Logix5000 Controllers Add-On Instructions 'AB) Allen-Bradley

Catalog Numbers 1756 ControlLogix, 1756 GuardLogix, 1768 CompactLogix,
1768 Compact GuardLogix, 1769 CompactLogix, 1789 SoftLogix,
PowerFlex with DriveLogix

Programming Manual

e e -

Rockwell
@ Allen-Bradley - Rockwell Software AAUITOMation

Important User Information

Solid state equipment has operational characteristics differing from those of electromechanical equipment. Safety Guidelines
for the Application, Installation and Maintenance of Solid State Controls (publication SGI-1.1 available from your local Rockwell
Automation sales office or online at http://www.rockwellautomation.com/literature/) describes some important differences
between solid state equipment and hard-wired electromechanical devices. Because of this difference, and also because of the
wide variety of uses for solid state equipment, all persons responsible for applying this equipment must satisfy themselves that
each intended application of this equipment is acceptable.

In no event will Rockwell Automation, Inc. be responsible or liable for indirect or consequential damages resulting from the use
or application of this equipment.

The examples and diagrams in this manual are included solely for illustrative purposes. Because of the many variables and
requirements associated with any particular installation, Rockwell Automation, Inc. cannot assume responsibility or liability for
actual use based on the examples and diagrams.

No patent liahility is assumed by Rockwell Automation, Inc. with respect to use of information, circuits, equipment, or software
described in this manual.

Reproduction of the contents of this manual, in whole or in part, without written permission of Rockwell Automation, Inc., is
prohibited.

Throughout this manual, when necessary, we use notes to make you aware of safety considerations.

Identifies information about practices or circumstances that can cause an explosion in a hazardous environment,
which may lead to personal injury or death, property damage, or economic loss.

IMPORTANT Identifies information that is critical for successful application and understanding of the product.

ATTENTION
Identifies information about practices or circumstances that can lead to personal injury or death, property damage,
or economic loss. Attentions help you identify a hazard, avoid a hazard, and recognize the consequence

SHOCK HAZARD
Labels may be on or inside the equipment, for example, a drive or motor, to alert people that dangerous voltage may
be present.

BURN HAZARD
Labels may be on or inside the equipment, for example, a drive or motor, to alert people that surfaces may reach

dangerous temperatures.

I
A
| IMPORTANT |
I
A
A
VAN

Allen-Bradley, Rockwell Automation, TechConnect, Logix5000, ControlLogix, GuardLogix, CompactLogix, SoftLogix, FlexLogix, PowerFlex 700S, and DriveLogix are trademarks of Rockwell
Automation, Inc.

Trademarks not belonging to Rockwell Automation are property of their respective companies.

http://literature.rockwellautomation.com/idc/groups/literature/documents/in/sgi-in001_-en-p.pdf
http://www.rockwellautomation.com/literature/

Summary of Changes

Publication 1756-PM010C-EN-P - October 2009

The information below summarizes the changes to this manual since
the last publication.

To help you find new and updated information in this release of the
manual, we have included change bars as shown to the right of this
paragraph.

The Designing Add-On Instructions chapter was divided into two
chapters, Designing Add-On Instructions and Defining Add-On
Instructions, and some of the content was restructured.

Information on high-integrity Add-On Instructions and safety Add-On
Instructions was added throughout the manual as well as the changes
listed in this table.

Topic Page
Table of terms 10
New Signature Tab for High-integrity and Safety Add-On Instructions 16
Restrictions for Safety Add-On Instructions 19
Changing the Language Type of the Logic Routine 21
Additional Classes Supported by GSV and SSV Instructions 26
Create an Alias Parameter for a Local Tag 28, 38
Designating an InOut Parameter as a Constant 31
Defining External Access for Tags 31
Updates to Arguments Following Parameter Edits 4
Copying Parameter or Local Tag Default Values 43
Change the Class of an Add-On Instruction 54
Updates to Applying Source Protection procedure 58
Generate an Add-On Instruction Signature 60
Updated Information on Copying and Pasting Add-On Instructions 86
Updated Information on Exporting Add-On Instructions 89
Updated Information on Importing Add-On Instructions 92
Updated Information on Updating Add-On Instructions via Import 95

Summary of Changes

Notes:

4 Publication 1756-PM010C-EN-P - October 2009

Table of Contents

Designing Add-On Instructions

Publication 1756-PM010C-EN-P - October 2009

Preface
Purpose of This Manual. 9
Additional Resources for Safety Applications 9
Understanding Terminology 10
Chapter 1
Introduction 11
About Add-On Instructions 11
Components of an Add-On Instruction. 13
General Information. oL 13
Parameters. 14
Local Tags. 14
Data Type 15
Logic Routine 15
Optional Scan Mode Routines. 16
Instruction Signature 16
Signature History o 17
Change History 17
Help 18
Considerations for Add-On Instructions 18
Instruction Functionality. 18
Encapsulation 19
Safety Add-On Instructions. 19
Instruction Signature 20
Safety Instruction Signature 21
Programming Languages 21
Transitional Instructions 21
Instruction Size o 22
Runtime Editing. 22
Nesting Add-On Instructions. 22
Routines Versus Add-On Instructions 23
Programmatic AccesstoData 24
Unavailable Instructions within Add-On Instructions 25
Using GSV and SSV Instructions 26
Considerations When Creating Parameters 27
Passing Arguments to Parameters by Reference or by
Value 27
Selecting a Data Type for a Parameter 27
Creating an Alias Parameter for a Local Tag 28

Using a Single Dimension Array as an InOut Parameter. . 28
Determining Which Parameters to Make Visible or

Required 29
Using Standard and Safety Tags 30
Data Access Control. 31

5

Table of Contents

Defining Add-On Instructions

Planning Your Add-On Instruction Design 32
Intended Behavior. L. 32
Parameters. 32
Naming Conventions 32
Source Protection. o 33
Nesting - Reuse Instructions 33
Local Tags. 33
Programming Languages 33
Scan Mode Routines. 34
TSt o 34
Help Documentation 34

Chapter 2

Introduction 35

Create an Add-On Instruction 35

Create Parameters. i 37

Create Local Tags i 39

Edit Parameters and Local Tags 41

Updates to Arguments Following Parameter Edits. 41

Copying Parameter or Local Tag Default Values. 43

Create Logic for the Add-On Instruction. 44
Execution Considerations for Add-On Instructions. 45
Optimizing Performance. 45

Defining Operation in Different Scan Modes 45

Enabling Scan Modes 47

Prescan Routine 47
Postscan Routine 49
EnableInFalse Routine 51

Using the Enableln and EnableOut Parameters. 52
Enableln Parameter and Ladder Diagram 53
Enableln Parameter and Function Blocks 53
Enableln Parameter and Structured Text. 53

Change the Class of an Add-On Instruction 54

Testing the Add-On Instruction 54
Before You Test. 55
Testthe Flow. 55
Monitor Logic with Data Context Views 55
Verifying Individual Scan Modes. 56

Defining Source Protection for an Add-On Instruction 57
Enable the Source Protection Feature 57
Apply Source Protection. 58
Observe Source Protection. 60

Publication 1756-PM010C-EN-P - October 2009

Table of Contents

Using Add-On Instructions

Import and Export Add-On
Instructions

Publication 1756-PM010C-EN-P - October 2009

Generate an Add-On Instruction Signature
Generate, Remove, or Copy an Instruction Signature. . . .
Create a Signature History Entry
Generate a Safety Instruction Signature.
Viewing and Printing the Instruction Signature

Creating Instruction Help.
Write Clear Descriptions.
Document an Add-On Instruction.
Language Switching

Motor Starter Instruction Example

Simulation Instruction Example
Ladder Diagram Configuration
Function Block Diagram Configuration.
Structured Text Configuration.

Chapter 3

Introduction
Accessing Add-On Instructions
Use the Add Element Dialog Box.
Include an Add-On Instruction in a Routine
Tips for Using an Add-On Instruction
Programmatically Access a Parameter.

Using the Jog Command in Ladder Diagram

Using the Jog Command In Function Block Diagram. . . .

Using the Jog Command in Structured Text.
Monitor the Value of a Parameter
View Logic and Monitor with Data Context
Determine if the Add-On Instruction is Source Protected . .
Copy an Add-On Instruction
Store Your Add-On Instructions.

Chapter 4

Introduction
Creating an Export File
Export to Separate Files
Exporttoa Single File
Importing an Add-On Instruction.
Import Considerations
Import Configuration

Update an Add-On Instruction to a Newer Revision via

Import

Index

60
01
62
02
03
03
64
07
68
70
72
73
73

75
75
76
77
79
79
80
81
82
82
83

. 85

86
87

89
89
90
91
92
92
94

95

Table of Contents

8 Publication 1756-PM010C-EN-P - October 2009

Preface

Purpose of This Manual This manual shows how to design, configure, and program Add-On
Instructions. This manual is one of a set of related manuals that show
common procedures for programming and operating Logix5000
controllers. For a complete list of common procedures manuals, see
the Logix5000 Controllers Common Procedures Programming Manual,

publication 1756-PM001.

The term Logix5000 controller refers to any controller that is based on
the Logix5000 operating system, including the following:

e CompactLogix and Compact GuardLogix controllers
e ControlLogix and GuardLogix controllers

¢ Drivelogix controllers

e FlexLogix controllers

e SoftLogix5800 controllers

Additional Resources for With the addition of safety Add-On Instructions in RSLogix 5000

. . software, version 18, you can use Add-On Instructions in GuardLogix
Safety Appllcatlons and Compact GuardLogix safety-related functions. This manual
provides information about safety Add-On Instructions.

For detailed information on safety application requirements, the safety
task signature, and configuring and operating safety controllers, refer
to these publications:

e GuardLogix Systems Safety Reference Manual, publication
1756-RMO

e Compact GuardLogix Controllers User Manual, publication
1768-UM002
e GuardLogix Controllers User Manual, publication 1756-UM020

e GuardLogix Safety Application Instruction Set Reference Manual,

publication 1756-RMQ95

Publication 1756-PM010C-EN-P - October 2009 9

http://literature.rockwellautomation.com/idc/groups/literature/documents/pm/1756-pm001_-en-e.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1756-um020_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/um/1768-um002_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf

Preface

Understanding Termino'ogy This table defines some of the terms used in this manual when
describing how parameters and arguments are used in Add-On

Instructions.

Term

Definition

Argument

An argument is assigned to a parameter of an Add-On Instruction
instance. An argument contains the specification of the data used by
an instruction in a user program. An argument can contain the
following:

o Asimple tag (for example, L101)

o Aliteral value (for example, 5)

o Atag structure reference (for example, Recipe.Temperature)
o Adirect array reference (for example, Buffer{1])

¢ Anindirect array reference (for example, Buffer{Index+1])

o A combination (for example, Buffer[Index+1].Delay)

Parameter

Parameters are created in the Add-On Instruction definition. When
an Add-On Instruction is used in application code, arguments must
be assigned to each required parameter of the Add-On Instruction.

An InQut parameter defines data that can be used as both input and
output data during the execution of the instruction. Because InOut

parameters are always passed by reference, their values can change
from external sources during the execution of the Add-On Instruction.

Input parameter

For an Add-On Instruction, an Input parameter defines the data that
is passed by value into the executing instruction. Because Input
parameters are always passed by value, their values cannot change
from external sources during the execution of the Add-On Instruction.

Output parameter

For an Add-On Instruction, an Output parameter defines the data that
is produced as a direct result of executing the instruction. Because
Output parameters are always passed by value, their values cannot
change from external sources during the execution of the Add-On
Instruction.

Passed by
reference

When an argument is passed to a parameter by reference, the logic
directly reads or writes the value that the tag uses in controller
memory. Because the Add-On Instruction is acting on the same tag
memory as the argument, other code or HMI interaction that changes
the argument’s value can change the value while the Add-On
Instruction is executing.

Passed by value

|
| InOut parameter

When an argument is passed to a parameter by value, the value is
copied in or out of the parameter when the Add-On Instruction
executes. The value of the argument does not change from external
code or HMI interaction outside of the Add-On Instruction itself.

10

Publication 1756-PM010C-EN-P - October 2009

Chapter 1

Introduction

About Add-On Instructions

Publication 1756-PM010C-EN-P -

October 2009

Designing Add-On Instructions

Add-On Instructions are available beginning with RSLogix 5000
software, version 16. Add-On Instructions are custom instructions that
you design and create. Beginning in RSLogix 5000 software, version
18, high integrity and safety Add-On Instructions are available.

Topic Page
About Add-On Instructions 11
Components of an Add-On Instruction 13
Considerations for Add-On Instructions 18
Considerations When Creating Parameters 27
Planning Your Add-On Instruction Design 32

With Add-On Instructions, you can create new instructions for sets of
commonly-used logic, provide a common interface to this logic, and
provide documentation for the instruction.

Add-On Instructions are intended to be used to encapsulate
commonly used functions or device control. They are not intended to
be a high-level hierarchical design tool. Programs with routines are
better suited to contain code for the area or unit levels of your
application.

These are some benefits to using Add-On Instructions:

e Reuse code

— You can use Add-On Instructions to promote consistency
between projects by reusing commonly-used control
algorithms.

—If you have an algorithm that will be used multiple times in
the same project or across multiple projects, it may make
sense to incorporate that code inside an Add-On Instruction
to make it modular and easier to reuse.

e Provide an easier to understand interface

— You can place complicated algorithms inside of an Add-On
Instruction, and then provide an easier to understand
interface by making only essential parameters visible or
required.

— You can reduce documentation development time through
automatically generating instruction help.

1"

Chapter 1

Designing Add-On Instructions

12

e Protect intellectual property

— You can place your proprietary code inside of an Add-On
Instruction, then use Source Protection to prevent others from
viewing or changing your code.

e Simplify maintenance

— You can simplify code maintenance because Add-On
Instruction logic, monitored in RSLogix 5000 software,
animates with tag values relative to that specific instance of
the Add-On Instruction.

e Track revisions, and easily confirm instruction functionality with
high-integrity Add-On Instructions

— You can add an instruction signature to your Add-On
Instruction, which generates a unique identifier and prevents
the instruction from being edited without resulting in a
change to the signature.

An Add-On-Instruction can be used across multiple projects. You can
define the instructions, the instructions can be provided to you by
someone else, or they can be copied from another project.

Once defined in a project, they behave similarly to the built-in
instructions already available in RSLogix 5000 software. They appear
on the instruction toolbar and in the instruction browser for easy
access, just like built-in RSLogix 5000 software instructions.

Like standard Add-On Instructions, safety Add-On Instructions let you
encapsulate commonly-used safety logic into a single instruction,
making it modular and easier to reuse. In addition to the instruction
signature used for high-integrity Add-On Instructions, safety Add-On
Instructions feature a SIL 3 safety instruction signature for use in
safety-related functions up to and including SIL 3.

Refer to the GuardLogix Controller Systems Safety Reference Manual,

publication 1756-RM093, for details on certifying safety Add-On
Instructions and using them in SIL 3 safety applications.

Publication 1756-PM010C-EN-P - October 2009

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Designing Add-On Instructions

Chapter 1

Components of an Add-On
Instruction

Publication 1756-PM010C-EN-P - October 2009

Add-On Instructions are made up of the following parts.

General Information

The General tab contains the information you enter when you first

create the instruction. You can use this tab to update that information.

The description, revision, revision note, and vendor information is
copied into the custom help for the instruction. The revision is not
automatically managed by the software. You are responsible for

defining how it is used and when it is updated.

& Add-On Instruction Definition - Simulation_DT_1st... | |[0)X]

General |Parameters Local Tags | Scan Modes | Signature | Change History | Help

Mare: Simulation DT 1] |
Description: Simulation instruction which includes a dead time and a
first order lag.
Type: 31 Function Block Diagram Change Type...
hedzjor hodinor Extended Teut
Revisior: | 1% | |D E | |Sim DT 1st |

Rievizion Mote:

Wendor: Fockwell Automation

] [Cancel

Diata Type Size: 276 byte (5] [Ok

Class information for safety controller projects appears on the General
tab as well. The class can be standard or safety. Safety Add-On

Instructions must meet requirements specific to safety applications.
See Safety Add-On Instructions on page 19 for more information.

= Add-On Instruction Definition - SafetyAddOnlinstru... |:|@
m| Parameters | Local Tags | Scan Modes | Signature | Change History | Help

Hame: |

Description:

Class: |Safety A4 |

Tope: Eﬁ Ladder Diagram

13

Chapter 1 Designing Add-On Instructions

Parameters

The parameters define the instruction interface; that is, how the
instruction appears when used. The parameter order defines the order
that the parameters appear on the instruction call.

& Add-On Instruction Definition - Simulation_DT_1st v1.0 Sim DT 1st =3
General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help
Mame Usage | Data Type Alias For | Default Style | Heq| Wig | Description External Access | Constant ||
| Enableln Input BOOL 1 Decimal | [] | [J |Enable Input - Sys...| Read Only O
| EnableOut Output BOOL 0 Decimal | [] | [|Enable Qutput - 5... | Read Only O
|| SimDTInv Output |BOOL U Decimal | [If on, the dead tim... |Read Only O
| Simlnput Input REAL 0.0/ Flaat Enter the tag for t... | Feadwiite O
| SimDeadtime Input REAL 0.0/ Flaat [0 | [|Enter the dead tim...| Read/wiite O
| SimTimeConst... |Input REAL 1.0/ Flaat O Enter the time con... Feadwiite O
| SimOutput Output |REAL 0.0/ Flaat O Output walue of th... Fead Only O
B EET InOut |REAL[100] Float Enter an array of 1... O
5] 0o]
Data Type Size: 276 byte (5] Ok] [Cancel

The Local Tags tab defines tags that are used by the logic within the
Add-On Instruction and are not visible outside the instruction. Other
Add-On Instructions or programs in the project cannot access these
tags.

The only way to make a local tag or one of its members accessible
from outside the instruction is by defining an alias parameter.

See Creating an Alias Parameter for a Local Tag on page 28.

& Add-On Instruction Definition - Simulation_DT_1st v1.0 Sim ... |[0]X]

General | Parameters | Local Tags |Sc:an Modes | Signature | Change History | Help
Mame == | Data Type Drefault | Style Description | |
|+ DEDT_O1 DEADTIME {ean}
| |FALDLG_01 LEAD_LAG Hooob
£4
Data Type Size: 276 byte (5] Ok] [Cancel

14 Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Publication 1756-PM010C-EN-P - October 2009

Data Type

Parameters and local tags are used to define the data type that is used
when executing the instruction. The software builds the associated
data type. The software orders the members of the data type that
correspond to the parameters in the order that the parameters are
defined. Local tags are added as hidden members.

Logic Routine

The logic routine of the Add-On Instruction defines the primary
functionality of the instruction. It is the code that executes whenever
the instruction is called. Shown below is the interface of an Add-On
Instruction and its primary logic routine that defines what the
instruction does.

Lewel Loop 101
Simulated Level
based on Walre Fos

LIC101_5im

Frocgim _I

FProcess Simulation (Deadtime-=Lag)

0.0 0.0
LW 101 O Inp/ut Output (] LIT_101

J
/
/
/
Simulation Input . . .
(Eng Units) Deadtime Instruction LeadlLag Instruction
“ oo Backing Tag Badking Tag
.
DECT_O1 LbLE_01
DEDT | LbLE |
imulation Qutput
Ceadtime Lead-Lag (Eng Units)
" oo oo
Deadtime (seconds) In Out In Out
— pu
. (_Cutput]
Cfg_DeadTime | Ceadtime ——i] Lag
Storagefrray DeadTi hift
Lag Time Constant
[zeconds)
oo
Cfg_LagTime

15

Chapter 1 Designing Add-On Instructions

Optional Scan Mode Routines

You can define additional routines for Scan mode behavior.

& Add-On Instruction Definition - Simulation_DT_1st... . |[B]X]

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

The controller prezcans and postscans the Add-On Instruction Logic routine but will not execute the Logic
rauting when Enableln is falze.

Optional Prezzan, Postzcan and EnablelnFalze routines may be configured below,
Prezcan routing: Executes prior to first scan on trangition from program to run

Mew...

Postzcan routing: Executes on last scan of a step if SFC iz configured for automatic reset

Mew...

EnablelnF alse routine: Executes when the Enableln parameter iz falze

Mew...

Diata Type Size: 276 byte (5] [Ok] [Cancel]

Instruction Signature

The instruction signature consists of an ID number that identifies the
contents of the Add-On Instruction and a timestamp that identifies the
specific date and time at which the instruction signature was
generated or a signature history entry was made (whichever came
last).

Add-On Instruction Definition - Simulation_DT_1st... |- |[0]X]

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

Signature
Generate a signature to uniguely identify this instruction and zeal it from modifications.
Timestamp: 2009-06-22T17.58:29.1932
Add to History...
Signature History
Uszer Signature |D Timestamp Description

Diata Type Size: 276 byte (5] [Ok] [Cancel]

Once generated, the instruction signature seals the Add-On
Instruction, preventing it from being edited while the signature is in
place.

