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Agents in a multiagent system may in many cases find themselves in situations where inconsistencies arise. In order to properly
deal with these, a good belief revision procedure is required. This paper illustrates the usefulness of such a procedure: a certain
belief revision algorithm is considered in order to deal with inconsistencies and, particularly, the issue of inconsistencies, and belief
revision is examined in relation to the GOAL agent programming language.

1. Introduction

When designing artificial intelligence, it is desirable tomimic
the human way of reasoning as closely as possible to obtain
a realistic intelligence albeit still artificial. This includes the
ability to not only construct a plan for solving a given problem
but also to be able to adapt the plan or discard it in favor
of a new. In these situations the environment in which the
agents act should be considered as dynamic and complicated
as the world it is representing. This will lead to situations
where an agent’s beliefs may be inconsistent and need to
be revised. Therefore, an important issue in the subject of
modern artificial intelligence is that of belief revision.

This paper presents an algorithm for belief revision
proposed in [1] and shows some examples of situations where
belief revision is desired in order to avoid inconsistencies in
an agent’s knowledge base.The agent programming language
GOALwill be introduced and belief revisionwill be discussed
in this context. Finally, the belief revision algorithm used in
this paper will be compared to other approaches dealing with
inconsistency.

2. Motivation

In many situations, assumptions are made in order to opti-
mize and simplify an artificial intelligent system. This often

leads to solutions which are elegant and planning can be done
without toomany complications.However, such systems tend
to be more difficult to realize in the real world—simply
because the assumptions made are too restrictive to model
the complex real world.

Thefirst thing to noticewhenmodeling intelligence is that
human thoughts are themselves inconsistent as considered in
[2]. It also considers an example of an expert system from
[3], where the classical logical representation of the experts’
statements leads to inconsistency when attempting to reason
with it. From this, one can realize how experts of a field not
necessarily agree with one another and in order to properly
reason with their statements inconsistencies need to be taken
into account. This is an example where it is not possible to
uniquely define the cause and effect in the real world. The
experts might all have the best intentions but this might not
be the case with entities interaction with an agent. Malicious
entities may want to mislead the agent or otherwise provide
false information which again may lead to inconsistencies.
One example of this is when using multiagent systems to
model computer security; agents may represent hackers or
other attackers on the system in question.

Another important fact about the real world is that it
is constantly changing. Agents which find themselves in
changing environments need to be able to adapt to such
changes; the changes may not lead to inconsistencies. When
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programming multiagent systems, it might not always be
possible or it might be too overwhelming to foresee all
consequences and outcomes that the environment provides.

In this paper, a small example will now be presented for
the purpose of illustration. The example is inspired by [4, 5],
where an agent-based transport information system is con-
sidered in order to improve the parking spot problem. That
is, having an agent represent each car, they can communicate
and coordinate to find an available parking spot nearby. In
this paper, cars are considered as autonomous entities which
drive their passengers around the city. Each car thus poses as
an agent. Such an agent may have the following trivial rules
for how to behave in traffic lights,

𝑔𝑟𝑒𝑒𝑛 (𝑋) 󳨀→ 𝑔𝑜 (𝑋) (1)

𝑟𝑒𝑑 (𝑋) 󳨀→ 𝑠𝑡𝑜𝑝 (𝑋) (2)

Furthermore, the agent may have a rule specifying that if
the brakes of a car malfunction, it cannot stop:

𝑓𝑎𝑖𝑙𝑖𝑛𝑔 (𝑏𝑟𝑎𝑘𝑒𝑠, 𝑋) 󳨀→ ¬𝑠𝑡𝑜𝑝 (𝑋) . (3)

Imagine now the situation where the light is perceived as
green and a car in the crossing lane sends to the agent that its
brakes fail. That is, the agent now also believes the following:

𝑔𝑟𝑒𝑒𝑛 (𝑚𝑒) (4)

𝑟𝑒𝑑 (𝑜𝑡ℎ𝑒𝑟) (5)

𝑓𝑎𝑖𝑙𝑖𝑛𝑔 (𝑏𝑟𝑎𝑘𝑒𝑠, 𝑜𝑡ℎ𝑒𝑟) (6)

This situation will now lead to inconsistencies when the agent
attempts to reason with its beliefs. From (2) and (5), it is
straightforward to deduce 𝑠𝑡𝑜𝑝(𝑜𝑡ℎ𝑒𝑟), whereas from (3) and
(6), ¬𝑠𝑡𝑜𝑝(𝑜𝑡ℎ𝑒𝑟) is deduced. Furthermore, by adding rules
for the mutual exclusion of the 𝑔𝑜 and 𝑠𝑡𝑜𝑝 predicates and
having the rule 𝑔𝑜(𝑜𝑡ℎ𝑒𝑟) → 𝑠𝑡𝑜𝑝(𝑚𝑒) saying to stop if the
other does not, the agent will also be able to deduce that it
both should go and should not go. The obvious choice for
the agent here is to discard the thought of going onwards and
stop to let the other car pass. Notice that the exclusion of 𝑔𝑜

and 𝑠𝑡𝑜𝑝 might be achieved by simply using ¬𝑔𝑜 instead of
𝑠𝑡𝑜𝑝 or vice versa. Depending on the interpretation of the two
predicates, one might want to distinguish the two though—
saying that failing brakes of a car means it should 𝑔𝑜 seems
wrong if it never started.

