

ASIA

Delta Electronics, Inc. Taoyuan1 31-1, Xingbang Road, Guishan Industrial Zone, Taoyuan County 33370, Taiwan, R.O.C. TEL: 886-3-362-6301 / FAX: 886-3-362-7267

Delta Electronics (Jiang Su) Ltd. Wujiang Plant3 1688 Jiangxing East Road, Wujiang Economy Development Zone, Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-512-6340-7290

Delta Electronics (Japan), Inc. Tokyo Office Delta Shibadaimon Building, 2-1-14 Shibadaimon, Minato-Ku, Tokyo, 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc. Donghwa B/D 3F, 235-6, Nonhyun-dong, Kangnam-gu, Seoul 135-010, Korea TEL: 82-2-515-5303/5 / FAX: 82-2-515-5302

Delta Electronics (Singapore) Pte. Ltd. 8 Kaki Bukit Road 2, #04-18 Ruby Warehouse Complex, Singapore 417841 TEL: 65-747-5155 / FAX: 65-744-9228

Delta Energy Systems (India) Pvt. Ltd. Plot No. 27 & 31, Sector-34, EHTP, Gurgaon-122001 Haryana, India TEL: 91-124-4169040 / FAX: 91-124-4036045

AMERICA

Delta Products Corporation (USA) Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3813 / FAX: 1-919-767-3939

EUROPE

Deltronics (The Netherlands) B.V. Eindhoven Office De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-2592850 / FAX: 31-40-2592851

*We reserve the right to change the information in this manual without prior notice

20080129

0

NELIA

Þ

σ

pli

0

0

5

Manua

9

Programmin

ā

Programming

DVP-PM APPLICATION MANUAL

Table of Contents

Chapter 1: Program Structure of DVP-PM

1.1	O100 Main Program	. 1-1
1.1	.1 Manual Motion in O100 Main Program	. 1-2
1.2	Structure of OX Motion Subroutine	. 1-2
1.3	Structure of Pn Subroutine	. 1-4
1.4	Structure of O100, OX and Pn Program Design	. 1-6
1.4	.1 The Program Structure	.1-6

Chapter 2: Hardware Specifications and Wiring

2.	1 F	Hardware Specifications2	2-1
	2.1.1	Power Specifications	2-1
	2.1.2	I/O Point Specifications	2-1
	2.1.3	Dimension	2-3
2.	2 I	nstallation & Wiring2	2-4
	2.2.1	Wiring	2-5
	2.2.2	Power Input Wiring	2-5
	2.2.3	Safety Wiring	2-6
	2.2.4	I/O Point Wiring	2-6
	2.2.5	Wiring with Drives	2-10
2.	3 (Communication Ports2	2-15
	2.3.1	COM1 (RS-232)	2-15
	2.3.2	2 COM2 (RS-485)	2-15

Chapter 3: Functions of Devices in DVP-PM

3.1	Device in DVP-PM	. 3-1
3.2	Values, Constants [K]/[H], Floating Points [F]	3-4
3.3	Numbering and Functions of External Input/Output Contacts [X]/[Y]	3-6
3.4	Numbering and Functions of Auxiliary Relays [M]	. 3-7
3.5	Numbering and Functions of Step Relays [S]	. 3-8
3.6	Numbering and Functions of Timers [T]	. 3-8
3.7	Numbering and Functions of Counters [C]	. 3-9
3.8	Numbering and Functions of Registers [D]]	. 3-11

3.8.1 Data Register [D]	3-11
3.8.2 Index Registers [V], [Z]	3-12
3.9 Pointer [N], Pointer [P _n]	3-13
3.10 Special Auxiliary Relays [M], Special Data Register [D]	3-13
3.11 Functions of Special Auxiliary Relays and Special Registers	3-22
3.12 Special Registers for Manual Motion Mode	3-32
3.12.1 Functions of Special Registers for Manual Motion Mode	3-33
3.12.2 Manual Modes	3-48
3.12.3 Application Position & Speed Control Registers for Manual Modes	3-49

Chapter 4: Basic Instructions

4.1	Basic Instructions	4-1
4.2	Explanations of Basic Instructions	4-2

Chapter 5: Categories and Use of Basic Application Instructions

5.1	List of Instructions		·1
5.2	Composition of Ap	plication Instruction5-	.3
5.3	Handling of Numer	ic Values5-	·5
5.4	V, Z Index Registe	r Modification5-	·8
5.5	Instruction Index	5-	.9
5.6	Application Instruc	tions5-	12
	• (API 00 ~ 09)	Loop Control	12
	• (API 10 ~ 19)	Transmission Comparison5-	·19
	• (API 20 ~ 29)	Four Arithmetic Operation5-	·24
	• (API 40 ~ 49)	Data Processing5-	.37
	• (API 70 ~ 79)	Display of External Settings5-	40
	• (API 100 ~ 109)	Communication5-	44
	• (API 110 ~ 138)	Floating Point Operation5-	·53
	• (API 215 ~ 223)	Contact Type Logic Operation Instruction5-	·80
	• (API 250 ~ 260)	New Instructions5-	-86

Chapter 6: Motion Instructions and G-Code Instructions

6.1	List of Motion Instructions and G-Code Instructions	6-1
6.2	Composition of Motion Instructions and G-Code Instructions	6-2
	6.2.1 Motion Instructions	

	6.2.2 G-Code Instructi	ons	6-3
6.3	Motion Instruction	S	6-5
	• (MON 00 ~ 19)	Motion Instructions	6-5
6.4	G-Code Instructio	ns	6-30
	• (G0 ~ 4, 90 ~ 91)	G-Code Instructions	6-30

Chapter 7: Use DVP-PM As Slave

7.1	How to Connect DVP-EH2, DVP-PM (as Master) and DVP-PM (as Slave) 7-1
7.1	.1 The Structure
7.1	.2 Example of Master-Slave Connection

Chapter 8: Application Examples

8.1	Draw the Trajectories Below by Using Motion Instructions and G-Codes	8-1
8	1.1 Design Procedure	8-3
8.2	Applying "motionSample" in PMSoft	8-7
8	2.1 Design Plan	8-7
8	2.2 Design Example Program	8-8
8.3	Planning Variable Speed Operation	8-10
8	3.1 Design Plan	8-10
8	3.2 Design Example Program	8-12

Chapter 9: Appendix

9.1	Appendix A: Special Registers for Manual Motion Mode	9-1
9.2	Appendix B: Motion Instructions & G-Code Instructions	9-3
9.3	Appendix C: Error Codes	9-4

Delta's DVP-PM series MPU is a high-speed positioning and multi-functional programmable logic controller with 2-axis linear/arc interpolation, featuring functions as basic instructions, application instruction, motion instructions and G-code instructions, making the editing and compiling of program more diverse.

This chapter will introduce the program structure of DVP-PM series MPU. DVP-PM combines the sequential control and 2-axis interpolation positioning control; therefore, the program is in three types: O100 main program, OX motion subroutine and Pn subroutine, which will be illustrated in this chapter.

The basic instructions, application instructions and G-Code instructions will be given in Chapter 4 ~ 6.

1.1 O100 Main Program

O100 main program is the PLC sequential control program, which is the main program of sequential control for DVP-PM series MPU. The O100 main program section only supports basic instructions and application instructions. Besides processing I/O signals and calling Pn subroutine, basic instructions and application instructions also control 100 OX motion subroutines which enable OX0 ~ OX99. Therefore, O100 main program establishes the main control program, and the main control program sets up and activates motion subroutines. This is the control structure of the operation of DVP-PM. See below the operation procedure and features of O100 main program.

- 1. There are two ways to activate O100 main program
 - When DVP-PM is powered, and the AUTO/MANU switch goes from MANU to AUTO, M1072 will be On automatically, and O100 main program will be in RUN status.
 - When DVP-PM is powered, you can set M1072 to be On or O100 main program to be in RUN status by communication.

2. The program is scanned in cycles. When O100 main program is enabled, the scan will starts at the start flag of O100. When the scan reaches M102 (main program ends instruction), it will return to the start flag of O100 and resume the scan, as shown in the figure below: The instruction can be compiled in any forms when Auto/Manual is in the main control program section, i.e. the "sequential control program area"

- 3. There are three ways to stop the operation of O100 main program:
 - When DVP-PM is powered, and the AUTO/MANU switch goes from AUTO to MANU, M1072 will be Off automatically, and O100 main program will be in STOP status. The operation of OX and Pn subroutines will stop at this moment.
 - When DVP-PM is powered, you can set M1072 to be Off or O100 main program to be in STOP

status by communication. The operation of OX and Pn subroutines will stop immediately.

- When errors occur during the design, compiling or operation of the program, O100 main program will stop automatically. See 3.13 for the table of the error codes and their causes.
- 4. O100 main program supports basic instructions and application instructions; therefore, you can design the program according to your actual needs. Besides, you can further activate OX0 ~ OX99 motion subroutines by setting up the parameters in motion instructions and the activation No. in the motion program.
 - O100 main program does not support motion instructions and G-Code instructions; therefore, please design motion instructions and G-Code instructions in OX0 ~ OX99 motion subroutines. See 1.2 for more details.
 - O100 main program is able to call Pn subroutine. See 1.3 for more details.
- 5. The above explanations are sorted in the table below:

O100 main program	Explanation
Start of the program	Start flag of O100 main program (*In ladder diagram editing mode, it will be set up automatically. Therefore you do not have to compile this row.)
End of the program	End of M102 main program (*In ladder diagram editing mode, it will be set up automatically. Therefore you do not have to compile this row.)
Execution of the program	1. DVP-PM MANU \rightarrow AUTO 2. M1072 Off \rightarrow On by communication
How to operate	Scan and operation in cycles
Instruction supported	Basic instructions and application instructions
Quantity	Only one O100 program is allowed in the program
Features & functions	 A PLC sequential control program Able to activate OX0 ~ OX99 motion subroutines and call Pn subroutine The three sequences can be piled freely when used with OX0 ~ OX99 motion subroutines and Pn subroutines.

6. Manual Motion in O100 Main Program

In O100 main program, you can use special registers for designing your own manual motion modes (see 3.12 for how to set it up).

1.2 Structure of OX Motion Subroutine

OX0 ~ OX99 motion subroutines are motion control programs for controlling the motions on X and Y axes in DVP-PM. The OX0 ~ OX99 motion subroutine sections support basic instruction, application instructions, motion instructions and G-Code instructions, and they are able to call Pn subroutines. OX0 ~ OX99 are for the user to design and compile the moving path of X and Y axes. See below the operation procedure and features of OX motion subroutines.

- 1. How to activate OX0 ~ OX99 motion subroutines:
 - When O100 main program is in RUN status, you can set up the execution No. of OX in O100 main

program (D1868: K0 ~ K99) and set b12 of X-Y axis operation instruction (D1846) to be On to enable OX motion subroutine.

• When you enable OX motion subroutine, please make sure there are no other motion subroutines in operation.

2. The scan starts whenever the program is enabled. When O100 main program activates OX motion subroutine, the scan will start from the start flag of OX motion subroutine and end at M2 (motion subroutine ends instruction), i.e. the end of the motion subroutine, as shown in the figure below:

When X0 = On, OX10 motion subroutine will be enabled and stop when the execution reaches M2 (motion subroutine ends instruction). The execution will only execute once. If you need a re-execution, re-activate X0 to re-enable OX10 motion subroutine.

- 3. There are four ways to stop OX motion subroutine:
 - When DVP-PM is powered, and the AUTO/MANU switch goes from AUTO to MANU, M1072 will be Off automatically, and O100 main program will be in STOP status. The operation of OX motion subroutines will stop at this moment.
 - You can also stop OX by controlling the input signals of the external control terminal (STOP0).
 - When DVP-PM is powered, you can also stop OX by setting D1846 to be 0 through communication.
 - When errors occur during the design, compiling or operation of the motion subroutine, OX will stop automatically. See 3.13 for the table of the error codes and their causes.

- 4. OX motion subroutines support basic instructions, application instructions, motion subroutines and G-Code subroutines. Therefore, you can design your own motion program by using these instructions and setting up X-Y axis parameters for your desired X-Y motion control.
 - The instructions mentioned above shall be designed in OX0 ~ OX99 motion subroutines.
 - OX motion subroutine supports calling Pn subroutine. See 1.3 for more details.
- 5. The above explanations are sorted in the table below:

OX motion subroutine	Explanation
Start of the program	OX motion subroutine (OX0 ~ OX99, 100 motion subroutines)
End of the program	M2 motion subroutine ends
	 When O100 main program is in RUN statues, set D1846_b12 as 1 to enable OX motion subroutine.
Execution of the program	When O100 main program is in RUN status, set D1846_b12 by communication to also enable OX motion subroutine.
	3. Stop OX motion subroutine by the input signals at external control terminal (STOP0).
	\square Note: When you need to enable OX motion subroutine, make sure there are no other motion subroutines in operation.
How to operate	Execute once whenever the subroutine is enabled. Re-enable it for the re-execution.
	Basic instructions, application instructions, motion instructions, and G-Code instructions.
Instruction supported	Note: Avoid pulse-type instruction when using basic instructions and application instructions.
Quantity	The program can only contain 100 OX motion subroutines. If you need to active other OX motion subroutines, you can set up D1868 and enable the subroutine (SET M1074).
	1. A motion subroutine which can only be enabled by designing O100 main program.
	2. Offers the third axis (Z) control. See 6.4 G00 and G01 instructions for more details.
Features & functions	Can be enabled/ disabled by controlling the external terminals, program design and communication.
	4. Able to call Pn subroutine.
	5. The three sequences can be piled freely when used with O100 main program and Pn subroutines.

1.3 Structure of Pn Subroutine

Pn subroutine is a general-purpose subroutine for calling subroutines by O100 main program and OX motion subroutines. When Pn subroutine is called in O100 main program, the Pn subroutine area will support basic instructions and application instructions. When Pn subroutines is called in OX0 ~ OX99 motion subroutines, the Pn subroutine area will support basic instructions, application instructions, motion instructions and G-Code instructions. The Pn subroutine is called in O100 or OX, O100 or OX will jump to Pn subroutine when Pn subroutine is being executed and return to the next row after Pn subroutine to resume the execution when SRET is executed.

- 1. How to enable Pn subroutine:
 - Call Pn subroutine in O100 main program.
 - Call Pn subroutine in OX motion subroutine.

2. How does the scan work: The scan executes once whenever Pn subroutine is called once. After Pn subroutine is called in O100, Pn subroutine will be executed, and the subroutine will end when the execution reaches SRET (subroutine ends instruction). The program will return to the next row after Pn and resume the scan. The same operation also applied to OX motion subroutine calling Pn subroutine.

In P0 subroutine section, you can compile basic instructions and application instructions freely, and in P2 subroutine section, you can compile basic instructions, application instructions, motion instructions and G-Code instructions freely.

- There are three ways to stop Pn subroutine:
 - When DVP-PM is powered, and the AUTO/MANU switch goes from AUTO to MANU, M1072 will be Off automatically, and O100 main program will be in STOP status. The operation of OX motion subroutines and Pn subroutine will stop at this moment.
 - When DVP-PM is powered, you can also stop OX by setting D1846 to be 0 through communication.

- When errors occur during the operation of Pn subroutine, Pn will stop automatically. See 3.13 for the table of the error codes and their causes.
- 4. When Pn subroutine is called in O100 main program, the Pn subroutine will only support basic instructions and application instructions. When Pn subroutines is called in OX0 ~ OX99 motion subroutines, the Pn subroutine will support basic instructions, application instructions, motion instructions and G-Code instructions.
- 5. The above explanations are sorted in the table below:

Pn subroutine	Explanation
Start of the program	Start flag of Pn subroutine (P0 ~ P255)
End of the program	End of SRET subroutine
Execution of the program	 Call Pn subroutine in O100 main program. Call Pn subroutine in OX motion subroutine.
How to operate	Execute once whenever the subroutine is enabled. Re-enable it for the re-execution.
Instructions supported	 When called in O100: supports basic instructions and application instructions When called in OX: supports basic instructions, application instructions, motion instructions and G-Code instructions. Note: When you need to call Pn in OX and use basic instructions and application instructions, please avoid pulse-type instructions.
Quantity	The program can only contain 256 Pn subroutines.
Features & functions	 A general-purpose subroutine For O100 main program and OX motion subroutine to call a subroutine. The three sequences can be piled freely when used with O100 main program and OX motion subroutine.

1.4 Structure of O100, OX and Pn Program Design

O100 main program, OX motion subroutine and Pn subroutine are introduced in $1.1 \sim 1.3$. In this section, we will further illustrate how to mix the structures of the three and how to design it.

1.4.1 The Program Structure

Assume we would like to design a O100 main program, OX0 motion subroutine, P1 subroutine and P2 subroutine (5 program sections), please follow the design procedure as the follow:

To explain the example in an easier way, the program design will be given in section (1) ~ (5), as shown below:

Explanations on the program design:

- 1. The compiling sequence is from (1) to (5), but there is not a rule for the sequence of how and where you place them.
- 2. There can only be one O100 main program (2), and it cannot be called by other programs. O100 can call OX motion subroutines and Pn subroutines.
- 3. OX motion subroutine can be called by O100 main program and Pn subroutine, and it can also call a Pn subroutine.
- 4. Pn subroutine can be called by O100 main program and OX motion subroutine, and it can also call a OX motion subroutine.

Delta Note:

- 1. More then two OX motion subroutines cannot be executed at the same time. Therefore, when OX0 motion subroutine is executed, OX3 will not be able to work, and vice versa.
- 2. Once O100 main program or Pn subroutine enables an OX motion subroutine, it will continue to execute the next row of the program without paying attention to the OX motion subroutine.
- 3. The enabled OX motion subroutine will only execute once. If you want it to execute again, you have to re-enable it.

Section	O100 main program	OX motion subroutine (OX0, OX3)	P1 subroutine	P2 subroutine
Basic instruction	0	0	0	0
Application instruction	truction O100 main program of truction O ation O struction X struction X Instructions supported In	0	0	0
Application instruction O Motion instruction X G-Code instruction X Instructions supported In	0	0	x	
G-Code instruction	х	(OX0, OX3)P1 subroutineP2 subroutOOOOOOOOOOOXOOXOOXInstructions supported are fixedCalled by OX motion subroutine; therefore, motion instructions and G-CodeCalled by O100	x	
Explanation			subroutine; therefore, motion instructions and G-Code instructions are	instructions are not

Instructions supported in each program section: (O: supported; X: not supported)

Remarks:

	Main program	Subroutine	Motion subroutine			
Start of the program	-	Pn (n = 0 ~ 255)	OXn (n = 0 ~ 99)			
End of the program	-	SRET	M2			
Placing sequence	No limitation	No limitation	No limitation			
Execution of the program	RUN normally	Called by main program or motion subroutine	Called by main program or subroutine			
How to operate	In cycles	Execute once whenever being called once	Execute once whenever being called once			
Quantity	1	256, depending on the user's demand.	100, depending on the user's demand.			

2.1 Hardware Specifications

This chapter only provides information on electrical specification and wiring. For detailed information on program design and instructions, please refer to Chapter 5 \sim 6. For how to purchase its peripheral devices, please refer to the instruction sheet enclosed with the product.

