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Disclaimer 
 
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS 
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 
BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 
SOFTWARE. 
 
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER IN TORT, 
CONTRACT, OR OTHERWISE, SHALL COPENHAGEN TRIAL UNIT BE LIABLE TO YOU 
OR TO ANY OTHER PERSON FOR LOSS OF PROFITS, LOSS OF GOODWILL, OR ANY 
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR DAMAGES 
FOR GROSS NEGLIGENCE OF ANY CHARACTER INCLUDING, WITHOUT LIMITATION, 
DAMAGES FOR LOSS OF GOODWILL, WORK STOPPAGE, COMPUTER FAILURE OR 
MALFUNCTION, OR FOR ANY OTHER DAMAGE OR LOSS. 
 
The Trial Sequential Analysis software (hereafter TSA) to which this manual refers is in Beta 
Release. Copenhagen Trial Unit has tested the TSA software extensively, but errors may still 
occur. Feedback is an important part of the process of correcting errors and implementing 
other changes, so we encourage you to tell us about your experiences with this software. To 
do so, please send your feedback to tsa@ctu.dk.  
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Team member roles and contributions 
TSA was developed at The Copenhagen Trial Unit, Copenhagen, Denmark. The team 

consisted of Kristian Thorlund (KT), Janus Engstrøm (JE), Jørn Wetterslev (JW), 

Jesper Brok (JB), Georgina Imberger (GI), and Christian Gluud (CG). The roles and 

contributions of each team member are outlined below: 

 

Project manager: KT 

Principal software application developer: JE. 

Co-software application developers: KT, JW, JB, CG. 

Statistical programmer: KT. 

Internal beta-testers: JB, GI, JW, KT, CG. 

Manual authors: KT (principal), GI, JW, JB, JE, CG. 

Project supervisors: JW and CG. 
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Preface 
This manual provides a guide - both theoretical and practical - for the use of 

Copenhagen Trial Unit’s Trial Sequential Analysis (TSA) software. Chapter 1 

introduces the concepts and rationale, chapter 2 provides a technical 

overview of the implemented methodologies, and chapters 3-5 are practical 

chapters on how to install, use, and apply the software. 

 

The TSA software can be downloaded at www.ctu.dk/tsa. You are welcome to 

use it in your analyses and publications of cumulative meta-analyses with 

proper reference to the software and some of our articles describing the 

methodology.  

 

In case you need assistance with the TSA software, please contact us via 

email: tsa@ctu.dk. 
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1. Concepts and rationale behind trial sequential analysis 
1.1. Random error in meta-analysis 
Some ‘positive’ meta-analytic findings may be due to the play of chance 

(random error) rather than due to some underlying ‘true’ intervention effect.1-10 

Likewise, some neutral or ‘negative’ (‘non-positive’) meta-analytic findings 

may also represent a ‘chance finding’ due to lack of statistical power and 

precision.9-13 These two types of errors are commonly known as false positive 

errors (or type I errors) and false negative errors (or type II errors). Meta-

analyses are typically deemed ‘positive’ or ‘negative’ on the basis of some 

statistical test (test statistic), communicated with a P-value or with the 

corresponding confidence interval.  

 

When a meta-analysis includes a small number of trials and a small number 

of patients, random errors can cause spurious findings.1;2;4-6;9;11;12;14;15 

Conversely, when there is a large number of patients, and when several trials 

have confirmed findings of previous trials, test statistics and intervention effect 

estimates will typically converge towards the ‘truth’.1;2;4-6;9;11;12;14;15 Figures 

1(A) and 1(B) illustrate examples of such convergence in test statistics. In 

both situations, inferences about statistical significance are erroneous at 

certain early stages, but eventually converge to the ‘true’ side of statistical 

significance.  
 

    
 
Figure 1 Examples of convergence in test statistics as patients are included and followed to 

an outcome measure (e.g., death) in two randomised clinical trials A and B. 

 

Random error and imprecision only cause problems if statistical tests (and 

intervention effect estimation) are employed at stages where the magnitude of 

the random error or imprecision is ‘extreme enough’ to yield spurious 
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statistical inferences. In figure 2(A), significance testing at times X1 and X3 

would result in a false declaration of statistical significance (i.e., a false 

positive result), whereas significance testing at X2 and X4 would not. Thus, 

only at times X1 and X3 is the impact of random error ‘extreme enough’ to 

yield spurious statistically significant results. In figure 2(B), significance testing 

at X1 and X2 could have resulted in a false declaration that the interventions 

under investigation were not significantly different (i.e., a false negative 

result), whereas significance testing at X3 and X4 would not. Thus, only at 

times X1 and X2 is the imprecision of a magnitude that causes spurious 

absence of statistical significance. 
 

  
 
Figure 2 Examples of false positive and false negative statistical test results over time in two 

randomised clinical trials A and B. 

 

The more statistical tests that are employed throughout the accumulation of 

additional data, the higher the likelihood of observing a false positive or false 

negative result. This phenomenon is commonly known as ‘multiplicity due to 

repeated significance testing’.10;16-18  

 

In meta-analysis it is important to minimize the risk of making a falsely positive 

or falsely negative conclusion.3 Pooled intervention effects in meta-analysis 

are typically assessed on the basis of P-values. Meta-analysts must decide on 

the threshold at which a P-value is sufficiently small to justify a ‘positive’ 

conclusion. Below this threshold, a conclusion is considered statistically 

significant. At a given time, any threshold involves a trade-off between the risk 

of observing a false positive result (type I error) and the risk of observing a 

false negative result (type II error). For example, if the threshold for statistical 

significance in figure 2 (horizontal dashed line) had been moved up, the 
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chance of observing a false positive result (figure 2(A)) would have 

diminished, while the risk of observing a false ‘negative’ result (figure 2(B)) 

would have increased. When conventional significance tests are performed at 

‘early’ stages and/or at multiple times, these maximum risks are distorted (as 

illustrated in figure 2).16-18 Thus, any inferences about statistical significance 

should be made in relation to the strength of the evidence. The strength of 

evidence should be measured using the accrued number of patients, 

observed number of events in the included trials, and the impact of 

multiplicity.1;2;4;6;10;19-21 

 
1.2. Defining strength of evidence - information size 

Meta-analyses of randomised trials increase the power and precision of the 

estimated intervention effects.13 When all available trials are included, 

systematic reviews and meta-analyses are considered to be the best available 

evidence.13 However, ‘the best available evidence’ may not be synonymous 

with ‘sufficient evidence’ or ‘strong evidence’.1;2;4;6;11;12  

 

In a single randomised trial with a binary outcome measure, we estimate the 

number of events and patients needed to allow for reliable statistical 

inference. That is, we perform a sample size calculation to ensure that a 

‘sufficient’ number of events and patients are included.22 A similar ‘goal post’ 

is needed for a meta-analysis.1;2;6;23 This goal post has been referred to as the 

required meta-analysis information size (IS) or the optimum information 

size.1;2;4;6;11;12;14;15;19;23-25 Figure 3 illustrates two typical meta-analytic 

scenarios A and B where the test statistic has stabilised after the required 

information size has been reached.   
 

  
Figure 3 Examples of how the required information size ensures reliable significance tests in 

two cumulative meta-analyses A and B. 
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A sample size calculation in a single trial is typically based on the expected 

control event proportion, the expected relative risk reduction of the 

experimental intervention, and the desired maximum risk of both type I error 

and type II error.26 In a meta-analysis, there is likely heterogeneity across 

included trial populations, interventions, and methods. Meta-analysis sample 

size considerations need to be adjusted - that is, increased - in order to allow 

for the variance introduced by this heterogeneity.4;6;11;12;23 Such adjustments 

are analogous to adjustments for variation across centres in a multi-centre 

trial.4;6;23  

 

Conventional meta-analysis methods, such as those available in Review 

Manager v.5.1,27 do not take into account the amount of the available 

evidence.13 Instead, the reliability of a statistically significant intervention 

effect is commonly taken for granted, irrespective of the accrued number of 

events and patients. Conversely, intervention effects that are not statistically 

significant are commonly not considered reliable. Rather, it is assumed that 

‘more evidence is needed’.28 

 

Empirical evidence suggests that intervention effects and P-values based on 

a limited number of events and patients are often not reliable.1;2;4-6;9;11;12;29 

About 25% of conventional meta-analyses that include a small number of 

events and patients may falsely declare the estimated intervention effects as 

statistically significant.4;5 Empirical evidence also shows that large pooled 

intervention effects observed in early positive meta-analyses tend to dissipate 

as more evidence is accumulated.4;5;9 

 

1.3. Testing for statistical significance before the information size has 
been reached 
The aim of a meta-analysis is to identify the benefit or harm of an intervention 

as early and as reliable as possible.4;11-13;20 Therefore, meta-analyses are 

commonly updated when new trials are published. For example, Cochrane 

systematic review authors are required to update their systematic reviews at 

least every second year.13 When meta-analyses are updated, they are 

repeatedly subjected to the significance testing over time. In randomised 
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clinical trials, repeated significance testing on accumulating data is known to 

inflate the overall risk of type I error.30 Simulation studies suggest that if 

repeated significance testing is done in meta-analyses and P-values smaller 

than 0.05 are considered to be evidence of ‘statistical significance’, then the 

actual risk of type I error will be between 10% and 30%.7;8;10;31 When 

decisions made accordingly to implement the intervention as a treatment, this 

means that between 1 and 3 out of 10 treatments decisions are likely 

inappropriate. 

    

To deal with this problem, one can adjust the thresholds for which results are 

considered statistically significant and which results are not.1;2;4;6;11;12;14;15;24;25 

Alternatively, one can penalise the test statistic according to the strength of 

evidence and the number of performed significance tests (the ‘law of the 

iterated logarithm’).7;8 The TSA software provides methods for both 

approaches, each building on theorems from advanced probability theory. The 

first approach uses methodology developed for repeated significance testing 

in randomised clinical trials (i.e., statistical monitoring boundaries).4;6;11;12 The 

second approach penalizes - that is, decreases - the test statistic according to 

the strength of information available in the meta-analysis and the number of 

performed significance tests.7;8   
 

 
Figure 4 Examples of significance threshold adjustment (stipulated monitoring boundaries) 

(A) and penalised test statistic (stipulated) (B) to avoid false positive statistical test results in 

two cumulative meta-analyses A and B. 

 

Figure 4(A) illustrates an example of a meta-analysis scenario where a false 

positive result is avoided by adjusting the threshold for statistical significance 

by employing monitoring boundaries. Figure 4(B) illustrates an example where 

a false positive result is avoided by appropriately penalizing the test statistic.  
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1.4. Testing for futility before the information size has been reached 
It is also possible to use the TSA software to assess when an intervention is 

unlikely to have some anticipated effect. Or, in a clinical context, to assess 

when an intervention has an effect that is smaller than what would be 

considered minimally important to patients. Meta-analyses are often used to 

guide future research. Before embarking on future trials, investigators need to 

know an accurate summary of the current knowledge. If a meta-analysis has 

found that a given intervention has no (important) effect, investigators need to 

know whether this finding is due to lack of power or whether the intervention is 

likely to have no effect. Using conventional thinking, a finding of ‘no effect’ is 

considered to be due to lack of power until an appropriate information size 

has been reached. In some situations, however, we may be able to conclude 

earlier that a treatment effect is unlikely to be as large as anticipated, and 

thus, prevent trial investigators from spending resources on unnecessary 

further trials. Of course, the size of the anticipated intervention effect can be 

reconsidered and further research may be designed to investigate a smaller 

effect size.  

 

  
Figure 5 Examples of futility boundaries where the experimental intervention is not superior to 

the control intervention (and too many trials may have been conducted) (A) and where the 

experimental intervention is statistically significantly superior to the control intervention (and 

too many trials may have been conducted) (B). 

 

TSA provides a technique for finding a conclusion of no effect as early as 

possible. ‘Futility boundaries’, which were originally developed for interim 

analysis in randomised clinical trials, are constructed and used to provide a 

threshold for ‘no effect’.30  
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If the experimental intervention is truly superior to the control intervention, one 

would expect the test statistic to fluctuate around some upward sloping 

straight line, eventually yielding statistical significance (when the meta-

analysis is sufficiently powered). If a meta-analysis of a truly effective 

experimental intervention includes only a small number of events and 

patients, the likelihood of obtaining a statistically significant result is low due to 

lack of power. However, as more evidence is accumulated, the risk of getting 

a chance negative finding decreases. Futility boundaries are a set of 

thresholds that reflect the uncertainty of obtaining a chance negative finding in 

relation to the strength of the available evidence (e.g., the accumulated 

number of patients). Above the thresholds, the test statistic may not have 

yielded statistical significance due to lack of power, but there is still a chance 

that a statistically significant effect will be found before the meta-analysis 

surpasses the IS. Below the threshold, the test statistic is so low that the 

likelihood of a significantly significant effect being found becomes negligible. 

In the latter case, further randomisation of patients is futile; the intervention 

does not possess the postulated effect. 

 

Figure 5(A) illustrates an example where the experimental intervention is not 

superior to the control intervention. The test statistic crosses the futility 

boundaries (the upward sloping concave curve) before the required 

information size is surpassed. Figure 5(B) illustrates an example where the 

experimental intervention is statistically significantly superior to the control 

intervention. In this example, the test statistic stays above the futility curve 

(because there is an underlying effect) and eventually yields statistical 

significance. 

 

1.5. Summary 
Trial sequential analysis (TSA) is a methodology that uses a combination of 

techniques. The evidence required is quantified, providing a value for the 

required IS. The thresholds for statistical significance are adjusted and these 

modifications are done according to the quantified strength of evidence and 

the impact of multiplicity.4;6;11;12 Thresholds for futility can also be constructed, 

using a similar statistical framework.  
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In summary, TSA can provide an IS, a threshold for a statistically significant 

treatment effect, and the threshold for futility. Conclusions made using TSA 

show the potential to be more reliable than those using traditional meta-

analysis techniques. Empirical evidence suggests that the information size 

considerations and adjusted significance thresholds may eliminate early false 

positive findings due to imprecision and repeated significance testing in meta-

analyses.4;6;11;12  

 

Alternatively, one can penalise the test statistic according to the strength of 

evidence and the number of performed significance tests (the ‘law of the 

iterated logarithm’).7;8 Simulation studies have demonstrated that penalizing 

test statistics may allow for good control of the type I error in meta-analyses.7;8  

 

The following manual provides a guide - both theoretical and practical - for the 

use of Copenhagen Trial Unit’s TSA software. Chapter 2 provides a technical 

(intermediate level) overview of all the methodologies incorporated in the TSA 

software. Chapters 3-5 are practical chapters on how to install, use, and apply 

the TSA software. 
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2. Methodology behind TSA 
TSA combines conventional meta-analysis methodology with meta-analytic 

sample size considerations (i.e., required information size) and methods 

already developed for repeated significance testing on accumulating data in 

randomised clinical trials.1;2;4;6;11;12 In chapter 2, we first describe the meta-

analysis methodology used to pool data from a number of trials. The 

description in section 2.1 covers effect measures for dichotomous and 

continuous data, statistical meta-analysis models (the fixed-effect model and 

some variants of the random-effects model), and methods for handling zero-

event data. In section 2.2, we describe the methods for adjusting significance 

when there is an increased risk of random error (due to weak evidence and 

repeated significance testing). We do not describe the more advanced part of 

this methodology in detail. Rather, this chapter is intended to provide users 

with an intermediate level conceptual understanding of the issues addressed 

in chapter 1.  

 

2.1. Methods for pooling results from clinical trials 
2.1.1. Effect measures for dichotomous and continuous data 

The TSA program facilitates meta-analysis of dichotomous (binary) data and 

of continuous data. Dichotomous data are data that is defined by one of two 

categories (e.g., death or survival). Continuous data are data that is measured 

on a numerical scale (e.g., blood pressure or quality-of-life scores). For each 

type of data, there are various measures available for comparing the 

effectiveness of an intervention of interest.13  

 

Dichotomous data effect measures 

Assume we have k independent trials comparing two interventions 

(intervention A vs. intervention B) with a dichotomous outcome. Such trials will 

(typically) report the number of observed events (e.g., deaths) in the two 

intervention groups, eA and eB, and the total number of participants, nA and nB, 

in the two intervention groups. For dichotomous data, the intervention effect 

between the two interventions can be measured as risk difference (RD), 
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relative risk (RR), or odds ratio (OR).13 Intervention effect estimates based on 

these measures are calculated using the following formulas: 

 

 

( / )
( / )

/( )
/( )

A B

A B

A A

B B

A B B

B A A

e eRD
n n

e nRR
e n

e n eOR
e n e

= −

=

−
=

−  

 

Relative risk ratios and odds ratios will typically be expressed on the log-scale 

because the log transformation induces certain desirable statistical properties 

(such as symmetry and approximate normality).13 Standard errors, variances, 

and weights of ‘ratio intervention effects’ are therefore also obtained on the 

log-scale. The formulas for the standard errors of the RD, log(RR), and 

log(OR) are provided in appendix 6.1. 

 

When the event proportions in the two groups are low (rare-event data), a 

preferred alternative to the odds ratio is the Peto’s odds ratio.13 This odds 

ratio is calculated with the formula: 

 

( )( )exp ( ) /Peto A AOR e E e v= −
 

 

Where E(eA) is the expected number of events in intervention group A, and v 

is the (hypergeometric) variance of eA. The formulas for E(eA) and v are 

provided in appendix 6.1. 

 

Continuous data effect measures 

Assume we have k independent trials comparing two interventions 

(intervention A vs. intervention B) with a continuous outcome. Such trials often 

report the mean response (e.g., mean quality of life score) in the two 

intervention groups, mA and mB, the standard deviations of the two 



User Manual for TSA 
Copenhagen Trial Unit 2011 
 

 - 14 - 
 

intervention group mean responses, sdA and sdB, and the total number of 

participants in the two intervention groups, nA and nB. When the mean 

response is measured on the same scale for all trials, comparative 

effectiveness is measured with the mean difference (MD), which is given by 

mA - mB. The standard error of the mean difference is given by 

 
2 2

( ) A B

A B

sd sdSE MD
n n

= −  

 

When the mean response is not measured on the same scale, mean 

responses can be standardised to the same scale, allowing for pooling across 

trials.11 The conventional approach is to divide the mean response in each 

trial by its estimated standard deviation, thus providing an estimate of effect 

measured in standard deviation units. Mean differences divided by their 

standard deviation are referred to as standardised mean differences (SMD).13 

 

The TSA program does not facilitate meta-analysis of SMDs. Adjusted 
significance testing for SMD meta-analysis would require information 
size calculation be calculated on the basis of expected mean differences 
reported in standard deviation units. This effect measure does not 
resonate well with most clinicians and is therefore prone to produce 
unrealistic information size requirements.  

