
Network Latency Measurement for l2O
Architecture

By Logic Analyzer Instrumentation Technique

A Senior Project Report Presented to the
Electrical Engineering Department

California Polytechnic State University San Luis Obispo

In Partial Fulfillment
of the Requirement for the Degree

Bachelor of Science in Electrical Engineering

By
Yu Guang Liang

June 1998

ABSTRACT

This goal of this project is to demonstrate a new technique for the measurement of

network performance of a new computer I/O technology called “I2O.” I2O stands for Intelligent

Input and Output. The specific measurement investigated is network latency, the response time

of the system to network requests. The project requires not only the understanding of the I2O

architecture, but also issues including the PCI bus, networking protocols such as TCP/IP and

Ethernet, the inner structure of Windows NT, and the Intel's i960 Rx I/O processor. This project

uses hardware instrumentation with a logic analyzer rather than the development of a software

benchmarking tool to measure network performance. The conclusion is that the logic analyzer

approach is proven to be effective.

This report first presents the background information, and then the specific test plan,

procedure and results. In the beginning, it is explained why I2O is important to today's computer

system. Then a brief overview of the I2O architecture and the i960 Rx I/O processor is given.

Next, the setup of the testbed and the specifics of how the experiment is conducted are

presented. Finally, a few test models and suggested test procedures are presented.

Acknowledgement

I would like to take a moment to thank our sponsor, 3 Com, for all their supports.

Then I also need to express my sincere gratitude to my advisor, Dr. James Harris, for his

guidance, advice, motivation, assistance and patience throughout the project.

TABLE OF CONTENTS

ABSTRACT……………………………………………………………………………..……………………II

ACKNOWLEDGEMENT .. III

TABLE OF CONTENTS.. IV

LIST OF TABLES .. VI

LIST OF FIGURES ...VII

CHAPTER 1. INTRODUCTION ..1

1.1 WHY ADD INTELLIGENCE TO THE 1/0 INTERFACE ... 1
1.2 IMPLEMENTATION OF I20 ARCHITECTURE ON 1/0 PROCESSOR .. 2

1.3 PERFORMANCE TESTING ON I20 ARCHITECTURE..3

CHAPTER 2. THE I2O ARCHITECTURE AND THE INTEL 1960 RX IOP..4

2.1 THE I20 SPECIECATION OVERVIEW...4
2.2 THE MESSAGE LAYER...6
2.3 THE OPERATING SYSTEM SERVICING MODULE (OSM)...7
2.4 THE HARDWARE DEVICE MODULE (HDM) ..8
2.5 SYSTEM EXECUTION ENVIRONMENT ..9
2.6 INTRODUCTION TO INTEL’S I96ORx IOP ..10
2.7 THE IQ-SDK ...12

CHAPTER 3. CAL POLY 3COM NETWORK TESTBED CONFIGURATION14
3.1 3Com LOCAL AREA NETWORK (LAN) TESTBED..14

3.1.1 Server Configuration .. 15
3.1.2 Workstation RI00BI- R100B4 Hardware Description .. 16
3.1.3 Workstation RI00BS Hardware Description.. 16
3.1.4 Special Hardware Available .. 16

3.2 SOFTWARE CONFIGURATION ..17

CHAPTER 4. NETWORK LATENCY MEASUREMENT TECHNIQUE... 18
4.1 THE OSI REFERENCE MODEL...18
4.2 LIMITATIONS IN CONDUCTING MEASUREMENTS IN NT .. 20

4.3 INSTRUMENTATION WITH LOGIC ANALYZER... 21
4.3.1 Captured Data Analysis and Presentation of Results .. 22
4.3.2 Parallel Port Interface with NT ... 23
4.3.3 PCI Instrumentation Using FuturePlus Extender Card and HPI 6500B LA... 23

4.3.3.1 FuturePlus Extender Card Functional Overview ... 23
4.3.3.2 Key Features of the HPI6500B Logic Analyzer .. 25
4.3.3.3 Pod Connections .. 26

4.3.4 Limitation of the Logic Analyzer's memory ... 27
4.3.5 Logic Analyzer Trigger and Data Capture in State Mode .. 27

CHAPTER 5. PROTOTYPE MEASUREMENT .. 29

5.1 PROTOTYPE MEASUREMENT PROCEDURES ...29
5.2 PROTOTYPE MEASUREMENT DATA ANALYSIS..30

CHAPTER 6. NETWORK LATENCY MEASUREMENT TEST PLANS ... 33

6.1 TCP/IP, NDIS 3COM DRIVER, PCI...33
6.2 MICROSOFT NETBEUI, NDIS 3COM DRIVER, PCI ...34
6.3 IPX/SPX, NETWARE OSM PCI, PORTED 3COM DRIVER ON IQ-SDK35
6.4 IPX/SPX, NETWARE OSM, PCI, 3COM DRIVER ON IQ-SDK, SECONDARY PCI......................36

CHAPTER 7. RECOMMENDATION FOR FUTURE WORK ... 38

7.1 A SUGGESTION FOR TRIGGERING SEQUENCE ..38
7.2 RECOMMENDED TEST PROCEDURE FOR TEST MODE I ..40
7.3 RECOMMENDED TEST PROCEDURE FOR TEST MODE 2..41
7.4 RECOMMENDED TEST PROCEDURE FOR TEST MODE 3..41
7.5 RECOMMENDED TEST PROCEDURE FOR TEST MODE 4..42