Assume that the agent makes the right choice and escapes
the car crash. The passenger of the car wants to go shopping
and the agent thus needs to find an available parking lot. To
represent that the agent wants to get to the destination of the
shop, it has the following:

𝑑𝑒𝑠𝑡 (𝑠ℎ𝑜𝑝
1
) (7)

The agent currently does not know the whereabouts of
the shop that the passenger wants to go to; so it broadcasts
a request for such information.The agent receives a response,

𝑑𝑒𝑠𝑡 (𝑠ℎ𝑜𝑝
1
) 󳨀→ 𝑔𝑜𝑡𝑜 (𝑙𝑜𝑡

1
) (8)

This basically tells the agent that if it wants to reach
𝑠ℎ𝑜𝑝
1
it needs to get to parking 𝑙𝑜𝑡

1
. This is straightforward;

however, shortly after the agent receives a second response
from a third agent:

𝑑𝑒𝑠𝑡 (𝑠ℎ𝑜𝑝
1
) 󳨀→ ¬𝑔𝑜𝑡𝑜 (𝑙𝑜𝑡

1
) (9)

𝑑𝑒𝑠𝑡 (𝑠ℎ𝑜𝑝
1
) 󳨀→ 𝑔𝑜𝑡𝑜 (𝑙𝑜𝑡

2
) (10)

The third agent has experienced that the parking 𝑙𝑜𝑡
1
is

full which makes it send the first rule. It then also sends the
second rule as a plan for getting parked desirably and thereby
enabling the passenger to reach the destination shop.

Blissfully adding both responses to the belief base will,
however, lead to inconsistencies again. Obviously, (7) can be
used with (8) and (9) to obtain 𝑔𝑜𝑡𝑜(𝑙𝑜𝑡

1
) and ¬𝑔𝑜𝑡𝑜(𝑙𝑜𝑡

1
),

respectively. Since the agent does not currently have anymore
information about the two, it does not know which of them
to trust.

For more examples, refer to [6]. They are of a more
theoretical nature, but may illustrate how one can deal with
inconsistencies efficiently. The examples are explained in
relation to a tool which was developed by the author and
which lets one apply a belief revision algorithm on formulas
given to the program. The algorithm will be considered in
more details in the next section.

It should be noted that in the above example, one might
discuss several ways of trying to fix the problem. For instance,
one might suggest that the problem is that the rules should
not be strict, and therefore one could introduce a deontic
operator meaning “should.” This is not considered in this
paper—instead the problem considered is that different rules
may end up concluding contradictory information (and as
such there is negation in actions and beliefs). This is only
really a problem for larger and more complex systems, since
one may find situation-specific ways of fixing the problem
for smaller systems while avoiding a general solution. The
example might be fixed by refining the rules and similarly for
the expert system presented in [3]. However, consider if the
expert system had a huge amount of statements or if all of
the huge complexity of the real world had to be considered
in the car example, then it might not be as easy to manually
find and fix all the sources of inconsistencies. The example is
simple but still provides some nice points and illustrates the
main problem considered.

Notice that the example above is presented in a form of
first-order logic. That is, the exact relation to the actions has
not been given. Considering firing rules as adding beliefs,
the agent adds information that it believes that it can for
example, 𝑔𝑜. This is kind of metareasoning about the actions.
Depending on the language, it might be more natural to have
the rules execute actions directly. This way firing rules may
execute actions instead of adding beliefs.

3. Belief Revision Algorithm

The algorithm considered in this paper is the one proposed
by [1] (and [6]). It is based on a combination of the two
main approaches to belief revision introduced in [7, 8] and is
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for all 𝑗 = (𝐵, 𝑠) ∈ 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑖𝑒𝑠(𝐴) do
remove(𝑗)

end for
for all 𝑗 = (𝐴, 𝑠) ∈ 𝑗𝑢𝑠𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠(𝐴) do

if 𝑠 = [] then
𝑟𝑒𝑚𝑜V𝑒(𝑗)

else
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡(𝑤(𝑠))

end if
end for
𝑟𝑒𝑚𝑜V𝑒(𝐴)

Algorithm 1: Contraction by belief 𝐴.

(1) (4) (2) (5) (3) (6)

((1), []) ((2), []) ((3), []) ((6), [])((5), [])((4), [])

(go(me), [(4), (1)])

go(me)

(stop(other), [(5), (2)])

stop(other) ¬stop(other)

(¬stop(other), [(6), (3)])

Figure 1: Graph over the beliefs and justifications in the first part of
the example from Section 2.

extending work done in, for example, [9, 10] by treating rules
and facts the same.

The basic principle of the algorithm is to keep track of
what beliefs the agent has and how the agentmay justify these
beliefs. The idea is based on the human reasoning process: if
two contradictory beliefs arise, one of them is selected and the
other is discarded. Of course, one must also discard whatever
beliefsmay endup concluding the discarded belief as they can
no longer be trusted either. This process of discarding beliefs
is referred to as contraction by beliefs.This will be mademore
concrete in the following.