2.1.1 Power Specifications

Item	Description
Power supply voltage	100 ~ 240V AC(-15% ~ 10%), 50/60Hz ± 5%
Fuse capacity	2A/250V AC
Power consumption	60VA
DC24V current supply	500mA
Power protection	DC24V; output short-circuited
Withstand voltage	1,500V AC (Primary-secondary); 1,500V AC (Primary-PE); 500V AC (Secondary-PE)
Insulation impedance	> 5MΩ (all I/O point-to-ground: 500V DC)
Noise immunity	ESD: 8KV Air Discharge; EFT: Power Line: 2KV, Digital I/O: 1KV, Analog & Communication I/O: 250V
Earth	The diameter of grounding wire shall not be less that of L, N terminal of the power. When many PLCs are in use at the same time, please make sure every PLC is properly grounded.
Operation/storage	Operation: 0° C ~ 55 $^{\circ}$ C (temperature), 50 ~ 95% (humidity), pollution degree 2 Storage: -25 $^{\circ}$ C ~ 70 $^{\circ}$ C (temperature), 5 ~ 95% (humidity)
Vibration/shock immunity	International standards: IEC61131-2, IEC 68-2-6 (TEST Fc)/IEC61131-2 & IEC 68-2-27 (TEST Ea)
Weigh (approx. g.)	478/688

2.1.2 I/O Point Specifications

Input point specifications:

Terminal	Description	Response characteristics	Max. input current		
START0, START1	Enabling input	10ms	6mA		
STOP0, STOP1	Disabling input	10ms	6mA		
LSP0/LSN0, LSP1/LSN1	Right limit input/left limit input	10ms	6mA		
A0+, A0-, A1+, A1-	MPG A-phase pulse input +, - (differential signal input)	200KHz	15mA		
B0+, B0-, B1+, B1-	MPG B-phase pulse input +, - (differential signal input)	200KHz	15mA		
PG0+, PG0-, PG1+, PG1-	Zero point signal input +, - (differential signal input)	1ms	15mA		
DOG0, DOG1	 There are two variations according to different operation modes: 1. DOG signal when zero return 2. Inserting enabling signal at 1-segment speed or 2-segment speed 	1ms	10mA		

Output point specifications:

Terminal	Description	Response characteristics	Max. input current		
CLR0+, CLR0-, CLR1+, CLR1-	Clearing signals (by the error counter in servo drive)	10ms	20mA		
FP0+, FP0-, FP1+, FP1-	Forward/reverse running mode: Forward pulse output Pulse direction: Towards pulse output end A, B phase: A-phase output	500KHz	40mA		
RP0+, RP0-, RP1+, RP1-	Forward/reverse running mode: Reverse pulse output Pulse direction: Towards output end A, B phase: B-phase output	500KHz	40mA		

Digital input points:

	Item	Note				
Spec		Low speed	High speed (200KHz)	Note		
Input wir	ing type	Change wiring from	S/S to SINK or SOURCE			
Input indicator		LED display; light o]			
Input vol	tage		Input point X0 ~ X7 can conduct 10			
Action	Off→On	:	20us			
level On→Off						
Respons immunity	e time/noise	10ms	0.5us			

Digital output point:

	Item	Single common	port transistor output	Single common port relay output			
Spec		Low speed	High speed	Single common port relay output			
Maximum frequency		10KHz	200KHz	For load ON/OFF control			
Output indicate	or		f = OFF				
Minimum load			2mA/DC power supply				
Working voltag	ge	5 ~	< 250V AC, 30V DC				
Isolation		Photoco	Electromagnetic isolation				
Current specif	ication	0.3A/1 point@ 40℃	30mA	2A/1 point (5A/COM) 75VA (conductive), 90W (resistive)			
Max. output Off→On		20us	0.2us	10ms			
delay time	On→Off	30us					
Over-current p	protection		N/A				

2.1.3 Dimension

Product Profile & Outline:

Open COM1 cover

	(Onit: min)
1	Communication port cover
2	I/O terminal cover
3	Function card/memory card cover
4	I/O terminals
5	I/O terminal No.
6	Extension module connection port cover
Ø	Input indicator
8	Output indicator
9	DIN rail clip
10	DIN rail (35mm)
1	Mounting screw
2	Direct mounting hole
3	Battery socket
4	Function card mounting hole
5	Memory card port
6	POWER/BAT.LOW/ERROR indicator
Ø	Extension module connection port
8	Function card port
	Open COM2 cover
	A Contraction of the second seco

The battery shall be changed within 1 minute.

Remove RS-485 terminal

Part	Description
COM2 (RS-485)	For both master and slave modes
MANU/AUTO switch	RUN/STOP control
COM1 (RS-232)	Slave mode (can be used with COM2 at the same time)

Wiring Terminals: See 2.1.1 for detailed specifications.

	€	٠	24G	+2	4V	S/S0	STOP	0 LSP	0 PG0	- S/	/S1 ST	OP1	LSP1	PG1-	X0		X2	X4	Х	6
	L		N	•	STAF	RTO DO	DG0 L	SN0	PG0+ S	TART	1 DOG1	LSN	1 PC	G1+ S	S/S2	X1	X3	3	X5	X7
DVP-20PM (AC Power IN, DC Signal IN)																				
A	.0+	B0+	A1+	B	1+	CLR0+	CLR1-	+ FP0	+ RP0	+ Ff	P1+ RF	P1+	Y0	Y1	Y2	`	Y3	Y4	Y	6
	A0	-	B0-	A1-	B1	1- CL	R0- C	LR1-	FP0-	RP0-	FP1-	RP1	- C	0	C1	C2	Ca	3	Y5	¥7

2.2 Installation & Wiring

DVP-PM is and OPEN-TYPE device and therefore should be installed in an enclosure free of airborne dust, humidity, electric shock and vibration. The enclosure should prevent non-maintenance staff from operating the device (e.g. key or specific tools are required for opening the enclosure) in case danger and damage on the device may occur.

DO NOT connect input AC power supply to any of the I/O terminals; otherwise serious damage may occur. Check all the wiring again before switching on the power. Make sure the ground terminal \bigoplus is correctly grounded in order to prevent electromagnetic interferences.

2.2.1 Wiring

How to install DIN rail:

DVP-PM can be secured to a cabinet by using the DIN rail of 35mm in height and 7.5mm in depth. When mounting PLC to DIN rail, be sure to use the end bracket to stop any side-to-side movement of PLC and reduce the chance of wires being loosen. A small retaining clip is at the bottom of PLC. To secure DVP-PM to DIN rail, place the clip onto the rail and gently push it up. To remove it, pull the retaining clip down and gently remove DVP-PM from the DIN rail, shown in the figure.

- 1. **How to screw:** Please use M4 screws which fit the dimension of the product.
- 2. Please install DVP-PM in an enclosure with sufficient space around it to allow heat dissipation, as shown in the figure.

Wiring notes:

- Use O-type or Y-type terminal. See the figure in the right for its specification. PLC terminal screws should be tightened to 5 ~ 8 kg-cm (4.3 ~ 6.9 in-lbs).
- 2. DO NOT wire empty terminal . DO NOT place the input signal cable and output power cable in the same wiring circuit.
- DO NOT drop tiny metallic conductor into the PLC while screwing and wiring. Tear off the sticker on the heat dissipation hole for preventing alien substances from dropping in, to ensure normal heat dissipation of the PLC.
- 4. Use $60/75^{\circ}C$ copper conductor only.

2.2.2 Power Input Wiring

The power input of DVP-PM series is AC. When operating it, please make sure that:

- The input voltage should be current and its range should be 100 ~ 240V AC. The power should be connected to L and N terminals. Wiring AC110V or AC220V to +24V terminal or input terminal will result in serious damage on the PLC.
- 2. The AC power input for PLC MPU and I/O extension modules should be On or Off at the same time.
- 3. Use wires of 1.6mm (or longer) for the grounding of PLC MPU.
- 4. The power shutdown of less than 10ms will not affect the operation of DVP-PM. However, power shutdown time that is too long or the drop of power voltage will stop the operation of DVP-PM and all outputs will go "Off". When the power supply turns normal again, DVP-PM will automatically return to its operation. Please be aware of the latched auxiliary relays and registers inside DVP-PM when programming.

AC power input:

0.5A is the maximum power supply for +24V power supply output terminal. DO NOT connect other external power supplies to this terminal. Every input terminal requires 6 ~ 7mA to be driven; e.g. the 16-point input will require approximately 100mA. Therefore, +24V cannot give output to external load that is more than 400mA.

2.2.3 Safety Wiring

Since DVP-PM controls many devices, actions of any device may affect actions of other devices and the breakdown of any one device may cause the breakdown of the entire auto-control system and danger. Therefore, we suggest you wire a protection circuit at the power input terminal, as shown in the figure below.

0	AC power supply load
2	Power circuit protection fuse (3A)
3	Power indicator
4	Emergency stop This button can cut off the system power supply when accidental emergency takes place.
5	System circuit isolation device The device is made of electromagnetic contactor and relay as the switch to prevent the instability of system when the power is intermittently supplied.
6	DVP-PLC (main processing unit)
Ø	Earth
8	Power supply: AC: 100 ~ 240V AC, 50/60Hz

2.2.4 I/O Point Wiring

There are two types of DC input, SINK and SOURCE.

SINK mode: Common port for current input S/S

Input point loop equivalent circuit:

(DC Signal IN)

____ Source mode: Common port for current output S/S

Input point loop equivalent circuit:

Wiring loop:

Wiring of differential input:

A0 ~ A1 and B0 ~ B1 of DVP-PM are all high-speed input circuit, and others are DC24V input. The working frequency of high-speed input circuit can reach up to 200KHz and is mainly for connecting to differential (double-wire) LINE DRIVER output circuit.

Wiring in a high-speed, high-noise environment

Wiring of DVP20PM00D DC5V SINK

Wiring of DVP20PM00D DC5V SOURCE

Relay (R) contact circuit wiring

 ${f 0}$ Flywheel diode: To extend the lift span of contact ${f 2}$ Emergency stop: Uses external switch

③ Fuse: Uses 5 ~ 10A fuse at the shared terminal of output contacts to protect the output circuit

- 4 Varistor: To reduce the interference on AC load (5) DC power supply
- 6 Neon indicator

- \bigcirc AC power supply

- 8 Incandescent light (resistive load
- 9 Manually exclusive output: Uses external circuit and forms an interlock, together with PLC internal program, to ensure safe protection in case of any unexpected errors.

Transistor (T) contact circuit wiring

Manually exclusive output: Uses external circuit and forms an interlock, together with PLC internal program, to (5) ensure safe protection in case of any unexpected errors.

Wiring of differential output

2.2.5 Wiring with Drives

DVP-PM and Delta ASD-A series servo drive:

DVP-PM and Panasonic CN5 series servo drive:

DVP-PM and Yaskawa servo drive:

DVP-PM and Mitsubishi MJR2 series servo drive:

DVP-PM and FUJI servo drive:

2.3 Communication Ports

DVP-PM has two communication ports, COM1 (RS-232 communication) and COM2 (RS-485 communication).

2.3.1 COM1 (RS-232)

- The interface of COM1 is RS-232, for uploading and downloading of the program. It supports Modbus communication format with baud rate 9,600 ~ 115, 200bps.
- The communication cable:

See the catalog of Delta PLCs for detailed model names or download the most updated information on the accessories on Delta's website.

2. COM1 is for Slave mode. Therefore, it can be connected to a human machine interface for monitoring purposes.

2.3.2 COM2 (RS-485)

- The interface of COM2 is RS-485, for the communication among many masters and slaves. It supports Modbus communication format with baud rate 9,600 ~ 115,200bps.
- COM2 is for Master or Slave mode. When for Master mode, it can be connected to a Delta PLC or a drive in the next level (e.g. Delta servo drive, temperature controller, AC motor drive, and so on) for reading/writing data. When for Slave mode, it can be connected to a human machine interface (e.g. Delta's TP and DOP series HMI) for monitoring purposes.

MEMO

3.1 Devices in DVP-PM

Function Specifications:

Number of control axes 2xis synchronous linear/arc interpolation and independent 2-axis control 1 Program storage Built-in 64K step storage device Machine system A Units Motor system Combined system Machine system A How does MPU read/write extension module. It is contents of CR in the contents. Image: CR in the content is 2×bit, it needs 2 CRs for the contents of CR in the contents of CR in the contents of CR in the content. Series connective with MPU 3 modes: Pulse/Dir.PE(CW) / RPCCW), AB by differential output Image: CR interpolation axis. SONK PPS Image: CR interpolatio	ltem		Specification No.	ote
Units Mathematical Mathematical Mathematical System Mathematical Mathematical Mathematical System Mathematical Mathematical Mathematical System How does MPU read/write extension module Uses FROM/TO instruction to read/write the contents of CR in the extension module. If the content is 32-bit, it needs 2 CRs for the content. Series connection with MPU When used as an extension module, the built-in CR0 - CR199 (corresponding to its own D1500 - D1699) are for the MPU to read/write. Pulse output method 3 modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Maximum speed For single axis: 500K PPS Operation switch AUTO/MANU (auto/manual selection), START, STOP DCG (near point), LSP (forward running limit), LSN (reverser running limit), PG (cero point) Series output General input point X0 ~ X7, I/O modules extendable; maximum 256 points extendable Output signal General output point Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Special extension modules and pulse, AD pA, PT, TC, XA, PU (maximum 8 modules extendable) The right-side extension module and DVP-EH2 series share all modules extendable Maximum 8). Program stored by HPP03 The felt side can connect to new high-speed extension modules extendable. Mation instruction 56 Secies share all modules extendable. Ma	Number of contr	rol axes		1
How does MPU read/write extension module Uses FROMTO instruction to read/write the contents of CR in the extension module. If the content is 32-bit, it needs 2 CRs for the content. Series connection with MPU When used as an extension module, the built-in CR0 ~ CR199 (corresponding to its own D1500 ~ D1699) are for the MPU to read/write. Modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Maximum speet 3 modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Maximum speet Operation switch AUTO/MANU (auto/manual selection), START, STOP Modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Maximum speet Detector DoG (near point), LSP (forward running limit), LSN (reverser running limit), PG0 (zero point) Start, I/O modules extendable; maximum 256 points extendable Output signal General output point Servo output FP (forward pulse), RP (reverse pulse), CLR (clear signal) Maximum 6 Special extension module Optional Tright-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules extendable. Maximum 8. Maximum 8 modules extendable and will not occupy any I/O points. Basic instruction 27 Second modules of 99 (Positioning Program): M02: program stops (END) Maximum 8 modules are points.	Program storage	е	Built-in 64K step storage device	
How does MPU readwrite extension module. If the content is 32-bit, it needs 2 CRs for the content. extension module. If the content is 32-bit, it needs 2 CRs for the content. Series connection with MPU When used as an extension module, the built-in CR0 ~ CR199 (corresponding to its own D1500 ~ D1699) are for the MPU to read/write. Impute Section Sectin Sectin Section Section Sectin Section Section Section Sectio	Units		Motor system Combined system Machine system	
Series connection with MPU (corresponding to its own D1500 ~ D1699) are for the MPU to read/write. Pulse output method 3 modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output Maximum speed For single axis: 500K PPS For interpolation axis: 500K PPS Operation switch AUTO/MANU (auto/manual selection), START, STOP Description Input signal Operation switch AUTO/MANU (auto/manual selection), START, STOP Description Output signal General input point X0 ~ X7, I/O modules extendable; maximum 256 points extendable Period (corresponding) Output signal General output point FP (forward pulse), RP (reverse pulse), CLR (clear signal) Maximum 256 points extendable Series communication port COM1: RS-232/COM2: RS-485 (can be master or slave) Maximum 8 modules extendable Maximum 8 modules extendable Special extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules Maximum 8 modules extendable Metion instruction 27 Connect to new high-speed extension modules and mUP. Maximum 8 modules extendable Metion instruction 22 Connect to new high-speed extension modules entendable Maximum 8 modules extendable			extension module. If the content is 32-bit, it needs 2 CRs for the	
Maximum speet For single axis: 500K PPs For interpolation axis: 500K PPs Input signal Operation switch AUTO/MANU (auto/manual selection), START, STOP Input signal Detector DOG (near point), LSP (forward running limit), LSN (reverser running limit), PG0 (zero point) General input point X0 ~ X7, I/O modules extendable; maximum 256 points extendable General output FP (forward pulse), RP (reverse pulse), CLR (clear signal) General output Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Series Program write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Special Program stored by HPP03 The right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules extendable) Maximum 8 modules extendable and will not occupy any I/O points. Basic instruction 27 Application instruction 22 M*-Code OX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M02: program stops (END) M*-Code G0 (fast move), G1 (linear interpolation), G2 (clockwise arc int	Series connection	on with MPU	(corresponding to its own D1500 ~ D1699) are for the MPU to	
Operation switch AUTC//MANU (auto/manual selection), START, STOP Input signal Detector DOG (near point), LSP (forward running limit), LSN (reverser running limit), PG0 (zero point) General input point X0 ~ X7, I/O modules extendable; maximum 256 points extendable Image: Point POI (Preverse pulse), CLR (clear signal) Output signal General output point Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Series Series communication port: Program write-in/read-out communication port: Communication port COM1: RS-232/COM2: RS-485 (can be master or slave) Maximum 8 modules Special extension modules Program stored by HPP03 Maximum 8 modules extendable) The right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable) Maximum 8 modules extendable) Basic instruction 27 Image: program stops (END) Image: program stops (END) M-Code OX0 ~ 99 (Positioning Program): M02: program stops (END) M02 ~ M03 - M93: program pauses (WAIT), for free use O100 (Sub-task Program); M02: program stops (END) Image: program stops (END) M-Code G0 (fast move), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate) Genecarc interpolation), G4 (pause), G90 (absolute coordinate), G91 (rel	Pulse output me	ethod	3 modes: Pulse/Dir, FP(CW) / RP(CCW), A/B by differential output	
Input signalDetectorDOG (near point), LSP (forward running limit), LSN (reverser running limit), PG0 (zero point)General input pointX0 ~ X7, I/O modules extendable; maximum 256 points extendableMarker PointServo outputFP (forward pulse), RP (reverse pulse), CLR (clear signal)Output signalGeneral output pointY0 ~ Y7, I/O modules extendable; maximum 256 points extendableGeneral output pointY0 ~ Y7, I/O modules extendable; maximum 256 points extendableSeries communication portProgram write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave)Special extension moduleOptionalProgram stored by HPP03DetectorThe right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable) maximum 8).Maximum 8 modules extendable modules quary I/O points.Basic instruction module2727Application instruction M0 c M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)Series are interpolation), G2 (clockwise are interpolation), G3 (counter-clockwise are interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)Series g90 (absolute coordinate), G91 (relative coordinate)	Maximum speed	b	For single axis: 500K PPS For interpolation axis: 500K PPS	
Input signal Detecture Imit), PG0 (zero point) General input point X0 ~ X7, I/O modules extendable; maximum 256 points extendable Imit) Output signal Servo output point FP (forward pulse), RP (reverse pulse), CLR (clear signal) Imit) Output signal General output point Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Imit) Output signal General output point Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Imit) Special extension module Series communication port Program write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Maximum 8 modules extendable, DA, PT, TC, XA, PU (maximum 8 modules extendable). The right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules (maximum 8). Maximum 8 modules extendable and will not occupy any I/O points. Basic instruction 27 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3		Operation switch	AUTO/MANU (auto/manual selection), START, STOP	
No. X0. X7, 1/O Indudies extendable, inaxinum 256 points extendable Point Servo output FP (forward pulse), RP (reverse pulse), CLR (clear signal) Image: Clear signal Output signal General output point Y0 ~ Y7, 1/O modules extendable; maximum 256 points extendable Image: Clear signal Series Program write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Image: Clear signal Image: Clear signal Special extension module Optional Program stored by HPP03 Image: Clear signal Image: C	Input signal	Detector		
Output signal General output point Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable Series communication port Program write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Image: Communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Special extension module Program stored by HPP03 Image: Communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Maximum 8 modules Basic instruction Optional The right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules Maximum 8 modules Basic instruction 27 27 27 Application instruction 56 22 22 M-Code OX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END) Mode: M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END) G0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)			X0 ~ X7, I/O modules extendable; maximum 256 points extendable	
Output signal point FORM PT, IFORMUDUles extendable, Maximum 256 publies extendable Series communication port Program write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave) Maximum 8 Special extension module Optional Program stored by HPP03 Maximum 8 modules extendable). The right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules (maximum 8). Maximum 8 modules extendable and will not occupy any I/O points. Basic instruction 27 2 2 Application instruction 56 22 2 Motion instruction 22 22 2 Motion instruction 60 (xu move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate) 24		Servo output	FP (forward pulse), RP (reverse pulse), CLR (clear signal)	
Series communication portProgram write-in/read-out communication port: COM1: RS-232/COM2: RS-485 (can be master or slave)Special extension moduleProgram stored by HPP03OptionalThe right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). The left side can connect to new high-speed extension modules (maximum 8).Maximum 8 modules extendable and will not occupy any I/O points.Basic instruction2727Application instruction5621Motion instruction2222OX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)QC (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)Genetical sector	Output signal		Y0 ~ Y7, I/O modules extendable; maximum 256 points extendable	
Special extension moduleOptionalThe right-side extension module and DVP-EH2 series share all modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable) The left side can connect to new high-speed extension modules (maximum 8).Maximum 8 modules extendable and will not occupy any I/O points.Basic instruction2727Application instruction561000000000000000000000000000000000000		communication		
extension moduleOptionalInternal state data state data and over the function of the func			Program stored by HPP03	
Image: maximum 8).points.Basic instruction27Application instruction56Motion instruction22Motion instruction22Molicity in the struction instruction0X0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)G-CodeG0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)	extension	Optional	modules, AD, DA, PT, TC, XA, PU (maximum 8 modules extendable). extendable	e and will
Application instruction56Motion instruction22M-CodeOX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)G-CodeG0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)				a,
Motion instruction22Motion instructionOX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)G-CodeG0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)	Basic instruction	ı	27	
M -CodeOX0 ~ 99 (Positioning Program): M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)G-CodeG0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)	Application instr	ruction	56	
M-CodeM02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program): M102: program stops (END)G-CodeG0 (fast move), G1 (linear interpolation), G2 (clockwise arc interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)	Motion instruction	on	22	
G-Code interpolation), G3 (counter-clockwise arc interpolation), G4 (pause), G90 (absolute coordinate), G91 (relative coordinate)	M -Code		M02: program stops (END) M00 ~ M01, M03 ~ M99: program pauses (WAIT), for free use O100 (Sub-task Program):	
Self-diagnosis Displaying parameter error, program error, external error, and so on.	G-Code		interpolation), G3 (counter-clockwise arc interpolation), G4 (pause),	
	Self-diagnosis		Displaying parameter error, program error, external error, and so on.	