CHAPTER 8. CONCLUSION.. 43

BIBLIOGRAPHY ... 44

APPENDIX A: LOGIC ANALYZER OUTPUT AND ANALYSIS OF

THE PROTOTYPE TEST ... 46

APPENDIX B: PROTOCOL ANALYZER OUTPUT OF THE PROTOTYPE TEST 47

APPENDIX C: LOGIC ANAILYZER CONFIGURATION FOR THE

PROTOTYPE TEST... 48

APPENDIX D: LOGIC ANALYZER CONFIGURATION FOR THE FRAME

CAPTURE TEST………….…………………………………………………………..49

LIST OF TABLES

TABLE 3-1. IP ADDRESSES AND ETHERNET ADDRESSES ON 3Com LAN………………………………...15
TABLE 4-1. DATA CAPTURE FROM THE HP 16500B LOGIC ANALYZER…………………………………..21
TABLE 4-2. HP 16500B POD 1-4 CONNECTIONS (SELECTED SIGNAL ONLY) ………………………...26
TABLE 5-1. A SAMPLE OF DATA CAPTURE (DATA FIELD ONLY)………………………………………………..30
TABLE 7-1. AN EXAMLE OF DATA FRAME HEADER CAPTURE …………………………………………………...39

LIST OF FIGURES

FIGURE 2-1. I2O SPLIT DRIVER MODEL... 5
FIGURE 2-2. I2O SOFTWARE ARCHITECTURE.. 6
FIGURE 2-3. COMMUNICATION MODEL ... 8
FIGURE 2-4. EXECUTION ENVIRONMENT .. 9
FIGURE 2-5. I96ORx PROCESSOR BLOCK DIAGRAM ...10
FIGURE 2-6. IQ-SDK PLATFORM FUNCTIONAL BLOCK DIAGRAM ...12
FIGURE 3-1. 3COM LAN LAYOUT OVERVIEW...14
FIGURE 4-1. THE OSI REFERENCE MODEL..19
FIGURE 4-2. PHYSICAL LAYOUT OF THE R100B1 TESTBED...22
FIGURE 4-3. FS2000 EXTENTER CARD INTERFACE TO HP 16500B LOGIC ANALYZER 24
FIGURE 4-4. EXAMPLE TRIGGERING SEQUENCE...27
FIGURE 5-1. SCHEMATIC OF THE SWITCH DEBOUNCER ... 29
FIGURE 6-1. TEST MODEL WITH TCP/IP, NDIS 3COM DRIVER... 33
FIGURE 6-2. TEST MODEL WITH NETBEUI, NDIS 3COM DRIVER.. 34
FIGURE 6-3. I20 TEST MODEL – PRIMARY BUS 35
FIGURE 6-4. TEST MODEL – SECONDARY PCI BUS ... 36
FIGURE 7-1. SUGGESTED TRIGGERING SEQUENCE .. 36

Chapter 1. Introduction

1.1 Why add intelligence to the 1/0 interface

One key factor in today's high performance computer network is that the file

server must be able to handle all the data flows when many clients access files at the

same time. To ensure optimal performance, the processor speed, memory bandwidth,

and the I/O throughput must be maximized, and well balanced. Today's high

performance server machines use multiple processors to maximize the processing speed.

However, the throughput of the 1/0 subsystem is out of balance with the needs of the

host processors. Therefore, an intelligent 1/0 interface between the host processor and

the network interface card is needed in order to realize the full potential of the fast host

processor.

In 1996 the I20 Special Interest Group (SIG) defined an open architecture for

standardizing and managing I/O devices. The goal of the I20 specification for the I/O

device driver architecture is to provide independence at the device driver to the specific

hardware device and the specific host operating system software [p5]. By standardizing

the device driver architecture, the section of the driver responsible for managing the

device is separated from the functions of the host operating system, so the portion of the

driver that manages the device becomes portable from one operating system to another.

The I20 also defines a standard architecture for intelligent YO. This approach will

transfer the processes of the low-level interrupts from the host CPU to the I/O processor.

With the support for message-passing between the I/O Processor (IOP) and host CPU,

the I20 architecture relieves the host of interrupt-intensive I/O tasks, and will greatly

improve the I/O performance in high-bandwidth application such as real-time

video/audio replay over the Internet, net-meeting, and client/server processing [b4].

1.2 Implementation Of 120 Architecture on 1/0 Processor

To implement the 120 architecture, one option is installing an IOP on the

motherboard. The IOP along with other peripherals can be used with a standard PCI

bridge to bring intelligence to the PCI bus. Another option for implementing the 120

architecture is to install a standard plug in PCI adapter card, with an IOP on board. This

later approach gives the developer flexibility to interface with different host adapters

such as network interface adapters, SCSI/IDE controllers, etc. The system can be

populated with one IOP for every type of host adapter plugged into a PCI slot. For

example, a server machine can have two intelligent I/O cards plugged into the host PCI

bus. One of the I/O cards can handle several network interface cards connected to it, the

other one can connect to a SCSI controller that controls several hard drives. The

interrupts of all those devices can be handled and managed by the IOPs resulting in a

decrease of the processing load of the host CPU [p5].

In order to ensure portability and operating system independence, the I/O adapter

card requires not only a fast I/O processor, independent memory, DMA, a compatible

bus interface unit, and various other components, but also a sophisticated operating

system, which can communicates with the host OS [w3].

1.2 Performance Testing on 120 Architecture

Many questions arise from the addition of the IOP to the host CPU and the

peripheral devices. Will the IOP affect network throughput? How much is the host

CPU utilization changed? Will it add more delay to the data transfer? If so, how much

delay does it introduce? To answer these questions, performance testing in throughput,

CPU utilization and latency (response time) needs to be conducted. For this particular

project, network latency measurement is to be performed to measure the effectiveness of

the I20 architecture for implementing a network driver on an IOP. This report will

demonstrate the concept, feasibility and procedure of the performance measurement

using a logic analyzer.

Before discussing the measurement test plan and technique, the 120 specification

and the Intel i960 Rx IOP will be described.

