
US 20090113251A1

(12) Patent Application Publication (10) Pub. No.: US 2009/0113251 A1
(19) United States

Goossen et al. (43) Pub. Date: Apr. 30, 2009

(54) REAL-TIME ANALYSIS OF PERFORMANCE
DATA OF A VIDEO GAME

(75) Inventors: Andrew Goossen, Issaquah, WA
(US); Parham Mohadjer,
Redmond, WA (U S); Matthew
Kimball, Seattle, WA (US); John
Howard Palevich, Medina, WA
(US); Juan Carlos Arevalo Baeza,
Bellevue, WA (US); Jason
Matthew Gould, Woodinville, WA
(US); Matthew Lee, Redmond, WA
(US); Michael Burrows,
Sammamish, WA (US); Karen
Elaine Stevens, Woodinville, WA
(US); David Aronson, Austin, TX
(Us)

Correspondence Address:
WOODCOCK WASHBURN LLP (MICROSOFT
CORPORATION)
CIRA CENTRE, 12TH FLOOR, 2929 ARCH
STREET
PHILADELPHIA, PA 19104-2891 (US)

(73) Assignee: Microsoft Corporation, Redmond,
WA (US)

(21) Appl. No.: 11/925,226

(22) Filed: Oct. 26, 2007

Publication Classi?cation

(51) Int. Cl.
G06F 11/34 (2006.01)
G06F 15/00 (2006.01)

(52) U.S. Cl. 714/46; 702/183; 714/E11.192

(57) ABSTRACT

A method for analyzing the performance of a video game uses
a diagnostic tool that is associated With application code of
the video game. The diagnostic tool is activated when the
video game is in operation, and real-time performance data is
captured and displayed. A Warning is generated when a per
formance metric violates a pre-set condition. The Warning
may be displayed on a display screen that is used to provide
information for rectifying the violation.

9045
associate a diagnostics tool with
application code of a video game

m
activate the diagnostic tool when
the video game is in operation

91_5
capture and display real-time performance data
associated with execution of the application code

920

generate a warning when a performance
metric violates a pre-set condition

Patent Application Publication Apr. 30, 2009 Sheet 1 0f 12 US 2009/0113251 A1

100 Count

Frame sequence

E

System Monitor 120
f‘

102
_ _ _ _ _ ___\ I____________

91

80 \121
70 110
59

48 V

37

26 16 s = .-'=,

_5 .1 '.' z ..

Counter

Frames r second
F P W

e

Dr. PIX Monitor 115

Warning Priority Count Last Frame 4’
Too many D3D locks 1 8 326

Too many debug prints 2 200 433

Too long a frame 2 6 248

Frame Range IE to \El

\117 \116

FIGURE 1

Patent Application Publication

100

Apr. 30, 2009 Sheet 2 0f 12 US 2009/0113251 A1

Count

L) Frame sequence
E

System Monitor
120 f‘

102 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

91 '

80

70 110
59

48 e

37 26 " 16

_5

Counter Scal Min. Max.
r

P W 1 24.

e 1

Dr. PIX Monitor 115

Warning Priority Count Last Frame 4’
Too many D3D locks 1 8 326

Too many debug prints 2 200 433

Too long a frame 2 6 248

Frame Range | 245 | to | 442 |

\117 \116

FIGURE 2

Patent Application Publication Apr. 30, 2009 Sheet 3 0f 12 US 2009/0113251 A1

301
I

Dr. PIX Monitor W 4/ 115
Warning Pri Save f Last Frame 4/

Too many D3D locks 1 Time Mode 326
Too many debug prints 2uu 433

Too long a frame 2 6 248

Frame Range | 245 | to | 442 |

410
430

425
/

Warnings / \
l

Visible 415 x Invisible
A A

Too many D3D locks GPU starved for data

Too many debug prints '- Warning -
Too long a frame
Warning

V v

IE 420 /III
\435 I

FIGURE 4A 44°

Patent Application Publication Apr. 30, 2009 Sheet 4 0f 12 US 2009/0113251 A1

. brat: . ut of memory

‘ : CPL! flame time too long

: CPLl'fiame way tad long
: M are than half at the secondary ring butter w
I The GF'LI starved tdr data 7
I The GF'U starvedwhile waiting tar the CPU tdj Zf
: The piimaiy ring butter became full 3 ‘3
: The secondary ring buffer became tuli I Y‘

. I Tiling was used withdutenabling [33D CHEAT
' ‘ : Ted many callback interrupts

: Tdd many [33D physical allocations
1‘ Tee many draw .?‘tF'l calls
: Tee many GF'U kick-aria

' : Tad many ahader patches

' T ' rlsrumerd in B3B resource . b 5

“ha-Fa aL' :

The data transfei buffer was filled fastei than it eeuid be flushed ‘resulting in ldstdata. If the applicatidns-t'ramerate is
gher than BlIIHz it will help to luck it to BDHz.

Ptidiitfilia. {Ea-1.5a
Pridrity '3- ' ‘$551512

FIGURE 4B

Patent Application Publication Apr. 30, 2009 Sheet 5 of 12 US 2009/0113251 A1

D3D: Too many draw API calls

Priority 1 Condition

D3D.DrawApiCalls > 10000

Priority 2 Condition

D3D.DrawApiCalls > 6000

Priority 3 Condition

D3D.DrawApiCalls > 3000

Output

Priority 1 Condition
Compile Complete — 0 errors

Priority 2 Condition
Compile Complete — 0 errors

Priority 3 Condition
Compile Complete — 0 errors

Test

FIGURE 4C

OK Cancel

Patent Application Publication Apr. 30, 2009 Sheet 6 0f 12 US 2009/0113251 A1

Dr. PIX Monitor Warnings 115

Warning Pri Save Last Frame /
Too many D3D locks 1 %5§gf 326
Too many debug prints 2 LWA 433
Too long a frame 2 6 248

Frame Range @ to @

FIGURE 5

Dr. PIX Monitor |—.
I Warnings

Warning Pri Save Last Frame

Too many D3D locks 1 gig? 326
Too many debug prints 2;? 2% 433
Too long a frame 2 6 248 615

Time Range 1.03 to 20$ 4-/

FIGURE 6

Patent Application Publication

100

Apr. 30, 2009 Sheet 7 0f 12 US 2009/0113251 A1

System Monitor

102

91

8O

7O

59

48

37

26
16

-5

Scal Min. Max.