The agent is defined as having beliefs consisting of
ground literals, 𝑙 or ¬𝑙, and rules. The rules take the form of
universally quantified positiveHorn clauses, 𝑙

1
∧ 𝑙
2
∧⋅ ⋅ ⋅∧ 𝑙

𝑛
→

𝑙 and the agent is required to reason with a weak logic, 𝑊,
which only has generalized modus ponens as inference rule
(i.e., if the antecedent of an implication holds, the consequent
can be inferred). The inference rule is formally as follows,
where 𝛿 is a substitution function replacing all variables with
constants:

𝛿 (𝑙
1
) , . . . , 𝛿 (𝑙

𝑛
) 𝑙
1

∧ ⋅ ⋅ ⋅ ∧ 𝑙
𝑛

󳨀→ 𝑙

𝛿 (𝑙)
(11)

The approach is now to detect inconsistencies in the belief
base. Notice that this is a simple rule, 𝑙∧¬𝑙 → ¬𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡(𝑙).
If an inconsistency is detected, the least preferred belief is
removed. Furthermore, the rules from which the belief can
be derived are removed along with the beliefs, which can only
be derived from the removed belief.This assumes two things.
First, that we keep track of how the beliefs relate to each other,

and second, that there is a measure of how preferred a belief
is.

To deal with the first problem, the notion of justifications
is used. A justification is a pair, (𝐴, 𝑠), of a belief 𝐴 and
a support list 𝑠. The support list contains the rule used to
derive 𝐴 together with all the premises used for firing that
rule. This means that the percepts and initial knowledge will
have an empty support list. The justifications for 𝑔𝑟𝑒𝑒𝑛(𝑚𝑒)

and ¬𝑠𝑡𝑜𝑝(𝑜𝑡ℎ𝑒𝑟) from the example in Section 2 are then as
follows:

(𝑔𝑟𝑒𝑒𝑛 (𝑚𝑒) , [])

(¬𝑠𝑡𝑜𝑝 (𝑜𝑡ℎ𝑒𝑟) , [𝑓𝑎𝑖𝑙𝑖𝑛𝑔 (𝑏𝑟𝑎𝑘𝑒𝑠, 𝑜𝑡ℎ𝑒𝑟) ,

𝑓𝑎𝑖𝑙𝑖𝑛𝑔 (𝑏𝑟𝑎𝑘𝑒𝑠, 𝑋) 󳨀→ ¬𝑠𝑡𝑜𝑝 (𝑋)])

(12)

Notice that a belief may have several justifications. If the
light had been green for the other and there was an exclusivity
rule 𝑔𝑜(𝑋) → ¬𝑠𝑡𝑜𝑝(𝑋), then ¬𝑠𝑡𝑜𝑝(𝑜𝑡ℎ𝑒𝑟) would also have
the justification:

(¬𝑠𝑡𝑜𝑝 (𝑜𝑡ℎ𝑒𝑟) , [𝑔𝑜 (𝑜𝑡ℎ𝑒𝑟) , 𝑔𝑜 (𝑋) 󳨀→ ¬𝑠𝑡𝑜𝑝 (𝑋)]) (13)

Having this data structure, the beliefs and justifications
can be regarded as a directed graph: incoming edges from the
justifications of a belief and outgoing edges to justifications
containing the belief in its support list. Figure 1 shows such a
graph for the first part of the presented example.The elements
at an odd depth are justifications, whereas elements of an
even depth are beliefs. To make the graph fit, references to
the formulas have been used instead of the actual formula
where possible. One may also notice that the agent has the
two contradictory nodes, which means that either of the two
subgraphs holding one of the two nodes must be contracted.

In [9, 10], the successors of a belief (justifications with
the belief in the support list) are denoted dependencies.
The algorithm is then simply considered to have a list of
justifications and dependencies for each belief and recursively
traverses the elements of these two lists to remove beliefs
which are justifying or justified only by the belief selected for
contraction. More specifically, Algorithm 1 provides pseudo
code for the contraction algorithm similar to that from [9, 10].
The contraction algorithm assumes that an inconsistency has
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Knowledge {

%Mutual exclusion rules of go and stop predicates.
neg (stop (X)) :- go (X).
neg (go (X)) :- stop (X).

}

Algorithm 2

been detected and the least preferred belief is given as input.
The 𝑤(𝑥) function takes a support list as input and returns
the least preferred belief of that list.

It is worth noting that the belief base needs to be in the
quiescent setting in order for the algorithm to work properly.
Basically what this means is that all the rules which may
add new information must have been fired before executing
the algorithm. This is due to that if more beliefs can be
inferred, the belief for contraction might be inferred again
by other beliefs than the ones removed by the algorithm.
Consider, for example, the belief base consisting of {𝐴 →

𝐶, 𝐵 → 𝐶, 𝐴, 𝐵, ¬𝐶}. Then firing the first rule adds a
contradiction and if contracting on 𝐶 without firing the
second rule then 𝐶 may again be derived, introducing the
inconsistency again. Notice, however, that this requirement
is only for the algorithm to work optimally. Not firing the
second rule does not make the algorithm work incorrectly
but simply does so that it cannot be guaranteed that the
contracted belief cannot be inferred from the current beliefs
again after contraction.