3 Functions of Devices in DVP-PM

	Х	External	input relay	X0 ~ X377, octal encoding, 256 points		Corresponds to external input points		
	Y	External	output relay	Y0 ~ Y377, octal encoding, 256 points	Total 512 points	Corresponds to external output points		
				M0 ~ M499, 500 points (*2)				
			General purpose	M3000 ~ M4095, 2,096 points (*3)				
	М	Auxiliary relay	, Latched	M500 ~ M999, 500 points (*3)	Total 4,096 points	The contact can be On/Off in the program.		
it)			Special purpose	M1000 ~ M2999, 2,000 points (part for latched)				
Relay (bit)	т	Timer	10ms	T0 ~ T255, 256 points (*2)	Total 256 points	TMR instruction. If the timing reaches its target, the T contact of the same No. will be On.		
			16-bit	C0 ~ C99, 100 points (*2)		The counter indicated		
		_	counting up	C100 ~ C199, 100 points (*3)		by CNT (DCNT) instruction. If the		
	С	Counter	32-bit	C200 ~ C219, 20 points (*2)	Total 256 points	counting reaches its target, the C contact		
			counting up/down	C220 ~ C255, 36 points (*3)		of the same No. will be On.		
	S	Internal	General purpose	S0 ~ S499, 500 points (*2)		The contact can be		
		relay	Latched	S500 ~ S1023, 524 points (*3)	<i>,</i> ,	On/Off in the program.		
	т	T Present value in timer		T0 ~ T255, 256 points		When the timing reaches its target, the contact of the timer will be On.		
		C Present value in counter		C0 ~ C199, 16-bit counter, 200 points	When the counting			
rd data)	С			C200 ~ C255, 32-bit counter, 56 points	reaches its target, the contact of the counter will be On.			
Register (woi				General purpose	D0 ~ D199, 200 points (*2)			
legis				Latched	D200 ~ D999, 800 points (*3)	-	Memory area for data	
œ	D	Data register		D3000 ~ D9999, 7,000 points (*3)	Total 10,000 points	storage. V/Z can be used for indirect		
		0	Special purpose	D1000 ~ D2999, 2,000 points (part for latched)		designation.		
			Indirect designation	V0 ~ V7 (16-bit), Z0 ~ Z7, 16 points (32-bit) (*1)	-			
Index	Ρ	For CJ, JMP insi	CJN, CALL, ructions	P0 ~ P255, 256 points		Position index of CJ, CJN, CALL and JMP		
	к	Desimel		K-32,768 ~ K32,767 (16-bit operation)				
ant	ĸ	Decimal		K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)				
Constant	Н	Hex		H0000 ~ HFFFF (16-bit operation); H00000000 ~	- HFFFFFFFF (32-bit	t operation)		
Ŭ	F	Floating	point	Displaying floating points by the length of 32 bits $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$	with IEEE754 standa	ard.		
*1. Nor	1: Non-latched area cannot be modified							

*1: Non-latched area cannot be modified.

*2: Non-latched area, can be modified into latched area by changing the parameter settings

*3: Latched area, can be modified into non-latched area by changing the parameter settings

*4: Latched area, cannot be modified

Settings of latched and non-latched memory devices:

		General p	urpose		Special auxil	iary relay	
м	M0 ~ M499	M500	~ M999	M2000 ~ M4095	M1000 ~ N	V1999	
M (Auxiliary relay)	Default: non-latched Default: latched			Default: non-latched	Also in "general purpose" area		
()		tart: D1200 nd: D1201		Some are latched modifie			
				10ms			
т				T0 ~ T255			
(Timer)			De	fault: non-latched			
			rt: D1202 (K-1) *2 d: D1203 (K-1) *2				
	16-bit counting up				32-bit counting	g up/down	
	C0 ~ C99		C100 ~ C199		C200 ~ C219	C220 ~ C255	
C (Counter)	Default: non-latch	ed	De	fault: latched	Default: non-latched	Default: latched	
		Start: D120 End: D120	Start: D1206 (K220) End: D1207 (K255)				
	Initial		Gei	neral purpose	Latche	ed	
S	S0 ~ S9		U)	\$10 ~ S499	S500 ~ S1023		
(Step relay)	ſ	Default: nor	Default: latched				
	Start: D1208 (K500), End: D1209 (K1023)						
	General purpose	9		Latched	Special register		
D	D0 ~ D199		D2	200 ~ D9999	D1000 ~ D1999 Also in "general purpose" and "latc area		
(Register)	Default: non-latch	ed	De	fault: latched			
		Start: D1210 (K200) *3 End: D1211 (K9999) *3					

*1: If you set D1200 = 0 and D1201 = 4095, DVP-PM will automatically ignore M1000 ~ M2999 and set M0 ~ M999 and M3000 ~ M4095 as latched area.

*2: K-1 refers to default = non-latched.

*3: If you set D1210 = 0 and D1211 = 9999, DVP-PM will automatically ignore D1000 ~ D2999 and set D0 ~ D999 and D3000 ~ D9999 as latched areas.

Status of general devices when power On/Off or MPU switches between MANU/AUTO (excluding internal devices)

Memory type	Power OFF->ON	MANU->AUTO	AUTO->MANU	Clear all non-latched areas (M1031)	Clear all latched area (M1032)	Default
Non-latched Clea	Cleared	Linchanged	Cleared when M1033 = Off	Cleared	Unchanged	0
	Cleared	Unchanged	Remain unchanged when M1033 = On	Cleared		
Latched	Unchanged			Unchanged	Cleared	0

3.2 Values, Constants [K] / [H], Floating Points [F]

Constant -	к	Decimal form	K-32,768 ~ K32,767 (16-bit operation) K-2,147,483,648 ~ K2,147,483,647 (32-bit operation)
	Н	Hexadecimal form	H0 ~ HFFFF (16-bit operation) H0 ~ HFFFFFFFF (32-bit operation)
Floating point	F	32 bits	\pm 1.1755X10-38 ~ \pm 3.4028X10+38 (The floating point is presented in 32 bits, with IEEE754 standard.)

For different control purposes, there are 5 types of values inside DVP-PM for executing the operations. See the explanations bellows for the functions and works of every type of value.

1. Binary value (BIN)

All the operations and storages of values in DVP-PM are conducted in BIN. See below for the terms for BIN values.

Bit:	The basic unit for a BIN value, either 1 or 0.						
Nibble:	Composed of 4 continuous bits (e.g. b3 \sim b0). Presented as the decimal value 0 \sim 9 of a digit or 0 \sim F in hex.						
Byte:	Composed of 2 continuous nibbles (i.e. 8 bits, b7 \sim b0). Presented as 00 \sim FF in hex.						
Word:	Composed of 2 continuous bytes (i.e. 16 bits, b15 ~ b0), Presented as 4-digit 0000 ~ FFFF in hex.						
Double word:	Composed of 2 continuous words (i.e. 32 bits, b31 \sim b0). Presented as 8-digit 00000000 \sim FFFFFFF in hex.						

Bit, nibble, byte, word and double word in a binary system:

2. Octal value (OCT)

The No. of external input and output terminals in DVP-PM in numbered in octal system.

For example:

External input: X0 ~ X7, X10 ~ X17... (device No.)

External output: Y0 ~ Y7, Y10 ~ Y17 (device No.)

3. Decimal value (DEC)

The timings of using decimal values in DVP-PM are as follows:

- As the set value for timer T and counter C, e.g. TMR T0 K50 (constant K)
- As the No. of device S, M, T, C, D, V, Z, P, e.g. M10, T30 (device No.)
- As an operand in the application instruction, e.g. MOV K123 D0 (constant K)
- 4. Binary code decimal (BCD)

A decimal datum is presented by a nibble or 4 bits. Therefore, a continuous 16 bits can be presented as a 4-digit decimal value. BCD is mainly used on reading the input value from the DIP switch or the data output to a 7-segment display.

5. Hexadecimal value (HEX)

Occasion of using hexadecimal values:

Operands in application instructions, e.g. MOV H1A2B D0 (constant H)

Constant K:

"K" is normally placed before a decimal value in DVP-PM. For example, K100 refers to a decimal value, 100.

Exception:

K and bit devices X, Y, M and S can combine into data in bit, byte, word or double word, e.g. K2Y10, K4M100. Here K1 refers to a 4-bit data and K2 ~ K4 refer to 8-bit, 12-bit and 16-bit data.

Constant H:

"H" is normally placed before a hexadecimal value in DVP-PM. For example, H100 refers to a hexadecimal value, 100.

Floating point F:

"F" is normally placed before a floating point value in DVP-PM. For example, F3.123 refers to a floating point value, 3.123.

Reference table:

Binary (BIN)		Octal (OCT)	Decimal (DEC)	Binary	Code [(BCD)	Decimal	Hexadecimal (HEX)
For DVP-PM internal operation		No. of device X, Y	Constant K, No. of device M, S, T, C, D, V, Z, P	For DIP sw	vitch and display	d 7-segment ⁄	Constant H
0 0 0 0 0 0	0 (0	0	0 0 0	0 0	0 0 0	0
0 0 0 0 0 0) 1	1	1	0 0 0	0 0	0 0 1	1
0 0 0 0 0 0	0	2	2	0 0 0	0 0	0 1 0	2
0 0 0 0 0 0	1	3	3	0 0 0	0 0	0 1 1	3
0 0 0 0 0 1 0	0 (4	4	0 0 0	0 0) 1 0 0	4
0 0 0 0 0 1 0) 1	5	5	0 0 0	0 0) 1 0 1	5
0 0 0 0 0 1 1	0	6	6	0 0 0	0 0) 1 1 0	6
0 0 0 0 0 1	1	7	7	0 0 0	0 0) 1 1 1	7
0 0 0 0 1 0 0	0 (10	8	0 0 0	0 1	0 0 0	8
0 0 0 0 1 0 0) 1	11	9	0 0 0	0 1	0 0 1	9
0 0 0 0 1 0	0	12	10	0 0 0	1 0	0 0 0	А
0 0 0 0 1 0	1	13	11	0 0 0	1 0	0 0 1	В
0 0 0 0 1 1 0	0	14	12	0 0 0	1 0	0 1 0	С
0 0 0 0 1 1 0) 1	15	13	0 0 0	1 0	0 1 1	D
0 0 0 0 1 1 1	0	16	14	0 0 0	1 0) 1 0 0	E
0 0 0 0 1 1 1	1	17	15	0 0 0	1 0) 1 0 1	F

Binary (BIN)	Octal (OCT)	Decimal (DEC)	Binary Code Decimal (BCD)	Hexadecimal (HEX)
For DVP-PM internal operation	No. of device X, Y	Constant K, No. of device M, S, T, C, D, V, Z, P	For DIP switch and 7-segment display	Constant H
0 0 0 1 0 0 0 0	20	16	0 0 0 1 0 1 1 0	10
0 0 0 1 0 0 0 1	21	17	0 0 0 1 0 1 1 1	11
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
:	:	:	:	:
0 1 1 0 0 0 1 1	143	99	1 0 0 1 1 0 0 1	63

3.3 Numbering and Functions of External Input/Output Contacts [X] / [Y]

Input relay X0 ~ X377

The numbering of input relay (or input terminal) is in octal form. DVP-PM is designed for up to 256 points, and the range is: X0 ~ X7, X10 ~ X17, ...X370 ~ X377.

Output relay Y0 ~ Y377

The numbering of output relay (or output terminal) is in octal form. DVP-PM is designed for up to 256 points, and the range is: Y0 ~ Y7, Y10 ~ Y17, ... Y370 ~ Y377.

Functions of input contact X

The input contact X is connected to the input device and reads the input signals into DVP-PM. There is no limitation on the times of using contact A or B of input contact X in the program. On/Off of the input contact X only changes with On/Off of the input device. You cannot use the peripheral devices (HPP03 or PMSoft) to force On/Off of input contact X.

Force On/Off of M1304

When M1304 = On, the peripheral HPP03 or PMSoft will be allowed to forced On/Off of input contact X on DVP-PM. However, the function of updating the input signals by external scan will be disabled.

Functions of output contact Y

Output contact Y sends out On/Off signals to drive the load connected to output contact Y. There are two types of output contacts, relay and transistor. There is no limitation on the times of using contact A or B of output contact Y in the program, but the No. of output coil Y can only be used once in the program; otherwise according to the scan principle of the program, the output status will be determined by the circuit of the last output Y in the program.

The output of Y0 will be determined by circuit ②, i.e. On/Off of X10 will determine the output status of Y0.

Y0 is repeated.

The handling process of DVP-PM program:

Regenerate input signal

- 1. Before the execution of the program, DVP-PM reads the On/Off status of the external input signals into the input signal memory at a time.
- The On/Off status of the input signal during the execution of the program will not change the signal status in the input signal memory. The new On/Off status will be read in the next scan.
- There will be approximately a 10ms delay from the On
 →Off or Off→On changes to the status being
 recognized by the contact in the program. The delay
 time may be affected by the scan time in the program.

Program processing

After DVP-PM reads the On/Off status of every input signal in the input signal memory, it will start to execute every instruction in the program in order starting from address 0. The execution result (On/Off of every output coil) will be stored in order into the device memory.

Regenerate output

- When the program executes to M102 instruction, it will send the On/Off status of Y in the device memory to the output latched memory. The output latched memory is the coil of the output relay.
- There will be a 10ms delay from On→Off or Off→On of the relay coil to the On/Off status of the contact.
- There will be a 10 ~ 20us delay from On→Off or Off→On of the transistor module to the On/Off status of the contact.

3.4 Numbering and Functions of Auxiliary Relays [M]

A	General purpose	M0 ~ M499, 500 points, can be modified into latched area by setting up parameters.	
Auxiliary relay M	Latched	M500 ~ M999, M3000 ~ M4095, 1,596 points, can be modified into non-latched area by setting up parameters.	Total 4,096 points
	Special purpose	M1000 ~ M2999, 2,000 points, some are latched.	

No. of auxiliary relays (in decimal):

Functions of auxiliary relays:

Both auxiliary relay M and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. You can use auxiliary relay M to assemble a control loop, but it cannot directly drive the external

load. There are three types of auxiliary relays.

- 1. **General purpose auxiliary relay:** If the relay encounters power cut during the operation of DVP-PM, its status will be reset to Off and stay Off when the power is On again.
- 2. Latched auxiliary relay: If the relay encounters power cut during the operation of DVP-PM, its status will be retained and stay at the status before the power cut when the power is On again.
- 3. **Special purpose auxiliary relay:** Every relay of this kind has its specific function. DO NOT use undefined special purpose auxiliary relay. See 3.10 for special purpose relay and special registers and 3.11 for their functions.

3.5 Numbering and Functions of Step Relays [S]

No. of step relay (in decimal):

Step relay S	General purpose	S0 ~ S499, 490 points, can be modified into latched area by setting up parameters.	Total 1,024
	Latched	S500 \sim S1023, 524 points, can be modified into non-latched area by setting up parameters.	points

Functions of step relays:

The device No. of S is S0 ~ S1023 (total 1,024 points) and both step relay S and output relay Y have output coils and contact A, B, and there is no limitation on the times of using the contact. S cannot directly drive the external load and can be used as a normal auxiliary relay.

3.6 Numbering and Functions of Timers [T]

No. of timers (in decimal):

Timer T 10ms general purpo	T0 ~ T255, 256 points, can be modified into latched area by setting up parameters. T0 \sim T255, 256 points, can be modified into latched area by setting up parameters.	
-------------------------------	--	--

Functions of timers:

The unit of the timer is 10ms, and the counting method is counting up. When the present value in the timer equals the set value, the output coil will be On, The set value should be a K value in decimal, and the data register D can also be a set value.

The actual set time in the timer = timing unit × set value

General purpose timer:

The timer executes once when the program reaches TMR instruction. When TMR instruction is executed, the output coil will be On when the timing reaches its target.

- When X0 = On, The PV in timer T0 will count up by 10ms. When the PV = SV K100, the output coil T0 will be On.
- When X0 = Off or the power is Off, the PV in timer T0 will be cleared as 0, and the output coil will be Off.

How to designate SV: The actual set time in the timer = timing unit × set value

- 1. Designating constant K: SV is a constant K
- 2. Indirectly designating D: SV is a data register D

3.7 Numbering and Functions of Counters [C]

No. of counters (in decimal):

Countor	16-bit counting up	C0 ~ C199, 200 points		When the timing of timer designated by CNT (DCNT)
Counter C	32-bit counting up/down	C200 ~ C255, 56 points (accumulative)	Total 256 points	instruction reaches its target, contact C of the same No. will be On.

Features of counter:

	16-bit counter	32-bit counter			
Туре	General purpose	General purpose			
Counting direction	Counting up	Counting up, counting down			
Set value	0 ~ 32,767	-2,147,483,648 ~ +2,147,483,647			
SV designation	Constant K or data register D	Constant K or data register D (designating 2 values)			
Present value	Counting will stop after SV is reached.	Counting will continue after SV is reached.			
Output contact	On and being retained when the counting reaches SV.	On and keeps being On when the counting up reaches SV. Reset to Off when the counting down reaches SV.			
Reset	et PV will return to 0 when RST instruction is executed, and the contact will be reset to Off.				
Contact action	The contact acts when the scan is completed.	The contact acts when the scan is completed.			

Functions of counters:

When the pulse input signals of the counter goes from Off to On, and the present value in the counter equals the set value, the output coil will be On. The set value should be a K value in decimal, and the data register D can also be a set value.

16-bit counters C0 ~ C199:

1. The setup range of 16-bit counter: K0 ~ K32,767. K0 is the same as K1. The output contact will be On immediately when the first counting starts.

- 2. PV in the general purpose counter will be cleared when the power of DVP-PM is switched off. If the counter is a latched type, PV and the contact status before the power is off will be retained, and the counting will resume after the power is On again.
- If you use MOV instructions, PMSoft or HPP03 to send a value bigger than SV to the present value register of C0, next time when X1 goes from Off to On, the contact of counter C0 will be On and its PV will equal SV.
- SV in the counter can be constant K (set up directly) or the values in register D (set up indirectly, excluding special data register D1000~D1999).
- If you set up a constant K as SV, it should be a positive value. Data register D as SV can be positive or negative.
 When PV reaches up to 32,767. The next PV will turn to -32,768.

Example:

- 1. When X0 = On, RST instruction will be executed, PV in C0 will be "0", and the output contact will be reset to Off.
- 2. When X1 goes from Off to On, PV in the counter will count up (plus 1).
- When the counting of C0 reaches SV = K5, the contact of C0 will be On, and PV of C0 = SV = K5. The X1 trigger signal comes afterwards will not be accepted by C0, and PV of C0 will stay at K5.

