given 1 integer argument
 define pistons as a 1-dim double variable
 display variables include piston_y
 end
end

process method Engine'piston(number)
 while t < 100
 do
 let piston_y(number) = 2.0 + 2.0 * cos.f(_rpm * t)
 add 0.001 to t
 work 0.001 units
 loop
end

main
 define number as an integer variable
 create Plot, View, Window, Engine
 file View in view_set(Window)
 file Plot in graphic_set(View)
 let appearance(Plot) = Templates'find("engine")
 reserve piston_y(Engine) as 8
 for number = 1 to 8
 activate a piston(Engine)(number)
 in (number-1) * pi.c / (2.0 * _rpm) units

 start simulation

end

39

6.4.4 Setting up the X and Y axes

Sometimes the range of values to be plotted is not known at compile time. For this
reason, the Plot object provides methods that allow the X and Y axis numbering, tic mark
intervals and boundaries to be set at runtime. The following table shows Plot object
properties relating to the axes that can be used on the left side of an assignment. All
methods are of mode “double”.

X Axis property Y Axis property Description
min_x min_y Minimum value shown on the axis
max_x max_y Maximum value shown on the axis
interval_x interval_y Major tic mark interval. For data sets with a zero cell width,

interval_x is used as the width.
num_interval_x num_interval_y Numbering interval measured in the coordinates defined by the

axis.
grid_interval_x grid_interval_y Grid line interval
minor_interval_x minor_interval_y Smaller tic mark intervals.
intercept_x intercept_y Intercept_x is the point along the X axis where the Y axis

crosses. Similarly for intercept_y

40

7. Icons

The Icon object is derived from the Graphic object and is used to graphically represent
any moving or static object inside a window. Like the Graphic objects, the Icon is
composed of a group of shapes such as lines, polygons, text. In addition, an Icon object
has an appearance property that can be loaded in from SimStudio. The SimStudio Icon
Editor’s JPEG image import feature allows an Icon object to be shown by a raster image.
This allows photographs and images created by other programs to be shown in a
SIMSCRIPT III application. Another important feature of the Icon object is its ability to
have motion over simulation time. A velocity can be defined for the icon, which will
cause its position to be updated automatically as simulation time is advanced.

7.1 Creating and loading an Icon

An Icon object will appear in the canvas of a Window object. It must be filed into the
graphic_set owned by a View object that is in turn filed into the view_set owned by a
Window object. An appearance for the Icon object can be constructed in the SimStudio
Icon Editor. In this case a template whose name matches the name saved under the Icon
Editor can be assigned to the appearance property of the Icon object.

7.2 Background Icons

At this point, a distinction should be made between a background icon and a dynamic
icon. A background icon is static and not specifically intended to be animated. Usually
the goal is for the background to appear with the same size and position in the program as
it does in the SimStudio Icon editor. For background icons the following steps should be
performed in the Icon editor:

1) From the “Icon properties” dialog (Edit/Icon properties… menu), make sure that
the “Xlow, Xhi, Ylow, Yhigh” values match the coordinate system of the view
that the Icon object is to be attached to.

2) Under “Center Point” the “Automatic recenter” check box should be cleared and

both X and Y values should be set to “0”. When using this method it is usually
not necessary to assign the location_x and location_y properties of the Icon object
at runtime.

For example, suppose that an icon saved under the name “big shape” should appear
within the canvas of the object MyWindow. Also, assume that the shape is to be used as
a static background icon under the coordinate system Xlow=100, Xhigh=200, Ylow=100,
Yhigh=200.

''Example13.sim
''Displaying a background icon in a window

41

preamble including the gui.m subsystem
end

main
 define MyWindow as a Window reference variable
 define MyView as a View reference variable
 define MyIcon as an Icon reference variable

 create MyWindow, MyView, MyIcon

 file MyView in view_set(MyWindow) ''attach view to window
 file MyIcon in graphic_set(MyView) ''attach icon to view
 call set_world(MyView)(100, 200, 100, 200)

 ''Displaying an icon in a window
 let appearance(MyIcon) = Templates'find("big shape")

 call display(MyWindow) ''display everything

 while visible(MyWindow) <> 0 call handle.events.r(1) ''wait
end

7.3 Dynamic Icons

Dynamic icons are designed to represent either a moving object, or an object whose
location is not known until runtime. Every Icon object inherits the location_x and
location_y properties from Graphic. These properties should be assigned at runtime after
the appearance property. The range of values for location_x and location_y depend on
the coordinate system of the View object instance containing the Icon object. The
display_at method will set both location_x and location_y properties before making the
icon visible.

When constructing this variety of icon in SimStudio the following should be done:

1) From the “Icon properties” dialog (Edit/Icon properties… menu), make sure that
the “Xlow, Xhi, Ylow, Yhigh” values match the coordinate system of the view
that the icon object is to be attached to.

2) Under “Center Point”, usually the “automatic recenter” box should be checked.