Chapter 2. The 120 Architecture and the Intel i960 Rx IOP

2.1 TheI2OSpecification overview

The I20 (Intelligent input/output) specification defines a standard architecture for

intelligent I/O that is independent of both the specific device being controlled and the

host operating system (OS). Developed by the Intelligent I/O Special Interest Group

(I2O SIG); the first version of the specification was delivered in early 1996. It addresses

two key problem areas in I/O processing:

1. The performance lost caused by I/O interrupts to the CPU.

2. The necessity to create, test and support unique drivers for every

combination of I/O device and OS on the market.

So the I20 specification defines a "split driver"(See Figure 2. 1) model for creating

drivers that are portable across multiple OSs and host platforms. The split 12O drivers

are composed of two parts [p5]:

1. The Operating System Services Module (OSM), which resides on and

interfaces to the host OS.

2. The Hardware Device Module (HDM), which is embedded in the IOP and

interfaces with the I/O device such as a Network Interface Card (NIC).

Much like the seven-layer OSI network, these two modules interface with each other

through a communication system comprised of two layers:

1. A Message Layer which sets up a communication session.

2. A Transport Layer which defines how information will be shared.

The communications system for the I20 architecture is a message-passing system. It is

analogous to a connection-oriented networking protocol, in which two ends exchange

messages by using the Message Layer to set up a connection and exchange data and

control. When the host OS sends a request to the OSM, the OSM translates the request

into an 12O message and sends it to the appropriate HDM for processing. Upon

completion of the request, the HDM sends the result back to the OSM by sending a

message through the 12O Message Layer. To the host OS, the OSM appears just like

any other device driver (see Figure 2.2).

2.2 The Message Layer

Message Layer defines a standard protocol for communication between the

service modules. It acts as the "glue" that connects the framework of the 120 driver

model, the Message Layer manages and dispatches all requests, and provides a set of

Application Programming Interfaces (APIS) for delivering messages, along with a set of

support routines that process them. There are three basic components in the Message

Layer:
1. The message handle

2. The Message Service Routine (MSR)

3. The message queue

The message handle basically specifies the "address" of the MSR registered in the call.

A message handle must be returned for every call to the Message Layer. The message

queue provides the link between the requester and the desired service. For instance,

when a driver request is made, a message is deposited in a message queue and an MSR

is activated to process the request. Much like a network data frame, messages are

composed of two parts, a header and a payload, where the header describes the type of

request along with the return address of the caller.

2.3 The Operating System Servicing Module (OSM)

The OSM provides the interface between the host OS and the Message Layer. In

the split driver module, the OSM represents the portion of the driver that interfaces to

the host APIS, translating them to a message-based format that is then sent to the HDM

for processing. Then, the HDM information is forwarded back to the host OS through

the OSM via the I20 Message Layer. Developers can also create host OSMs that work

with multiple HDMs (see Figure 2.3). By implementing an OSM with a single message

handle which services multiple queues from different service modules, a single OSM

can send and service requests to and from multiple different devices.

The interface and operating environment for an OSM is host OS specific.

Typically, the OS vender supplies this module, which contains no hardware-specific

code.

2.4 The Hardware Device Module (HDM)

The HDM is the lowest-level module in the 12O environment. HDMs provide

the device-specific portion of the driver that will interface with the particular controller

and devices. HDMs can be roughly analogous to the hardware-specific portion of the

network and SCSI drivers that exist today. But the HDM translation layer is unique to

each individual hardware device and vendor. It supports a range of operation types,

including synchronous and asynchronous requests, and interrupt-driven and polled

transactions. The HDM is surrounded by the I2O execution environment (see Figure

2.4), which provides the necessary support for the OS processes, and bus-independent

Execution.

HDMs are typically written in C or C++ and can be structured in a manner that

minimizes changes when moving from one hardware platform to another. HDMs are

implemented by the device vendor and reside on the IOP. The hardware vendor

supplies this module, which contains no OS-specific code.

2.5 System Execution Environment

The execution environment for the IOP has additional facilities for loading,

initializing, and managing HDMS. In general, these services are provided by

WindRiver System's IxWork Real Time Operating System (RTOS) [p12] (see Figure

2.4).

Intel's family of I/O processors, the 8096ORx, is built upon the already

established performance of Intel's 80960 RISC architecture. It encompass industry

initiatives, including PCI and 12O technology, which effectively offload host CPUs of

I/O processing chores. This highly integrated processor offers a cost-effective approach

to implement a PCI-based intelligent I/O subsystem [p I]. It serves as the main

component of the IQSDK platform, which allows the developer to connect PCI devices

to the i960 Rx processor. The architecture of the i96ORx is shown above in Figure 2.5.

As indicated in the figure, the 8096ORx combines many features with the 8096OJF

CPU core to create an intelligent IOP. The PCI-to-PCI bridge unit is the connection

path between two independent 32-bit PCI buses, and provides the ability to overcome

PCI electrical load limits. The 8096ORx is object code compatible with the i960 core

processor. It is capable of executing at the rate of one instruction per clock cycle. The

bridge and Address Translation Unit work together to hide the secondary PCI device

from the primary PCI configuration software. The Address Translation Unit (ATU)

allows direct transfer between the PCI system and the 8096ORx local memory. The

Messaging Unit (MU) provides data transfer between the primary PCI system and the

8096ORx. The local bus is a 32-bit multiplexed burst bus, which is a high-speed

interface to system memory and I/O. The Secondary PCI Arbitration Unit provides PCI

arbitration for the secondary PCI bus. It can also be disabled to allow for external

arbitration. The I2C (InterIntegrated Circuit) Bus Interface Unit allows the 80960 core

residing on the I2C bus to serve as a master and slave device. The I2C bus is a serial bus

developed by Philips Semiconductor consisting of a two-pin interface. The bus allows

the 8096ORx to interface to other I2C component [p2].

