

 Örebro universitet Örebro University
 Institutionen för School of Science and Technology

 naturvetenskap och teknik SE-701 82 Örebro, Sweden

 701 82 Örebro

Computer Science, Degree Project, Advanced Course,

15 Credits

AUTONOMOUS WHEEL LOADER

SIMULATOR

Samuel Navas Medrano

 Computer Engineering Programme, 180 Credits

Örebro, Sweden, Spring 2014

Examiner: Franziska Klügl

 1 (26)

Abstract

The use of simulators when developing robotic systems provides the advantages of the

efficient development and testing of robotics applications, saving time and resources and

making easier publics demonstrations. This thesis project consists on the simulation of a

wheel loader at an industrial environment in the cycle of material handling.

This report describes the development of a physics-based simulator using the Robot Operating

System (ROS) and Gazebo frameworks. The resulting simulator allows reproducing the 3D

map of the work site as well as the robotic wheel loader and simulating it in a realistic way.

The developed software also provides the mechanism to drive the wheel loader through the

reproduced terrain, to control the movement of the different articulated joints of the robot, to

receive information of the environment through different sensors and to provide of a waypoint

routes to the robot.

The simulator makes it possible to generate realistic data for mapping, localisation, and

obstacle detection -- using models of actual work sites. The simulator also will make it

possible to evaluate algorithms for task and path planning in a much more efficient way than

would be possible otherwise.

Summary

Autonomous Long-Term Load-Haul Dump Operations (ALLO) is a joint project by the

MR&O Lab, Volvo Construction Equipment, and NCC Roads. The goal of the ALLO project

is to find a solution to the demand for efficient material transport in many industrial

environments. The employment of autonomous mobile robots in the cycle of material

handling; including loading and unload the material is a solution which has a great potential

to offer improvements in terms of safety, cost, efficiency, reliability and availability.

This project consists on the analysis and porting of an old wheel loader simulator with the

Player/Stage framework from the ALLO Project to a modern robotic framework like Robot

Operating System (ROS) and Gazebo. The new simulator is able to reproduce a realistic

scenario as well as simulate a L120F Volvo wheel loader model.

The developed software also provides the mechanism to drive the wheel loader through the

reproduced terrain, to control the movement of the different articulated joints of the robot, to

receive information of the environment through different sensors and to provide of a waypoint

routes to the robot.

The simulator makes it possible to generate realistic data for mapping, localisation, and

obstacle detection, using models of actual work sites. The simulator also will make it possible

to evaluate algorithms for task and path planning in a much more efficient way than would be

possible otherwise.

The development of this simulator enables more rapid testing and development of the

algorithms developed within ALLO (compared to testing them on the hardware platform that

is available in Eskilstuna), And it makes it possible to create visual demonstrations for public

dissemination.

 2 (26)

Preface

I would like to thank Martin Magnusson for giving me the opportunity to take part in this

project and for guide me through it.

 3 (26)

Contents

1 INTRODUCTION .. 4

1.1 OBJECTIVE .. 4
1.2 BACKGROUND ... 4
1.3 PROJECT .. 4
1.4 REQUIREMENTS ... 5
1.5 OUTLINE .. 5

2 METHODS AND TOOLS ... 6
2.1 METHODS .. 6
2.2 TOOLS .. 6

2.2.1 Installation of the software tools .. 7
2.3 OTHER RESOURCES ... 7

3 IMPLEMENTATION .. 8
3.1 IMPLEMENTATION OF THE WHEEL LOADER AND SENSORS ... 8

3.1.1 Model structure and measurements .. 8
3.1.2 Controllers .. 11
3.1.3 Sensors ... 12

3.2 IMPLEMENTATION OF THE 3D MAP .. 14
3.3 IMPLEMENTATION OF THE 3D MAP DEFORMATION ... 15

3.4 IMPLEMENTATION OF THE PATH FOLLOWING.. 15
4 RESULTS .. 19

5 DISCUSSION ... 20
5.1 ACHIEVEMENT OF THE COURSE OBJECTIVES ... 20

5.1.1 Knowledge and comprehension ... 20
5.1.2 Proficiency and ability .. 20
5.1.3 Values and attitude ... 21

5.2 COMPLIANCE WITH THE PROJECT REQUIREMENTS ... 21
5.3 SPECIFIC RESULTS AND CONCLUSIONS.. 21

5.4 PROJECT DEVELOPMENT .. 21
6 REFERENCES ... 22

APPENDICES

 A: URDF hierarchy

 B: Wheel Loader Simulator User Manual

 4 (26)

1 Introduction

1.1 Objective

The purpose of emerging a visual simulator is twofold. First, it enables more rapid testing and

development of the algorithms (compared to testing them on the hardware platform), and

second, it makes it possible to create visual demonstrations for public dissemination.

The use of simulators when developing robotic systems provides the advantages of the

efficient development and testing of robotics applications, saving time and resources and

making easier publics demonstrations. This thesis project consists on the simulation of a

wheel loader at an industrial environment in the cycle of material handling.

The usage of a robotic simulator will offer advantages in terms of safety, costs, efficiency and

availability; as well as environmental advantages. All these advantages compared to testing

the algorithms on the real vehicle in its working.

1.2 Background

Mobile Robotics and Olfaction Lab (MR&O) is part of the Centre for Applied Autonomous

Sensor System at Örebro University. MR&O is focusing on research perception systems for

mobile robots and advance the theoretical and practical foundations that allow mobile robots

to operate in an unconstrained, dynamic environment.

Autonomous Long-Term Load-Haul Dump Operations (ALLO)
[1]

 is a joint project by the

MR&O Lab, Volvo Construction Equipment, and NCC Roads. The goal of the ALLO project

is to find a solution to the demand for efficient material transport in many industrial

environments. The employment of autonomous mobile robots in the cycle of material

handling; including loading and unload the material is a solution which has a great potential

to offer improvements in terms of safety, cost, efficiency, reliability and availability.

A previous approach on this project was the development of a wheel loader simulator (using

Gazebo
[2]

) with the Player/Stage framework
[3][4]

. The simulator was used both for algorithm

testing and for preparing demos without running the real wheel loader. But the code of the

ALLO project was migrated to the ROS framework rather than player stage, with the Hydro

version of ROS a simulator can be develop using the version 1.9 of Gazebo rather than the 0.8

version that used the previous ALLO’s simulator.

1.3 Project

The first task of the project has been the analysis the previous simulator written in

Player/Stage and the research of the different ways to improve it, including what robotic

framework could be better to our project
[5][6]

. The next task have been to port what is there

from Player/Stage to the chosen framework, resulting in a simulator that can be used to

visualize the wheel loader in its environment and to collect simulated laser and position data.