In the application, this will force the location_x and location_y properties to refer
to the geographic center point of the icon. If “Automatic recenter” is not
checked, then the correct center point (sometimes called the hotspot) should be
entered before the icon is saved.

In this example, an icon is constructed in SimStudio and saved under the name “little
shape”. The rules listed above are followed when constructing this icon. Thousands of
instances of this icon are created and filed into the view_set of a view with coordinates
Xlow=0, Xhigh=100, Ylow=0, Yhigh=100.

''Example14.sim
''Displaying many dynamic icons in a window

42

preamble including the gui.m subsystem
end

main
 define MyWindow as a Window reference variable
 define MyView as a View reference variable
 define MyIcon as an Icon reference variable

 create MyWindow, MyView

 file MyView in view_set(MyWindow)
 call set_world(MyView)(0, 100, 0, 100) ''must match "Icon Properties"
 call display(MyWindow) ''draw the window

 ''scatter thousands of Icon objects at random locations
 for i = 1 to 10000
 do
 create MyIcon
 file MyIcon in graphic_set(MyView) ''attach icon to view
 let appearance(MyIcon) = Templates'find("little shape")
 call display_at(MyIcon)(uniform.f(0, 100, 1), uniform.f(0, 100, 1))
 call handle.events.r(0)
 loop

 while visible(MyWindow) <> 0 call handle.events.r(1) ''wait
end

7.4 Animating an Icon object in a Simulation

The Icon object defines several properties allowing it to be animated by SIMSCRIPT.
The most common way to add animation is by assigning a velocity to the Icon. As
simulation time progresses, the location is automatically updated as determined by the
velocity, causing the entity to be redrawn. The set_speed_course(speed, direction)
method can be called to specify both the speed with which the icon should travel and its
direction. The speed is in View Coordinate Units per Simulated Time Unit. The
direction is specified in radians and is measured counter-clockwise from the positive X
axis.
For example, suppose you want to move the Icon reference variable called “MyIcon” in
a north-east direction at the speed of 100 coordinate units per time unit:

 call set_speed_course(100, pi.c/4 ''45 degrees'')

Another way to change the velocity of an icon object is to assign the components of the
velocity vector directly. The velocity_x and velocity_y properties can be assigned to
the speed at which the icon is moving “left/right” and the speed it is moving “up/down”
respectfully.

43

In order for the icon to actually “move” simulation time must be advanced through the
use of a “wait” or “work” statement. As simulation time is advanced, the positions of
all Icon objects that have a non-zero velocity component are updated automatically.
For example, to move an icon strait up for 2 units of time:

 Let velocity_x(MyIcon) = 0
 Let velocity_y(MyIcon) = 100
 Wait 2 units ''move 200 up

It is important to set the initial position of the icon before setting its velocity. The
location_x and location_y properties (inherited from Graphic) should be assigned before
the first wait statement is encountered.

7.5 Simulation Time and Real Time

In a SIMSCRIPT III program, simulation time is normally advanced to the time at
which the next event, process or process method is due to execute. However, when
graphics are added to a simulation, large jumps ahead in simulation time are normally
not desirable. This would cause the Icon objects to “jump around” the window thus
giving a false impression to the user of the true nature of the motion. When GUI.M is
used, SIMSCRIPT III will automatically perform “time scaling”. With time scaling,
SIMSCRIPT III will increment the value of TIME.V is slowly. The position of every
moving icon in the simulation is updated each whenever TIME.V is changes, thus
smoothing out the motion of the Icons.

Time scaling is controlled by the global variable called TIMESCALE.V. The value of
TIMESCALE.V establishes a scaling between real-time and simulation time.
TIMESCALE.V refers to the number of 1/100 second intervals of real time per unit of
simulation time. Setting TIMESCALE.V = 100 establishes a one-to-one mapping of
simulation time units and real elapsed seconds. Therefore, decreasing the value of
TIMESCALE.V has the effect of making the simulation run faster, provided there is
enough computer power to do both the computational simulation and the animated
graphics. There is no guarantee that this ratio of real time to simulation time will be
maintained as the simulation runs. When there is not enough processing speed,
additional elapsed real time will be taken, but simulation time is not affected. I.e. the
results of the simulation will not be altered.

In this example, an icon will move from the lower left corner (0,0) to the upper right
corner of the view with a speed of 4000 coordinates per time unit.

''Example15.sim
''shows an Icon object moving with a velocity during a simulation

44

preamble including the gui.m subsystem
 begin class MyIcon
 every MyIcon is an Icon and has a
 move_about process method
 end
end

process method MyIcon’move_about
 let location_x = 0
 let location_y = 0
 call set_speed_course(4000.0, PI.C / 4.0) ''move north east
 work 10 units
 call set_speed_course(0.0, 0.0) ''stop the shape
 work 5 units
end

main
 create a Window, View, MyIcon
 file View in view_set(window)
 file MyIcon in graphic_set(view)
 let appearance(MyIcon) = Templates'find("shape")
 let timescale.v = 100 ''1 second per time unit
 activate a move_about(MyIcon) now
 start Simulation
end

7.6 Custom animation

There may be some cases where modeling an object with a simple linear velocity is not
adequate. Obtaining non-linear motion with automatic update of Icon positions is still
possible to achieve. The Icon object defines methods that allow an application defined
motion. The three methods typically used in this case are motion, start_moving, and
stop_moving.