2.1.2. General fixed-effect model and random-effects model setup 

Assume we have k independent trials. Let Yi be the observed intervention 

effect in the i-th trial. For dichotomous data meta-analysis, Yi will either be the 

estimated risk difference, the log relative risk, the log odds ratio, or the log of 

Peto’s odds ratio for the i-th trial. For continuous data meta-analysis, Yi will be 

the estimated mean difference for the i-th trial. Let µi be the true effect of the i-

th trial and the let µ be the true underlying intervention effect (for the entire 

meta-analysis population). Let σi
2 denote the variance (sampling error) of the 

observed intervention effect in the i-th trial. 
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In the fixed-effect model, the characteristics of the included trials (patient 

inclusion and exclusion criteria, administered variants of the intervention, 

study design, methodological quality, length of follow-up, etc.) are assumed to 

be similar.13 This is formulated mathematically as µ1 = µ2  = …= µk = µ. The 

observed intervention effects of the individual trials are then assumed to 

satisfy the distributional relationship Yi ~ N(µ, σi
2). The weight of a trial, wi, is 

defined as the reciprocal of the trial variance, and hence, the trial weights, in a 

fixed-effect model, become wi = σi
 -2. The pooled intervention effect, µ̂ , is 

obtained as a weighted average of the observed intervention effects of the 

individual trials 

 

ˆ i i

i

wY
w

µ = ∑
∑  

and has variance 

1ˆ( )
i

Var
w

µ =
∑  

 

In the random-effects model, the intervention effects are assumed to vary 

across trials, but with an underlying true effect, µ. Letting τ2 denote the 

between-trial variance, the random-effects model is defined as follows 

 

    Yi = µi + εi ,   εi ~ N(0, σi
2) 

      

    µi = µ + Ei ,   Ei ~ N(0, τ2)   

 

Where εi is the residual (sampling) error for trial i, and Ei is the difference 

between the ‘true’ overall effect and the ‘true’ underlying trial effect.  

Collapsing the hierarchical structure in the above equations, Yi can be 

assumed to satisfy the distributional relationship Yi ~ N(µ, σi
2 + τ2 ). Again, the 

trial weights are defined as the reciprocal of the variance, and so the trial 

weights in a random-effects model become wi* = (σi
2 + τ2)-1. The meta-

analysed intervention effect, µ̂ , is obtained as a weighted average of the 

observed intervention effects of the individual trials. 
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*

*ˆ i i

i

w Y
w

µ = ∑
∑  

and has variance 

*

1ˆ( )
i

Var
w

µ =
∑  

 

Statistical significance testing is performed with the Wald-type test statistic, 

which is equal to the meta-analysed intervention effect (log scale for relative 

risks and odds ratios) divided by its standard error: 

 

ˆ
ˆ( )

Z
Var

µ
µ

=
 

 

This test statistic is typically referred to as the Z-statistic or the Z-value. Under 

the assumption that the two investigated interventions do not differ the Z-

value will approximately follow a standard normal distribution (a normal 

distribution with mean 0 and standard deviation 1). This assumption is also 

referred to as the null hypothesis and is denoted H0. The corresponding two-

sided P-value can be obtained using the following formula: 

 

( )( )2 1 | |P Z= ⋅ − Φ
 

 

where |Z| denotes the absolute value of the Z-value and Φ denotes the 

cumulative standard normal probability distribution function.13 The P-value is 

the probability of observing a Z-value at least as ‘extreme’ as the one 

observed due to the play of chance. The smaller the P-value, the smaller is 

the likelihood that the difference observed between two intervention groups is 

simply a chance finding, and thus, the larger is the likelihood that the 

observed difference was caused by some underlying ‘true’ treatment effect.  
  
2.1.3. Approaches to random-effects model meta-analysis 

As explained above, the random-effects model attempts to include a 

quantification of the variation across trials.13 The common approach is to 
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estimate the between-trial variance, τ2, with some between-trial variance 

estimator.13 

 

The DerSimonian-Laird method 

The between-trial variance estimator which has been used most commonly in 

meta-analytic practice (and is the only option in The Cochrane Collaboration’s 

Review Manager software) is the estimator proposed by DerSimonian and 

Laird (DL).13;27;32 The DL estimator takes the form 

 

τDL
2 = max(0, (Q – k + 1) / (S1 – (S2 / S1))) 

 

Where Q is the Cochrane homogeneity test statistic given by Q = Σ wi (Yi - 

µ̂ )2, where Sr =Σ wi
r, for r = 1,2, and where k is the number of trials included 

in the meta-analysis.13;32 

 

Because the DL estimator is prone to underestimate the between-trial 

variance,33-40 we have included two alternative random-effects model 

approaches – the Sidik and Jonkman (SJ) and the Biggerstaff and Tweedie 

(BT) methods - in the TSA software.33;34;41  

 

The Sidik-Jonkman (SJ) method 

The SJ random-effects model uses a simple (non-iterative) estimator of the 

between-trial variance based on a re-parametrisation of the total variance of 

the observed intervention effect estimates Yi.33;34 It is given by the expression: 

 

τSJ
2 = Σ vi (Yi - µ0)2/ (k-1) 

 

where vi = ri + 1, ri = σi
2/τ0

2, and τ0
2 is an initial estimate of the between-trial 

variance, which can be defined, for example, as 

 

τ0
2 = Σ (Yi - µuw)2/ k 

 

µuw being the unweighted mean of the observed trial effect estimates, and µ0 

being the weighted random-effects estimate using τ0
2 as the estimate for the 
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between-trial variance. Simulation studies have demonstrated that the SJ 

estimator provides less downward-biased estimates of the between-trial 

variance than the DL estimator.34;37 That is, the SJ method is less likely to 

under-estimate the heterogeneity between trials. This is particularly the case 

for meta-analysis data that incur moderate or substantial heterogeneity. 

Confidence intervals based on the SJ estimator have coverage close to the 

desired level (e.g., 95% confidence intervals will contain the true effect in 

approximately 95% of all meta-analyses).34;37 In contrast, the commonly 

reported coverage of confidence intervals based on the DL estimator is often 

below the desired level.33;35-38 For example, many simulation studies that have 

investigated the coverage of DL-based 95% confidence intervals have found 

an actual coverage of 80%-92%.34;37 The size of these confidence intervals is 

equivalent to a false positive proportion of 8% to 20%, which is clearly larger 

than the conventionally accepted 5%.  

 

The Biggerstaff-Tweedie method 

Because most meta-analyses contain only a limited number of trials, between-

trial variance estimation is often subject to random error.41 Incorporating the 

uncertainty of estimating the between-trial variance in the random-effects 

model may therefore be warranted. Biggerstaff and Tweedie (BT) proposed a 

method to achieve such incorporation.41 They derived an approximate 

probability distribution, fDL, for the DL estimate of τ2. Defining the trial weights 

as wi(t)= (σi
2 + t)-1, where t is a variable that can assume all possible values 

for τ2, they utilised fDL and obtained trials weights that take the uncertainty of 

estimating τ2 into account. This generally creates a weighting scheme which, 

relative to the DL approach, attributes more weight to larger trials and less 

weight to smaller trials. Biggerstaff and Tweedie also proposed an adjusted 

formula for the variance of the meta-analysed intervention effect, thus 

facilitating adjusted confidence intervals (see appendix, section 6.2.1).  

 

Which random-effects approach may be best? 

The SJ and BT approaches both offer relative merits over the DL approach. 

However, these methods have their own limitations and are unlikely to be 

superior in all cases. The SJ estimator may overestimate the between-trial 
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variance in meta-analyses with mild heterogeneity, thus producing artificially 

wide confidence intervals.34;37 The BT approach has been shown to provide 

similar coverage as the confidence intervals from the DL approach in meta-

analyses with small, unbiased trials.35 However, when the included trials differ 

in size and some small trials are biased, the BT approach will put 

appropriately high weights on the larger trials while still accounting for 

heterogeneity. This point is important because a common critique of the DL 

random-effects model is that small trials are often assigned artificially large 

weights in heterogeneous meta-analyses. A commonly applied, and 

unsatisfactory, solution is to use the fixed-effect model instead. By doing so, 

the pooled estimate may incur less bias from the inappropriate weighting 

scheme, but the confidence intervals will also be artificially narrow because 

they do not account for heterogeneity. The BT approach mitigates the bias 

incurred from inappropriate random-effects model weighting while still 

accounting for heterogeneity. 

 

The choice of random-effects model should involve a sensitivity analysis 

comparing each approach. If the DL, SJ, and BT approaches all yield similar 

statistical inferences (i.e., point estimates and confidence intervals), it would 

be reasonable to use the DL approach and have confidence that the 

estimation of between trial variance is reliable.  

 

If two (or all) of the three approaches differ, one should carry out meta-

analysis with both (or all) approaches and consider the results according to 

the underlying properties of each approach. For example, if the DL and SJ 

approaches produce different results, two possible explanations should be 

considered: 1) the meta-analysis is subject to moderate or substantial 

heterogeneity and the DL estimator therefore underestimates the between-

trial variance and yields artificially narrow confidence interval; and 2) the 

meta-analysis is subject to mild heterogeneity and the SJ estimator therefore 

overestimates the between-trial variance and yields artificially wide confidence 

intervals. In this situation, one should then carry out meta-analyses with the 

two approaches and consider the implications of each of the two scenarios 

being ‘true’. 
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2.1.4. Methods for handling zero-event trials 

In dichotomous trials, the outcome of interest may be rare. For example, the 

occurrence of heart disease from the use of hormone replacement therapy is 

very low.42 Sometimes there are zero outcome events recorded in a group. In 

this situation, ratio effect measures (RR and OR) will not give meaningful 

estimates of the intervention effect.42 One solution for this problem is to add 

some constant(s) to the number of events and non-events in both intervention 

groups.42 This approach is known as continuity correction.42 Several 

approaches to continuity correction have been proposed in the meta-analytic 

literature. 

 

Constant continuity correction 

The constant continuity correction is a simple method and is the most 

commonly used in the meta-analytic literature.42 The method involves adding 

a continuity correction factor (a constant) to the number of events and non-

events in each intervention group.  

 

    
Group Events No Events Total 

Intervention 0 20 20 
Control 5 20 25 

Table 1 Example of a zero-event trial 

 

Consider the zero-event trial example in table 1. If, for example, the constant 

continuity correction method uses a correction factor of 0.5, the number of 

events in the intervention group becomes 0+0.5=0.5, the number of non-

events in the intervention group becomes 20+0.5=20.5, the number of events 

in the control group becomes 5+0.5=5.5, and the number of non-events in the 

control group becomes 20+0.5=20.5. Because the total number of patients is 

the number of events plus the number of non-events, the total number of 

patients (after constant continuity correction with the constant 0.5) becomes 

20.5+0.5=21 in the intervention group and 20.5+5.5=26 in the control group.  
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If, for example, a correction factor of 0.1 is used, the number of events and 

total number of patients (after continuity correction) would then be 0.1 and 

20.2 in the intervention group and 5.1 and 25.2 in control group. 

 

Review Manager Version 5 uses constant continuity correction with the 

constant 0.5.13;27 Simulation studies have demonstrated problems with the 

use of this constant; it yields inaccurate estimates when the randomisation 

ratio is not 1:1, and it produces confidence intervals that are too narrow.42  

 

Reciprocal of opposite intervention group continuity correction 

Another potential continuity correction method is to add the reciprocal of the 

total number of patients in the opposite intervention group to the number of 

events and non-events.42 This type of continuity correction is also commonly 

referred to as ‘treatment arm’ continuity correction.42 In the example in table 1, 

the correction factor for the intervention group would be 1/25=0.04, and the 

correction factor for the control group would be 1/20=0.05. This continuity 

correction method yields 0.04 events and 20.04 patients in the intervention 

group and 5.05 events and 25.05 patients in the control group.  

 

Empirical continuity correction 

Both the constant continuity correction method and the ‘treatment arm’ 

continuity correction method pull the intervention effect estimates towards ‘the 

null effect’ (i.e., towards 0 for risk differences and toward 1 for ratio 

measures).42 An alternative continuity correction is the empirical continuity 

correction which pulls the intervention effect estimate towards the meta-

analysed effect.42 For example, let θ̂  be the odds ratio of the meta-analysis 

that does not include the zero-event trials, and let R be the randomisation 

ratio in the trial that needs continuity correction. The continuity correction 

factor for the intervention group, CFI, and the continuity correction for the 

control group, CFC, can be approximated with the following formulas: 
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under the restriction that the two continuity corrections add up to some 

constant C.42 

 

2.2. Adjusted significance testing and futility testing in cumulative meta-
analysis 
Adjusted significance testing in cumulative meta-analysis has two goals: it 

must measure and account for the strength of the available evidence and it 

must control the risk of statistical errors (type I error and type II error) when 

repeated significance testing on accumulating data occurs.  

 

Quantifying the strength of the available evidence necessitates the definition 

of a ‘goal post’.1;2;4;6;11;12;23 In the TSA programme (TSA), the strength of 

available evidence is measured, and considered, by calculating a required 

information size. This information size is analogous to the required sample 

size in a single randomised clinical trial.1;2;4;6;11;12;23  

 

Controlling the risk of type I error involves an alteration in the way we 

measure statistical significance. If a meta-analysis is subjected to significance 

testing before it has surpassed its required information size, the threshold for 

statistical significance can be adjusted to account for the elevated risk of 

random error.1;2;4;6;11;12;23 Alternatively, the test statistic itself can be penalised 

in congruence with the strength of the available evidence. TSA provides the 

option to use both of these approaches to control the type 1 error. 
 

Controlling the risk of type II error before a meta-analysis surpasses its 

required information size involves setting up thresholds (rules) for when the 

experimental intervention can be deemed non-superior (and/or non-inferior) to 

the control intervention.   
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The methods for adjusting significance thresholds (i.e., controlling the type I 

error) build on methods introduced by Armitage and Pocock; these methods 

are referred to as ‘group sequential analysis’.18;43;44 In Armitage’s and 

Pocock’s group sequential analysis, it is necessary to know the approximate 

number of patients randomised between each interim look at the data.30 In 

randomised clinical trials, interim looks on accumulating data are typically pre-

planned and it is therefore possible to define known group sizes between 

each interim look.30 In meta-analysis, an interim look at the data occurs when 

there is an update, adding data from new clinical trials. Updates in meta-

analysis occur at an arbitrary pace, are seldom regular, and the number of 

added patients is varied and unpredictable. The methods proposed by 

Armitage and Pocock are therefore inapplicable for meta-analysis.  

 

Lan and DeMets extended the methodology proposed by Armitage and 

Pocock, allowing for flexible, unplanned interim analyses. Lan and DeMets 

intended this methodology for repeated significance testing in a single 

randomised trial.16;17;30 Because of the flexibility of the timing of interim looks, 

this methodology is applicable to meta-analysis. The Lan and DeMets 

approach is therefore the methodology used in TSA; it involves construction of 

monitoring boundaries that facilitate the definition of sensible thresholds for 

‘statistical significance’ in meta-analysis.  

 

Similarly, futility boundaries can be constructed, facilitating the definition of 

sensible thresholds for ‘futility’ in meta-analysis.30 Sections 2.2.1. to 2.2.5. 

provide a description of the underlying methodology and theoretical 

considerations for these methods. 

 

The methods for controlling for type II error are an extension of the Lan-

DeMets methodology that allows for non-superiority and non-inferiority testing. 

That is, instead of constructing adjusted thresholds for statistical significance, 

the method constructs adjusted thresholds for non-superiority and non-

inferiority (or no difference). Together, adjusted non-superiority and non-

inferiority boundaries make up what is referred to as futility boundaries or 
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inner wedge boundaries. Sections 2.2.7. provides a description of the 

underlying methodology and theoretical considerations for this method. 

 

As previously described, an alternative approach to the alteration of 

thresholds is to penalise the test statistic itself. The method for penalising the 

employed statistical tests is a relatively new approach, which builds on 

theorems from advanced probability theory. In particular, the technique uses 

the theorem known as ‘the law of the iterated logarithm’.7;8 Sections 2.2.2 and 

2.2.6 provide a description of the underlying methodology and theoretical 

considerations for this method. 

 

2.2.1. The information size required for a conclusive meta-analysis 
Determining the required information size (e.g., the required number of 

patients) for a conclusive and reliable meta-analysis is a prerequisite for 

constructing adjusted thresholds for ‘statistical significance’ using 

TSA.1;2;4;6;11;12 The levels of the thresholds must be constructed in accordance 

with the strength of evidence.1;2;4;6;11;12 The statistical methodology underlying 

TSA is based on the assumption that data will accumulate until the required 

information size is surpassed.30 For further explanation on this assumption, 

please refer to earlier methodological papers on this issue.16;17;30;43;44  

 

Conventional information size considerations 

It has been argued that the sample size required for a conclusive and reliable 

meta-analysis should be at least as large as the sample size required to 

detect a realistic intervention effect in a large, reasonably powered 

trial.1;2;4;6;11;12  In line with this construct, the minimum required information 

size (number of patients) in a meta-analysis can be derived using the well-

known formula: 

 

   ISPatients = 2 ⋅ (Z1-α/2 + Z1-β)2 ⋅ 2 ⋅ σ2 / δ2    (1) 

 

where α is the desired maximum risk of obtaining a false positive result (type I 

error) and β is the desired maximum risk of obtaining a false negative result 

(type II error), and where Z1-α/2 and Z1-β are the (1- α/2) and (1- β) standard 
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normal distribution quantiles.1;2;4;6;11;12 Note that the use of α / 2 instead of α 

means that the information size is constructed assuming two-sided statistical 

testing. For binary data, δ = PC - PE denotes an a priori estimate for a realistic 

or minimally important intervention effect (PC and PE being the proportion with 

an outcome in the control group and the in the intervention group, 

respectively), where σ2 = P* (1 - P*), which is the associated variance, and 

assuming P* = (PC + PE) / 2 (i.e., that the intervention and control groups are 

equal in size). For continuous data, δ denotes an a priori estimate of the 

difference between means in the two intervention groups, and σ2 denotes the 

associated variance.  

 

Alternatives to accumulating number of patients 

In meta-analysis of binary data, the information and precision in a meta-

analysis predominantly depends on the number of events or outcomes. One 

can therefore argue that in the context of meta-analysis information size 

considerations, the required number of events is a more appropriate measure 

than the required number of patients. Under the assumption that an equal 

number of patients are randomised to the two investigated interventions in all 

trials, the required number of events may be determined as follows: 

 

ISEvents = PC*IS/2 + PE*IS/2 

 

where ISEvents is the required number of events for a conclusive and reliable 

meta- analysis, and PC and PE are as defined in the previous paragraph. 