32-bit general purpose addition/subtraction counters C200 ~ C255:

- The setup range of 32-bit counter: K-2,147,483,648 ~ K2,147,483,647. Addition or subtraction of the counter is designated by On/Off status of special auxiliary relay M1200 ~ M1255. For example, when M1200 = Off, C200 will be an addition counter; when M1200 = On, C200 will be a subtraction counter.
- SV can be constant K or data register D (excluding special data register D1000 ~ D1999). Data register D as SV can be a positive or negative value, and an SV will occupy 2 consecutive data registers.
- 3. PV in the general purpose counter will be cleared when the power of DVP-PM is switched off. If the counter is a latched type, PV and the contact status before the power is off will be retained, and the counting will resume after the power is On again.

4. When PV reaches up to 2,147,483,647, the next PV will turn to -2,147,483,648. When PV reaches down to -2,147,483,648, the next PV will turn to 2,147,483,647.

Example:

- 1. X10 drives M1200 to determine whether C200 is an addition or subtraction counter.
- 2. When X11 goes from Off to On, RST instruction will be executed, PV in C200 will be cleared to "0", and the contact will be Off.
- 3. When X12 goes from Off to On, PV in the counter will count up (plus 1) or down (minus 1).
- 4. When PV in C200 changes from K-6 to K-5, the contact of C200 will go from Off to On. When PV in C200 changes from K-5 to K-6, the contact of C200 will go from On to Off.
- 5. If you use MOV instruction, PMSoft or HPP03 to send a value bigger than SV to the present value register of C0, next time when X1 goes from Off to On, the contact of counter C0 will be On, and its PV will equal SV.

3.8 Numbering and Functions of Registers [D]

3.8.1 Data Register [D]

A data register is for storing a 16-bit datum of values between $-32,768 \sim +32,767$. The highest bit is "+" or "-" sign. Two 16-bit registers can be combined into a 32-bit register (D + 1; D of smaller No. is for lower 16 bits). The highest bit is "+" or "-" sign, and it can store a 32-bit datum of values between $-2,147,483,648 \sim +2,147,483,647$.

	General purpose	D0 ~ D199, 200 points, can be modified into latched area by setting up parameters.	
Data register D	Data register DLatchedD200 ~ D999, D3000 ~ D9999, 7,800 points, can be modified into non-latched area by setting up parameters.		Total 10,000 points
	Special purpose D1000 ~ D2999, 2,000 points, some are latched		
	Index register V, Z	V0 ~ V7, Z0 ~ Z7, 16 points	
File register		K0 ~ K9,999, MPU 10,000 points, fixed as latched	10,000 points

There are five types of registers:

- General purpose register: When DVP-PM goes from AUTO to MANU or the power is switched off, the data in the register will be cleared to "0". When M1033 = On and DVP-PM goes from AUTO to MANU, the data will not be cleared but will still be cleared to "0" when the power is Off.
- 2. Latched register: When the power of DVP-PM is switched off, the data in the register will not be cleared but will retain at the value before the power if off. You can use RST or ZRST instruction to clear the data in the latched register.
- 3. **Special purpose register:** Every register of this kind has its special definition and purpose, mainly for storing the system status, error messages and monitored status. See 3.10 and 3.11 for more details.
- 4. Index register V, Z: V is a 16-bit register, and Z is a 32-bit register. V0 ~ V7, Z0 ~ Z7, total 16 points.

3.8.2 Index Registers [V], [Z]

Register V is a 16-bit data register and can be written and read. V as a general register can only be used in 16-bit instructions. Z is a 32-bit data register. Z as a general register can only be used in 32-bit instructions.

X0 MOV K8 V0 DMOV K14 Z1 MOV D0@V0 D2@Z1 DMOV D3@Z1 D4@V0

When X0 = On, V0=8, Z1 = 14. If you need to use V and Z to modify the operand, you can mix-use16-bit and 32-bit instructions (see left).

The index register is the same as normal operands, can be used for moving or comparison on word devices (KnX, KnY, KnM, KnS, T, C, D) and bit devices (X, Y, M, S). It supports constant (K, H) index register.

V0 ~ V7, Z0 ~ Z7, total 16 point

- Some instructions do not support index registers. For how to use index register V, Z to modify the operands, see Chapter 4.4.4 for more details.
- When you use the instruction mode in PMSoft to generate constant (K, H) index register function, please use symbol @. For example, "MOVK10@V0D0V1"
- When you use index register V, Z to modify the operands, the modification range CANNOT exceed the area of special purpose registers D1000 ~ D1999 and special auxiliary relays M1000 ~ M1999 in case errors may occur.

3.9 Pointer [N], Pointer [P_n]

Pointer	Ν	For master control loop	N0 ~ N7, 8 points	Control point of master control loop
1 Oniter	Р	For CJ, CJN, JMP instructions	P0 ~ P255, 256 points	Position pointer of CJ, CJN, JMP

Pointer P: Used with API 00 CJ, API 256 CJN, and API 257 JMP. See Chapter 5 for explanations on CJ, CJN and JMP instructions for more details.

CJ conditional jump:

3.10 Special Auxiliary Relays [M], Special Data Register [D]

The types and functions of special auxiliary relays (special M) and special data register (special D) are listed in the tables below. Special M and special D marked with "*" will be further illustrated in 3.11. Columns marked with "R" refers to "read only", "R/W" refers to "read and write", "-" refers to the status remains unchanged, and "#" refers to the system will set it up according to the status of DVP-PM.

Special M	Function	Off ↓ On	MANU ^① AUTO	AUTO ^① MANU	Attribute	Latched	Default	Page number
M1000*	Monitoring normally open contact (A): Normally On when in AUTO.	Off	On	Off	R	NO	Off	3-22
M1001*	Monitoring normally closed contact (B): Normally Off when in AUTO.	On	Off	On	R	NO	On	3-22
M1002*	Enabling positive pulses (On when AUTO). Initial pulses of contact A. Pulse width = scan period.	Off	On	Off	R	NO	Off	3-22
M1003*	Enabling negative pulses (Off when AUTO). Initial pulses of contact A. Pulse width = scan period.	On	Off	On	R	NO	On	3-22
M1008	Scanning watchdog timer (WDT) On	Off	Off	-	R	NO	Off	-
M1009	LV signal has been occurred.	Off	-	-	R	NO	Off	
M1011	10ms clock pulse, 5ms On/5ms Off	Off	-	-	R	NO	Off	-
M1012	100ms clock pulse, 50ms On/50ms Off	Off	-	-	R	NO	Off	-
M1013	1s clock pulse, 0.5s On/0.5s Off	Off	-	-	R	NO	Off	-
M1014	1min clock pulse, 30s On/30s Off	Off	-	-	R	NO	Off	-
M1025	There is incorrect request for communication service. (When HPP03, PC or HMI is connected with DVP-PM, and DVP-PM receives illegal request for communication service during the data transmission, M1025 will be set, and the error code will be stored in D1025.)	Off	Off	-	R	NO	Off	-
M1031	Clear all non-latched areas	Off	-	-	R/W	NO	Off	-
M1032	Clear all latched areas	Off	-	-	R/W	NO	Off	-
M1033	Memory latched when not in operation	Off	-	-	R/W	NO	Off	-

Special M	Function	Off ↓ On	MANU ↓ AUTO	AUTO ^① MANU	Attribute	Latched	Default	Page number
M1034	Disabling all Y outputs	Off	-	-	R/W	NO	Off	-
M1039*	Fixing scan time	Off	-	-	R/W	NO	Off	3-26
M1072	Executing AUTO instruction (communication)	Off	On	Off	R/W	NO	Off	-
M1074*	Enabling OX motion subroutine	Off	-	-	R/W	NO	Off	
M1077	Battery in low voltage, malfunction or no battery	Off	-	-	R/W	NO	Off	-
M1087	Enabling LV signal	Off	-	-	R/W	NO	Off	-
M1120*	Retaining the communication setting of COM2 (RS-485). Modifying D1120 will be invalid when M1120 is set.	Off	Off	-	R/W	NO	Off	3-23
M1121	Waiting for the sending of RS-485 communication data	Off	On	-	R	NO	Off	-
M1122	Sending request	Off	Off	-	R/W	NO	Off	-
M1123	Receiving is completed	Off	Off	-	R/W	NO	Off	-
M1124	Waiting for receiving	Off	Off	-	R	NO	Off	-
M1125	Communication reset	Off	Off	-	R/W	NO	Off	-
M1127	Sending/receiving data of communication instruction is completed.	Off	Off	-	R/W	NO	Off	-
M1128	Sending/receiving indication	Off	Off	-	R	NO	Off	-
M1129	Receiving time-out	Off	Off	-	R/W	NO	Off	-
M1138*	Retaining the communication setting of COM1 (RS-232). Modifying D1036 will be invalid when M1138 is set.	Off	-	-	R/W	NO	Off	3-23
M1139*	Selecting ASCII or RTU mode of COM1 (RS-232) when in Slave mode Off: ASCII; On: RTU	Off	-	-	R/W	NO	Off	3-23
M1140	MODRD/MODWR data receiving error	Off	Off	-	R	NO	Off	-
M1141	MODRD/MODWR parameter error	Off	Off	-	R	NO	Off	-
M1143*	Selecting ASCII or RTU mode of COM2 (RS-485) when in Slave mode Off: ASCII; On: RTU Selecting ASCII or RTU mode of COM2 (RS-485) when in Master mode (used together with MODRD/MODWR instructions Off: ASCII; On: RTU	Off	-	-	R/W	NO	Off	3-23
M1161	8-bit mode On: 8-bit mode; Off: 16-bit mode	Off	-	-	R/W	NO	Off	-
M1200	Counting mode of C200 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1201	Counting mode of C201 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1202	Counting mode of C202 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1203	Counting mode of C203 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1204	Counting mode of C204 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1205	Counting mode of C205 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1206	Counting mode of C206 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1207	Counting mode of C207 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1208	Counting mode of C208 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1209	Counting mode of C209 (On: counting down)	Off	-	-	R/W	NO	Off	-

Special	Function	Off Ţ	MANU 贝	AUTO	Attribute	Latched	Default	Page
М		On	AUTO	MANU				number
M1210	Counting mode of C210 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1211	Counting mode of C211 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1212	Counting mode of C212 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1213	Counting mode of C213(On: counting down)	Off	-	-	R/W	NO	Off	-
M1214	Counting mode of C214 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1215	Counting mode of C215 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1216	Counting mode of C216 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1217	Counting mode of C217 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1218	Counting mode of C218 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1219	Counting mode of C219 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1220	Counting mode of C220 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1221	Counting mode of C221 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1222	Counting mode of C222 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1223	Counting mode of C223 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1224	Counting mode of C224 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1225	Counting mode of C225 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1226	Counting mode of C226 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1227	Counting mode of C227 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1228	Counting mode of C228 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1229	Counting mode of C229 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1230	Counting mode of C230 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1231	Counting mode of C231 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1232	Counting mode of C232 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1233	Counting mode of C233 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1234	Counting mode of C234 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1235	Counting mode of C235 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1236	Counting mode of C236 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1237	Counting mode of C237 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1238	Counting mode of C238 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1239	Counting mode of C239 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1240	Counting mode of C240 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1241	Counting mode of C241 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1242	Counting mode of C242 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1243	Counting mode of C243 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1244	Counting mode of C244 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1245	Counting mode of C245 (On: counting down)	Off	-	-	R/W	NO	Off	-
M1246	Counting mode of C246 (On: counting down)	Off	-	-	R	NO	Off	-

Special M	Function	Off ₽	MANU ₽	AUTO Ţ	Attribute	Latched	Default	Page number
		On	AUTO	MANU				number
M1247	Counting mode of C247 (On: counting down)	Off	-	-	R	NO	Off	-
M1248	Counting mode of C248 (On: counting down)	Off	-	-	R	NO	Off	-
M1249	Counting mode of C249 (On: counting down)	Off	-	-	R	NO	Off	-
M1250	Counting mode of C250 (On: counting down)	Off	-	-	R	NO	Off	-
M1251	Counting mode of C251 (On: counting down)	Off	-	-	R	NO	Off	-
M1252	Counting mode of C252 (On: counting down)	Off	-	-	R	NO	Off	-
M1253	Counting mode of C253 (On: counting down)	Off	-	-	R	NO	Off	-
M1254	Counting mode of C254 (On: counting down)	Off	-	-	R	NO	Off	-
M1255	Counting mode of C255 (On: counting down)	Off	-	-	R	NO	Off	-
M1304*	Enabling force On/Off of input point X	Off	-	-	R/W	NO	Off	3-27
M1744*	OX M code Off	Off	Off	-	R/W	NO	Off	3-27
M1745	Disabling zero return of X axis in OX	Off	-	-	R/W	NO	Off	-
M1760	Using radian/degree of OX	Off	-	-	R/W	NO	Off	-
M 1792	Ready flag for OX and X axis	On	On	On	R	NO	On	-
M1793*	Clearing motion on X axis; error flag of X axis (automatically cleared when X axis is enabled)	Off	-	-	R/W	NO	Off	3-28
M1794*	OX M code On (automatically cleared when OX is enabled)	Off	-	Off	R	NO	Off	3-27
M1795	OX M0 code On (automatically cleared when OX is enabled)	Off	-	-	R	NO	Off	-
M1796	OX M2 code On (automatically cleared when OX is enabled)	Off	On	-	R	NO	Off	-
M1808	OX zero flag	Off	-	-	R	NO	Off	-
M1809	OX borrow flag	Off	-	-	R	NO	Off	-
M1810	OX carry flag	Off	-	-	R	NO	Off	-
M1825	Disabling zero return of Y axis	Off	-	-	R/W	NO	Off	-
M1872	Y axis ready flag	On	On	On	R	NO	On	
M1873*	Clearing motion on Y axis; error flag of Y axis (automatically cleared when Y axis is enabled)	Off	-	-	R	NO	Off	3-28
M1920	Using radian/degree of O100	Off	-	-	R/W	NO	Off	-
M1952	O100 ready flag	On	Off	On	R	NO	On	-
M1953*	O100 error flag/clear	Off	Off	-	R/W	NO	Off	3-29
M1957	Switching to AUTO mode	Off	On	-	R	NO	Off	-
M1958	Low battery	Off	-	-	R	NO	Off	
M1968	O100 zero flag	Off	-	-	R	NO	Off	-
M1969	O100 borrow flag	Off	-	-	R	NO	Off	-
M1970	O100 carry flag	Off	-	-	R	NO	Off	-
M1971	O100 floating point operation error flag	Off	-	-	R	NO	Off	-
		l	I					1

Special D	Function	Off ↓ On	MANU [‡] AUTO	Û	Attribute	Latched	Default	Page number
D1000*	Scanning watchdog timer (WDT) (unit: ms)	200	-	-	R/W	NO	200	3-23
D1001	Displaying the program version of DVP-PM (in default version)	#	-	-	R	NO	#	-
D1002	Program capacity	65,535	-	-	R	NO	65,535	-
D1003	Sum of program memory	-	-	-	R	YES	0	-
D1008	STSC address when WDT is On	0	-	-	R	NO	0	-
D1010	Current scan time (unit: 1ms)	0	-	-	R	NO	0	-
D1011	Minimum scan time (unit: 1ms)	0	-	-	R	NO	0	-
D1012	Maximum scan time (unit: 1ms)	0	-	-	R	NO	0	-
D1020	X0 ~ X7 input filter (unit: ms)	10	-	-	R/W	NO	10	-
D1025	Code for communication request error	0	0	-	R	NO	0	-
D1036*	COM1 communication protocol	H'86	-	-	R/W	NO	H'86	3-23
D1038*	Delay time of data response when DVP-PM as slave in RS-485 communication. Range: 0 ~ 3,000 (unit: 10ms)	-	-	-	R/W	YES	0	3-26
D1039*	Fixing scan time (ms)	0	-	-	R/W	NO	0	3-26
D1050 ↓ D1055	Process of data for Modbus communication instruction. DVP-PM automatically converts the ASCII data in D1070 ~ D1085 into hex data.	0	-	-	R	NO	0	-
D1070 ↓ D1085	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in in DVP-PM sent out is received, the response message will be stored in D1070 ~ D1085. You can view the response messages by checking these registers.	0	-	-	R	NO	0	-
D1089 ↓ D1099	Process of data for Modbus communication instruction. When the RS-485 communication instruction built-in in DVP-PM is executed, the words of the instruction will be stored in D1089 ~ D1099. You can check whether the instruction is correct by the contents in these registers.	0	-	-	R	NO	0	-
D1120*	COM2 (RS-485) communication protocol	H'86	-	-	R/W	NO	H'86	3-23
D1121	DVP-PM communication address (latched)	-	-	-	R/W	YES	1	-
D1122	Remaining number of words of sent data	0	0	-	R	NO	0	-
D1123	Remaining number of words of received data	0	0	-	R	NO	0	-
D1129	Abnormal communication time-out (ms)	0	-	-	R/W	NO	0	-
D1130	Error code returning from Modbus	0	0	-	R	NO	0	-
D1140*	Number of right-side special extension modules (max. 8)	0	-	-	R	NO	0	3-27
D1142*	Number of points X in digital extension unit	0	-	-	R	NO	0	3-27
D1143*	Number of points Y in digital extension unit	0	-	-	R	NO	0	3-27
D1200*	Start latched address for auxiliary relays M	-	-	-	R/W	YES	500	3-27
D1201*	End latched address for auxiliary relays M	-	-	-	R/W	YES	999	3-27
D1202*	Start latched address for timer T	-	-	-	R/W	YES	-1	3-27
D1203*	End latched address for timer T	-	-	-	R/W	YES	-1	3-27
D1204*	Start latched address for 16-bit counter C	-	-	-	R/W	YES	100	3-27

Special	Function	Off	MANU	AUTO	A thuile and a	I states d	Default	Page
D	Function	↓ On	₽ AUTO	₽ MANU	Attribute	Latched	Default	number
D1205*	End latched address for 16-bit counter C	-	-	-	R/W	YES	199	3-27
D1206*	Start latched address for 32-bit counter C	-	-	-	R/W	YES	220	3-27
D1207*	End latched address for 32-bit counter C	-	-	-	R/W	YES	255	3-27
D1208*	Start latched address for step relay S	-	-	-	R/W	YES	500	3-27
D1209*	End latched address for step relay S	-	-	-	R/W	YES	1,023	3-27
D1210*	Start latched address for data register D	-	-	-	R/W	YES	200	3-27
D1211*	End latched address for data register D	-	-	-	R/W	YES	9,999	3-27
D1320*	ID of the 1 st right-side extension module	0	-	-	R	NO	0	3-27
D1321*	ID of the 2 nd right-side extension module	0	-	-	R	NO	0	3-27
D1322*	ID of the 3 rd right-side extension module	0	-	-	R	NO	0	3-27
D1323*	ID of the 4 th right-side extension module	0	-	-	R	NO	0	3-27
D1324*	ID of the 5 th right-side extension module	0	-	-	R	NO	0	3-27
D1325*	ID of the 6 th right-side extension module	0	-	-	R	NO	0	3-27
D1326*	ID of the 7 th right-side extension module	0	-	-	R	NO	0	3-27
D1327*	ID of the 8 th right-side extension module	0	-	-	R	NO	0	3-27
D1328	Low word of the third axis control of G-Code, G00 and G01	0	-	-	R/W	NO	NO	6-30
D1329	High word of the third axis control of G-Code, G00 and G01	0	-	-	R/W	NO	NO	6-30
D. / a a a /	Low word of condition of G-Code, G00						NO	6-30
D1330*	Low word of interpolation speed of G-Code, G01	- 0 -	-	-	R/W	NO		6-34
	High word of condition of G-Code, G00.							6-30
D1331*	High word of interpolation speed of G-Code, G01	- 0	-	-	R/W	NO	NO	6-34
D1500	FROM/TO data area, corresponding to CR#0	H'6260	-	-	R	NO	H'6260	-
D1501								
Ļ	FROM/TO data area, corresponding to CR#1 ~ CR#199	0	-	-	R/W	NO	0	-
D1699								
D1700	No. of OX for execution	0	-	-	R	NO	0	-
D1702 D1703*	Step No. of OX execution	0	-	-	R	NO	0	- 3-27
	OX executing M-Code	0	-	-	R	NO	0	3-27
D1704	Set waiting time of OX	0	-	-	R	NO	0	-
D1705	Present waiting time of OX	0	-	-	R	NO	0	-
D1706	Set value of OX RPT instruction	0	-	-	R	NO	0	-
D1707	Present value of OX RPT instruction	0	-	-	R	NO	0	-
D1708	Low word of compensation value of X-axis moving distance	0	-	-	R	NO	0	-
D1709	High word of compensation value of X-axis moving distance							
D1710 D1711	Low word of compensation value of X-axis center	0	-	-	R	NO	0	-
D1711 D1712	High word of compensation value of X-axis center	0	-	-	R		0	_
21/10	Low word of compensation radius of X-axis arc	U	-	-	n	NO	U	-