16 Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Publication 1756-PM010C-EN-P - October 2009

In addition, when a sealed safety Add-On Instruction is downloaded
for the first time, a SIL 3 safety instruction signature is automatically
generated. The safety instruction signature is an ID number that
identifies the execution characteristics of the safety Add-On
Instruction.

Signature History

The signature history provides a record of signatures for future
reference. A signature history entry consists of the name of the user,
the instruction signature, the timestamp value, and a user-defined
description. Up to six history entries can be stored. If a seventh entry
is made, the oldest entry is automatically deleted.

Change History

The Change History tab displays the creation and latest edit
information that is tracked by the software. The By fields show who
made the change based on the Windows user name at the time of the
change.

Add-On Instruction Definition - Simulation_DT_1st... [|[B]X]

General | Parameters | Local Tags | Scan Modes || Signature | Change History | Help

Created: 10/5/2005 2:56:13 PM
By: Mahmilked

Edited: 6/22/2009 1:04:18 PM
By: Mahzellnid

[rata Type Size: 276 byte (3] [Ok] [Cancel

17

Chapter 1 Designing Add-On Instructions

Considerations for Add-On
Instructions

18

Help

The name, revision, description, and parameter definitions are used to
automatically build the Instruction Help. Use the Extended
Description Text to provide additional Help documentation for the
Add-On Instruction. The Instruction Help Preview shows how your
instruction will appear in the various languages, based on parameters
defined as required or visible.

Add-On Instruction Definition - Simulation_DT_1st

General | Parameters | Local Tags | Scan Modes | Signature | Changes History | Help

Extended Description Text:

Instruction Help Preview:

Simulation_DT_1st v1.0 Sim DT 1st

Rockwell Automation

[Contact the Add-On Instruction developer for questions or problams with this
instruction]

Sirnulation instruction which includes a dead time and a first order lag.

Available Languages v
< >
Diata Type Size: 276 byte (5] [Ok] [Cancel

When deciding whether to develop an Add-On Instruction, consider
the following aspects.

Instruction Functionality

Complex instructions tend to be highly application specific and not
reusable, or require extensive configuration support code. As with the
built-in instructions, Add-On Instructions need to do one thing, do it
well, and support modular coding. Consider how the instruction will
be used and manage interface complexity for the end user or
application.

Add-On Instructions are best at providing a specific type of
functionality or device control.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Encapsulation

Add-On Instructions are designed to fully encapsulate the code and

data associated with the instruction. The logic inside an Add-On
Instruction uses only the parameters and local tags defined by the |
instruction definition. There is no direct programmatic access to
controller or program scope tags. This lets the Add-On Instruction be

a standalone component that can execute in any application that calls

it by using the parameters interface. It can be validated once and then
locked to prevent edits.

Safety Add-On Instructions

Safety Add-On Instructions are used in the safety task of GuardLogix
safety controllers. Create a safety Add-On Instruction if you need to
use your instruction in a safety application. Safety Add-On Instructions
are subject to a number of restrictions. These restrictions, enforced by
RSLogix 5000 software and all GuardLogix controllers, are listed here
for informational purposes only.

e They may use only safety-approved instructions and data types.

e All parameters and local tags used in a safety Add-On Instruction
must also be safety class.

e Safety Add-On Instructions use relay ladder logic only and can
be called in safety routines only, which are currently restricted to
ladder logic.

e Safety Add-On Instructions may be referenced by other safety
Add-On Instructions, but not by standard Add-On Instructions.

e Safety Add-On instructions cannot be created, edited, or
imported when a safety project is safety-locked or has a safety
task signature.

Refer to the GuardLogix Controller Systems Safety Reference Manual,
publication 1756-RM093, for information on how to certify a safety
Add-On Instruction as well as details on requirements for safety
applications, the safety task signature, and a list of approved
instructions and data types.

Publication 1756-PM010C-EN-P - October 2009 19

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Chapter 1

Designing Add-On Instructions

20

Instruction Signature

The instruction signature, available for both standard and safety
controllers, lets you quickly determine if the Add-On Instruction has
been modified. Each Add-On Instruction has its own instruction
signature on the Add-On Instruction definition. The instruction
signature is required when an Add-On Instruction is used in SIL 3
safety-related functions, and may be required for regulated industries.
Use it when your application calls for a higher level of integrity.

Once generated, the instruction signature seals the Add-On
Instruction, preventing it from being edited until the signature is
removed. This includes rung comments, tag descriptions, and any
instruction documentation that was created. When an instruction is
sealed, you can perform only these actions:

¢ Copy the instruction signature

e Create or copy a signature history entry

e Create instances of the Add-On Instruction
e Download the instruction

e Remove the instruction signature

e Print reports

The instruction signature does not prevent referenced Add-On
Instructions or User-defined Data Types from being modified.
Changes to the parameters of a referenced Add-On Instruction or to
the members of a referenced User-defined Data Type can cause the
instruction signature to become invalid. These changes include:

¢ adding, deleting, or moving parameters, local tags, or members
in referenced User-defined Data Types.

e changing the name, data type, or display style of parameters,
local tags, or members in referenced User-defined Data Types.

If you want to enable language switching or source protection on an
Add-On Instruction that will be sealed with an instruction signature,
you need to import the translated information or apply source
protection before generating the signature. You must have the source
key to generate a signature or to create a signature history entry for a
source-protected Add-On Instruction that has an instruction signature.

See Defining Source Protection for an Add-On Instruction on page 57
for more information on source protecting your Add-On Instruction.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Safety Instruction Signature

When a sealed safety Add-On Instruction is downloaded for the first
time, a SIL 3 safety instruction signature is automatically generated.

For details on how to certify a safety Add-On Instruction, refer to the
GuardLogix Controller Systems Safety Reference Manual, publication
1756-RMO

Programming Languages

Select the programming language based on the type of application
you are developing. Ladder Diagram, Function Block Diagram, and
Structured Text can be used for Add-On Instruction logic.

Each of the programming languages supported in RSLogix 5000
software is targeted for different types of applications and
programming styles. In general, Ladder Diagram executes simple
boolean logic, timers, and counters the fastest. Function Block
Diagrams and Structured Text may be more efficient if you take
advantage of the more advanced process and drives instructions
available in those languages.

You cannot compare execution times for the same Add-On Instruction
written in different programming languages. There are fundamental
differences on how the different languages execute and are compiled.

TIP You can change the programming language after you create the
Add-On Instruction by clicking Change Type on the General tab
of the Add-On Instruction Definition Editor. However, any
existing logic will be lost.

Transitional Instructions

Some instructions execute (or retrigger) only when rung-condition-in
toggles from false to true. These are transitional-relay ladder
instructions. When used in an Add-On Instruction, these instructions
will not detect the rung-in transition to the false state. When the
Enableln bit is false, the Add-On Instruction logic routine no longer
executes, thus the transitional instruction does not detect the transition
to the false state. Extra conditional logic is required to handle
triggering of transitional instructions contained in an Add-On
Instruction.

Publication 1756-PM010C-EN-P - October 2009 21

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Chapter 1

Designing Add-On Instructions

22

Some examples of transitional instructions include: ONS, MSG, PXRQ,
SRT, some of the ASCII instructions, and some of the Motion
instructions.

TIP The EnablelnFalse routine can be used to provide the
conditioning required to retrigger transitional instructions
contained in an Add-On Instruction. However, this method will
not work for calls to this Add-On Instruction contained in a
Structured Text routine, since Enableln is always true for calls
in Structured Text.

Instruction Size

Add-On Instructions have one primary logic routine that defines the
behavior of the instruction when executed. This logic routine is like
any other routine in the project and has no additional restrictions in
length. The total number of Input parameters plus Output parameters
plus local tags can be up to 512. There are no limits on the number of
InOut parameters. The maximum data instance supported (which
includes Inputs, Outputs, and local tags) is two megabytes. The data
type size is displayed on the bottom of the Parameters and Local Tags
tab in the Add-On Instruction Definition.

Logic | [rata Type Size: 276 byte (3]

Runtime Editing

Add-On Instructions can only be edited offline. If the intended
functionality needs to be changed in a running controller, consider
carefully if an Add-On Instruction is suitable.

Nesting Add-On Instructions

Add-On Instructions can call other Add-On Instructions in their
routines. This provides the ability to design more modular code by
creating simpler instructions that can be used to build more complex
functionality by nesting instructions. The instructions can be nested to
seven levels deep.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions

Chapter 1

TIP

Add-On Instructions cannot call other routines via a JSR instruction.
You must use nested instructions if you need complex functionality
consisting of multiple routines.

To nest Add-On Instructions, both the nested instruction and the

instruction that calls it must be of the same class type or the
calling instruction will not verify. That is, standard Add-On
Instructions may call only standard Add-On Instructions and
safety Add-On Instructions may call only safety Add-On

Instructions.

Routines Versus Add-0n Instructions

You can write your code in three basic ways: to run in-line as a main

routine, to use subroutine calls, or as Add-On Instructions. The

Advantages and Disadvantages of Routines and Add-On Instructions

Aspect Main Routine Subroutine Add-On Instruction
Accessibility N/A Within program (multiple copies, Anywhere in controller (single copy for the entire
one for each program) project)

Parameters N/A Pass by value Pass by value via Input and Output parameters
or by reference via InOut parameters

Numeric parameters N/A No conversion, user must manage | Automatic data type conversion for Input and
Output parameters

Parameters data types | N/A Atomic, arrays, structures Atomic for any parameter
Arrays and structures must be InOut parameters

Parameter checking N/A None, user must manage Verification checks that correct type of argument
has been provided for a parameter

Data encapsulation N/A All data at program or controller Local data is isolated (only accessible within

scope (accessible to anything)

instruction)

Monitor/debug In-line code with | Mixed data from multiple calls, Single calling instance data, which simplifies
its data which complicates debugging debugging
Supported programming | FBD, LD, SFC, ST | FBD, LD, SFC, ST FBD, LD, ST

languages

Callable from

N/A

FBD, LD, SFC, ST

FBD, LD, SFC via ST, ST

Protection

Locked and view
only

Locked and view only

Locked and view only

Documentation

Routing, rung,
textbox, line

Routine, rung, textbox, line

Instruction, revision information, vendor, rung,

textbox, line, extended help

Publication 1756-PM010C-EN-P - October 2009

23

following table summarizes the advantages and disadvantages of each. |

Chapter 1

Designing Add-On Instructions

Advantages and Disadvantages of Routines and Add-On Instructions

Aspect Main Routine Subroutine Add-O0n Instruction
Execution performance | Fastest JSR/SBR/RTN instructions add Call is more efficient
overhead
All data is copied InOut parameters are passed by reference, which
Indexed reference impact is faster than copying data for many types
Parameter references are automatically offset
from passed-in instruction tag location
Memory use Most used Very compact Compact call requires more memory than a
subroutine call
All references need an additional word
Edit Online/offline Online/offline Offline only
Import/export Entire routine, Entire routine, including tags and Full instruction definition including routines and

including tagsand | instruction definitions to LbX tags to LbX
instruction
definitions to L5X
Instruction signature N/A N/A 32-bit signature value seals the instruction to

prevent modification and provide high integrity

24

Programmatic Access to Data

Input and Output parameters and local tags are used to define an
instruction-defined data type. Each parameter or local tag has a
member in the data type, although local tag members are hidden from
external use. Each call to an Add-On Instruction uses a tag of this data
type to provide the data instance for the instruction's execution.

The parameters of an Add-On Instruction are directly accessible in the
controller's programming via this instruction-defined tag within the
normal tag-scoping rules.

Local tags are not accessible programmatically through this tag. This
has impact on the usage of the Add-On Instruction. If a structured
(including UDTs), array, or nested Add-On Instruction type is used as
a local tag (not InOut parameters), then they are not programmatically
available outside the Add-On Instruction definition.

TIP You can access a local tag via an alias parameter.

See Creating an Alias Parameter for a Local Tag on page 28.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Unavailable Instructions within Add-0n Instructions

Most built-in instructions can be used within Add-On Instructions. The
following instructions cannot be used.

Unavailable Instruction Description

BRK Break

EQT End of Transition

EVENT Event Task Trigger

FOR For (For/Next Loop)

10T Immediate Output

JSR Jump to Subroutine

JXR Jump to External Routine
MAQC Motion Arm Output Cam

PATT Attach to Equipment Phase
PCLF Equipment Phase Clear Failure
PCMD Equipment Phase Command
PDET Detach from Equipment Phase
POVR Equipment Phase Override Command
RET Return

SBR Subroutine

SFP SFC Pause

SFR SFC Reset

Safety application instructions, such as Safety Mat (SMAT), may be
used in safety Add-On Instructions only. For detailed information on
safety application instructions, refer to the GuardLogix Safety
Application Instruction Set Safety Reference Manual, publication

1756-RMQ95.

In addition, the following instructions may be used in an Add-On
Instruction, but the data instances must be passed as InOut
parameters.

e ALMA (Analog Alarm)

e ALMD (Digital Alarm)

e All Motion Instructions
® MSG (Message)

Publication 1756-PM010C-EN-P - October 2009 25

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm095_-en-p.pdf

Chapter 1

Designing Add-On Instructions

26

Using GSV and SSV Instructions

When using GSV and SSV instructions inside an Add-On Instruction,
the following classes are supported:

e AddOnInstructionDefinitionV® * MotionGroup
* Axis) Program(z)
e Controller e Routine®

e Controller Device
e CoordinateSystem
e CST
e DF1

e Fault Log

® Message

(1) GSV-only. SSV instructions will not verify.

e Redundancy
e Safety

e Serial Port

e Task®
e Wall Clock Time

(2) The classes that represent programming components - Task, Program, Routine,
AddOnlInstructionDefinition - support only ‘this" as the Instance Name.

When you enter a GSV or SSV instruction, RSLogix 5000 software
displays the object classes, object names, and attribute names for each
instruction. This table lists the attributes for the
AddOnlInstructionDefinition class.

AddOnlinstructionDefinition Attributes

Attribute Name Data Type | Attribute Description

MajorRevision DINT Major revision number of the Add-On Instruction
MinorRevision DINT Minor revision number of the Add-On Instruction
Name String Name of the Add-On Instruction

RevisionExtendedText | String

Text describing the revision of the Add-On
Instruction

Vendor String Vendor that created the Add-On Instruction

LastEditDate LINT Date and time stamp of the last edit to an Add-On
[nstruction

SignaturelD DINT 32-bit instruction signature value

SafetySignaturelD DINT

32-bit safety instruction signature value

For more information on using GSV and SSV instructions, refer to the
Logix5000 Controllers General Instructions Reference Manual,

publication 1756-RM003.

Publication 1756-PM010C-EN-P - October 2009

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm003_-en-p.pdf

Designing Add-On Instructions

Chapter 1

Considerations When
Creating Parameters

Publication 1756-PM010C-EN-P - October 2009

Consider the following information when you are creating parameters. I

Passing Arguments to Parameters by Reference or by Value

The following information will help you understand the differences
between passing argument tags to parameters by reference or by

value.
Aspect By Value (Input or Output) By Reference (InOut)
Value Synchronous - the argument's value | Asynchronous- the argument's |
does not change during Add-On value may change during
Instruction execution. Add-On Instruction execution.
Any access by the instruction's
logic directly reads or writes the
passed tag's value.
Performance Argument values are copied inand | Parameters access argument

out of the parameters of the Add-On
Instruction. This takes more time to
execute a call to the instruction.

tags directly by reference, which
leads to faster execution of
instruction calls.

Memory usage | Most amount. Least amount.
Parameter data | Atomic (SINT, DINT, INT, REAL, Atomic, arrays, and structures.
types supported | BOOL).

Selecting a Data Type for a Parameter

The Logix5000 controllers perform DINT (32 bit) and REAL (32 bit)
math operations, which causes DINT data types to execute faster than
other integer data types. Data conversion rules of SINT to INT to DINT
are applied automatically, and can add overhead. Whenever possible,
use DINT data types for the Add-On Instruction Input and Output

parameters.

21

Chapter 1

Designing Add-On Instructions

28

Creating an Alias Parameter for a Local Tag

Alias parameters simplify connecting local tags to an Input or Output
tag that is commonly used in the Add-On Instruction’s application
without requiring that manual code be created to make the
association. Aliases can be used to define an Input or Output
parameter with direct access to a local tag or its member. Changing
the value of an alias parameter changes the data of the local tag or
local tag member it represents and vice versa.

Alias parameters are subject to these restrictions:

e Alias parameters must be either Input or Output parameters.

e You can only create an alias parameter for a local tag or its
member.

e Only one Input and one Output parameter may be mapped to
the same local tag or the same member of a local tag.

e Only BOOL, SINT, INT, DINT, and REAL data types may be
used.

e Alias parameters may not be constants.

e The External Access type of an alias parameter matches the
External Access type of the local tag to which it is mapped.

For information on constants and External Access, see Data
Access Control on page 31.

Using a Single Dimension Array as an InOut Parameter

The InOut parameter can be defined to be a single dimension array.
When specifying the size of this array, consider that the user of your
array can either:

e pass an array tag that is the same size as your definition.

e pass an array tag that is larger than your definition.

When developing your logic, use the Size instruction to determine the
actual size of the referenced array to accommodate this flexibility.

TIP When you monitor an array InOut parameter inside of the logic
routine, the parameter definition is used to determine the size
of the array. For example, assume you have defined an InOut
parameter to be a 10-element array of DINTs and the end user
passes in an array of 100 DINTs. Then if you open the Add-On
Instruction logic, select the appropriate context for that call,
and monitor the array parameter, only 10 elements will be
displayed.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Publication 1756-PM010C-EN-P - October 2009

Determining Which Parameters

to Make Visible or Required

To help be sure that specific data is passed into the Add-On
Instruction, you can use required parameters. A required parameter

must be passed an argument for a
Ladder Diagram and Structured Te
argument tag for these parameters

call to the instruction to verify. In
xt, this is done by specifying an

. In a Function Block Diagram,

required Input and Output parameters must be wired, and InOut
parameters must have an argument tag. If a required parameter does
not have an argument associated, as described above, then the routine
containing the call to the Add-On Instruction will not verify.

For Output parameters, making a parameter visible is useful if you do
not usually need to pass the parameter value out to an argument, but
you do want to display its value prominently for troubleshooting.

Required parameters are always vi

sible, and InOut parameters are

always required and visible. All Input and Output parameters,
regardless of being marked as required or visible, can be
programmatically accessed as a member of the instruction's tag.

Simulation Instruction in Function Block

Visible (non-required) Boolean
Output Parameter

Sim_DT_FBD

Required Input *

Parameter \

v Simlnput
O Simbeadtime

Visible g SimTimeConstant

(non-required) LA
Input Parameter

Simulation_DT_1st

Simulation instruction which includes a ..

=

Visible (non-required)

SimDT e 5 Output Parameter

Sim Output
F InOut Parameter

OT_Aray FBD /

If you want a pin that is displayed in Function Block, but wiring to it is optional, set it as Visible.

Simulation Instruction in Ladder

Visible
(non-required)

Input Parameter Simulation_DT 15t

Simlnput
Visible o
(non-required) CimTimeConstant
SirmiCot ot
tput P t
Output Parameter DA

Zimulation_DT_1=t
— Simulation instruction swhich includes a d...

by _Contral _variahle <eg—|

Visible (non-required) Boolean
Output Parameter

Sim_DT_LD [HCSimDTiny —

—— Required Input

=
0.0 Parameter

S0
00«

OT_Array_LD < InQut Parameter

o |f you want the parameter’s value displayed on the instruction face in Ladder, set the parameter

as visible.

o An Qutput parameter of the BOOL tag type that is not required, but visible, will show as a status
flag on the right side of the block in Ladder. This can be used for status flags like DN or ER.

29

Chapter 1

Designing Add-On Instructions

This table explains the effects of the Required and Visible parameter
settings on the display of the instruction.

Input, Output, and InOut Required and Visible Settings

Parameter
Type

Is the
Parameter
Required?

Is the
Parameter
Visible?

Ladder Diagram Function Block Diagram Structured Text

Does the | Does the | Do You Does the | CanYou Change | Does the
Value Argument | Need to Argument | Change the Argument
display? |display? | Connectthe | display? | Visibility display?

Parameter? Setting Within
the Function
Block?

Input

N/A N

Input

N/A

Input

N/A

Output

N/A

Output

N/A

Output

Zlz <z 2 <

N/A

InOut

<|lZ|lZ<|zZzZ| <

<|z| <| <| =] <| <

= z| <| <| =z| <| <

<|z|lz|<|z|=z| <
= <| <| =z| <| <
<|z|lz|=<|=z| =2| <

N/A Y

30

If you have a parameter for which the user must specify a tag as its
source for input or its destination as output, and you do not want this
to be optional, set the parameter as required. Any required parameters
are automatically set to visible.