Dr. PIX Monitor

Warning Priority Count Last Frame

21% 1 8 326
Too many debug prints 2 200 433

Too long a frame 2 6 248

Frame Range 245— to 442

IEI IEI

FIGURE 7A

Patent Application Publication Apr. 30, 2009 Sheet 8 0f 12 US 2009/0113251 A1

720 725

. l. I .
mils-2g Rise‘: $25K

Tinread'l IEIIE:
ThreadZ Idié
ThreatlS' Idi?

FIGURE 75

Patent Application Publication Apr. 30, 2009 Sheet 9 0f 12 US 2009/0113251 A1

810

Too many D3D locks

Description
The game has too many D3D A 825
locks happening for this frame -

You should not do so many on 4/
this frame

V
(I l I)
Condition

A
D3DLocks > 100 830

I 4/

V
(I l |>

FIGURE 8

Patent Application Publication Apr. 30, 2009 Sheet 10 0f 12 US 2009/0113251 A1

%
associate a diagnostics tool with
application code of a video game

m
activate the diagnostic tool when
the video game is in operation

%
capture and display real-time performance data
associated with execution of the application code

920

generate a warning when a performance
metric violates a pre-set condition

FIGURE 9

Patent Application Publication Apr. 30, 2009 Sheet 11 0f 12 US 2009/0113251 A1

68

""" f 80

76 Removable Storage Non-Removable 82

Volatile Storage Processing '"'::'j
Portion , i i g a 84

Nonvolat'le Output Devioe(s) i i i f 86

78 lnputDevice(s) Communication 88

74 Connection(s) 5

FIGURE 10

Patent Application Publication Apr. 30, 2009 Sheet 12 0f 12 US 2009/0113251 A1

am
762

(ROM 764)

BIOS E

(RAM 725)

Computer @

Processing Unit Video Adapter Host Adapter
41

SCSI Bus 776

Monitor 747

72

, Storage Device

Floppy Drive 728

08 E Apps 736 Other 737 Prograr;38

Removab e Storage 729

Opttcal Drive 730

Mouse 742

FIGURE 11

IEI m m 755
73s A

Astszssrrstl t t l l l \
PROGRAMS "

DATA Hard D'Sk Magnetic Disk p 'Ca734rwe Serial Port/IF Network | (F 75“
Dr've " F Drive HP 746 JAN 751

l\ k + k
‘7

F " m 754

Hard Drive72 ‘%B\ i

Remote Computer(s)
749

Appuca?on Ftoppy Drive 750
736

Keyboard 740

US 2009/0113251A1

REAL-TIME ANALYSIS OF PERFORMANCE
DATA OF A VIDEO GAME

TECHNICAL FIELD

[0001] The technical ?eld relates generally to gaming
applications and speci?cally relates to real-time analysis of
performance data of a video game.

BACKGROUND

[0002] Analyzing the performance of a video game is tra
ditionally carried out by collecting data When the game is in
operation, halting the game, and then analyZing the collected
data o?line. As can be appreciated, this procedure is often a
hit-or-miss affair because the captured data may or may not
contain information pertaining to an intermittently-occurring
problem or to a problem of a subtle nature.
[0003] Furthermore, the of?ine analysis process generally
involves a collective effort from a team of softWare develop
ers each having an individual area of expertise. For example,
in such a team, a ?rst developer may be an expert on system
libraries, a second on databases, and a third on the correct
sequence of coding events that need to occur for successful
operation of a particular video game. This type of team com
position is necessary because traditional analysis and debug
ging tools often generate cues (such as esoteric and cryptic
Warning/ failure messages) that only an expert can under
stand. Consequently, this environment does not readily
accommodate debugging efforts being carried out by a one
person team When this person has a generaliZed knowledge of
gaming and/or softWare, or even When this person is an expert
in just one particular area of gaming and/or softWare.

SUMMARY

[0004] This Summary is provided to introduce a selection
of concepts in a simpli?ed form that are further described
beloW in the Detailed Description of Illustrative Embodi
ments. This Summary is not intended to identify key features
or essential features of the claimed subject matter, nor is it
intended to be used to limit the scope of the claimed subject
matter.

[0005] In one exemplary method for analyZing the perfor
mance of a video game, a diagnostic tool is associated With at
least some portion of an application code that is used to
execute the video game. The diagnostic tool is activated When
the video game is in operation, and real-time performance
data is captured and displayed. A Warning is generated When
a performance metric violates a pre-set condition. The Wam
ing may be displayed on a display screen that is used to
provide information for rectifying the violation.
[0006] Furthermore, an exemplary system for analyZing the
performance of a video game includes a computer-readable
storage medium on Which is stored a diagnostic tool for
capturing real-time performance data When the video game is
in operation. The system further includes a display unit con
?gured to provide a diagnostics display WindoW for display
ing a description and data statistics of a performance metric
violation associated With the real-time performance data.

BRIEF DESCRIPTION OF THE DRAWINGS

[0007] The foregoing summary, as Well as the folloWing
detailed description, is better understood When read in con
junction With the appended draWings. For the purpose of
illustrating real-time analysis of performance data of a video

Apr. 30, 2009

game, there is shoWn in the draWings exemplary construc
tions thereof; hoWever, real-time analysis of performance
data of a video game is not limited to the speci?c methods and
instrumentalities disclosed.
[0008] FIG. 1 shoWs an exemplary display screen of a sys
tem for analyZing the performance of a video game, the
display screen including a diagnostics display WindoW.
[0009] FIG. 2 shoWs an exemplary vieW of the diagnostics
display WindoW of FIG. 1, in one operational display mode.
[0010] FIG. 3 shoWs a drop-doWn menu on the diagnostics
display WindoW of FIG. 2 With one of the menu items shoWing
an activation status.