Special D	Function	Off ↓ On	MANU ↓ AUTO	Û	Attribute	Latched	Default	Page number
D1713	High word of compensation radius of X-axis arc							
D1724	Low word of compensation value of Y-axis moving distance	0			P	NO	0	
D1725	High word of compensation value of Y-axis moving distance	0	-	-	R	NO	0	-
D1726	Low word of compensation value of Y-axis center	•			ſ		0	
D1727	High word of compensation value of Y-axis center	0	-	-	R	NO	0	
D1728	Low word of compensation radius of Y-axis arc	0			ſ		0	
D1729	High word of compensation radius of Y-axis arc	0	-	-	R	NO	0	
D1736	Set waiting time (TIM) of O100	0	-	-	R	NO	0	-
D1737	Present waiting time (TIM) of O100	0	-	-	R	NO	0	-
D1738	Set value of O100 RPT instruction	0	-	-	R	NO	0	-
D1739	Present value of O100 RPT instruction	0	-	-	R	NO	0	-
D1799*	Polarity of input terminal	0	-	-	R/W	NO	0	3-28
D1800*	Status of input terminal	0	-	-	R	NO	0	3-28
D1802*	Incorrect No. of O100	0	-	-	R/W	NO	0	3-29
D1803*	Incorrect STEP position of O100	0	0	-	R/W	NO	0	3-29
D1816*	Parameter setting of X axis	-	-	-	R/W	YES	0	3-29
D1817	Backlash compensation of X axis	-	-	-	R/W	YES	0	-
D1818	Number of pulses required per revolution of motor at X axis (low word)				R/W	YES	2,000	
D1819	Number of pulses required per revolution of motor at X axis (high word)	-	-	-		TES	2,000	-
D1820	Distance created by 1 revolution of motor at X axis (low word)	_	_	-	R/W	YES	1,000	_
D1821	Distance created by 1 revolution of motor at X axis (high word)					123	1,000	
D1822	Maximum speed of X axis: V_{MAX} (low word)	-	-	-	R/W	YES	500K	-
D1823	Maximum speed of X axis: V_{MAX} (high word)					0		
D1824	Bias speed of X axis: V_{BIAS} (low word)	-	_	-	R/W	YES	0	-
D1825	Bias speed of X axis: V _{BIAS} (high word)					. 20	`	
D1826	JOG speed of X axis: V_{JOG} (low word)	-	_	-	R/W	YES	5,000	-
D1827	JOG speed of X axis: V_{JOG} (high word)						0,000	
D1828	Zero return speed of X axis: V_{RT} (low word)	-	-	-	R/W	YES	50K	-
D1829	Zero return speed of X axis: V_{RT} (high word)					0		
D1830	Zero return deceleration speed of X axis: $V_{\mbox{\scriptsize CR}}$ (low word)	-	-	-	R/W	YES	1,000	_
D1831	Zero return deceleration speed of X axis: V_{CR} (high word)					0	.,	
D1832	Number of zero point signals at X axis: N	-	-	-	R/W	YES	0	-
D1833	Supplemented distance at X axis: P	-	-	-	R/W	YES	0	-
D1834	Definition of zero point at X axis:HP (low word)	_	_	_	R/W	YES	0	
D1835	Definition of zero point at X axis: HP (high word)	-	_	_	i I/ VV	120	U	_

Createl		Off	MANU	AUTO				Dava
Special D	Function	↓ On	AUTO	ા MANU	Attribute	Latched	Default	Page number
D1836	Acceleration time of X axis: T _{ACC}	-	-	-	R/W	YES	500	-
D1837	Deceleration time of X axis: T _{DEC}	_	_	_	R/W	YES	500	-
D1838	Target position (I) of X axis: P(I) (low word)				10,00	120	000	
D1839	Target position (I) of X axis: P(I) (high word)	0	-	-	R/W	NO	0	-
D1840	Operation speed (I) of X axis: V(I) (low word)							
D1841	Operation speed (I) of X axis: V(I) (high word	1,000	-	-	R/W	NO	1,000	-
D1842	Target position (II) of X axis: P(II) (low word)							
D1843	Target position (II) of X axis: P(II) (high word)	0	-	-	R/W	NO	0	-
D1844	Operation speed (II) of X axis: V(II) (low word)							
D1845	Operation speed(II) of X axis: V(II) (high word)	2,000	-	-	R/W	NO	2,000	-
D1846*	Operation instruction for X axis	0	-	-	R/W	NO	0	3-30
D1847*	Work mode of X axis	0	-	-	R/W	NO	0	3-30
D1848	Current position of X axis: CP (PLS) (low word)							
D1849	Current position of X axis: CP (PLS) (high word)	0	-	-	R/W	NO	0	-
D1850	Current speed of X axis: PPS (low word)							
D1851	Current speed of X axis: PPS (high word)	0	0	0	R/W	NO	0	-
D1852	Current position of X axis: CP (unit) (low word)							
D1853	Current position of X axis: CP (unit) (high word)	- 0	-	-	R/W	NO	0	-
D1854	Current speed of X axis: CS (unit) (low word)			_				
D1855	Current speed of X axis:CS (unit) (high word)	0	0	0	R/W	NO	0	-
D1856*	Execution status of X axis	0	-	-	R	NO	0	3-31
D1857*	Incorrect No. of OX, X axis	0	-	-	R	NO	0	3-28
D1858	Electronic gearing of X axis (numerator)	-	-	-	R/W	YES	1	-
D1859	Electronic gearing of X axis (denominator)	-	-	-	R/W	YES	1	-
D1860	MPG input frequency at X axis (low word)	_	_		DAM	NO	_	
D1861	MPG input frequency at X axis (high word)	0	0	-	R/W	NO	0	-
D1862	Accumulated number of MPG input pulses at X axis (low							
	word)	0	-	-	R/W	NO	0	-
D1863	Accumulated number of MPG input pulses at X axis (high word)							
D1864	Responding speed of MPG input at X axis	-	-	-	R/W	YES	5	-
D1865	Stop mode for OX0 ~ 99. (K1 \rightarrow completing unfinished distance after next activation, K2 \rightarrow executing the next instruction after next activation, Others \rightarrow restart)	-	-	-	R/W	YES	0	-
D1866	Electrical zero point address on X axis (low word)				DAM		_	
D1867	Electrical zero point address on X axis (high word)		-	-	R/W	YES	0	-
D1868*	Setting up the No. of OX	-	-	-	R/W	YES	0	3-26
D1869	Incorrect STEP position of OX	0	-	-	R/W	NO	0	-
D1872	Enabling Y output when OX is ready	0	-	-	R/W	NO	0	-

Special D	Function	Off ↓ On	Û	AUTO ^① MANU	Attribute	Latched	Default	Page number
	High byte: K1; low byte: designating start No. of Y output							
D1873	Enabling Y output when OX executes M-code High byte: K1; low byte: designating start No. of Y output	-	-	-	R/W	YES	0	-
D1874	OX M-Code Off, start No. of input point X	0	-	-	R/W	NO	0	-
D1875	Enabling external MANU of X axis (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	YES	0	3-31
D1896*	Parameter setting of Y axis	-	-	-	R/W	YES	0	3-29
D1897	Backlash compensation of Y axis	-	-	-	R/W	YES	0	-
D1898	Number of pulses required per revolution of motor at Y axis (low word)	_	_	_	R/W	YES	2,000	_
D1899	Number of pulses required per revolution of motor at Y axis (high word)	_	-	-		123	2,000	-
D1900	Distance created for 1 revolution of motor at Y axis (low word)	_			R/W	YES	1,000	-
D1901	Distance created for 1 revolution of motor at Y axis (high word)			-		TLO	1,000	
D1902	Maximum speed of Y axis: V_{MAX} (low word)				R/W	YES	500K	
D1903	Maximum speed of Y axis: V_{MAX} (high word)					120	5001	
D1904	Bias speed of Y axis: V _{BIAS} (low word)	_		_	R/W	YES	0	
D1905	Bias speed of Y axis: V_{BIAS} (high word)		_		10,44		0	
D1906	JOG speed of Y axis: V_{JOG} (low word)	_	_	_	R/W	YES	5,000	_
D1907	JOG speed of Y axis:V _{JOG} (high word)					120	0,000	
D1908	Zero return speed of Y axis: V_{RT} (low word)	_	_	_	R/W	YES	50K	_
D1909	Zero return speed of Y axis: V_{RT} (high word)					120	501	L
D1910	Zero return deceleration of Y axis (low word)	_	_	_	R/W	YES	1,000	-
D1911	Zero return deceleration of Y axis (high word)		_		10,44		1,000	
D1912	Number of zero point signals at Y axis: N	-	-	-	R/W	YES	0	-
D1913	Supplemented distance at Y axis: P	-	-	-	R/W	YES	0	-
D1914	Definition of zero point at Y axis: HP (low word)			_	R/W	YES	0	
D1915	Definition of zero point at Y axis: HP (high word)	_	_	_	11/99	TLO	0	
D1916	Acceleration time of Y axis: T _{ACC}	-	-	-	R/W	YES	500	-
D1917	Deceleration time of Y axis: T _{DEC}	-	-	-	R/W	YES	500	-
D1918	Target position (I) of Y axis: P(I) (low word)				DAM	NO	0	
D1919	Target position (I) of Y axis: P(I) (high word)	0	-	-	R/W	NO	0	-
D1920	Operation speed (I) of Y axis: V(I) (low word)	1 000		_	DAM	NO	1 000	
D1921	Operation speed (I) of Y axis: V(I) (high word)	1,000	-	_	R/W	NO	1,000	-
D1922	Target position (II) of Y axis: P(II) (low word)	_					0	
D1923	Target position (II) of Y axis: P(II) (high word)	0	-	-	R/W	NO	0	-
D1924	Operation speed (II) of Y axis: V(II) (low word)	0.000					0.000	
D1925	Operation speed (II) of Y axis: V(II) (high word)	2,000	-	-	R/W	NO	2,000	-

Special D	Function	Off ↓ On	MANU ↓ AUTO	AUTO ^① MANU	Attribute	Latched	Default	Page number
D1926*	Operation instruction of Y axis	0	-	-	R/W	NO	0	3-30
D1927*	Work mode of Y axis	0	-	-	R/W	NO	0	3-30
D1928	Current position of Y axis: CP (PLS) (low word)	0	_	-	R/W	NO	0	
D1929	Current position of Y axis: CP (PLS) (high word)	0	-	-	n/ vv	NO	0	-
D1930	Current speed of Y axis: PPS (low word)	0	0		R/W	No	0	
D1931	Current speed of Y axis: PPS (high word)	0	0	0	n/ vv	NO	0	-
D1932	Current position of Y axis: CP (unit) (low word)	0		_	R/W	NO	0	
D1933	Current position of Y axis: CP (unit) (high word)	0	-	-	H/VV	NO	0	-
D1934	Current speed of Y axis: CS (unit) (low word)			0	R/W	NO	0	
D1935	Current speed of Y axis: CS (unit) (high word)	0	0	0		NO	0	-
D1936*	Execution status of Y axis	0	-	-	R	NO	0	3-31
D1937*	Incorrect No. of Y axis	0	-	-	R	NO	0	3-28
D1938	Electronic gearing of Y axis (numerator)	-	-	-	R/W	YES	1	-
D1939	1939 Electronic gearing of Y axis (denominator)		-	-	R/W	YES	1	-
D1940	MPG input frequency at Y axis (low word)	0		0		NO	0	
D1941	MPG input frequency at Y axis (high word)	0	-	0	R/W	NO	0	-
D1942	Accumulated number of MPG input pulses at Y axis (low word)	0		_	R/W	NO	0	
D1943	Accumulated number of MPG input pulses at Y axis (high word)	s at Y axis (high 0 -		-		NO	0	-
D1944	Responding speed of MPG input at Y axis	-	-	-	R/W	YES	5	-
D1946	Electrical zero point address on Y axis (low word)					VEO	0	
D1947	Electrical zero point address on Y axis (high word)		-	-	R/W	YES	0	-
D1955*	Enabling external MANU of Y axis (ZRN, MPG, JOG-, JOG+)	-	-	-	R/W	YES	4	3-31

3.11 Functions of Special Auxiliary Relays and Special Registers

Function Group: DVP-PM Operation Flag

Number: M1000 ~ M1003

1. **M1000:** M1000 (A contact) is constantly "On" during the operation and monitoring. When DVP-PM is in AUTO status, M1000 will remain "On".

M1000 Y0 DVP-PM is running Normally On contact in DVP-PM AUTO Keeps being On

- 2. **M1001:** M1001 (B contact) is constantly "Off" during the operation and monitoring, When DVP-PM is in AUTO status, M1001 will remain "Off".
- 3. M1002: M1002 is "On" during the first scan when DVP-PM starts to be AUTO and remains "Off" afterward. The

pulse width = 1 scan time. Use this contact for all kinds of initial setting.

4. **M1003:** M1003 is "Off" during the first scan when DVP-PM starts to be AUTO and remains "On" afterward. M1003 enables negative direction ("Off" immediately when AUTO) pulses.

Function Group:	Monitor Timer
Number:	D1000

Contents:

- 1. The monitor timer is used for monitoring DVP-PM scan time. When the scan time exceeds the set time in the monitor timer, the red ERROR LED indicator will keep beaconing, and all outputs will be "Off".
- The initial set value of the time in the monitor timer is 200ms. If the program is too long, or the operation is too complicated, MOV instruction can be used for changing the set value. See the example below for SV = 300ms.

- 3. The maximum set value in the monitor timer is 32,767ms. Please be noted that if the SV is too big, the timing of detecting operational errors will be delayed. Therefore, it is suggested that you remain the scan time of shorter than 200ms.
- Complicated instruction operations or too many extension modules being connected to DVP-PM will result in the scan time being too long. Check D1010 ~ D1012 to see if the scan time exceeds the SV in D1000. If so, modify the SV in D1000.

Function Group:	Communication Port Function			
Number:	M1120, M1138, M1139, M1143, D1036, D1120			

Content:

COM ports (COM1: RS-232, COM2: RS232/RS-485/RS-422) in DVP-PM support Modbus ASCII/RTU communication format with speed of up to 115,200bps. COM1 and COM2 can be used at the same time.

- COM1: For slave stations only. COM1 supports ASCII/RTU communication format, adjustable baud rate with speed of up to 115,200bps, and modification on data length (data bits, parity bits, stop bits).
- COM2: For master or slave stations. COM2 supports ASCII/RTU communication format, adjustable baud rage with speed of up to 115,200bps, and modification on data length (data bits, parity bits, stop bits).
- Communication format settings:

COM1: 1. Communication format is set in D1036.

- 2. Communication setting is M1138 remains.
- 3. ASCII/RTU mode is set in M1139.
- COM2: 1. Communication format is set in D1120.
 - 2. Communication setting in M1120 remains.
 - 3. ASCII/RTU mode is set in M1143.

D1136: b8 ~ b15 do not support the communication protocol of COM1 (RS-232) Slave D1120: Communication protocol of COM2 (RS-232/RS-485/RS-422) Master or Slave

Communication protocols and how to set:

	Content			0		1
b0	Data length	ו		b0=0 : 7		b0=1 : 8
			b2	, b1=00	:	None
b1 b2	Parity bit		b2	, b1=01	:	Odd
~-			b2	, b1=11	:	Even
b3	Stop bits			b3=0 : 1 bit		b3=1 ÷ 2 bit
				Content		
b4	b7 ~ b4 = 0001	(H1)	:	110	bps	
b5 b6	b7 ~ b4 = 0010	(H2)	:	150	bps	
b7	b7 ~ b4 = 0011	(H3)	:	300	bps	
	b7 ~ b4 = 0100	(H4)	:	600	bps	
	b7 ~ b4 = 0101	(H5)	:	1,200	bps	
	b7 ~ b4 = 0110	(H6)	:	2,400	bps	
	b7 ~ b4 = 0111	(H7)	:	4,800	bps	
	b7 ~ b4 = 1000	(H8)	:	9,600	bps	
	b7 ~ b4 = 1001	(H9)	:	19,200	bps	
	b7 ~ b4 = 1010	(HA)	:	38,400	bps	
	b7 ~ b4 = 1011	(HB)	:	57,600	bps	
	b7 ~ b4 = 1100	(HC)	:	115,200	bps	
b8	Select start bit			b8=0: None		b8=1 : D1124
b9	Select the 1 st end	bit		b9=0: None		b9=1 : D1125
b10	Select the 2 nd end	d bit		b10=0: None		b10=1 : D1126
b15 ~ b11	Not defined			·	·	

Example 1: Modifying communication format of COM2

- Add the program code below on top of the program to modify the communication format of COM2. When DVP-PM switches from MANU to AUTO, the program will detect whether M1120 is On in the first scan time. If M1120 is On, the program will modify the relevant settings of COM2 according to the value set in D1120.
- 2. Modify the communication format of COM2 into ASCII mode, 9,600bps, 7 data bits, even parity, 1 stop bit (9,600, 7, E, 1)

Notes:

- 1. If COM2 is to be used as a Slave terminal, make sure there is no communication instruction existing in the program.
- 2. After the communication format is modified, the format will stay intact when DVP-PM switches from AUTO to MANU.
- 3. If you shut down the power of DVP-PM and re-power it again, the modified communication format will return to default setting.

Example 2: Modifying the communication format of COM1

- Add the program code below on top of the program to modify the communication format of COM1. When DVP-PM switches from MANU to AUTO, the program will detect whether M1138 is On in the first scan time. If M1138 is On, the program will modify the relevant settings of COM1 according to the value set in D1036.
- Modify the communication format of COM1 into ASCII mode, 9,600bps, 7 data bits, even parity, 1 stop bit (9,600, 7, E, 1)

Note:

- 1. After the communication format is modified, the format will stay intact when DVP-PM switches from AUTO to MANU.
- 2. If you shut down the power of DVP-PM and re-power it again, the modified communication format will return to default setting.

Setting up RTU mode of COM1 and COM2

COM1:

COM2:

Function Group:Communication Response DelayNumber:D1038

Contents:

When DVP-PM is used as a slave, in RS-485 interface, you can set up communication response delay time ranging from 0 to 1,000 (0 ~ 1 second). If the time falls without the range, D1038 = 0 (time unit: 0.1ms). The set value of time must be less than that in D1000.

Function Group:	Fixed Scan Time
Number:	M1039, D1039

Contents:

 When M1039 = On, the scan time of the program is determined by the content in D1039. When the execution of the program is completed, the next scan will take place when the fixed scan time is reached. If the content in D1039 is less than the actual scan time of the program, the scan time will follow the actual scan time of the program.

2. The scan time displayed in D1010 ~ D1012 also include the fixed scan time.

Function Group:	Setting up the No. of OX Program
Number:	M1074, D1868

Contents:

D1868 designates the No. of OX program to be executed. How to set:

- Set b14 of D1068 to be "1" or b15 = "1", or b14 = b15 = 1 (only one of the three needs to be true). Write b0 ~ b13 of D1868 into K99 (= H'63), i.e. set OX as OX99. Later, write H'8063 into D1868.
- 2. Set up M1074 to enable the OX program designated by D1868.
- 3. Program example:

In O100 main program, X0 enables subroutine OX99 and executes the program in OX99.

Function Group:	Detecting Extension
Number:	D1140, D1142, D1143

Contents:

- 1. D1140: Number of special right-side extension modules (AD, DA, XA, PT, TC, RT, HC, PU); Max. 8.
- 2. D1142: Number of X input points on the digital extension unit.
- 3. D1143: Number of Y output points on the digital extension unit.

Function Group:	Setting Up Latched Area
Number:	D1200 ~ D1211

Contents:

- 1. The latched area is from the start address to end address in DVP-PM latched setting.
- 2. See the tables in 3.1 for more details.

Function Group:	Force Om/Off of Input Point X
Number:	M1304

Contents:

When M1304 = On, the peripheral devices (e.g. PMSoft, HPP03) can force On/Off of X0 ~ X17, but the hardware LED will not respond to ot.