The Visible setting is always set to visible for InOut parameters. All
InOut parameters are required.

TIP When you are using your Add-On Instructions, the Visible
setting may be overridden in Function Block Diagram routines if
the parameter is not required or already wired. Overriding the
visibility at the instruction call does not affect this definition
configuration.

Using Standard and Safety Tags

When creating a safety Add-On Instruction, follow these guidelines for
standard and safety tags:

e Standard tags may not be used as Input, Output, or InOut
parameters of a safety Add-On Instruction.

e Safety tags may be used as Input parameters for standard
Add-On Instructions.

Publication 1756-PM010C-EN-P - October 2009

Designing Add-On Instructions ~ Chapter 1

Data Access Control

In RSLogix 5000 software, version 18 and later, you can prevent
programmatic modification of InOut parameters by designating them
as constants. You can also configure the type of access you will allow
external devices, such as an HMI, to have to your tag and parameter
data. You can control access to tag data changes with RSLogix 5000
software by configuring FactoryTalk security.

Constant Values

InOut parameters may be designated as constant value tags to prevent
their data from being modified by controller logic. If the logic of an
Add-On Instruction contains a write operation to a constant value
parameter, the Add-On Instruction will not verify in the Add-On
Instruction definition context.

¢ Add-On Instruction Parameters and Local Tags - SafetyAddOnInstruction QEI E|
Scope: @Safet}\&ddﬂnlnshuchnn | Show &l Tags v | V. v
S| 3]
Mame =HES ‘ Usage |A|ias Far | Data Type Clazs Description External Access mwle | | E e
| Enableln ‘ Impuit BOOL Salety Enable Input - Sys... | Read Only O Dcimal -
| EnableQut Output BOOL Satety Enable Qutput - 5... |Read Only 1 Dekimal é
|| FMNPara InCiut DIMNT Salety Defimal g_
7 O B
v
+ [+ [\ Monitor Tags A Edit Tags / < >
External Access

External Access defines the level of access that is allowed for external
devices, such as an HMI, to see or modify tag values.

Add-O0n Instruction Parameters and Tags External Access Options
Local tag Read/Write

Input parameter Read Only

Output parameter None

Enableln parameter

EnableQut parameter Read Only

InOut parameter N/A

Add-On Instruction Parameters and Local Tags - Simulate_Feedback

Scope: (i3 Simulate_Fesdback “ | Show: &l Tags w |5 w
e
| Mamne =z|a | Uzage |Alias For | Drata Type D escription Extemal Access | Constant | Style: | 5 R
J +-DelapTime Input DINT Enter the time in m... Read/write O Decimal T
J +| -DelayTimer Local TIMER Readwrite o _é
J Enableln Input BOOL Enable Input - Sys... | Read Only 1 Decimal 3
J EnableCut Output BOOL Enable Output - 5... | Read Only O Decimal &
J OutCommand Input BOOL Enter the tag for t.. |Read/wiile O Decimal
J SimulateF ault Input BOOL To simulate a fault | ReadAwrite hd O Decimal
2 | 2 o
v
« [+ [\ Monitor Tags A Edit Tags / < »

Publication 1756-PM010C-EN-P - October 2009 31

Chapter 1 Designing Add-On Instructions

Planning Your Add-On
Instruction Design

32

Take time to plan your instruction design. Advance planning can
identify issues that need to be addressed. When defining the
requirements of an instruction, you are also determining the interface.
Keep the following aspects in mind when defining your instruction
requirements and creating your Add-On Instruction.

Intended Behavior

e What is the purpose for creating the Add-On Instruction?

e What problem is it expected to solve?

e How is it intended to function?

® Do you need to higher level of integrity on your Add-On
Instruction?

If so, you can generate an instruction signature as a means to
verify that your Add-On Instruction has not been modified.

e Do you need to use safety application instructions and certify
your safety Add-On Instruction to SIL-3 integrity?

For details on how to certify a safety Add-On Instruction, refer to
the GuardLogix Controller Systems Safety Reference Manual,

publication 1756-RM093.

Parameters

e What data needs to be passed to the instruction?

e What information needs to be accessible outside of the
instruction?

e Will alias parameters need to be defined for data from local tags
that needs to be accessible from outside the Add-On Instruction?

e How will the parameters display? The order of the parameters
defines the appearance of instruction.

e Which parameters should be required or visible?

Naming Conventions

The instruction name will be used as the mnemonic for your
instruction. Although the name can be up to 40 characters long, you
will typically want to use shorter, more manageable names.

Publication 1756-PM010C-EN-P - October 2009

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Designing Add-On Instructions ~ Chapter 1

Publication 1756-PM010C-EN-P - October 2009

Source Protection

e What type of source protection needs to be defined, if any?

e Who will have access to the source key?

e Will you need to manage source protection and an instruction
signature?

Source protection can be used to provide read-only access of
the Add-On Instruction or to completely lock or hide the
Add-On Instruction and local tags.

Source protection must be applied prior to generating an
instruction signature.

Nesting - Reuse Instructions

e Are there other Add-On Instructions that you can reuse?

e Do you need to design your instructions to share common code?

Local Tags

e What data is needed for your logic to execute but is not public?

e Identify local tags you might use in your instruction. Local tags
are useful for items such as intermediate calculation values that
you do not want to expose to users of your instruction.

e Do you want to create an alias parameter to provide outside
access to a local tag?

Programming Languages

e What language do you want to use to program your instruction?

The primary logic of your instruction will consist of a single
routine of code. Determine which RSLogix 5000 software
programming language to use based on the use and type of
application. Safety Add-On Instructions are restricted to Ladder
Diagram.

e If execution time and memory usage are critical factors, refer to

the Logix5000 Controllers Execution Time and Memory Use
Reference Manual, publication 1756-RM087.

33

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm087_-en-p.pdf

Chapter 1

Designing Add-On Instructions

34

Scan Mode Routines

¢ Do you need to provide Scan mode routines?

You can optionally define the scan behavior of the instruction in
different Scan modes. This lets you define unique initialization
behaviors on controller startup (Program -> Run), SFC step
postscan, or Enableln False condition.

e In what language do Scan mode routines need to be written?

Test

e How will you test the operation of your Add-On Instruction
before commissioning it?

e What possible unexpected inputs could the instruction receive,
and how will the instruction handle these cases?

Help Documentation

e What information needs to be in the instruction help?

When you are creating an instruction, you have the opportunity
to enter information into various description fields. You will also
need to develop information on how to use the instruction and
how it operates.

Publication 1756-PM010C-EN-P - October 2009

Chapter Z

Introduction

Create an Add-On
Instruction

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions

Topic Page
Create an Add-On Instruction 35
Create Parameters 37
Create Local Tags 39
Edit Parameters and Local Tags 4
Updates to Arguments Following Parameter Edits 1
Copying Parameter or Local Tag Default Values 43
Create Logic for the Add-On Instruction 44
Defining Operation in Different Scan Modes 45
Enabling Scan Modes 47
Using the Enableln and EnableQut Parameters 52
Change the Class of an Add-On Instruction b4
Testing the Add-On Instruction 54
Defining Source Protection for an Add-On Instruction 57
Generate an Add-On Instruction Signature 60
Creating Instruction Help 63
Motor Starter Instruction Example 68
Simulation Instruction Example 70

Follow these steps to create a new Add-On Instruction.

1. Open a new or existing project.

2. Right-click the Add-On Instructions folder in the Controller
Organizer and choose New Add-On Instruction.

35

Chapter 2

Defining Add-On Instructions

36

3.

10.

Type a unique name for the new instruction.

The name can be up to 40 characters long. It must start with a
letter or underscore and must contain only letters, numbers, or
underscores. The name must not match the name of a built-in
instruction or an existing Add-On Instruction.

New Add-On Instruction X
Mame: Iator_Starter
Description: Starts and stops & maotor
Type: Ladder Diagram w

hodzjor hoiruar Extended Text
Revision: 1150 £

Fievizion Mote:

Wendor: Rockwell

[] Open Logic Routine
Open Definition

Type a description for the new instruction, maximum 512
characters.

For safety projects, choose a class, either Standard or Safety.

The Class field is available on the New Add-On Instruction
dialog box for safety controller projects.

Choose a programming language for Add-On Instruction logic.

The language Type defaults to Ladder Diagram for safety
Add-On Instructions.

Assign a Revision level for the instruction.
Write a Revision note, if necessary.
Add information about the Vendor, if necessary.

Click OK to create the instruction.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Create Parameters Use the Add-On Instruction Definition Editor to create the parameters
for your instructions. Follow these steps to define the parameters for
your instruction.

1. In the Controller Organizer, right-click an Add-On Instruction
and choose Open Definition.

2. Click the Parameters tab and enter a name for a parameter.

= Add-On Instruction Definition - Simulate_Feedback v1.0

General | Parameters™ | Local Tags | Scan Modes || Signature | Change History | Help
Mame Usage | Data Type Alias For | Default Style | Heq| Wig | Description External Access | Constant | |
| Enableln Input BOOL 1 Decimal | [] | [J |Enable Input - Sys...| Read Only O
| EnableOut Output BOOL 0 Decimal | [] | [|Enable Qutput - 5... | Read Only O
| OutCommand | Input BOOL 0| Decimal Enter the tag for t... | Feadwiite O
| SimulateFault | Input BOOL 0 Decimal | [To simulate a fault... Readwiite O
|+ DelayTime Input DINT D Decimal | [| [J |Enter the time in m...| Read/wiite O
- Input DINT 0pecimal | [| I Read/wiite O
] 0o]
Drata Type Size: 77 bute (3] Ok] [Cancel] [Apply] [Help

3. Define the Usage, based on the type of parameter: Input,
Output, InOut.
An instruction with only Input parameters, except
EnableQut, is treated as an input instruction in a
Ladder diagram and is displayed left-justified. The

EnableOut parameter is used for the rung-out
condition.

4. Select a data type, with the following options based on the
parameter usage:

— An Input parameter is passed by value into the Add-On
Instruction and must be a SINT, INT, DINT, REAL, or BOOL
data type.

— An Output parameter is passed by value out of the Add-On
Instruction and must be a SINT, INT, DINT, REAL, or BOOL
data type.

— An InOut parameter is passed by reference into the Add-On
Instruction and can be any data type including structures and
arrays.

TIP REAL data types are not permitted in safety Add-On
Instructions.

Publication 1756-PM010C-EN-P - October 2009 37

Chapter2 Defining Add-On Instructions

5. If this parameter is intended as an alias for an existing local tag,
click the Alias For pull-down menu to choose the local tag or its
member.

You can also designate a parameter as an alias for a
TIP . .
local tag by using the Tag Editor.

See Edit Parameters and Local Tags on page 41.

6. Set the default values.

Default values are loaded from the Add-On Instruction definition
into the tag of the Add-On Instruction data type when it is
created, and anytime a new Input or Output parameter is added
to the Add-On Instruction.

Check the box at the bottom of the Add-On Instruction
TIP o . ,

Definition Editor to ‘Copy all default values of

parameters and local tags whose values were modified

to all tags of this instruction type’ if you want to update

existing invocations of the instruction to the new default

values.

For details on copying default values, see Copying
Parameter or Local Tag Default Values on page 43.

7. Set the display style.

8. Check the box to make the parameter required or visible, as
desired.

See Determining Which Parameters to Make Visible or Required
on page 29.

If you decide to make the parameter required, it will also be
visible.

| 9. Type a description, maximum 512 characters.
This description appears in the instruction’s help.
10. Select an External Access type for Input or Output parameters.

11. Check the Constant box for InOut parameters you want to
designate as constant values.

12. Repeat for additional parameters.

TIP You can also create parameters by using the Tag Editor, New
Parameter or Local Tag dialog box, or by right-clicking a tag
name in the logic of your routine.

38 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

The order that you create the parameters is how they will appear in
the data type and on the instruction face. To rearrange the order on
the Parameter tab of the Add-On Instruction Definition Editor, select
the parameter row and click Move Up or Move Down.

Add-O0n Instruction Definition Editor — Parameters Tab

= Add-On Instruction Definition - Motor_Starter v1.0

General | Parameters | Local Tags | Scan Modes | Signature | Changs History | Help
Mame Usage | Data Type Alias For | Default Style | Heq| Wig | Description External Access | Constant | |
Enableln Input BOOL 1 Decimal | [] | [J |Enable Input - Sys...| Read Only O
Enable0ut Output BOOL 0 Decimal | [] | [|Enable Qutput - 5... | Read Only O
Stop Input BOOL 0| Decimal Enter the tag that ... Feadwiite O
Start Input BOOL 0| Decimal Enter the tag that ... Feadwiite O
. Input |BOOL 0pecimal | [| [|Jog command for t...| Read/wiite O
AuxContact Input BOOL Dpecimal | [| Auiliary contact o... | FeadMwiite O
ClearFault Input BOOL D Decimal | [| I | Ta clear the fault ... |Read/wiite O
| Ou Output |BOOL 0| Decimal Output command t... Fead Only O
| Fault Output |BOOL 0 Decimal | [If on, the motor di... |Fead Only O
__|[HFaultTime Input DINT D Decimal | [| I |Enter the time [mz]...| ReadMw/frite O
5] 0o]
(}
Drata Type Size: 20 byte (3] als] [Eacel

Create Local Tags

Publication 1756-PM010C-EN-P - October 2009

Use the Add-On Instruction Definition Editor to create the local tags
for your instructions. Local tags contain data that will be used by your
Add-On Instruction but that you do not want exposed to the user of
your instruction. Local tags do not appear in the data structure for an
Add-On Instruction because they are hidden members.

You can access local tag values from an HMI by specifying the
name of the local tag as a member in an Add-On Instruction
type tag. For example, the Motor_Starter v1.0 instruction,
shown in step 2, has a tag called ‘CheckAuxContact’. This tag
can be referenced by an HMI via
‘instancetag.CheckAuxContact’, where instancetag is the tag
used to call the instruction.

TIP

Follow these steps to define the local tags for your instruction.

1. In the Controller Organizer, right-click an instruction and choose
Open Definition.

39

Chapter 2

Defining Add-On Instructions

40

2. Click the Local Tags tab and type a name for a new tag and

select a data type.

& Add-On Instruction Definition - Motor_Starter v1.0 | |[B]X]

General | Parameters | Local Tags | Scan Modes || Signature | Change History | Help
Mame == | Data Type Drefault |St_l,l|e Description | |
[CheckéwsCont. |BOOL 0| Decimal
|[FFaultTimer TIMER {ean}
| PRunCommand | BOOL 0| Decimal
£4
Drata Type Size: 20 byte (3] [Ok] [Cancel

You cannot use these data types for local tags -
ALARM_ANALOG, ALARM_DIGITAL, MESSAGE, or any Motion
data types, for example Axis or MOTION_GROUP. To use these
type of tags in your Add-On Instruction, define an InOut
Parameter. Local tags also are limited to single dimension arrays,
the same as User-Defined Data Types.

TIP Refer to the GuardLogix Controller Systems Safety
Reference Manual, publication 1756-RMQ93, for a list
of data types supported for safety instructions.

. Set the default values.

Default values are loaded from the Add-On Instruction definition
into the tag of the Add-On Instruction data type when it is
created or any time a new tag is added to the Add-On
Instruction.

Check the box at the bottom of the Add-On Instruction
TIP o, . ,

Definition Editor to ‘Copy all default values of

parameters and local tags whose values were modified

to all tags of this instruction type" if you want to update

existing invocations of the instruction to the new default

values.

For details on copying default values, see Copying
Parameter or l ocal Tag Default Values on page 43.

4. Set the display style.

5. Type a description, a maximum of 512 characters.

Publication 1756-PM010C-EN-P - October 2009

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Defining Add-On Instructions ~ Chapter 2

6. Repeat for additional local tags.

TIP When you create a local tag from the Local Tags tab, the
External Access setting defaults to None. You can edit the
External Access setting by using the Tag Editor.

See Edit Parameters and Local Tags on page 41.

Edit Parameters and Local You can also add and edit parameters and local tags on the Edit Tags
Tags tab, shown below.

¢ Add-On Instruction Parameters and Local Tags - Motor_Starter

Scope: [T} Motor_Starter “ | Show: &l Tags || v
Al 5
Mame =S | Usage |Alias For | Data Type Description External Access | Constant | Shyle: | | G e
AuxContact |Input BOOL Auiliary contact o... | ReadMrite O Decimal =
CheckausContact Local BOOL Readfwiite | Decimal _g
ClearF ault Input BOOL To clear the fault ... |ReadAwTite O Decimal g_
Enableln Input BOOL Enable Input - Sps... Fead Only O Decimal o
Enable0ut Olutput BOOL Enable Output - 5... |Fead Only O Decimal
Fault Olutput BOOL If on, the motor di.. | Fead Only O Decimal
__|[HFaultTime Input DINT Enter the time [ms]... Readwiite O Decimal
| FaultTimer Local TIMER Readfwiite |
| Jog Input BOOL Jog command for t...| ReadMrite O Decimal
Ot Olutput BOOL Output command t...| Fead Only O Decimal
| RunCommand Local BOOL Readfwiite | Decimal
| Start Input BOOL Enter the tag that ... | Read AwTite O Decimal
| Stop Input BOOL Enter the tag that ... | Read AwTite O Decimal
> O
v
<[> I\ Monitor Tags AEdit Tags / < b3
Updates to Arguments If you edit an Add-On Instruction by adding, deleting, renaming,

reordering, or changing the status or usage type of one or more
parameters, RSLogix 5000 software, version 18 and later, automatically
updates the arguments on calls to the instruction.

Following Parameter Edits

Source-protected routines and other source-protected Add-On
Instructions that use the edited Add-On Instruction are not

automatically updated if the source key is unavailable. The
Add-On Instruction or routine may still verify, but the resulting
operation may not be as intended.

It is your responsibility to know where Add-On Instructions are
used in logic when you make edits to existing Add-On
Instructions.

Publication 1756-PM010C-EN-P - October 2009 |

Chapter 2

Defining Add-On Instructions

42

A confirmation dialog box shows you the impacts of the edits and lets
you review the pending changes before confirming or rejecting them.

RSLogix 5000 X

'E Changes pending for Corveypor_Control' instruction require updates to the calls of thiz instruction.
L
Each call will be edited to maintain arguments passed to existing parameters.

If you choose to apply the changes to the instruction, check all locations calling instruction 'Conveyor_Contral' to
enzure that they will execute corectly with the updates.

Locations where instruction is called: Selected call's arguments:

|E0ntainer Routine Location | | Parameter Argument

E& Motor_Starter_ ... ﬁ Mested_M ... FAung 1 Stop Conveyor_1_Stop_FE
Start Conveyor_1_Entry_PE
JamClear ?
<Unknowr Conveyor_1_Out

[] Show Changed Parameters Only

Thiz operation cannot be undone.

Apply changes to the ingtruction and edit arguments for each call?

[e] [Mo] [Help

[Open Cross Reference

e An asterisk identifies parameters with changes pending.

e Existing arguments are reset to the parameters they were
originally associated with.

e Newly added parameters are inserted with a 7’ in the argument
field, except for Structured Text, where the field is blank.

e Unknown parameters are created for arguments where
associated parameters have been deleted.

To accomplish this update, RSLogix 5000 software tracks the changes
made to the Add-On Instruction parameters from the original
instruction to the final version. In contrast, the import and paste
processes compare only parameter names to associate arguments with
parameters. Therefore, if two different parameters have the same
name, but different operational definitions, importing or pasting may
impact the behavior of the instruction.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

cOpymg Parameter or Loca| In RSLogix 50100 si)ftwacrle,f Velrsio? 18 or lzillter, youf Cin clclicc)lose to copy
parameter or local tag default values to all tags of the Add-On

Tag Default Values Instruction data type or just to specific tags. You can do so only when

you are offline.

Values cannot be modified when the instance tags are part of a
source-protected Add-On Instruction or you do not have

sufficient permission to make edits.

If you modify the default values of a parameter or local tag by using
the Add-On Instruction Definition Editor, you can choose to copy the
modified values to all of the tags of the Add-On Instruction data type
by checking ‘Copy all default values of parameters and local tags...".

= Add-On Instruction Definition - Simulate_Feedback v1.0

General | Parameters™ | Local Tags | Scan Modes || Signature | Change History | Help

Mame Usage | Data Type Alias For | Default Style | Heq| Wig | Description External Access | Constant | |
Enableln Input BOOL 1 Decimal | [] | [J |Enable Input - Sys...| Read Only O
Enable0ut Output BOOL 0 Decimal | [] | [|Enable Qutput - 5... | Read Only O

| OutCommand | Input BOOL 0| Decimal Enter the tag for t... | Feadwiite O
| SimulateFaul | Input BOOL 0 Decimal | [To simulate a fault... Readwiite O
|+ DelayTime Input DINT D Decimal | [| [J |Enter the time in m...| Read/wiite O
] 0o]

Copy all default values of parameters and local tags whose values were modified to all tags of thiz instruction type
Diata Type Size: 20 byte [5) [oK] [Cancel] [Apply] [Help]

You can also click the copy default values icon to copy default values
to all tags the Add-On Instruction data type. The icon appears on the
watch pane (as a context menu), data monitor, and logic editor when
the Data Context is the Add-On Instruction’s definition.