2.7 The IQ-SDK

The IQ-SDK platform (see Figure 2.6) is equipped with 4 Mbytes of DRAM. An

additional 4 to 32 Mbytes of DRAM can be added to the SIMM slot to maximize the

memory to 36 Mbytes [p2]. The DRAM is accessible from either of the PCI buses on

the IQ-SDK platform, and can be used to implement shared communications areas for

I2O's HDM installed on the IQ-SDK platform. The console serial port on the IQ-SDK

platform that is based on a 16C550 UART can operate from 300 to 115,200 BPS. The

port is connected to a phone jack-style plug. The DB25 to RJ-45 adapter and cable

included with the IQ-SDK can be used to connect the console port to any standard

RS232 port on the host system. A 1 Kbytes serial EEPROM is connected to the I2C

bus on the IQ-SDK platform. Intel does not define the contents of this device, so it is

available for use by the developer.

In conclusion, from the discussions above, we can see that the Intel 196ORx

IOP is the single-chip solution for the I2O specification. The combination of this IOP

and 12O architecture provide the framework to allow for significantly enhanced I/O

and system performance.

Chapter 3. Cal Poly 3Com Network Testbed Configuration

This Testbed is a one-server and five workstations LAN (see Figure 3. 1). The

LAN is either a 10 or 100 Mbps Ethernet [b5]. Twisted pair cable is used to connect all

the machines. The server, Outlander, is running Windows NT 4.0 server. Four of the

five workstations are the BP Vectra Pentium-pro 200 MNX with 32 Megabyte RAM;

and the RI 0OB5 is a NEC Pentium 166 with 32 Megabyte RAM. All of them are

running under Windows NT 4.0 workstation.

3.1.1 Server Configuration

Each of the machines above is uniquely identified with an IP address and an

Ethernet address. Table 3.1 shows the IP address and Ethernet address of each machine.

The server hardware description is given below:

• HP Netserver LH Pro

• Dual Intel X86 family 6 Model I stepping 7 Processors

• AT/AT compatible

• 3Com fast Ethernet 3C905 network adapter (MAC: 00:60:97:2d:bl:a7)

• HP 4.26GB A 80 LXPO Hard Drive

• Microsoft VGA compatible display adapter

3.1.2 Workstation R100Bl- R100B4 Hardware Description

• HP Vectra 200 Pentium-Pro MMX

• 32 Megabyte RAM

• 3Com 3C905 Fast Ethernet XL network adapter

• Matrox Millenium 2MB video adapter

• Hitachi CDR-7930 CD-ROM

• Quantum Fireball TM2 2.4 Gb hard drive

3.1.3 Workstation R10OB5 Hardware Description

• NEC 166 MHz Pentium

• 32 Megabyte RAM

• 3Com 3C905 Fast Ethernet XL network adapter

• Intel IQ-SDK PCI Adapter card with i960 RP IOP on-board

• NEC 8x CD-ROM

• Western Digital 2.1 Gb hard drive

3.1.4 Special Hardware Available

• Altera fixtures and cables

• Microchip fixtures and cables

• HP 16500B Logic Analyzer

• HP Network Adviser

• Iomega zip driver

• FuturePlus FS2000 PCI extender card

• FuturePlus FS2000 PCI Analysis Probe installed in BP logic analyzer

3.2 Software Configuration

All software tools installed on the LAN are professional-version development

kits, which are accessible by the server or the workstations. The following is a list of all

development software tools available:

1. Microsoft Visual Studio 97 Professional Edition

2. Microsoft Office 97 Professional Edition

3. Windows NT Device Development Kit (DDK)

4. Windows NT Software Development Kit (SDK)

5. Wind River's Tornado 1.01 Integrated Development Environment (IDE)

6. Wind River IxWork Real Time Operating System (RTOS) for i960

7. Novell Netware OSM

8. Altera Max Plus II 8.0

9. Performance tools: NetPerf, Perform3, NetBench

Chapter 4. Network Latency Measurement Technique

For this project, network latency is defined as the processing time between a

network application request and when the first data frame appears on the PCI bus; in

other words, how long it takes for the data to propagate through various network

protocol layers [b5]. However, this performance figure is largely dependent on the

operating environment of the system such as threads, processes, disks, free memory,

network protocols and network traffic conditions. Fortunately, we only need relative

measurements between the non-I2O system configurations and the I2O system

configurations. In addition, all of the above objects are controllable on the user level.

In the next three sections, the OSI seven network protocol layers model will be

described, and the limitations in conducting performance measurement in Windows NT

will be explained. Finally, the measurement technique using the logic analyzer with

triggering initiated with a parallel port signal will be presented.

4.1 The OSI Reference Model

The OSI (Open Systems Interconnection) model is shown in Figure 4.1 [b5].

This model was developed by the International Standards Organization to standardize

the protocols used in the various layers. The description of the OSI layers is as follows:

1. The physical layer is concerned with transmitting raw bits as electromagnetic

energy.

2. The data link layer is responsible for breaking the data into frames, and

makes sure the frames are transmitted or received without any error.

3. The network layer is concerned with how a packet of data is routed to the

destination. The EP protocol applies to this layer.

4. The basic function of the transport layer is to split data into packets. The TCP

protocol applies to this layer.

5. The session layer allows multiple users to establish each of their own sessions

from a remote terminal.

6. The presentation layer provides APIs for the various different application

programs in the application layer.

7. The application layer contains a variety of network application programs such

as FTP, Telnet, HTTP, etc.

When a machine transmits data out to the network, the data is sent as data packets. As

the packet travels from the application layer to the physical layer, it is encapsulated with

control information specific to each layers, namely header and trailer. On the other

hand, when a machine receives data packet, the headers and trailers will be stripped as

the data packet travels upward to the application layer.