 5 (26)

1.4 Requirements

The requirements have divided in three steps, the first one had high priority and the rest were

optional. In each one the simulator had the following capabilities:

 Step I (high priority):

o Gazebo simulator

o Ability to use 3D maps of work site (Kjula)

o Ability to drive articulated wheel-loader model interactively

o Simulated sensors: laser scanners, odometry, GPS, IMU

 Step II (optional):

o Ability to replace part of the 3D map: for when the piles change after a bucket

fill

o Ability to follow a given path (given as a list of waypoints), with a given speed

(+- some variance)

 Step III (optional):

o "Asphalt plant model": that is, maintaining a representation of the gravel level

in bins, and emptying rates for a given recipe, +- some variance in levels and

emptying rates

o An interface for getting and setting parameters for the simulation from the

outside, developed in dialogue with the ALLO project.

All the goals have been fulfilled, with the exception of given a speed in the path following

goal and the implementation of the asphalt plant model.

1.5 Outline

The structure of the remainder of the document is as follows. Section 2 describes the tools and

basic setup that has been used. Section 3 contains much of the core of the work, as it details

the implementation of the simulator's components. Section 4 details the results of the project

and Section 5 discuss the reached competences during the course of the project.

 6 (26)

2 Methods and tools

2.1 Methods

During the project have been used an incremental development model with some iterative

elements. An initial set of requirements have been established at the beginning of the project

and it has been redefined during the course of the project during weekly meetings with the

client, the researchers working in the ALLO project.

2.2 Tools

ROS (Robotic Operating System)
[7][8]

 is the main development framework used in this

project. It is an Open Source framework which has tools for the building of robotics

applications and is maintained by the community in a very collaborative environment.

ROS provides libraries and tools to help software developers create robot applications. In

addition also Gazebo Simulator was used complementing ROS, it offers the ability to

accurately and efficiently simulate robots in complex indoor and outdoor environments and

has a wide variety of physics engine including ODE, Bullet, Simbody and DART. Using

OGRE, Gazebo also provides a realistic high-quality graphics including high-quality lighting,

shadows, and textures. Gazebo also has a convenient programmatic and graphical interface.

The documentation of ROS, the wiki and tutorials, and the Q&A site have been a great

support during the course of the project.

The ROS community has over 1,500 participants on the ros-users mailing list, more than

3,300 users on the collaborative documentation wiki, and some 5,700 users on the

community-drivenROS Answers Q&A website. The wiki has more than 22,000 wiki pages

and over 30 wiki page edits per day. The Q&A website has 13,000 questions asked to date,

with a 70% percent answer rate.

(http://www.ros.org/, 2014)

Reusing these libraries for the development of the simulator is possible because of the

generous software licenses used by ROS and Gazebo. The core of ROS licensed under the

standard three-clause BSD which is a very permissive licence that allows for reuse in

commercial and closed products; the other parts of ROS like community packages usually

uses licences such Apache 2.0 licence, GPL licence, MIT licence.

Gazebo requires a graphic card with OpenGL 3D acceleration to perform various rendering

and image simulation tasks correctly. But it can still working without it at the expense of not

having camera simulations and a working Gazebo UI. But even with these disadvantages it is

still useful for testing algorithms.

A laptop with a dedicated graphic card has been used for develop the project. A Lenovo

IdeaPad Z580 with a Intel(R) Core(TM) i7-3612QM CPU @ 2.10GHz CPU working a Nvidia

Optimus configuration with the following GPUs: NVIDIA GeForce GT 630M & Intel(R) HD

Graphics 4000.

http://code.ros.org/lurker/list/ros-users.html
http://answers.ros.org/
http://www.ros.org/

 7 (26)

Also additional software has been used in this project:

 Ubuntu 13.04 (Raring)

o Bumblebee (v Ubuntu 12.10)

 Windows 7

o Adobe Photoshop CS6 Extended

o NVIDIA Texture Tools for Adobe Photoshop

o Blender 2.63a

2.2.1 Installation of the software tools

During the project it has been used ROS: Hydro Medusa, this version of ROS only supports

Ubuntu 12.04 (Precise), Ubuntu 12.10 (Quantal), and Ubuntu 13.04 (Raring). It has been

installed the latest version of the supported Ubuntu releases: Ubuntu 13.04. The full desktop

package of ROS hydro also includes the stand-alone version of Gazebo 1.9 and the libraries

for the ROS/Gazebo communication. There is also a newer version of Gazebo (2.0) but the

newer version is not compatible with ROS Hydro Medusa

To work properly with a 3D environment simulator like Gazebo we should work with a

dedicated graphic card. The computer we have used to the development of the project has the

technology NVIDIA Optimus
 [9]

. This is not supported out of the box by Ubuntu 13.04. Some

hybrid graphics laptops still allow you to choose using only the nVidia card in BIOS, but most

modern Optimus laptops don't have this option.

It is possible to solve this issue with the installation of the Bumblebee Project
 [10]

. It is a set of

tools developed by people aiming to provide Optimus support under Linux. Bumblebee

doesn’t have a release for Ubuntu 13.04 in their official repository; the only way to use it is

installing the version of Bumblebee to Ubuntu 12.10. Due to this lack, it is necessary to

modify the manual configuration of the Bumblebee files and indicate to it to use specifically

the PCI Bus ID of our NVIDIA GPU.

2.3 Other resources

All the needed data 3D maps of the terrain, the Volvo’s L120F wheel loader 3D model, the

code of the old simulator, external algorithms (path planning, task scheduling, and gravel

simulation), path data and all required information related to the project have been supplied

by the ALLO Project.

 8 (26)

3 Implementation

3.1 Implementation of the wheel loader and sensors

3.1.1 Model structure and measurements

The first step to implement a realistic simulation of a Wheel Loader in gazebo is to build the

3D model of the wheel loader machine. The 3D model of the previous implementation of the

wheel loader from the ALLO Project is not compatible with our version of Gazebo. However

it has been able to reuse some information of the previous model, like the hierarchy of the

joints of each part of the body of the model and estimate the dimension of these parts.

Two different approaches were considered for the building of the new L120F model: try to

use all the possible information about the old model and follow it structure or build a

completely new one model. In order to reuse as much software and data from the Player/Stage

simulator, It has been made the design choice of adapting the previous model to the new

URDF format. The creation of a completely new model would be better in terms of accuracy

but it has been considered it not a priority, leaving this option to a future development of the

project. Respect to the dimensions of the resulting model it has been approached to the

dimensions of the Volvo’s L120F technical specifications
[11]

 and the dimensions of the model

of the previous simulator.

Like in the old code, it have been used the basic geometric shapes which Gazebo uses to build

the model. The wheels are represented by cylinders and the other structures like the rear

frame, the suspension, the articulated arm, etc. are represented by cuboids (boxes). For the

pieces that before were represented by meshes, the front frame and the bucket, the first

approach was represent it as boxes of an approximated size, but later them I replaced it

modelling a new COLLADA meshes using Blender. (See Figures 3.2.2 and 3.2.5).

The format which gazebo uses to the description of robot models is Simulator Description

Format (SDF) but It has been parsed all the information of the previous project model to the

Unified Robot Description Format (URDF) and it has been used the XACRO tool to clean up

our URDF files. It has been chosen this format instead of SDF because is the most extended

and standardized XML format for the description of robots.