If you want to select which specific tags and values to copy, click the
pull-down arrow of the copy default values icon and choose Copy
Specified Values.

Copy All Values
I Copy Specified Yalues...

Publication 1756-PM010C-EN-P - October 2009 43

Chapter2 Defining Add-On Instructions

The Copy Default values dialog box shows the current default values
for the parameters and local tags, and the instance tags where the
Add-On Instruction is used or referenced.

Copy Default Values - ‘Simulate_Feedback’ @
Default values of selected parameters and local tags in ‘Simulate_Feedback' will be copied to specified tags of this type.
A Specify which values to copy to which tags:
Default Y alues: Instances of 'Simulate_Feedback".
| Parameter ==~ Default | | Tag C R out &/ Location
M DelayTime 10 Motor_1_AusContact E& Motor_Starte .. E_] Motor_Starte ... FAung 2
[+] Enableln 1 Conveyor_1_susxContact E& Motor_Starte .. E_] Mested_Mote ... Aung 2
EnableOut 0
OutCommand 0
SimulateF ault]
BT Local Tag ==~ Default
]
B4 DelayTimer. PRE 0
B4 DelapTimer. 4CC 0
|- DelayTimer EN 0
|- DelayTimer. TT 0
L DelayTimer.DN 0
< ¥
QK] [Cancel] [Help]
Check the boxes to select which values to copy to which tags, and
click OK.

Create Logic for the Add-0n Follow these steps to enter logic into your project.
I Instruction 1. In the Controller Organizer, expand the Add-On Instructions
folder.

=

o Ins ians
Conveyor_Control
Mokor _Starter
Simulate_Feedback
Simulation_DT_1st

2. Expand the instruction and double-click the logic routine to
open.

E| Mator _Starker
Parameters and Local Tags

FifLogic

% EnableInFalse

3. Edit your logic by using the available language editors.

44 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Defining Operation in
Different Scan Modes

Publication 1756-PM010C-EN-P - October 2009

Execution Considerations for Add-On Instructions

An Add-On Instruction is executed just like any other routine
belonging to a particular program. Because another task can preempt
a program containing an Add-On Instruction that is being executed,
an Add-On Instruction may be interrupted prior to completing its
execution. In standard programs, you can use the User Interrupt
Disable/Enable (UID/UIE) instructions to block a task switch if you
want to be sure the Add-On Instruction executes uninterrupted before
switching to another task.

TIP UID and UIE instructions are not supported in the safety task of
GuardLogix projects.

Optimizing Performance

The performance depends on the structuring, configuration, and the
amount of code in an Add-On Instruction. You can pass large amounts
of data through a structure by using an InOut parameter. The size of
data referenced by an InOut parameter does not impact scan time and
there is no difference between passing a user-defined type tag or an
atomic tag because it is passed by reference.

When a rung condition is false, any calls to an Add-On Instruction are
still processed even though the logic routine is not executed. The scan
time can be affected when many instances of an Add-On Instruction
are executed false. Be sure to provide instructions in your
documentation if an Add-On Instruction can be skipped when the
rung condition is false.

To provide Add-On Instructions with the same flexibility as built-in
instructions, optional Scan mode routines can be configured to fully
define the behavior of the instruction. Scan mode routines do not
initially exist for Add-On Instructions. You can create them depending
upon the requirements of your instruction.

45

Chapter 2

Defining Add-On Instructions

46

Like all built-in instructions in the controller, Add-On Instructions
support the following four controller Scan modes.

Scan Mode Types
Scan Mode | Description
True The instruction is scanned as the result of a true rung condition or the

Enableln parameter is set True.

False

The instruction is scanned as the result of a false rung condition or the
Enableln parameter is set False. Instructions in the controller may or may
not have logic that executes only when that instruction is scanned false.

Prescan

Occurs when the controller either powers up in Run mode or transitions
from Program to Run. Instructions in the controller may or may not have
logic that executes only when that instruction is executed in Prescan
mode.

Postscan!"!

Occurs as a result of an Action in an Sequential Function Chart (SFC)
routine becoming inactive if SFCs are configured for Automatic Reset.
Instructions in the controller may or may not have logic that executes
only when that instruction is executed in Postscan mode.

(1) Postscan mode routines cannot be created for safety Add-On Instructions because safety instructions do not

support SFC.

The default behavior for executing an Add-On Instruction with no
optional scan routines created may be sufficient for the intended
operation of the instruction. If you do not define an optional Scan
Mode, the following default behavior of an Add-On Instruction

OCCurs.

Default Instruction Behavior

Scan Mode | Result

True Executes the main logic routine of the Add-On Instruction.

False Does not execute any logic for the Add-On Instruction and does not write
any outputs. Input parameters are passed values.

Prescan Executes the main logic routine of the Add-On Instruction in Prescan
mode. Any required Input and Output parameters' values are passed.

Postscan Executes the main logic routine of the Add-On Instruction in Postscan

mode.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Enabling Scan Modes

Publication 1756-PM010C-EN-P - October 2009

For each Scan mode, you can define a routine that is programmed
specifically for that Scan mode and can be configured to execute in
that mode.

User-programmed Routines for Specific Scan Modes

Scan Mode | Result

True The main logic routine for the Add-On Instruction executes (not optional).

False The Enableln False routine executes normally in place of the main logic
when a scan false of the instruction occurs. Any required (or wired in
FBD) Input and Output parameters' values are passed.

Prescan The Prescan routine executes normally after a prescan execution of the
main logic routine. Any required Input and Output parameters' values are
passed.

Postscan The Postscan routine executes normally after a postscan execution of the

main logic routine.

The Scan Modes tab in the Instruction Definition Editor lets you create
and enable execution of the routines for the three Scan modes:
Prescan, Postscan, and EnableInFalse.

Prescan Routine

When the controller transitions from Program mode to Run mode or
when the controller powers up in Run mode, all logic within the
controller is executed in Prescan mode. During this scan, each
instruction may initialize itself and some instructions also initialize any
tags they may reference. For most instructions, Prescan mode is
synonymous with scanning false. For example, an OTE instruction
clears its output bit when executed during Prescan mode. For others,
special initialization may be done, such as an ONS instruction setting
its storage bit during Prescan mode. During Prescan mode, all
instructions evaluate false so conditional logic does not execute.

The optional Prescan routine for an Add-On Instruction provides a
way for an Add-On Instruction to define additional behavior for
Prescan mode. When a Prescan routine is defined and enabled, the
Prescan routine executes normally after the primary logic routine
executes in Prescan mode. This is useful when you want to initialize
tag values to some known or predefined state prior to execution. For
example, setting a PID instruction to Manual mode with a 0% output
prior to its first execution or to initialize some coefficient values in
your Add-On Instruction.

47

Chapter 2

Defining Add-On Instructions

48

When an Add-On Instruction executes in Prescan mode, any required
parameters have their data passed.

e Values are passed to Input parameters from their arguments in
the instruction call.

e Values are passed out of Output parameters to their arguments
defined in the instruction call.

These values are passed even when the rung condition is false in
Ladder Diagram or when the instruction call is in a false conditional
statement in Structured Text. When Function Block Diagram routines
execute, the data values are copied to all wired inputs and from all
wired outputs, whether or not the parameters are required.

Follow these steps to create a Prescan routine.

1. In the Controller Organizer, right-click an instruction and choose
Open Definition.

2. Click the Scan Modes tab.

3. Click New for Prescan Routine.

Add-On Instruction Definition - Simulation_DT_1st... |

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

The controller prescans and postzcans the Add-On Instruction Logic routine but will not execute the Logic
rauting when Enableln is false.

Optional Prezcan, Postscan and EnablelnF alse routines may be configured below.

Prezcan routine: Executes prior to first zcan on transition from program to mn

e,

Postzcan routine: Executes on last scan of a step if SFC is configured for automatic reset

Mew...
EnablelnFalze routine: Executes when the Enableln parameter is falze
Mew...
Diata Type Size: 276 byte (5] [Ok] [Cancel]

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions

Chapter 2

Publication 1756-PM010C-EN-P - October 2009

4. From the Type pull-down menu on the New Scan Mode Routine
dialog box, choose the type of programming language: Ladder
Diagram, Function Block, or Structured Text.

New Scan Mode Routine

Mode: Frescan
Description: ||
Type: Function Block Diagram

Instruction: Simulation_DT_1st

[] Open Routine

X

Help

5. Type a description of the Prescan behavior.

6. Click OK to create the routine and return to the Scan Modes tab.

7. Define if the prescan routine executes (or not) by checking or

clearing Execute Prescan routine after the logic routine is

prescanned.

E‘ Prezcan routine: Executes prior to first zcan on transition from program to mn

E=ecute Prezcan routine after the Logic routing iz prescanned

The Prescan routine can now be edited like any other routine.

Postscan Routine

Postscan mode occurs only for logic in a Sequential Function Chart
Action when the Action becomes inactive and the SFC language is
configured for Automatic Reset (which is not the default option for
SFC). When an SFC Action becomes inactive, then the logic in the
Action is executed one more time in Postscan mode. This mode is
similar to Prescan in that most instructions simply execute as if they
have a false condition. It is possible for an instruction to have different
behavior during Postscan mode than it has during Prescan mode.

When an Add-On Instruction is called by logic in an SFC Action or a
call resides in a routine called by a JSR from an SFC Action, and the
Automatic Reset option is set, the Add-On Instruction executes in
Postscan mode. The primary logic routine of the Add-On Instruction
executes in Postscan mode. Then if it is defined and enabled, the
Postscan routine for the Add-On Instruction executes. This could be
useful in resetting internal states, status values, or de-energizing

instruction outputs automatically when the action is finished.

TIP Because safety Add-On Instructions cannot be called from an

SFC Action, this option is disabled for safety Add-On

Instructions.

49

Chapter2 Defining Add-On Instructions

Follow these steps to create a postscan routine.

1. In the Controller Organizer, right-click an instruction and choose
Open Definition.

2. Click the Scan Modes tab.

3. Click New for Postscan Routine.

Add-On Instruction Definition - Simulation_DT_1st...

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

The controller prescans and postzcans the Add-On Instruction Logic routine but will not execute the Logic
rauting when Enableln is false.

Optional Prezcan, Postscan and EnablelnF alse routines may be configured below.
Prezcan routine: Executes prior to first zcan on transition from program to mn

Mew...

Postzcan routine: Executes on last scan of a step if SFC is configured for automatic reset

EnablelnFalze routine: Executes when the Enableln parameter is falze

Mew...

Diata Type Size: 276 byte (5] [Ok] [Cancel]

4. From the Type pull-down menu on the New Scan Mode Routine
dialog box, choose the type of programming language: Ladder
Diagram, Function Block, or Structured Text.

New Scan Mode Routine §|
Mode: Postzzan
Description:
Type: Function Block Diagram hd
Instruction: Simulation_DT_1st
[] Open Routine

5. Type a description of the postscan behavior.
6. Click OK to create the routine and return to the Scan Modes tab.

7. Define if the postscan routine executes (or not) by checking or
clearing Execute Postscan routine after the logic routine is
postscanned.

@ Postscan routine: Executes on last scan of a step if SFC is configured for automatic reset

E=ecute Postzcan routine after the Logic routine is postscanned

The Postscan routine can now be edited like any other routine.

50 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

EnablelnFalse Routine

When defined and enabled for an Add-On Instruction, the
EnablelnFalse routine executes when the rung condition is false or if
the Enableln parameter of the Add-On Instruction is false (0). This is
useful primarily for scan false logic, when used as an output
instruction in a Ladder routine. A common use of scan false is the
setting of OTEs to the de-energized state when the preceding rung
conditions are false. An Add-On Instruction can use the EnableInFalse
capability to let you define behavior for the False conditions.

When the Add-On Instruction is executed in the false condition and
has an EnableInFalse routine defined and enabled, any required

parameters have their data passed.

e Values are passed to Input parameters from their arguments in
the instruction call.

e Values are passed out of Output parameters from their
arguments in the instruction call.

If the EnablelnFalse routine is not enabled, the only action performed
for the Add-On Instruction in the false condition is that the values are
passed to any required Input parameters in ladder logic.
Follow these steps to create an EnableInFalse routine.

1. Right-click the instruction and choose Open Definition.

2. Click the Scan Modes tab.

3. Click New on EnablelnFalse routine.

& Add-On Instruction Definition - Simulation_DT_1st... [|[0]X]

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

The controller prescans and postzcans the Add-On Instruction Logic routine but will not execute the Logic
rauting when Enableln is false.

Optional Prezcan, Postscan and EnablelnF alse routines may be configured below.

Prezcan routine: Executes prior to first zcan on transition from program to mn

Mew...

Postzcan routine: Executes on last scan of a step if SFC is configured for automatic reset

Mew...
EnablelnFalze routine: Executes when the Enableln parameter is falze
Mew...
Diata Type Size: 276 byte (5] [Ok] [Cancel]

Publication 1756-PM010C-EN-P - October 2009 51

Chapter2 Defining Add-On Instructions

Using the Enableln and
EnableQut Parameters

52

4. From the Type pull-down menu on the New Scan Mode Routine
dialog box, choose the type of programming language: Ladder,
Function Block, or Structured Text.

New Scan Mode Routine X
Mode: EnablelnF alse
Deseription: ||
Type: Function Block Diagram w
Instruction: Simulation_DT_1st
[] Open Routine

5. Type a description of the EnableInFalse behavior.

6. Click OK to add an EnablelnFalse routine to the Add-On
Instruction definition.

7. Define if Enableln False routine executes (or not) by checking
or clearing Execute EnableInFalse routine.

& EnablelnFalse routine: Executes when the Enableln parameter is false

Execute EnablelnFalze routing

The EnablelnFalse routine can now be edited like any other routine.

The Enableln and EnableOut parameters that appear by default in

every Add-On Instruction have behaviors that conform to the three
language environments: Ladder Diagram, Function Block Diagram,
and Structured Text.

To execute the primary logic routine in any of the language
environments, the Enableln parameter must be True (1). In general,
the Enableln parameter should not be referenced by the primary logic
routine within the instruction definition. The EnableOut parameter
will, by default, follow the state of the Enableln parameter but can be
overridden by user logic to force the state of this Parameter.

TIP If Enableln is False, then EnableQut cannot be made True in an
Enableln False routine.

If the Enableln parameter of the instruction is False (0), the logic
routine is not executed and the EnableOut parameter is set False (0).
If an EnableInFalse routine is included in the instruction definition
and it is enabled, the EnableInFalse routine will be executed.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Publication 1756-PM010C-EN-P - October 2009

Enableln Parameter and Ladder Diagram

In the ladder diagram environment, the Enableln parameter reflects
the rung state on entry to the instruction. If the rung state preceding
the instruction is True (1), the Enableln parameter will be True and
the primary logic routine of the instruction will be executed. Likewise,
if the rung state preceding the instruction is False (0), the Enableln
parameter will be False and the primary logic routine will not be
executed.

TIP An instruction with only Input parameters, except EnableOut, is
treated as an input instruction (left-justified) in a Ladder
Diagram. The EnableOut parameter is used for the rung-out
condition.

Enableln Parameter and Function Blocks

In the function block environment, the Enableln parameter can be
manipulated by the user through its pin connection. If no connection
is made, the Enableln parameter is set True (1) when the instruction
begins to execute and the primary logic routine of the instruction will
be executed. If a wired connection to this parameter is False (0), the
primary logic routine of the instruction will not execute. Another
reference writing to the Enableln parameter, such as a Ladder Diagram
rung or a Structured Text assignment, will have no influence on the
state of this parameter. Only a wired connection to this parameter’s
input pin can force it to be False (0).

Enableln Parameter and Structured Text

In the Structured Text environment, the Enableln parameter is always
set True (1) by default. The user cannot influence the state of the
Enableln parameter in a Structured Text call to the instruction.
Because Enableln is always True (1) in Structured Text, the
EnableInFalse routine will never execute for an instruction call in
Structured Text.

53

Chapter2 Defining Add-On Instructions

Change the Class of an
Add-On Instruction

Testing the Add-On
Instruction

54

You can change the class of a safety Add-On Instruction so that it can
be used in a standard task or standard controller. You can change the
class in a safety project if the instruction does not have an instruction
signature, you are offline, the application does not have a safety task
signature, and is not safety-locked.

You can also change the class from standard to safety so that the
Add-On Instruction can be used in the safety task.

Changing the class of an Add-On Instruction results in the same class
change being applied to the routines, parameters, and local tags of the
Add-On Instruction. The change does not affect nested Add-On
Instructions or existing instances of the Add-On Instruction.

If any parameters or tags become unverified due to the change of
class, they are identified on the Parameters and Local Tags tabs of the
Add-On Instruction Editor.

If any of the restrictions for safety Add-On Instructions are violated by
changing the class from standard to safety, one of the following errors
is displayed and the change does not succeed:

e Routines must be of Ladder Diagram type.
e Safety Add-On Instructions do not support the Postscan routine.

e One or more parameters or local tags have an invalid data type
for a safety Add-On Instruction.

You must edit the parameter, tag, or routine types before the class
change can be made.

TIP If the safety controller project contains safety Add-On
Instructions, you must remove them from the project or change
their class to standard before changing to a standard controller

type.

You need to test and troubleshoot the logic of an instruction to get it
working.

TIP When a fault occurs in an Add-On Instruction routine, a fault log
is created that contains extended information useful for
troubleshooting.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Before You Test

Before you start to test an Add-On Instruction, do the following.

1. Open a project to debug oftline.

Add-On Instructions can only be created or modified when

TIP) . .
offline. You can add, delete, or modify tag arguments in
calls to Add-On Instructions while editing online, but you
cannot edit arguments inside the Add-On Instruction while
online.

2. Add the Add-On Instruction to the project, if it is not already
there.

Test the Flow

1. Add a call to the instruction in a routine in the open project.
2. Assign any arguments to required parameters for your call.

3. Download the project.

Monitor Logic with Data Context Views

You can simplify the online monitoring and troubleshooting of your
Add-On Instruction by using Data Context views. The Data Context

selector lets you select a specific call to the Add-On Instruction that

defines the calling instance and arguments whose values are used to
visualize the logic for the Add-On Instruction.

TIP When troubleshooting an Add-On Instruction, use a
non-arrayed instance tag for the call to the instruction.
This lets you monitor and troubleshoot the instruction's
logic routine with a data context. Variable indexed arrays
cannot be used to monitor the logic inside an Add-On
Instruction.

Publication 1756-PM010C-EN-P - October 2009 55

Chapter 2

Defining Add-On Instructions

56

Follow these steps to monitor the logic.

1. Go into Run mode.

2. Right-click the instruction call and choose Open Instruction

Logic.
Slark andstopsa ¥
motor
Motor_Z_FBD
hiotor_Starter g
Starts and stor ¥, Cut Element Chrl+x
a
., step Copy Element Chrl+C
a
e o o — — — o
r— — —ges
o Delete Element Ceel
s o' —
Ceelete Element but not Tag
Add Element. ., Alt+Ins
Save Instruction Defaulks
Edit Main Operand Description
Go Tou. Chrl4ia
Instruction Help F1
MNewer Show Description
‘ Open Instruction Logic I
1 Open Instruction Definition a3 v
I Logic: Sim_Dead_... | MainRout... | Motor_St...] Motor_St... ﬂ| Properties Ale+Enter j

The logic routine opens with animated logic for the specific calling

instance.

Verifying Individual Scan Modes

The most straightforward method to verify Scan mode operation is to
execute the instruction first with the Scan mode routine disabled, then
again with it enabled. Then you can determine whether the Scan
mode routine performed as expected.

Instruction

Description

True

This is simply the execution of the main logic routine.

False

In a ladder logic target routing, this entails placing an XIC before an
instance of the instruction and evaluating instruction results when the XIC
is false.

In a Function Block target routine, this entails executing an instance of the
instruction with the Enableln parameter set to zero (0).

Prescan

Place the controller in Program mode, then place it in Run mode.

Postscan

With the controller configured for SFC Automatic Reset, place an instance
of the instruction into the Action of an SFC. Run the SFC such that this
Action is executed and the SFC proceeds beyond the step that is
associated with this Action.

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Deﬁning Source Protection You can apply source protection to your Add-On Instruction to

} . protect your intellectual property or prevent unintended edits of a
for an Add-On Instruction ., ° " =

With source protection you can limit a user of your Add-On
Instruction to read-only access or prevent access to the internal logic
or local tags used by the instruction. You can protect the use and
modification of your instructions with a source key file when you
distribute them.