4.2 Limitations in Conducting Measurements in NT

To measure the network latency, we must timestamp the application request

event, and the data packet delivered event [b3]. Which means we need to capture every

keyboard and mouse interrupt, and the data packet as it goes across the PCI bus. In

addition, it will be nice if we can set "milestones" as the data packet propagates through

the various protocol layers in NT. However, associating a keyboard or mouse input to a

high-level event for measurement purposes, e.g. starting a timer, is difficult [p6]. In

addition, we also need to associate a packet-delivered event to another high-level event,

e.g. stopping the timer. Doing so requires instrumentation of both the entry point and

the exit point of the path of execution as an application request is processed. This can't

be done without the NT source code. Windows NT has a performance monitor under

administrative tools, which performs statistical measurements on objects like processes,

processor usage, memory usage, interrupt occurrence, event log, etc. However, the NT

performance monitor does not reveal measurements of data paths being executed inside

of the operating system.

Often times, extensive latency in a computer system is caused by deadlock of a

critical thread. In order to find out where a thread spends all its time, we need a detailed

description about the inner workings of the operating system. Kernel profiling can

provide such information because a thread executes inside the kernel. And again, kernel

profiling requires having the source code of the NT operating system.

Due to the lack of NT source code and problems with its modification [p9], we

have chosen to use a hardware approach to conduct measurements, and this is described

in detail in the next sections.

4.3 Instrumentation with Logic Analyzer

The idea is to use a FuturePlus PCI extender card to port the data out from the

PCI bus. Then, we use a BPI6500B Logic Analyzer to capture the data. The logic

analyzer will be triggered by a parallel port signal, which is initiated by the application

request on the host computer (see Figure 4.2). After the capture, we can then calculate

the relative time between different events. The following table is an example of the

data capture from the Logic Analyzer:

4.3.1 Captured Data Analysis and Presentation of Results

The captured data is in hexadecimal form (see Table 4. 1). Each line is 32 bits

because the PCI bus uses 32 bit words and transmits one word for each bus cycle. The

time field shows either the relative time between two words, or absolute time with

respect to the last trigger. The other fields show the control and data signal status of the

PCI bus. By using the data capture function of the Logic Analyzer (LA), we can send a

triggering signal to the LA while initiating a File Transfer Protocol (FTP) command for

a Local Area Network (LAN). Then the absolute time for the propagation time for the

first packet reaching the PCI bus can be used for the measurement of the process

latency. Finally, by comparing the measurement results between the I2O/IOP system

and the regular system, we can find out the effectiveness of the 12O architecture

implemented on an IOP.

4.3.2 Parallel Port Interface with NT

The function of the parallel port is to provide a triggering signal to the LA.

However, the parallel port is driven by parallel port driver, which is called by the I/O

manager m the NT kernel. To access the parallel port driver, an application

programming interface (API), which will guide the use's requests to the driver, must be

created. The NT Device Driver Kit (DDK) provides many general I/O port drivers,

and they can be applied to the parallel port driver for our measurement purpose.

Microsoft also provides a Software Development Kit (SDK), which can be used to

create the API. The details in how to create the driver and the API are in Angel Yu's

senior project report [p6].

4.3.3 PCI Instrumentation Using FuturePlus Extender Card and HP16500B LA

4.3.3.1 FuturePlus Extender Card Functional Overview

This tool is provided by FuturePlus System. It comes with the FS2000 PCI

Analysis Probe and the Extender Card. The Extender Card acts as an extender for a

PCI adapter card beyond the host motherboard front panel. It provides a passive

electrical and mechanical interface to Hewlett-Packard logic analyzers for PCI bus

analysis (see Figure 4.3).

The FS2000 PCI Analysis Probe is an inverse-assembly software, which

executes in the BP logic analyzer. It decodes the key PCI bus signals and presents a

readable display that lists the transaction type, address, data and key status conditions

such as wait states and retries. This software also provides features such as user-

defined symbols that can be easily added to the state listing display, user-select post-

processing filters that allow the acquired data to display only chosen transactions. To

assist with triggering, pre-defined resource terms have been included that can be used

to prevent WAIT and IDLE states from being acquired, thus saving trace memory and

providing an easier to read state display. The package also provides a PCI bus

triggering application note to all its PCI Analysis Probe customers [w4].

4.3.3.2 Key Features of the HP16500B Logic Analyzer

Referring to the BP manual, some key features that are critical to this project

are summarized below [p7]:

• Touchscreen control or mouse control

• Graphical user interface

• 3.5-inch flexible disk drive with DOS and LIF format support

• 85 Mbytes hard disk drive with DOS format support

• 100-@ state and 500- time acquisition speed

• 12 levels of trigger sequencing for state and 10 levels of sequential triggering for

timing

• 4 Kbytes deep memory on all channels with 8 Kbytes in half channel mode

• RS-232C interface for hardcopy output to a printer

• Expandable system memory up to 64 Mbytes

4.3.3.3 Pod Connections

The HP16500B has 6 pods. Only 4 of 6 pods (pod 1 - 4) are used by FS2000

extender card (see Figure 4.3). The remaining 2 pods can be used for additional test

input. Some of the pod 1 - 4 signal connections are summarized in Table 4.2 below.

Note that all variable names are assigned by FS2000 inverse-assembly software; refer to

FuturePlus User Manual [p8] and PCI Specification for more detailed description [p 10].

Another input signal called "angel" is added to the LA for triggering signal from

the parallel port. It will connect the output pin of the parallel port to pin 1 pod 6 on the

LA.

4.3.4 Limitation of the Logic Analyzer's memory

As indicated in Section 4.3.3.2, the HP16500B has only 4Kbytes of memory available.

In the timing mode, the LA must sample data at a rate of 33 because the PCI bus is

running at 33MHz. In other words, the LA takes in at least 4 bytes of data every 30us.

At this rate, the buffer space will get fill up 30us later, which is far too short for the

network latency measurement. Therefore, only the state mode can be used in our

project due to the insufficient memory.