 

The statistical information (Fischer information) is a statistical measure of the 

information contained in a data set (given some assumed statistical model).45 

In standard meta-analysis comparing two interventions, the statistical 

information is simply the reciprocal of the pooled variance.46 In a meta-

analysis, the statistical information is a theoretically advantageous measure 

because it combines three factors in one single measure: number of patients, 

number of events, and number of trials. This measure provides a simple 

approach to information size considerations in a meta-analysis. The meta-
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analytical data are considered as analogous to accumulating data in a single 

trial and the required statistical information is given by: 

 

ISStatistical = (Z1-α/2 + Z1-β)2/δ2 

 

Where ISStatistical is the actual attained statistical information in the meta-

analysis, α is the desired maximum risk of type I error, Z1-α/2  is the standard 

normal (1- α/2) percentile, β is the desired maximum risk of type II error, Z1-β  

is the standard normal (1- β) percentile, and δ is some pre-specified 

(minimally relevant) intervention effect.30;45 

 

The heterogeneity-adjustment factor 

Trials included in a meta-analysis often include patients from a wide span of 

population groups, use different regimens of an intervention, use different 

study designs, and vary in methodological quality (i.e., risk of bias or 

‘systematic error’). For all of these reasons, it is natural to expect an additional 

degree of variation in meta-analysis data compared to data from a single 

trial.13;47 Such additional variation is referred to as heterogeneity (or between-

trial variation).13;47 Because increased variation can decrease the precision of 

results, information size considerations must incorporate all sources of 

variation in a meta-analysis, including heterogeneity.4;6;11;12 One approach for 

incorporating heterogeneity in information size considerations is to multiply 

the required information size in a meta-analysis by some heterogeneity-

adjustment factor.6;23 Recently, a similar heterogeneity-adjustment factor has 

been proposed for estimating the sample size in a single clinical trial.48 

 

The heterogeneity adjustment factor is conceptualised through the underlying 

assumptions that we make for our meta-analysis model. In the fixed-effect 

model, it is assumed that all included trials can be viewed as replicates of the 

same trial (with respect to design and conduct). Thus, the required information 

size for a fixed-effect meta-analysis to be conclusive may effectively be 

calculated in the same way as the required sample size for a single clinical 

trial. In the random-effects model, we assume that the included trials come 

from a distribution of possible trials (with respect to design and conduct). By 
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definition, the variance in a random-effects model is always greater than that 

in a fixed-effect model. A heterogeneity-adjustment factor must therefore 

account for the increase in variation that a meta-analysis incurs from going 

from the fixed-effect assumption to the random-effects assumption. An 

accurate adjustment can be achieved by making the heterogeneity-

adjustment factor equal to the ratio of the total variance in a random-effects 

model meta-analysis and the total variance in a fixed-effect model meta-

analysis.6;23 The heterogeneity-adjustment factor is therefore always equal to 

or greater than 1. Letting ISFixed denote the required information size for a 

fixed-effect meta-analysis given by equation (1), νR denote the total variance 

in the random-effects model meta-analysis, and νF denote the total variance in 

the fixed-effect model meta-analysis, the heterogeneity-adjusted information 

size can be derived using the following formula: 

 

R
Random Fixed

F

IS ISν
ν

=
 

 

Given that the anticipated intervention effects in the fixed- (δF) and random-

effects (δR) models are approximately equal (that is, given δR = δF), it can be 

shown mathematically that in the special case where all trials in a meta-

analysis are given the same weights, the heterogeneity-adjustment factor (AF) 

takes the form 

2

1
1

R

F

AF
I

ν
ν

= =
−  

 

Where I2 is the inconsistency factor commonly used to measure heterogeneity 

in a meta-analysis.47  

 

It is important to remember that in any case where the trial weights are not 

equal, using I2 will lead to an underestimation of the adjustment factor, and 

thus, an underestimation of the required information size.23 In this situation, 

we can define a measure of diversity (D2) as the quantity compelled to satisfy 

the equation: 
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where wi denotes the trial weights in the fixed-effect model and wi* denotes 

the trial weights in the random-effects model. Solving the equation with 

respect to D2, we get: 
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where τ2 denotes the between-trial variance. One advantageous property of 

the diversity measure, D2, is that the above derivations are generalisable to 

any given meta-analysis model. Thus, if we wish to meta-analyse some trials 

using an alternative random-effects model with total variance vR, the diversity 

measure and the corresponding adjustment factor simply take the expression: 

 

2 R F R

R F

D and AFν ν ν
ν ν
−

= =

 
 

 

Estimates of variability, and in particular between-trial variability, may be 

subject to both random error and bias.41;47;49;50 For this reason, in some 

situations, using D2 or I2 based on the available data may be inappropriate. In 

meta-analyses that only include a limited number of trials (e.g., less than 10 

trials), estimates of heterogeneity and the between-trial variance may be just 

as unreliable as intervention effect estimates from small randomised clinical 

trials (e.g., trials including less than 100 patients). When a meta-analysis is 

subject to time-lag bias (i.e., when trials, mostly with positive findings, have 

been published), the between-trial variance will typically be underestimated. 

This underestimation occurs because the ‘early’ set of included trials are likely 

to have yielded similar (‘positive’) intervention effect estimates.50 Later meta-
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analyses (updates) are likely to include more trials with neutral or even 

negative findings, in which cases the estimates of heterogeneity will be larger.  

 

For meta-analyses with an expected small number of trials, we suggest that 

an a priori estimate about the anticipated degree of heterogeneity is made. If 

we let H denote a conceptual estimate of D2, we can use the following formula 

in an a priori calculation: 

 

1
1

AF
H

=
−  

 

For example, if it is expected that a given meta-analysis will contain a mild 

degree of heterogeneity – based on what we know about the clinical topic, 

observed differences between the included trials, anticipated differences 

between current and future, and the scope of the review – one may choose to 

define H as 25%. In this case, the AF would be estimated at 1.33. If a 

moderate degree of heterogeneity is expected, one may choose to define H 

as 50%, and AF would then be estimated at 2.00. If major heterogeneity is 

expected, then H may become 75% and AF would be estimated to 4.00. 

 

Because the expected degree of heterogeneity can be difficult to estimate 

when a meta-analysis only includes a few trials, we recommend that users of 

TSA conduct sensitivity analyses for this variable. For example, one could 

conceive minimum and maximum realistic or acceptable degrees of 

heterogeneity for a given meta-analysis. As an example, one could speculate 

that the minimum plausible degree of statistical heterogeneity would be 20%. 

One could also decide that if the statistical heterogeneity exceeds 60%, then 

subgroup effect measures, rather than estimating an overall pooled estimated 

treatment effect, would be more appropriate. In this case, the over-all meta-

analysis would not be performed. In this example, one could use the average 

of the two, (60%+20%)/2=40%, for the primary information size calculation, 

but acknowledge that the required information size may be as large as the 

one based on 60% heterogeneity adjustment or as low as the one based on 

20% heterogeneity adjustment. As another example, one could conceive and 
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construct a number of ‘best’ and ‘worst’ case scenarios (whatever those might 

be) by adding ‘imaginary’ future trials to the current meta-analysis. This 

approach would allow one to assess the robustness and reliability of the D2 

estimate and construct a spectrum of realistic or acceptable degrees of 

heterogeneity which could readily be utilized for sensitivity analysis. 

 

Estimating the control group event proportion and an anticipated intervention 

effect  

The estimation of the control group event proportion and an anticipated 

intervention effect are important determinants of the calculated required 

information size when doing TSA. Every effort should therefore be made to 

make these estimates as accurate and realistic as possible. 

 

For binary data, control group event proportion can be estimated by using 

clinical experience and evidence from related areas. An a priori estimate of a 

realistic intervention effect is usually expressed as a relative risk reduction 

(RRR). When there is limited evidence available about the intervention under 

investigation, one can estimate a clinically relevant intervention effect by using 

clinical experience and evidence from related areas. An example can be 

found in a paper by Pogue and Yusuf, in which the control group event 

proportion, PC, and an a priori RRR were based on experiences from related 

areas in cardiology.1;2 Pogue and Yusuf applied information size 

considerations to two well-known meta-analyses in cardiology: ‘Intravenous 

Streptokinase in Acute Myocardial Infarction’ and ‘Intravenous Magnesium in 

Acute Myocardial Infarction’. They hypothesized that for most major vascular 

outcomes, such as death, it may be realistic to expect 10% mortality in the 

control group. Pogue and Yusuf further considered an example of a 

theoretical intervention for preventing mortality post myocardial infarction. 

They noted that truly effective treatments for reducing the risk of major 

cardiovascular events, such as death, had previously yielded RRRs of 10%, 

15%, or - at best - 20%. 

  

For any given clinical question, a decision needs to be made about what 

values are appropriate for the PC and RRR. The anticipated proportion of 
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events in the (experimental) intervention group, PE, can then be obtained 

using the formula PE = PC (1- RRR). Subsequently, the hypothesized PE and 

PC may be entered into the formula for the required information size.  

 

Drawing inference about anticipated realistic intervention effects from one 

intervention area to another may be problematic because an a priori estimate 

may often represent poor approximations of the ‘truth’. The clinical trial 

literature abounds with examples of sample size calculations based on overly 

optimistic anticipated intervention effects. There is no reason why this should 

be any different for meta-analysis information size calculations.  

 

If randomised trials have already investigated the effect of an intervention, 

then a collection of such estimates may be used to better quantify an 

anticipated intervention effect. However, not all trials provide valid estimates, 

and caution should be taken to ensure the validity of intervention effects 

estimates utilised for estimating some anticipated intervention effect.  

 

Many trials yield overestimates of investigated intervention effects due to 

selective outcome reporting bias and risks of bias (i.e., systematic errors due 

to inadequate generation of the allocation sequence, inadequate allocation 

concealment, inadequate blinding, loss to follow-up, or other 

mechanisms).13;51-58 Such trials may be classified as trials with high risk of 

bias.13 Conversely, trials that are likely to yield valid intervention effect 

estimates may be classified as trials with low risk of bias.13 If evidence on the 

effect of the investigated intervention is available from a number of trials with 

low risk of bias, it would be appropriate to base an a priori anticipated 

intervention effect on a meta-analysis of these trials.6;11;12 However, meta-

analytic situations that call for information size calculations will often occur 

when the evidence is sparse. Even if a number of trials with low risk of bias 

are available for approximating an anticipated realistic intervention effect, the 

pooled estimate from these trials may still be subject to considerable random 

error, time-lag bias, and publication bias. An a priori anticipated intervention 

effect based on the pooled effect estimate from a meta-analysis of trials with 

low risk of bias is therefore only reliable to the extent that this meta-analysis 
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can be considered free of large random errors. Furthermore, it is only valid to 

the extent it can be considered free of time-lag bias and publication bias.  

 

It is not possible to recommend one technique for defining intervention effects 

for information size calculations. Rather, information size considerations 

should be based on ranges of plausible control group event proportions, 

intervention effects, and suitable type I and type II errors. Adequate sample 

size considerations for a single clinical trial do not just amount to one single 

number. Instead a range of plausible sample sizes are produced from a range 

plausible treatment effects, control group event rates, and type I and type II 

errors, thus providing a reasonable ballpark interval in which the number of 

patients need to lie in order to yield a conclusive clinical trial. From produced 

range of sample sizes, one would select one primary and let the remaining act 

as sensitivity sample size (power) calculations. We recommend that 

information size considerations for meta-analysis follow the same construct. 

Low-bias risk PC and RRR estimates could readily be combined with a range 

of a priori ‘realistic’ best and worst case intervention effects, thus providing a 

ballpark interval in which the meta-analysis information needs to lie in order to 

yield conclusive meta-analytic inferences. 

 

Limitations  

The required information size for a meta-analysis (whether determined as the 

required number of patients, events, or statistical information) comes with a 

number of limitations. In randomised clinical trials, it is reasonable to assume 

the distribution of prognostic factors in the randomised patients resembles 

that of the target population. In systematic reviews with meta-analyses, trials 

are typically included on the basis of a few inclusion criteria that are decided 

upon in the protocol stage of the systematic review. Because inclusion (and 

exclusion) criteria in clinical trials are almost never identical and because trials 

typically vary in sample sizes, meta-analysts and systematic review authors 

are unlikely to have control over the distribution of prognostic factors. Even 

when some systematic review inclusion criteria are altered for an update, 

authors will not be able to accurately predict the distribution of prognostic 

factors across newly published trials. Baseline prognostic factors can have a 
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considerable impact on incidence rates in a control group. In this situation, it 

may be appropriate to make an a priori attempt at quantifying the difference 

between the baseline incidence in the meta-analysis population and that in 

the target population, and perform post hoc sensitivity analyses if necessary. 

 

Minimally important comparative intervention effects (also known as minimally 

important differences) may not always be similar across the included trials. 

For example, if the investigated patient populations across trials experience 

different risks of adverse events, the minimally important difference may also 

differ across trials. This variation is the result of clinical intent. For any medical 

intervention, the chance of benefit needs to outweigh any increased risk of 

harm. A population with greater risk of harm will need a greater chance of 

benefit to make a treatment worthwhile. When minimally important differences 

vary across trials, information size considerations may still be sensible. 

However, it is important to remember that inference drawn about the 

conclusiveness of a meta-analysis can only be generalized to the patient 

population for which the a priori minimally important difference apply. 

 

When the required information size is to be defined by the required number of 

patients or events, the problem of unpredictable heterogeneity may be dealt 

with by anticipating some appropriate maximum degree of heterogeneity and 

adjusting the required information size accordingly.4 The apparent limitation of 

this approach is that the degree of expected heterogeneity is both difficult to 

guess and estimate when only a few clinical trials are available. Although we 

recommend sensitivity analysis on the degree of heterogeneity adjustment, 

such analyses may still be inappropriate if the anticipated degree(s) of 

heterogeneity does not reflect the actual degree of heterogeneity which the 

meta-analyses will incur as more trials are accumulated.  

 

When the required information size is defined by the required statistical 

information, the formula for the required information size does not require an 

estimate of the anticipated degree of heterogeneity. Rather, the actual 

information in the meta-analysis (the estimated statistical information) directly 

incorporates the heterogeneity through the estimated between-trial variation. 
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This, however, presents a limitation in that the accumulated statistical 

information is only reliable to the extent the estimate of the between-trial 

variance is reliable. Possible solutions to this problem involve the use of more 

complex methodology to adjust the uncertainty associated with estimating the 

between-trial variation. One option is to use the random-effects approach by 

Biggerstaff-Tweedie which incorporates the uncertainty associated with 

estimating between-trial variance when using the conventional DerSimonian-

Laird estimator (see section 2.1.3).41 Another option is to apply Bayesian 

meta-analysis, where a prior distribution is elicited for the between-trial 

variance parameter.   

 

2.2.2. The cumulative test statistic (Z-curve) 
As mentioned in section 2.1.2., meta-analysis test for ‘statistical significance’ 

uses a Wald-type test statistic. This statistic is given by the log of the pooled 

intervention effect divided by its standard error,13 and is commonly referred to 

as the Z-statistic or the Z-value. Under the assumption that the two 

investigated interventions do not differ (the null hypothesis,) the Z-value will 

approximately follow a standard normal distribution (a normal distribution with 

mean 0 and standard deviation 1). The larger the absolute value of an 

observed Z-value, the stronger is the statistical evidence that the two 

investigated interventions do differ. If the absolute observed Z-value is 

substantially larger than 0, it is usual to conclude that the observed difference 

between the effect of the two interventions cannot solely be explained by the 

play of chance. In this situation, the difference between the two interventions 

is described as ‘statistically significant’. By definition, a P-value is the 

probability of finding the observed difference, or one more extreme, if the null 

hypothesis was true. In practice, the P-value is the value that we use to 

assess statistical significance. The P-value is obtained from the Z-value (see 

section 2.1.2 for the mathematical details); these two measurements 

represent two different ways of communicating the same information, and 

they are inter-changeable. For example, a two-sided P-value smaller than 5% 

is the same thing as an absolute Z value larger than 1.96, and vice versa.  
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Every time a meta-analysis is updated, a new Z-value is calculated. A series 

of consecutive Z-values therefore emanates from a series of meta-analysis 

updates. To inspect the evolution of significance tests, the series of Z-values 

can be plotted with respect to the accumulated information (accumulated 

patients, events, or statistical information), thus producing a curve which is 

commonly referred to as the Z-curve.1;2;4;6;11;12   

 

2.2.3. Problems with significance testing in meta-analysis 

As mentioned in chapter 1, conventional significance testing in meta-analysis 

fails to relate observed test statistics and P-values to the strength of the 

available evidence and to the number of repeated significance tests.1-4;6;11;12 

The consequence of this omission is an increased risk of obtaining a false 

positive meta-analytic result. This section provides basic to intermediate 

statistical and conceptual descriptions of significance testing in meta-analysis 

and the problems that result from failing to incorporate the strength of 

evidence and the number of repeated significance tests into the process.  

 

General criteria for significance testing 

Conventional significance testing operates with a maximum risk of type I error, 

α, which also functions as the threshold for when P-values are considered 

evidence of statistical significance. P-values and Z-values are inter-

changeable in the assessment of statistical significant. As mentioned above, 

for every P-value threshold, α, there exists a corresponding Z-value threshold, 

Zα. For example, if we desire a maximum two-sided type I error risk of 5% we 

should only consider absolute Z-values larger than 1.96 as evidence of 

statistical significance. But if we desire a maximum two-sided type I error of 

1% we should only consider absolute Z-values larger than 2.58 as evidence of 

statistical significance. 

 

Let Pr(X|Y) denote the probability that the event X occurs given that event Y is 

true (or has occurred), let |Z| denote the absolute value of Z. In general, we 

face the challenge of appropriately determining a threshold, c, that will make 

the following equations true 
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Pr(|Z|≥c | H0 is true) ≤ α          (2)
  

 

Pr(|Z|=c | H0 is true) = α          (3)
  

For the remaining theoretical sections on repeated significance testing 

(sections 2.2.2 to 2.2.5), we will assume that all statistical tests are two-sided. 

We will also assume that all test statistic values, Z, are absolute values. We 

assume the latter because the involved algebra becomes much simpler by 

doing so. For example, in defining two-sided thresholds for a non-absolute 

test statistic, one would need to consider the probability that Pr(Z≤-c or Z≥c | 

... ) rather than Pr(|Z|≥c | ... ).  
 

Problems with repeated significance testing 

Conventional single significance tests can be considered reliable if ‘enough’ 

data has accumulated. In meta-analysis, a single significance test can be 

considered reliable once the required information size is surpassed.1-

4;6;11;12;20;59 If we perform a single test for statistical significance at or after a 

meta-analysis has surpassed its required information size, statistical 

significance testing simply entails determining an appropriate threshold, c, 

that will make equations (2) and (3) true. For example, for α=5% we would 

consider c=1.96 appropriate if the meta-analysis data had not previously been 

subjected to significance testing. 

  

When a cumulative meta-analysis is subjected to significance testing more 

than once (before surpassing its required information size), the situation 

becomes more complex. Consider the example where a meta-analysis is 

updated once and where the conventional 5% maximum type I error is used. 