You have two options when using source protection.

e Source Protected

Users without the source key cannot view any routine or local
tags, or make any edits to the Add-On Instruction. Choose this
option if you want to protect the source definition of an Add-On
Instruction from the view of a user. This may be due to the
proprietary nature of the algorithms or for strict revision control.

e Source Protected with Viewable Option

Users without the source key can view all components of the
Add-On Instruction including its logic and local tags, but are
prevented from making any edits to the instruction.

Apply source protection before generating an instruction

TIP , . . :
signature for your Add-On Instruction definition. You will need
the source key to create a signature history entry.

When source protection is enabled, you can still copy the
instruction signature or signature history, if they exist.

Enable the Source Protection Feature

If source protection is unavailable and not listed in your menus, you
can enable it by using the RSS5KSrcPtc.exe tool on your installation CD.

If it is the first time the source protection has been configured, a
dialog box appears asking to configure a source key file location.

Specify Source Key File Location

1. Enter the location of (or browse to) where the source key is
kept, it may or may not exist yet.

2. Click OK.

Publication 1756-PM010C-EN-P - October 2009 57

Chapter 2

Defining Add-On Instructions

58

Apply Source Protection

To source protect your Add-On Instruction follow these steps.

1.

2.

In RSLogix 5000 software, choose Tools > Security > Configure
Source Protection, to access the source configuration dialog box.

Click Specify to identify the location for the sk.dat Source Key
File.

ource Protection Configuration e il

Companent |Saurce Key |\iewable |

Motor_Starter_Program Fratect... |

Sim_Dead_Time_Program

Sort_Program [Improtect |
{55 &dd-On Instructions

Conveyor_Contral

Iator_Starter

Simulate_Feedback

Simulation_DT_7Tst

Under_Developement_lnsertio

— Source Key File [sk.dat] Help
e i | Speci | !V' | Cl |
Location: C:\Program Files\Rockwell SoftwarehR (pecify (=] ear ’WI

Dizable Ability To Configure Protection. .. |

d

Click OK in both dialog boxes to accept.
Click Yes to confirm creation of the sk.dat Key File.

Expand the Add-On Instructions folder to view the instructions
available to apply source protection.

All routines and Add-On Instruction definitions in the project are
listed.

Select the Add-On Instruction you want to protect and click
Protect.

{% Source Protection Configur. : x|
Compaonent |Saurce Key |\iewable |
Motor_Starter_Program Fratect...
Sim_Dead_Time_Program
Sort_Program Unprotect
5] Add-On Instructions
p Apply Source Key il
Sim Source Key to apply to selected component(s):
Sim I j
Une Cancel |

[Allow viewing of componeni(s]

— Source Key File [sk.dat] Help |
Location: C:AP FilesRockwell SaftwareR... | Specif | i | Cl |
ocation togram FilesRockwell Software’ pecify iew ear e |

Dizable Ability To Configure Protection. .. |

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Publication 1756-PM010C-EN-P - October 2009

ﬁfft;'- Source Protection Configuration

7. On the Source Key Entry dialog box, enter the individual source

key for this component.

These source keys follow the conventions for routine source
keys which are defined in the online help.

8. If you want to allow users to be able to see the logic and local

tags, check ‘Allow viewing of component(s)’.

The Source Protection Configuration should now resemble the
following dialog box.

Component |Source Key |\iewable I

— Source Key File [zk.dat)

Sim_Dead_Time_Program

Sort_Program Unprotect
£5] &dd-0On Instuctions

Ciarweyor_Caontrol

¥Matar_Starter (zk)

Simulate_Fesdback

Simulation_DT_Tst

Under_Developement_|nsertio

x|
kotor_Starter_Program Fratect... I

Help |

Cloze |

Location: C:AProaram FileshRockwell SofbwaresF. . SDBCifﬁJl Wigw | Clear |

Dizable Ability To Configure Protection. .. |

IMPORTANT If you want to observe the source protection settings, before

you click Close, you must first do one of the following:

o click Clear
o click Disable Ability to Configure Source Protection

o remove the sk.dat file from the personal computer so that
the source key is no longer present.

9. Click Close.

10. Save the project.

IMPORTANT

If you export a source-protected Add-On Instruction and want
the exported contents encrypted, you must first remove,
rename, or move the source key file (sk.dat). This causes the
exported Add-On Instructions to be encrypted.

59

Chapter2 Defining Add-On Instructions

Observe Source Protection

If you want to observe how source protection works, follow these
steps.

1. Rename the sk.dat file to some other name.

2. Start RSLogix 5000 software and open the project.

There is now no valid key file available to this RSLogix 5000
project.

TIP When the source key is available, the Add-On Instruction
behaves the same as if it were not source protected.

3. Review how the instruction appears in the Add-On Instructions
folder.

Now the protected Add-On Instruction definition's routines and
tag folder are not shown if fully protected, and the definition
cannot be edited.

Generate an Add-On The Signature tab of the Add-On Instruction Definition Editor lets you
. . manage the instruction signature, create signature history entries, and
Instruction smnature view the safety instruction signature, if it exists. Instruction signatures
are applied to the definition of the Add-On Instruction. All instances
of that Add-On Instruction are sealed when the signature is applied.

Generate, Remove, or Copy an Instruction Signature

On the Signature tab of the Add-On Instruction Definition Editor, click
Generate to create an instruction signature or Remove to delete the
instruction signature.

You must be offline to generate or remove an instruction signature.
Both actions change the Last Edited Date.

IMPORTANT If you remove an instruction s_ignatur_e Wh_en the Add-On
Instruction also has a safety instruction signature, the safety

instruction signature is also deleted.

60 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Publication 1756-PM010C-EN-P - October 2009

You can click Copy to copy the instruction signature and the safety
instruction signature, if it exists, to the clipboard to facilitate
record-keeping.

Signature
Generate a signature to uniguely identify this instruction and zeal it from modifications.
Timestamp: 2003-06-22T18:04:18.0152
Add to History...

IMPORTANT If a.n.mvghd instruction S|gnatqre Is detected dunqg .
verification, an error message indicates that the signature is
invalid. You must remove the instruction signature, review the
Add-On Instruction, and generate a new instruction signature.

Create a Signature History Entry

The signature history provides a record of signatures for future
reference. A signature history entry consists of the name of the user,
the instruction signature, the timestamp value, and a user-defined
description. You can only create a signature history if an instruction
signature exists and you are offline. Creating a signature history
changes the Last Edited Date, which becomes the timestamp shown in
the history entry. Up to six history entries may be stored.

Follow these steps to create a signature history entry.

1. On the Signature tab of the Add-On Instruction Definition
Editor, click Add to History.

2. Type a description, up to 512 characters long, for the entry.
3. Click OK.

To facilitate record-keeping, you can copy the entire signature
TIP)) .)

history to the clipboard by selecting all the rows in the

signature history and choosing Copy from the Edit menu. The

data is copied in tab separated value (TSV) format.

To delete the signature history, click Clear Signature History while the

instruction does not have an instruction signature. You must be offline
to delete the Signature History.

61

Chapter 2

Defining Add-On Instructions

62

TIP

Generate a Safety Instruction Signature

When a sealed safety Add-On Instruction is downloaded for the first
time, a SIL 3 safety instruction signature is automatically generated.
Once created, the safety instruction signature is compared at every
download.

If RSLogix 5000 software detects an invalid safety instruction signature
value, it generates a new safety instruction signature value in the
offline project and displays a warning indicating that the safety
instruction signature was changed. The safety instruction signature is
deleted if the instruction signature is removed.

IMPORTANT

After testing the safety Add-On Instruction and verifying its
functionality, you must record the instruction signature, the
safety instruction signature and the timestamp value. Recording
these values will help you determine if the instruction
functionality has changed.

Refer to the GuardLogix Controller Systems Safety Reference
manual, publication 1756-RM093, for details on safety
application requirements.

Viewing and Printing the Instruction Signature

When the instruction signature has been generated, RSLogix 5000
software displays the instruction with the blue seal icon in the
Controller Organizer, on the Add-On Instruction title bar, and in the
Logic Editor.

idd-On Instructions
nveyor_Control
[Parameters and Lacal

Exj Logic

When an instruction is sealed, the instruction signature is displayed on the
faceplate of the instruction in the Ladder Diagram Editor and the Function Block
Diagram Editor.

Ladder Diagram

Signature I0; 30DCOS0DSS

Function Block Diagram

) Sim_DT_FED
———Conveyor_Control Simulation_DT_1st (]
— Startz and stops & conveyar
Conveyor_Cortrol Corweyor_1_LD] HFautt > — Simuation instruction which includes a ..
Stop Conveyaor_1_Stop_PB . . u]
| Siminput SimDTiney [
ne 0o
Start Conveyar_1_Entry_PE 0 SimDeadime Simoutpu ——
0& -
SimTime Conztart
Ot Conveyor_1_Cut G =imlimetons
0+ [ariy] DT _&rray FBD

Signsture [: 33781068

You can turn off the display of the instruction signature in the Workstation
Options dialog box of RSLogix 5000 software.

Publication 1756-PM010C-EN-P - October 2009

http://literature.rockwellautomation.com/idc/groups/literature/documents/rm/1756-rm093_-en-p.pdf

Defining Add-On Instructions ~ Chapter 2

Creating Instruction Help

Publication 1756-PM010C-EN-P - October 2009

You can also view the instruction signature and the safety instruction
signature on the Quick View pane of the Controller Organizer and on
the Signature tab of the Instruction Definition Editor dialog box.

The Add-On Instruction name, revision, instruction signature, safety
instruction signature, and timestamp are printed on the Add-On
Instruction Signature Listing report. You can also choose to include
the instruction signature, safety instruction signature, and signature
history on the Add-On Instruction report by clicking Print Options on
the Generate Report dialog box.

Custom instruction help is generated automatically as you are creating
your Add-On Instructions. RSLogix 5000 software automatically builds
help for your Add-On Instructions by using the instruction’s
description, revision note, and parameter descriptions. By creating
meaningful descriptions, you can help the users of your instruction.

In addition, you can add your own custom text to the help by using
the extended description field. You can provide additional help
documentation by entering it on the Help tab of the Add-On
Instruction Definition Editor. The instruction help is available in the
instruction browser and from any call to the instruction in a language
editor by pressing F1.

Write Clear Descriptions

When writing your descriptions keep the following in mind:

e Use short sentences and simple language.
e Be brief and direct when you write.
e Include simple examples.

e Proofread your entries.

63

Chapter2 Defining Add-On Instructions

This is an example of the Extended Description Text field in the Help
tab of the Add-On Instruction Definition Editor. This area lets you
create directions on how to use and troubleshoot your instruction.
The Instruction Help Preview window shows how your text will look
as generated instruction help.

TIP When you are entering your text into the Extended Description
Text field, you can use returns and tabs in the field to format the
text, and if you copy and paste text into the field tabs are
preserved.

& Add-On Instruction Definition - Motor_Starter v1.0. [_ [[E]X)

General | Parameters | Local Tags | Scan Modes | Signature | Change History | Help

Enxtended Description Text:

Usze this instruction to start and stop & mator. The instruction uses a basic stop and start circuit, -~
- If the Stop button is closed, the motor gets the command ta run when pou press the Start button,

- The mator wing even after you release the Start button,

- The matar stops when pou press [open) the Stop buttan,

- Usze the Jog bit to jog the motor. The Jog bit overides the Stop button,

Instruction Help Preview:

Extended Description A
Use this instruction to start and stop a motar. The instruction uses a basic stop and

start circuit.

- If the Stop button is closed, the motor gets the command to run when you press the

Start button.

- The motar runs even after you release the Start button.

- The motor stops when you press (open) the Stop button

- Use the Jog bit to jog the rotor. The Jog bit everides the Stop button.

You can also use the auxiliary contact of the motor to make a fault happen if the motor
doesn't start o stop. v

Diata Type Size: 20 byte [s]

Document an Add-0n Instruction

Follow these steps to create custom help for an instruction.
1. Right-click an Add-On Instruction and choose Open Definition.

2. On the General tab, enter a description and a revision note for
the Add-On Instruction to explain the purpose of the instruction.

3. Click the Parameters tab and enter a meaningful description for
each Parameter.

64 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Publication 1756-PM010C-EN-P - October 2009

4. Right-click each routine located below the Add-On Instruction in
the Controller Organizer and choose Properties.

5.

Enter a description for execution of each routine.

a.

b.

For the logic routine, describe execution of the instruction
when Enableln is true.

For the EnablelnFalse routine (if one exists), describe actions
that will take place when Enableln is false, such as any
outputs that get cleared.

. For the Prescan routine (if one exists), briefly describe actions

that will take place during the Prescan routine, such as
initialization of any parameters.

. For the Postscan routine (if one exists), briefly describe

actions that will take place during the Postscan routine, such
as initialization of any parameters resetting any internal state
of the instruction.

Click the Help tab of the Add-On Instruction Definition Editor
and enter additional information in the Extended Description
field.

The extended description can include the following information:

e Additional parameter information

e Description of how the instruction executes

e Change history notes

65

Chapter2 Defining Add-On Instructions

7. Review the Help format in the preview window.

This is an example of the RSLogix 5000

software generated help for the instruction. or_Starter v1.0

This information is gathered from the Rocwel
deflnltlon deSCI‘lpthI‘lS that YOLI COmplet [Contact the Add-On instruction devaloper far questions or problarms with this instruction]
when defining an instruction.

Starts and stops a motor

— 3 Available Languages
#& Add-On Instruction Definition - Motor_Starter v1.0 |__|@g\ Relay Ladder

General | Parameters | Local Tags | Sean Modss | Signature | Divéfge History| Help Motor_Starter
— Starts and stops & motor ———
Nare: Motor_Starter ? —iFault)
Stop ?
Description: | Staits and stops a motor 7
Start ?
77
Out ?
22
Twe BN Lot Disgn
Waior Winor Estended Test
Revision Bl B 5l Function Block
Revision Note: Motor_Starter .
Starts and stops a motor
) Stop Qut
o Start Fault
Vendor Rockwel

Structured Text
Motor Starter (Motor Starter, 8top, Start,Out) ;

n Instruction De

General| Paramelers | Loca Tags | Scan Modss | Signatue | Change Histoy | Help

Parameters
Narre |Usage |Data Type‘AhasFm‘DeYau\:‘Sty\e | Real vis | Destription | Evtemalccess [Constart | | Required Name DataType Usage D
Enableln |Input BOOL Decinal (] [Enable Input . Read Only 0 " Motor Stater Motor Starter InOut
|| EnableOw Ouput BOOL U'pecingl | [7| Ensble Oup.. Read Only 0 Enablel BOOL Input
U s it Jmo0L 0lDecind ReadMile O nanlein npu
L] st It |BOOL 0 Deginal Fiead/Wite 0 EnableOut BoOL Output
Jog Input | BOOL 0|Decinal | L1 | 1 [dog command..| Read/ite 0 * Stop BOOL Input Enter the tag that gives the stop command for the motar.
| wbortant Input BOOL 0/ peginal | (]| [| Auwiliay cont... Readwiite O *® Start BOOL Input Enter the tag that gives the stat command for the motor,
|| CeaFaut |input [BOOL Opecinal | (1| [| Tockarthe f.. Readfwite [} __‘> Jog BOOL Input Jog command for the rmator.
L)oo Output |BOOL 0/ Decimal Read Only] To jog the matar, turn on thig bit
| Fab Dupw BOOL 0 Decinal | [.. Riead Only O To stop the jog, tum off this hit
+ FaulTime lnput | DINT Upecingl | (1| [|Enter thetime... Fead/wite 0 AuxContact BOOL Input Auiliary contact of the maotor.
]] Make sure you set the FaultTime
7 Otherwise, this input doesn't do anything
ClearFault BOOL Input To clear the fault of the motar, turn on this hit
k3 Out BOOL Output Output comrmand to the motor starter

If on, the motor starts.
If off, the motor stops

Fault BOOL Output If on, the motar didn't start or stop.
FaultTime DINT Input Enter the tirne (rs) to wait for the ausdliary contact to open or close. The Fault

General | Parameters | Local Tags | Scan Modes | Signatue | Change History | Help bit turns on when that time is up.

Signature

Generate a signature to uniquely identify this instruction and seal it from modifications.
70 48F1ETFC Extended Description
add 1o Hist Timestamp: 200%07-31T00:14:35.44%2 Use this instruction to start and stop a motor. The instruction uses a basic stop and start circuit.
=l - If the Stop button is closed, the motor gets the command to run when you press the Start button.

- The motor runs even after you release the Start button
- The motor stops when you press (open) the Stop button.
- Use the Jog bit to jog the motor. The Jog bit overrides the Stop button.

Signature History

User [Signature 1D | Timestamp Nesciption

You can also use the auxiliary contact of the motor to make a fault happen if the motor doesn't start or stop

- In FauliTime, enter how long you want to wait for the contact to open or close. Enter the time in milliseconds.

- The Fault bit tums on if the contact doesnt show that the rmotor started or stopped within the FaultTime

-You must set FaultTirme greater than O to use the auxiliary contact. Otherwise the instruction doesn't use the value of the auxiliary contact
— - To clear the Fault bit, turn on the FaultClear bit

The instruction doesn't let you enter tags for the Jog, AuxContact, and FaultClear bits in the LD and ST programming languages. You must
write code to tum those bits on and off. For example

- In LD, use XIC and OTE instructions to read the value of the auxiliary contact tag and write it to the AuxContact bit

- In ST, use an assignment (=) to set the AuxContact bit equal to the value of the auxiliary contact tag

Data Type Size: 20 bute (5]

Signature
1D: 4EF181FC
Timestamp: 2009-07-31T0014:35. 4452
Gereral Signature History:
User 1] Timestamp Description
MAYsEInis 48F1B1FC 2009-07-31T00:14:35.4492 signature for high-integrity
Hame:
Description:
Execution
[see Add-On instruction Scan Modes oniine Help for more information]
Type: ﬁ Ladder Diagram ndition Description
In Instruction: Matar Starter Enableln is true OutCommand tums on when Stop and Start are on.
e iR e i OutCommand turns off when Stop tums off.
Gl D O Enableln is false OutCormmand tums off
Fault timer resets
o (oo .
Revision v1.0 Notes

66 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Language Switching

With RSLogix 5000 software, version 17 and later, you have the option |}
to display project documentation, such as tag descriptions and rung
comments in any supported localized language. You can store project]
documentation for multiple languages in a single project file rather

than in language-specific project files. You define all the localized
languages that the project will support and set the current, default,

and optional custom localized language. The software uses the default
language if the current language's content is blank for a particular
component of the project. However, you can use a custom language

to tailor documentation to a specific type of project file user.

Enter the localized descriptions in your RSLogix 5000 project, either
when programming in that language or by using the import/export
utility to translate the documentation offline and then import it back
into the project. Once you enable language switching in RSLogix 5000
software, you can dynamically switch between languages as you use
the software.

Project documentation that supports multiple translations within a
project includes:

e component descriptions in tags, routines, programs,
user-defined data types, and Add-On Instructions.

e equipment phases.

e trends.

e controllers.

e alarm messages (in ALARM_ANALOG and ALARM_DIGITAL
configuration).

e tasks.

e property descriptions for modules in the Controller Organizer.

e rung comments, SFC text boxes, and FBD text boxes.

If you want to allow language switching on an Add-On Instruction
that is sealed with an instruction signature, you must enter the
localized documentation into your Add-On Instruction before
generating the signature. Because the signature history is created after
the instruction signature is generated, the signature history is not
translatable. If the translated information already exists when you
generate the Add-On Instruction signature, you can switch the
language while keeping the signature intact because the switch does
not alter the instruction definition, it only changes the language that is
displayed.

For more information on enabling a project to support multiple
translations of project documentation, refer to the online help.

Publication 1756-PM010C-EN-P - October 2009 67

Chapter2 Defining Add-On Instructions

Motor Starter Instruction
I Example

68

The Motor_Starter Add-On Instruction starts and stops a motor.

If the stop pushbutton is closed and the start pushbutton is pressed

then:

e the motor gets the command to run.

e the instruction seals in the command, so the motor keeps
running even after you release the start pushbutton.

If the stop pushbutton is pressed (opened), then the motor stops.