However, in the process of the reconstruction and parsing of the previous model into de

URDF format we have discovered some issues. The first is that some features of URDF have

not been updated to deal with the evolving needs of robotics. URDF can only specify the

kinematic and dynamic properties of a single robot in isolation, neither can specify the pose of

the robot itself within a world. This is not a big deal because Gazebo is going to solve these

points; however there is a problem which gazebo can’t deal with it, the hierarchical data

structure in URDF that does not allow for loops (parallel joints) that the previous model of the

wheel loader has in the mechanical arm structure.

The wheel loader XML model of the player/stage simulator uses joint loops for the

representation of the mechanical arm of the Volvo L120F vehicle. A way to solve this problem

is the use of SDF models and assigning <pose> in joint loops to create parallel mechanisms,

however it have been opted for simplifying the model removing the joint loops and let the

task of developing a more realistic model to a future.

http://gazebosim.org/sdf.html
http://gazebosim.org/sdf.html

 9 (26)

Another difference with the specification of the old L120F model and the new one is the fact

that the older specify the position of all the pieces of the model in their body’s tags. The

equivalent of that in our model are the link’s tags, but we cannot define the position of each

piece there because two reasons, the main reason is for modelling the articulated joints, "we

need to compute the difference between the position of the articulated joint and the geometric

centre of the link". The other reason is related to the fixed joints; we need to define the

location in the joints tags because if not the centre of mass of each piece will be in the origin

instead on the centre of each piece. A graphic representing the resulting URDF hierarchy can

be seen in Appendix A.

The units of measure of the old model are also different to the URDF standard, for example

the angles in the old model are represented in degrees and we are representing it in radians to

follow the URDF standard. Another measure is the mass; Gazebo 1.9 doesn’t manage well the

physics of body with huge masses provoking the explosion of the model. Finally it has been

adopted masses of approximately of 1 kilogram in each piece of the wheel loader. The final

dimensions of each body of the L120F model can be seen in the Figure 3.2.1.

In addition, the previous meshes of the L120F model were compiled in OGRE but in a

previous version that Gazebo 1.9 doesn’t recognise, it have been converted the compiled

meshes back to their original OGRE XML files using the OgreXMLConverter tool
[12]

 and it

has been tried to convert it to another format which Gazebo load. But, due to the low

complexity of the meshes we have decided that will be easier and quicker to remake using

Blender
[13]

 the front frame and bucket meshes in the COLLADA XML format than convert

the previous one to it.

Body Type Dimensions

Rear frame Box w=2 h=2 d=3

Counter weight Box w=3 h=1 d=1

Front frame Box w=2 h=2 d=2

Rear suspension Box w=2 h=0.3 d=0.3

Right rear wheel Cylinder r=0.6 h=1

Right front wheel Cylinder r=0.6 h=1

Left rear wheel Cylinder r=0.6 h=1

Left front wheel Cylinder r=0.6 h=1

Articulated arm Box w=1 h=4 d=0.2

Bucket Box w=2 h=1 d=1

Figure 3.2.1: L120F model measurements, in meters.

Another issue on the parsing of the model is that the previous version has not specified

information about the inertia of the pieces of the model, but in our actual version of Gazebo

and ROS is necessary to specify the inertia in the model. The inertia tensor encodes the mass

distribution of a body, so it does depend on the mass, but also on where it is located and is

represented in URDF with the diagonal and upper elements of a symmetric matrix. One of the

possible solutions is to use an identity inertia matrix as default in the model. Another solution

is the using of inertias of 1e-3 or smaller like elements in the inertia matrix because 1 is often

much too high, making the model hard to drive, with an unnatural behaviour.. The usage of a

default inertia matrix is enough for the purpose of the project, but a calculated inertia mass for

each piece will be a more complete and realistic solution, having as result a more precise and

realistic simulation. The inertia matrix has been calculated according to a list of moment of

http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors

 10 (26)

inertia tensors using the uos_tools package from the University of Osnabrück, knowledge

based systems group
[14]

:

𝐼𝐶𝑌𝐿𝐼𝑁𝐷𝐸𝑅 =

[

1

12
𝑚(3𝑟2 + ℎ2) 0 0

0
1

12
𝑚(3𝑟2 + ℎ2) 0

0 0
1

2
𝑚𝑟2

]

*

𝐼𝐶𝑈𝐵𝑂𝐼𝐷 =

[

1

12
𝑚(ℎ2+𝑑2) 0 0

0
1

12
𝑚(𝑤2 + 𝑑2) 0

0 0
1

12
𝑚(𝑤2 + ℎ2)

]

**

* Solid cylinder of radius r, height h and mass m.

** Solid cuboid of width w, height h, depth d, and mass m.

(www.wikipedia.org, 2014)

The ICYLINDER matrix has been applied to the wheels, and the ICUBOID matrix to the rest of the

pieces of the model. It has been simplified the inertia of the pieces represented by meshes like

if it were cuboid, using the dimensions of their bounding boxes. (See Figure 3.2.2).

Another detail about the inertia of each body of the model and the centre of mass of them is

that URDF have to specify the location of each model in the joints tags, instead of in the link

tags like the previous model, if not the inertia matrix will be ignored and the centre of mass of

each body in the model with be the origin of the model.

It can be also modified the damping of the joints. By default in URDF the joints have 0

dumping on the controlled position joints (the steering joint, the mechanical arm and the

bucket) when we try to move some joint and it arrive to the desired position, the joint starts to

bounce and finally converge to the position. It has been reduced on the mentioned joints the

dumping force to -50 Newton meter seconds per radian. A -50 value shows a realistic

dumping, but you can reduce the dumping until -300, if it is reduced more the dumping the

model it will destroy.

Related to the friction, is possible to modify the friction related to each material, modifying

the two friction coefficients of each material, which specify the friction in the principle

contact directions (as defined by the ODE physics engine used by Gazebo). These tags

represent the friction coefficients μ for the principle contact directions along the contact

surface as defined by the ODE physics engine of Gazebo. Is also possible modify the friction

related of each joint in the <friction> tags of the joints. It has been defined the coefficient of

the wheels material, the kinetic coefficient like 0.68 and the static like 0.9. This is the

coefficient of dry rubber on asphalt
[15]

.And It has been defined the friction of the mobile

joints with 50. But changing these values doesn’t show any significant change on the

behaviour of the vehicle.

The only physical engine with works with a full functionality in Gazebo is Open Dynamics

Engine (ODE)
[16]

, when I tried to use the Bullet engine
[17]

 instead of ODE, Gazebo would

not load at all because the Bullet integration in Gazebo 1.9 is still experimental.

http://en.wikipedia.org/wiki/List_of_moment_of_inertia_tensors
http://wiki.ros.org/action/fullsearch/uos_tools?action=fullsearch&context=180&value=linkto%3A%22uos_tools%22
http://www.wikipedia.org/

 11 (26)

3.1.2 Controllers

Once the 3D model of the wheel loader was constructed, the next step was the implementation

of a control system to grant movement to the model. There are a lot of alternatives to perform

this; if we were a bigger project the ideal way to control the model will be to make our own

gazebo model plugin and create our own gazebo custom messages model.