[0011] FIG. 4A shoWs a Warnings display WindoW that is a
result of the activation on the drop-doWn menu of FIG. 3.
[0012] FIG. 4B shoWs another example Warning display
WindoW.
[0013] FIG. 4C shoWs another example Warning display
WindoW Wherein a user can generate a tailored Warning.
[0014] FIG. 5 shoWs an activation status on a second menu
item of the drop-doWn menu of the diagnostics display Win
doW.
[0015] FIG. 6 shoWs a vieW of the Warnings display Win
doW With a time range indicator display in response to acti
vation of the menu item as shoWn in FIG. 5.
[0016] FIG. 7A shoWs a selection status carried out upon
one of the items in the diagnostics display WindoW.
[0017] FIG. 7B shoWs another example of a selection status
carried out upon one of the items in the diagnostics display
WindoW.
[0018] FIG. 8 shoWs a description WindoW containing
information pertaining to the item that Was selected as shoWn
in FIG. 7.
[0019] FIG. 9 shoWs a How chart of an exemplary method
for analyZing the performance of a video game.
[0020] FIG. 10 is a diagram of an exemplary processor for
implementing real-time analysis of performance data of a
video game.
[0021] FIG. 11 is a depiction of a suitable computing envi
ronment in Which real-time analysis of performance data of a
video game can be implemented.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

[0022] The folloWing description provides details pertain
ing to analyZing the performance of a video game by captur
ing real-time performance data and generating, during this
data capture, a real-time Warning When a monitored param
eter falls outside a pre-determined threshold. Consequently,
performance issues that may be of an intermittent nature or
not detectable in a non-real-time analysis process are uncov
ered. Furthermore, upon obtaining a Warning, a developer can
obtain further particulars of the Warning and a recommenda
tion for carrying out remedial action.
[0023] In one exemplary embodiment, the Warning is pro
vided in the form of a diagnostics display WindoW containing
Warning labels. Each of the Warning labels is con?gured as a
soft-key that may be activated to display a pointer icon that
points to a particular frame in a sequence of frames that is
displayed in a graphical format in a system monitor WindoW.
When the Warning label is further activated, by double-click
ing on it for example, a description WindoW appears. The
description WindoW provides details of the Warning and also
provides a recommended course of action for rectifying the
problem.

US 2009/0113251Al

[0024] FIG. 1 shows an exemplary display screen 105 that
is a part of a performance analyzer system 100 for analyzing
the performance of a video game. Performance analyZer sys
tem 100 has been branded as “Dr. PIX” by Microsoft® and it
Will be understood that any use of the term Dr. PIX, herein in
this document, is being merely being done for purposes of
convenience. Other trade names may be alternatively applied
to a performance analyZer system that incorporates the fea
tures described herein in this document. Similarly, reference
is made herein to “D3D,” Which refers to a Microsoft devel
opment tool named “Direct3D.” This tool is generally knoWn
to persons of skill in this art, and Will, therefore, not be
elaborated upon in much detail.

[0025] Display screen 105 may be implemented in a variety
of different formats. For example, in one implementation,
display screen 105 uses a WindoWs format in accordance With
Microsoft WindoWs®. HoWever, in other implementations,
other types of displays and display formats may be used. The
exemplary display screen 105 of FIG. 1 shoWs a system
monitor display WindoW 110 and a diagnostics display Win
doW 115 (labeled as Dr. PIX Monitor).
[0026] System monitor display WindoW 110, hereinafter
referred to as system monitor 110, provides a graphical dis
play 120 of gaming performance in terms of data statistics
captured over a sequence of video gaming frames. In one
example, the data statistics is a count value pertaining to the
number of occurrences of a monitored gaming parameter
such as, for example, D3D locks. Consequently, the number
of D3D locks occurring on a real-time frame-by-frame basis
can be seen in system monitor 110. It Will be understood that
various gaming parameters can be selected for monitoring,
together With selectable priority levels and otherperformance
metrics. A feW non-exhaustive examples of gaming param
eters include: redundant states, number of thread sWitches in
a kernel, sleep time, ratio of bytes read to number of requests.
[0027] BeloW the graphics display 120 of monitor display
WindoW 110, is a tabular display 125 that provides numerical
information pertaining to the various graphs displayed in
graphical display 120. The ?rst column of tabular display 125
identi?es a particular graph. In the illustration of FIG. 1, the
graphs have been identi?ed by various types of lines such as
solid, dashed and dotted lines. HoWever, this format has been
utiliZed merely for ease of description. In a practical set-up,
each of the graphs may be identi?ed by a unique color and
each of the colors is identi?ed in the ?rst column of tabular
display 125. For example, graph 121 (Which is identi?ed in
FIG. 1 using a solid line), may be identi?ed by a red color and
cell 126 of the ?rst column of tabular display 125 Would be
shaded red correspondingly. Other identi?cation means may
be similarly used for identifying the individual graphs.
[0028] The second column of tabular display 125 provides
list of performance metrics associated With various moni
tored parameters. In this exemplary embodiment, the entries
in the second column correspond to various counters that are
used to obtain count values of certain performance metrics
that are used to analyZe the performance of the video game.
The counters may be provided to correspond to a set of
pre-determined performance metrics that are selected by a
manufacturer of performance analyZer system 100. Alterna
tively, performance analyZer system 100 may be con?gured
to permit a developer or other individual to de?ne one or more
counters for various performance metrics that are of particu
lar interest to the developer.

Apr. 30, 2009

[0029] The third column of tabular display 125 lists the
scaling factors for each of the graphs of graphics display 120,
While the fourth and ?fth columns provide minimum and
maximum values of the corresponding monitored param
eters.

[0030] Additionally, performance analyZer system 100
may include a data store (not shoWn), Which is used for
storing a running log of timing parameters related to the
monitored gaming parameters. Consequently, When a devel
oper notices an abnormal spike, for example, in a particular
frame on graphical display 120, the stored data may be
accessed for carrying out a timing analysis on the abnormal
frame.
[0031] Diagnostics display WindoW 115 (Dr. PIX Monitor)
provides data statistics pertaining to the monitored gaming
parameters, and speci?cally provides data related to one or
more monitored parameters that fall outside a pre-determined
threshold. In the exemplary vieW shoWn in FIG. 1, a ?rst
column of diagnostics display WindoW 115 lists Warnings
related to the monitored parameters. The ?rst Warning indi
cates “too many D3D locks,” While the second Warning indi
cates “too many debug prints.” The second column of diag
nostics display WindoW 115 lists the priority level of each of
the Warnings of column 1. The priority levels may be pre
determined by a manufacturer of performance analyZer sys
tem 100, or may be selectably set by a game developer or
other user of performance analyZer system 100. The third
column of diagnostics display WindoW 115 lists the count
value for each of the Warnings of column 1, While the fourth
column provides frame information of Where the Warning
occurred in the sequence of frames displayed in graphical
display 120.
[0032] Diagnostics display WindoW 115, as Well as system
monitor 110 may include soft-keys for carrying out various
operations such as, for example, Pause, Stop, Print, Store,
Ignore, Hide, Edit, and Clear. While the functionality of some
of these soft-keys is self-evident, it may be pertinent to point
out certain features in some others. The Save key (not shoWn)
is used to save the Warnings in a database or ?le; the Ignore
key (not shoWn) is used to selectively ignore certain Wam
ings; the Hide key (not shoWn) is used to hide diagnostics
display WindoW 115; the Edit key (not shoWn) to edit the
Warning conditions so as to make them visible or invisible;
and the Clear key (soft-key 117) is used to clear the contents
of diagnostics display WindoW 115. The Stop key (soft-key
116) Will be described beloW in further detail.
[0033] Furthermore, each of the cells in tabular display 125
and/or diagnostics display WindoW 115 may be con?gured in
various Ways. For example, a cell may be con?gured as a
soft-key, Which When activated, leads to a further operation
such as providing an additional display. A cell may be further
con?gured to be editable, Whereby for example, the text con
tent may be modi?ed or a numerical parameter set to a desired
value.