The motion method is called automatically whenever simulation time is advanced. If
TIMESCALE.V is non zero, this means that the motion method will be called repeatedly
during a WORK or WAIT statement to facilitate smooth movement of icons. To
implement customized motion over time, the Icon class should be subclassed and the
motion method overridden. The amount of time elapsed since the last call to motion is
passed as a parameter.

Calling the start_moving method will add the Icon object to a private set of moving
objects. The motion method will be called periodically after the call to start_moving.
Call the stop_moving method to halt the calls to motion and remove the Icon object from
the set of moving objects. Note that when a non-zero velocity is assigned to the Icon
object, start_motion is called implicitly. The motion method will be called periodically
after assigning a velocity or calling the set_speed_course method.

In the following example program, the Icon object is subclassed and the motion method is
overridden. The implementation of this override moves the Icon in an elliptical orbit.

45

 ''Example16.sim
''Using customized motion while animating Icon objects

preamble including the gui.m subsystem

begin class MyIcon
 every MyIcon is an Icon and has
 an about_x, an about_y, a theta,
 a move_in_circles process method, and
 overrides the motion
 define about_x, about_y, theta as double variables
 define move_in_circles as a process method given
 2 double arguments
end
end

process method MyIcon'move_in_circles(x,y)
 let about_x = x
 let about_y = y
 call start_moving
 work 25 units ''"motion" method called during work
 call stop_moving
 wait 3 units ''pause to see the icon stopped
end

method MyIcon'motion(dt)
 add dt to theta
 call display_at(about_x + 2000.0 * cos.f(theta),
 about_y + 6000.0 * sin.f(theta))
end

main
 define icon1, icon2 as MyIcon reference variables
 create a Window, View, icon1, icon2
 file View in view_set(window) ''set up the view
 call display(Window) ''show the window
 file this icon1 in graphic_set(view) ''set up the icons
 file this icon2 in graphic_set(view)
 let appearance(icon1) = Templates'find("shape") ''use the "shape" icon
 let appearance(icon2) = Templates'find("shape") ''for both
 let timescale.v = 50 ''0.5 second per time unit
 activate a move_in_circles(icon1)(8000, 16000) now
 activate a move_in_circles(icon2)(22000, 16000) in pi.c units
 start Simulation
end

46

8. Forms

Many times an application will require a robust set of tools for user interaction. Users
may expect to control the whole application through a menu-bar displayed at the top of
the window, or to use a smaller context menu to dynamically make changes to an
individual item. Dialog boxes are used as a convenient way to communicate data
quantities to a program. GUI.M provides Form objects that include menu bars, dialog
boxes, tool bars (palette), and popup message boxes. SIMSCRIPT supports these objects
using JAVA which allowing programs to be recompiled and executed on different
operating systems without recoding or retooling the graphical user interface. All objects
derived from the Form object are portable from platform to platform.

8.1 Using Form objects

The DialogBox, MenuBar and Palette objects are derived from Form. Dialog boxes are
windows containing a variety of input controls including buttons, text labels, tabular
controls, single and multi-line text, combo, value, list, radio, and check boxes. Menu
bars can appear at the top of the canvas of a Window object. A Palette is attached to the
top, left, right or bottom of a Window object and contains rows of buttons that can be
dragged onto the Window’s canvas.

All objects derived from Form (with the exception of MessageBox) must be constructed
using the SimStudio Dialog box, Menu bar or Palette editors. As with Graph and Icon
objects, the Form object defines an appearance property that can be assigned a
Template object. The Templates’find method returns a Template given the name with
which it was saved in the SimStudio editor. Every Form object instance must be
attached to a Window object. This is accomplished by filing the Form instance into the
form_set owned by Window.

8.2 DialogBox object

The DialogBox object is derived from the Form object and represents both modal and
modeless dialogs. Dialog boxes provide an interactive way for the user to enter input
data. A dialog box is a window containing a variety of input controls including buttons,
text labels, tabular controls, single and multi-line text, combo, value, list, radio, and
check boxes. Tabbed dialogs can also be created in SIMSCRIPT. A dialog must be
constructed in the SimStudio dialog box editor and loaded into the application as
described above. The DialogBox object supports both modal and modeless interaction.

In a modeless dialog execution does not stop when the object is displayed. A modeless
dialog box should be constructed in the SimStudio dialog box editor by un-checking the

47

“modal interaction” box in the “Dialog box Properties” dialog. If a modeless interaction
is needed, the display method should be used to make the dialog visible. Modal dialogs
are used when the application needs to wait for the user to make a selection from the
dialog before continuing. The DialogBox class defines an accept_input method that can
be called to display the dialog and wait for user interaction.