In this situation, the first meta-analysis yields a Z-value, Z1, and the meta-

analysis update yields another, Z2. If the first meta-analysis yields a Z-value 

larger than 1.96, the two investigated interventions are declared significantly 

different. However, if the first meta-analysis is not significant (i.e., Z1<1.96), 

the two interventions can still be declared statistically significant if the meta-

analysis update yields a Z-value larger than 1.96 (i.e., if Z2≥1.96). By the laws 
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of basic probability theory, the probability that the two interventions will be 

declared statistically significant under the null hypothesis is: 

 

( )
( ) ( )

0 1 2

1 2 1

Pr(  ) Pr Z 1.96 or Z 1.96

= Pr Z 1.96 Pr Z 1.96  Z <1.96|
H rejected = ≥ ≥

≥ ⋅ ≥
 

 

It can be shown that this expression is always larger than the desired 5% (see 

appendix A.3.1). In general, repeated significance testing using single test 

thresholds will always lead to an exaggeration of the type I error, and the 

larger the number of (repeated) significance tests employed on accumulating 

data, the worse the exaggeration of the type I error becomes.30 For meta-

analysis data, simulation studies have demonstrated that repeated 

significance testing result in a type I error of 10% to 30% when the 

conventional α=5% threshold, 1.96, is used to test for statistical significance at 

every update.7;8;10;31  
 

2.2.4. The α-spending function and trial sequential monitoring 

boundaries 
One solution to the problem outlined in section 2.2.3. is to adjust the 

thresholds for the Z-values, allowing  the type I error risk to be restored to the 

desired maximum risk.1;2;6;17 In the two tests example, we would thus need to 

find two thresholds, c1 and c2, for which 

 

( )1 1 2 2Pr Z  or Z   c c α≥ ≥ ≤
 

 

is satisfied under the null hypothesis. This is equivalent to finding two 

maximum type I error risks, α1 and α2, that sum to α and where  

 

( )

( )

1 1 1

2 2 1 1 2

Pr Z

Pr Z   Z < |

c

c c

α

α

≥ ≤

≥ ≤
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under the null hypothesis. In the general situation where repeated significance 

testing is employed k times (i.e., where one initial meta-analysis and k-1 

updates are performed), we would need to find thresholds c1, …, ck for each 

of the k significance tests that will ensure 

 

( )1 1 2 2 kPr Z  or Z  or ... or Z   kc c c α≥ ≥ ≥ ≤
 

 

under the null hypothesis. This is equivalent to finding k maximum type I error 

risks, α1, …, αk, that sum to α and where 

 

( )
( )
( )

( )

1 1 1

2 2 1 1 2

3 3 1 1 2 2 3

k 1 1 k-1 1

Pr Z

Pr Z   Z < 

Pr Z   Z <  and Z  

Pr Z   Z <  and ... and Z  

|
|

|k k k

c

c c

c c c

c c c

α

α

α

α−

≥ ≤

≥ ≤

≥ < ≤

≥ < ≤

M

 

 

under the null hypothesis.  

 

The collation of thresholds for the Z-curve is referred to as monitoring 

boundaries, or group sequential monitoring boundaries (a series of 

boundaries applied to sequence of tests on cumulative groups of patients 

randomised in a clinical trial).17;30;44 In meta-analysis, such boundaries are 

applied to a sequence of trials, and we therefore refer to them as trial 

sequential monitoring boundaries.6 The combination of meta-analysis and trial 

sequential monitoring boundaries is referred to as trial sequential analysis.6  

 

Trial sequential monitoring boundaries require pre-specification of the k 

maximum type I error risks, α1, …, αk, as well as intensive numerical 

integration for their application.60 One simple method for assigning values for 

the α1, …, αk type I error risks is the α-spending method (or α-spending 

function).1;2;17;30 This method is implemented in the TSA program. The α-

spending function is a monotonically increasing function of time that can be 

used for appropriately assigning maximum type I error risks α1, …, αk at each 
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significance test according to the amount of information accumulated.16;17 The 

independent variable is defined by the information fraction (IF); this is 

calculated by dividing the accumulated information by the required information 

size (e.g., the accumulated number of patients divided by the required number 

of patients).6;15;17 The dependent variable (the function) is the cumulative type 

1 error; this gives the amount of error that should be considered the maximum 

when defining significance at the given IF. As IF increases – i.e., as the 

amount of accumulated information increases – the size of ‘acceptable’ type 1 

error also increases. The function provides a way to quantify the risk of 

random error allowed at any given IF, in order to ensure that the overall risk of 

random error – after the IS has been reached – stays below 5%. The 

monotonically increasing function corresponds to a monotonically decreasing 

threshold for statistical significance measured by the test statistic Z. 

 

The α-spending function is defined from 0 to 1 (0 being the point where 0 

patients have been randomised, and 1 being the point where the accumulated 

information equals the required information size).16;17 The α-spending function 

of 0 is always equal to 0: α(0)=0; at this point, no information has been 

accumulated. The α-spending function of 1 is always equal to α: α(1)=α; at 

this point, all of the required information has been accumulated and the total 

amount of alpha error is whatever was defined as total acceptable type 1 error 

overall (usually 5%). At any point between 0 and 1 (for the information fraction 

at the time of a significance test i (IFi)) the α-spending function is equal to the 

total maximum type I error risk that has arisen from the thresholds chosen for 

all significance tests until and including the i-th significance test. In other 

words, the α-spending function is equal to how much type 1 error has been 

‘spent’. In notation: α(IFi)=α1+ α2+… +αi, and thus  

 

( )
( )
( )

( )

1 1 1 1

2 2 1 1 2 2 1

3 3 1 1 2 2 3 3 2

k 1 1 k-1 1 1

Pr Z ( )

Pr Z   Z < ( ) ( )

Pr Z   Z <  and Z  ( ) ( )

Pr Z   Z <  and ... and Z  ( ) ( )

|
|

|k k k k k

c IF

c c IF IF

c c c IF IF

c c c IF IF

α α

α α α

α α α

α α α− −
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The actual α-spending function used can be any monotonically increasing 

function.16;17 One well-known example is α(t)=t⋅α.16;17;30 When all significance 

tests are performed at an equal distance (with respect to the information 

fraction scale), this α-spending function will yield equal thresholds for the Z-

values (i.e., c1=c2= …=ck). This adjustment was first proposed by Pocock. A 

more general α-spending approach is the power family α-spending function 

defined as α(t)=tρ⋅α.16;17;30 Power family α-spending functions, where ρ>1 and 

where all significance tests are performed at equal distance, will yield more 

conservative thresholds for early significance tests than for later significance 

tests. In general, the thresholds for (absolute values of) the Z-curve will be 

monotonically decreasing when the α-spending function is convex and all 

significance tests are performed at equal distance.16;17;30 Monotonically 

decreasing thresholds (which result from the monotonically increasing 

functions) are desirably because the impact of random error is typically 

inversely proportional to the amount of accumulated information. Although an 

infinite combination of decreasing thresholds exists, some sets of thresholds 

may be preferable. 

 

From advanced probability theory, the α-spending function that yield 

theoretically optimal thresholds is given by the expression 

( )/2( ) 2 2 /IF Z IFαα = − Φ
 

where Φ is the standard normal cumulative distribution function.16;17;30 The 

type of boundaries produced by this α-spending function were first proposed 

for equal increments of IF by O’Brien and Fleming.61 Lan and DeMets later 

proposed the above α-spending function to allow for flexible increments in 

IF.16;17;30 For this reason, the above α-spending function is typically referred to 

as the Lan-DeMets implementation of the O’Brien-Fleming α-spending 

function. Often, the monitoring boundaries produced by this alpha spending 

function are simply referred to as the Lan-DeMets monitoring boundaries or 

the O’Brien-Fleming monitoring boundaries. For the remainder of this manual, 

we will refer to them as O’Brien-Fleming monitoring boundaries. Currently, the 
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O’Brien-Fleming α-spending function is the only α-spending function 

implemented in the TSA software.  

 

 
Figure 6 The shape of the power family α-spending functions with ρ=1 and ρ=2 and the 

O’Brien-Fleming α-spending function. 

 

As shown in figure 6, the O’Brien-Fleming α-spending function is an 

exponentially increasing function. It produces conservative boundaries at 

early stages where only limited amount of data has been accumulated, and 

more lenient boundaries as more data are accumulated. 

 
The O’Brien-Fleming boundaries have been recommended by methodological 

experts as the preferred choice in most randomised clinical trials where 

repeated significance testing on accumulating data is performed.30;62 In meta-

analysis, where the risk of random error (and time-trend biases) is of 

particular concern at early stages (i.e., in meta-analyses including a small 

number of patients and events), the O’Brien-Fleming boundaries have been 

the preferred choice as well.1;2;4;6;11;12 

 

There are two reasons for this preference. First, if the heterogeneity 

adjustment of the required information size is based on a reasonable a priori 

estimate of the anticipated degree of heterogeneity, the O’Brien-Fleming 
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boundaries will naturally account for the degree of fluctuations that the meta-

analytic inferences will incur due to random error and heterogeneity. Second, 

as long as subsequent significance tests are performed at a reasonable 

distance on the information axis (e.g., at least 1% of the required information 

size apart), the O’Brien-Fleming boundaries remain relatively unaffected by 

the number of previous significance tests. This second property is desirable in 

the setting of meta-analysis because it is not always clear how often a meta-

analysis has been subjected to significance testing as a result of updating. For 

example, some meta-analyses may include different but highly overlapping 

data because the inclusion criteria have been modified in connection with 

updates of a systematic review. Other monitoring boundaries, such as a set of 

the monitoring boundaries based on the power family alpha spending function 

with rho=2, could yield discrepant inferences about statistical significance if, 

for example, the monitoring boundaries accounted for 2 previous updates as 

opposed to 4.  
 

 
Figure 7 Example of an inconclusive meta-analysis after four cumulative meta-analyses. 
 

Figure 7 shows an example of the use of the O’Brien-Fleming boundaries. In 

this meta-analysis, the required information size is 4000 patients, but the 

obtained information is only 1000 patients. The final Z-value is larger than 

1.96. Using the conventional single test threshold, this Z-value would have led 

to a conclusion of statistical significance. Using the O’Brien-Fleming 

boundaries, a greater value of Z is required – at this information size – in 
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order to conclude statistical significance. The boundaries are not crossed and 

the meta-analysis is therefore inconclusive. 
 

Figure 8 Example of a meta-analysis including a false positive Z-value at the fifth cumulative 
significance testing. 
 
 
In the example given in figure 8, the required information size is again 4000 

patients and the obtained information is now 2000 patients. The final Z-value 

is smaller than 1.96; this result would have been inconclusive using either 

conventional or boundary techniques. There are, however, preceding Z values 

that had been calculated in the cumulative process, including one with a value 

greater than 1.96. This example illustrates how a cumulative Z curve could 

cross the conventional threshold for significance in an early meta-analysis, 

only to be declared not significant in a later meta-analysis. O’Brien-Fleming 

boundaries can prevent such premature false positive conclusions.  

 
In the example given in figure 9, the required information size and the attained 

information size are the same as those in figure 8. Here, the Z-value 

calculated at the fifth significance test is ‘extreme enough’; the Z-curve 

crosses the O’Brien-Fleming boundaries, and the meta-analysis can be 

declared as conclusive with regard to the anticipated intervention effect 

leading to the required information size. 
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Figure 9 Example of a meta-analysis that becomes conclusive according to the O’Brien-
Fleming boundaries after the fifth cumulative significance testing. 
 

In the above examples (figure 7-9), the monitoring boundaries are constructed 

only for the positive half of the y-axis. Two-sided symmetrical significance 

testing boundaries can be constructed on both the negative and positive half 

of the y-axis. The TSA program allows for both one and two-sided significance 

testing. When the outcome measure for binary data meta-analysis is defined 

as a failure (e.g., death or relapse), Z-values on the upper half of the y-axis 

will indicate benefit of the experimental intervention, whereas Z-values on the 

lower half will indicate harm. 

 

The monitoring boundaries’ values for the Z-curve are a function of the alpha 

spending function; they are calculated by numerical recursive integration 

according to Reboussin et al.60 Though all boundary values are discrete 

points calculated for each cumulative update of the meta-analysis, the TSA 

program connects these points and creates one continuous boundary line for 

better visual interpretation. 

 

2.2.5. Adjusted confidence intervals following trial sequential analysis 

Just as repeated significance tests affects the overall type I error, it also 

affects the construction of confidence intervals. For example, when we 

assume that our pooled estimate of effect is normally distributed (as we 

typically do in meta-analysis), we form a ‘naïve’ symmetric 95% confidence 
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interval ( )ˆ ˆ1.96 seµ µ± ⋅ , where µ̂ denotes our estimated meta-analysed 

intervention effect and ( )ˆse µ denotes its associated standard error. However, 

if a meta-analysis is subjected to repeated statistical evaluation, and thus, 

produces a series of confidence intervals over time, the probability that all of 

these confidence intervals will contain the ‘true’ overall effect is certainly less 

than 95%.That is, if we construct a series of naïve symmetric (1-α)% 

confidence intervals, ( )1 / 2ˆ ˆz seαµ µ−± ⋅ , the probability that all these confidence 

intervals will contain the ‘true’ overall effect is certainly less than (1-α)%. Thus, 

when a meta-analysis is subjected to repeated statistical evaluation, there is 

an exaggerated risk that the ‘naïve’ confidence intervals will yield spurious 

inferences. When some underlying ‘true’ intervention effect exists, spurious 

inferences based on confidence intervals can occur as either of the two 

scenarios illustrated in figure 10.  

 
 

 

 

 

 
Figure 10 Example of spuriously positive and spuriously negative confidence interval 

inferences. 

 

When there is no intervention effect, the confidence intervals will yield 

spurious inferences if they preclude the null effect. This situation is identical to 

a false positive significance test (see section 2.2.4).  

 

Similar to adjustment for repeated significance testing, the confidence 

intervals can be adjusted according to the strength of the available information 

(e.g., the number of patients) and the number of statistical evaluations. If we 

let l and u denote the lower and upper limit of some naïve confidence interval 

with coverage 1-α, we know that 

 

( )Pr  =1-l uµ α≤ ≤
 

  

True 
effect 

Null 
effect 

Spuriously positive CI 

Spuriously negative CI 
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When a meta-analysis is subjected to repeated statistical evaluation, the 

repeated naïve confidence intervals will not yield the desired coverage. Thus, 

we need to establish a series of intervals that will achieve the desired 

coverage. Assume that a meta-analysis is subjected to statistical evaluation k 

times up till the point where it surpasses its required information size. Let l1, l2, 

..., lk and u1, u2, ..., uk denote the lower and upper confidence interval limits for 

each of the k times the meta-analysis was subjected to statistical evaluation. 

To maintain the desired coverage, these limits would have to satisfy: 

 

( )1 1 2 2Pr , , ..., 1-k kl u l u l uµ µ µ α≤ ≤ ≤ ≤ ≤ ≤ ≥  

 

And thus, any single one of these k intervals, say j, would have to satisfy: 

 

( )Pr 1-j jl uµ α≤ ≤ ≥
 

 

It is clear from the above that the α-level for each repeated confidence interval 

cannot exceed the overall maximum α. Further, the respective α-levels for 

each of the repeated confidence intervals should sum to the overall maximum 

α. Thus, by controlling the overall α-level, we can control the overall coverage. 

The framework for controlling the overall α-level has already been developed 

in the previous section (2.2.4), and is easily applied to repeated confidence 

intervals. Naïve confidence intervals are obtained using the formula 

( )1 / 2ˆ ˆz seαµ µ−± ⋅ because we know that ( )/ 2 1 / 2ˆ ˆ/z se zα αµ µ −≤ ≤  with 

approximately (1-α)% probability (under the null hypothesis), and hence: 

 

/ 2 1 / 2z Z zα α−≤ ≤ , 

 

where Z denotes the Z-value for the statistical significance test. By replacing 

zα/2 and z1-α/2 by the thresholds that constitute the statistical monitoring 

boundaries, c1, c2, ..., ck, and isolating for µ̂ , we have constructed a simple 

expression for repeated confidence intervals which will maintain good control 

of the coverage. For any single one of the k confidence intervals, say j, the 

expression for the confidence interval is: 
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( )ˆ ˆjc seµ µ± ⋅
 

And we have  

 

( )1 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆPr ( ) ( ),..., ( ) ( ) 1-k kc se c se c se c seµ µ µ µ µ µ µ µ µ µ α− ⋅ ≤ ≤ + ⋅ − ⋅ ≤ ≤ + ⋅ ≥  

 

All of the above easily generalises to one-sided confidence intervals. 

 

The TSA software provides the option of calculating the confidence interval for 

the last of a series of statistical evaluations (see chapter 4). 

 

2.2.6. The law of the iterated logarithm 

Another solution to the problem of repeated significance testing outlined in 

section 2.2.3. is to penalise the Z values according to the strength of the 

available evidence and the number of repeated significance tests.7;8 In 

advanced probability, there exists a theorem, the law of the iterated 

logarithms, which tells us that if we take a standard normally distributed 

variable, such as a Z-value, and divide it by the logarithm of the logarithm of 

the number of observations in the data, there will be a 100% probability that 

this fraction will assume a value between 2−  and 2 . In the context of 

statistical testing, this law can be utilised to control exaggeration of type 1 

error in meta-analysis due to repeated significance testing. Dividing a 

standard normally distributed test statistic by the logarithm of the logarithm of 

the information available, provided enough data has accumulated, can 

provide good control of the ‘behaviour’ of the employed statistical test. Lan et 

al. applied this theory, introducing a penalty for the Z-values obtained at each 

significance test and creating adjusted (penalised) Z-values, Z*, given by 

 

( )( )
j*

j

Z
Z   

 ln ln jIλ
=

 

 

where Zj is the conventional Z-value, Ij is the cumulative statistical information 

at the j-th significance test (see section 2.2.1. under alternatives to 
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accumulating number of patients), and λ is some constant that will ensure 

good control of the maximum type I error.8 Lan et al. used simulation to 

estimate proper choices of the constant, λ, for continuous data meta-

analysis,8 and Hu et al. did the same for dichotomous data meta-analysis.7 

For continuous data meta-analysis, Lan et al. found that λ=2 would generally 

exhibit good control of the type I error, when using a desired maximum type I 

error of α=5% for a two-sided statistical test (i.e., α=2.5% for each side).8 That 

is, when Z* was evaluated based on the conventional criteria for statistical 

significance (i.e., |Z*|≥1.96 means statistical significance at two-sided α=5%). 

For dichotomous data meta-analysis, Hu et al. estimated appropriate choices 

of λ for different maximum type I error levels and different effect measures.7 

Their simulation results lead to the recommended λ values presented in table 

2.  