[0034] FIG. 2 shoWs an exemplary vieW of diagnostics
display WindoW 115 When a soft-key of diagnostics display
WindoW 115 has been activated. In this particular example,
soft-key 116, Which Was labeled “Stop” in FIG. 1, Was acti
vated thereby causing the soft-key to be re-labeled as “Start.”
Upon activation of the “Stop” function, the contents of diag
nostics display WindoW 115 are froZen so that a developer can
examine and analyZe the displayed values. After having done
so, the developer can noW activate the “Start” key to resume
display activities in diagnostics display WindoW 115.

US 2009/0113251Al

[0035] FIG. 3 shows an exemplary embodiment Where a
drop-doWn menu 301 is provided in conjunction With diag
nostics display WindoW 115. As can be understood, the func
tionality of drop-doWn menu 301 may be implemented in
other alternative Ways, such as, for example, by using selec
tion icons or soft-keys. In this example, drop-doWn menu 301
contains three options: Warnings, Save, and Time Mode. The
hatched format of the Warnings option is intended to indicate
that this option has been selected. When thus selected, the
Warnings WindoW 410 of FIG. 4A is displayed. Warnings
WindoW 410 provides a list ofV1sible Warnings in display box
425 and a list of Invisible Warnings in display box 430.Action
soft-keys 415 and 420 permit transfer of Warnings betWeen
display box 425 and display box 430 thereby permitting
selection of the visibility status of individual Warnings. For
example, the Warning labeled “Too many D3D locks” may be
made invisible by selecting this Warning (for example, by
clicking on it), folloWed by activation of soft-key 420. Each of
the display boxes 425 and 430 may incorporate additional
features such as a scroll-bar. Warnings WindoW 410 provides
additional soft-keys such as, for example, Cancel soft-key
435 and OK soft-key 440.
[0036] FIG. 4B illustrates other example appropriate invis
ible and visible Warnings. Also, as depicted in FIG. 4B, Wam
ing conditions are fully editable. A user can create a Warning
based on any of the supplied counter values. This alloWs for
an advanced user to go outside of prede?ned settings and
evaluate tailored data combinations. Warnings can be tested
in a dialog prior to use, alloWing the user to ensure correct
expected behavior. As depicted in FIG. 4B, a user can gener
ate a neW Warning via soft-key 445, a user can edit an existing
Warning via soft-key 450, a user can reset a Warning via
soft-key 460, a user can delete a Warning via soft-key 465, or
a combination thereof. Warnings can be added and removed
by moving them betWeen the invisible and visible list. A user
can set conditions and test if the conditions are technically
correct before saving the Warnings. If the conditions are not
correct, an error Will be generated. For example, referring to
FIG. 4C, suppose a user forgets to include the “>l0000”
portion shoWn in the Priority 1 Condition WindoW of FIG. 4C.
Instead, suppose the user enters “D3D.DraWApiCalls” in the
Priority 1 Condition WindoW. When testing the condition, an
error Will be generated. The generated error Will be “Priority
1 Condition4error CS0029: Cannot implicitly convert type
‘?oat’ to ‘bool”’ (Error not shoWn in FIG. 4C). The conditions
and errors are based on C++/ C # conditional logic.

[0037] FIG. 5 shoWs a hatched format of the Time mode
option in drop-doWn menu 301, indicative of selection of this
option. When thus selected, as depicted in FIG. 6, the frame
range changes to time range. In an example embodiment, the
time range displayed in Time Range display segment 615 (1.0
seconds to 2.0 seconds in this example) provides a time Win
doW Within Which Warnings can be ob served. Thus, the ability
is provided to shoW Warnings that Were generated Within a
selected range of time.

[0038] FIG. 7A shoWs an exemplary vieW of display screen
105 to describe operation of a soft-key process associated
With each of the Warning messages in diagnostics display
WindoW 115. In this particular example, the hatched portion
indicates that the “Too many D3D locks” Warning has been
activated using a ?rst mode of activation (by single-clicking
on the Warning, for example). When thus activated, one or
more pointer icons are displayedpointing to certain frames on
graphical display 120. In this exemplary illustration, tWo

Apr. 30, 2009

pointer icons 710 and 715 are displayed. The pointer icons are
used to identify the one or more frames Where the Warning
Was generated. In another example embodiment, as depicted
in FIG. 7B, the actual time duration that a Warning Was active
is shoWn in an event band at the top of the display. This is
depicted as track that has a solid bar, as depicted by bars 720
and 725, for the period the Warning Was evaluated to be true.
In an example embodiment, the color of the bar signi?es the
priority of the Warning.
[0039] The “Too many D3D locks” Warning may be also
activated using a second mode of activation (by double-click
ing on it, for example). This form of activation results in the
display of a description WindoW for the Warning. An exem
plary description WindoW 810 is shoWn in FIG. 8 for the
Warning “Too many D3D Locks.” Description WindoW 810
includes a condition section 830 Where one or more condi

tions that led to the Warning are displayed. Description Win
doW 810 further includes a description section 825 in Which a
description of the Warning as Well as other particulars of the
Warning is provided. Certain portions of the entries in either
the condition section 830 and/or the description section 825
may be con?gured as soft-keys. For example, a portion (or
entirety) of the admonishment “You should not do so many on
this frame” may include a soft-key. In one embodiment, the
soft-key is provided in a Hypertext Markup Language
(HTML) format Which can be activated to jump to a solution
source. Such a solution source may be a private document,
such as a user’s manual, or a public document such as a Web
page that is accessed via the Internet, for example.