Motor Starter Example Definition Editor General Tab

Add-On Instruction Definition - Motor_Starter v1.0

General |Parameters Local Tags | Scan Modes | Signature | Change History | Help
Mame: |
Diescription: Startz and stops a mator
Type: Eﬁ Ladder Diagram Change Type...

hedzjor hodinor Extended Teut
Revision: | 1B | |D > | | |
Revision Mote:
Wendar: Rockwel
Data Type Size: 20 byte (5] [Ok] [Cancel]

Motor Starter Example Definition Editor Parameter Tab

= Add-On Instruction Definition - Motor_Starter v1.0

General | Parameters |LocaITags Scan Modes || Signature | Change History | Help

Mame Usage | Data Type |Alias F0r| D efault | Style | Heq| Wig | Description External Access | Constant | |
| Enableln [Input BOOL 1 Decimal | [] ' [|Enable Input -...| Read Only O

| EnableOut Output BOOL 0 Decimal | [] ' [|Enable Outpu..| Read Only O

| Stop Input |BOOL 0| Decimal Enter the tag ... | Fleadwiite O

| Start Input |BOOL 0| Decimal Enter the tag ... | Fleadwiite O

| Jog Input |BOOL 0Decimal | (] | [|Jag command...| ReadAwrite]

| AuxContact |Input |BOOL 0 Decimal | [| O |Ausiiary cont... |ReadAwrite O

| ClearFault |Input |BOOL 0Decimal | (] | O |Ta clear the f... | ReadAwiite O

| Ou Output |BOOL 0| Decimal Output comm... | Fead Only O

| Fault Output |BOOL 0 Decimal | [If on, the mat... |Fead Only O

| FaultTime |Input |DINT 0 Decimal |] | O |Enter the time...| ReadAwiite O

2 0o]

Data Type Size: 20 byte (3] Ok] [Cancel

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions

Chapter 2

Publication 1756-PM010C-EN-P - October 2009

Motor Starter Example Ladder Logic

Motor_starter - Logic

=1aix]

|l il]|

H Data Content: |EI Motor_Starter <definition>

E|

if the Stop button is closed, the motor gets the command to run when you press the Start button. The motor runs ewven after you release the Start buttan. The motar stops -

wehen yau press (oper) the Stop button. The run command turms off if there is a faut
1f o, the motor

RunCommand

Stop command far the Start command for dlidn't start or
motor the motor stop
Stop Start Fault
TE B I
JC ERN el
RunCommend

Output command to

Ausiliary contact of
the motor

mator within FauttTime.

The metor starts if the run command is on. The motor also starts if the Jog input s on and there ist a faul
Output command to
the motor starter
1t on, the motor
starts
If aft, the metor
stops,
RunCommand out
1 T
S
Jog command for the
matar.
To jog the motor,
turm o this kit If o, the motor
To stop the jog, didn't start or
1urn oft this bt stop,
Jog Fault
— =
It FaufiTime is grester than 0, turn on CheckAuxContact. This lets the instruction wse the suxilary contact of the motor
Time (ms) to wait
far the ausdiary
cortact to open or
close.
The Fautt bit turns
on when that time is
up.
———GRT. i CheckfuxCortact
2 —{ Grester Than (A=g) Mg
Source & FaultTime Sowrce FaulTime
o0& o«
Source B 0 Dest FaullTimer PRE
el

It CheckauxContact is on, the rung checks for that state of the auxiiary contact. The Fault bit turms on if the auwsdliary contact doesnt match the commanded state of the

To clear the fault of the motar, turn on the FautClear kit

the motor starter. Make sure you set
It an, the motor the FaulTime:
starts Ctherwise, this
If att, the metor input doesnt do
stops, anything.
CheckAuxContact out AuxContact TOM
3 1F 1F 3 E Timer On Delay HCEN
Timer FaulTimer
Aupeliary contact of
Output command to the motor Tew 0 eron—
ceum i
the motor starter. Make sure you set
it o, the motor the FautTime.
starts Ctherwise, this 1f on, the mator
If at, the metor iput oesnt oo ciin' start or
stops. anything Stop.
Out AuxContact FaultTimer DN Fault
I T
EaS LR

To clear the fault 1f on, the metor
of the motor, turn ciin' start or
onthis bt stop
ClearFaut Fault
qE 1
4 JE 11—

(End)

The following diagrams show the Motor Starter instruction called in

three different programming languages.

Motor Starter Ladder Diagram

Conveyar
——Motor_Starter
Starts and stops & motar

hotor_Starter Motor_Starter_LD
Stop Stop_PB

0+«
Start Start_PB

0+
Ot Motor _Cut_LD

1K 3

-CF aut —

69

Chapter2 Defining Add-On Instructions

Motor Starter Function Block Diagram

Puszhbutton to stop the comeeyor

Cormeeyar

Motor_Stader FBD

S
op_ o -|
|

Puszhbutton to start the co n'-}_e yar

]
Stat_PE

—]
— —]

hator Starter

Starksandstopsa motar

Stop
Star

Out

Output command tothe conweyar motor

u]
f— — —— —] Motor Out_FBDY

Simulation Instruction
Example

70

Motor Starter Structured Text
Motor_Starter(Motor_Starter_ST, Stop_PB, Start_PB, Motor_Out_ST);

The Simulation_DT_1st Add-On Instruction adds a dead time and a

first-order lag to an input variable.

Simulation Example Definition Editor General Tab

Add-On Instruction Definition - Simulation_DT_1st... |

General | Parameters | Local Tags | Scan Modes || Signature | Changs History | Help
Mare: Simulation DT 1]
Description: Simulation instruction which includes a dead time and a
first order lag.
Type: 31 Function Block Diagram Change Type...
hedzjor hodinor Extended Teut
Bevision: 150 > | [SimDT 1st
Rievizion Mote:
Wendar: Fockwel Automation
Data Type Size: 276 byte 3] [Ok] [Cancel

Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Simulation Example Definition Editor Parameter Tab

General | Parameters | Local Tags | Scan Modes | Signature | Changs History | Help

Mame | Usage | Data Type |Alias F0r| D efault | Style | Heq| Wig | Description External Access | Constant | |
| Enableln Input BOOL 1 Decimal | [] ' [|Enable Input -...| Read Only O
| EnableOut Output BOOL 0 Decimal | [] ' [|Enable Outpu..| Read Only O
| Simlnput Input |REAL 0.0/ Flaat Enter the tag ... | Fleadwiite O
| SimDeadti.. [Input |REAL 000Fmat | [0 | [|Enter the dea.. | Read/wiite O
| SimTimeC... [Input |REAL 10Fat | O Eriter the time...| Read/wiite O
| SimDutput | Output |REAL 0.0/ Flaat O Output value ... |Fead Only O
|| SimDTInw | Dutput |BOOL U Decimal | [If an, the dea... |Read Only O
B EET InOut | REAL[100] Float Eriter an array... O
] 0o]

Data Type Size: 276 byte [s] ok][Cencel

Simulation Example Logic

Simulation Input DEDT_04
oo DECLT .l LG 04
b sdime o L Simulation Output

Dead Time(Sec) n Aut e Leadlag -
oo o o0
5im Dea dtime l eadtime Deadtimelny — In BOut

Storagednay DAt Lag Dead Time Invalid
Time Cornstant(Sec) L B — o e SmpTin
10

Publication 1756-PM010C-EN-P - October 2009 n

Chapter2 Defining Add-On Instructions

Ladder Diagram Configuration

In this example, the instruction simulates a deadtime and lag (first
order) process.

The Simulation_DT_1st instruction reads the control variable from the
PID instruction. The PID instruction reads the SimOutput Parameter of
the Simulation_DT_1st instruction.

Simulation instruction which includes a The Simulation_DT_1 st
deadtime and @ first order lag. instruction reads the control
———=imulation_DT_1 st——— iable f the PID
Simulation instruction which includes a d.. Ya”a e rom the
Simulation_DT_1st Sim_DT_LD | ... | FCSimDTIny 3 — Instruction.
Siminput Wy _Control_ariahle
0.0«

SimTimeConstant 50«
SimCwtput 0.0« . .
DA DT_Array LD The PID instruction reads the

SimQOutput Parameter of the

/ Simulation_DT_1st instruction.
Fl
Proportional Integkal Detivative —

PID My _FID_LD | ..
Process Wariable Sim_DT g0 SimCutput
Tiehack 1]
Cantral Yariable by _Contral_“ariahle

PIC Master Loop 1]
Inhold Bit 1]
Inkold Yalue 1]
Setpoirt 00+«
Process Wariable 0.0«
Outpt % 00«

Sim_DT_LD.SimOutput

y

Simulation_DT_1st tag SimQutput Parameter

12 Publication 1756-PM010C-EN-P - October 2009

Defining Add-On Instructions ~ Chapter 2

Function Block Diagram Configuration

The PIDE instruction sends the control variable to the
Simulation_ DT _1st instruction. The Simulation_ DT _1st instruction
calculates an output and sends it to the PIDE instruction as the
process variable

The PIDE instruction sends the control
variable to the Simulation_DT_1st instruction.

Simuation instruction which
includes a dead time and a first order lag.

Sim_DT_FED Wy_PDE_FED
Simulation_DT_1st (] FDE (]
Simuation instruction which includes a .. Enhanced FID
)) 0o on
| Siminput SimCutpt jD—C Py YEU oo
O SimDeadime SimD Ty 2 O SPProg SP ZlD
O SimTime Constant O SPCascade PYHHAlErm IID
[ariy] DT _&rray FBD | RatioProg PYHAarm ZID
O CWProg Py L&larm EID
OFF P LLAarm [
The Simulation_DT_1st instructi 0
e simulation_UI_1stinstruction] HanoFE PYROCPosAlam (2
calculates an output and sends it to the efProgProgRen PVROCNegélarm (9
[=T Ty) FiauHH Ak

PIDE instruction as the process variable.

Structured Text Configuration

The Simulation_DT_]_st instruction
reads the control variable from the Simulation_DT_1st(Sim_DT_ST, @_PIDE_ST.CVEU, DT_Array_ST):)

PIDE instruction and calculates an

output. My_PIDE_STPV = @m_DT_ST.SimOutput;)
The output goes to the process ——
variable of the PIDE instruction. PIDE(My_PIDE_ST);

Sim_DT_ST . SimQOutput

Simulation_DT_1st tag
dot

SimQutput Parameter

Publication 1756-PM010C-EN-P - October 2009 13

Chapter2 Defining Add-On Instructions

Notes:

14 Publication 1756-PM010C-EN-P - October 2009

Chapter 3

Using Add-On Instructions

Introduction Add-On Instructions are used in your routines like any built-in
instructions. You add calls to your instruction and then define the
arguments for any parameters.

Topic Page
Accessing Add-On Instructions 75
Use the Add Element Dialog Box 76
Include an Add-On Instruction in a Routine 77
Tips for Using an Add-On Instruction 79
Programmatically Access a Parameter 79
Monitor the Value of a Parameter 82
View Logic and Monitor with Data Context 83
Determine if the Add-On Instruction is Source Protected 85
Copy an Add-On Instruction 86
Store Your Add-On Instructions 87
Accessing Add-On The Add-On Instruction can be used in any one of the Ladder

Diagram, Function Block, or Structured Text languages (including
Structured Text within Sequential Function Chart actions). The
appearance of the instruction conforms to the language in which it is
placed.

Instructions

The Add-On Instructions in the project can be accessed from any of
the normal instruction selection tools.

The instruction toolbar has an Add-On tab that lists all of the currently
available Add-On Instructions in the project.

R I =11 =0 el e il] e i
4| » [\ Favortes Add-On[\g\ &larms 4 Bit A TimeriCounter A Input/Outp
!
Element Group: Add-0n

Saf'ety Add-On Instructio'ns can be used on!y in safety routines,
which are currently restricted to ladder logic. Safety Add-On

Instructions are shown in the Language Element Toolbar only
when the routine is a safety routine.

Publication 1756-PM010C-EN-P - October 2009 75

Chapter 3

Using Add-On Instructions

Use the Add Element Di a|og Follow these instructions to access the Add (language) Element dialog

Box

16

box.

1. Press Alt + Insert anywhere in the editor or by right-clicking the

logic in the Editor.

I Add Ladder Element

tatioh tove
Motion Group
tatioh Event
tdation Config
totion Coordinated
ASCH Serial Part
ASCI String

ASCI Conversion
Debug

:.:'- Motion Coordinated
A5CI Serial Port
ASCI String

ASCH Cornversion
g Debug

Add-On

o Corveyor_ContrcStarts and stops a conseyor
1|_|h_|r Starter Starts

»‘ Show Language Elementa Ey Eru:uupx

otk and stops a motar
-I Simulate_FeedbeSimulates a digital feedback device
-| Slmulatlu:un DT 1S|mulat|0n |nstruu:t|u:un which mclud

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions ~ Chapter 3

Include an Add-On
Instruction in a Routine

Publication 1756-PM010C-EN-P - October 2009

3. Select the Add-On Instruction and click OK.

Use
instruction in the browser.

i to display the instruction help for any

Il Add Ladder Element

i << [nstiuction Helpl RS Logix 5000 nstuction Help

MName |Description I Motor_S tarter v1.0

-
Maotion Coordinated ;I j
ASCI Senal Port Rockwell
ASCI String [Contact the Add-On Instruction develope

Ladder Element: IMotor_Starter

ASCI Conversion
Debug Starts and STops & motor
Add-On

-I Conveyor ContrcStarts and stops a conveyor
3 Starts and stops & motor * Available Languages

-| Slmulate FeedbzSimulates a digital feedback device

= Simulation_DT_1Simulation instruction which includ ... Relay Ladder
¥ Show Language Elements By Groups oK.

B | Motor_Starter
Starts and stops a motor -

Mew Add-On Inslrucliun...l Help | HEr I z T »

A

Follow this procedure when you want to use an Add-On Instruction in
one of your routines.

1. Open the Add-On Instruction folder in the Controller Organizer
and view the listed instructions.

If the instruction you want to use is not listed, you need to do
one of the following:

e Create the instruction in your project.

e Copy and paste an instruction into your project.

e Get the file for an exported instruction definition and then
import the instruction into your current project.

2. Open the routine that will use the instruction.
3. Click the Add-On tab on the instruction toolbar.

4. Click the desired Add-On Instruction, for example Simulation,

and drag the instruction from the toolbar into the routine.
Simull Si!null

Tl Simulation_DT_1sk v1.0 Sim DT 1st I

ﬁ Simulation_0T_1st | i

Simulation instruction which includes a D

= Simlngput SimDTIny
O SimTimeConstant SimCutput
DAl 7

5. Define arguments for each Parameter on the instruction call.

n

Chapter3 Using Add-On Instructions

The instruction appears as follows in each of the languages.

Ladder Diagram

Simulation_DT 1=t

< Simulation instruction which includes ... ——m—™—
Simulation_DT _1=t T HEImDTIn
Siminput)
T
SimTimeConstant T
Simoutpt e
DA ¥
Parameter With Description

Single question mark

This is a required InOut parameter. Enter a tag.

Single and double question marks

This is a required Input or Qutput parameter. Enter a
tag.

Double question marks

This is not a required parameter. You can either:
e leave as is and use the default value.

o enter a different value if it's an Input
parameter.

Function Block Diagram

Nub
b Simulation_D'T_1st
Simulation instruction which includes a ...
]
Siminput SimDTlinw 0
0o
C' Sim TimeConstart SimOutput O
DA -
Item Description

Nub on the end of pin

This is a required Input or Output parameter.

You must wire the pin to an IREF, OREF, connectaor,
or another block to verify.

Single question mark

This is a required InOut parameter. Enter a tag.

No nub on the end of pin

This is not a required parameter.
You can either:

e |eave as is and use the default value.

¢ enter a different value if it's an Input
parameter.

18

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions ~ Chapter 3

Structured Text

truction which includes a .
Simulation_DT_1st[Simulation_DT_1st, Simlnput, DAT]

The instruction expects arguments for required parameters as
listed in the instruction tooltip.

For help with an instruction, select the instruction and then

TIP .
press F1. In Structured Text, make sure the cursor is in the
blue instruction name.

T|ps for Using an Add-On This table describes programming tips for you to reference when
using Add-On Instructions.

Instruction
Topic Description
Instruction Help Use the instruction help to determine how to use the instruction in
your code.
Ladder Rungs In a ladder rung, consider if the instruction should be executed on a

false rung condition. It may improve scan time to not execute it.

Data Types A data type defined with the Add-On Instruction is used for the tag
that provides context for the execution from your code. A tag must
be defined of this Add-On Instruction-defined type on the call to the
instruction.

Indexed Tag You can use an indirect array indexed tag for the Instruction
instance. One drawback is that you cannot monitor the Add-On
Instruction by using this as a data context.

Passing Data o Input and Output parameters are passed by value.
o InOut parameters are passed by reference.

Programmatically Access a Follow these procedures for any language when you want to access a
Parameter an Add-On Instruction parameter that isn't available on the instruction

face by default.

Publication 1756-PM010C-EN-P - October 2009 19

Chapter 3

Using Add-On Instructions

80

The following procedures demonstrate how to use the Jog parameter
of the Motor Starter Add-On Instructions.

+ Parameters
Required Name Data Type Usage Description
X Motor Starter Motor Starter InOut
Enableln BOOL Input
EnableChat BOOL Oatput
X Stop BOOL Itnpat Ftop command for the motor.
x Start BOOL Input Start command for the motor.
Tng BOOL Itnpat Jog command for the motor.
(To jog the motor, turn on this bhitc.
To stop the jog, turn off tw

Using the Jog Command in Ladder Diagram

The first rung sets the Jog bit of Motor_Starter_LD = Jog_PB.

Pushbutton to jog the conveyor forvard

Jog_PBE
1F

Conveyor Jog command for the motor.
Tao jog the matar, turn on this bit.
To stop the jog, turn off this kit.

Mictor_Starter_LD.Jog)

10

Conveyar
—Mlaotor _Starter
Start=s and stops a maotor

hotor _Starter Wlotor _Starter LD - Fautt —
Stop Stop_PBE

0+«
Start Start_PB

0+
Ot Motor _Out_LD

0e

Motor_Starter LD

Jog

Motor_Starter tag 4l

dot

Jog Parameter

Use another instruction, an assignment, or an expression to read or write to the tag name
of the parameter. Use this format for the tag name of the parameter.

Add_0On_Tag.Parameter

Where Is

Add_0On_Tag

An instance tag defined by the Add On data type.

Parameter

Name of the parameter.

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions ~ Chapter 3

Using the Jog Command In Function Block Diagram

Any parameter can be made visible or invisible except those defined
as required. Required parameters are always visible. If the parameter
is required, you will see it checked in the Properties dialog box.

1. Click Properties for the instruction.

Mo tor_Starte rC

Startsandstopsa motar

1 Stop Out [Fe—
Start

2. Check the Vis checkbox of the Jog parameter to use it in your |j
diagram.

Motor_Starter Properties - Motor_Starter_FBD (Sheet 1, ... §|

Parameters | Tag
Wis | Mame |Argument |Value Data Type |Descripti0n | |

| ’ﬁ Enableln 1|BooL Enable Input - System Defi...
o | O EnableOut 1|BooL Enable Output - System De...
|_ Stop 0 BOOL Enter the tag that gives the...
i Start 0 BoOL Enter the tag that gives the...
t Jog 0 BoOL Jog command for the matar...
i O AuxContact 0/BooL Augiliary contact of the mat...
i O ClearFault 0/BooL Ta clear the fault of the mo...
o | Out 0 BoOL Output command ta the mo...
o | O Fault 0/BooL If an, the mator didn't start .
T e By e PR R YR Y

3. Click OK.

4. Wire to the pin for the parameter.

Pushbutton to start

u]
the conwveyar —] Stop Out op— —F - hMoter O ut_FBL
u]
Stat_FE — —— —i] Start
—

| T Jog

Fushbutton to stop Co mreyar
the oo nw eyor
u] Motar_Starter FBD
Stop_PE -
Motor_Stater I
| Cutput command to
| Startzandstopsa motor the conveyor motor

Pushbutton to jog
the conweyor fonwa rd

o '

Publication 1756-PM010C-EN-P - October 2009 81

Chapter3 Using Add-On Instructions

The assignment sets the Jog bit of
Motor_Starter_ST = Jog_PB.

Using the Jog Command in Structured Text

Motor_Starter_ST.Jog = Jog_P@

Motor_Starter(Motor_Starter_ST, Stop_PB, Start_PB, Motor_Out_ST);

Motor_Starter tag 4l w

dot

Jog Parameter

Motor_Starter_ST . Jog

Monitor the Value of a

Parameter

82

Follow this procedure when you want to see or change a parameter
value of an Add-On Instruction.

1. Open the Properties of the instruction based on what language
you are using.

a. For either a Function Block or Ladder Diagram, click

Properties .| for the instruction.