It may be desirable for the algorithm to also contract
beliefs which no longer have justifications because they have
been removed in the contraction process, cf. [9, 10]. Even
though keeping the beliefs in the belief base might not
currently lead to inconsistencies, something is intuitively
wrong with keeping beliefs which are derived from what has
been labeled wrong or untrustworthy information.

The problem of measuring how preferred a belief is does
not have a trivial solution. In fact, the problem is passed on
to the designer of the multiagent system in question. The
requirement from the perspective of the algorithm is that
there is an ordering relation such that for any two beliefs it is
decidable which one ismore preferable to the other. However,
in [9] an algorithm is presented for preference computation.

Consider again the example from Section 2. Intuitively,
percepts of the agent should be of highest preference since
the agent ought to trust what it itself sees. However, in the
example, this would lead to the contraction of the belief
¬𝑠𝑡𝑜𝑝(𝑜𝑡ℎ𝑒𝑟) which will mean that the agent will decide to
move forward and crash with the other car. Instead here the
belief received from the other agent should actually have
a higher preference than the percepts. This is, however, in
general, not desirable as other agents might not be trustwor-
thy. This is even though the other agents might have good
intentions. Consider, for example, the plan exchange between
the agents in the example. Here, the first agent sends a plan
for getting to the closest parking lot not knowing it is full. If
the agent chose to follow this plan and on the way perceived
a sign showing the number of free spots in the parking lot,

this percept should be of higher preference than following the
plan through.This illustrates the care which needs to be taken
in the process of deciding upon nonpreferred beliefs.

4. GOAL

GOAL is a language for programming rational agents and as
such is a target of interest in relation to belief revision. This
section will examine GOAL and how it conforms to belief
revision of inconsistent information. First, the basic concepts
of GOAL are explained and afterwards belief revision is
considered in GOAL. This paper will not explain how to set
up and use GOAL, instead the reader is referred to [11].

4.1. The Basics. The basic structure of a GOAL multiagent
system consists of an environment and the agents which
interact within this environment. The agents are according
to [12] connected to the environment by means of entities.
That is, an agent is considered to be the mind of the physical
entity it is connected to in the multiagent system. Agents
need not be connected to an entity though; however, they
cannot interact with the environment if they are not. Having
agents that are not part of the environment can be useful in,
for example, organizational centralized multiagent systems,
where there may be an agent whose only task is to coordinate
the organization.

Agents may consist of the following components:

(1) knowledge;

(2) beliefs;

(3) goals;

(4) module sections;

(5) action specification.

Knowledge is what is known to be true. It should be
considered as axioms and as such should not be allowed
to be inconsistent. Beliefs, however, represent what the
agent thinks is true and may be both false and ambiguous.
That is, different rules may lead to inconsistent beliefs. The
representation of knowledge, beliefs, and goals is all in a
Prolog based manner by standard (see [12] for more details).
While it may be arguably very few things in the real world
that are certain enough to be declared axioms, the mutual
exclusion of the 𝑔𝑜 and 𝑠𝑡𝑜𝑝 predicates should be. Since the
two predicates are direct opposites, it does not make sense
to have both, for example, 𝑔𝑜(𝑚𝑒) and 𝑠𝑡𝑜𝑝(𝑚𝑒). Declaring
these rules as initial knowledge may look as Algorithm 2.
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beliefs {

% Green and red light rules.
go (X) :- green (X).
stop (X) :- red (X).

}

Algorithm 3

actionspec {

/∗ Action for the car agent to drive towards Dest provided it is desired and
that it can go onwards. ∗/

drive (Dest) {

Pre {dest (Dest), me (Me), go (Me)}
post {true}

}

}

Algorithm 4

The two 𝑛𝑒𝑔 predicates represent strong negation andwill
be explained in Section 4.2.

Onemight argue that the rules for green and red lights are
accepted worldwide and thus should be considered axioms.
However, global consensus and being a universal truth are not
the same. First, the trend may change, and second, the agent
may find itself in unforeseen situations in which such a rule
cannot apply. Consider the example where green light should
not allow for 𝑔𝑜 since the other car cannot fulfill the rule of
the red light. Another example is that of [1], where there is
global consensus that birds fly and yet penguins, which are
birds, cannot fly. These are both examples of why one cannot
assume not to face inconsistencies when exposingmultiagent
systems to the real world. We therefore choose to declare
the two traffic light rules as beliefs rather than knowledge as
shown in Algorithm 3.

The action specification follows a STRIPS-style spec-
ification (see e.g., [13, ch. 10]) and actions are defined
using a name, parameters, preconditions, and postconditions.
Imagine that the car agent has a drive action which represents
the agent driving to a desired destination.The action takes the
destination to drive to as parameter, and has as preconditions
that it must desire to get to the destination and that it can
go onwards. The 𝑚𝑒 predicate is a built-in predicate for the
agent to obtain its own ID and the action specification may
now look as Algorithm 4.