 

 Max. type I error (corresponding threshold) 

Effect measure α=0.01(c=2.33) α=0.025 (c=1.96) α=0.05 (c=1.65) 

Risk difference λ=3 λ=1.5 λ=1.5 

Relative risk λ=3.5 λ=2 λ=2 

Odds ratio λ=3.5 λ=2 λ=2 

 

Table 2 Recommended λ values for penalising Z values with the law of the iterated logarithm 

 

These λ values pertain only to the ranges of study sizes, control group event 

proportion, and between-trial variation used in the simulations, and may 

therefore not be applicable to all meta-analysis scenarios.7;8 For example, the 

minimum event proportion in the control groups used in the simulations was 

0.05. Many important clinical conditions yield control group event proportions 

lower than 0.05. In addition, none of the simulations incorporated time trend 

bias such as time lag bias and publication bias. Such biases have a 

considerable impact on significance tests in meta-analyses. Further, as 

previously noted (section 2.2.1 - Limitations), statistical information relies on 

accurate and reliable estimation of the between-trial variance. If the between-
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trial variance is underestimated (for example due to time-lag bias), the 

penalised Z-statistic will be artificially large. For the above reasons, it is 

reasonable to assume that the recommended λ values in table 2 constitute 

the very minimum of a range of appropriate choices. Appropriate λ values for 

dichotomous data meta-analyses including only a small number of trials, 

patients and/or events are probably higher than those recommended by Hu et 

al. 

 

2.2.7. The β-spending function and futility boundaries 

When a result in a meta-analysis is found to be non-significant, it is important 

to assess whether this non-significance is due to lack of power or whether it is 

due to underlying equivalency between the interventions.  

 

The statistical exercise of testing for equivalency – i.e., testing for both non-

superiority and non-inferiority of a given intervention – is commonly referred to 

as futility testing.30 The statistical test thresholds that arise from this exercise 

are referred to as futility boundaries. When a Z-curve crosses the futility 

boundaries, we can accept that the two interventions do not differ more than 

the anticipated intervention effect. 

 

Meta-analyses that have already surpassed their required information should 

have enough power to demonstrate superiority of one intervention over the 

other. For this sub-section, we will consider only non-significant meta-

analyses that have not surpassed their required information size. Further, we 

no longer consider all Z values as absolute. Instead we make the distinction of 

positive Z values indicating that the experimental intervention is superior to 

the control intervention and negative Z values indicating that the experimental 

intervention is inferior to the control intervention. The following section deals 

first with non-superiority testing, followed by non-inferiority testing and futility 

testing in general. 

 

At any point, a meta-analysis may yield a Z value that is not statistically 

significant in favour of the experimental intervention. However, only when this 

Z value lies ‘sufficiently below’ the threshold for statistical significance (in 
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favour of the experimental intervention) can we be confident that the 

experimental intervention is not superior to the control. To make sense of the 

above, we must first define what we mean by superior and ‘sufficiently below’.   

 

Within the framework of repeated statistical testing, the definition of superiority 

is linked to the underlying assumption made for the required information size. 

When calculating the required information size, we assume, a priori, an 

intervention effect, δ. The magnitude of this effect represents what we believe 

to be a minimally important difference between the two interventions. Ideally, 

the size of δ should be defined such that anything smaller would be 

considered clinically, or practically, unimportant and therefore not worth 

investigating. The value of δ depends on the context of the study. For 

example, a RRR of 10% would usually be considered important if the outcome 

is mortality, but it may not be considered important if the outcome is nausea. 

 

Before we define what is meant by ‘sufficiently below’ in the context of 

repeated statistical testing, consider first the situation where the information 

contained in a meta-analysis equals its required information size and where 

statistical testing is performed for the first time. First, let Hδ  denote the 

hypothesis that the effect is equal to δ  - this is the alternative hypothesis (in 

contrast to the null hypothesis). Under the assumption that Hδ  is true, the 

probability that the meta-analysis will be statistically significant (with the 

chosen α-level) is equal to the chosen power, 1-β. When the information size 

has been reached, the probability that the meta-analysis will be falsely 

negative is equal to β. In this situation, our threshold for statistical 

significance, c¸ which satisfies that:   
 

Pr(|Z|≥c | H0 is true) ≤ α 

 

implicitly becomes our threshold for non-superiority because c also satisfies: 

 

Pr(Z < c | Hδ   is true) ≤ β. 
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When repeated statistical testing occurs before a meta-analysis surpasses its 

required information size, it is also possible to test for non-superiority. This 

testing can be done by defining thresholds that, under the alternative 

hypothesis, do not result in an inflation of the total risk of type II error. For 

example, if we test for non-superiority two times, we need to find thresholds, 

c1 and c2, for the emerging two subsequent Z values, Z1 and Z2, 

 

( )1 1 2 2Pr Z  or Z   c c β< < ≤
 

 

In this situation, Z1 values smaller than c1 and Z2 values smaller than c2 will be 

considered ‘sufficiently below’ the threshold for statistical significance to justify 

the conclusion of non-superiority. In a more general context, where we might 

test for non-superiority k times, we would need to find thresholds c1, …, ck 

which will satisfy 

 

( )1 1 2 2 kPr Z  or Z  or ... or Z   kc c c β< < < ≤
 

 

under the alternative hypothesis, Hδ. This is equivalent to finding k maximum 

type II error risks, β1, …, βk, that sum to β and where 
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under the alternative hypothesis.  

 

This desire to control the type II error in the context of repeated testing is 

analogous to the desire to control the type I error. Multiple testing increases 

the actual amount of error and we need to find a technique to control this 

increase. Just as it is caused by the same phenomenon, the problem of an 

increased type II error can be managed using a similar solution. In section 
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2.2.3, the alpha spending function was described as a technique which can be 

used to create reasonable boundaries for significance testing. Similarly, the 

problem of finding repeated non-superiority testing thresholds, which will 

ensure good control of the type II error, can be solved by introducing the β-

spending function. The β-spending function is a monotonically increasing 

function of time which is used to appropriately assign maximum type II error 

risks β1, …, βk at each non-superiority test according to the amount of 

information accumulated. The β-spending function is a function of the 

information fraction, IF (the accumulated information divided by the required 

information size), and it is only defined from 0 to 1. The β-spending function of 

0 is always equal to 0: β(0)=0, and the β-spending function of 1 is always 

equal to β: β(1)=β. At any point between 0 and 1, the β-spending function is 

equal to the total maximum type II error risk that has arisen from the 

thresholds chosen for all non-superiority tests until and including the i-th test. 

In other words, the β-spending function is equal to how much type II error has 

been ‘spent’. In notation: β(IFi)=β1+ β2+… +βi. 

 

For the same reasons described in section 2.2.4, the O’Brien-Fleming function 

may also constitute the optimal choice for the beta-spending function. In TSA 

v.0.8, the only available β-spending function is the O’Brien-Fleming spending 

function.   

 

Figure 11 shows an example of a meta-analysis including both repeated non-

superiority and significance testing. In this meta-analysis, the required 

information size is 4000 patients. At 2000 patients, the meta-analysis is 

inconclusive because it has not yet crossed the (upper) boundary for 

statistical significance or the (lower) boundaries for non-superiority. The 

dashed extensions of the Z curve illustrate examples of how the meta-

analysis could become conclusive at 3000 patients.  

 

In example (A), the Z-curve crosses the non-superiority boundaries (the lower 

boundaries), in which case, it would be inferred that the experimental 

intervention is not superior to the control intervention. In example (B), the Z-

curve crosses the O’Brien-Fleming significance boundaries for superiority, in 
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which case, it would be inferred that the experimental intervention is superior 

to the control intervention. 

 
Figure 11 Example of a meta-analysis including repeated non-superiority (red line) and 
significance (brown line) testing. The cumulative Z-curve for the first four trials reaches half of 
the required information size. Two new trials are added to the meta-analysis – (A) showing no 
effect (and the cumulative Z score now reaches futility) and (B) showing significant benefit of 
the intervention (and the cumulative Z-score now reaches significance by crossing both the 
conventional boundary as well as the O’Brian-Fleming boundaries). 
 
 

Non-superiority boundaries need to be used in conjunction with non-inferiority 

boundaries in order to assess for equivalence between two groups. Imagine a 

meta-analysis comparing two groups: group A and group B. If a cumulative Z 

value falls below the non-superiority threshold, then group A is not better than 

group B. But it may be worse. If the same cumulative Z value also falls above 

the non-inferiority threshold, then group A is not worse than group B. In this 

situation, it can be concluded that group A and B are equivalent. Graphically, 

this ‘area of equivalence’ is the area within the two boundaries after they 

cross – also called the inner wedge (see figure 12). 

 

Figure 12 shows an example of a meta-analysis that includes all of the 

components of TSA that have been discussed:  the required information size, 

two-sided significance testing boundaries, non-superiority futility boundaries 

and non-inferiority futility boundaries. In this example, the required information 

size is 4000. At approximately 3000 patients, the Z value falls within the inner 
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wedge and a conclusion can be made: the intervention effect is not greater 

than the one anticipated.  
 

Figure 12 Example of a meta-analysis with repeated non-superiority, non-inferiority and 
significance testing boundaries. 
 



User Manual for TSA 
Copenhagen Trial Unit 2011 
 

 - 55 - 
 

3. Installation and starting the TSA program 
3.1. Prerequisites 

The Trial Sequential Analysis (TSA) software is a Java program and will 

therefore run on any operating system that supports Java (Microsoft 

Windows, Mac OS, UNIX, Linux, etc.). The TSA software requires that you 

have the latest (or at least a recent) version of the Java Runtime Environment 

(JRE) installed on your computer. You can download the JRE for free at 

www.java.com. 

 

At the time of writing (August 2011), the latest JRE version is 1.6. The TSA 

software runs well with this version. 
 

3.2. Installation 
The TSA software is delivered in a ZIP archive. Use any archive tool, such as 

WinRAR or GZIP, to unpack the archive. In the archive you will find three files 

named TSA.jar, RM5Converter.jar, and TEMPLATES.TPL along with two 

folders named lib and samples. 

 

TSA.jar is a Java archive containing the Trial Sequential Analysis application. 

RM5Converter.jar is a Java archive containing an application for converting 

trial data (presently, however, for dichotomous outcomes only) exported from 

Review Manager v.5 into the appropriate data format for TSA. 

TEMPLATES.TPL contains monitoring boundary templates that you can use 

when you are performing trial sequential analysis on your meta-analysis data. 

The content of the templates file is controlled through the TSA program. The 

folder ‘lib’ contains various external packages used by the TSA program. The 

folder ‘samples’ contains ‘.TSA’ files for the examples provided in this manual 

(see chapter 5). 

 

To install the program, unpack the entire ZIP archive into a folder of your 

choice on your hard drive. No further steps are required. 
 

3.3. Starting TSA 
To start the TSA software, double-click the TSA.jar file.  
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Alternatively the TSA software can be started in a prompt. To start the TSA 

software in a prompt, first start a prompt, browse to the folder in which you 

have unpacked the TSA software, and type ‘java –jar TSA.jar’.  

 

If you are using the Microsoft Windows operating system, you can open a dos 

prompt by first clicking on the ‘Start’ button (typically lower left corner of the 

screen), then clicking on ‘Run…’. When the ‘Run’ window pops up, type in 

‘cmd’ (no quotes) in the text field and press OK. The dos prompt should 

appear. Use the cd (change directory) command to browse to the folder in 

which you have unpacked the TSA software. For example, if you created a 

folder named TSA within the Program Files folder on your C drive and 

unpacked the TSA software to this folder, you should first change the 

directory to the TSA folder in the dos prompt. This can be done by typing ‘cd 

C:\Program Files\TSA’ (no quotes). After the directory in the dos prompt has 

been changed, type ‘java –jar TSA.jar’. 

 

3.3.1. Why doesn’t TSA start? 
If you are having trouble starting the TSA software, there are several possible 

reasons for this. Below is a check list to help identify the most likely reasons: 

 

is the JRE installed on your system? 

is the installed JRE version at least 1.6? 

did you extract all the files from the ZIP archive? 

did you rename, move, or delete any of the unpacked files or folders? 

 

If a different program (other than TSA) starts when double-clicking the TSA.jar 

file, this means that the .jar file name extension is not associated to Java 

(JRE). If this happens, you can either try to start the program manually using 

a prompt (see above), or you can try to change the file name association. If 

you are using Windows, you can change the association by following the 

steps below: 
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- open an Explorer window (e.g., double-click on My Computer) and click 

the ‘Tools’ menu 

- select ‘Folder Options…’ and go to the ‘File Types’ tab  

- find the JAR extension in the list  

- click ‘Change’  

- select ‘Java(TM) Platform SE binary’ from the list and click OK 

- If ‘Java(TM) Platform SE binary’ is not in the list, click ‘Browse’ and 

locate the javaw.exe in the JRE’s bin folder. Its default path is: 

C:\Program Files\Java\jre6\bin. 

 

If your operating system is not Microsoft Windows, please consult the user 

manual for your operating system. 

 
3.4. Starting RM5 Converter 
To start the Review Manager 5 data converter program (presently, however, 

for dichotomous outcomes only), double-click the RM5Converter.jar file.  

 

3.4.1 Why doesn’t RM5 start? 
The RM5Converter.jar has the same basic prerequisites as TSA.jar, so if you 

are having difficulty opening it, please consult section 3.3.1. Also, RM5 

Converter.jar requires the TSA.jar file to be able to run. For this reason, 

TSA.jar has to be located in the same folder as RM5Converter.jar. 
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4. How to use TSA 
4.1. Getting started 
When TSA is started, a window similar to figure 13 should appear. The 

starting window should contain a menu bar with the menus File, Settings, and 

Help, as well as five greyed out (non-selectable) tabs: Meta-analysis, Trials, 

TSA, Graphs, and Diversity.  
 

 
Figure 13 The TSA starting window. 

 

4.1.1. Creating a new meta-analysis 

To create a new meta-analysis, go to the menu bar and select File > New 

Meta-analysis. A dialogue box will appear (figure 14), allowing you to name 

your meta-analysis, choose the type of data that will be meta-analysed 

(dichotomous data or continuous data), define which two interventions are 

being compared, define whether the outcome type is ‘negative’ or ‘positive’  

and add comments. Press Create to create the new meta-analysis. Press 

Cancel to cancel this action. If you want to edit the name of the meta-analysis, 

the interventions, or your comments, go to the menu bar and select File > Edit 

meta-analysis. The dialogue box shown in figure 14 should then re-appear. 
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Figure 14 Dialogue box for creating a new meta-analysis. 

 
Note, binary data, negative outcomes are outcomes like mortality, stroke, or 

new cancer incidences; positive outcomes are outcomes like survival, 

clearance of a virus, or smoking cessation. For continuous data, negative 

outcomes are outcomes where an increase in the mean response is a bad 

thing (e.g., increase in depression score), and positive outcomes are 

outcomes where an increase in the mean response is a good thing (e.g., 

platelet count). The TSA software requires the designation of the outcome as 

negative or positive to determine which intervention arm the results favour. 

 

After creating your new meta-analysis, a number of options should appear in 

the left side of the starting window. (These options will be described in section 

4.3. Defining your meta-analysis settings.)  
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Figure 15 Starting window after a new meta-analysis has been created and data have been 
entered. 
 
A box titled Meta-analysis Summary should appear in the middle of the 
window. 
 

4.1.2. Saving a TSA file and opening an existing TSA file 
If you wish to save your work, go to the menu bar and select File > Save as… 

If you wish to continue working on an already created TSA file, go to the menu 

bar, select File > Open, and locate the TSA file on which you wish to continue 

working.  

 

4.1.3. Importing meta-analysis data from Review Manager v.5 
To import meta-analysis data saved in a Review Manager v.5 file (*.rm5) 

(presently, however, for dichotomous outcomes only), you will need to use the 

separate software application RM5Converter, which is included in the Zip 

archive that you downloaded before installing TSA (see chapter 3).  
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Figure 16 Pop-up export analysis data wizard window in Review Manager v.5, which allows 

you to select the meta-analyses you wish to export (presently, however, only for dichotomous 

outcomes) as a *.csv file. The RevMan file to be converted is from the Cochrane review 

‘Pegylated interferon alfa-2a versus pegylated interferon alfa-2b for treating chronic hepatitis 

C’.63 

 

 

RM5Converter can read comma separated files (*.csv). The first thing you 

need to do, therefore, is to convert your RevMan file into a comma separated 

file. Open your RevMan file in Review Manager v.5. in the menu-bar, select 

File > Export > Data and analyses. A pop-up window with a check box tree 

structure will appear (figure 16). Check the meta-analysis data that you wish 

to export as a comma separated file, and click on the Next button. 

On the following screen check the three first checkboxes: Comparison 

Number, Outcome Number, and Subgroup Number. Then press Finish. 

 
 

Note, if you click the Next button twice you will be presented with the option of 

choosing a field delimiter (what separates the cells in the data). It is important 

that the field delimiter is a comma (this is the default).  
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Figure 17 Check the box tree structure in RM5Converter.  

 

After you have exported your data to a *.csv file, open RM5Converter by 

double-clicking on the icon. Go to the menu bar and select File > Open. A 

check box tree structure will appear in the application window (figure 17). The 

data is structured the same way as in Review Manager v.5. For each 

comparison, there can be multiple outcomes and each outcome represents a 

meta-analysis. If a meta-analysis contains subgroup analyses, the subgroups 

will be listed under each outcome. If a comparison is checked, all outcomes 

under that comparison will automatically be checked. Also, if an outcome is 

checked, all subgroups under that outcome will automatically be checked. All 

trials under each comparison, outcome, or subgroup are automatically 

included. You don’t have to convert everything listed under a given 

comparison. You can ‘uncheck’ the comparisons, outcomes, and/or 

subgroups that you do not want to convert. If the trials in the subgroups are 

unique, you will be presented with the option of combining these subgroups 

into a single analysis. 
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Figure 18 Trials overview with bias risk check boxes. 

 

If you click on the Trials overview button, a new window with a list of all the 

trials in the csv file will open. Each trial has an associated checkbox, 

indicating whether the trial is designated as a ‘low bias-risk’ trial or not (default 

is high bias-risk). You can change the designated bias risk of a trial by 

checking (or un-checking) its bias checkbox. Click on the Close button once 

you are done defining bias-risks. 
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Figure 19 Reviewing TSA outcomes in the RM5Converter. 

 

Once you have checked all the comparisons, outcomes, and subgroups you 

want to include for your trial sequential analysis, click on the button in the 

bottom of the window titled Create TSA file(s). A pop-up window, allowing you 

to review the names of your interventions, outcomes, and subgroups will 

appear. Once you have reviewed your selections, click on the button Create 

TSA file(s) and save your selected meta-analyses as TSA files in the specified 

folder.  

 

4.2. Adding, editing, and deleting trials 
Right below the menu bar in the TSA program, you will find five tabs: Meta-

analysis, Trials, TSA, Graphs, and Diversity. To add, edit, or delete any trials 

in your meta-analysis, first select the Trials tab (figure 20).  
 

 
Figure 20 Click on the Trials tab when you want to add, edit, or delete trials in your meta-

analysis. 

 

In the left side of the window (in the Trials tab) there should be three areas: 

Add Dichotomous/Continuous Trial, Edit/Delete Trial, and Ignore Trials.  

 

4.2.1. Adding trials 
To add a new trial, fill in the input fields in the Add Dichotomous/Continuous 

Trial area. Regardless the type of data you are meta-analysing, you are 

required to provide some name or title for the study in the ‘Study:’ input field 
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(typically the study acronym or the last name of the first author). You also 

need to provide the year that the study was published in the ‘Year:’ input field. 