But another simplest and efficient way to implement it is to use the gazebo_ros_control

plugin, it have all the resources we need to implement a good way to control the movement of

the robot and it is a standard plugin of Gazebo/ROS and uses the standard messages

(std_msgs) of Gazebo, that means that the control mechanism will be easier to understand for

a person who incorporates to the project later and the control mechanism will be easier to

enlarge also in a future if we want to enhance the movement mechanism.

Ros_control libraries works like a controller interface between the ROS controller manager

mechanism and the hardware interface whether it is real hardware or simulated hardware by

Gazebo, as represents the Figure 3.2.3. We were able to use different interfaces to make

possible the communication between the control manager and the robot’s hardware. This

communication works using “topics”, different modules of our software publish information

about the robot in these topics, and some modules subscribe the information in these topics. It

has been used the JointStateInterface to allow ROS read information about the robot joints in

Gazebo. The EffortJointInterface allows ROS to send to Gazebo how the robot has to behave

(wheels, mechanical arm, etc.). It would be better to use a VelocityJointInterface to manage

the rotation velocity of the wheel joints of the robot, but that interface is not fully

implemented in Gazebo 1.9. The problem using a force control instead a velocity control is

that is hard to maintain a reasonable speed on bumpy ground, like the ground of the

Eskilstuna terrain in the simulation.

The EffortJointInterface offer to us different kind of controllers to change the parameters of

the joints of the robot (It can be seen a list of all the available controllers of Gazebo at the

Figure 3.2.4). I have used the JointPossitionController to change the position of the articulated

joints, like the direction joint between the rear frame and the front frame and also for the

articulated joints of the mechanical arm and the bucket of the L120F wheel loader.

About the control of the rear wheels, it has been tested the

diff_drive_controller/DiffDriveController, velocity_controllers/JointVelocityController,

effort_controllers/JointVelocityController, and the effort_controllers/JointEffortController.

The first two controllers wasn’t able to load by Gazebo, the third loads but makes the model

crash (the joint hierarchy is destroyed and Gazebo visualizes al the joints together, without

any sense), and I only could load the JointEffortController, this controllers makes possible to

spin the wheels and move de vehicle, but we cannot control the velocity of it, for example,

with the same effort the velocity will be different if the vehicle is climbing a hill o driving in a

flat ground. All the controllers can be seen in the Figure 3.2.4.

With the action of the controllers of these interfaces the L120F robot will modify the

respective properties of each joint when it receive a standard message in each controller, It has

been written a UNIX Bash Script to automate the sending of messages and to have an

intuitive way to drive and control the articulated wheel-loader model interactively by

keyboard. It has been chosen the use of UNIX shell scripting instead C++ due to the facility

of the implementation and the absence of the necessity of compile the code after each small

 12 (26)

change and the necessity of being multiplatform.

3.1.3 Sensors

The final step in the model implementation is the addition and configuration of sensors to the

model. It has been added a laser scan sensor configured like a Hokuyo laser to the top to the

wheel loader machine. With it a semi-translucent laser ray is visualized within the scanning

zone of the GPU laser. This can be an informative visualization, or a nuisance. In addition, the

Hyokuo laser plugin will publish all the data obtained from the sensor to the

“/l120f/laser/scan” topic. It has been also implemented a camera sensor which publish on the

“/l120f/camera1/image_raw” topic and an Odometry sensor which publish on the

“/l120f/odometry/data” topic. After a meeting with the client the configuration of the laser

was changed to be like a SickLMS200 scanner, the same sensor that uses the old simulator

from the ALLO Project. And more importantly, the same that we use on the real machine.

However, it has been decided not to implement the GPU, IMU and Odometry sensors, these

sensors aren’t included in the gazebo_ros libraries and we have to depend of community

packages to implement it. Due to we are working with a simulation, this information can be

obtained directly from Gazebo instead from the simulation of these sensors. Nevertheless I

have looked for the packages what should implement leaving sensors: the

hector_gazebo_plugings package
[18]

 implements different sensors plugins, like a 6dw

differential drive, an IMU sensor, an Earth magnetic field sensor, a GPS sensor and a sonar

sensor. Another option for an IMU sensor plugin is the microstrain_3dmgx2_imu plugin
[19]

which is compatible with the microstrain 3DM-GX2 and 3DM-GX3 protocol.

Figure 3.2.2: Bounding box of the bucket’s mesh.

http://wiki.ros.org/action/fullsearch/microstrain_3dmgx2_imu?action=fullsearch&context=180&value=linkto%3A%22microstrain_3dmgx2_imu%22

 13 (26)

Available controllers
controller_manager_tests/EffortTestController
controller_manager_tests/MyDummyController
diff_drive_controller/DiffDriveController
effort_controllers/GripperActionController
effort_controllers/JointEffortController
effort_controllers/JointPositionController
effort_controllers/JointTrajectoryController
effort_controllers/JointVelocityController
force_torque_sensor_controller/ForceTorqueSensorController
imu_sensor_controller/ImuSensorController
joint_state_controller/JointStateController
position_controllers/GripperActionController
position_controllers/JointPositionController
position_controllers/JointTrajectoryController
velocity_controllers/JointVelocityController

Figure 3.2.3: List of Gazebo 1.9 available controllers

Figure 3.2.4: Data flow of ros_control and Gazebo
(http://wiki.ros.org/ros_control)

http://wiki.ros.org/ros_control

 14 (26)

Figure 3.2.5: L120F model structure

3.2 Implementation of the 3D Map

For the implementation of the 3D Map it has been received from the ALLO project the

following files:

 Two 32bits RGB PNG 1000x1000 pixel heightmaps (Figure 3.2.1 a, b).

 A PLY mesh with 411958 vertices and 661609 faces. (Figure 3.2.2).

It has been started trying to implement the heightmap system because the triangle mesh that

was received from the ALLO Project is too huge to have a good performance with it; a

heightmap is much softer and more efficient. A heightmap can also represent the surface

elevation data of the ground where the asphalt plant is in Eskilstuna-Kjula (Figure 3.2.1 a, b)

for its representation on the Gazebo environment. To do it first it has been adapted the

heightmap to the Gazebo 1.9 requisites:

 A 8bits square greyscale image

 Each side must be (2^n)+1 pixels

The PNG file has been resized to a 513 x 513 pixels image as we can see in the Figure 3.2.1 c

using Photoshop. It has been also generated a normal map as we can see in the Figure 3.2.1 d

using the NVIDIA Texture Tools for Adobe Photoshop
[20]

.

However, the wheel loader model doesn’t behaviour correctly when it is tried to drive thought

the generated terrain, and in addition, the latest versions of Gazebo, including the 1.9 version,

has several bugs in the uses of the heightmaps, related to the physics, collisions and textures

of the heightmap’s terrain.