The postcondition may seem to be somewhat odd—
driving somewhere ought to change the agent’s state. This is
due to thinking of the drive action as a durative action. In
GOAL, there is a distinction between the two types of actions:
instantaneous and durative [12]. Durative actions take time to
perform, whereas instant actions to will finish immediately
and thereby affect the system immediately. Therefore, the
approach seems to be to let the outcome of durative actions
be a consequence of their effect on the environment. That
way durative actions can also be interrupted and their
effect might not (entirely) come through. Thus, the drive

action is durative, since the agent will not instantly reach its
destination. Furthermore, the environment can send percepts
to the agent (such as a red light), which will interrupt the
action (if the agent chooses to react to the percept).When the
agent perceives that the lights become green, it may resume
driving.

If one wants to avoid the kind ofmetareasoning discussed
in Section 2, the premise of the green rule might have been
used directly when defining the requirements of the drive
action. That is, instead of the 𝑔𝑜(𝑀𝑒) precondition, one
might use 𝑔𝑟𝑒𝑒𝑛(𝑀𝑒). Notice, however, that this requires
instantiation of the premise and makes the rule less general.
This alsomeans that the rule cannot be used in other contexts
if desired (unless again explicitly defined). Basically, these
considerations depend on how one wants to design the
system. Yet another approach would be to use the premise
in the motivation for taking the action (see the part about
the main module below); however, this implies the same
considerations.

The environment is specified bymeans of an environment
interface standard; for more information about this standard
[12], refer to, for example, [14]. It is beyond the scope of this
paper to uncover how to program environments for GOAL
programs; however, we assume that there is an environment
in which the agents can perceive the traffic lights. The agent
has a percept base which contains the percepts of the current
reasoning cycle. It is up to the programmer to make the agent
capable of reacting to such percepts. This can be done by
using the predicate 𝑝𝑒𝑟𝑐𝑒𝑝𝑡, which is a predicate holding the
current percepts of the agent.

Themodule sections define the agent’s behavior.There are
two modules by standard: the event module and the main
module. The purpose of the main module is to define how
the agent should decide what actions to perform, whereas
the purpose of the event module is to handle events such
as percepts and incoming messages so that the belief base
is always up to date when deciding upon actions cf. [12].
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event module {

program {

% Green and red light percepts - on.
forall bel (percept (green (X)), not (green (X))) do insert (green (X)).
forall bel (percept (red (X)), not (red (X))) do insert (red (X)).
% Green and red light percepts - off.
forall bel (green (X), percept (not (green (X)))) do delete (green (X)).
forall bel (red (X), percept (not (red (X)))) do delete (red (X)).

}

}

Algorithm 5

main module {

program {

% Drive economically if low on gas.
if bel (low (gas), dest (X)) then drive (dest (X), eco).
% Drive fast if busy.
if bel (busy, dest (X)) then drive (dest (X), fast).
% Drive comfortably otherwise.
if bel (dest (X)) then drive (dest (X), comfort).
% If no driving options the car simply idles.
if true then skip.

}

}

Algorithm 6

Therefore, the event module is always the first to run in
an agent’s reasoning cycle. To add the logic for actually
making the agent believe the light perceptions, the event
module of Algorithm 5 may be used where 𝑖𝑛𝑠𝑒𝑟𝑡 and 𝑑𝑒𝑙𝑒𝑡𝑒

are two built-in functions for adding and deleting beliefs,
respectively.

The 𝑏𝑒𝑙 predicate is a built-in predicate to indicate that the
agent believes the argument(s) of the predicate.

The main module is not that interesting when the agent
does not have more actions defined since there are not
really any strategic choices to regard in relation to the
choice of action. It might consider whether or not to drive
or brake. Depending on how the environment is defined,
braking might be implicitly assumed by saying that if the
car is not driving, it has stopped. Instead of considering a
brake action, here is considered a more sophisticated 𝑑𝑟𝑖V𝑒

action. One may assume that the 𝑑𝑟𝑖V𝑒 action takes an extra
argumentwhich defines themode that the car should drive in.
Assuming that when low on gas it drives economically, and
if busy it drives fast; the main module of Algorithm 6 may
define the choice of actions.

Notice that the precondition stating that the 𝑑𝑟𝑖V𝑒 action
must have a destination is actually obsolete now since this
is ensured when deciding upon action in the main module.
The main module may evaluate actions in different kinds of
orders. The default is linear which means that, for example,

the economical option is chosen over the others if applicable.
The 𝑠𝑘𝑖𝑝 action is not built-in but may be defined by simply
having 𝑡𝑟𝑢𝑒 as pre- and postconditions.

Agents communicate using a mailbox system. Mails are
handled similarly to percepts, with the main difference that
the mailbox is not emptied in every reasoning cycle. GOAL
supports three moods of messages: indicative, declarative,
and interrogative. These three moods basically represent
a statement, a request and a question and are denoted
using an operator in front of the message. Similar to the
𝑝𝑒𝑟𝑐𝑒𝑝𝑡 predicate, there is a 𝑟𝑒𝑐𝑒𝑖V𝑒𝑑 predicate over received
messages. This predicate takes two arguments: the agent who
sent the message and the message itself. Messages must be
a conjunction of positive literals. Therefore, handling the
message that the other agent’s brakes fail can be done by
adding Algorithm 7 to the program shown in Algorithm 5 in
the event module where : is being the indicative operator.