You have the option to check the trial as a low bias risk trial.  

 

If you are working with dichotomous data, you are required to enter the 

number of events and total number of patients in the (experimental) 

intervention group and the control group (figure 21).  

 

 
Figure 21 Areas where you input the required data when adding a new dichotomous data trial 

(left) or continuous data trial (right).  

 

If you are working with continuous data, you are required to enter the mean, 

standard deviation, and group size (number of patients) for the (experimental) 

intervention group and the control group (figure 21). It is also possible (but not 

necessary) to add a comment about the entered data. To submit the entered 

data, click on the Add Trial button.  

 

In the right side of the window, you should find four columns: Study, Bias risk, 

Ignore, and Data. If you have added trials, a list of these trials should appear 

as in figure 22. The names and publication years of the added trials should 

appear in the first column (from the left) in the format ‘(year) title’. The 

assigned bias risks of the respective trials should appear in the second 

column. The bias risk of a trial can either be ‘Low’ (green letters) or ‘High’ (red 

letters). The third column gives you the option of ignoring one or more added 
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trial(s) for when you are performing your meta-analyses. Simply check the 

‘Ignore’ check box to ignore a trial. The fourth column should display the trial 

data. For dichotomous trials the format is ‘Intervention: Events/Total. Control: 

Events/Total’. For continuous data the format is ‘Intervention: Mean 

Reponse/Standard Deviation/Group Size. Control: Mean Reponse/Standard 

Deviation/Group Size’. 

 

 
Figure 22 List of added trials marked within the red ellipse. 

 

4.2.2. Editing and deleting trials 

To edit trial data, first select the row for the trial you wish to edit and then click 

on the Edit Trial button in the Edit/Delete Selected Trial area (figure 23). 

Alternatively, you can double click on the row for the trial you wish to edit.  

 

 
Figure 23 The Edit/Delete Selected Trial area. 
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The trial data appears in the same area where you type in new trial data and 

you can now edit data. This area will now contain an Edit Trial button instead 

of an Add Trial button. To edit the trial data, change the content in the fields 

you want to edit and click on the Edit Trial button. 

 

If you wish to delete a trial, select the row for the trial you wish to delete, and 

press the Delete Trial button in the Edit/Delete Selected Trial area. 

Alternatively, you can select the row for the trial you wish to delete and press 

the <Delete> button on your keyboard. 

 

4.3. Defining your meta-analysis settings 
The TSA program provides a number of options for performing meta-analysis. 

You can choose between a number of effect measures, statistical models, 

zero-event data handling methods (for dichotomous data), and confidence 

interval coverage levels. All of these options can be set in the Meta-analysis 

tab to the left of the Trials tab (figure 24).  
 

 
Figure 24 Click on the Meta-analysis tab when you want to set your effect measure, statistical 

model, or zero-event handling method. 

 

In the left side of the window you will find the Set Effect Measure and Model 

area, the Set Zero Event Handling area, and the Set Confidence Intervals 

area (figures 25-28). In the middle of the window, you will find the Meta-

analysis Summary area.  

 

4.3.1. Choosing your association measure 
The TSA program provides the same effect measures as Review Manager 

version 5 (see section 2.1.1. for a description of these measures). To select 

an effect measure, first click on the Effect Measure drop-box in the Set Effect 

Measure and Model area in order to display the available effect measures 

(figure 25, marked area in the left side picture), then click on the effect 

measure you wish to use for your meta-analysis. 
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Figure 25 Select effect measure by clicking on the Effect Measure drop-box. 

 

4.3.2. Choosing your statistical model 

The TSA program provides four statistical models for pooling meta-analysis 

data – three of which are variants of the random-effects model (see section 

2.1.2). To set your statistical model, first click on the Model drop-box to 

display the available effect measures (figure 26, marked area in the left side 

picture), and then click on the model you wish to use for your meta-analysis. 

 

 
Figure 26 Select effect measure by clicking on the Model drop-box. 

 

4.3.3. Choosing a method for handling zero-event data 

The TSA program provides three methods for handling zero-event data (see 

section 2.1.4). To select the method you wish to employ for handling zero-

event data, first click on the Method drop-box to display the available 

continuity correction methods, and then click on the method you wish to 

employ (figure 27).  

 

 
Figure 27 Select continuity correction method by clicking on the Method drop-box. 
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You also need to set the continuity correction factor. In the TSA program, the 

correction factors are derived from sum of the correction factors in the two 

groups (also referred to as the ‘Value’). For example, the sum of the 

correction factors in the continuity correction used in Review Manager is 

1=0.5+0.5 - because 0.5 is added to the number of events in both groups. To 

set the sum of two correction factors, first click on the Value drop-box, then 

select the sum you wish the two correction factors to add up to. In addition, 

you have the option of applying continuity correction on trials that have zero 

events (or non-events) in both arms. To do so, check the box titled ‘Include 

trials with no events’ 

 

4.3.4. Choosing the type of confidence interval 

TSA provides a number of options for the type of confidence interval you wish 

to employ (figure 28). If you are employing conventional confidence intervals 

you can choose between coverage levels 95%, 99%, 99.5%, and 99.9%. To 

do so, check the ‘Conventional (coverage)’ radio button left in the Set 

Confidence Intervals area, click on the drop down box to the right and select 

your desired coverage.  

 

 
Figure 28 Choose you coverage for conventional confidence intervals. 

 

If you have already constructed adjusted significance test boundaries using 

an α-spending function (see section 2.2.4 and 4.4.1), you will also have the 

option of obtaining the α-spending adjusted confidence interval (see section 

2.2.5). To do so, first click on the ‘α-spending adjusted’ radio button in the Set 

Confidence Intervals area and subsequently click on the ‘Select button’ (figure 

29). 
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Figure 29 Select α-spending function adjusted confidence intervals. 

 

A pop-up window with a list of your added alpha-spending boundaries should 

appear in the middle of the screen. Select which of the alpha-spending 

boundaries the adjustment should be based on and click on the Select button 

(figure 30). Note, the cumulative coverage of the alpha-spending adjusted 

confidence intervals will correspond to the alpha level set for the chosen 

alpha-spending function. 

 

   
Figure 30 Choose the alpha-spending boundaries on which the adjustment should be based. 

 

Also note that only α-spending boundaries that can be calculated and have 

not been ‘ignored’ will be included in the list (see section 4.4.1). 

 

4.4. Applying adjusted significance tests (applying TSA) 
TSA currently provides two methods for adjusted significance testing. These 

are the O’Brien-Fleming α-spending method, described in section 2.2.4., and 

the law of the iterated logarithm method, described in section 2.2.6. TSA also 

provides the option to combine the O’Brien-Fleming method with futility testing 

as described in section 2.2.7. To apply these methods, click on the TSA tab 

(to the right of the Trials tab) as shown in figure 31.  
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Figure 31 Click on the TSA tab when you want apply methods for adjusted significance 

testing. 

 

4.4.1. Adding a significance test 

In the upper left side of the window, you will find the Add area (figure 32), 

which contains the buttons Conventional Test Boundary, Alpha-spending 

Boundaries, and Law of the Iterated Logarithm. When you click on any of 

these three buttons a new window should appear in the middle of the TSA 

program window. This window should contain a number of fields, which will 

allow you to define the settings for the type of significance test you wish to 

apply.  

 

 
Figure 32 Click on one of the buttons to add a new significance test. 

 

The conventional significance boundary 

The Conventional option allows you to add a boundary for the Z-curve which 

corresponds to a single significance test with some maximum type I error risk, 

α. For example, a conventional boundary for a two-sided α=5% single 

significance test will produce two horizontal lines at 1.96 and -1.96. When you 

click on the Conventional button, a window similar to the one shown in figure 

33 should appear.  
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Figure 33 Conventional Test setting pop-up window that appears when clicking on the 

Conventional Test Boundary button. 

 

You will need to give your conventional test a name (e.g., ‘single test 5% 

threshold’), define whether your test is two-sided (symmetric) or one-sided 

and what your overall (single test) maximum type I error will be. For one-sided 

tests, the Upper one-sided test will only test for superiority of the experimental 

intervention, whereas the Lower will only test for superiority of the control 

intervention. For binary data meta-analysis, it should be noted that when the 

outcome is defined as a ‘positive’ rather than ‘negative’, (see section 4.1.1) 

the functions of Upper and Lower are reversed. When you have named your 

conventional boundary and defined the settings, press the Add button to add 

the boundary. 

 

The α-spending boundaries 

The alpha-spending option allows you to add adjusted significance 

boundaries for the Z curve with the α-spending method described in section 

2.2.4. Because the α-spending method cannot be applied without determining 

some required meta-analysis information size, the information size 

calculations must be defined simultaneously. Therefore, the α-spending 

boundaries setting window for dichotomous data meta-analysis will be 

different from continuous data meta-analysis with respect to the settings for 

the information size calculation. For dichotomous data meta-analysis, the α-

spending boundaries setting window that appear when you click on the alpha-

spending button should similar to the one shown in figure 34. 
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Figure 34 Alpha-spending boundaries setting pop-up window for dichotomous data meta-

analysis that appears when clicking on the alpha-spending button. 

 

For continuous data meta-analysis, the alpha-spending boundaries setting 

window that appear when you click on the alpha-spending button should 

similar to the one shown in figure 35. 
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Figure 35 Alpha-spending boundary setting pop-up window for continuous data meta-

analysis that appears when clicking on the alpha-spending button. 

 

First, you will need to give your α-spending based test a name (e.g., ‘5% 

symmetric O’Brien-Fleming’). You will then need to define if you wish to 

employ a two-sided (symmetric) or one-sided test, what your overall maximum 

type I error will be, what type of α-spending you wish to employ (currently only 

the O’Brien-Fleming function is available). You will then need to decide 

whether you wish to define the information in your meta-analysis as the 

accumulated number of patients (sample size), accumulated number of 

events (event size), or accumulated statistical information. Again, for one-

sided tests the Upper one-sided test will only test for superiority of the 
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experimental intervention, whereas the Lower will only test for superiority of 

the control intervention. For binary data meta-analysis, it should be noted that 

when the outcome is defined as a ’positive’ rather than a ‘negative’ outcome 

(see section 4.1.1) the functions of Upper and Lower are reversed.  

 

To test for futility (i.e., apply inner wedge futility boundaries) check the ‘Apply 

Inner wedge’ checkbox. The type II error (or power) for the futility boundaries 

will automatically be set when you enter your settings for you information size 

calculation (see below). Currently, the only β-spending function available in 

TSA is the O’Brien-Fleming function. 

 

You will need to input the necessary components for the required information 

size calculation. You will have the option to define the required information as 

any arbitrary number you may have obtained independent of the TSA 

software. To submit your own value for IS, check the radio button ‘User 

defined’ and type in the required IS. You also have the option to estimate the 

required IS according to the methods delineated in section 2.2.1. To use TSA 

to calculate the required IS, check the radio button ‘Estimate’. The required IS 

estimate will automatically be generated with respect to the type of 

information you are accumulating. For example, if you selected ‘sample size’ 

under ‘Information Axis’, the required information size will the generated as 

the required number of patients in the meta-analysis.  

 

The IS calculation will automatically be based on the maximum type I error 

you defined for the α-spending boundary, but you will need to enter your 

desired maximum type II error/minimum desired power (1-type II error) into 

the input field ‘Power’.  

 

You have two options for adjusting the required information size for 

heterogeneity in the meta-analysis. The first option is to base the 

heterogeneity adjustment on the estimated ratio between the variance in the 

selected random-effects model and the variance in the fixed effect model (see 

section 2.2.1). To use this option, check the radio button ‘Model Variance 
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Based’. Note that if you have selected the fixed-effect model, this adjustments 

factor is always equal to 1, and thus, no adjustment is applied.  

 

The second option is to make a guess estimate of predicted heterogeneity. 

When your meta-analysis includes an insufficient number of trials to reliably 

estimate the adjustment factor, you may adjust the required information size 

for some a priori maximum or plausible anticipated degree of heterogeneity. 

To use this option, check the ‘User Defined’ radio button and type in the 

maximum anticipated heterogeneity in the input field to the left. Here 

heterogeneity is defined as the percentage of the total variance in the meta-

analysis which is explained by between-trial variation rather than within-trial 

variation. Thus, a user defined adjustment of 50%, for example, yields a 

required information size that allow for reliable inference when approximately 

half of the total variation among trial in the meta-analysis is explained by the 

between-trial variation. 

 

To set the anticipated event rates and intervention effect for a dichotomous 

data meta-analysis, you only need to fill in two of the three fields: ‘Relative risk 

reduction’, ‘Incidence in Intervention Group’, and ‘Incidence in Control Group’. 

If you have categorized some of your included trials as low-bias risk trials, you 

may use the pooled meta-analysis estimates of these trials as your 

anticipated relative risk reduction. To use this option, select the ‘Low-bias 

Based’ option.  

 

To set the anticipated mean difference and variance for a continuous data 

meta-analysis, you only need to fill in two fields: ‘Mean difference’ and 

‘Variance’. If you have categorised some of your included trials as low-bias 

risk trials, you may use the pooled meta-analysis estimates of these trials as 

your anticipated mean difference and variance, again by selecting ‘Low-bias 

Based’ option. You also have the option to use the pooled estimate of all 

included trials (regardless of bias risk) as your anticipated variance. To use all 

trials, select the ‘Empirical’ option. 
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When you have named your α-spending boundaries, defined the hypothesis 

test settings, and the parameters for your information size calculation, press 

the Add button to add the boundaries.  

 

After you have added your α-spending boundaries you will need to define 

when the meta-analysis was previously subjected to significance testing. Go 

to the Interim looks to the right of the list of adjusted significance tests and 

check (or uncheck) the trials after which significance testing were previously 

performed. In figure 36, trials 2, 4, and 5 have been checked, and trials 1 and 

3 have been unchecked, meaning that three meta-analyses (including 

significance testing) were performed over time: one including trial 1 and 2, 

one including trials 1 to 4, and one including trials 1 to 5. Note that the last 

trial on the list should always be checked, as this represents the significance 

test you are employing on all included trials. 

 

 
Figure 36 Alpha-spending boundary setting pop-up window for continuous data meta-

analysis that appears when clicking on the alpha-spending button. 

 

In some cases, you may wish to check or uncheck all trials for previous 

significance tests. Click on the ‘Select none’ button in the bottom of the 

Interim analyses area to uncheck all trials, or click on the ‘Select all’ button to 

check all trials (figure 37). In addition, you have the option to inverse the 

selection of interim looks. 

 

 
Figure 37 Check or uncheck all trials for previous significance tests. 
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The law of the iterated logarithm penalised Z curve 

The law of the Iterated logarithm option allows you to perform adjusted 

significance testing by penalising the Z curve with the methods described in 

section 2.2.6. When you click on the Law of Iterated Logarithm button, a 

window like the one shown in figure 38 should appear.  

 

You will need to give your Z curve penalisation a name (e.g., ‘5% symmetric 

LIL’), define whether your test is two-sided (symmetric) or one-sided, what 

your overall maximum type I error will be, and set your penalisation 

parameter, λ (see section 2.2.6 and table 2). For one-sided tests, the Upper 

one-sided test will only test for superiority of the experimental intervention, 

whereas the Lower will only test for superiority of the control intervention. For 

binary data meta-analysis, it should be noted that when the outcome is 

defined as a ’positive’ rather than a ‘negative’ outcome (see section 4.1.1) the 

functions of Upper and Lower are reversed. 

 

 
Figure 38 Law of the Iterated logarithm penalisation setting pop-up window that appears 

when clicking on the Law of Iterated Logarithm button. 

 

4.4.2. Editing and deleting a significance test 

Whenever a significance test is added it should appear in the middle of the 

screen. Each significance test you add will be represented by a row as shown 

in figure 39. 
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Figure 39 List of added significance tests. 

 

To edit a significance test, first select the row for the test you wish to edit and 

then click on the ‘Edit selected’ button in the Edit area (figure 40). Alternatively 

you can simply double click on the row for the test you wish to edit.  

 

 
Figure 40 The Edit/Delete Selected significance test. 

 

The pop-up window with the test’s settings will now appear. Make your edits 

and click on the ‘Apply changes’ button in the lower right corner of the pop-up 

window.  

 

If you wish to delete a test, select the row for the test you wish to delete, and 

press the Delete Selected button in the Edit area. Alternatively you can select 

the row for the test you wish to delete and press the <Delete> button on your 

keyboard. 

 

4.4.3. Adding and loading significance test templates 

The Templates area in the lower left corner of the TSA tab provides you with 

the option of saving your constructed significance tests, and loading 

previously constructed significance tests (figure 41). If you wish to re-use a 

significance test for other meta-analyses, you can save this in your templates 

and load it at any other time. To save a constructed significance test as a 

template, select the row for the test you wish to save and click on the ‘Save as 

template’ button. To load a previously saved template, first click on the 

‘Manage templates’ button.  
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Figure 41 Template area where you can load and save (add) constructed significance tests. 

 

A pop-up window will appear in the middle of TSA program window (figure 

42). The list of available templates is shown to the left.  

 

 
 
Figure 42 Templates window. The significance test ‘10% RRR’ has been selected and the 

settings of this test are displayed under ‘Information on selected boundary’.  

 

You can click on a template title to display the available significance tests’ 

settings on the right side. To load a template significance test for your meta-

analysis, select the template you wish to load and click on the ‘Add to Meta-

analysis’ button. If you wish to delete one of the available templates 

permanently, select the template you wish to delete and click on the ‘Delete 

selected Template’ button.  

 

4.4.4. Performing the significance test calculations 

Once you have added all the significance tests you wish to employ, you need 

the TSA program to perform the necessary calculations. To achieve this, click 
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on the ‘Perform calculations’ button in the Calculations area under the Edit 

area. Depending on how many significance test you have added, the TSA 

program might take a few seconds to complete the calculations. O’Brien-

Fleming (α-spending) type boundaries with many  interim analyses can take 

5-10 seconds per set of boundaries to compute. 
 

 
Figure 43 Perform calculations button. 

 
In some instances, there is such a small relative increase in information 

between two interim analyses that the numerical calculations (numerical 

integration of extremely small tail probabilities) for the α-spending boundaries 

break down. For example, if the required information size is 20,000 patients 

and the interim analyses are performed after each trial, adding a new trial with 

40 patients would only provide a 0.2%  increment in the cumulative 

information fraction. To avoid breakdowns in the calculations, the TSA 

program automatically removes (un-checks) interim analyses that correspond 

to an  information fraction increment of 1% or smaller. When this happens, a 

window will automatically pop up in the middle of the TSA program window to 

inform which interim analyses were removed (figure 44). The data of these 

trials are, however, retained in your TSA meta-analysis and in the cumulative 

Z-value. 

 

 
Figure 44 Pop-up window that inform which interim analyses were removed. The data of 

these trials are, however, retained in your TSA meta-analysis and in the cumulative Z-value. 
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If you have added more than one significance test and do not wish to perform 

the calculations for all of these, you have the option to ignore significance 

tests. To ignore a significance test, check the checkbox in the mid column for 

the row corresponding to the significance test(s) you wish to ignore.  