—————————hiator_Starter
- Starts and stops & maotor
Motar_Starter Matar_Starter_LD [H{Fautt>—
Stop Stop_PB
o0&
Start Start_PB
o0&
Cut hotor_Cut_LD
o0&

b. For Structured Text, right-click the instruction name and
choose Properties.

l\/lotor_Sta rter_ST,
Stop_PB,Start_PB,Motor_QOut_ST);

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions ~ Chapter 3

Motor_Starter Properties - Motor_Starter_LD (Rung 1)

Parameters | Tag

Wig | Mame |Argument |Value Data Type | Description | |
i] Enableln 1|BooL Enable Input - Syster Defi...
o |] EnableOut 1|BooL Enable Output - System De...
|_ Stop 0|pOoL Enter the tag that gives the...
i Start 0/BooL Enter the tag that gives the...
i] Jog 0/BooL Jog command for the mator..
i] AuxContact 0/BooL Augiliary contact of the mat...
i] ClearFault 0/BooL Ta clear the fault of the mo...
o | Out 0/BooL Output command ta the mo...
0| Fault 0/ BO0L I on, the mator didn't start .
s [] '+ FaultTime ﬂ] DINT Enter the time [ms] ta wait f...

[5ot Parameters

Insert Definition Defaults
Save Instruction Defaults

o (o]

2. Monitor the value of the parameters and change any if needed.
3. Type a new value for each parameter as needed.

4. Click Apply and when finished, OK.

View Logic and Monitor Follow this procedure when you want to view the logic of an Add-On
with Data Context Instruction and monitor data values with the logic.

1. Right-click the instruction call in any routine.

—————hdator_Starter-
e Startz and stops & motar

Motor_StarteffMotor_Starter_ST,St

Motor_Starter Mator_Starter LD [| HCRault— -

Stop Stop_PB 0op_ P B,MOtOf_OUt_ST);
ne

Start Start_PB
ne

out Motor_Out_LD
0«

Fushbutton to stop
the conwveyor

1)
Forr e
|
|

Cornvegr
Motor_Starter FBD

Motor_Starter I
Output command to

Startz and stops a3 maotar the convewor motor

0
—i| Stop Out fe— — — —i] hdatar_0ut_FBD|
u]
s o — —asun

Pushbutton to jog = m— —— —&Jog
the conveyor fonuard |

e e

Fushbutton to start
the conwveyor

Publication 1756-PM010C-EN-P - October 2009 83

Chapter3 Using Add-On Instructions

2. Choose Open Instruction Logic.

| Open Instruction Logic

Open Instruction Definition

Properties Alt+Enter

The Language Editor opens with the Add-On Instruction's logic
routine and with data values from the instruction call.

As you view the logic you can:

See Parameters and Local

Tag values.

identify the instruction call whose tags are being used for data.
see the logic as it executes (when online).
see Parameter and Local Tag values.

change local tag and parameter values for the data instance
selected.

Change Local Tag and Parameter Data Context identifies the instruction call
values for that data context. (by its instance tag) being used for data.

5] 555 e e

J Data I:'3""lt'3='=t3| & Mutar_'l_.-’-'«u:-:EDntaét [MDtDr_Startet_F'mgrarj fﬁl

Enter the tag for

1

Enitet the time in -~

the autput command milliseconds that it
tothe outpt To simulate 5 fault, takes far the
device. turn an this hit. teedhack ta turn an.
Ot armmanc SimulateFaul EC "
1] 1 F Girtr Tﬁor Enyl (A== Maorve
SOUrCE DelayTime Source DelayTime
2000 & 2000 &
Source B u] Dest DelayTimer PRE
2000 €
Tk
Timer Cn Delay HCER
Timer DelayTimer
Preset 2000 &—£DMN 23—
Accum 0 &
Enahkle Output -
System Defined
Parameter
DelayTimer DM EnakleCut
1 JE <

84

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions

Chapter 3

Determine if the Add-On
Instruction is Source
Protected

Publication 1756-PM010C-EN-P - October 2009

To edit the logic of the Add-On Instruction, you must select the
instruction <definition> in Data Context.

J Data Contest: I Motor_Starter <defirition:

=

You can't edit the instruction logic:

¢ online.

e when the logic is in the context of an instruction call.

e if the instruction is source-protected.

e if the instruction is sealed with an instruction signature.

An Add-On Instruction may be source protected so you cannot view
the logic. Follow these steps to see if an Add-On Instruction is source

protected.

1. Select the Add-On Instruction in the Controller Organizer.

The Add-On Instruction cannot be expanded when fully

protected.

2. Look in the Quick View pane for Source Protection.

If the Source Protection attribute isn'’t listed, then the instruction
isn’t protected.

=15 add-0n Instructions

A

wor_Control
+ Makar_Starker

+ Simulate_Feedback
+ Simulation_DT_1sk

Description Startz and stops a conveyor
Rewvizion wl.0

Revizion Mote

“endor Riockyel

Data Type Siz 60

Edited 402502006 11:02:23 &AM

Source Prote Source not availzhle e

A

85

Chapter3 Using Add-On Instructions

| cOpy an Add-On Instruction You can copy an Add-On Instruction into your project when it exists

86

in another RSLogix 5000 project. After you copy the Add-On
Instruction, you can use the instruction as is or rename it, modify it,
and then use it in your programs.

IMPORTANT U.se caution vyhen copying gnd pasting compgnents between
different versions of RSLogix 5000 programming software.

RSLogix 5000 software only supports pasting to the same
version or newer version of RSLogix 5000 software. Pasting to
an earlier version of RSLogix 5000 software is not supported.
When pasting to an earlier version, the paste action may
succeed, but the results may not be as expected.

TIP When copying and pasting Add-On Instructions, consider these
guidelines:

e You cannot paste a safety Add-On Instruction into a
standard routine.

e You cannot paste a safety Add-On Instruction into a safety
project that has been safety-locked or one that has a safety
task signature.

e You cannot copy and paste a safety Add-On Instruction
while online.

Follow these steps to copy the Add-On Instruction.

1. Open the RSLogix 5000 project that contains the Add-On
Instruction.

2. Find the instruction in the Add-On Instructions folder.

3 Controllsr My_Contraller_1
[Tasks

[£3 Motion Groups

5] Add-On Instructions

+ Conveyor_Zonkrol

+ Mokar_Starter
+ Simulate_Feedback

][[[+

3. Right-click the instruction and choose Copy.

Publication 1756-PM010C-EN-P - October 2009

Using Add-On Instructions ~ Chapter 3

Store Your Add-On
Instructions

Publication 1756-PM010C-EN-P - October 2009

4. Go to the other project where you want to paste the instruction.

5. Right-click the Add-On Instructions folder and choose Paste.

+-[3 Controller My_Contraller_2
+1-20 Tasks
+1-23 Mation Groups

Add-on Instructions
+-C3 Data Types (& Mew Add-On Inskruction. ..

Import Add-On Instruckion. ..

Paste [Chrl+y

There are two ways to store a group of Add-On Instructions together.
One is to save your Add-On Instructions in a project file. Another is to
create an L5X export file, as described in Chapter 4.

Follow these steps to store your instructions by saving them in a
project file.

1. Identify what instructions you want to store.

2. Place them in a project file called something like
‘Mylnstructions.ACD’.

3. Open other projects in additional instances of RSLogix 5000
software and use copy and paste or drag and drop to move a
copy of the instruction from ‘MyInstructions.ACD’ to another
project.

If any of these instructions reference the same Add-On Instruction or
User-Defined Data Type, there is only one shared copy in the project
file. When an Add-On Instruction is copied to another project, it also
copies any instruction it references to the target project.

87

Chapter3 Using Add-On Instructions

Notes:

88 Publication 1756-PM010C-EN-P - October 2009

Chapter 4

Introduction

Creating an Export File

Publication 1756-PM010C-EN-P - October 2009

Import and Export Add-On Instructions

Topic Page
Creating an Export File 89
Importing an Add-On Instruction 92
Update an Add-On Instruction to a Newer Revision via Import 95

When you choose to export an Add-On Instruction, the exported
Add-On Instruction includes all of its parameters, local tags, and
routines. These will be imported with the Add-On Instruction
automatically.

Optionally, you can include any nested Add-On Instructions or
User-Defined Data Types that are referenced by the exported Add-On
Instruction. Referenced Add-On Instructions and data types are
exported to the L5X file if you check ‘Include all referenced Add-On
Instructions and User-Defined Types’ during the export.

Add-On Instruction definition references may also be exported when
a program, routine, set of rungs, or User-Defined Data Type is
exported.

TIP If an Add-On Instruction uses Message (MSG) instruction and
InOut parameters of type MESSAGE, you may wish to export a
rung containing the Add-On Instruction to include the MESSAGE
tags. This captures the message configuration data, such as type
and path.

In deciding how to manage your Add-On Instruction definitions in
export files, you need to consider your goals in storing the definitions.

If Then

You want to store many Add-On Instructions that share a set of Export to separate
common Add-On Instructions or User-Defined Data Types in a files as described on
common location page 90.

You want to distribute an Add-On Instruction as one file

You want to manage each Add-On Instruction as a standalone Export to a single file
instruction as described on page
- — 1.
You want to preserve the instruction signature on your Add-On A
Instruction
TIP Add-On Instructions with instruction signatures are encrypted

upon export to prevent modifications to the export file.

89

Chapter 4

Import and Export Add-On Instructions

90

Export to Separate Files

If you want to store many Add-On Instructions that share a set of
common Add-On Instructions or User-Defined Data Types in a
common location, you may want to choose to export each Add-On
Instruction and User-Defined Data Types to separate files without
including references.

Follow these steps to export to separate files.

1. Right-click the Add-On Instruction in the Controller Organizer,
and choose Export Add-On Instruction.

2. Select the common location to store the L5X file.

Export Add-On Instruction x|
Save in: Ik'f} Projects j = &5 Ef-

)15

)16

|- AT Projects

|-5) Samples

Desktop

L

My Documents

My Computer

j Export I
Save as type: IHSLogix B000 <ML File [*.L5<] j Cancel |

™ Include all referenced Add-On Instructions and User-Defined Types Help |

File name: r-.-1 otor_Starter]

3. Type a name for the file.

4. Clear ’Include referenced Add-On Instructions and User-Defined
Types’.

5. Click Export.

6. Follow the above steps to individually export the other shared
Add-On Instructions and User-Defined Data Types.

Using export in this way lets you manage the shared Add-On
Instruction and User-Defined Data Types independently of the
Add-On Instructions that reference them. One advantage of this is the
ability to update the shared component without having to regenerate
all the export files for the instructions that reference it. That is, it is
only stored in one file instead of in every file whose instruction
references it. This can help with the maintenance of the instructions as
you only have to update one export file.

Publication 1756-PM010C-EN-P - October 2009

Import and Export Add-On Instructions ~ Chapter 4

To use Add-On Instructions that have been exported in a separate file,
without references, you must first import any User-Defined Data
Types of Add-On Instructions that the exported instruction references
before the import of the referencing instruction can be successful. To
do this, work from the bottom up. Import the lowest-level
User-Defined Data Types and any User-Defined Data Types that
reference them. Then, import the lowest-level Add-On Instructions,
followed by any Add-On Instructions that reference those low-level
Add-On Instructions. Once all of the items it references are in place,
the import of the Add-On Instruction will succeed.

Export to a Single File

If you manage each Add-On Instruction as a standalone, you may
want to export the instruction and any referenced Add-On Instructions
or User-Defined Data Types into one export file. By including any
referenced Add-On Instructions or User-Defined Data Types, you also
make it easier to preserve the instruction signature of an Add-On
Instruction.

Follow these steps to export to a single file and include any
referenced items.

1. Right-click Add-On Instruction in Controller Organizer and
choose Export Add-On Instruction.

2. Choose the location to store the L5X file.

Save in: IL':)ADI Projects j = |‘=_“F EH~

|2 Add-0n Instructians

2) CantopenEngrelzase

) 0ldnotneededquestionmark.
Example_Expart_Conwevar_Control LSX
Maktar_Starter L5

x

File name: IConveyor_Control j E xport I
Gave as lype: IHSLDgiH 5000 ML File [*.L5<) j Caricel |

¥ Include all referenced Add-On Instructions and User-Defined Types Help |
g

Publication 1756-PM010C-EN-P - October 2009 91

Chapter4 Import and Export Add-On Instructions

Importing an Add-On
Instruction

92

3. Type a name for the file.

4. Check ’Include referenced Add-On Instructions and
User-Defined Types’.

5. Click Export.

This exports the selected Add-On Instruction and all the referenced
instructions into the same export file. This file can be used to
distribute an Add-On Instruction. When the exported Add-On
Instruction is imported into the project, the referenced instructions are
imported as well in one step.

You can import an Add-On Instruction that was exported from
another RSLogix 5000 project. When importing an Add-On Instruction,
the parameters, local tags, and routines are imported as part of the
Add-On Instruction. Once the project has the Add-On Instruction, you
can use it in your programs.

Import Considerations

ATTENTION Editing an L5K or L5X File

updated if the Add-On Instruction is modified by editing an L5K
or LbX file. If RSLogix 5000 software detects edits to the
Add-On Instruction, but the 'Edited Date’ attribute is the same,
the Add-On Instruction will not be imported.

2 The EditedDate attribute of an Add-On Instruction must be

Publication 1756-PM010C-EN-P - October 2009

Import and Export Add-On Instructions ~ Chapter 4

When importing Add-On Instructions directly or as references,
consider these guidelines.

Considerations when Importing an Add-On Instruction

Topic Consideration

Tag Data Imported tags that reference an Add-On Instruction in the import file may be affected if the Add-On
Instruction is not imported as well. In this case, the imported tag's data may be converted if the existing
Add-On Instruction’s data structure is different and tag data may be lost.

If an existing Add-On Instruction is overwritten, project tag data may be converted if the Add-On Instruction’s
data structure is different and tag data may be lost.

See Import Configuration on page 94 for more information.

Logic Imported logic that references the Add-On Instruction in the import file may be affected if the Add-On
Instruction is not imported. If an existing Add-On Instruction is used for the imported logic reference and the
parameter list of the Add-On Instruction in the project is different, the project may not verify or it may verify
but not work as expected.

If an existing Add-On Instruction is overwritten, logic in the project that references the Add-On Instruction
may be affected. The project may not verify or may verify but not work as expected.

See Import Configuration on page 94 for more information.

Add-On Instructions While | An Add-On Instruction cannot be overwritten during import while online with the controller, though a new
Online Add-On Instruction may be created while online.

i
i
Final Name Change If the Final Name of an Add-On Instruction is modified during import configuration, the edit date of the |

imported Add-On Instruction will be updated. In addition, all logic, tags, User-Defined Data Types, and other
Add-On Instructions in the import file that reference the Add-On Instruction will be updated to reference the
new name. As a result, the edit date of any Add-On Instruction that references the Add-On Instruction will be
updated.

Add-On Instructions that have been sealed with an instruction signature cannot be renamed during import.

User-Defined Data Types | Add-On Instructions cannot overwrite User-Defined Data Types. Add-On Instructions and User-Defined Data
Types must have unique names.

Instruction Signature If you import an Add-On Instruction with an instruction signature into a project where referenced Add-On
Instructions or User-Defined Data Types are not available, you may need to remove the signature.

You can overwrite an Add-On Instruction that has an instruction signature by importing a different Add-On
Instruction with the same name into an existing routine. Add-On Instructions that have been sealed with an
instruction signature cannot be renamed during import.

Safety Add-On You cannot import a safety Add-On Instruction into a standard task.

Instructions
You cannot import a safety Add-On Instruction into a safety project that has been safety-locked or one that

has a safety task signature.
You cannot import a safety Add-On Instruction while online.

Class, instruction signature, signature history, and safety instruction signature, if it exists, remain intact when
an Add-On Instruction with an instruction signature is imported.

IMPORTANT Importing an Add-On Instruction created in version 18 or later of RSLogix 5000 software into an older
project that does not support Add-On Instruction signatures causes the Add-On Instruction to lose attribute

data and the instruction may no longer verify.

Publication 1756-PM010C-EN-P - October 2009 93

Chapter4 Import and Export Add-On Instructions

Import Configuration

When you select a file to import, the Import Configuration dialog box
lets you choose how the Add-On Instruction and referenced
components are imported.

If there are no issues, you can simply click OK to complete the
import.

If your Add-On Instruction collides with one already in the project,
you can:

e rename it, by typing a new, unique name in the Final Name
field.

e choose Overwrite from the Operation pull-down menu.

e choose Use Existing from the Operation pull-down menu.

H |mport Configuration E|
& | 5| Find ‘ j ﬁb ‘l& Find/Replace...
Find “/ithin: Final Name
Impart Content:
25 Add-0n Instructions Configure Add-On Instruction Properties
Clck AddOn | _ ARE] con;eyo.,lcontﬂ . Impatt Name: Canveer_Canlrd / The component collides with a
- Eri aramelers an ocal | ags . e . .
IC n nstructions 1o Rioutines Operatiort [Overwite =110 definition already in the project.

see the Configure Add-On B 3 References 0 fizeress il bl

T AddOn Instructions configured in the Feferences folders

Instruction References view. m e
X K rrars A armings Final W X c Cortral
If any referenced instruction matme N | colision Detais.. |

defl n itiOnS co | | ide, the Description: Starts and stops a convepor
References folder is fl agged . v Corveyor_Control sheady existsin+

project and is different. Existing
references to the instiuction type
may be affected including:
Revision: v1.0 - logic that calls instruction
- tags of this instruction type
Bevision Note: - add-on instructions and user- w

WYendor Flockwel
’j ‘Conweyor_Control' alieady exists in project and is different. Existing references may be affected.

Calls to the add-on instruction may verify with changes applied although calling arguments may nat be what is intended.
Check, all calls to instruction to ensure they will execute comrectly with updates.

If the data layout is different, data values for tags uzing this type will be converted if possible and some values may be lost
Check any tags using this type to ensure tag data converls as expected

ak, Cancel | Help |

Add-on instruction definition 'Conveyor_Control' already exists in project. Existing references may be affected.

TIP You can only rename an Add-On Instruction if it has not
been sealed with an instruction signature.

To rename an Add-On Instruction that has been
source-protected, you need the source key.

The Collision Details button lets you view the Property Compare tab,
which shows the differences between the two instructions, and the
Project References tab, which shows where the existing Add-On
Instruction is used.

94 Publication 1756-PM010C-EN-P - October 2009

Import and Export Add-On Instructions ~ Chapter 4

Update an Add-On When you need to update an instruction to a newer revision, you can
. import it from an L5X file or copy it from an existing project. You

Inst!‘u_ctlon_ to a Newer must be offline to update an Add-On Instruction.

Revision via Import

Follow these steps to update an Add-On Instruction to a newer
revision by importing it.

1. Right-click the Add-On Instruction folder and choose Import
Add-On Instruction.

2. Select the file with the Add-On Instruction and click Import.

Import Instruction X

Lock in: |_J RSLogix5000examples ﬂ £ B

| Conveyor_Control LSX

B

My Recent
Documents

m

Desktop

s,

My Documents

My Computer

‘;’] File name: |E0nvey0r_[:ontro|
2

Iy Metwaork Filez of type: |
Flaces

gl

|mport... |

Cancel

Filez containing: | Instruction Help

Intg: |[:|

Lef Lef L L

Publication 1756-PM010C-EN-P - October 2009 95

Chapter4 Import and Export Add-On Instructions
3. Review the Import Configuration dialog box, and from the
Operations pull-down menu, choose Overwrite.
M Import Configuration
& | 5| Find | ﬂ éﬁ' Qﬁ Find/Replace...
Find “ithin: Final Mame
|mport Content:
£ Add-On Instructions Configure Add-On Instruction Properties
Wiy, .
| t Mame: C Contral .
Parameters and Local Tags mpart Hame onveyel_ene Choose Overwrite.
Foutines Operation: | Ovenwrite ﬁ}J/
£3 References (i) Fieferences will be imported as
Add-On Instructions configured in the References folders
@ Enorsf/amings Final Hame: |E0nvey0r_[:ontro| ﬂ Callision Details...
Description: Startz and stops a conveyor
L d ‘Conveyor_Control' already exists in- A
project and iz different. Existing
references ta the instruction type
may be affected including:
Revisian: w20 - logic: that calls instruction
- tags of thiz instruction type
Fevizion Mote: - ac_ld-on instructions and uger- w
Wendaor: Rockwell
'E 'Conveyor_Control' already exizsts in project and iz different. E xisting references may be affected.
£ Callz to the add-on instruction may verify with changes applied although calling arguments may not be what iz intended.
Check all calls to instruction to ensure they will execute corectly with updates.
If the data layout iz different, data values for tags using this type will be converted if possible and some values may be lost.
3 Check any tags using thiz type to enzure tag data converts as expected.
QK Cancel Help
Add-on inzstruction definition ‘Conveyor_Control' already exists in project. Existing references may be affected.
4. Click Collision Details to see any differences in the Add-On
Instructions and to view where the Add-On Instruction is used.
The Property Compare tab shows the differences between the
instructions, in this case, the Revision, Edited Date, and Software
Revision.
Add-On Instruction Name Collision - Conveyor_Control
Property Compare]Project References]
Differences are highlighted.
Import Add-On Instruction Existing Add-On Instruction
Revision: 2.0 1.0 A
Revision MNote:
Vendor: Rockwel Rockwel
Created Date: 10{24/2005 6:50:43 PM 10{24/2005 6:50:43 PM
Created By: MAMills MAaMills
Edited Date: S/27/2009 4:39:12 PM 5/20/2009 9:15:59 PM
Edited By: Maisrdennis Maisrdennis
Execute Prescan: Mo Mo
Execute Postscan: Mo Mo
Execute Enable In False: Mo Mo
Software Revision: w17.00 w16.03
Additional Help Text: Use this instruction to start and st... Use this instruction ko start a...
Logic is different:]
v
Current Operation: Overwrite
Overwrite Use Existing Close | Help
96 Publication 1756-PM010C-EN-P - October 2009

Import and Export Add-On Instructions ~ Chapter 4

Publication 1756-PM010C-EN-P - October 2009

TIP The Compare dialog box only compares metadata for

each instruction definition, such as description, revision,

or edited date. For effective revision control, enter a

detailed revision note.