The HP 16500B has 12 levels of trigger sequences in the state mode [p7]. As

indicated in Figure 4.4, at each trigger level, the user can program the LA much like

programming a Finite State Machine. For example, at a particular level, if the triggering

condition is meet, the LA will go to next level; else if another condition is meet, the LA

will jump to wherever the user specifies; else, it will wait at the current level until any

of the above conditions are meet. Users can also program the LA to store any incoming

signal on the fly. The triggering conditions are also programmable. For example

(reference to Figure 4.4), END-DATA 1 is just a dummy variable that represents the

state when F is high, DEVSEL is low, TRDY is low and don't cares are specified for all

other inputs.

Chapter 5. Prototype Measurement

5.1 Prototype Measurement Procedures

The objective of this experiment is to demonstrate the concept and feasibility of

the performance measurement of network latency using the logic analyzer. Manual

triggering from a switch which has been debounced (Figure 5. 1) provides a LA

triggering signal for this measurement. The trigger is set up such that when "angel" is

asserted high, the triggering level will jump to the 2nd level and start to buffer the data,

where data is the data inputs on the 32-bit addr/data line; else, the trigger will wait on

level 1.

The experiment procedure is as follows:

1. Build the debouncer circuit

2. Connect the "angel" to pin l pod 6 of the HPI6500B LA

3. Plug the FuturePlus extender card to a primary PCI slot. Then plug the 3Com NIC

to the extender card

4. Connect pod I - 4 to the FuturePlus extender card

5. Turn on the LA and load the saved FuturePlus configuration

6. Set up the trigger such that when "angel" is high, jump to 2nd level and start to

buffer the data; else wait on level 1.

7. Connect the BP network adviser (PA) to the 3Com hub

8. Set up the HP network adviser (PA) to decode network stack on 10-base-T mode

9. Generate a FTP socket on R100B1 to Outlander using Winftp

I0. Click "RUN” at the upper right comer on the LA display (see Figure 4.4)

11. Click "run measurement" on the PA window

12. At the same time, hit the switch and initiate a test file write

13. Print both the LA and PA data in ASCII format onto a floppy disk

14. Examine the result using WordPad

The HP network adviser is a network protocol analyzer [p 11]. In this project, it is used

for decoding the network frame header.

5.2 Prototype Measurement Data Analysis

Table 5-1. A Sample of Data Capture (datafield only)
PCI_BUS1 -State Listing

Label > DATA
Base > Hex

7 00000000 Irrelevant data
8 5555AAAA Irrelevant data
9 00000083 Irrelevant data

10 5555AAAA Irrelevant data
11 00000083 Irrelevant data
12 5555AAAA Irrelevant data
13 5555AAAA Irrelevant data
14 000003CD Irrelevant data
15 000003D4 Irrelevant data
16 000003DD Irrelevant data
17 000003E7 Irrelevant data
18 00000200 Irrelevant data
19 00000000 Irrelevant data
20 5555AAAA Irrelevant data
21 00000000 Irrelevant data
22 0055El94 Irrelevant data
23 FFFFFFFF lst R10OB1 ARP Broadcast
24 600OFFFF 00-60-97-2D-Bl-D8
25 D8Bl2D97
26 01000608 (08-06 ARP type)(00-01 Ethernet type)
27 04060008 (08-00 IP Protocol)(06 HWADD length)(04 IP addr length)
28 60000100 (00-01 ARP request)(00-60-97-2D-B1-D8)
29 D8Bl2D97
30 44lA4181 129.65.26.68
31 00000000 (00-00-00-00-00-00 unknown target HW addr)
32 41810000 (81-41-lA-43=129.65.26.67 1A-43 is not shown??)
33 00000000 data padding
34 0056A608 Irrelevant data
35 0056AOOO Irrelevant data
36 2D976000 server response to ARP Broadcast
37 600OD8B1 (target HW addr 00-60-97-2D-B1-D8)
38 A7B12D97 (sender HW addr 00-60-97-2D-B1-A7)
39 01000608 (08-06-ARP type)(00-01 Ethernet type)
40 04060008 (08-00-IP Protocol)(06 HWADD length)(04 IP addr length)
41 60000200 (00-02-ARP Reply)(00-60-97-2D-B1-A7)
42 A7Bl2D97
43 43lA4181 129.65.26.67
44 2D976000 (00-60-97-2D-B1-D8 target HW addr)
45 4181D8B1 (81-41-1A-44=129.65.26.68)
46 441A441A (1A-44’s are the data padding)
47 44lA441A
48 44lA441A
49 44lA441A
50 0056A608 Irrelevant data
51 00000000 Irrelevant data
52 0055F4F8 Irrelevant data
53 2D976000 (target HW addr 00-60-97-2D-Bl-A7)
54 600OA7Bl
55 D8Bl2D97 (sender HW addr 00-60-97-2D-Bl-D8)
56 00576D60 (Unrecognizable???)
57 41000045 (start of IP header 5 lines)
58 0040135B IP
59 9A680680 IP
60 44lA4181 IP
61 43lA4181 IP
62 1500DE04 (start of TCP header 5 lines)
63 AB83F408 TCP
64 4FO55DF7 TCP
65 2ClFl850 TCP
66 0052FCAA last line of TCP missing 39-C9-00-00, AAFC520OF06E ???
67 4F506EFO (from 504F to line 72: "ASCII PORT
68 31205452 129,65,26,68,4,234")
69 362C393

70 36322C35
71 2C38362C
72 33322C34
73 00000000 Irrelevant data

Table 5.1 shows the first few frames of the data captured from the PCI bus. The

underlined comments are added after the data has been captured and saved. The time

field and all the other control information are omitted since they are not important to

this demonstration. The following is the explanation for the comments:

• ARP - Address Resolution Protocol

• HW addr - Ethernet address

• HW addr length - the number of bytes in the Ethernet address

• Types - protocol type

• Data pad - repeat the last two bytes of data so that the length of each frame is at least

46 bytes

• ARP Request - the frame is a ARP request frame

• ARP Reply - the frame is a ARP reply frame

• IP protocol - the data transfer uses IP protocol

• IP - IP header

• TCP - TCP header

• “…” -Inside the quotation mark, it is the translation of the ASCII data encapsulated

in the header and trailer.