Function Group:	Right-Side Special Extension Module ID
Number:	D1320 ~ D1327

Contents:

- 1. The ID of special extension module, if any, connected to DVP-PM are stored in D1320 ~ D1327 in sequence.
- 2. Special extension module ID for DVP-PM:

Module Name	Module ID (hex)	Module Name	Module ID (hex)
DVP04AD-H2	H'6400	DVP01PU-H2	H'6110
DVP04DA-H2	H'6401	DVP04PT-H2	H'6402
DVP04TC-H2	H'6403	DVP06XA-H2	H'6604
DVPPM	H'6260	DVP01HC-H2	H'6120

Function Group:	Clearing M-Code In Execution
-----------------	------------------------------

Number: M1744, M1794, D1703

Contents:

 Make M1744 = 1 to clear the M-Code instruction. When M1744 is executed, D1703 will be cleared and M1794 will be reset. 2. M1794 is the flag indicating M-Code of OX has been executed. D1703 is the register for M-Code of OX.

Function Group:	Clearing Erroneous Motion
Number:	M1793, D1857, M1873, D1937

Contents:

- 1. When errors occur on X or Y axis, the error flags are M1793 for X and M1873 for Y, and the error messages will be stored in D1857 for X and D1937 for Y.
- 2. To eliminate the error, please clear the error message registers and reset the error flags.

Function Group:	Setting up Polarity of Input Terminal
Number:	D1799

Contents:

Set bit# to be On to make the polarity of the input terminal as contact A. Set bit# to be Off to make the polarity of the input terminal as contact B.

bit#	Polarity of input terminal on X axis	bit#	Polarity of input terminal on Y axis
0	PG0	8	PG0
1	MPGB	9	MPGB
2	MPGA	10	MPGA
3	LSN	11	LSN
4	LSP	12	LSP
5	DOG	13	DOG
6	STOP	14	STOP
7	START	15	START

Function Group:	Reading the Status of Input Terminal
Number:	D1800

DIO

Contents:

bit# = On indicates there is signal input. bit# = Off indicates there is no signal input.

bit#	Input terminal status on X axis	bit#	Input terminal status on Y axis
0	PG0	8	PG0
1	MPGB	9	MPGB
2	MPGA	10	MPGA
3	LSN	11	LSN
4	LSP	12	LSP
5	DOG	13	DOG
6	STOP	14	STOP
7	START	15	START

Function Group:	Error Check on O100
Number:	M1953, D1802, D1803

Contents:

- When errors occur in O100 program, the error flag in O100, M1953, will be set On, and the error message will be D1802. The STEP where the error occurs will be stored in D1803.
- 2. See the table of error messages in Appendix C of Chapter 9.

Function Group:	Parameter Settings on X-Y Axis
Number:	D1816, D1896

Contents:

D1816 is the parameter setting for X axis, and D1896 for Y axis. See the tables below:

bit#	X-Y axis parameter setting		X-Y axis parameter setting
0	— Unit (*1)		Zero return direction (*4)
1			Zero return mode (*4)
2	Multiplication of position data (*2)	10	Detecting DOG falling edge in zero return (*4)
3	 Multiplication of position data (*2) 		Pulse rotation direction (*4)
4	Pulco tupo (*2)	12	Relative/absolute coordinate (*4)
5	– Pulse type (*3)		DOG trigger mode (*4)
6			Curve selection (*4)
7		15	

Note *1:

b1	b0	Unit		Motor unit	Combined unit	Machine unit
0	0	Motor		pulse		um
0	1	Machine	Position	pulse	n	n deg
1	0	Combined		pulse	10) ⁻⁴ inch
1	1	Combined			pulse/sec	cm/min
			Speed	pulse/sec 10deg/min		10deg/min
					pulse/sec	inch/min

Note *2:

b3	b2	Multiplication of position data	
0	0	10 ⁰	
0	1	10 ¹	
1	0	10 ²	
1	1	10 ³	

Note	*3:
	<u> </u>

b5	b4	Description	
0	0	Forward pulse + reverse pulse	
0	1	Pulse + direction	
1	0	A/B phase pulse (2-phase 2)	
1	1		

Note *4:

bit#	Explanation
8	b[8]=0: Decreasing current position (CP) towards zero b[8]=1: Increasing current position (CP) towards zero
9	b[9]=0: normal mode b[9]=1: overwrite mode
10	b[10]=0: Detecting DOG falling edge in zero return b[10]=1: Detecting DOG rising edge in zero return

bit#	Explanation			
11	b[11]=0: Increasing current position (CP) when in forward running b[11]=1: Decreasing current position (CP) when in forward running			
12	b[12]=0: Absolute coordinate positioning b[12]=1: Relative coordinate positioning			
13	b[13]=0: Triggering DOG rising edge b[13]=1: Triggering DOG falling edge (Valid in single-speed positioning interruption mode and 2-speed positioning interruption mode)			
14	b[14]=0: Adopting trapezoid acceleration curve b[14]=1: Adopting S acceleration curve			

Function Group: Parameter Settings for X-Y Axis Operation

Number: D1846, D1926

Contents:

D1846 is for operation setting of X axis, and D1926 for Y axis.

bit#	X-Y operation setting		X-Y operation setting
0	Software STOP	8	Enabling single-speed positioning
1	Software START		Enabling single-speed positioning interruption
2	JOG+ operation	10	Enabling 2-speed positioning
3	JOG- operation	11	Enabling 2-speed positioning interruption
4	Enabling variable speed operation	12	0: Stop OX; 1: Start OX
5	MPG input operation	13	
6	Enabling zero return mode	14	
7		15	

Function Group: Work Mode of X-Y Axis

Number: D1847, D1927

Contents:

D1847 is for the work mode setting of X axis, and D1927 for Y axis.

bit#	Work mode of X-Y	bit#	Work mode of X-Y	
0		8		
1		9	MASK selection	
2	CLR signal output mode	10		
3	CLR output On/Off control	11		
4	CLR polarity setting	12		
5	STOP mode setting	13		
6	Range for MPG	14		
7	LSP/LSN stop mode	15	Returning to default setting	

bit#	Explanation				
2	When $b[2] = 1$, CLR will be a general output point, and its status will be controlled by On/Off of $b[3]$.				
3					
5	 b[5] = 0: During the running of motor, when encountering STOP signal input, the motor will decelerate to stop. When the next motion instruction comes in, the motor will ignore the unfinished distance and immediately execute the distance in the next step. b[5] = 1: During the running of motor, when encountering STOP signal input, the motor will decelerate to stop. When the next motion instruction comes in, the motor will complete the unfinished distance before executing the next positioning step. 				
 b[6] = 0: No limitation on MPG pulse input b[6] = 1: The range for MPG pulse output is limited with P(I) and P(II). When the range is exceeded, the p will stop. 					
7	b[7] = 0: During the running of motor, the motor decelerates to stop when encountering LSP/LSN signal input b[7] = 1: During the running of motor, the motor stops immediately when encountering LSP/LSN signal input.				
8	MASK settings (single-speed positioning, 2-speed positioning, single-speed positioning interruption, 2-speed positioning interruption)				
9	b[10~8] = K0 (000): or other values: No MASK function $b[10~8] = K1 (001)$: Triggering MASK by the rising edge of input terminal $\Phi A \pm b[10~8] = K2 (010)$: Triggering MASK by the falling edge of input terminal $\Phi A \pm b[10~8] = K2 (010)$:				
10	h_{10} = K3 (011): Triggering MASK by the rising edge of input terminal Φ B+				

Function Group:	Execution Status of X-Y Axis

Number: D1856, D1936

Contents:

D1856 is for the execution status of X axis, and D1936 for Y.

bit#	Execution status of X-Y	bit#	Execution status of X-Y
0	Forward pulse output in progress	8	
1	Reverse pulse output in progress	9	
2	Operation in progress	10	
3	Error occurs	11	
4	Operation pauses	12	
5	Forward MPG input	13	
6	Reverse MPG input	14	
7		15	

Function Group: External Start for X-Y Axis

Number: D1875, D1955

Contents:

- The high byte of D1875 and D1955 = H'01 indicates enabling external input. H'00 indicates disabling external input.
- The low byte of D1875 and D1955 = H'00 indicates designating 4 consecutive external input X, X0 ~ X3, for enabling JOG+, JOG-, MPG and ZRN.

3. Example: D1875 and D1955 = H'0110 refers to X10 ~ X13 are able to enable JOG+, JOG-, MPG and ZRN.

3.12 Special Registers for Manual Motion Mode

Below are the types and functions of special registers (special D) for motion modes. See the next section for more details on the functions. You will know more about the system information by comparing the set value read with the instructions in this manual.

Special D						
X a	X axis Y axis		Content	Range	Default setting	
HW	LW	HW	LW			
	D1816		D1896	Parameter setting	b0 ~ b15	H0
	D1817		D1897	Backlash compensation	1 ~ +32,767 PLS	K0
D1819	D1818	D1899	D1898	Number of pulses required per revolution of the motor (A)	1 ~ +2,147,483,647 PLS/REV	K2,000
D1821	D1820	D1901	D1900	Distance created for 1 motor revolution (B)	1 ~ +2,147,483,647 * 1	K1,000
D1823	D1822	D1903	D1902	Maximum speed	0 ~ +2,147,483,647 * 2	K500,000
D1825	D1824	D1905	D1904	Bias speed	0 ~ +2,147,483,647 * 2	K0
D1827	D1826	D1907	D1906	JOG speed V _{JOG}	0 ~ +2,147,483,647 * 2	K5,000
D1829	D1828	D1909	D1908	Zero return speed V_{RT}	0 ~ +2,147,483,647 * 2	K50,000
D1831	D1830	D1911	D1910	Zero return deceleration speed V_{CR}	0 ~ +2,147,483,647 * 2	K1,000
	D1832		D1912	Number of PG0 signals N	0 ~ +32,767 PLS	K0
	D1833		D1913	Number of pulse signals P	-32,768~+32,767 PLS	K0
D1835	D1834	D1915	D1914	Definition of zero point HP	0 ~ ±999,999 * 1	K0
	D1836		D1916	Acceleration time T _{ACC}	10 ~ +32,767 ms	K100
	D1837		D1917	Deceleration time T _{DEC}	10 ~ +32,767 ms	K100
D1839	D1838	D1919	D1918	Target position (I) P(I)	-2,147,483,648 ~ +2,147,483,647 * 1	K0
D1841	D1840	D1921	D1920	Operation speed (I) V(I)	-2,147,483,648 ~ +2,147,483,647 * 1	K1,000
D1843	D1842	D1923	D1922	Target position (II) P(II)	-2,147,483,648 ~ +2,147,483,647 * 1	K0
D1845	D1844	D1925	D1924	Operation speed (II) V(II)	0 ~ +2,147,483,647 * 1	K2,000
	D1846		D1926	Operation instruction	b0 ~ b15	H0
	D1847		D1927	Work mode	b0 ~ b15	H0
D1849	D1848	D1929	D1928	Current position CP (PLS)	-2,147,483,648 ~ +2,147,483,647 * 1	K0
D1851	D1850	D1931	D1930	Current speed CS (PPS)	0 ~ +2,147,483,647 PPS	K0
D1853	D1852	D1933	D1932	Current position CP (unit *2)	-2,147,483,648 ~ +2,147,483,647 * 1	К0
D1855	D1854	D1935	D1934	Current speed CS (unit *2)	0 ~ +2,147,483,647 PPS	K0
	D1856		D1936	Execution status	b0 ~ b15	H0
	D1857		D1937	Error code	See the error code table	H0
	D1858		D1938	Electronic gear (numerator)	1 ~ +32,767	K1
	D1859		D1939	Electronic gear (denominator)	1 ~ +32,767	K1
D1861	D1860	D1941	D1940	MPG input frequency	Pulse frequency by MPG input	K0
D1863	D1862	D1943	D1942	Accumulated number of MPG input pulses	Number of input pulses from MPG	ко
	D1864		D1944	Response speed of MPG input	Response speed of MPG input	K5

*1: Units available: $\underline{um/rev}$, $\underline{m \text{ deg/rev}}$ and $\underline{10^{-4} \text{ inch/rev}}$.

*2: The unit setting follows the settings of b0 and b1 of D1816 and D1896 (for parameter setting)

3.12.1 Functions of Special Registers for Manual Motion Mode

Xa	X axis		axis	
HW	LW	HW	LW	Parameter Setting
	D1816		D1896	

See the tables below for the meanings of b0 \sim b15.

b0 and b1 of D1816 (D1896): setting of the unit

b1	b0	Unit	Explanation	
0	0	Motor	Unit: pulse	
0	1	Machine	chine Unit: length, angle	
1	0	Combined	Unit for position: length, angle (machine)	
1	1	Complined	Unit for speed: pulse (motor)	

	Motor unit	Combined unit	Machine unit	
Position	pulse	um		
	pulse	m deg		
	pulse	10-4inch		
	pulse	cm/min		
Speed	pulse	10deg/min		
	pulse	inch/min		

- Position data: zero point position (HP), target position (I) (P(I)), target position (II) (P(II), current position (CP).
- Speed data: maximum speed (V_{MAX}), bias speed (V_{BIAS}), JOG speed (V_{JOG}), zero return speed (V_{RT}), zero return deceleration speed (V_{CR}), operation speed (I) (V(I)), operation speed (II) (V(II)).
- Example 1:

Motor unit b[1:0] = 00 ⇒ unit for position data: pulse; unit for speed data: pulse/sec (PPS)

Setting: target position P(I): 10,000 (pulse); operation speed V(I): 10K (PPS)

Explanation: The positioning controller only needs to send out 10,000 pulses (frequency at 10KPPS) to move to the target position. The distance created by every pulse is calculated by the user according to the parameter settings.

• Example 2:

Machine unit b[1:0] = 01 ⇒ unit for position data: um; unit for speed data: cm/min

Assume DD1818 (DD1898) =1,000 (Pulse/REV), DD1820 (DD1900) = 100 (um/REV), target position P(I) =

10,000 (um), and operation speed V(I) = 1,000 (cm/min), what are the number of pulses and the frequency from the pulse instruction of the positioning controller?

Solve:

Distance = $\frac{\underset{B}{\text{Circle}}}{\underset{B}{\text{Circle}}} \times \frac{\underset{Number of pulses}{\text{Circle}}}{\underset{M_{A}}{\text{Number of pulses}}} \times \text{Number of pulses}$

Number of pulses required for running to P(I) calculated by the positioning controller

$$= \frac{P(I)um}{B/A} = P(I) \times \frac{A}{B} = 100,000 \text{ Pulse}$$

Operation speed V(I): 6 (cm/min) = 60,000/60 (um/sec)

Speed =	Distance	Distance	Circle	Number of pulses
speed –	Time	Circle	Number of pulses	Time
		$\overset{\vee}{B}$		PPS, pulse / sec

Calculate the pulse frequency (PPS) by the positioning controller

$$= V(I) \times \frac{10^4}{60} \times \frac{A}{B} = \frac{60,000}{60} \times \frac{1,000}{100} = 10,000 \text{ PPS}$$

• Example 3:

Combined unit b[1:0] = 10, 11 ⇒ unit for position data: um; unit for speed data: pulse/sec (PPS)

Assume DD1818 (DD1898) = 2,000 (Pulse/REV), DD1820 (DD1900) =100 (um/REV), target position P(I): 10,000 (um), and operation speed V(I): 10K (PPS), what is the number of pulses from the pulse instruction of the positioning controller?

Solve:

Calculate the number of pulses required for running to P(I) by the positioning controller

$$= \frac{P(I)um}{BA} = P(I) \times \frac{A}{B} = 200,000 \text{ PULSE}$$

b2 and b3 of D1816 (D1896): setting of multiplication of position data

The position data, i.e. zero point position (HP), target position (I) (P(I)), target position (II) (P(II)), current position (CP), have to be multiplied by the multiplication values listed in the table below.

b3	b2	Multiplication
0	0	Position data × 10 ⁰
0	1	Position data × 10 ¹
1	0	Position data × 10 ²
1	1	Position data × 10 ³

b4 and b5 of D1816 (D1896): pulse output type

b5	b4	Pulse output type (positive logic)	Explanation
0	0	FP forward pulses	Dual pulses
Ũ	Ŭ	RP reverse pulses	
0		FP pulses	Cingle gules
0		RP direction (DIR) Forward running Reverse running	Single pulse

b5	b4	Pulse output type (positive logic)	Explanation
1	0	FP A-phase pulses	
1	1	RP B-phase pulses Forward running Reverse running	A/B phase pulse

b8 of D1816 (D1896): zero return direction

- b[8] = 0: decreasing current position (CP) value towards zero
- b[8] = 1: increasing current position (CP) value towards zero

b9 of D1816 (D1896): zero return mode

b[9] = 0: normal mode. After the DOG signal is generated, N PG0 signals and P pulse signals, the motor will stop immediately.

b[9]=1: overwrite mode. After the DOG signal is generated, N PG0 signals and P pulse signals, the motor will stop immediately when either N or P is reached.

b10 of D1816 (D1896): detecting DOG falling edge in zero return

b[10] = 0: detecting DOG falling edge (On)

b[10] = 1: detecting DOG rising edge (Off)

- b [9:10] = 00: normal mode; detecting DOG falling edge in zero return (On)
 - Zero return: The motors operates at zero return speed V_{RT}, and when it encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR}. After passing N PG0 signals and P pulse signals for zero return, the motor will stop.
 - If the set N or P is too small, when the motor encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR} and detect the DOG falling edge. When the designated N is reached, and after passing P, the motor will stop immediately (whether it has reached V_{CR}).
 - 3. Assume N is set as "0" and P as "0", the motor will stop immediately after it touches DOG signal and detects DOG falling edge.

- b[9:10] = 10: normal mode; detecting DOG falling edge in zero return is Off
 - 1. Zero return: The motors operates at zero return speed V_{RT}, and when it encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR}. After passing N PG0 signals and P pulse signals for zero

return, the motor will stop.

- If the set N or P is too small, when the motor encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR}. When the designated N is reached, and after passing P, the motor will stop immediately (whether it has reached V_{CR}).
- 3. Assume N is set as "0" and P as "0", the motor will stop immediately after it touches DOG signal.

- b[9:10] = 01: overwrite mode; detecting DOG falling edge in zero return is On
 - Zero return: The motors operates at zero return speed V_{RT}, and when it encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR}. After the motor detects the DOG falling edge and passes N PG0 signals or P pulse signals for zero return, it will stop.
 - 2. If the set N or P is too small, when the motor encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR} . When the designated N or P is reached, the motor will stop immediately (whether it has reached V_{CR}).
 - 3. Assume N is set as "0" and P as "0", the motor will stop immediately after it touches DOG signal.

- b[9:10] = 11: overwrite mode; detecting DOG falling edge in zero return is Off
 - Zero return: The motors operates at zero return speed V_{RT}, and when it encounters DOG signal, it will decelerate to zero return deceleration speed V_{CR}. After the motor passes N PG0 signals or P pulse signals for zero return, it will stop.
 - 2. If the set N or P is too small, when the motor encounters DOG signal, it will decelerate to zero return

deceleration speed V_{CR} . When the designated N or P is reached, the motor will stop immediately (whether it has reached V_{CR}).

3. Assume N is set as "0" and P as "0", the motor will stop immediately after it touches DOG signal.

b11 of D1816 (D1896): rotation direction

b[11] = 0: CP value increases when in forward running

b[11] = 1: CP value decreases when in forward running

b12 of D1816 (D1896): absolute/relative coordinate setting

b[12] = 0: absolute coordinate positioning

b[12] = 1: relative coordinate positioning

b13 of D1816 (D1896): triggering DOG

b[13] = 0: triggering DOG rising edge

b[13] = 1: triggering DOG falling edge (valid in single-speed positioning interruption mode and 2-speed positioning interruption mode)

b14 of D1816 (D1896): acceleration/deceleration curve selection

b[14] = 0: trapezoid curve

b[14] = 1: S curve

Xa	axis	Ya	axis		
HW	LW	HW	LW	Backlas	h Compensation
	D1817		D1897	7	

Backlash compensation is used for compensating the mechanical error, e.g. the errors in lead screw transmission, and enhancing the accuracy of positioning.