As result we had contemplate to implement the terrain map with a triangle mesh. It has been

received from the ALLO Project another 3D mesh in COLLADA format which is just a

simplified fragment of the original previously mentioned Kjula 3D map with only 24912

vertices and 49999 faces (Figure 3.3.2).

Without

Controller

Front Frame

 Front
Wheel

Rrear Frame

Arm

Effort

Controller

Counter
wheight Buck

Rear
Wheel

Position

Controller

Position

Controller
Position

Controller

Legend:

Laser

 Links

Controllers

Articulated

Joints

Position

Controller IMU

GPS

CAM

 15 (26)

3.3 Implementation of the 3D Map Deformation

The implementation of the 3D Map deformation has been motivated due to the necessity of

visualize the effect of the gravel simulation algorithm form the ALLO Project in the gravel

piles when the wheel loader takes material from them. Gazebo doesn’t have a lot of variety of

options to implement the change or update of a mesh in simulation time. One possible option

for the implementation of the map deformation is having the variable parts of the terrain like a

different mesh. In this way Gazebo has a helper script called spawn_model is provided for

calling the model spawning services offered by gazebo_ros.

It has been received from the ALLO project three COLLADA triangle meshes of the different

levels of a grave pile (Figure 3.3.1 b, c, d). These meshes have been computed using the

ALLO Project gravel simulation algorithms. And using the gazebo spawn service we can

delete a model of a pile and replace it with the same model modified in simulation time.

However, the Gazebo’s spawn scripts have some issues and we can’t spawn two times a

model with the same name, so when was implementing the changing of a mesh in simulation

time on the existing bash script of keyboard control I had to count the times I was spewing the

model and change its name to pile-n where n is {0, 1, 2 … n}.

3.4 Implementation of the Path Following

Related to the ability to follow a given path, first It has been looked for some Gazebo and

ROS official libraries to help to perform it but it has been found only libraries of path

planning, these are the ROS 2D Navigation stack
[21]

 and the Motion Planners stack
[22]

; they

take information from odometry and sensors streams and output velocity commands to send

to a mobile base.

We want a simpler solution, our wheel loader will move in the same map doing a repetitive

movement, from the gravel piles to the asphalt plant’s containers. In this project it is not going

to explore a new map. We rather want to use it to try out our algorithms for navigation,

motion planning, etc. So we only need to receive information about the location of the robot

in our known map and depending of this location send to it new data about it velocity and

orientation.

It has been used the P3D (3D Position Interface for Ground Truth) controller plugin, this

plugin simulate an odometry sensor and sends this information about the pose and orientation

of the vehicle to ROS through a ROS topic using nav_msgs/Odometry ROS messages. I have

configured this plugin to use the position of the rear frame as reference to take the odometry

information and sent via the “base_pose_ground_truth” topic.

The next step was to develop a ROS subscriber C++ program to correctly receive and

interpret the odometry information of the vehicle from the topic; I have taken as a reference

the code of the “Writing a Simple Publisher and Subscriber” tutorial from the ROS wiki. Once

we received a message from the topic we can be able to extract the X and Y coordinates from

the pose of the vehicle and the quaternion of its orientation and then converts it to pitch, from

the roll/pitch/yaw vehicle orientation system, using the following equation:

𝑃𝐼𝑇𝐶𝐻𝐴𝑁𝐺𝐿𝐸 = 𝑎𝑡𝑎𝑛2(2 (𝑦𝑥 + 𝑤𝑧), 𝑤𝑤 + 𝑥𝑥 − 𝑦𝑦 − 𝑧𝑧

 16 (26)

Now, with the position and orientation of the vehicle I had to develop the way to represent a

path and send the property information to vehicle to follow it. I have taken as a reference

some examples of back-and-forths path that I received from the ALLO Project Figure 3.4.1.

and then I have implemented a simpler way to describe the waypoints of a path, using only

the position, the angle of the direction joint of the wheel loader (in radians) and the expected

pitch angle of the vehicle, as we can see in the Figure 3.4.2.

Then each time we receive a odometry message, the subscriber program will check if the

vehicle is in the x and y coordinates of the corresponded waypoint, and if it fits (with a

determined offset margin) it will publish the new position of the direction joint to the wheel

loader, then it will start to turn and when it reach the corresponding pitch angle (also with an

offset margin) the C++ program will publish a message to the direction joint of 0 radians and

then the vehicle will stop turning.

At the end we have a C++ program that is ROS subscriber and publisher at the same time

which receives the odomertry information of the L120F wheel loader vehicle and sent to them

the changes of the direction of it movement to reach the waypoints of the path.

Figure 3.2.1 a: grid overlayed heightmap.

Figure 3.2.1 b: heightmap.

 17 (26)

Figure 3.2.1 c: adapted heightmap to Gazebo.

Figure 3.2.1 d: generated normal map.

Figure 3.2.2: Kjula PLY mesh.

Figure 3.3.1 a: Kjula simplified triangle mesh.

Figure 3.3.1 b: scan data from a real gravel
pile.

 18 (26)

Figure 3.3.1 c: the same pile after having
simulated the removal of 5 buckets of gravel.

Figure 3.3.1 d: the same pile after having
simulated the removal of 49 buckets of gravel.

distance front x front y front

angle
waist
angle

rear x rear y rear
angle

waist
angle
speed

0 0 0 0 0.196 -3.196 0.312 -0.196 -0.107

0.105 0.105 0 0.012 0.207 -3.064 0.291 -0.195 -0.118

...

Figure 3.4.1: ALLO Project path description.

rear x rear y front

angle
pitch
angle

wheels
effort

-20.0 -20.0 0.0 0.0 -2.0

-20.0 6.0 -0.25 -0.80 -2.0

… … … … …

Figure 3.4.2: Actual path description.

 19 (26)

4 Results

The result of the project has been evaluated by the researchers of the ALLO Project. They are

generally happy with the state of the simulator.

The final point of the requirements (interface for communicating with the simulation) is

actually quite important, and it's good to see that it is in place (using the ROS topics

listed in the user manual). Since Rviz can show the poses of all the links of the vehicle

and the simulated laser data, that also means that the output of the simulator looks

(essentially) the same to our software as the data from the real robot.

The main issue with the current simulator is the lack of velocity control. Given that this

controller is not fully functional in Gazebo 1.9, it is understandable that it wasn't

implemented, but that is something we will need to work around for future development

of the simulator.

(Magnusson, Martin; result notes from the ALLO Project)

The resulting code of the simulator is also well documented and easy to use in a future

development.

 20 (26)

5 Discussion

5.1 Achievement of the course objectives

5.1.1 Knowledge and comprehension

During this project it has been acquired deep theoretical knowledge in rigid body simulation

that is being performed by Gazebo. And it has been acquired following competences:

 Work with an officially unsupported GPU in Ubuntu 13.04 using Bumblebee.

 Install and Configure a ROS and Gazebo Environment.