By requiring messages to be a conjunction of positive
literals, agents cannot share rules or plans. It is simply not
possible to send or receive the rules (8), (9), and (10) from
the second part of the example. This also means that the rule
base of an agent will be static and is designed offline.Thus, the
graph of Algorithm 1 will be less complex during runtime.

Another lack of expressiveness in GOAL is that of
representing inconsistencies. This will be examined further
in the next section.
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% Add the belief received from another agent that its brakes fail.
if bel (received (A,:failing (brakes, A))) then insert (failing (brakes, A))
+ delete (received (A,:failing (brakes, A))).

Algorithm 7

4.2. Inconsistencies. While having the tools for implementing
the algorithm dealing with inconsistencies, a rather crucial
point is to be noted. Since the knowledge representation
language of the belief base in GOAL is Prolog, the rules
will all take the form of positive Horn clauses with a
positive consequent. This means only positive literals can be
concluded using the rules in the belief base. Furthermore,
the action specifications ensure that if a negative literal is
added then it is not actually added to the belief base. Instead,
if the positive literal is in the belief base it is removed and
otherwise nothing happens. This is due to the closed world
assumption. This means that an agent will never be able
to represent both the positive and the negative of a literal
in its belief base. That is, GOAL simply does not allow for
representing inconsistencieswhen using Prolog as knowledge
representation language.

One of the advantages of GOAL is that its structure allows
for selecting different knowledge representation languages
depending onwhat is best with regard tomodeling the system
at hand. At current stage, it is only Prolog which has been
implemented as knowledge representation language; how-
ever, work is done on implementing answer set programming.
This allows for both negation as failure as in Prolog but
also for a notion of strong negation (see, e.g., [15] for more
information about answer set programming) which allows
for representing incomplete information. This means that
using answer set programming as knowledge representation
language would be quite powerful when dealing with systems
in which inconsistencies might arise. It is not implemented
yet though; so in the following, strong negation will be
discussed in relation to GOAL using Prolog.

In order to allow for the representation of inconsistencies,
the notion of strong negation is introduced in Prolog. In
[16], this kind of negation does not rely on the closed world
assumption. It explicitly says that the negation of a formula
succeeds whereas negation as failure says that the formula
does not succeed, but also that it does not explicitly fail either.
In other words, negation as failure can be read as “it is not
currently believed that.”

Thebasic principle is now to consider the strong negation,
¬, of a predicate as a positive literal. That is, for literal, 𝑝, 𝑝

󸀠

can be regarded as a positive literal with the meaning ¬𝑝.
In terms of Prolog, this means querying 𝑝 will succeed if
𝑝 holds, fail if ¬𝑝 holds, and be inconsistent if both holds.
In [16], it is furthermore considered possible to return the
value unknown to such queries if neither 𝑝 nor ¬𝑝 can be
proven in the current Prolog program. Another interesting
observation they made is that the closed world assumption

can be defined for any literal in the following way (where 𝑛𝑜𝑡

denotes negation as failure):

¬𝑝 (𝑋
1
, . . . , 𝑋

𝑛
) ←󳨀 𝑛𝑜𝑡 (𝑝 (𝑋

1
, . . . , 𝑋

𝑛
)) (14)

The interested reader might also see [17] in relation to strong
negation and logic programming.

In the terms of GOAL, this means that it is fairly
straightforward to introduce the notion of strong negation,
and the 𝑛𝑒𝑔 predicate introduced in Section 4.1 serves exactly
this purpose. There is no explicit problem in having both the
belief and its negation in the belief base: it is required in the
event module to check if the belief base is still consistent by
querying whether or not 𝑛𝑒𝑔(𝑋), 𝑋 follows from the belief
base and act accordingly. It may be necessary to introduce
a 𝑝𝑜𝑠 predicate denoting positive literals as GOAL does not
allow for the query 𝑏𝑒𝑙(𝑋).

4.3. Belief Revision. This section will consider how to imple-
ment the belief revision algorithm described in Section 3 in
GOAL.

The event module is the first thing that is executed in an
agent’s reasoning cycle and since it is desirable to have an
up-to-date belief base when performing belief revision, the
belief revision algorithm should be implemented as the last
procedure in the event module.

GOAL relies on Prolog as representation language (in
most cases), which conforms well to the weak logic defined
for use with the belief revision algorithm in [1] since Prolog
programs consist of Horn clauses and literals.

The question is then how to associate and represent the
justification and dependency lists. One idea is to simply let
them be beliefs of the agent. This way one just has to make
sure to add a justification when adding a belief. The rules
for adding percepts to the agent from Section 4.1 may be
extended to also constructing a justification as shown in
Algorithm 8.

Similarly, the justification is deleted when the percept is
no longer valid, as shown above. While the case is rather
trivial when dealing with percepts (as they do not have
any justifications), a similar approach may be taken for the
rules, the actions, and when adding beliefs from messages
of other agents. We need to consider the actions carefully,
since the motivation for executing an action is specified in
the main module, whereas the postconditions (i.e., effect)
of the actions are specified in the action specification. Each
effect of an action should be supported by a conjunction of
the motivation for taking the action and the preconditions
of the action. There are several ways for obtaining this



8 ISRN Artificial Intelligence

% Add beliefs and justifications from red light percepts.
forall bel (percept (red (X)), not (red (X))) do insert (red (X))
+ insert (just (red (X), [], p)).