Xa	axis	Y a	axis	
HW	LW	HW	LW	Number of Pulses Required Per Revolution of Motor (A)
D1819	D1818	D1899	D1898	

Due to that you can set up the electronic gearing ratio in the servo drive, the number of pulses required for 1
motor revolution does not need to equal the number required for 1 motor revolution in the servo drive.

(A) × electronic gear (CMX/CDV) = pulses generated from 1 revolution of encoder

2. The unit varies according to the settings of b0 and b1 in D1816 (D1896). Parameter A is valid when the unit is set

to be machine unit or combined unit. Parameter A cannot be set to be motor unit.

X a	ixis	Ya	axis	
HW	LW	HW	LW	Distance Created From 1 Motor Revolution (B)
D1821	D1820	D1901	D1900	

There are three units available for the distance created from 1 motor revolution, and they can be set in b0 and b1 of D1816 (D1896). Range of B: 1 ~ +2,147,483,647 (um/Rev, mdeg/Rev, 10⁻⁴ inch/Rev)

2. The unit varies according to the settings of b0 and b1 in D1816 (D1896). Parameter B is valid when the unit is set to be machine unit or combined unit. Parameter B cannot be set to be motor unit.

Xa	axis	Ya	axis	
HW	LW	HW	LW	Maximum Speed (V _{MAX})
D1823	D1822	D1903	D1902	

- Maximum speed for all kinds of operation modes. Range: 0 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.

Xa	axis	Y a	axis	
HW	LW	HW	LW	Bias Speed (V _{BIAS})
D1825	D1824	D1905	D1904	

1. Start speed for pulse output. Range: $0 \sim +2,147,483,647$; the unit is set by b0 and b1 of D1816 (D1896).

- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.
- 3. If you are using a step drive system, please be aware of the resonance frequency in the step motor. Set the bias speed above the resonance frequency for safe startup.

Ха	axis	Y a	axis		
HW	LW	HW	LW	JOG Speed (V _{JOC})
D1827	D1826	D1907	D1906		

- 1. Range: 0 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.
- 3. Setup range limitation: $V_{MAX} > V_{JOG} > V_{BIAS}$. If $V_{JOG} > V_{MAX}$, V_{JOG} output = V_{MAX} . If $V_{JOG} < V_{BIAS}$, $V_{JOG} = V_{BIAS}$.
- 4. V_{JOG} cannot be modified during the execution.

X a	ixis	Y a	ixis	
HW	LW	HW	LW	Zero Return Speed V _{RT}
D1829	D1828	D1909	D1908	

- The speed for returning to mechanical zero point. Range: 0 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.
- 3. Setup range limitation: $V_{MAX} > V_{RT} > V_{BIAS}$
- 4. V_{RT} cannot be modified during the execution.

Xa	axis	Υa	axis	
HW	LW	HW	LW	Zero Return Deceleration Speed V _{CR}
D1831	D1830	D1911	D1910	

- 1. Range: 0 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.
- When zero return is executed, the motor will operate at zero return speed V_{RT}. When DOG signal is touched, the motor will decelerate to zero return deceleration speed V_{CR}.
- 4. To position precisely at the zero point, we suggest you set up V_{CR} in low speed.
- 5. V_{CR} cannot be modified during the execution.

Xa	X axis		axis	
HW	LW	HW	LW	Number of Zero Signals (PG0) in Zero Return (N)
	D1832		D1912	

- 1. Range: -32,768 ~ 32,767 (PULSE). Positive values are for the number of pulses P in forward direction. Negative values are for the number of pulses P in reverse direction.
- 2. See explanation on b9 of D1816 (D1896) (zero return mode) for signals of motor deceleration and stop.

X axis		Y axis		
HW	LW	HW	LW	Number of Pulse Signals in Zero Return (P)
	D1833		D1913	

1. Range: -32,768 ~ 32,767 (PULSE). Positive values are for the number of pulses P in forward direction. Negative values are for the number of pulses P in reverse direction.

2. See explanation on b9 of D1816 (D1896) (zero retuen mode) for signals of motor deceleration and stop.

X a	X axis		axis	
HW	LW	HW	LW	Definition of Zero Point (HP)
D1835	D1834	D1915	D1914	4

1. Range: 0 ~ \pm 999,999; the unit is set by b0 and b1 of D1816 (D1896).

2. After the zero return is completed, current position (CP) will be updated into zero point (HP).

X axis		Y axis		
HW	LW	HW	LW	Acceleration Time T _{ACC}
	D1836		D1916	

1. T_{ACC} is the time required from bias speed V_{BIAS} (DD1824 (DD1904)) to maximum speed V_{MAX} (DD1822 (DD1902)).

When the setting <10ms, it will be regarded as 10ms. When the setting is > 32,767ms, it will be regarded as 32,767 ms.

3. If you need a complete S acceleration curve, please set the operation speed as maximum speed V_{MAX} .

Xa	axis	Y	axis	
HW	LW	' HW	LW	Deceleration Time T _{DEC}
	D1837	37	D1917	

1. T_{DEC} is the time required from maximum speed V_{MAX} (DD1822 (DD1902)) to bias speed V_{BIAS} (DD1824 (DD1904)).

When the setting <10ms, it will be regarded as 10ms. When the setting is > 32,767ms, it will be regarded as 32,767 ms.

3. If you need a complete S acceleration curve, please set the operation speed as maximum speed V_{MAX} .

	X axis		Y axis		
	HW	LW	HW	HW LW	
C	D1839	D1838	D1919	D1918	

1. Range: -2,147,483,648 \sim +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).

2. Attribute of target position P(I):

- Absolute coordinate: b12 of D1816 (D1896) = 0
 Starting from "0", when the target position P(I) > current position (DD1848 (DD1928)), the motor will conduct forward running. When the target position P(I) < current position, the motor will conduct reverse running.
- Relative coordinate: b12 of D1816 (D1896) = 1
 Calculating the distance created by the motor starting from the current position (DD1848 (DD1928)). When

the relative coordinate is a positive value, the motor will conduct forward running. When the relative coordinate is a negative value, the motor will conduct reverse running.

3. The data multiplication of the target position P(I) varies according to the settings of b2 and b3 in D1816 (D1896).

Xa	X axis		Y axis		
HW	LW	HW	IW LW		HW LW Operation Speed (I) (V(I))
D1841	D1840	D1921	D1920		

- 1. Range: -2,147,483,648 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.
- 3. Setup range limitation: $V_{MAX} > V(I) > V_{BIAS}$.
- 4. When operating in variable speed (b4 of D1846 (D1926) = 1), the operation speed V(I) can be modified during the operation. When the sign of V(I) is "+", the motor will conduct forward running; when the sign of V(I) is "-", the motor will conduct reverse running.

X a	ıxis	Y axis		
HW	LW	HW	LW	Target Position (II) (P(II))
D1843	D1842	D1923	D1922	

- 1. Range: -2,147,483,648 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).
- 2. Attribute of target position P(II):
 - Absolute coordinate: b12 of D1816 (D1896) = 0

Starting from "0", when the target position P(II) > current position (DD1848 (DD1928)), the motor will conduct forward running. When the target position P(II) < current position, the motor will conduct reverse running.

Relative coordinate: b12 of D1816 (D1896) = 1

Calculating the distance created by the motor starting from the current position (DD1848 (DD1928)). When the relative coordinate is a positive value, the motor will conduct forward running. When the relative coordinate is a negative value, the motor will conduct reverse running.

3. The data multiplication of the target position P(II) varies according to the settings of b2 and b3 in D1816 (D1896).

Xa	X axis		axis	
HW	LW	HW	LW	Operation Speed (II) (V(II))
D1845	D1844	D1925	D1924	

1. Range: -2,147,483,648 ~ +2,147,483,647; the unit is set by b0 and b1 of D1816 (D1896).

 Corresponding to pulse instruction 10 ~ 500KPPS. If the speed is bigger than 500K, the output will be in 500K; if the speed is smaller than 10, the output will be in 10.

3. Setup range limitation: $V_{MAX} > V(II) > V_{BIAS}$.

Xa	X axis		axis	
HW	LW	HW	W LW	/ LW Operation Instruction
	D1846		D1926	

1. b0 of D1846 (D1926): software STOP

- Action timing: $0 \rightarrow 1$.
- The function is the same as external input force STOP. The positioning controller will decelerate and stop positioning.
- 2. b1 of D1846 (D1926): software START
 - $b[1] = 0 \rightarrow 1$: The operation starts and operates according to the settings of D1846 (D1926)
- 3. b2 of D1846 (D1926): enabling JOG+
 - b[2] = 1: JOG+ sends out forward pulses (CW)
- 4. b3 of D1846 (D1926): enabling JOG-
 - b[3] = 1: JOG- sends out reverse pulses (CCW)
- 5. b4 of D1846 (D1926): variable speed operation
 - When b[4] is triggered and START On, the positioning controller will start to operate at variable speed V(I), and DVP-PM will start to send out pulses.
 - The action: The operation speed will be stable from VBIAS accelerating to the expected V(I). During the pulse output, you can modify V(I), and the pulse output from DVP-PM will accelerate or decelerate according to the modification. At this point, the external STOP input contact cannot stop the pulse output from DVP-PM. To stop the pulse output, you have to control the software STOP flag (b0 of D1846 (D1926) = 1) by the operation instruction.
 - Action diagram:

- 6. b5 of D1846 (D1926): manual pulse generator (MPG) input
 - ◆ b[5] = 1: enabling MPG input. See D1858 ~ D1864 (D1938 ~ D1944) for more details.
- 7. b6 of D1846 (D1926): enabling zero return mode
 - b[6] = 0→1: starting zero return. The motions of zero return vary depending on different current positions (CP)

Zero return route:

CP 1: Starting from position [1], to the right of zero and DOG; DOG = Off.

CP 2: Starting from position [2], to the right of zero; DOG = On.

CP 3: Starting from position [3], to the left of zero and DOG; DOG = Off, LSN =Off.

CP 4: Starting from position [4], to the left of zero and DOG; DOG = Off, LSN = On.

- 8. b8 of D1846 (D1926): enabling single-speed positioning
 - When b[8] is triggered, receives the instruction for single-speed positioning and START On, the first
 positioning program will start to execute. The number of steps and speed are determined by P(I) and V(I).
 - Operation direction: The relative coordinate positioning is determined by the sign bit of the register for P(I). The absolute coordinate positioning is determined by P(I) (set in D1838 (D1918)). Forward running when the absolute coordinate is bigger than the current position; reverse running when the absolute coordinate is smaller than the current position.
 - The operation speed will be stable from V_{BIAS} accelerating to the expected V(I). When it is approaching the P(I) value set in the register, the positioning will start to decelerate to V_{BIAS} and stop. There are P(I) pulses generated during the positioning.
 - The registers involved: DD1824 (DD1904) (V_{BIAS}), DD1840 (DD1920) (V(I)), DD1822 (DD1902) (V_{MAX}),
 DD1838 (DD1918) (P(I)), D1836 (D1916) (T_{ACC}) and D1837 (D1917) (T_{DEC}).

- 9. b9 of D1846 (D1926): inserting single-speed positioning interruption
 - When b[1] is trigger, receives the instruction for single-speed positioning and START On, the output pulses will start. When the external DOG signal is executed, the P(I) value will be reloaded in.
 - Operation direction: The relative coordinate positioning is determined by the sign bit of the register for P(I). The absolute coordinate positioning is determined by P(I) (set in D1838 (D1918)). Forward running when the absolute coordinate is bigger than the current position; reverse running when the absolute coordinate is smaller than the current position.
 - The operation speed will be stable from V_{BIAS} accelerating to the expected V(I). When encountering DOG

signals during the pulse output, the pulse output unit will send out the number of steps in P(I). When it is approaching the P(I) value set in the register, the positioning will start to decelerate to V_{BIAS} and stop.

The registers involved: DD1824 (DD1904) (V_{BIAS}), DD1840 (DD1920) (V(I)), DD1822 (DD1902) (V_{MAX}),
 DD1838 (DD1918) (P(I)), D1836 (D1916) (T_{ACC}) and D1837 (D1917) (T_{DEC}).

10. b10 of D1846 (D1926): enabling 2-speed positioning

- When b[10] is triggered and START On, the second positioning program will start to execute. The second positioning program will start immediately after the first positioning program reaches P(I).
- Operation direction: The relative coordinate positioning is determined by the sign bit of the register for P(I). The absolute coordinate positioning is determined by P(I) (set in D1838 (D1918)). Forward running when the absolute coordinate is bigger than the current position; reverse running when the absolute coordinate is smaller than the current position.
- The operation speed will be stable from V_{BIAS} accelerating to the expected V(I). After the pulse output unit sends out the number of pulses equivalent to P(I), it will accelerate/decelerate again from V(I) to V(II) and operate at V(II) stably until P(II) is reached. The pulse output will then decelerate to V_{BIAS} and stop. Total P(I) + P(II) pulses are sent during the operation.
- The registers involved: DD1824 (DD1904) (V_{BIAS}), DD1840 (DD1920) (V(I)), DD1822 (DD1902) (V_{MAX}),
 DD1838 (DD1918) (P(I)), DD1842 (DD1922) (P(II), D1836 (D1916) (T_{ACC}) and D1837 (D1917) (T_{DEC}).

- The output accelerates to V(I) and operates at V(I) stably until it reaches P(I). It will then accelerate or decelerate to V(II) stably until it reaches P(II) and stops.
- 11. b11 of D1846 (D1926): inserting 2-speed positioning interruption
 - When b[11] is triggered and START On, the second positioning program will start immediately after an external DOG signal is enabled during the first positioning program. The pulse output unit will start to send
out pulses.

- Operation direction: The relative coordinate positioning is determined by the sign bit of the register for P(I). The absolute coordinate positioning is determined by P(I) (set in D1838 (D1918)). Forward running when the absolute coordinate is bigger than the current position; reverse running when the absolute coordinate is smaller than the current position.
- The operation speed will be stable from V_{BIAS} accelerating to the expected V(I). When encountering DOG signals during the pulse output, the pulse output will accelerate/decelerate again from V(I) to V(II) and operate at V(II) stably. In the second positioning program, the external STOP input will force the pulse output unit to immediately stop the pulse output.
- The registers involved: DD1824 (DD1904) (V_{BIAS}), DD1840 (DD1920) (V(I)), DD1822 (DD1902) (V_{MAX}),
 DD1838 (DD1918) (P(I)), DD1842 (DD1922) (P(II), D1836 (D1916) (T_{ACC}) and D1837 (D1917) (T_{DEC}).

- The output accelerates to V(I) and operates at V(I) stably until it reaches P(I). After the external DOG signal is enabled, the output will then accelerate or decelerate to V(II) and operate at V(II) stably until it reaches P(II) and stops.
- 12. b12 of D1846 (D1926): enabling OX
 - b[12] = 1: start OX program; b[12] = 0: stop OX program

- 1. b2 of D1847 (D1927): CLR signal output mode
 - b[2] = 0: When zero return is completed, CLR will output 130ms to servo as the clear signal for the error counter in the servo.
 - b[2] = 1: CLR output point as general output point, controlled by On/Off of b[3].
- 2. b3 of D1847 (D1927): CLR output On/Off
 - ◆ b[3] = 0: CLR is Off.
 - b[3] = 1: CLR is On.
- 3. b4 of D1847 (D1927): CLR polarity
 - b[4] = 0: CLR is contact a.
 - b[4] = 1: CLR is contact b.
- 4. b5 of D1847 (D1927): STOP mode
 - b[5] = 0: During the running of motor, when encountering STOP signal input, the motor will decelerate to

stop. When the next motion instruction comes in, the motor will ignore the unfinished distance and immediately execute the distance in the next step.

- b[5] = 1: During the running of motor, when encountering STOP signal, the motor will decelerate to stop.
 When the next motion instruction comes in, the motor will complete the unfinished distance before executing the next positioning step.
- 5. b6 of D1847 (D1927): manual pulse generator (MPG) range
 - b[6] = 0: No limitation on MPG pulse output
 - b[6] = 1: The range of MPG pulse output is limited within P(I) and P(II). When the range is exceeded, the pulse will decelerate and stop.
- 6. b7 of D1847 (D1927): LSP/LSN stop mode
 - b[7] = 0: During the running of motor, the motor will decelerate to stop when encountering LSP/LSN signal input.
 - b[7] = 1: During the running of motor, the motor will stop immediately when encountering LSP/LSN signal input.
- 7. b8 ~ b10 of D1847 (D1927): MASK settings
 - MASK settings include single-speed positioning, 2-speed positioning, single-speed positioning interruption and 2-speed positioning interruption.
 - ◆ b[10~8] = K0 (000) or other values: No MASK function
 - b[10~8] = K1 (001): Triggering MASK by the rising edge of input terminal $\Phi A \pm$.
 - $b[10 \sim 8] = K2 (010)$: Triggering MASK by the falling edge of input terminal $\Phi A \pm$.
 - b[10~8] = K3 (011): Triggering MASK by the rising edge of input terminal $\Phi B \pm$.
 - b[10~8] = K4 (100): Triggering MASK by the falling edge of input terminal $\Phi B \pm$.
- 8. b15 of D1847 (D1927): returning to default setting
 - b[15] = 1: All parameters return to default settings.

Х	axis	Y axis		
HW	LW	HW	LW	Current Position (CP) (PLS)
D1849	D1848	D1929	D1928	

1. Range: -2,147,483,648 ~ +2,147,483,647

The current position is displayed in pulse value (PLS) and set by b0 and b1 of D1816 (D1896). When the zero return is completed, the definition of zero point (HP) (DD1834 (DD1914)) will be filled into current position CP (PLS).

Xa	axis	Y a	axis
HW	LW	HW	LW
D1851	D1850	D1931	D1930

- 1. Range: 0 ~ +2,147,483,647
- 2. Displayed in PPS.

X a	axis	Ya	axis
HW	LW	HW	LW
D1853	D1852	D1933	D1932

1. Range: -2,147,483,648 ~ +2,147,483,647

The unit of the current position varies according to be settings of b0 and b1 in D1816 (D1896). When the zero return is completed, the definition of zero point (HP) (DD1834 (DD1914)) will be filled into current position (DD1852 (DD1932)).

Xa	axis Y a		axis	
HW	LW	HW	LW	Current Speed (CS) (Unit)
D1855	D1854	D1935	D1934	

1. Range: 0 ~ +2,147,483,647

2. The unit of the current speed varies according to be settings of b0 and b1 in D1816 (D1896).

Ха	axis	Y axis		
HW	LW	HW	LW	Execution Status
	D1856		D1936	

bit#	D1856 (D1936)	bit#	D1856 (D1936)
0	Forward pulses output in progress	8	Reverse MPG input
1	Reverse pulses output in progress	9	Not defined
2	Operation in progress	10	Not defined
3	Error occurs	11	Not defined
4	Operation pauses	12	Not defined
5	Error occurs	13	Not defined
6	Operation pauses	14	Not defined
7	Forward MPG input	15	Not defined

	Хa	X axis Y axis		
ŀ	HW	LW	HW	LW
		D1857		D1937

See Appendix C in Chapter 9 for details.

Xa	axis	Ya	axis	Special Registers
HW	LW	HW	LW	Special negisters
	D1858		D1938	Electronic gear (numerator)
	D1859		D1939	Electronic gear (denominator)

1. Set On b5 of D1846 (D1926) to enable the work mode of MPG input.

2. Generate A/B phase pulse input by MPG to ΦA and ΦB. See the figure below for the relation between FP/RP input and output pulses.

- 3. During the operation, if LSP or LSN is enabled, the output will stop immediately. If LSP is enabled, the forward pulse will be forbidden, and reverse pulse will be allowed. If LSN is enabled, the reverse pulse will be forbidden, and forward pulse will be allowed.
- 4. The pulse input generated by MPG is proportional to the electronic gearing (D1858 (D1938), D1859 (D1939)).

X a	axis	Y a	axis
HW	LW	HW	LW
D1861	D1860	D1941	D1940

The frequency of MPG input is not affected by the MPG electronic gearing ratio.

Xa	axis	X axis Y axis		
HW	LW	HW	LW	Accumulated Number of MPG Input Pulses
D1863	D1862	D1943	D1942	

1. Accumulating the number of pulse from MPG input. Forward pulses are accumulated by "plus", and reverse pulses are accumulated by "minus".