 Navigate the ROS Filesystem and create the ROS packages following the catkin

standard.

 Understand ROS Nodes, Topics, Services and Parameters.

 Build and modify a Gazebo world.

 Build a physical realistic robot using URDF and XACRO.

 Use a URDF model in Gazebo.

 Use a heightmap in Gazebo.

 Make SDF models.

 Import and attach meshes to the URDF and SDF models.

 Add different sensors to a robot.

 Use Gazebo plugins in ROS.

 Work with the gazebo_ros_control plugin for the ROS communication with Gazebo.

 Publish into a ROS topic to modify the state of a robot’s joint in Gazebo.

 Subscribe into a ROS topic to show information about the robot in Gazebo in Rviz.

5.1.2 Proficiency and ability

During this project it has been acquired the following abilities:

 Draft and define the technological problem of the realistic simulation of robotic

hardware and rigid bodies.

 Search for scientific information to solve these problems in scientific databases such

as IEEE Explore
[23]

 and Google Scholar
[24]

.

 Plan and implement a technological project in a professional environment, using an

incremental development model with some iterative elements. Defining an initial set

of requirements and redefining them during the course of the project.

 Process and analyse scientific results as it can be seen in the results section.

 Have the ability to present the project orally and writing.

 Have control of planning, monitoring and implementation between the whole project

periods as it can be seen in the schedule of the specification of the project.

 Write emails and plan weekly meetings with the staff from the ALLO Project.

http://wiki.ros.org/ROS/Tutorials/InstallingandConfiguringROSEnvironment
http://wiki.ros.org/ROS/Tutorials/NavigatingTheFilesystem
http://wiki.ros.org/catkin
http://wiki.ros.org/ROS/Tutorials/UnderstandingServicesParams
http://gazebosim.org/tutorials/?tut=build_world
http://gazebosim.org/tutorials/?tut=add_laser

 21 (26)

5.1.3 Values and attitude

During the project it has been acquired the following values:

 Have the ability to stay informed about current knowledge/research development and

working methods used in the field as it can be seen during the course of the project, in

the report, in the results and in the references of the report.

 Have a professional approach in their relationships with the ALLO Project. It has been

doing regular meetings during the project, maintained active communication by email

with members of the ALLO Project and receiving feedback from them about the result

of the project and the changes in the requisites.

 Have a professional approach to the end product of the project. The resulting software

of the project has been developed making particular emphasis on the reliability,

usability, extensibility, documentation and the reutilization of the software.

5.2 Compliance with the project requirements

The high priority Step I of the project consisting on the installing and configuration of the

Gazebo/ROS environment, the recreation of the Kjula map into the simulator and the ability

of drive the wheel loader through the terrain have been completed in their majority.

Also the optional Step II consisting on the ability to replace part of the 3D map to another and

the ability of the vehicle to follow a path given a list of waypoint have been also completed.

Related to the Step III it has been done an interface for the ALLO Project, using the ROS

topic structures. Only it has not been completed the asphalt plant model due to it has been

dedicated more resources to solve and improve the others aspects of the simulator.

Even the uncompleted aspects, the project is a suitable solution to the problem presented from

the ALLO Project of the porting and development of their previous simulator.

5.3 Specific results and conclusions

It is possible to simulate the behaviour of a wheel loader vehicle in a realistic environment

using ROS and Gazebo in spite of their limitations. And will be interesting to continue the

development of the simulation at the same time as Gazebo and ROS grow.

5.4 Project development

The simulator has been developed following the standards in the using of the ROS and

Gazebo frameworks, which allows an easy expansion of it and its functionalities. Expand and

enhance the project should be able in the future at the same time that ROS and Gazebo grows.

Examples of tasks, which should be developed in the future, are the following:

 Complete the Step III of the project.

 Enhance the L120F Prototype with a more realistic physics and visuals.

 Enhance the driving mechanism of the vehicle.

o Have a better control of the velocity of the vehicle.

 Extend the path following mechanism.

o Read the path format from the ALLO Project.

 Change the usage of the standards libraries, plugins and messages for its own, more

adapted to the needs of the project.

http://glada.oru.se/studieinformation/VisaKursplan?kurskod=DT3026&termin=20131&sprak=en##

 22 (26)

6 References

[1] Magnusson, Martin; Cirillo, Marcello; Kucner, Tomasz, Automomous Long-Term Load-

Haul-Dump Operations Project. Accessed 16 of June, 2014.

URL: http://aass.oru.se/Research/mro/allo/

[2] Koenig, Nathan & Howard, Andrew, Gazebo-3D Multiple Robot Simulator with

Dynamics. Accessed 16 of June, 2014.

URL: https://www.gazebosim.org

[3] Hedges, Reed; Støy, Kasper; Bers, Josh; Douglas, Jason K; Jinsuck, Kim; Martignoni III,

Andy; Melchior, Nik; Østergaard, Esben; Sweeney, John; Batalin, Maxim; Burns,

Brendan; Douglas, Jason K; Dahl, Torbjørn; Fredslund, Jakob; Jung, Boyoon; Dandavate,

Gautam; University of Melbourne RoboCup Team , Player Project.

Accessed 16 of June, 2014.

URL: http://playerstage.sourceforge.net/

[4] Gerkey, Brian; Vaughan, Richard; Howard, Andrew, “The player/stage project: Tools for

multi-robot and distributed sensor systems”. Proceedings of the 11th international

conference on advanced robotics, 2003, (ICAR 2003), pp 317-323, Coimbra, Portugal.

Accessed 16 of June, 2014.

URL: http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf

[5] Koenig, Nathan & Howard Andrew, “Design and Use Paradigms for Gazebo, an Open-

Source Multi-Robot Simulator”. Intelligent Robots and Systems, 2004, (IROS 2004).

Proceedings. 2004 IEEE/RSJ International Conference on; 2004. Robotics Research

Labs, University of Southern California, Los Angeles, CA 90089-0721, USA. Accessed

16 of June, 2014.

URL: http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf

[6] Cousins, Steve; Gerkey, Brian; Conley, Ken; Staff from Willow Garage, “Sharing

Software with ROS”. IEEE Robotics & Automation Magazine, June, 2010, pp 12-14.

Willow Garage, Menlo Park, CA, USA. Accessed 16 of June, 2014.

 URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05480439

[7] Willow Garage, ROS: Robot Operating System. 2014. Menlo Park, CA: Willow Garage.

Accessed 16 of June, 2014.

URL: https://www.ros.org

[8] Quigley, Morgan*; Gerkey, Brian**; Conley, Ken**; Faust, Josh**; Foote, Tully**; Leibs,

Jeremy***; Berger, Eric**; Wheeler, Rob**; Ng, Adrew*,“ROS: an open-source Robot

Operating System”. Proc. Open-Source Software workshop of the International

Conference on Robotics and Automation (ICRA), 2009.

*Computer Science Department, Stanford University, Stanford, CA.
**Willow Garage, Menlo Park, CA.
***Computer Science Department, University of Southern California.