 

 
Figure 45 Example of an ignored significance test (‘Conventional 2-sided’ ignored). 

 

The cumulative Z-curve and the significance boundaries (for α-spending 

functions) can be displayed using one of three variables on the x-axis: sample 

size, the event size, or the statistical information. Significance tests defined on 

different scales cannot be displayed simultaneously in a graph, so you need 

to select one of these variables for the whole analysis. Check the appropriate 

radio button in the Information Axis area below the Calculation area (figure 

46).  

 

   
Figure 46 Radio buttons for choosing the information scale on which the cumulative 

significance testing is displayed. 

 

If one or two of the three scales (sample size, event size, or statistical 

information) have not been selected in any of the added α-spending 

boundaries, they will automatically be greyed out in the Information Axis area. 

 
4.5. Graphical options for TSA 
The Graph option in the TSA program allows you to display the Z-curve and 

your constructed significance tests in relation to the strength of evidence (i.e., 

accumulated number of patients, events, or statistical information). It also 

provides a number of graphical editing options that may be useful when you 
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are preparing graphs for your article manuscripts. To go to the Graph option, 

click on the Graph tab (to the right of the TSA tab) as shown in figure 47. 
 

 
Figure 47 Click on the Graphs tab to view the Z-curve and your constructed significance tests 

displayed in relation to the strength of evidence. 

 

In the left side of the TSA program window you will find the Tests and 

boundaries Layout area, the Set Graph Layout, and two print options (‘Print 

current graph’, and ‘Generate TSA Report’). To the right of these areas you 

will find the graph displaying your Z-curve and constructed significance tests.  

 

In the Tests and boundaries layout area you will find a number of graphical 

editing options that allow you to change the presentation of the Z-curve and 

your constructed significance tests (boundaries). Your constructed 

significance tests and the Z-curve will be listed in the white area; see figure 

49. To change the presentation of one of these, first select one of the tests 

(curves) on the list and edit according to your preferences.  

 

In the TSA program, you will have the option to edit the colour, the line type, 

and the type and size of the icon displayed at each trial or interim analysis, as 

well as the size and font of the test associated with a curve or a test. You also 

have the option to hide a curve/test from the graph. 
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Figure 48 The Graph window. 

 

 

    
Figure 49 The significance tests and Z-curve listings area 
 

In the Set Graph Layout area, you will find a number of options for changing 

the general graph presentation. If you click on the ‘Layout settings’ button, a 

pop-up window will appear (figure 50), providing you with the options of 

adjusting the width of the x-axis and y-axis, the coordinate font size, or the 

font and the size of the fixed text components on the graph.  
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Figure 50 General graph layout settings to adjust fixed text components’ font and font size, 

the width of the x-axis and y-axis, and the coordinate font size. 

 

On the information axis, the distance between boundaries and the distance 

between the Z-values are conventionally displayed with respect to the relative 

increase in information. The TSA program automatically displays these 

distances in this scaled manner.  

 

 
Figure 51 Select ‘Equal’ distance for equal distance between trials on the x-axis. 

 

In some instances, however, other layouts may provide a better basis for 

visual interpretation. The TSA program also provides the layout format used in 

the paper by Pogue and Yusuf, which displays trials at equal distance on the 

information axis and displays the trial titles at a 45o angle below the x-axis. To 

choose this layout format, click on the ‘Trial Distance’ drop down box in the 

Set Graph Layout area and select ‘Equal’ (figure 51). 
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Figure 52 Select information-axis scaling/display format. 

 
Adjusted significance tests based on α-spending functions are, in effect, 

adjusted thresholds for the Z-curve, whereas adjusted significance tests 

based on the law of the iterated logarithm penalties are, in effect, adjusted 

test statistics that should be interpreted in relation to single-test significance 

test thresholds. Thus, combining these two approaches in one graph is not 

meaningful. The TSA program provides separate graphs for adjusted 

significance tests based on α-spending functions and the law of the iterated 

logarithm penalties. To see the graphical representation of the calculated α-

spending boundaries, select the Adjusted Boundaries tab above the graph. To 

see the graphical representation of the calculated law of the iterated logarithm 

penalties, select the Penalised Tests tab above the graph (figure 53). 
 

 
Figure 53 View boundaries test or penalised test graph. 

 

4.6. Exploring diversity across trials 
The TSA program also provides an option for exploring diversity estimates 

and comparing weights across the three random-effects models: DL, SJ, and 

BT. These options are available in the Diversity tab (figure 54) 
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Figure 54 Click on the Diversity tab to explore diversity estimates and compare weights 

across random-effects models. 

 

After you click on the diversity tab, a screen similar to the one shown in figure 

55 should appear. In the upper part of the screen, the weights and weight 

percentages for each trial (rows), using each of the available models 

(columns), are displayed in the lower left corner. The following things are 

displayed for each of the three random-effects models: the estimate of 

inconsistency I2 and its corresponding heterogeneity correction 1/(1-I2), the 

estimate of diversity D2 and its corresponding heterogeneity correction 1/(1-

D2), and the estimate of between-trial variance, τ2. The estimate of 

inconsistency is only displayed for the DL model. Note that the estimate of 

between-trial variance is the same for the DL and BT models (see section 

2.1.3). In the lower right corner, there is an option to choose the number of 

decimal points that all quantities should be displayed wtih. Click on the drop 

down window to select the number of decimal points. 
 

 
Figure 55 Diversity tab. 
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5. TSA example applications  

5.1. Datasets 
To illustrate the TSA applications, we use data from several published 

systematic reviews. Some of the analyses and applications presented in this 

chapter are our own modifications and additions to those that can be found in 

the original publication. 

 

5.2. Avoiding false positives  
In this example, we used data from a review comparing smoking cessation 

rates in patients receiving hospital contact plus follow-up for less than 1 month 

with patients receiving no intervention.64 In the systematic review, the 

interventions and length of follow-up differed substantially across the included 

trials. The authors therefore used the following categorisation of intervention 

intensity:64   

 

1.  Single contact in hospital lasting ≤ 15 minutes, no follow-up support. 

2. One or more contacts in hospital lasting >15 minutes, no follow up support. 

3. Any hospital contact plus follow-up ≤ 1 month. 

4. Any hospital contact plus follow-up > 1 month. 

 

The meta-analysis of intervention intensity 3 included six trials, 4476 patients, 

and 628 events. The fixed-effect model yielded a pooled relative risk of 1.05 

(95% CI 0.91 to 1.21) (the meta-analysis of odds ratios showed a similar 

result). The estimated inconsistency (I2) was = 9%, and the estimated 

diversity (D2) was 10%. We performed a retrospective trial sequential 

analysis, by re-doing a conventional meta-analysis on the accumulating data, 

each time a new trial was published. The first published trial yielded a relative 

risk of 1.47 (95% CI 1.05 to 2.05). After the second trial, the pooled relative 

risk was 1.33 (95% CI 1.02 to 1.75). The meta-analysis comparing 

intervention intensity category 3 (see above) with control was therefore 

nominally statistically significant after the first two trials.  
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We performed TSA on these data. We calculated the information size 

required to demonstrate or reject a 20% relative benefit increment (smoking 

cessation being the outcome of benefit). We assumed a 14% event proportion 

in the control group, which was roughly the median and average control group 

event proportion. We used a type I error of 5% and a type II error of 20%. We 

did not correct for heterogeneity. With these settings, we calculated the 

required information size to 5218 patients. As the number of patients included 

in the meta-analysis did not exceed the required information size, we also 

applied futility boundaries to potentially facilitate a firm ‘negative’ conclusion.  

 

 
Figure 56 The required information size to demonstrate or reject a 20% relative increase in 

benefit on smoking cessation with a control group proportion of 14%, an alpha of 5% and a 

beta of 20% is 5218 patients (vertical red line). The red dashed lines represent the trial 

sequential monitoring boundaries and the futility boundaries. The solid blue line is the 

cumulative Z-curve. 

 

The resulting trial sequential analysis is shown in figure 56. After the first and 

second trial, the cumulative Z-statistic crossed above 1.96, which corresponds 

to the nominal threshold for statistical significance, using conventional 

techniques. From the third trial onwards, the meta-analysis was no longer 

nominally statistically significant. When the last trial was added, the meta-

analysis crossed below the futility boundaries, demonstrating with 80% power 
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that the effect of an intensity 3 intervention is not larger than a 20% relative 

increase in smoking cessation. That is, within the set assumptions for 

confidence and effect size, this intervention is ineffective. 

 

5.3. Confirming a positive result 
To illustrate the application of TSA for asserting positive results, we used data 

from a systematic review comparing off-pump and on-pump coronary artery 

bypass grafting surgery (CABG).65  
 

For this example, the adjusted significance boundaries for the cumulative Z-

curve were constructed under the assumption that significance testing may 

have been performed each time a new trial was added to the meta-analysis. 

Given the considerable amount of attention that has been given to the off-

pump vs on-pump debate over the last decade, this assumption seemed 

reasonable. We used the monitoring boundaries based on the O’Brien-

Fleming type alpha-spending function, which are relatively insensitive to the 

number of repeated significance tests (see section 2.2.3).  

 

In the considered meta-analysis data sets, there were some years when more 

than one trial was published. For these years, we have analysed trials in 

alphabetical order, according to the last name of the first author. 

 

5.3.1. Confirming the ‘answer is in’ 
To illustrate the application of TSA for asserting ‘the answer is in’, we used 

the outcome of atrial fibrillation in this on-pump vs off-pump meta-analysis. 

Occurrence of atrial fibrillation was reported in 30 trials, including 3634  

patients  (with two zero-event trials).65 According to conventional standards for 

significance testing, off-pump CABG was significantly superior to on-pump 

CABG in reducing atrial fibrillation (RR 0.69;  95% CI 0.57 to 0.83) (Figure 

57). The estimated inconsistency was I2 = 47.3%, and the estimated diversity 

was D2 = 49.0%. 
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Figure 57 Forest plot of the effect of off-pump vs. on-pump CABG on atrial fibrillation. 
 

In the meta-analysis of trials with low risk of bias (1050 patients), the effect 

was not significant (0.63, 0.35 to 1.13), the estimated heterogeneity was I2 = 

77%, and the estimated diversity was D2 = 79.0%.      

 

Trial sequential analysis of atrial fibrillation 

We calculated two required information sizes for this example. First, we 

calculated the information size required to demonstrate or reject an a priori 

anticipated intervention effect of a 20% relative risk reduction, alpha of 1% 
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and beta of 10%, which was 7150 patients. The value of 20% anticipated 

intervention effect was chosen because it was believed to represent a 

reasonable intervention effect in this clinical situation. Second, we calculated 

the information size for the meta-analysed estimate of the relative risk 

reduction from the low-bias-risk trials included in the review (36.9%), which 

was 1964 patients.   
 

 
Figure 58 The heterogeneity-adjusted required information size to demonstrate or reject a 

20% relative risk reduction (a priori estimate) of atrial fibrillation (with a control group 

proportion of 27.6%, an alpha of 1%, and a beta of 10%) is 7150 patients (vertical red dashed 

line). The red dashed inward-sloping line to the left represents the trial sequential monitoring 

boundaries which are truncated for the first 14 trials. The solid blue line is the cumulative Z-

curve. 

 

All information sizes were derived to ensure a maximum type I error of 1%, 

and a maximum type II error of 10% (i.e., 90% power). All information sizes 

were heterogeneity adjusted, using the estimate of diversity, D2. Both 

information sizes were derived assuming an event proportion of 27.6% in the 

on-pump group (median event proportion in this control group).  

 

The cumulative Z-curve crossed the monitoring boundaries constructed from 

both information size calculations (Figure 58 and 59), thereby confirming that 

off-pump CABG is superior to on-pump CABG in reducing atrial fibrillation. 
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Figure 59 The heterogeneity-adjusted required information size to demonstrate or reject a 

36.9% relative risk reduction (low-bias risk trial estimate) of atrial fibrillation (with a control 

group proportion of 27.6%, an alpha of 1%, and a beta of 10%) is 1964 patients (vertical red 

dashed line). The red dashed inward-sloping line to the left make up the trial sequential 

monitoring boundaries which are truncated for the first 4 trials. The solid blue line is the 

cumulative Z-curve. 

 
5.3.2. Avoiding early overestimates 

This same example, of atrial fibrillation in CABG, can be used to illustrate 

how overestimates of effect can happen early in the conventional meta-

analytic process. The meta-analysis of atrial fibrillation became statistically 

significant according to the conventional criterion (p<0.05) after the first trial. 

All except one of the subsequent P values in the cumulative meta-analysis 

were also smaller than 0.05. In fact, most subsequent P values were 

smaller than 0.01. Empirical evidence suggests that pooled effect 

estimates, even when statistically significant, are unstable when only a 

limited number of events and patients have been accrued.4;5;9;29 Insisting 

that a meta-analysis surpasses its required information size may ensure 

reliable pooled estimates.1;2;4;6;19;23  

 

Table 3 shows the evolution of treatment effects over time, in this example, 

at the end of each year. The pooled relative risk was grossly overestimated 

in the first two years and supported by P values smaller than 0.01 (the 

conventional 99% confidence intervals precluded 1.00). The following three 

years, the pooled relative risk was overestimated by an absolute risk of at 

least 10%. In 2003, the meta-analysis crossed the monitoring boundaries 

from the information size calculation based on the low bias risk estimates, 
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and in 2004, the meta-analysis surpassed this required information size. In 

2004, the meta-analysis also crossed the monitoring boundaries based on a 

20% a priori relative risk reduction. Both the conventional and adjusted 

confidence intervals converged between 2002 and 2004.  

 
  

Total number of 
 
99% Confidence Interval 

Year Trials Events Patients 

 
Pooled 
Effect Conventional Adjusted 

1999 1 55 200 0.24 0.14 to 0.42 0.03 to 7.74 

2000 3 74 288 0.39 0.15 to 0.99 0.02 to 7.18 

2001 5 143 649 0.57 0.24 to 1.34 0.12 to 2.87 

2002 8 204 932 0.52 0.30 to 0.90 0.22 to 1.21 

2003a 10 285 1168 0.55 0.37 to 0.81 0.35 to 0.85 

2003b 13 391 1722 0.53 0.35 to 0.79 0.34 to 0.83 

2004 19 641 2832 0.61 0.46 to 0.82 - 

2005 20 679 2999 0.63 0.49 to 0.85 - 

2006 25 768 3310 0.67 0.53 to 0.86 - 

2007 27 775 3372 0.67 0.53 to 0.86 - 

a First crossing of the boundaries, b End of the year 

 
Table 3 Shows the evolution of pooled effects (relative risk estimates), conventional and 

adjusted 99% confidence intervals at the end of each year, with respect to the cumulative 

number of trials, events, and patients. The adjusted 99% confidence intervals are based on 

alpha-spending in relation to the required information size (1964 patients), using the 

relative risk estimate suggested by the trials with low risk of bias. 

 

This example illustrates why pooled estimates based on a relatively small 

number of events and patients (in this case, less than 100 events and less 

than 300 patients) should not be trusted. Point estimates from this meta-

analysis did not appear to be sufficiently reliable until at least about one 

hundred events and one thousand patients were accrued. Adjusted 

confidence intervals serve to guard against spurious inferences at early 

stages of a meta-analysis, and appropriately converge to resemble 

conventional confidence intervals as the accrued number of patients 

approaches the required information size.   
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Figure 60 Forest plot of the effect of off-pump vs on-pump CABG on myocardial infarction. 

 
5.4. Testing for futility 

The example of the off-pump vs on-pump CABG meta-analysis can also be 

used to illustrate testing for futility, this time using the outcome of myocardial 
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infarction (MI). Occurrence of MI was reported in 44 trials including 4303 

patients.65 No significant difference occurred between off-pump vs on-pump 

surgery (RR 1.06; 95% CI 0.72 to 1.54) (Figure 60) and this result was 

independent of risk of bias. No statistical heterogeneity was detected (I2 = 

0%). Nineteen trials (909 patients) were zero-event trials. When zero-event 

trials were continuity corrected, there was also no noticeable change in the 

results (RR 1.05; 95% CI 0.74 to1.48).  

 

 
Figure 61 The heterogeneity-adjusted required information size to demonstrate or reject a 

33% relative risk reduction (a priori estimate) of myocardial infarction (MI) (with an occurrence 

of MI in the on-pump group of 3.9%, an alpha of 5%, and a beta of 20%) is 5942 patients 

(vertical red line). To the left, the red, inward-sloping, dashed lines make up the trial 

sequential monitoring boundaries. To the right, the red outward sloping dashed lines make up 

the futility region. The solid blue line is the cumulative Z-curve. 
 

We calculated the information size required to demonstrate or reject an a 

priori anticipated intervention effect of a 33% relative risk reduction. The value 

of 33% was chosen because it was believed to represent a reasonable 

intervention effect in this clinical situation. In contrast to the information size 

calculation for atrial fibrillation, we used a maximum type I error of 5%, and a 

maximum type II error of 20% (80% power). We used the median proportion 

of myocardial infarctions in the ‘on-pump’ groups (excluding the zero-event 

trials) as our control group event proportion (3.9%). Collectively, these 
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assumptions yielded a required information size of 5942. The cumulative Z-

curve crossed the futility boundaries (Figure 61), and we are therefore able to 

infer that neither off-pump CABG nor on-pump CABG is more than 33% more 

effective than the other. This finding, of course, comes with a 20% risk of 

being a ‘false futile’ finding (the type II error is 20%). 

 
5.5. Estimating the sample size of a new clinical trial 
When a meta-analysis has neither crossed the monitoring boundaries nor the 

futility boundaries, it is possible to approximate how many patients should be 

randomised in the next trial to make the meta-analysis cross either of the two 

boundaries. A recent methodology paper illustrated this approach using a 

meta-analysis of isoniazid chemoprophylaxis for preventing tuberculosis in 

HIV positive patients.25 This meta-analysis included nine trials, 2911 patients, 

and 131 events and yielded a pooled relative risk of 0.74 (95% CI 0.53 to 

1.04). The estimated inconsistency and diversity were both 0%.  

 

 
Figure 62 Forest plot of the individual trial effects of isoniazid chemoprophylaxis vs. control 

for preventing tuberculosis in purified protein derivative negative HIV-infected individuals. 

 

We estimated the required information size for detecting a 25% relative risk 

reduction in tuberculosis with an alpha = 5% and beta = 20% (80% power). 

The required information size was based on the assumption of a 5% control 

group incidence rate (approximately the median rate across trials). We also 

heterogeneity corrected the required information size assuming 20% diversity 

(D2). This yielded a required information size of 10,508 patients. Statistical 
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monitoring boundaries and futility boundaries were subsequently constructed 

according to the set error levels and the required information size. 