The Project References tab shows where the existing Add-On

Instruction is used.

Add-On Instruction Name Collision - Conveyor_Control §|

Property Compare | Project References

Locations where '‘Conveyor_Control' is called in project: Selected call's arguments:

Conkainer Routine Location | | Parameter Argument

- Motor_Starte... [S] Mested_Mato... Rung 1 Skop Conveyor_1_JamCl ...

Skark Conveyor_1_Entry_PE
Cuk ?

* Jam 7
<lnknown = Conveyor_1_Cut

[5how Changed Parameters Only

3 IF existing instruction is overwritten, once import completes, check all locations calling
‘Conveyor_Control' to ensure they will execute correctly with the updates,

Current Operation: Overwrite

[Cverwrite] [gse Existing] [Close] [Help]

IMPORTANT Check each routine where your Add-On Instruction is

used to make sure that your existing program code will
work correctly with the new version of the instruction.

For more information on updates to arguments, see Updates to

Arguments Following Parameter Edits on page 41.

5. Click Close and then OK to complete the operation.

97

Chapter4 Import and Export Add-On Instructions

Notes:

98 Publication 1756-PM010C-EN-P - October 2009

Index

A

access
Add-On Instructions 75
Add Element dialog box 76

Add-0n Instruction Definition Editor 37

alias
parameter 28, 38
array 28

C

Change History tab 17
changing class 54
class 13
changing 54
collision
import 94, 96
compare instructions 96
constant value tags 31
copy
Add-On Instruction 86
default values 43
instruction signature 60
safety Add-On Instruction 86
safety instruction signature 61
signature history 61
Copy Default Values dialog box 44
create
Add-On Instruction 35
alias parameter 38
EnablelnFalse routine 51
instruction help 64
instruction signature 60
local tags 39
logic 44
parameters 37
postscan routine 50
prescan routine 48
signature history 61

D

data access 24
data access control 31
data context views 55
data types
alias 28
parameters 27, 37
size 22
tags 40
default values 38, 40
copy 43

Publication 1756-PM010C-EN-P - October 2009

delete
safety instruction signature 62

E

Edit Tags tab 41

Enableln parameter 52
Function Block Diagram 53
ladder diagram 53
structured text 53

EnablelnFalse routine 51
create 51

EnableQut parameter 52

export 89-92

external access 31

F

Function Block Diagram
instruction example 78

G

General tab 13
generate

instruction signature 60
GSV 26

H

help
create 64
example 66
Help tab 18

I
import 92-97
Import Configuration dialog box 96
instruction
size 22
toolbar 75
instruction signature
changing 20
copy 60
definition 16
generate 60
language switching 20, 67
remove 60
restricted actions 16, 20
source protection 20

99

Index

100

L

Ladder Diagram
instruction example 78
language switching 67
instruction signature 20
Last Edit Date 61
local tags
create 39
external access 41
planning 33
Local Tags tab 14
create tags 40
logic 44
execution 45

monitor
data values 83
parameter values 82
move
parameter 39

naming conventions 32, 36
nesting 22

data access 24

planning 33

0

object classes 26

P

parameter

alignment 41-42
parameters

alias 28

create 37

Enableln 52

EnableQut 52

monitor 82

move 39

planning 32

reorder 39

required 29

visible 29, 30
Parameters tab 14

create a parameter 37
passing arguments 27
performance 45

planning 32
postscan routine 49
create 50
prescan routine 47
create 48
programming language
choosing 21
planning 33
programming tips 79
Project References tah 97
Property Compare tab 96

remove

instruction signature 60
reorder parameters 39
required parameters 29
routine

EnablelnFalse 51

postscan 49

prescan 47

S

safety
class 13
restrictions 19
tags 30
safety Add-On Instruction
copy 86
import 93

safety application instructions

restrictions 25

safety instruction signature 17, 21

copy 61
create 62
delete 62
invalid 62
view 63

safety task signature 19, 54, 86, 93

additional resources 9
Scan Mode tab 16
scan modes 45-52
planning 34
verify b6
Scan Modes tab 47
SFC Action 49
signature history 17, 61
Signature tab 16
SIL 3 21

Publication 1756-PM010C-EN-P - October 2009

Index

source protection T
applying 57-59
enabling 57
instruction signature 20
operation 60

tags
create local tags 39
standard and safety 30

options 57 test 54
plpanning 33 planning 34
ol \i transitional instructions 21
Quick View pane 85)
translation

SSV 26 o
standard See language switching.

class 13

tags 30 U

store your instructions 87
Structured Text
instruction example 79

unavailable instructions 25
update Add-On Instruction revision 95

'}
visible
parameters 29, 30

Publication 1756-PM010C-EN-P - October 2009 101

Index

102 Publication 1756-PM010C-EN-P - October 2009

Rockwell Automation Support

Rockwell Automation provides technical information on the Web to assist you in using its products. At
http://www.rockwellautomation.com/support/, you can find technical manuals, a knowledge base of FAQs, technical and
applicationnotes,samplecodeandlinkstosoftwareservice packs,andaMySupportfeaturethatyoucancustomizetomakethe
best use of these tools.

Foranadditionalleveloftechnical phone supportforinstallation, configuration, and troubleshooting, we offerTechConnect
support programs. For more information, contact your local distributor or Rockwell Automation representative, or visit
http://www.rockwellautomation.com/support/.

Installation Assistance

If you experience an anomoly within the first 24 hours of installation, review the information that's contained in this manual.
You can contact Customer Support for initial help in getting your product up and running.

United States or Canada |1.440.646.3434

Outside United States or |Use the Worldwide Locator at http://www.rockwellautomation.com/support/americas/phone_en.htm|
Canada or contact your local Rockwell Automation representative.

New Product Satisfaction Return

Rockwell Automation tests all of its products to ensure that they are fully operational when shipped from the manufacturing
facility. However, if your product is not functioning and needs to be returned, follow these procedures.

United States Contact your distributor. You must provide a Customer Support case number (call the phone number
above to obtain one) to your distributor to complete the return process.

Outside United States Please contact your local Rockwell Automation representative for the return procedure.

Documentation Feedback

Your comments will help us serve your documentation needs better. If you have any suggestions on how to improve this
document, complete this form, publication RA-DU002, available at http://www.rockwellautomation.com/literature/.

www.rockwellautomation.com

Power, Control and Information Solutions Headquarters

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, W1 53204 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382.4444

Europe/Middle East/Africa: Rockwell Automation, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 2 663 0600, Fax: (32) 2 663 0640
Asia Pacific: Rockwell Automation, Level 14, Core F, Cyberport 3, 100 Cyberport Road, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 2508 1846

Publication 1756-PM010C-EN-P - October 2009

Supersedes Publication 1756-PM010B-EN-P - July 2008 Copyright © 2009 Rockwell Automation, Inc. All rights reserved. Printed in the U.S.A.

http://www.rockwellautomation.com/support/
http://www.rockwellautomation.com/support/
http://www.rockwellautomation.com/locations/
http://www.rockwellautomation.com/support/americas/phone_en.html
http://literature.rockwellautomation.com/idc/groups/literature/documents/du/ra-du002_-en-e.pdf
http://www.rockwellautomation.com/literature/

	1756-PM010C-EN-P, Logix5000 Controllers Add-On Instructions Programming Manual
	Summary of Changes
	Table of Contents
	Preface
	Purpose of This Manual
	Additional Resources for Safety Applications
	Understanding Terminology

	1 - Designing Add-On Instructions
	Introduction
	About Add-On Instructions
	Components of an Add-On Instruction
	Considerations for Add-On Instructions
	Considerations When Creating Parameters
	Planning Your Add-On Instruction Design

	2 - Defining Add-On Instructions
	Introduction
	Create an Add-On Instruction
	Create Parameters
	Create Local Tags
	Edit Parameters and Local Tags
	Updates to Arguments Following Parameter Edits
	Copying Parameter or Local Tag Default Values
	Create Logic for the Add-On Instruction
	Defining Operation in Different Scan Modes
	Enabling Scan Modes
	Using the EnableIn and EnableOut Parameters
	Change the Class of an Add-On Instruction
	Testing the Add-On Instruction
	Defining Source Protection for an Add-On Instruction
	Generate an Add-On Instruction Signature
	Creating Instruction Help
	Motor Starter Instruction Example
	Simulation Instruction Example

	3 - Using Add-On Instructions
	Introduction
	Accessing Add-On Instructions
	Use the Add Element Dialog Box
	Include an Add-On Instruction in a Routine
	Tips for Using an Add-On Instruction
	Programmatically Access a Parameter
	Monitor the Value of a Parameter
	View Logic and Monitor with Data Context
	Determine if the Add-On Instruction is Source Protected
	Copy an Add-On Instruction
	Store Your Add-On Instructions

	4 - Import and Export Add-On Instructions
	Introduction
	Creating an Export File
	Importing an Add-On Instruction
	Update an Add-On Instruction to a Newer Revision via Import

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V

	Back Cover

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

Introduction_Catagory Types

		This tab summarizes Rockwell Automation Global Sales and Marketing preferred printing standards. It also provides guidance on whether a publication should be released as JIT (print on demand) or if it requires an RFQ for offset printing.
Find your publication type in the first section below. Use the assigned Printing Category information to determine the standard print specifications for that document type. The Printing Categories are defined below the Publication Type section. Note there may be slightly different print specifications for the categories, depending on the region (EMEA or Americas).
For more information on Global Sales and Marketing Printing Standards, see publication RA-CO004 in DocMan.

		Publication Type and Print Category

		Publication Type		Off Set Print Category Spec. (See table below)		JIT Spec. (See table below)		Description		Order Min **		Order Max **		Life Cycle Usage / Release Option

		AD		NA - Puttman		NA		Advertisement Reprint Colour		NA		NA		Presale / Internal

		AP		A3		D2		Application Solution or Customer Success Story		5		100		Presale / External

		AR		NA		NA		Article/Editorial/Byline		NA		NA		Presale / Internal

								(press releases should not be checked into DocMan or printed)

		AT		B3, B4		D5		Application techniques		5		100		Presale / External

		BR		A2 Primary, A1		NA		Brochures		5		100		Presale / External

		CA		C2 Primary, C1		NA		Catalogue		1		50		Presale / External

		CG		NA		NA		Catalogue Guide		1		50		Presale / External

		CL		NA		NA		Collection		5		50		Presale / External

		CO		A5, A6, A9		D5		Company Confidential Information		NA		NA		NA / Confidential

		CP		E-only		E-only, D5		Competitive Information		5		50		NA / Confidential

		DC		E-only		E-only		Discount Schedules		NA		NA		Presale / Internal

		DI		A1, A3		NA		Direct Mail		5		100		Presale / Internal

		DM		NA		NA		Product Demo		5		50		Presale / Internal

		DS		B3		D5		Dimensions Sheet		1		5		Post / External

		DU		B3		D5		Document Update		1		5		Post / External

		GR		B2		D6		Getting Results		1		5		Post / External

		IN		B3 Primary, B2		D5, D6		Installation instructions		1		5		Post / External

		LM		NA		NA		Launch Materials		5		50		Presale / Internal

		PC		B3		D5		Packaging Contents

		PL		E-only primary, B3		E-only		Price List		5		50		Presale / Internal

		PM		B2		D6		Programming Manual		1		5		Post / External

		PP		A3		D1		Profile (Single Product or Service). NOTE: Application Solutions are to be assigned the AP pub type.		5		100		Presale / External

		QR		B2 primary, B3, B5		D5, D6		Quick Reference		1		5		Post / External

		QS		B2 primary, B3, B5		D5, D6		Quick Start		1		5		Post / External

		RM		B2		D5, D6		Reference Manual		1		5		Post / External

		RN		B3		D5		Release Notes		1		5		Post / External

		SG		B1 Primary, B4		D5, D6		Selection Guide Colour		5		50		Presale / External

		SG		B2		D5, D6		Selection Guide B/W		5		50		Presale / External

		SP		A1, A2, A3, A4		NA		Sales Promotion NOTE: Service profiles are to be assigned the PP pub type.		5		100		Presale / Internal

		SR		B2, B3		D5, D6		Specification Rating Sheet		5		100		Presale / External

		TD		B2 Primary B3, B4, B5		D5, D6		Technical Data		5		50		Presale / External

		TG		B2, B3		D6		Troubleshooting Guide		1		5		Post / External

		UM		B2 Primary, B4		D6		User Manual B/W		1		5		Post / External

		WD		B3		D5		Wiring Diagrams / Dwgs		1		5		Post / Internal

		WP		B3 Primary, B5		D5		White Paper		5		50		Presale / External

		** Minimum order quantities on all JIT items are based on the publication length. **

		Publication length		Minimum Order Quantity

		77 or more pages		1 (no shrink wrap required)

		33 to 76 pages		25

		3 to 32 pages		50

		1 or 2 pages		100

		Pre-sale / Marketing		All paper in this category is White Brightness, 90% or better. Opacity 90% or better

		Category		Color Options		AP, EMEA Paper Requirements		Canada, LA, US Paper Requirements

		A1		4 color		170 gsm 2pp		100# gloss cover, 100# gloss text

		A2		4 color		170 gsm , folded, 4pp		100# gloss cover, 80# gloss text

		A3		4 color		Cover 170 gsm with Body 120 gsm, > 4pp		80# gloss cover, 80# gloss text

		A4		2 color		170gsm Silk – 120gsm Silk		80# gloss cover, 80# gloss text

		A5		2 color		170gsm Silk – 120gsm Silk		80# gloss cover, 80# matt sheet text

		A6		1 color		170gsm Silk – 120gsm Silk		80# gloss cover, 80# matt sheet text

		A7		4 color cover
2 color text
Selection Guide		Category being deleted		10 Point Cover C2S
50# matte sheet text

		A8		4 color cover		Category being deleted		50# matte sheet text, self cover

				2 color text

				Selection Guide

		A9		2 color		100gsm bond		50# matte sheet text, self cover

				Selection Guide

				Gray shading indicates Obsolete Print Catagories

		Post Sale / Technical Communication

		Category		Color Options		AP, EMEA Paper Requirements		Canada, LA, US Paper Requirements

		B1		4 color cover		270gsm Gloss 100gsm bond		10 Point Cover C2S

				2 color text				50# matte sheet text

		B2		1 color		160gsm Colortech & 100gsm Bond		90# Cover
50# matte sheet text

		B3		1 color		100gsm bond		50# matte sheet text, self cover

		B4		2 color		160gsm Colortech & 100gsm Bond		90# Cover
50# matte sheet text

		B5		2 color		100gsm bond		50# matte sheet text, self cover

		Catalogs

		Category		Color Options		AP, EMEA Paper Requirements		Canada, LA, US Paper Requirements

		C1		4 color cover		270gsm Gloss 90gsm silk		10 Point Cover C2S

				4 color text				45# Coated Sheet

		C2		4 color cover		270gsm Gloss 80gsm silk		10 Point Cover C2S

				2 color text				32#-33# Coated Sheet

		JIT / POD		All paper in this category is White Brightness, 82% or better. Opacity 88% or better

		Category		Color Options		AP, EMEA Paper Requirements		Canada, LA, US Paper Requirements

		D1		4 color		170gsm white silk		80# gloss cover, coated 2 sides

		D2		4 color		120gsm white silk		80# gloss text, coated 2 sides, self cover

		D3		4 color		Cover 170gsm with Body 120gsm		80# gloss cover, 80# gloss text coated 2 sides

		D4		1 color		160gsm tab		90# index

		D5		1 color		80gsm bond		20# bond, self cover

		D6		1 color		Cover 160gsm tab with Body 80gsm bond		90# index, 20# bond

		D7		2 color		160gsm tab		90# index

		D8		2 color		80gsm bond		20# bond, self cover

		D9		2 color		Cover 160gsm tab with Body 80gsm bond		90# index, 20# bond

		D10		Combination: 4 color cover, with 2 color body		Cover 160gsm with Body 80gsm		90# index, 20# bond

				Gray shading indicates Obsolete Print Catagories

Print Spec Sheet

		JIT Printing Specifications				RA-QR005F-EN-P - 8/07/2009

		Printing Specification		YOUR DATA HERE		Instructions																																				NO

		(required) Category:		D6		Select Print Category A,B,C or D from category list, on "Introduction_Catagory Types" tab																														11” x 17”				LOOSE -Loose Leaf		YES		Pre-sale / Marketing				TOP

		(required) Finished Trim Size Width:		8.5” x 11”																																8.5” x 11”				PERFECT - Perfect Bound				A1				LEFT

		(required) Publication Number :		1756-PM010C-EN-P		Sample: 2030-SP001B-EN-P																														3” x 5”				SADDLE - Saddle Stitch				A2				RIGHT				CORNER

		Use Legacy Number		NO		YES or NO																														18” x 24” Poster				PLASTCOIL - Plastic Coil (Coil Bound)				A4				BOTTOM				SIDE

		Legacy Number if applicable:				Sample Legacy Number: 0160-5.33																														24” x 36” Poster				STAPLED1 -1 position				A3

		Publication Title:		Logix5000 Controllers Add-On Instructions		Sample: ElectroGuard Selling Brief																														36” x 24” Poster				STAPLED1B - bottom 1 position				A5

		(required) Business Group:		Marketing Commercial		As entered in DocMan																														4” x 6”				STAPLED2 - 2 positions				A6

		(required) Cost Center:		CMKMKE CM Integrated Arch - 19021		As entered in DocMan - enter number only, no description. Example - 19021		CMKMKE CM Integrated Arch - 19021
CMKMKE Market Access Program - 19105																												4.75” x 7” (slightly smaller half-size)				THERMAL - Thermal bound (Tape bound)				A7

		Binding/Stitching:		PERFECT - Perfect Bound		Review key on right...		Saddle-Stitch Items
All page quantities must be divisible by 4.
80 pgs max. on 20# (text and cover)
76 pgs max. on 20# (text) and 24# (cover)
72 pgs max. on 24# (text and cover)

Perfect Bound Items
940 pgs max. w/cover (90# index unless indicated otherwise)

Coil Bound Items
580 pgs max. of 20# (if adding cover deduct equivalent number of pages to equal cover thickness) (90# index unless indicated otherwise)

Tape Bound Items
250 pgs max. on 20# no cover
240 pgs max. w/cover (90# index unless indicated otherwise)

Double Wire Bound Items
80 pgs max. on 20# (if adding cover deduct equivalent number of pages to equal cover thickness) (90# index unless indicated otherwise)																												4.75” x 7.75”				THERMALO - Thermal Bound (Tape bound - offline)				A8

		(required) Page Count of Publication:		104		Total page count including cover																														5.5” x 8.5” (half-size)				Wire O - Double Wire Bound (offline)				A9

		Paper Stock Color:				White is assumed. For color options contact your vendor.																														6” x 4”								Post Sale / Technical Communication

		Number of Tabs Needed:				5 tab in stock at RR Donnelley																														7.385” x 9” (RSI Std)								B1

		Stitching Location:				Blank, Corner or Side																														8.25” x 10.875”								B2

		Drill Hole YES/NO		YES		All drilled publications use the 5-hole standard, 5/16 inch-size hole and a minimum of ¼ inch from the inner page border.																														8.25” x 11” (RA product profile std)								B3						None

		Glue Location on Pad:				Glue location on pads																														8.375” x 10.875								B4						Half

		Number of Pages per Pad:				Average sheets of paper.. 25, 50 75,100 Max																														9” x 12” (Folder)								B5						C

		Ink Color				One color assumes BLACK / 4 color assume CMYK / Indicate PMS number here…																														A4 (8 ¼” x 11 ¾”) (210 x 297 mm)								Catalogs						DbleParll

		Used in Manufacturing:		NO																																A5 (5.83” x 8.26”) (148 x 210 mm)								C1						Offset Z

		Fold:		None																																														Sample

		Comments:																																										C2						Short

		Part Number:																																										JIT / POD						V

																																												D1						Z

																																												D2						Microfold

																																												D3

																																												D4

																																												D5

																																												D6

																																												D7

																																												D8

																																												D9