% Remove belief and justification when no longer red light.
forall bel (red (X), percept (not (red (X)))) do delete (red (X))
+ delete (just (red (X), [], )).

Algorithm 8

actionspec {

% Action for the car agent to drive which also adds justifications.
drive (Dest, Pre) {

pre {dest (Dest), me (Me), go (Me), append (Pre, [dest (Dest), go (Me),
action (drive)], S)}

post {at (Dest), just (at (Dest), S)}
}

}

Algorithm 9

conjunction.A simple one is to simply let the action take them
as parameters.Theprovided action is instantaneous; the agent
is immediately at its destination; so the action specification
could look like Algorithm 9.

The idea is to include the motivation from the main
module as an argument to the action and then append it
to a list of preconditions of the action to obtain 𝑠. The
𝑎𝑐𝑡𝑖𝑜𝑛 predicate then corresponds to the rule used for
deriving the belief. In this case it is a plan, which has
been executed. Since actions and main modules cannot be
altered dynamically, another predicate might be added as
precondition, for example, 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑎𝑐𝑡𝑖𝑜𝑛(𝑑𝑟𝑖V𝑒)). If
an action or particular instance of an action is then contracted
using the belief revision algorithm, for example, the belief
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑒𝑑(𝑎𝑐𝑡𝑖𝑜𝑛(𝑑𝑟𝑖V𝑒)) may simply be added to invalidate
any future run of that action. If the agent finds reason to
believe in the action again, it may simply remove the belief
again.

The case of durative actions is more difficult to handle.
The effects of a durative action appear as changes in the
environment, which the agent will then perceive. However,
since percepts create a justification with an empty support
list, there is no way of telling whether the percept is from a
change in the environment due to an action that the agent has
performed or simply due to the environment itself (or even
other agents interacting in the environment). In other words,
durative actions cannot be contracted. One might attempt to
solve this problem by implementing the environment such
that it provides justifications for changes happening as a result
of actions and then keep track of how these justifications
relate to the percepts. However, it seems wrong to let the
environment handle part of the agent’s reasoning and itmight
couple the agent and the environment too much.

One might raise the questions why include actions in
the contraction process and what does it actually mean
to contract an action? Actions may be reasons for adding
new beliefs (e.g., changes in the environment as a result
of an action). The agent will need some way of justifying
these beliefs, especially because a rule might trigger an
action, which then adds a belief that renders the belief base
inconsistent. If there is no justification; for the action, then it
is not possible to trace back to the rule originally triggering
the action leading to the inconsistency. Furthermore, it might
be that some actions simply lead to undesirable outcomes
and therefore the agent should not want to do them again.
Therefore, one might decide to contract them and thereby
disable executing them in the future. Since actions are not
deleted, they may be enabled again in the future if desirable.

We have provided means for representing justifications,
so the next step is to check for inconsistencies, which, as
argued above, will be done as the last thing in the event
module. Then if two contradictory beliefs are found, the less
preferred of the two is marked for contraction.

The contraction itself then happens by three blocks. In the
first all the positive beliefs marked for contraction are con-
tracted and in the second all the negative. These two blocks
follow contraction Algorithm 1 with the exception of the
recursive call.This is what the third block is for.The recursive
call is emulated by marking all the least preferred elements of
the support lists to contract and in the third block the first
of the recursive calls are then performed on these. Again, the
recursive call is emulated by marking beliefs for contraction.
However, since the program is executed sequentially, it has
now passed the three blocks for contraction. The idea is then
to prohibit the agent from performing any actions until there
are no beliefs marked for contraction. Then the agent will
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% Detect inconsistencies
#define poscontract (X) bel (p (neg (X), Pn), p (X, Pp), Pn > Pp).
#define negcontract (X) bel (p (neg (X), Pn), p (X, Pp), Pn < Pp).
% Contract all least preferred positive beliefs
listall C <- poscontract (X) do {

forall just (Y, S), member (Z, C), member (Z, S) do delete (just (Y, S)).
forall just (Y, []), member (Y, C) do delete (just (Y, )).
forall member (Y, C), just (Y, S) bel (w (just (Y, S), Z)) do insert (contract (Z)).
forall member (Y, C) do delete (Y).

}

% Contract all least preferred negative beliefs
listall C <- negcontract (X) do {

forall just (Y, S), member (Z, C), member (Z, S) do delete (just (Y, s)).
forall just (Y, []), member (Y, C) do delete (just (Y, )).
forall member (Y, C), just (Y, S) bel (w (just (Y, S), Z)) do insert (contract (Z)).
forall member (Y, C) do delete (Y).

}

% Recursive contraction
listall C <- contract (X) do {

forall just (Y, S), member (Z, C), member (Z, S) do delete (just (Y, S)).
forall just (Y, []), member (Y, C) do delete (just (Y, )).
forall member (Y, C), just (Y, S) bel (w (just (Y, S), Z)) do insert (contract (Z)).
forall member (Y, C) do delete (Y).