Modal interaction is halted when the user presses a “terminating” button, at which
accept_input returns. A button in the dialog can be marked as terminating through the
“Button properties” dialog. (Usually, the “Cancel” and “OK” buttons are terminating.)
Another check box in the “Button properties” dialog called “Verifying” can be useful
for dialog boxes that contain numerical fields (i.e. value boxes). Pressing a “Verifying”
button will range check values in all value boxes in the dialog. If a value is out of
range, characters “<<<” will be shown after the value the dialog will “beep”. Usually
“OK” buttons are marked as verifying.

In the following example a dialog box is constructed in SimStudio and saved under the
name “simple dialog”. The dialog contains a single “Verifying” button that can be
pressed to dismiss it.

''Example17.sim
''Displaying a simple dialog box

Preamble including the gui.m subsystem
End

main
 create DialogBox, Window
 call display(Window)

 ''assume a dialog named "simple dialog" has been created in SimStudio
 let appearance(DialogBox) = Templates'find("simple dialog")

 ''attach the dialog box to this window
 file this DialogBox in form_set(window)

 ''show the dialog. This will not return until user clicks on button
 call accept_input(DialogBox)
end

8.3 Using Field objects for data transfer

The Field object provides an interface for passing data back and forth between the
executing program and an item (check box, text box, etc) in a form. Field objects must
be filed into the field_set owned by Form. In most cases, the Field object is created and
filed into this set automatically at the time the appearance property is assigned. A
corresponding field is created for each item in a dialog box, each menu item in a menu
bar, and each button in a palette.

48

The name property of the field is initialized to the “Field name” given to the
corresponding item in the SimStudio editor. This allows the program to obtain a
reference to a particular field given its name. The find method defined by the Form
class does just that. Given the text “name” of a field, Form’find will return the Field
reference value for the item.

The Field object defines several properties that can be used on the left or right side of an
assignment. When the property is assigned, the text, value or selection state shown by
the corresponding item in the dialog box will change to show the new value. When the
property is “read”, the current text or value typed in by the user will be returned by the
method. The table below describes many different data types and dialog box items that
can be.

Method Data type Dialog Items Description
image text tree item Sets the name of the icon shown with the item.

selected integer (0 or 1) button,
check box,
tree item,
radio button

Gets/sets the current selection state of an item that
can be toggled. '1' means selected, while '0'
means unselected.

selected_at integer (0 or 1) list box,
radio box,
table

Gets/sets the current selection state of an item in
the dialog composed of a list of selectable cells or
buttons. The first argument refers to the row
number of the item or button starting from “1”.
For tables, row '0' refers to the column headers,
and the second argument refers to a column
number. A value of '1' assigned to this field
means to select the item, while a value of '0'
means to de-select it.

string text combo box,
text box,
tree item,
label

Gets/sets text data in the field.

string_at text list box,
table

Gets/sets text item in a field given the row and
column of the item.

strings 1-dim array of
text

combo box,
list box,
multi-line box,
table

Gets/sets an array of text data in the field. If used
on the left, the items in the list shown in the
dialog will be replaced by the text in the array.

value double label,
progress bar,
value box

Gets/sets the numerical value shown in an item in
a dialog box. For labels, the “Formatted Real”
button in the “Label properties” dialog should be
checked.

49

The accept_input method of the DialogBox object will return with the Field reference
pointer for the terminating button that was selected to dismiss the dialog. The name
attribute of this Field can be inspected to determine which button was clicked on. Note
that if the user dismisses the dialog box by clicking on the “X” in the window frame,
accept_input will return with “0”.

In this example a dialog box is shown that contains several different fields. Assigning
the Field object properties before the dialog is displayed initializes dialog box items.
The Form’find method is used here to obtain the Field object reference pointer.

''Example18.sim
''Displaying a dialog box containing many different fields

Preamble including the gui.m subsystem
End

main
 define items as a 1-dim text array
 define db as a DialogBox reference variable

 ''create window, dialog box and load it from a template
 create db, Window
 call display(Window)
 let appearance(db) = Templates'find("field dialog")
 file this db in form_set(window)

 ''initialize the fields in the dialogs before showing it
 ''set the check box to "checked" state
 let selected(find(db)("check_box")) = 1

 ''set text and value boxes
 let string(find(db)("text_box")) = "Initial text"
 let value(find(db)("value_box")) = 60.25

 ''set the items in the multi line edit box
 reserve items(*) as 3
 let items(1) = "The quick brown fox"
 let items(2) = "jumped over the"
 let items(3) = "lazy dog's back."
 let strings(find(db)("edit_box")) = items(*)
 release items(*)

 ''set cell row 2, column 1 in the table
 let string_at(find(db)("table"))(2,1) = "Cell text"

 ''select the second radio button
 let selected_at(find(db)("radio_box"))(2,0) = 1