[0040] Furthermore, in one exemplary embodiment, click
ing on a soft-key located in any portion of description WindoW
810, for example, in description section 825, provides access
to source code Wherein the problem can be recti?ed. The
source code is a part of the gaming application code of the
video game.

[0041] In an example embodiment, description WindoW
810 further contains a number of dedicated soft-keys, such as,
for example, the soft-keys Close 820, Graph 815, Hide 835
and Edit 840. Clicking on Close 820 closes description Win
doW 810. Clicking on Hide 835 removes the Warning from a
Warning WindoW, such as Warnings WindoW 410 described
above. Clicking on Graph 815 causes a Warning graphical
display (not shoWn) of the Warning to appear. Clicking on the
Edit 840 alloWs the user to edit the Warning condition (See
FIG. 4C). This Warning graphical display may utiliZe a format
similar to that of graphical display 120 described above. Each
of the soft-keys may be also con?gured to change function
ality When activated. For example, upon clicking on the
Graph 815 key, the soft-key transforms to an “Ungraph” key,
Which permits the Warning graphical display to be closed.
[0042] A non-exhaustive list of exemplary Warnings,
together With some information pertaining to each of these
Warnings and some recommended solutions, is provided
beloW. Several Warnings listed beloW, use a certain format for
setting Warning thresholds and priorities. This exemplary for
mat Will be described using the Warning labeled:
D3DShaderPatches>{2, 10, 50}. The numbers located Within
{ } provide priority threshold Warning values. In this particu
lar example, the numbers located Within { } indicate a priority
level 1 Warning setting When D3DShaderPatches>50; a pri
ority level 2 Warning setting When D3DShaderPatches>l0;
and a priority level 3 Warning setting When
D3DShaderPatches>2. It may also be pertinent to point out

US 2009/0113251 A1

that these priority levels are shown in the second column of
diagnostics display window 115 as described above.
[0043] D3D: Too Many Shader Patches

D3DShaderPatches>{2, 10, 50}
[0044] There were too many vertex shader patches. A ver
tex shader patch happens when a vertex shader is used with a
different vertex declaration or SetStreamSource stride than it
was previously used with, or when it’s used with a pixel
shader whose inputs don’t match the vertex shader’s outputs.
Patches cause D3D to incur signi?cant CPU overhead and
waste GPU command space.
[0045] D3D: Too Many GPU Interrupts

D3DInterrupts>{40, 100, 200}
[0046] There were too many GPU interrupts. GPU inter
rupts are generated by calls to InsertCallback or EndTiling,
EndZPass or XpsEnd. Interrupts incur signi?cant CPU and
GPU overhead.
[0047] D3D: Too Much Time Spent in Interrupt Callbacks
D3DCallbackTime>{0.5 ms, 1 ms, 2 ms}
[0048] There was too much cumulative time spent process
ing interrupt callbacks. This is most likely because InsertCall
back routines took too long, or it might be due to other
interrupt or DPC activity in the system. The GPU has to idle
the entire time that interrupt callbacks are processed by the
CPU.
[0049] D3DX: Too Many Run-Time Shader Compilations

D3DXShaderCompilations>{0, 5, 10}
[0050] There were too many run-time calls to
D3 DXCompileShader or its variants. Shader compilation has
very high CPU overhead and requires signi?cant amounts of
dynamically allocated memory. It’s preferable to precompile
all shaders on the PC.
[0051] D3DX: Too Many D3DX Resource Creation Calls

D3DXCreationCalls>{0, 5, 10}
[0052] D3DX resource creation APIs such as
D3DXCreateTextureFromFile have high CPU and disc over
head. It’s preferable to convert resources on the PC to the 360
format (using functions such as XGCopySurface), pack mul
tiple resources into a single ?le (so that a ?le doesn’t have to
be opened and closed for every resource), and then load
e?iciently onto the 360 (using functions such as XGSetTex
tureHeader).
[0053] D3D: Too Many D3D Resource Creation Calls

D3DCreationCalls>{0, 5, 10}
[0054] D3D resource creation APIs such as CreateTexture
and CreateVertexBuffer have high CPU overhead because
they have to allocate physical memory.
[0055] D3D: The Primary Ring Buffer was Overrun

D3DPrimaryRingBufferOverruns>{0, 0, 0}
[0056] D3D had to block because the primary ring buffer
was overrun. This wastes CPU time for the duration of the
block. This overrun can occur for reasons such as using Predi

cated Tiling with a large number of tiles, or when many
‘kick-offs’ of the GPU are being done (such as can be caused
by frequently calling InsertFence).

Apr. 30, 2009

[0057] Because the primary ring buffer is small, the sim
plest ?x is to increase its siZe via D3DRING_BUFFER_
PARAMETERS.
[0058] D3D: Too Many Secondary Ring Buffer Overruns

D3DSecondaryRingBufferOverruns> { l , 2, 3 }

[0059] D3D had to block because the secondary ring buffer
was overrun. This wastes CPU time for the duration of the
block. This overrun occurs when the GPU is running behind
and there is not enough room in the secondary ring buffer to
hold all of the pending GPU commands that have been
enqueued by the CPU.
[0060] The most straightforward ?x is to increase the siZe
of the secondary ring buffer via D3DRING_BUFFER_PA
RAMETERS, but eliminating the CPU block may not be
worth the increase in memory used. More dif?cult is to reduce
the amount of commands sent to the GPU (such as by elimi
nating redundantly set state, or by consolidating multiple
draw calls).
[0061] D3D: Tiling was Used Without
D3DCREATE_BUFFERi2_FRAMES

Enabling

D3DTilingEnabled && lD3DBuffer2FramesEnabled

[0062] Predicated Tiling was used without enabling
D3DCREATE_BUFFERi2_FRAMES. Predicated Tiling
works best if the GPU can make multiple passes over the
command data to render one frame while the CPU is con
structing the command data for the next frame. Enable that
scenario by specifying D3DCREATE_BUFFERi2_
FRAMES at CreateDevice time.