Accessed 16 of June, 2014.

URL: http://ai.stanford.edu/~mquigley/papers/icra2009-ros.pdf

http://aass.oru.se/Research/mro/allo/
https://www.gazebosim.org/
http://playerstage.sourceforge.net/
http://robotics.usc.edu/~gerkey/research/final_papers/icar03-player.pdf
http://robotics.usc.edu/~gerkey/research/final_papers/icar03player.pdf
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05480439
https://www.ros.org/
http://ai.stanford.edu/~mquigley/papers/icra2009-ros.pdf

 23 (26)

[9] NVIDIA Corporation, Whitepaper NVIDIA’s Next Generation Notebook Technology:

OptimusTM. Accessed 16 of June, 2014.

URL: http://www.nvidia.com/object/LO_optimus_whitepapers.html

[10] The Bumblebee Project. Accessed 16 of June, 2014.

URL: http://bumblebee-project.org/

[11] Volvo Corporation, Volvo Wheel Loaders L110F, L120F. Accessed 16 of June, 2014.

URL: http://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/w

heel%20loaders/ProductBrochure_L110F_L120F_EN_21C1002738_2009-08.pdf

[12] OGRE – Open Source 3D Graphics Engine. Accessed 16 of June, 2014.

URL: http://www.ogre3d.org/

[13] Günther, Martin; Sprickerhof, Jochen, UOT_tools. Accessed 16 of June, 2014.

URL: http://wiki.ros.org/uos_tools

[14] Blender Foundation, The Blender project - Free and Open 3D Creation Software.

Accessed 16 of June, 2014.

URL: http://www.blender.org/

[15] Wikibooks. Physics Study Guide/Frictional coefficients. Accessed 16 of June, 2014.

URL: http://en.wikibooks.org/wiki/Physics_Study_Guide/Frictional_coefficients

[16] Smith, Russell. Open Dynamics Engine. Accessed 16 of June, 2014.

URL: http://www.ode.org/

[17] Coumans, Erwin. Bullet physics engine. Accessed 16 of June, 2014.

URL: http://bulletphysics.org/

[18] Meyer, Johannes; Kohlbrecher, Stefan, Hector_gazebo_plugins.

Accessed 16 of June, 2014.

URL: http://wiki.ros.org/hector_gazebo_plugins

[19] Leibs, Jeremy; Gassend, Blaise, microstrain_3dmgx2_imu. Accessed 16 of June, 2014.

URL: http://wiki.ros.org/microstrain_3dmgx2_imu

[20] NVIDIA Corporation, NVIDIA Texture Tools for Adobe Photoshop.

Accessed 16 of June, 2014.

URL: https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop

[21] Marder-Eppstein, Eitan, 2D navigation stack. Accessed 16 of June, 2014.

URL: http://wiki.ros.org/navigation

[22] Chitta, Sachin, Motion_planners stack. Accessed 16 of June, 2014.

URL: http://wiki.ros.org/motion_planners

[23] Institute of Electrical and Electronics Engineers. IEEE Xplore Digital Library.

Accessed 16 of June, 2014.

URL: http://ieeexplore.ieee.org/

http://www.nvidia.com/object/LO_optimus_whitepapers.html
http://bumblebee-project.org/
http://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/wheel%20loaders/ProductBrochure_L110F_L120F_EN_21C1002738_2009-08.pdf
http://www.volvoce.com/SiteCollectionDocuments/VCE/Documents%20Global/wheel%20loaders/ProductBrochure_L110F_L120F_EN_21C1002738_2009-08.pdf
http://www.ogre3d.org/
http://wiki.ros.org/uos_tools
http://www.blender.org/
http://en.wikibooks.org/wiki/Physics_Study_Guide/Frictional_coefficients
http://www.ode.org/
http://bulletphysics.org/
http://wiki.ros.org/hector_gazebo_plugins
http://wiki.ros.org/microstrain_3dmgx2_imu
https://developer.nvidia.com/nvidia-texture-tools-adobe-photoshop
http://wiki.ros.org/navigation
http://wiki.ros.org/motion_planners
http://ieeexplore.ieee.org/

 24 (26)

[24] Google. Google Scholar. Accessed 16 of June, 2014.

URL: http://scholar.google.com/

http://scholar.google.com/

 25 (26)

URDF hierarchy

 26 (26)

Wheel Loader Simulator User Manual

Örebro Universitet

User Manual
Wheel Loader Simulator

Samuel Navas Medrano

USER MANUAL Wheel Loader Simulator

 1

1. Index

1. Index ... 1

2. Installation ... 2

2.1 Download and Install ROS ... 2

2.2 Configuring Your ROS Environment .. 3

2.3 Installing the Wheel Loader Simulator ... 4

3. Execution ... 7

3.1 Driving Simulator ... 7

3.2 Path Following Simulator ... 9

4. Technical details ... 10

4.1 ROS-Gazebo communication .. 10

4.2 Path description file format .. 10

4.3 SickLMS200 Configuration ... 11

USER MANUAL Wheel Loader Simulator

 2

2. Installation
This manual assumes that you are using Ubuntu 13.04 (Raring).

2.1 Download and Install ROS
1. Configure your Ubuntu repositories to allow "restricted," "universe," and "multiverse."

You can follow the Ubuntu guide for instructions on doing this.

2. Setup your computer to accept software from packages.ros.org. ROS

Hydro ONLY supports Precise, Quantal, and Raring for debian packages.

$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu raring main

" > /etc/apt/sources.list.d/ros-latest.list'

3. Set up your keys

$ wget http://packages.ros.org/ros.key -O - | sudo apt-key add -

4. First, make sure your Debian package index is up-to-date:

$ sudo apt-get update

5. Install the ROS Desktop-Full version, that includes Gazebo

$ sudo apt-get install ros-hydro-desktop-full

6. Before you can use ROS, you will need to initialize rosdep. rosdep enables you to

easily install system dependencies for source you want to compile and is required to

run some core components in ROS.

$ sudo rosdep init

$ rosdep update

7. It's convenient if the ROS environment variables are automatically added to your bash

session every time a new shell is launched:

$ echo "source /opt/ros/hydro/setup.bash" >> ~/.bashrc

$ source ~/.bashrc

If you have more than one ROS distribution installed, ~/.bashrc must only source

the setup.bash for the version you are currently using.

If you just want to change the environment of your current shell, you can type:

$ Source /opt/ros/hydro/setup.bash

https://help.ubuntu.com/community/Repositories/Ubuntu

USER MANUAL Wheel Loader Simulator

 3

8. Rosinstall is a frequently used command-line tool in ROS that is distributed separately.

It enables you to easily download many source trees for ROS packages with one

command.