 ''show the dialog. Wait for a terminating button to be pressed
 let field = accept_input(db)

 ''now read the fields and print them out
 if field <> 0 and name(field) = "ok"
 write selected(find(db)("check_box")) as "Check box: ", I 2, /
 write selected_at(find(db)("radio_box"))(2,0) as
 "2nd Radio button: ",I 2,/
 write string(find(db)("text_box")) as "Text box: ", T *, /
 write value(find(db)("value_box")) as "Value box: ", D(8,2), /

50

 let items(*) = strings(find(db)("edit_box"))
 for i = 1 to dim.f(items(*))
 write i, items(i) as "Edit box line ", I 3, ": ", T *, /
 always
end

8.4 Event Notification

In some cases, you will want to provide code to immediately handle Form object input
events generated by the user (such as button clicks, text box modification, menu
selection etc) while the simulation is running. Whenever a user clicks on a button or
makes a change to a dialog box item, the Form’action method is called automatically.
An application requiring this immediate notification can subclass the Form object and
override its action method. This is a useful way to perform immediate validation or
cross-checking of fields. The action method is defined as follows:

define action as an integer method given

 1 FormEvent reference argument

The single argument to the action method is an instance of the FormEvent object. The
“field” attribute of this object contains a reference pointer to the Field object that was
clicked on or changed. The name attribute of this Field object can be compared against
the field names of known items. The “id” field of the FormEvent object contains a
constant indicating one of several varieties of event. The following table lists the
possible values for “id”, the meaning of each value, and which of the other attributes of
the FormEvent object are used.

51

Id FormEvent

Attributes
Dialog Items Description

_button_dropped drop_x
drop_y
drop_view
field

palette button Indicated that a palette button marked in the
SimStudio “Palette Button Properties”
dialog as “Draggable” was dragged from
the palette and dropped. drop_x, drop_y
indicate the Canvas coordinates of the drop
location. drop_view is the View object
containing the drop point.

_button_pushed field button
menu item
table cell
tree item

One of the items was clicked on by the
user.

_close ----- ------ Indicated that the user has clicked on the
“X” in the corner of a dialog box’s window.

_data_changed field check box
combo box
radio button
text box
value box

This event is sent when data being shown in
a dialog item has been changed by the user.
The return key must be pressed after
entering data into a text/value box. The
“Selectable using return” check box must
be marked in the “Value box properties” or
“Text box properties” dialog in the
SimStudio dialog box editor.

On of the following constants defined in the Form class should be returned from the
action method overridden by the subclass.

_continue - Accept the input and continue.

_terminate - Terminate the interaction and return from the accept_input method.

In this example, a dialog box containing several different items is displayed. The
DialogBox object is subclassed and the action method overridden. Code in the action
method displays information about the item that was clicked on or changed by the user.

''Example19.sim
''Showing how the "action" method can be overridden

Preamble including the gui.m subsystem
 begin class TestDialogBox
 every TestDialogBox is a DialogBox and
 overrides the action ''called when user acts on an item
 end
end

method TestDialogBox'action(event)
 if field(event) <> 0
 let string(find("sel_name")) = name(field(event))
 always
 select case id(event) ''determine which event has happened

52

 case FormEvent'_button_pushed
 case FormEvent'_data_changed
 ''display the data contained by the event's field
 let selected(find("sel_state")) = selected(find(name(field(event))))
 let string(find("sel_text")) = string(find(name(field(event))))
 let value(find("sel_value")) = value(find(name(field(event))))
 case FormEvent'_close
 write as "User has closed the dialog!", /
 return with _terminate ''return from accept_input()
 endselect
 return with _continue ''keep going
end

main
 ''create window, dialog box and load it from a template
 create TestDialogBox, Window
 call display(Window)
 let appearance(TestDialogBox) = Templates'find("action dialog")
 file this TestDialogBox in form_set(window)

 ''show the modal dialog
 call accept_input(TestDialogBox)
end

8.4 Enable and Disable fields

In many cases, you may want to activate and deactivate items in your dialog box in
response to the user changing one of the fields. When the activated property of the Field
object is assigned a value of ‘0’, the corresponding item in the dialog box or menu bar is
deactivated and can no longer be selected or edited by the user. The item will not
disappear but instead appear greyed out. For example, to deactivate the field named “my
check box field” in the dialog referenced by “my_dialog”:

Define check_field as a Field reference variable
Let check_field = find(my_dialog)("my check box field")
let activated(check_field) = 0

It is also possible to hide and show fields using the SIMSCRIPT "display" and "erase"
methods inherited from the GuiItem object. i.e.

call erase(field) ''make the field disappear
call display(field) ''make field visible

This example shows how typically the activated property is used. While the user is
making changes to items in the dialog, the correct activation state of related items can be
maintained by overriding the action method.