[0063] D3D: More than Half of the Secondary Ring Buffer
was Consumed

D3DTilingEnabled && D3DBuffer2FramesEnabled &&
(D3DSecondaryRingBufferUsed>D3DSecondaryRing
BufferSiZe/2)
[0064] More than half of the secondary ring buffer was
consumed by a single frame while using D3DCREATE_
BUFFERi2_FRAMES. Predicated Tiling works best if the
GPU can make multiple passes over the command data to
render one frame while the CPU is constructing the command
data for the next frame, and doing so requires enough second
ary ring buffer room to hold 2 complete frames of command
data. If a single frame consumes more than half of the entire
secondary ring buffer (but less than the entire secondary ring
buffer), the frame will still be rendered ?ne but signi?cant
CPU and GPU stalls may result.
[0065] The most straightforward ?x is to increase the siZe
of the secondary ring buffer via D3DRING_BUFFER_PA
RAMETERS, but eliminating the stalls may not be worth the
increase in memory used. Much more is to reduce the amount
of commands sent to the GPU (such as by eliminating redun
dantly set state, or by consolidating multiple draw calls).
[0066] D3D: Too Much Time Consumed in B3B Resource
Blocks

D3DLockTime>{0.5 ms, 1 ms, 2 ms}
[0067] Too much CPU time was consumed in blocking
D3D resource locks. Blocks waste CPU time because the
CPU spins for the entire duration.
[0068] Blocks can be tracked down by doing a PIX Timing
Capture, or by using the SetBlockCallback method. Blocks
can be eliminated by methods such as double buffering (or

US 2009/0113251A1

triple or n-buffering) dynamic resources, using methods such
as BeginVertices, or other mechanisms.

[0069] D3D: The System Consumed too Much GPU
(D3DIsGuideVisible && D3DSystemGpuTime>0333 ms)||
(!D3DIsGuideVisible && D3DSystemGpuTime>l ms)
[0070] The system consumed more GPU time than its
reserved amount. Please contact the manufacturer so that the
manufacturer can reproduce the problem and ?x it.
[0071] D3D: The GPU Starved for Data

(D3DPresentInterval !:0) && (D3DIdlesAtKickoff>{0, 0,
0})
[0072] The GPU Went idle during rendering because it
starved for command buffer data from the CPU. Ideally the
GPU is never idle, and is alWays either rendering or Waiting
for the vertical blank. Use the PIX “Record Timing” ability to
determine Why the GPU is starving. (Note that you may Want
to capture 2 frames at once because the idle may occur While
transitioning from one frame to the next.)
[0073] D3D: The GPU Starved While Waiting for the CPU
to End a Bracket

D3DIdlesAtEndBracket>{0, 0, 0}
[0074] The GPU Went idle While Waiting for the CPU to call
an End API. None of the GPU command data in a tiling,
Z-pass or XPS bracket is submitted to the GPU until EndTil
ing, EndZPass or XpsEnd is called.
[0075] D3D: Too Many DraW Calls

D3DDraWCalls>{3000, 6000, 10000}
[0076] There Were many more draW calls than are done by
most games in a frame. Too many draW calls result in exces
sive CPU usage While rendering. Consider cutting doWn on
the number of calls (such as by potentially doing better frus
tum culling or visibility determination), or consolidating
draW calls, or using command buffers.
[0077] D3D: CPU Frame Time Too Long

D3DCpuFrameTime>{50 ms, 75 ms, 100 ms }

[0078] The CPU took too long for a frame (de?ned as the
time betWeen CPU calls to SWap/Present). Use PIX to Record
Timing for a frame to determine Why.
[0079] D3D: CPU Frame Way Too Long

D3DGpuFrameTime>200 ms

[0080] The CPU took Way too long for a frame (de?ned as
the time betWeen CPU calls to SWap/ Present). Cert require
ments specify that SWap/ Present must alWays be called Within
67 ms. If this is during level load When it is dif?cult to call
SWap/Present at the required rate, consider using the Suspend
and Resume methods to have D3D automatically sWap for
you during the load.
[0081] D3D: GPU Frame Time Too Long
(D3DIdlesAtKickoff::0) && (D3DGpuFrameTime>{50
ms, 75 ms, 100 ms})
[0082] The GPU took too long to render a frame (de?ned as
the time betWeen processing SWaps/Presents). Use PIX to
“Record GPU” for a frame to determine Why. <<Use
‘D3DIdlesAtKickoff::0’ so that it rules out GPU stalls
caused by the CPU>>

Apr. 30, 2009

[0083] D3D: Not using D3DRS_PRESENTIMMEDI
ATETHRESHOLD

(D3 DPresentImmediateThreshold::0) &&
(((D3DPresentInterval::l) && (D3DGpuFrameTime>0.
016667 ms))| |(D3 DPresentInterval::2) &&
(D3DGpuFrameTime>0.033333 ms)))
[0084] The GPU missed its target render time but D3DRS_
PRESENTIMMEDIATETHRESHOLD isn’t being used.
Use this render state to alloW frames to be presented imme
diately When the frame took longer to complete than the target
frame rate. This Will increase tearing but that’s much better
than stuttering. We recommend setting D3DRS_PRESEN
TIMMEDIATETHRESHOLD to 100.

[0085] D3D: Too Many GPU Kick-Offs

D3DKickOffs>{l00, 200, 500}
[0086] There Were too many kick-offs of command data to
the GPU. This Wastes CPU and GPU overhead. Note that the
GPU overhead is not reproduced While analyZing a PIX GPU
capture. Too many kick-offs might happenbecause of reasons
such as InsertFence being called too often, or because the
SegmentCount speci?ed via D3DRING_BUFFER_PA
RAMETERS is too high relative to the secondary ring buffer
size.

[0087] FIG. 9 shoWs a How chart of a method for analyZing
the performance of a video game. In block 905, a diagnostic
tool (not shoWn) of performance analyZer system 100 is asso
ciated With application code of the video game. As one among
several Ways of doing so, an executable code of the diagnostic
tool is loaded and installed on a computer that houses and runs
the application code of the video game. The loading may be
carried out in a manner similar to that done for installing any
commercial softWare, say one that is provided in a CD-ROM
for example.
[0088] In block 910, the video game is set in operation. The
diagnostic tool is activated, either before or during game
operation. In block 915, real-time performance data associ
ated With the execution of the application code, is captured
and displayed using display screen 105 described above. It
can be appreciated that the data capture aspect shoWn in block
915 typically Would not interfere With normal operation of the
video game. In block 920, one or more Warnings are gener
ated When a performance metric violates a pre-set condition.
The Warnings and performance metrics associated With inter
preting and using display screen 105 have been described
above.