}

Algorithm 10

do nothing and the next reasoning cycle will start. This time
it will go directly to the third cycle and continue emulating
recursive calls by doing this until no more beliefs are marked
for contraction and the agent is allowed to perform actions
again (Algorithm 10).

However, this solution is not optimal, since it lets the
agent idle for several cycles while it is revising its thoughts.
Though the number of recursive calls is most likely quite
low because of the simplified graph due to static rules as
mentioned in Section 4.1, it would be better to have a Prolog
contraction procedure, which can make use of recursion.
One might, for example, import such a procedure in the
knowledge section such that it will mark all the beliefs for
contraction recursively and in the next cycle actually do the
removal of them. This way only one extra cycle is used for
contracting beliefs.

Another possibility is to recursively contract beliefs in
the event module. This is done by moving the contraction
algorithm into a separate module, which is then imported in
the event module (see, e.g., [11] for how to import) and can
be called recursively within itself.This would obviously be the
most efficient solution as it only takes the calculation time and
no reasoning cycles.

Until now, the implementation of the preference relations
has not been discussed. In the above code, it is assumed that
a preference of a belief is added as a predicate cf. justification.
Furthermore, it is assumed that when adding a nonempty
support list of a justification, a predicate 𝑤, which specifies
the least preferred belief in a support list, is added to the
belief base. This simplifies the least preferred belief queries;

however, one should keep in mind that these predicates
all should be deleted when also deleting the corresponding
belief.

In [9, 10], the algorithmwas consideredwith regards to an
implementation in Jason, and they argued that the quiescent
setting could not be guaranteed. In our implementation, an
action may not be activated for a long time, but it may still
lead to inconsistencies. Therefore, the same argument can be
made in our case. However, when querying the belief base
for inconsistencies (which is done every reasoning cycle), the
Prolog engine will attempt to evaluate all the rules in the
belief base in order to search for a proof. This means that the
quiescent setting is guaranteed for the belief base, but not for
the action rules.

5. Other Approaches

Previous work, [2], considered a four-valued logic proposed
by [3] in order to deal with inconsistent information. The
main difference between this approach and the algorithm
considered here is that the algorithm attempts to recover the
belief base from an inconsistent state to a consistent state. It
does so by attempting to get rid of the information which
was the cause of the inconsistency. The four-valued logic
on the other hand attempts to reason with the inconsistent
knowledge base while actually preserving the inconsistency
in the system.

At first glance, it seems to be more desirable to recover
the belief base from an inconsistent state to a consistent state.
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However, just like determining the preferences of the beliefs,
this also has some complications. For instance, if the agent
makes the right choice in the example from Section 2, it will
contract the rules for the light signal. This means that when
the danger has passed, then the agent will not know to go
when it is green light and stop when it is red light. That
is, deleting information from the knowledge base might not
always be the best choice as the agent might actually delete
some vital beliefs. The problem is that the beliefs might hold
in most situations where they should be applied but in some
more rare cases they may lead to inconsistencies.

Handling inconsistencies is still a debated topic and there
is no full solution yet. One might take several different
approaches for dealing with the above problem. One is to
do as with the actions where one simply disables rules
instead of completely deleting them. Then they may be
reconsidered later. One could also attempt to combine the
four-valued approachwith the contraction algorithm.That is,
use contraction and if a requirement arises that a rule which is
known to lead to inconsistencies needs to be used again, one
can attempt to use the paraconsistent logic to reason with this
rule. Yet another approach is rule refinement instead of rule
contraction. If the agent, for example, detects the cause of the
inconsistency, it might be able to repair or refine the rules in
question. If, for instance the car agent realizes that the cause
of the problem is the failing brakes with regard to the red light
rule, it could refine it into the following rule:

𝑟𝑒𝑑 (𝑋) ∧ 𝑛𝑜𝑡 𝑓𝑎𝑖𝑙𝑖𝑛𝑔 (𝑏𝑟𝑎𝑘𝑒𝑠, 𝑋) 󳨀→ 𝑠𝑡𝑜𝑝 (𝑋) (15)

Even though it might seem to be the smartest solution, this is
not guaranteed to always have a solution and finding such a
solution might prove very complicated.

6. Conclusion

It has been arguedwhy belief revision is an important issue. A
particular algorithm for belief revision has been considered.
It has the advantages of being efficient and straightforward to
implement; however, it has the disadvantages that it is only
defined for a weak logic of the agent and that it requires the
nontrivial question of a preference ordering. Issues of such
an ordering have been pointed out. Furthermore, issues with
deleting information, which may be important in many cases
even though it is inconsistent, have been pointed out.

GOAL has been examined in relation to belief revision. It
has the strengths of using logic programming which means
that it is very easy to learn for people with a background in
logic programming and it provides elegant logical solutions.
Furthermore, the restrictions of logic programming conform
well to the restrictions of the weak logic of the belief revision
algorithm. However, it has been identified that at current
state, the GOAL language is actually more restrictive than
required for the algorithm which results in that inconsis-
tencies cannot be represented at all. The introduction of
strong negation has been considered in order to mitigate
this problem. Furthermore, using answer set programming
as knowledge representation languagemay also deal with this
problem when it is supported by GOAL. Another less critical

issuewithGOAL is that it does not provide themeans for plan
sharing.
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