''Example20.sim
''Using the "activate" property
''Clicking on radio buttons will change which control is enabled

Preamble including the gui.m subsystem
 begin class TestDialogBox
 every TestDialogBox is a DialogBox and
 overrides the action ''called when user acts on an item

53

 end
end

''override the action method so that items can be deactivated while the
''program is waiting in accept_input

method TestDialogBox'action(event)
 if field(event) <> 0
 select case name(field(event))
 case "use_text"
 let activated(find("text_box")) = 1
 let activated(find("value_box")) = 0
 case "use_value"
 let activated(find("text_box")) = 0
 let activated(find("value_box")) = 1
 default
 endselect
 always
 return with _continue ''keep going
end

main
 ''create window, dialog box and load it from a template
 create TestDialogBox, Window
 call display(Window)
 let appearance(TestDialogBox) = Templates'find("activate dialog")
 file this TestDialogBox in form_set(window)

 ''initially, deactivate the value box
 let activated(find(TestDialogBox)("value_box")) = 0

 ''show the modal dialog
 call accept_input(TestDialogBox)
end

8.5 Trees

One of the items that can be added to a dialog in the SimStudio editor is the tree. A tree
contains a list of items that can be viewed hierarchically, with items containing other
items. Each item in the tree consists of a label and an optional jpeg image, and each
item can have list of sub items associated with it. By clicking an item at runtime, the
user can expand and collapse the associated list of sub items.

Using SimStudio you can specify the initial set of items and sub items in the tree.
However, most applications will need to set up the tree at runtime. The hierarchy
shown in the tree can be constructed at runtime by creating instances of Field objects
and filing them appropriately into the field_set owned by the tree field. Filing a Field
into a field_set is the equivalent of adding a new item to the tree. The string property of
the Field is the label of the tree item. For example, to add the items labelled “One” and
“Two” to a tree field named “little tree”:

define field1, field2 as Field reference variables
create field1, field2
let string(field1) = "One"
let string(field2) = "Two"

54

file this field1 in field_set(find("little tree"))
file this field2 in field_set(find("little tree"))

If we wanted the item labeled “Two” to contain items labeled “A” and “B” the
additional code could be added:

define field3, field4 as Field reference variables
create field3, field4
let string(field3) = "A"
let string(field4) = "B"
file this field3 in field_set(field2)
file this field4 in field_set(field2)

An item in a tree can be shown with a small image next to it. The image property of the
Field object can be assigned the name of a file containing a bitmapped image. This
image should be small enough to fit into the list of items and in be JPEG format. (A
typical size is usually 16x16 or 24x24 pixels). The name should be specified without the
“.jpg” extension. The following example shows how an application can populate a tree
with a hierarchy of items. JPEG images are shown with the items, and the application
assumes that the files “I.jpg”, “II.jpg” and “III.jpg” exist.

''Example21.sim
''Using a tree in a dialog box

Preamble including the gui.m subsystem
end

main
 define tree, field1, field2, field1_1, field1_2, field1_2_1
 as Field reference variables

 ''create window, dialog box and load it from a template
 create DialogBox, Window
 call display(Window)
 let appearance(DialogBox) = Templates'find("tree dialog")
 file this DialogBox in form_set(window)

 let tree = find(DialogBox)("tree")
 create field1, field2, field1_1, field1_2, field1_2_1

 ''set the label and image file name for each item in the tree
 let string(field1) = "Level 1 First Item"
 let string(field2) = "Level 1 Second Item"
 let string(field1_1) = "Level 2 First Item"
 let string(field1_2) = "Level 2 Second Item"
 let string(field1_2_1) = "Level 3 First Item"
 let image(field1) = "I" ''assume "I.jpg" exists
 let image(field2) = "I"
 let image(field1_1) = "II" ''assume "II.jpg" exists
 let image(field1_2) = "II"
 let image(field1_2_1) = "III" ''assume "III.jpg" exists

 ''build the hierarchy
 file this field1 in field_set(tree)
 file this field2 in field_set(tree)
 file this field1_1 in field_set(field1) ''field1 will contain 2 items
 file this field1_2 in field_set(field1)
 file this field1_2_1 in field_set(field1_2) ''field1_2 will contain 1

55

 ''initially select the item at the lowest level
 let selected(field1_2_1) = 1

 ''show the modal dialog
 call accept_input(DialogBox)
end

8.6 Tables

A table is an item in a dialog composed of a two dimensional arrangement of selectable
text fields or "cells". The table can be scrolled both horizontally and vertically. All cells
in the same column have the same width, but you can define the width of this column. A
table can have both column and row headers. The headers are fixed and will remain in
view when the table is scrolled.

The end user can navigate through a table using the left-, right-, up- and down-arrow
keys. The action method is invoked whenever a cell is clicked on or an arrow key is used
to move to focus on a different cell. The table can be set up to automatically add a new
row of cells at the bottom when the user attempts to move below the last row. Use
SimStudio to add a table to a dialog box.