This demonstration clearly shows that the PCI instrumentation using the logic analyzer

gives a solid understanding of the computer I/O process. With the parallel port signal

used for triggering, a relatively precise response time measurement can be achieved.

Chapter 6. Network Latency Measurement Test Plans

There are four different measurement configurations in this project. They are:

1. TCP/IP, NDIS 3Com driver, PCI

2. Microsoft NetBEUI, NDIS 3Com driver, PCI

3. IPX/SPX, NetWare OSM, PCI, ported 3Com driver on IQ-SDK

4. IPX/SPX, NetWare OSM, Primary PCI, 3Com driver on IQ-SDK, secondary PCI

6.1 TCP/IP, NDIS 3Com driver, PCI

The first test configuration is a normal NT workstation configuration under

TCP/IP protocol. The layering configuration is shown in Figure 6.1.

The purpose of this test model is to provide a set of reference performance values for the

120 measurements. The actual data flow in the NT is somewhat different. For more information,

please refer to Inside Windows NT [b3].

6.2 Microsoft NetBEUI, NDIS 3Com driver, PCI

The second test configuration is another normal NT workstation configuration under

NetBEUI protocol. The layering configuration is shown in Figure 6.2.

The purpose of this test model is to provide comparison between TCP/IP

protocol and MS NetBEUI LAN protocol.

6.3 IPX/SPX, NetWare OSM, PCI, ported 3Com driver on IQ-SDK

The third test configuration is an I2O LAN class configuration with the IPX/SPX

protocol stack. The layering configuration is shown in Figure 6.3.

The measurement of this test model takes place on the primary PCI bus. The

results can be compared against the first test model results.

6.4 IPX/SPX, NetWare OSM, PCI, 3Com driver on IQ-SDK, secondary PCI

The fourth test configuration is same as the third one except the measurement is taken on

the secondary PCI. The layering configuration is shown in figure 6.4.

The latency caused by the IOP and HDM can be acquired by subtracting the result of this

test model from the previous one.

Chapter 7. Recommendation for Future work

7.1 A Suggestion for Triggering Sequence

In e experiments, parallel port triggering will be the method for triggering the logic

analyzer. Except for the source of the triggering signal, the LA triggering sequence could be

the same as the prototype experiment presented in Chapter 5. An alternative triggering

sequence is suggested below (see Figure 7. 1):

1. In the first level, trigger at "angel" one time and go to the second level. Else remain

in the first level.

2. In the second level, trigger at a variable "data", which is setup to be hex 2D976000

(the first 4 bytes of the Ethernet address) on the addr/data bus, and also record its

occurrence. Then jump to level 3. Else, remain in level 2.

3. Record all occurrences of "data" on the data bus. Remain in level 3 until the buffer

fills up.

This triggering sequence will record the first 4 bytes of the Ethernet address only.

The advantages of it are: 1. requires less data to store in limited LA memory. 2. it won't need a

protocol analyzer to determent where the frame starts. A data capture of a small file writes to

the server is provided in Table 7. 1. Each line corresponds to one Ethernet frame. Although the

details in the frame are not shown, the time between the frames is measured. That is sufficient

data for the responds time measurement.