 

 
Figure 63 Prospective trial sequential analysis of isoniazid vs control for preventing 

tuberculosis. To the left, the red inward-sloping dashed lines make up the trial sequential 

monitoring boundaries. To the right, the outward sloping red dashed lines make up the futility 

region. The solid blue line is the cumulative Z curve. The last line on the cumulative Z curve 

represents an imagined trial that makes the meta-analysis conclude that the isoniazid 

prevents tuberculosis. 

 

To estimate how many patients would needed to be randomised in a future 

clinical trial to make the meta-analysis conclusive, we approximated the 

number of patients in an imaginary future trial that would make the cumulative 

Z curve cross the monitoring boundaries or the futility boundaries. If a future 

clinical trial were to make the meta-analysis conclusive with a positive result, 

we assumed that the trials would have the same control group event 

proportion and intervention effect as hypothesized in the information size 

considerations. That is, we assumed a trial would have a 5% control group 

event proportion and yield a 25% relative risk reduction (i.e., the trial would 

have a 3.75% intervention group event proportion). 
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Figure 64 Prospective trial sequential analysis of isoniazid vs control for preventing 

tuberculosis. To the left, the red inward-sloping dashed lines make up the trial sequential 

monitoring boundaries. To the right, the red, outward sloping dashed lines make up the futility 

region. The solid blue line is the cumulative Z curve. The last line on the Z curve represents 

an imagined trial that makes the meta-analysis conclude that isoniazid is not able to prevent 

tuberculosis. 

 

If a future clinical trial were to make the meta-analysis conclusive with a futile 

result, we assumed that the intervention group event proportion would also be 

5% (i.e., no effect). We approximated that about 3800 patients (1900 patients 

in each intervention group) would be required to yield a conclusive positive 

meta-analysis (Figure 63). About 4000 patients (2000 patients in each 

intervention group) would be required to yield a conclusive meta-analysis 

showing futility (Figure 64). 

 
5.6. Other published trial sequential analysis applications 
The authors of this manual have authored several systematic reviews for 

which trial sequential analysis was applied to at least one meta-

analysis.14;24;63;65-74 Table 4 provides a brief overview of these publications 

(ordered by year of publication). 
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First author Journal (year) 

 
Meta-analyses 

Bangalore75 BMJ 
(2011) 

Angiotensin receptor blockers (ARB) vs control for  
i) non-fatal myocardial infarction 
ii) all-cause mortality 
iii) cardiovascular mortality  
iv) angina pectoris 
v) stroke 
vi) heart failure 
vii) new onset diabetes 

Bangalore76 
Archives of 
Neurology 
 (2011) 

Carotid artery stenting (CAS) vs carotid 
endarterectomy on 
i) death, myocardial infarction or stroke 
ii) periprocedural death or stroke 
iii) periprocedural stroke 

Bangalore77 Lancet Oncology 
(2011) 

i) Angiotensin receptor blockers vs. comparison: effect 
on cancer risk  and on cancer-related death 
ii) Angiotensin converting enzyme inhibitors vs. com-
parison: effect on cancer risk and on cancer-related 
death 
iii) Beta-blockers vs. comparison: effect on cancer risk 
and on cancer-related death 
iv) Calcium channel blockers vs. comparison: effect on 
cancer risk and on cancer-related death 
v) Diuretics vs. comparison: effect on cancer risk and 
on cancer-related death 

Afshari A24 The Cochrane 
Library (2010) 

i) Inhaled nitric oxide vs control for acute respiratory 
distress syndrome 
ii) Inhaled nitric oxide vs control for lung injury 

Awad T63 Hepatology 
(2010) 

Peginterferon alfa-2a vs peginterferon alfa-2b for 
hepatitis C 

Brok J66 
J Alim Pharm & 
Ther 
(2010)  

Ribavirin plus interferon vs interferon for hepatitis C 

Nielsen N70 Int J Cardiol      
(2010) Hypothermia vs control after cardiac arrest 

Tarnow-Mordi 
WO72 

Pediatrics 
(2010) 

i) Probiotics vs control to reduce mortality in newborn 
ii) Probiotics vs control to reduce necrotizing 
entercolitis in newborn 

Knorr U69 Psychoneuroendo
crinology (2010) 

Salivary cortisol in depressed patients vs control 
persons 

Bangalore S14 The Lancet 
(2009) 

i) Perioperative beta-blockade vs placebo for mortality 
i) Perioperative beta-blockade vs placebo for 
myocardial infarction 

Brok J67 The Cochrane 
Library (2009) Ribavirin monotherapy vs placebo for hepatitis C 
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Whitfield K73 The Cochrane 
Library (2009) Pentoxifylline vs control for alcoholic hepatitis 

Moller CH65 Europ Hearj J 
i) Off-pump vs on-pump CABG for atrial fibrilation 
ii) Off-pump vs on-pump CABG for myocardial 
infarction  

Ghandy GY68 Mayo Clin Proc 
(2008) 

i) Perioperative insulin infusion vs control for Mortality 
ii) Perioperative insulin infusion vs control for Morbidity 

Rambaldi A71 
J Alim Pharm & 
Ther 
(2008) 

Glucocorticosteroids vs control for alcoholic hepatitis 

Whitlock R74 Europ Heart J 
(2008) 

Prophylactic steroid use vs control for patients 
undergoing cardiopulmonary bypass 

Afshari A24 BMJ 
(2007) Antithrombin III vs control for reducing cardiac… 

   
Table 4 Overview of published meta-analyses where trial sequential analysis was applied. 
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6. Appendixes 

6.1. Effect measures for dichotomous and continuous data meta-
analysis 

The standard errors of the respective effect measures are calculated similarly 

to the methods used in Review Manager v.5.27 

 

For each trial, we denote the number of observed events (e.g., deaths) in the 

two intervention groups, eA and eB, and the total number of participants, nA 

and nB, in the two intervention groups. 

 

The standard errors for risk differences, relative risks, and odds ratios are 

calculated using the following formulas: 

 

( )

( )

( )

3 3

(1 ) (1 )

1 1 1 1

1 1 1 1
(1 ) (1 )

A A B B

A B

A B A B

A B A B

e e e ese RD
n n

se RR
e e n n

se OR
e e e e

− −
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= + − −

= + + +
− −

 

 

For a Peto’s odds ratio, the standard error is given by: 

 

( ) 1/se OR v=
 

where 

( )( )( )
( ) ( )2

(1 ) (1 )

1
A B A B A B

A B A B

n n e e e e
v

n n n n

+ − + −
=
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6.2. Random-effects approaches 

6.2.1. Formulas for the Biggerstaff-Tweedie method 
Let fDL(t) denote the probability density function of the DL estimate of τ2 and let 

FDL(t) denoted the corresponding cumulative distribution function FDL(t). 

Defining the trial weights as a function of t by wi(t)= (σi
2 + t)-1 and using the 

obtained distribution of the estimate of  τDL
2  the so-called frequentist-Bayes 

estimates of the trial weights can be obtained: 

 

( )

* 2 * 2

*
(0, ) 0

( ) [ ( )]

1 ( ) (0) ( ) ( )

i i DL

i i DL

w E w

F t t w w t f t dt

τ τ
∞

∞

=

= ⋅ + ∫  

 

subsequently yielding summary estimates of the overall population 

intervention effect:  
*

BT *
i ii

ii

w Y
w

µ = ∑
∑  

with variance  

( )
( )( )* 2 2 2

2* 2

1( ) ( )
( )

BT i DL i DLi
i DLi

Var w s
w

µ τ τ
τ

 = + ∑
∑  

thereby ensuring that the variance of the summary effect estimate is adjusted 

with regard to the uncertainty associated with estimating the between-trial 

variance.  

 

6.3. Trial sequential analysis 

6.3.1. Exaggerated type I error due to repeated significance testing 
 
By the laws of basic probability theory, when data is tested twice over time, 

and when an α of 5% is used as a threshold for both tests (or a Z value of 

1.96), the probability that the two interventions will be declared statistically 

significant under the null hypothesis is: 
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( )
( ) ( )

( )( ) ( )( )
( ) ( ) ( ) ( )
( )

0 1 2

1 2 1

1 2 1

1 2 1 1 2 1

1 2 1

Pr(  ) Pr Z 1.96 or Z 1.96

= Pr Z 1.96 Pr Z 1.96  Z <1.96

= 1-Pr Z <1.96 1-Pr Z <1.96  Z <1.96  

= 1- Pr Z <1.96 - Pr Z <1.96  Z <1.96  + Pr Z <1.96 Pr Z <1.96  Z <1.96

= 1- Pr Z <1.96 - Pr Z <1.96  Z

|
|
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|
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⋅

⋅

( ) ( )
( ) ( )

1 2

2 1 1 2

<1.96 + Pr Z <1.96 or Z <1.96

= 0.05 - Pr Z <1.96  Z <1.96 + Pr Z <1.96 or Z <1.96

0.05

|
>

 

Where the inequality is apparent from the fact that  
 
 

( ) ( )2 1 2 1Pr Z <1.96 or Z <1.96 > Pr Z <1.96 Z <1.96| 
 

 
 
The above is easily generalisable for any value of α and for any number of 

repeated significance tests. 

 

6.3.2. Alternative methods not implemented in the TSA software 

A wide range of methods are available for repeated significance testing in 

randomised clinical trials – some of which may also find application in meta-

analysis.30 The approaches implemented in the TSA software are all 

approaches constructed around monitoring of the standardized Z-statistic (or 

at least an adjustment hereof). Other sequential approaches which have 

received some attention in the context of meta-analysis are constructed to 

monitor other statistics.   

 

One approach that has recently received some attention is the sequential 

analysis (monitoring) of efficient scores or the likelihood score statistic for the 

meta-analysed effect.78-81 In the standard meta-analysis setting the efficient 

score for each trial is simply the estimated trial treatment effect multiplied by 

its variance, and the efficient score for a meta-analysis is the sum of trial 

efficient scores. In sequential analysis of efficient scores, information is 

measured as statistical information (i.e., Fischer information). The efficient 

score is plotted (y-axis) against the statistical information (x-axis), and 

monitored with some boundaries. Just as with the alpha-spending and beta-
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spending based boundaries, the sequential method for monitoring efficient 

scores produce superiority, inferiority, and futility boundaries. Examples of 

such boundaries are illustrated in figure 65 below. 

 

 

 

 

 

 

 

 

 

 
Figure 65 Illustration of two types of monitoring boundaries from sequential meta-analysis of 

efficient scores. The left graph illustrates what would correspond to an O’Brien-Fleming alpha-

spending significance boundaries and O’Brien-Fleming beta-spending futility boundaries. The 

right graph illustrates what corresponds to what is typically knows and Whitehead’s triangular 

boundaries. The latter is designed to minimize total risk of statistical error (i.e., type I and type 

II error together).  

 

Just like different α-spending functions yield different types of adjusted 

significance boundaries, the triangular test can be used to construct different 

types of boundaries (and similarly for beta-spending functions and futility 

boundaries).45;80 For example, a special case of the triangular test yields 

boundaries that are equivalent to the O’Brien-Fleming boundaries when 

accumulating statistical information (left graph in figure 65). 

  

The O’Brien-Fleming type efficient score sequential boundaries were recently 

explored empirically and through simulation.80 A study by van der Tweel and 

Bollen compared O’Brien-Fleming significance boundaries (the ones 

implemented in the TSA software) to the O’Brien-Fleming type efficient score 

sequential boundaries in six meta-analysis.80 These six meta-analyses were 

the ones initially (and randomly) selected as illustrative examples in the 

methods paper proposing the information size heterogeneity correction for 

trial sequential analysis which is described in section 2.2.1. of this manual.6 

5         10         15        20 5         10         15        20 
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Tweel and Bollen found that the two methods were identical in testing for 

significance. A simulation study by Higgins et al investigated the type I error 

and adjusted confidence interval coverage associated with the O’Brien-

Fleming type efficient score sequential boundaries under a number of 

random-effects model approaches.79 They found that under this design the 

conventional DerSimonian-Laird random-effects model and the Biggerstaff-

Tweedie approach did not yield satisfactory results, but a semi-Bayesian 

approach utilizing an informative Gamma distribution on the between-trial 

variance did. Another example of the efficient score sequential boundaries is 

the triangular test proposed by Whitehead.45;81 The boundaries produced from 

this method are illustrated in the right graph of figure 65. The triangular test 

boundaries are statistically constructed to yield the minimum possible risk of 

committing an error (either a type I error or type II error).30;45 This emphasis - 

on minimising both types of error -  skews this technique towards favouring 

total risk of error over risk of type I error. In the context of medical research, 

conventional theory does not support this balance; prevention of alpha error 

has always been considered more important. 

 

The performance of the Whitehead triangular test applied in meta-analysis 

has been explored in a simulation study, where the method was found to 

exhibit poor control of the maximum type I error in heterogeneous meta-

analyses.81 The results of this study suggested that the more heterogeneous 

a meta-analysis data set is, the worse the triangular test exhibits control of the 

type I error.81 To date, the literature contains one example of the Whitehead 

triangular test being applied to meta-analysis comparing death or chronic lung 

disease after high-frequency ventilation with conventional mechanical 

ventilation in the treatment of preterm newborns.78  In this example, the meta-

analysis demonstrated no difference between the two interventions as the 

cumulative score statistic crossed the futility boundaries.78 

  

Stochastic curtailment is another method for controlling the risk of false 

positives and false negatives.1;2 When applied to meta-analysis, this method 

concentrates on predicting what the outcome will be once a meta-analysis 

surpasses its required information size.1;2 More specifically, stochastic 
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curtailment is a method for calculating the likelihood that the current trend of 

the data will reverse before surpassing the required information size. When 

the probability of such a reversal is sufficiently small, a meta-analysis may be 

considered conclusive. Two conditional probabilities can be calculated. First, if 

the current trend in the data is suggesting that the experimental intervention is 

effective, stochastic curtailment may be used to calculate the probability of 

rejecting the null hypothesis when the meta-analysis surpassed the required 

information size. If this conditional probability is sufficiently high, the meta-

analysis can be considered conclusive. Similarly, if the current data is 

suggesting a lack of trend, stochastic curtailment can be utilised to calculate 

the probability of failing to reject the null hypothesis once the meta-analysis 

surpasses its required information size. Again, if this conditional probability is 

sufficiently high, the meta-analysis can be considered conclusive. Stochastic 

curtailment may be a valuable tool to assist decision making from formal 

significance testing methods. However, because most meta-analyses are 

subject to some time-trend bias, the conditional probability of a trend reversal 

is very likely to be biased as well. 
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7. List of abbreviations and statistical notation 
 

The following chapter provides a guide to the abbreviations, notation, and 

terminology used in this manual. In some cases, these definitions will vary 

from other sources. Our intention is to provide the reader with a guide for how 

these terms were used in this manual. 

 

7.1. General abbreviations 

AF  - Adjustment Factor 

BT  - Biggersaff-Tweedie 

CI  - Confidence Interval 

D2  - Diversity 

DL  - DerSimonian-Laird 

I2  - Inconsistency 

IF  - Information Fraction 

IS  - Information Size  

JRE  - Java Runtime Environment 

MD  - Mean Difference 

OIS  - Optimal Information Size 

OR  - Odds Ratio 

RCT  - Randomised Controlled Trial 

RD  - Risk Difference 

RR  - Relative Risk 

RRR  - Relative Risk Reduction  

SJ  - Sidik-Jonkman 

SMD  - Standardised Mean Difference 

TSA  - Trial Sequential Analysis 

 

7.2. Statistical notation 
7.2.1. Lower case letter symbols  
 c  – The statistical significance threshold with respect |Z| 

 ci  – The adjusted threshold for Zi under repeated testing 

 eX  – The number of events in intervention group X 
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 fDL(t)  – The probability distribution for the DerSimonian-Laird estimator 

 k  – The number of trials in a meta-analysis 

 mX  – The mean response in intervention group X 

 nX  – The number of patients in intervention group X 

 sdX  – The standard deviation in intervention group X 

 v  – Variance estimate 

 vF    – The variance in a fixed-effect model 

 vR    – The variance in a random-effects model 

 wi  – The weight assigned to the i-th trial in a fixed-effect model 

 wi*  – The weight assigned to the i-th trial in a random-effects model 

 wi(t)  – The i-th trial weight as a function of the between-trial variance 

 

 7.2.2. Upper case letter symbols 
 AF  – The heterogeneity adjustment factor 

 C  – The sum of the continuity corrections for two groups 

 CFX  – The continuity correction for intervention group X 

 D2   – The diversity measure used to quantify heterogeneity 

 E(X)  – The expectation of X  

 H  – A conceptual measure of D2 

 H0  – The null hypothesis 

 I2   – The inconsistency measure used to quantify heterogeneity 

 Ij   – The cumulative statistical information after the j-th 

 IFi  – The cumulative information fraction after the i-th trial 

 ISPatients – The required number of patients in a meta-analysis 

 ISEvents – The required number of events in a meta-analysis 

 ISStatistical – The required statistical information in a meta-analysis 

 ISFixed  – The required information size for a fixed-effect model  

 ISRandom – The required information size for a random-effects model  

 ORi  – The odds ratio estimate of the i-th trial 

 P  – The test P-value derived from Z 

 PX  – The event rate in intervention group X 

 P*  – The average event rates of the two treatment groups 

 Pr(X)   – The probability that some event X occurs 

 Pr(X|Y)  – The probability that some event X given the event Y occured  
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 Q  – The Cochran homogeneity test statistic 

 R  – The randomisation ratio 

 RDi  – The risk difference estimate of the i-th trial 

 RRi  – The relative risk estimate of the i-th trial 

 Sr  – The sum of trial weights to the r-th power 

 SE(X)  – The standard error of X  

 Var(X)  – The variance of X  

 Z  – The test statistic for whether there exists an intervention effect 

 Zi  – The Z-value from the meta-analysis including the first i trials 

 Z1-α/2  – The (1-α/2)-th percentile of the standard normal distribution 

 Z1-β  – The (1-β)-th percentile of the standard normal distribution 

 Yi  – The observed intervention effect in the i-th trial  
  
7.2.3. Greek letter symbols  
 α  – The maximum risk of type I error 

 α(t)  – The cumulative type I error risk as a function of time 

 β  – The maximum risk of type II error 

 β(t)  – The cumulative type II error risk as a function of time  

 δ  – The a priori estimate of an anticipated intervention effect 

 δF    – The anticipated intervention effect in a fixed-effect model 

 δR    – The anticipated intervention effect in a random-effects model 

 λ   – A constant to ensure control of α when penalising Z 

 µi    – The underlying ‘true’ intervention effect of the i-th trial 

 µ     – The overall ‘true’ intervention effect  

µ̂      – The pooled intervention effect 

 σ2  – The variance of δ 

 σi
2  – The variance of Yi 

 τ2  – The between-trial variance 

 τDL
2   – The DerSimonian-Laird estimate for the between-trial variance 

 τSJ
2   – The Sidik-Jonkman estimate for the between-trial variance 

 θ̂   – The pooled odds ratio of excluding zero-event trials 

 Φ   – The cumulative standard normal probability distribution function 
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