As with other items, a Field object will be created automatically for each table in a
dialog. The Field’string_at method can be used on the left to specify the text of a
particular cell. The arguments to this method are the row and column of the cell in the
table. If the table is constructed in SimStudio to use column headers (on the top) the text
of a header is assigned by specifying “0” as the row number argument to the string_at
method. Similarly, “0” can be specified as the column number to assign a text value to a
row header.

Another way to specify the cell text values is to put all the text into a 1-dim array and
assign the array to the strings method. The array must be reserved big enough to hold all
the cells. Text values are laid out in row major order. For example, assume the table has
'.NUM_COLUMNS' columns (including row headers) and '.NUM_ROWS' rows. The
index into the array for cell (COLUMN,ROW) is computed as follows:

let table_values((ROW-1) * .NUM_COLUMNS + COLUMN) = "hello"

The action method of the DialogBox object containing the table can be overridden to
handle events generated by the table. The selected_at method can be called to get or set
the currently selected cell in the table.

In the following example, a table constructed in SimStudio is populated with data at
runtime. In this example the column headers are set in the SimStudio DialogBox editor,
while the row headers are set in the program.

''Example22.sim
''Using a table

56

Preamble including the gui.m subsystem
 define _header=0, _name_col, _company_col, _occupation_col as constants
end

main
 define table_field as a Field reference variable

 ''create window, dialog box and load it from a template
 create DialogBox, Window
 call display(Window)
 let appearance(DialogBox) = Templates'find("table dialog")
 file this DialogBox in form_set(window)

 let table_field = find(DialogBox)("table")
 let string_at(table_field)(1, _header) = "1"
 let string_at(table_field)(1, _name_col) = "Zapp Brannigan"
 let string_at(table_field)(1, _company_col) = "DOOP"
 let string_at(table_field)(1, _occupation_col) = "Starship Captain"
 let string_at(table_field)(2, _header) = "2"
 let string_at(table_field)(2, _name_col) = "Mom"
 let string_at(table_field)(2, _company_col) = "Mom's Old Fashion Robot Oil"
 let string_at(table_field)(2, _occupation_col) = "President/CEO"
 let string_at(table_field)(3, _header) = "3"
 let string_at(table_field)(3, _name_col) = "Morbo"
 let string_at(table_field)(3, _company_col) = "Channel Radical 2 News"
 let string_at(table_field)(3, _occupation_col) = "News Anchor Monster"
 let string_at(table_field)(4, _header) = "4"
 let string_at(table_field)(4, _name_col) = "Richard M. Nixon"
 let string_at(table_field)(4, _company_col) = "Government"
 let string_at(table_field)(4, _occupation_col) = "President of Earth"
 let string_at(table_field)(5, _header) = "5"
 let string_at(table_field)(5, _name_col) = "Dr. Zoidberg"
 let string_at(table_field)(5, _company_col) = "Planet Express"
 let string_at(table_field)(5, _occupation_col) = "Medical Doctor"

 ''show the modal dialog
 call accept_input(DialogBox)
end

8.7 Menu bars

In many typical applications, the user interacts with a menu bar attached to the top of the
window. In many cases the entire range of functionality is accessible through the menu
bar. Given its widespread use, most users expect to be able to control the program
through the menu bar.

A menu bar is composed of several menus arranged in a row on a bar across the top of a
window frame. Clicking on one causes its menu-pane to be displayed. Clicking on an
item inside a menu causes it to be selected. Cascading menus are supported, meaning that
menus can contain other menus and so on.

The menu bar is implemented by creating a MenuBar object. Like other object derived
from Form, a menu bar is constructed in SimStudio and loaded into the program by
assigning the appearance attribute. At this time a Field object is created for each menu

57

in the menu bar. Field objects are also created for every menu item in the menu. A Field
object is filed in to the field_set owned by the menu or menu item that contains it. A
menu bar is always modeless and is shown by calling its display method. The application
must subclass the MenuBar object and override the action method to receive notification
of menu item selection while the simulation is running.

A program can dynamically set and clear check marks next to any menu item. To display
the check mark, set the selected attribute of the menu item field to "1". Clear the mark by
setting the attribute to "0". Before the check mark is actually drawn or erased from the
menu, the corresponding Field object must be re-displayed by calling the display method.

In the following example, a menubar is created in SimStudio consisting of two menus.
One of the menus contains a submenu that allows the user to change the background
color of the window.

''Example23.sim
''Using a menu bar.