[0089] FIG. 10 is a diagram ofan exemplary processor 68
for implementing real-time analysis of performance data of a
video game. The processor 68 comprises a processing portion
70, a memory portion 72, and an input/output portion 74. The
processing portion 70, memory portion 72, and input/output
portion 74 are coupled together (coupling not shoWn in FIG.
10) to alloW communications therebetWeen. The input/output
portion 74 is capable of providing and/or receiving compo
nents utiliZed to perform real-time analysis of performance
data of a video game as described above. For example, the
input/output portion 74 is capable of accepting a softWare
media on Which is stored at least a portion of the diagnostic
tool and for displaying the various display screens described
above.

[0090] The processing portion 70 is capable of implement
ing real-time analysis of performance data of a video game as

US 2009/0113251A1

described above. For example, the processing portion 70 is
capable of generating performance data and the display
screens described above.

[0091] The processor 68 can be implemented as a client
processor and/or a server processor. In a basic con?guration,
the processor 68 can include at least one processing portion
70 and memory portion 72. The memory portion 72 can store
any information utilized in conjunction With real-time analy
sis of performance data of a video game. Depending upon the
exact con?guration and type of processor, the memory por
tion 72 can be volatile (such as RAM) 76, non-volatile (such
as ROM, ?ash memory, etc.) 78, or a combination thereof.
The processor 68 can have additional features/functionality.
For example, the processor 68 can include additional storage
(removable storage 80 and/ or non-removable storage 82)
including, but not limited to, magnetic or optical disks, tape,
?ash, smart cards or a combination thereof. Computer storage
media, such as memory portion 72, 76, 78, 80, and 82, include
volatile and nonvolatile, removable and non-removable
media implemented in any method or technology for storage
of information such as computer readable instructions, data
structures, program modules, or other data. Computer storage
media include, but are not limited to, RAM, ROM, EEPROM,
?ash memory or other memory technology, CD-ROM, digital
versatile disks (DVD) or other optical storage, magnetic cas
settes, magnetic tape, magnetic disk storage or other mag
netic storage devices, universal serial bus (USB) compatible
memory, smart cards, or any other medium Which can be used
to store the desired information and Which can be accessed by
the processor 68. Any such computer storage media can be
part of the processor 68.
[0092] The processor 68 can also contain communications
connection(s) 88 that alloW the processor 68 to communicate
With other devices, such as other devices, for example. Com
munications connection(s) 88 is an example of communica
tion media. Communication media typically embody com
puter readable instructions, data structures, program modules
or other data in a modulated data signal such as a carrier Wave
or other transport mechanism and includes any information
delivery media. The term “modulated data signal” means a
signal that has one or more of its characteristics set or changed
in such a manner as to encode information in the signal. By
Way of example, and not limitation, communication media
includes Wired media such as a Wired netWork or direct-Wired

connection, and Wireless media such as acoustic, RF, infrared
and other Wireless media. The term computer readable media
as used herein includes both storage media and communica
tion media. The processor 68 also can have input device(s) 86
such as keyboard, mouse, pen, voice input device, touch input
device, etc. Output device(s) 84 such as a display, speakers,
printer, etc. also can be included.

[0093] FIG. 11 and the folloWing discussion provide a brief
general description of a suitable computing environment in
Which s real-time analysis of performance data of a video
game can be implemented. Although not required, various
aspects of real-time analysis of performance data of a video
game can be described in the general context of computer
executable instructions, such as program modules, being
executed by a computer, such as a client Workstation or a
server. Generally, program modules include routines, pro
grams, objects, components, data structures and the like that
perform particular tasks or implement particular abstract data
types. Moreover, implementation of real -time analysis of per
formance data of a video game can be practiced With other

Apr. 30, 2009

computer system con?gurations, including hand held
devices, multi processor systems, microprocessor based or
programmable consumer electronics, netWork PCs, mini
computers, mainframe computers, and the like. Further, real
time analysis of performance data of a video game also can be
practiced in distributed computing environments Where tasks
are performed by remote processing devices that are linked
through a communications netWork. In a distributed comput
ing environment, program modules can be located in both
local and remote memory storage devices.
[0094] A computer system can be roughly divided into
three component groups: the hardWare component, the hard
Ware/software interface system component, and the applica
tions programs component (also referred to as the “user com
ponent” or “softWare component”). In various embodiments
of a computer system the hardWare component may comprise
the central processing unit (CPU) 721, the memory (both
ROM 764 and RAM 725), the basic input/output system
(BIOS) 766, and various input/output (I/O) devices such as a
keyboard 740, a mouse 742, a monitor 747, and/or a printer
(not shoWn), among other things. The hardWare component
comprises the basic physical infrastructure for the computer
system.
[0095] The applications programs component comprises
various softWare programs including but not limited to com
pilers, database systems, Word processors, business pro
grams, videogames, and so forth. Application programs pro
vide the means by Which computer resources are utiliZed to
solve problems, provide solutions, and process data for vari
ous users (machines, other computer systems, and/or end
users). In an example embodiment, application programs per
form the functions associated With real-time analysis of
performance data of a video game as described above.

[0096] The hardWare/softWare interface system component
comprises (and, in some embodiments, may solely consist of)
an operating system that itself comprises, in most cases, a
shell and a kernel. An “operating system” (OS) is a special
program that acts as an intermediary betWeen application
programs and computer hardWare. The hardWare/softWare
interface system component may also comprise a virtual
machine manager (V MM), a Common Language Runtime
(CLR) or its functional equivalent, a Java Virtual Machine
(JVM) or its functional equivalent, or other such softWare
components in the place of or in addition to the operating
system in a computer system. A purpose of a hardWare/soft
Ware interface system is to provide an environment in Which
a user can execute application programs.

[0097] The hardWare/softWare interface system is gener
ally loaded into a computer system at startup and thereafter
manages all of the application programs in the computer
system. The application programs interact With the hardWare/
softWare interface system by requesting services via an appli
cation program interface (API). Some application programs
enable end-users to interact With the hardWare/softWare inter
face system via a user interface such as a command language
or a graphical user interface (GUI).