38

14 2D976000 507.2 ms 1 0 0 0 0 0

15 2D976000 507.4 ms 1 0 0 0 0 0

16 2D976000 507.5 ms 1 0 0 0 0 0

17 2D976000 523.9 ms 1 0 0 0 0 0

18 2D976000 524.3 ms 1 0 0 0 0 0

19 2D976000 532.5 ms 1 0 0 0 0 0

20 2D976000 532.8 ms 1 0 0 0 0 0

21 2D976000 540.3 ms 1 0 0 0 0 0

22 2D976000 540.6 ms 1 0 0 0 0 0

23 2D976000 543.0 ms 1 0 0 0 0 0

24 2D976000 543.3 ms 1 0 0 0 0 0

25 2D976000 544.3 ms 1 0 0 0 0 0

26 2D976000 544.5 ms 1 0 0 0 0 0

27 2D976000 544.6 ms 1 0 0 0 0 0

28 2D976000 546.9 ms 1 0 0 0 0 0

29 2D976000 547.1 ms 1 0 0 0 0 0

30 2D976000 547.2 ms 1 0 0 0 0 0

31 2D976000 556.5 ms 1 0 0 0 0 0

32 2D976000 556.7 ms 1 0 0 0 0 0

33 2D976000 705.8 ms 1 0 0 0 0 0

34 2D976000 705.9 ms 1 0 0 0 0 0

35 2D976000 906.0 ms 1 0 0 0 0 0

Time Printed: 13 Jun 1998 14:31:07 --- Time Acquired: 13 Jun 1998 14:29:32

7.2 Recommended Test Procedure for Test mode 1

1. Connect the parallel port triggering signal to pin l pod 6 of the HP16500BLA

2. Plug the FuturePlus extender card to a primary PCI slot. Then plug the 3Com NIC to the
extender card

3. Connect pod 1 - 4 to the FuturePlus extender card

4. Turn on the LA and load the saved FuturePlus configuration

5. According to the suggested triggering sequence, set up the LA trigger

6. Generate a FTP socket on RI OOB I to Outlander using Winftp

7. Click "RUN" at the upper right comer on the LA display (see Figure 4.4)

8. Initiate the "test run" program requesting use of FTP

9. Print the LA data onto a floppy disk

10. Examine the results using WordPad

7.3 Recommended Test Procedure for Test mode 2

1. Connect the parallel port triggering signal to pin I pod 6 of the HP16500B LA

2. Plug the FuturePlus extender card to a primary PCI slot. Then plug the 3Com NIC to the
extender card

3. Connect pod 1 - 4 to the FuturePlus extender card

4. Turn on the LA and load the saved FuturePlus configuration

5. Using the suggested triggering sequence, set up the LA trigger

6. Click "RUN" at the upper right comer on the LA display (see Figure 4.4)

7. Initiate the "test run" program requesting a file write to the server

8. Print the LA data onto a floppy disk

9. Examine the result using WordPad

7.4 Recommended Test Procedure for Test mode 3

1. Connect the parallel port triggering signal to pin l pod 6 of the HP16500B LA

2. Plug the FuturePlus extender card to a primary PCI slot

3. Plug the IQ-SDK to the FuturePlus extender card. Then plug the 3Com NIC to the
secondary PCI on the IQ-SDK

4. Connect pod 1 - 4 to the FuturePlus extender card

5. Turn on the LA and load the saved FuturePlus configuration

6. Using the suggested triggering sequence, set up the LA trigger

7. Generate a FTP socket on R100BI to Outlander using Winftp

8. Click "RUN" at the upper right comer on the LA display (see Figure 4.4)

9. Initiate the "test run" program requesting use of FT?

10. Print the LA data onto a floppy disk

11. Examine the result using WordPad

7.5 Recommended Test Procedure for Test mode 4

1. Connect the parallel port triggering signal to pin l pod 6 of the HPI6500B LA

2. Plug the IQ-SDK to the primary PCI

3. Plug the FuturePlus extender card to the secondary PCI slot. Then plug the 3Com NIC to
the FuturePlus extender card

4. Connect pod 1 - 4 to the FuturePlus extender card

5. Turn on the LA and load the saved FuturePlus configuration

6. Using the suggested triggering sequence, set up the LA trigger

7. Generate a FTP socket on RI OOB 1 to Outlander using Winftp

8. Click "RUN" at the upper right comer on the LA display (see Figure 4.3)

9. Initiate the "test run" program requesting use of FTP

10. Print the LA data onto a floppy disk.

11. Examine the result using WordPad

Chapter 8. Conclusion

The goal of this project is to measure the network latency of the I2O

architecture. The instrumentation technique, which uses a logic analyzer

with triggering initiated by a parallel port signal, is proven to be effective.

The result obtained in the prototype experiment shows that this technique

also can be used in other measurements that involve I/O processes in a

computer system. The only drawback is that the tester must fully

understand the I/O process protocol as well as the PCI bus protocol. But

this prerequisite is still much better than having to understand the NT

source code, and modify it, because it is difficult to deferment whether the

modification will introduce bugs into the NT OS. Many of problems

encountered were due to the limitation of the LA memory. It is

recommended that the memory in the HPI6500B be increased to

64Mbtyes. Then the timing mode can be used for data capture so that a

better understanding of the I/O process on the PCI bus can be obtained.

Bibliography

Books

[book 1] Baker, Art. The Windows NT Device Driver Book. Prentice-Hall, Inc. 1997.

[book 2] Douglas E. Comer. Computer Networks and Internets. Prentice-Hall, Inc. 1997.

[book 3] Helen Custer. Inside Windows NT. Microsoft Press. 1993.

[book 4] I. Scott Mackenzie. The 8051 Microcontroller. Prentice-Hall, Inc. 1995

[book 5] Andrew S. Tanenbaum. Computer Networks,3rd edition,Prentice-Hall, Inc. 1998

Papers

[paper l] © INTEL CORPORATION. i960 ® RP/RD I/O PROCESSOR AT 3.3 VOLTS.
1997

[paper 2] © INTEL CORPORATION. IQ8096ORx Evaluation Platform. 1998

[paper 3] © INTEL CORPORATION. i960 ® Microprocessor Benchmark Report
1998

[paper 4] © INTEL CORPORATION. i960 ® Rx I/O Microprocessor Developer's
Manual. 1997

[paper 5] I2O SIG. Intelligent I/O Architecture 1997

[paper 6],Angel Yu. Senior Project Report. 1998

[paper 7] Hewlett Packard. HP 16500B User Manual Vol, 1 & 2

[paper 8] FuturePlus System Corporation. FS2000 PCI Extender Card User Manual

[paper 9] University of Washington. Instrumentation and Optimization of Win32/Intel
Executable Using Etch. 1997

[paper 10] PCI SIG. PCI Specifications. 1997

[paper 11] Hewlett Packard. HP Network Adviser User Manual, Vol, 1 &2

[paper l2] WindRiver Systems. IxWork Real Time Operating System User Guild, Beta 1

Web Sites

[web 1] I2O SIG at http://www.i2osig.org/Architecture/

[web 2] Intel i960 Rx at http://developer.intel.com/design/IIO/prodbref/272740.HTM

[web 3] IxWork at http://www.windriver.com/i2o/index.html

[web 4] FuturePlus Systems at http://www.futureplus.com/sidebar.htm

Appendix A: Logic Analyzer Output and Analysis of the Prototype Test

The data capture for the prototype test and its data analysis is provided in a text

file called "LA-data.txt" in the PC compatible 3.5" floppy disk.

Appendix B: Protocol Analyzer Output of the prototype Test

The Protocol Analyzer output for the prototype test is provided in a text file called

"PA_data.txt" in the PC compatible 3.5" floppy disk.

Appendix C: Logic Analyzer Configuration for the prototype Test

The Logic Analyzer configuration for the prototype test is provided in a HP

formatted file called "Prototest_config" in the PC compatible 3.5" floppy disk. If

the test result is to be regenerated, this LA configuration can be load in to a

HP16500B directly.

Appendix D: Logic Analyzer Configuration for the Frame Capture Test

The Logic Analyzer configuration for the Ethernet frame capture test is provided in

a HP formatted file called "test_config" in the PC compatible 3.5" floppy disk. If

the test result is to be regenerated, this LA configuration can be load in to a HP

16500B directly.