Preamble including the gui.m subsystem

 begin class MyMenuBar
 every MyMenuBar is a MenuBar, and
 has a current_color, and
 overrides the action
 define current_color as a text variable
 end
end

method MyMenuBar'action(event)
 if current_color <> ""
 let selected(find(current_color)) = 0 ''erase menu item check
 always
 let current_color = name(field(event))
 let selected(find(current_color)) = 1 ''show menu item check

 ''see which menu item was selected by comparing the field name
 select case name(field(event))
 case "black" let color(Window) = Color'_black
 case "white" let color(Window) = Color'_white
 case "red" let color(Window) = Color'_red
 case "green" let color(Window) = Color'_green
 case "blue" let color(Window) = Color'_blue
 case "cyan" let color(Window) = Color'_cyan
 case "magenta" let color(Window) = Color'_majenta
 case "yellow" let color(Window) = Color'_yellow
 case "exit" return with _terminate
 endselect
 call display(Window)
 return with _continue
end

main
 ''create window, dialog box and load it from a template
 create Window, MyMenuBar
 call display(Window)
 let appearance(MyMenuBar) = Templates'find("menu bar")
 file this MyMenuBar in form_set(Window)
 call display(MyMenuBar) ''display the menu bar

58

 ''wait til user closes window or uses the exit menu
 while visible(MyMenuBar) <> 0 and visible(Window) <> 0
 call handle.events.r(1)
end

8.8 Palettes

Toolbars and palettes are also popular components in a user interface. (For the sake of
SimStudio, we will refer to either component as a palette.) A palette is basically a
horizontal or vertical bar containing a row (or column) of buttons, with each button
showing a little picture image. An application may need a palette at the top of the
window to provide quick access to commonly used items. Many applications also allow
users to “drag” the image shown on a palette button onto the canvas of the window. A
palette can be attached to any edge of the window. The buttons contained on a palette can
be typical push buttons, or can toggle (stay down when pressed.)

Palettes are implemented with the Palette object which is derived from the Form object.
Palettes must therefore be constructed in SimStudio and loaded into the program by
assigning a Template to the appearance attribute of the Palette object instance.

Buttons marked in SimStudio as “draggable” (using the “Palette Button Properties”
dialog) enable drag and drop. In this case your program is notified of the action allowing
you to create a display entity representing the object that was dragged. To get the
notification of a drag event, the Palette object must be subclassed and the action method
overridden. The id attribute of the FormEvent argument will be _button_dropped. The
drop_x, drop_y and drop_view attributes can be used to determine the drop location (in
canvas coordinates) and the View containing the point at which the button was dropped.

In the following example, a Palette object is constructed in the SimStudio Palette editor
and displayed in a window. When the user drags buttons from the palette to the canvas
an Icon object is created and placed in the drop location.

''example24.sim
''Using a Palette.

preamble including the gui.m subsystem

begin class TestPalette
 every TestPalette is a Palette,
 overrides the action
end
end

''override the action method to get notification of palette button
''clicks and drops
method TestPalette'action(event)
 define my_icon as an Icon reference variable

 select case id(event)
 case FormEvent'_button_pushed
 write name(field(event)) as T *, " was pressed", /
 case FormEvent'_button_dropped

59

 if drop_view(event) <> 0
 ''put a new icon in the drop location
 create an my_icon
 let appearance(my_icon) = Templates'find(name(field(event)) +
 ".icn")
 file this my_icon in graphic_set(drop_view(event))
 call display_at(my_icon)(drop_x(event), drop_y(event))
 always
 default
 endselect

 return with _continue
end

main
 create Window, TestPalette, View
 file this TestPalette in form_set(Window)
 file this View in view_set(Window)
 let appearance(TestPalette) = Templates'find("palette")
 call display(Window)

 while visible(Window) <> 0
 call handle.events.r(1)
end

All example programs from this Manual are in SIMSCRIPT directory guim_manual
_examples.

60

	Preface
	1. Overview
	1.1 Getting Started
	1.2 Objects Found in GUI.M

	2. Using Items Created in SimStudio
	3. Windows
	3.1 Size and Position
	3.2 Canvas
	3.2.1 Canvas Coordinates
	3.2.2 Background Color
	3.2.3 Printing the Canvas

	3.3 Title and Status Bar
	3.4 Scroll bars
	3.5 Handling User Input
	3.6 Reading Mouse Input Synchronously
	3.7 Using a Window

	4. View Object
	4.1 View boundaries
	4.2 Coordinate System for Graphic Objects
	4.3 Overlapping Views
	4.4 Pan and Zoom

	5. Graphics in a Window
	5.1 Drawing Shape Primitives
	5.2 Points, style, and color
	5.3 Location, Rotation, and Scale
	5.4 Responding to Clicks on a Graphic

	6. Graphs
	6.1 Graph objects
	6.2 Meter Object: Graph a Single Variable
	6.3 Clock object: Show the Time
	6.4 Plot object: Showing Histograms and Trace Plots
	6.4.1 Histograms
	6.4.2 Time Trace Plots
	6.4.3 X-Y Plots
	6.4.4 Setting up the X and Y axes

	7. Icons
	7.1 Creating and loading an Icon
	7.2 Background Icons
	7.3 Dynamic Icons
	7.4 Animating an Icon object in a Simulation
	7.5 Simulation Time and Real Time
	7.6 Custom animation

	8. Forms
	8.1 Using Form objects
	8.2 DialogBox object
	8.3 Using Field objects for data transfer
	8.4 Event Notification
	8.4 Enable and Disable fields
	8.5 Trees
	8.6 Tables
	8.7 Menu bars
	8.8 Palettes