[0098] A hardWare/softWare interface system traditionally
performs a variety of services for applications. In a multitask
ing hardWare/softWare interface system Where multiple pro
grams may be running at the same time, the hardWare/soft
Ware interface system determines Which applications should
run in What order and hoW much time should be alloWed for
each application before sWitching to another application for a
turn. The hardWare/softWare interface system also manages

US 2009/0113251Al

the sharing of internal memory among multiple applications,
and handles input and output to and from attached hardware
devices such as hard disks, printers, and dial-up ports. The
hardWare/softWare interface system also sends messages to
each application (and, in certain case, to the end-user) regard
ing the status of operations and any errors that may have
occurred. The hardWare/softWare interface system can also
o?lload the management of batch jobs (e.g., printing) so that
the initiating application is freed from this Work and can
resume other processing and/or operations. On computers
that can provide parallel processing, a hardWare/softWare
interface system also manages dividing a program so that it
runs on more than one processor at a time.

[0099] A hardWare/softWare interface system shell (re
ferred to as a “shell”) is an interactive end-user interface to a

hardWare/softWare interface system. (A shell may also be
referred to as a “command interpreter” or, in an operating
system, as an “operating system shell”). A shell is the outer
layer of a hardWare/softWare interface system that is directly
accessible by application programs and/or end-users. In con
trast to a shell, a kernel is a hardWare/softWare interface

system’s innermost layer that interacts directly With the hard
Ware components.

[0100] As shoWn in FIG. 11, an exemplary general purpose
computing system includes a conventional computing device
760 or the like, including a processing unit 721, a system
memory 762, and a system bus 723 that couples various
system components including the system memory to the pro
cessing unit 721. The system bus 723 may be any of several
types of bus structures including a memory bus or memory
controller, a peripheral bus, and a local bus using any of a
variety of bus architectures. The system memory includes
read only memory (ROM) 764 and random access memory
(RAM) 725. A basic input/output system 766 (BIOS), con
taining basic routines that help to transfer information
betWeen elements Within the computing device 760, such as
during start up, is stored in ROM 764. The computing device
760 may further include a hard disk drive 727 for reading
from and Writing to a hard disk (hard disk not shoWn), a
magnetic disk drive 728 (e.g., ?oppy drive) for reading from
or Writing to a removable magnetic disk 729 (e.g., ?oppy disk,
removal storage), and an optical disk drive 730 for reading
from or Writing to a removable optical disk 731 such as a CD
ROM or other optical media. The hard disk drive 727, mag
netic disk drive 728, and optical disk drive 730 are connected
to the system bus 723 by a hard disk drive interface 732, a
magnetic disk drive interface 733, and an optical drive inter
face 734, respectively. The drives and their associated com
puter readable media provide non volatile storage of com
puter readable instructions, data structures, program modules
and other data for the computing device 760. Although the
exemplary environment described herein employs a hard
disk, a removable magnetic disk 729, and a removable optical
disk 731, it should be appreciated by those skilled in the art
that other types of computer readable media Which can store
data that is accessible by a computer, such as magnetic cas
settes, ?ash memory cards, digital video disks, Bernoulli
cartridges, random access memories (RAMs), read only
memories (ROMs), and the like may also be used in the
exemplary operating environment. LikeWise, the exemplary
environment may also include many types of monitoring
devices such as heat sensors and security or ?re alarm sys
tems, and other sources of information.

Apr. 30, 2009

[0101] A number of program modules can be stored on the
hard disk, magnetic disk 729, optical disk 731, ROM 764, or
RAM 725, including an operating system 735, one or more
application programs 736, other program modules 737, and
program data 738. A user may enter commands and informa
tion into the computing device 760 through input devices
such as a keyboard 740 and pointing device 762 (e.g., mouse).
Other input devices (not shoWn) may include a microphone,
joystick, game pad, satellite disk, scanner, or the like. These
and other input devices are often connected to the processing
unit 721 through a serial port interface 746 that is coupled to
the system bus, but may be connected by other interfaces,
such as a parallel port, game port, or universal serial bus
(U SB). A monitor 747 or other type of display device is also
connected to the system bus 723 via an interface, such as a
video adapter 748. In addition to the monitor 747, computing
devices typically include other peripheral output devices (not
shoWn), such as speakers and printers. The exemplary envi
ronment of FIG. 11 also includes a host adapter 755, Small
Computer System Interface (SCSI) bus 756, and an external
storage device 762 connected to the SCSI bus 756.

[0102] The computing device 760 may operate in a net
Worked environment using logical connections to one or more
remote computers, such as a remote computer 749. The
remote computer 749 may be another computing device (e. g.,
personal computer), a server, a router, a netWork PC, a peer
device, or other common netWork node, and typically
includes many or all of the elements described above relative
to the computing device 760, although only a memory storage
device 750 (?oppy drive) has been illustrated in FIG. 11. The
logical connections depicted in FIG. 11 include a local area
netWork (LAN) 751 and a Wide area netWork (WAN) 752.
Such netWorking environments are commonplace in o?ices,
enterprise Wide computer netWorks, intranets and the Inter
net.

[0103] When used in a LAN netWorking environment, the
computing device 760 is connected to the LAN 751 through a
netWork interface or adapter 753. When used in a WAN net
Working environment, the computing device 760 can include
a modem 754 or other means for establishing communica
tions over the Wide area netWork 752, such as the Internet. The
modem 754, Which may be internal or external, is connected
to the system bus 723 via the serial port interface 746. In a
netWorked environment, program modules depicted relative
to the computing device 760, or portions thereof, may be
stored in the remote memory storage device. It Will be appre
ciated that the netWork connections shoWn are exemplary and
other means of establishing a communications link betWeen
the computers may be used.
[0104] While it is envisioned that numerous embodiments
of real-time analysis of performance data of a video game are
particularly Well-suited for computeriZed systems, nothing in
this document is intended to limit the invention to such
embodiments. On the contrary, as used herein the term “com
puter system” is intended to encompass any and all devices
capable of storing and processing information and/ or capable
of using the stored information to control the behavior or
execution of the device itself, regardless of Whether such
devices are electronic, mechanical, logical, or virtual in
nature.

[0105] The various techniques described herein can be
implemented in connection With hardWare or softWare or,
Where appropriate, With a combination of both. Thus, the
methods and apparatuses for real-time analysis of perfor