$ sudo apt-get install python-rosinstall

9. The ros-hydro-full-desktop version should have the gazebo_ros_pkgs included, but if

not or if you installed anoter version of ROS you can still installing these packages

typing:

$ sudo apt-get install ros-hydro-gazebo-ros-pkgs ros-hydro-gazebo-ros-control

2.2 Configuring Your ROS Environment

The first step is to create a ROS Workspace

$ mkdir -p ~/catkin_ws/src

$ cd ~/catkin_ws/src

$ catkin_init_workspace

Even though the workspace is empty (there are no packages in the 'src' folder, just a

single CMakeLists.txt link) you can still "build" the workspace:

$ cd ~/catkin_ws/

$ catkin_make

The catkin_make command is a convenience tool for working with catkin workspaces. If

you look in your current directory you should now have a 'build' and 'devel' folder. Inside

the 'devel' folder you can see that there are now several setup.*sh files. Sourcing any of

these files will overlay this workspace on top of your environment. To understand more

about this see the general catkin documentation: catkin. Before continuing source your new

setup.*sh file:

$ source devel/setup.bash

http://wiki.ros.org/rosinstall
http://wiki.ros.org/catkin/commands/catkin_make
http://wiki.ros.org/catkin/workspaces
http://wiki.ros.org/catkin

USER MANUAL Wheel Loader Simulator

 4

2.3 Installing the Wheel Loader Simulator

1. Copy all the folders, the catkin_ws to your catkin_ws folder and the .gazebo folder to

your .gazebo folder (catkin_ws and .gazebo folders are by default in your home folder).

Please note that .gazebo is a hidden folder. Your hierarchy should be as follows:

~/catkin_ws/src

 /l120f_description

 package.xml

 CMakeLists.txt

 /urdf

 l120f.urdf.xacro

 l120f-mod.urdf.xacro

 ...

 /launch

 l120f_rviz.launch

 l120f-mod_rviz.launch

 ...

 /meshes

 ...

 /cad

 ...

 /l120f_gazebo

 package.xml

 CMakeLists.txt

 /launch

 l120f.launch

 path_following.launch

 /worlds

 l120f.world

 path-following.world

 /models

 ...

USER MANUAL Wheel Loader Simulator

 5

 /l120f_control

 package.xml

 CMakeLists.txt

 /launch

 l120f-control.launch

 ...

 /config

 l120f_control.yaml

 ...

 /sim_controller

 package.xml

 CMakeLists.txt

 key_teleop.sh

 /src

 l120f-control.launch

 ...

 /srv

 ...

 /srv

 ...

 /paths

 path1.dat

 ...

~/gazebo/models

 wp3-pile00.dae

 wp3-pile05.dae

 wp3-pile49.dae

 /pile00

 /pile05

 /pile49

 ...

2. Copy all the files and folder from the gazebo to your Gazebo folder (usualy ~/.gazebo)

USER MANUAL Wheel Loader Simulator

 6

3. Build the workspace

$ cd ~/catkin_ws/

$ catkin_make

4. Source the files

$ source devel/setup.bash

USER MANUAL Wheel Loader Simulator

 7

3. Execution

3.1 Driving Simulator
The driving simulation consists on a simulation of the L120F Volvo Whel Loader on the

Elkistsuna-Kjula map. You can also drive the vehicle and change the type of gravel pile on

the scenario using the keyboard.

To load the scenario type:

$ roslaunch l120f_gazebo l120f.launch

To load the L120F controller type:

$ roslaunch l120f_control l20f_control.launch

You can now execute the key_teleop.sh bash script and start driving the wheel loader.

$ cd ~/catkin/src/sim-control

$./key_teleop.sh

Once the key_teleop script is executed we can modify the velocity of the vehicle using the

keys W and S, change the direction of the vehicle using A and D, change the angle of the

laser using I and K, change the position of the bucket using U and J, moving up and down

the mechanical arm using O and L, change between the different models of piles using the

keys 1, 2 and 3, and stop the program using C.

USER MANUAL Wheel Loader Simulator

 8

You can also visualize the vehicle in Rviz, typing:

$ roslaunch l120f_description l120f_rviz.launch

USER MANUAL Wheel Loader Simulator

 9

3.2 Path Following Simulator
The path following simulation consists on a simulation of the L120F Volvo Wheel Loader on

a flat ground map. The waypoints of the path loaded by default on the simulator are marked

by construction cones with disabled collisions.

To load the scenario, type:

$ roslaunch l120f_gazebo path_following.launch

To load the controller, type:

$ roslaunch l120f_control l20f_control.launch

You can now execute the path following mechanism, typing:

$ rosrun sim-controller path_following < ~/catkin_ws/src/simcontroller

/paths/path1.data

You can also visualize the vehicle in Rviz, typing:

$ roslaunch l120f_description l120f-mod_rviz.launch

USER MANUAL Wheel Loader Simulator

 10

4. Technical details

4.1 ROS-Gazebo communication

For the communication between gazebo and ROS some topics have been created. Is able

to subscribe to its topics or publish information on them.

Topic Message

/l120f/leftRearWheelHinge_effort_controller/command std_msgs/Float64

/l120f/rightRearWheelHinge_effort_controller/command std_msgs/Float64

/l120f/leftFrontWheelHinge_effort_controller/command std_msgs/Float64

/l120f/rightFrontWheelHinge_effort_controller/command std_msgs/Float64

/l120f/steerJoint_position_controller/command std_msgs/Float64

/l120f/cabinLaserJoint_position_controller/command std_msgs/Float64

/l120f/ADLinkHinge_position_controller/command std_msgs/Float64

/l120f/BuckHinge1_position_controller/command std_msgs/Float64

/l120f/camera1/image_raw sensor_msgs/Image

/l120f/camera1/camera_info sensor_msgs/CameraInfo

/l120f/laser/scan sensor_msgs/LaserScan

/l120f/odometry/data sensor_msgs/Odometry

4.2 Path description file format

The format to the input path files should be like:

Waypoints

number

Rear X 1 Rear Y 1 Front Angle 1 Pitch Angle 1 Effort 1

Rear X 2 Rear Y 2 Front Angle 2 Pitch Angle 2 Effort 2

Example (path1.dat)

5

-20.0 6.0 -0.25 0.0 -2.0

0 26.0 -0.25 -0.80 -2.0

20.0 6.0 0.0 -2.88 -2.0

20.0 -20.0 0.0 0.0 10.0

0.0 -36.0 -0.25 -99999.0 -2.0

Note that a positive effort means backward movement and a negative effort forward

movement.

USER MANUAL Wheel Loader Simulator

 11

4.3 SickLMS200 Configuration

Inside the l120f.gazebo file you can change the laser configuration and adjust the

parameters of the SickLMS200 laser scanner. By default are:

<ray>

 <scan>

 <horizontal>

 <samples>181</samples>

 <resolution>1</resolution>

 <min_angle>-1.570796</min_angle>

 <max_angle>1.570796</max_angle>

 </horizontal>

 </scan>

 <range>

 <min>0.20</min>

 <max>8.192</max>

 <resolution>0.01</resolution>

 </range>

</ray>

You can consult more information about the 1.4 SDF laser format here.

http://gazebosim.org/sdf/1.4.html#ray2269