2. The accumulated value will not be affected by the electronic gearing ratio (D1858 (D1938), D1859 (D1939)).

X a	ixis	Y a		Y axis		
HW	LW	HW	LW	Response Speed of MPG Input		
	D1864		D1944			

1. The faster the response speed, the more synchronous the pulse output and MPG input.

2. The slower the response speed, the more possible the pulse output lags behind MPG input.

Set value	Response speed
≧5	4ms (default)
4	32ms
3	108ms
2	256ms
1 or 0	500ms

3.12.2 Manual Modes

- 1. There are 8 motion modes in DVP-PM as a position module
 - 1. Mechanical zero return
 - 2. JOG mode

- 5. 2-speed positioning
- 6. 2-speed positioning interruption
- 3. Single-speed positioning
- 4. Single-speed positioning interruption
- 7. Variable speed mode
- MPG input

2. When many work modes are enabled at the same time, they will be processed in the following order.

- 1. STOP6. Variable speed mode2. Mechanical zero return7. Single-speed positioning3. JOG+ mode8. Single-speed positioning interruption4. JOG- mode9. 2-speed positioning5. MPG input10. 2-speed positioning interruptionWhen one of the work modes is being executed, and another work mode is enabled, DVP-PM will remain inthe original work mode.
- 3. There are two types of pulse acceleration curves.
 - 1. Trapezoid curve 2. S curve
- 3.12.3 Application Position & Speed Control Registers for Manual Modes

Be	nistore fo	or the Moti	ion					Operatio	on Mode	e		
Xa			axis	Parameter Name	JOG	Zero return	Single-speed positioning	Single-speed positioning interruption	2-speed positioning	2-speed positioning interruption	Variable speed	MPG input
HW	LW	HW	LW	-		Zei	Sing	Sing pr	άă	∾ ĕ.⊑	Varia	M
D1819	D1818	D1899	D1898	Number of pulses required per revolution of motor (A)	No nee motor i		set up i	f the uni	t (b0, b ⁻	of D18	16 (D18	1 396)) is
D1821	D1820	D1901	D1900	Distance created by 1 revolution of motor (B)	Needs to be set up if the unit is machine unit or combined unit.							
	D1816		D1896	Parameter setting	0	\odot	0	\odot	0	\odot	\bigcirc	0
D1823	D1822	D1903	D1902	Maximum speed (V _{MAX})	0	0	0	0	0	\odot	\odot	0
D1825	D1824	D1905	D1904	Bias speed (V _{BIAS})	O	0	O	0	0	\odot	\bigcirc	O
D1827	D1826	D1907	D1906	JOG speed (V _{JOG})	O	-	-	-	-	-	-	-
D1829	D1828	D1909	D1908	Zero return speed (V_{RT})								
D1831	D1830	D1911	D1910	Zero return deceleration speed (V_{CR})								
	D1832		D1912	Number of PG0 signals in zero return (N)	-	\odot	-	-	-	-	-	-
	D1833		D1913	Number of pulse signals in zero return (P)								
D1835	D1834	D1915	D1914	Definition of zero point (HP)								
	D1836		D1916	Acceleration time (T _{ACC})	\odot	0	0	\odot	0	\odot	\bigcirc	-
	D1837		D1917	Deceleration time (T _{DEC})	\odot	0	0	\odot	0	\odot	\bigcirc	-
D1839	D1838	D1919	D1918	Target position(I) (P(I))	-	-	0	\odot	0	\odot	-	\odot
D1841	D1840	D1921	D1920	Operation speed (I) (V(I))	-	-	0	\odot	0	\odot	\bigcirc	-
D1843	D1842	D1923	D1922	Target position (II) (P(II))	-	-	-	-	0	0	-	\odot
D1845	D1844	D1925	D1924	Operation speed (II) (V(II))	-	-	-	-	0	0	-	-
	D1846		D1926	Operation instruction	0	0	0	0	0	0	\bigcirc	0
	D1847		D1927	Work mode	0	0	0	0	0	0	\bigcirc	0
D1849	D1848	D1929	D1928	Current position (CP) (PLS)	0	0	0	0	0	\odot	\bigcirc	0

Pr	aistore fa	or the Moti	on					Operatio	on Mode	9		
Tie	gisters io		on	Parameter Name		E	ed ing	eed ing tion	ł ing	l ing tion	eed	ut
X a	axis	Y axis		Farameter Name	JOG	Zero return	Single-speed positioning	Single-speed positioning interruption	2-speed positioning	2-speed positioning interruption	Variable speed	MPG input
HW	LW	HW	LW				05	0)			2	
D1851	D1850	D1931	D1930	Current speed (CS) (PPS)	0	O	Ô	0	0	0	\odot	\odot
D1853	D1852	D1833	D1932	Current position (CP) (unit)	0	O	Ô	0	0	0	\odot	\odot
D1855	D1854	D1935	D1934	Current speed (CS) (unit)	0	0	Ô	0	0	0	0	\odot
	D1858		D1938	Numerator of electronic gear	-	-	-	-	-	-	-	\odot
	D1859		D1939	Denominator of electronic gear	-	-	-	-	-	-	-	\odot
D1861	D1860	D1941	D1940	Frequency of MPG input	-	-	-	-	-	-	-	\odot
D1863	D1862	D1943	D1942	Accumulated number of MPG input pulses	-	-	-	-	-	-	-	0
	D1864		D1944	MPG response speed	-	-	-	-	-	-	-	\odot

 \odot refers to the control register for the operation mode.

MEMO

4.1 Basic Instructions

General Instructions

Instruction code	Function	Operands	Execution speed (us)	Step	Page number
LD	Loading in A contact	Loading in A contact X, Y, M, S, T, C		3	4-2
LDI	Loading in B contact	X, Y, M, S, T, C	3.3	3	4-2
AND	Series connection- A contact	ies connection- A contact X, Y, M, S, T, C 3.3		3	4-3
ANI	Series connection- B contact	X, Y, M, S, T, C	3.3	3	4-3
OR	Parallel connection- A contact	X, Y, M, S, T, C	3.3	3	4-4
ORI	Parallel connection- B contact	X, Y, M, S, T, C	3.3	3	4-4
ANB	Series connection- loop blocks	N/A	2.3	3	4-5
ORB	Parallel connection- loop blocks	N/A	2.3	3	4-5

Output Instructions

Instruction code	Function	Operands	Execution speed (us)	Step	Page number
OUT	Output coil	Y, M, S	7.3	3	4-6
SET	Latched (On)	Y, M, S	5.6	3	4-6
RST	Clear the contact or register	Y, M, S, T, C, D, V, Z	6.9	3	4-7

📖 Timers, Counters

API	Instruction code	Function	Operands	Execution speed (us)	Step	Page number
96	TMR	16-bit timer	T-K or T-D	19	5	4-7
97	CNT	16-bit counter	C-K or C-D (16 bits)	16	5	4-8
97	DCNT	32-bit counter	C-K or C-D (32 bits)	16.5	6	4-8

Instructions for Detecting Contacts of Rising-/Falling-Edge

API	Instruction code	Function	Operands	Execution speed (us)	Step	Page number
90	LDP	Rising-edge detection operation	X, Y, M, S, T, C	12.3	3	4-9
91	LDF	Falling-edge detection operation	X, Y, M, S, T, C	12.3	3	4-9
92	ANDP	Rising-edge series connection	X, Y, M, S, T, C	12.3	3	4-10
93	ANDF	Falling-edge series connection	X, Y, M, S, T, C	12.3	3	4-10
94	ORP	Rising-edge parallel connection	X, Y, M, S, T, C	12.6	3	4-10
95	ORF	Falling-edge parallel connection	X, Y, M, S, T, C	12.6	3	4-11

Rising-/Falling-Edge Output Instruction

API	Instruction code	Function	Operands	Execution speed (us)	Step	Page number
89	PLS	Rising-edge output	Y, M	20.7	3	4-11
99	PLF	Falling-edge output	Y, M	20.9	3	4-12

Other Instructions

API	Instruction code	Function	Operands	Execution speed (us)	Step	Page number
-	NOP	No operation	N/A	1.9	3	4-12
-	Р	Pointer	P0 ~ P255	-	1	4-13
-	0	Subroutine pointer	O100, OX0 ~ OX99	-	1	4-13
-	М	M-Code instruction	M0 ~ M65535 M102: O100 main program ends M2: OX0 ~ OX99 motion subroutine ends	-	1	4-14

4.2 Explanations on Basic Instructions

Mnemonic		Function									
LD		Loading in A Contact									
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999				
Operand	~	~	~	\checkmark	\checkmark	\checkmark	-				

Explanations:

LD instruction is used on the A contact that has its start from the left bus or the A contact that is the start of a contact circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

Program Example:

Ladder diagram:	Instruction	n code:	Operation:
	LD	X0	Loading in contact A of X0
	AND	X1	Connecting to contact A of X1 in series
	OUT	Y1	Driving Y1 coil

Mnemonic		Function									
LDI		Loading in B Contact									
Onerend	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999				
Operand	~	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									

Explanations:

LDI instruction is used on the B contact that has its start from the left bus or the B contact that is the start of a contact

circuit. The functions are to save the present contents and store the acquired contact status into the accumulative register.

Program Example:

Mnemonic		Function					
AND	Series Connection – A Contact						
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999
Operand	✓	✓	✓	✓	✓	✓	-

Explanations:

AND instruction is used in the series connection of A contact. The functions are to read out the status of present series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be stored in the accumulative register.

Program Example:

Ladder diagram:	Instruction	n code:	Operation:
	LD	X1	Loading in contact B of X1
	AND	X0	Connecting to contact A of X0 in series
	OUT	Y1	Driving Y1 coil

Mnemonic		Function					
ANI		Series Connection – B Contact					
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999
Operatio	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	-

Explanations:

ANI instruction is used in the series connection of B contact. The functions are to read out the status of present designated series connection contacts and perform the "AND" operation with the logical operation result obtained. The final result will be stored in the accumulative register.

Program Example:

Ladder diagram:	Instructio	n code:	Operation:
	LD	X1	Loading in contact A of X1
	ANI	X0	Connecting to contact B of X0 in series
	OUT	Y1	Driving Y1 coil

Mnemonic		Function					
OR		Parallel Connection – A Contact					
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999
Operand	✓	~	~	✓	✓	✓	-

Explanations:

OR instruction is used in the parallel connection of A contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be stored in the accumulative register.

Program Example:

Ladder diagram:	Instructior	n code:	Operation:
X0	LD	X0	Loading in contact A of X0
Y1 X1	OR	X1	Connecting to contact A of X1 in parallel
╽└┨┠┙	OUT	Y1	Driving Y1 coil

Mnemonic		Function					
ORI		Parallel Connection – B Contact					
Onerrend	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999
Operand	~	~	~	\checkmark	\checkmark	✓	-

Explanations:

ORI instruction is used in the parallel connection of B contact. The functions are to read out the status of present designated parallel connection contacts and perform the "OR" operation with the logical operation result obtained. The final result will be stored in the accumulative register.

Program Example:

Ladder diagram:	Instruction	n code:	Operation:
X0	LD	X0	Loading in contact A of X0
X1 Y1	ORI	X1	Connecting to contact B of X1 in parallel
	OUT	Y1	Driving Y1 coil

Mnemonic	Function
ANB	Series Connection – Loop Blocks
Operand	N/A

Perform the "AND" operation of the preserved logic results and content in the accumulative register.

Program Example:

Ladder diagram:	Instruction	n code:	Operation:
	LD	X0	Loading in contact A of X0
X0 ANB X1	ORI	X2	Connecting to contact B of X2 in parallel
Y1 X2 X3	LDI	X1	Loading in contact B of X1
	OR	Х3	Connecting to contact A of X3 in parallel
Block A Block B	ANB		Connecting circuit block in series
	OUT	Y1	Driving Y1 coil

Mnemonic	Function
ORB	Parallel Connection – Loop Blocks
Operand	N/A

Explanations:

To perform the "OR" operation of the preserved logic result and content in the accumulative register.

Program Example:

Ladder diagram:

	Instruction code:		Operation:
	LD	X0	Loading in contact A of X0
	ANI	X1	Connecting to contact B of X2 in series
)	LDI	X2	Loading in contact B of X2
	AND	X3	Connecting to contact A of X3 in series
	ORB		Connecting circuit block in parallel
	OUT	Y1	Driving Y1 coil

Mnemonic		Function					
OUT	Output Coil						
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999
Operand	_	✓	✓	\checkmark	-	-	-

- 1. To output the logical operation result before OUT instruction into a designated device.
- 2. Actions of coil contact:

	OUT instruction				
Operational result	Coil	Cor	itact		
	Con	A contact (normally open)	B contact (normally closed)		
FALSE	OFF	OFF	ON		
TRUE	ON	ON	OFF		

Program Example:

Ladder diagram:	Instructio	n code:	Operation:
	LDI	X0	Loading in contact B of X0
	AND	X1	Connecting to contact A of X1 in series
	OUT	Y1	Driving Y1 coil

Mnemonic		Function					
SET	Latched (On)						
Operand	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999					
Operand	-						

Explanations:

When SET instruction is driven, its designated device will be "On" and keep being On both when SET instruction is still being driven or not driven. Use RST instruction to set "Off" the device.

Program Example:

Ladder diagram:			Instructio	n code:	Operation:
. X0 Y0			LD	X0	Loading in contact A of X0
×o vo И	SET	Y1	ANI	Y0	Connecting to contact B of Y0 in series
			SET	Y1	Y1 latched (On)

Mnemonic		Function						
RST		Clear the Contact or Register						
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999	V, Z
Operand	-	\checkmark	\checkmark	\checkmark	~	\checkmark	\checkmark	~

1. When RST instruction is driven, the actions of the designated devices are:

Device	Status
S, Y, M	Coil and contact will be set to "Off".
Т, С	Present value in the timer or counter will be set to "0", and the coil and contact will be set to be "Off".
D, V, Z	The content will be set to "0".

2. If RST instruction is not being executed, the status of the designated device will stay intact.

Program Example:

Ladder diagram:			Instructio	n code:	Operation:
XO			LD	X0	Loading in contact A of X0
RST Y5		RST	Y5	Resetting contact Y5	

Mnemonic	Function		
TMR	16-bit Timer		
Operand	T-K T0 ~ T255, K0 ~ K32,767		
Operand	T-D	T0 ~ T255, D0 ~ D9999	

Explanations:

When TMR instruction is executed, the designated coil of the timer will be On, and the timer will start to time. When the set value in the timer is reached (present \geq set value), The contact will be:

NO (normally open) contact	Open collector
NC (normally closed) contact	Close collector

Program Example:

Remarks:

See the specification of DVP-PM for the range of operand T.

Mnemonic	Function		
CNT	16-bit Counter		
Operand	C-K	C0 ~ C199, K0 ~ K32,767	
Operand	C-D	C0 ~ C199, D0 ~ D9999	

1. When CNT instruction goes from Off to On, the designated counter coil will be driven, and the present value in the counter will plus 1. When the counting reaches the set value (present value = set value), the contact will be:

NO (normally open) contact	Open collector
NC (normally closed) contact	Close collector

2. If there are other counting pulse inputs after the counting reaches its target, the contact and present value will stay intact. Use RST instruction to restart or reset the counting.

Program Example:

Ladder diag	jram:			Instructio	n code:	Operation:
X0				LD	X0	Loading in contact A of X0
	CNT	C20	K100	CNT	C20 K100	Set value in counter C20 as K100

Mnemonic	Function						
DCNT		32-bit Counter					
Operand	C-K	C200 ~ C255, K-2,147,483,648 ~ K2,147,483,647					
Operand	C-D	C200 ~ C255, D0 ~ D9999					

Explanations:

- 1. DCNT is the instruction for enabling the 32-bit counters C200 ~ C255.
- For general-purpose addition/subtraction counter C200 ~ C255, when DCNT instruction goes from Off to On, the present value in the counter will plus 1 (counting up) or minus 1 (counting down) according to the modes set in M1200 ~ M1234.

Program Example:

Ladder diag	Ladder diagram:			Instruction	n code:	Operation:
MO		0.07/		LD	M0	Loading in contact A of M0
	DCNT	C254	K1000	DCNT	C254 K1,000	Set value in counter C254 as K1,000

Mnemonic		Function								
LDP		Rising-Edge Detection Operation								
Operand	X0~X377	Y0~Y377	M0~M4095	S0~S1023	T0~T255	C0~C255	D0~D9999			
Operand	\checkmark	~	~	✓	✓	✓	-			

The method of using LDP instruction is the same as using LD, but the actions of the two instructions differ. LDP saves the current content and store the detected status of the rising edge into the accumulative register.

Program Example:

Ladder diagram:	Instructio	on code:	Operation:
	LDP	X0	Starting X0 rising-edge detection
	AND	X1	Connecting to contact A of X1 in series
	OUT	Y1	Driving Y1 coil

Remarks:

- 1. See the specification of DVP-PM for the range of operands.
- If the status of a designated rising edge is On before DVP-PM is powered, the contact of the rising edge will be TRUE after DVP-PM is powered.

Mnemonic		Function									
LDF		Falling-Edge Detection Operation									
Onerend	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999									
Operand	~	~	~	✓	✓	✓	-				

Explanations:

The method of using LDF instruction is the same as using LD, but the actions of the two instructions differ. LDF saves the current content and store the detected status of the falling edge to the accumulative register.

Program Example:

Ladder diagram:	Instructior	n code:	Operation:
	LDP	X0	Starting X0 falling-edge detection
	AND	X1	Connecting to contact A of X1 in series
	OUT	Y1	Driving Y1 coil

Mnemonic		Function								
ANDP			Rising-Edge Series Connection							
Operand	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D999								
Operand	✓	✓	~	✓	✓	\checkmark	-			

ANDP instruction is used in the series connection of the contacts' rising-edge detection.

Program Example:

Ladder diagram:	Instructior	n code:	Operation:
	LD	X0	Loading in A contact of X0
	ANDP	X1	X1 rising-edge detection in series connection
	OUT	Y1	Driving Y1 coil

Mnemonic		Function									
ANDF		Falling-Edge Series Connection									
Operand	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D999									
Operand	~	\checkmark	~	~	\checkmark	\checkmark	-				

Explanations:

ANDF instruction is used in the series connection of the contacts' falling-edge detection.

Program Example:

Ladder diagram:	Instruction	n code:	Operation:
	LD	X0	Loading in A contact of X0
	ANDF	X1	X1 falling-edge detection in series connection
	OUT	Y1	Driving Y1 coil

Mnemonic		Function								
ORP		Rising-Edge Parallel Connection								
Operand	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999								
Operand	\checkmark	\checkmark	~	\checkmark	\checkmark	\checkmark	-			

Explanations:

ORP instruction is used in the parallel connection of the contacts' rising-edge detection.

Program Example:

Ladder diagram:	Instructio	n code:	Operation:
X0	LD	X0	Loading in A contact of X0
Y1 X1	ORP	X1	X1 rising-edge detection in parallel connection
┃ └─┤ ↑ ┠─┘	OUT	Y1	Driving Y1 coil

Mnemonic		Function						
ORF		Falling-Edge Parallel Connection						
Onevend	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999						
Operand	~	~	~	~	~	~	-	

Explanations:

ORF instruction is used in the parallel connection of the contacts' falling-edge detection.

Program Example:

Ladder diagram:

Mnemonic		Function						
PLS		Rising-Edge Output						
Operand	X0~X377	X0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999						
Operand	-	~	~	-	-	-	-	

Explanations:

When X0 goes from Off to On (rising-edge trigger), PLS instruction will be executed, and M0 will send out pulses for once in 1 scan time.

Program Example:

Ladder diagram	:		Instructio	n code:	Operation:
L X0			LD	X0	Loading in A contact of X0
	PLS	M0	PLS	MO	M0 rising-edge output
M0	SET	Y0	LD	M0	Loading in A contact of M0
I			SET	Y0	Y0 latched (On)

Timing	diagram:
--------	----------

Mnemonic		Function					
PLF		Falling-Edge Output					
Operand	X0~X377	K0~X377 Y0~Y377 M0~M4095 S0~S1023 T0~T255 C0~C255 D0~D9999					
Operand	-	~	~	-	-	-	-

When X0 goes from On to Off (falling-edge trigger), PLF instruction will be executed, and M0 will send out pulses for once in 1 scan time.

Program Example:

Ladder diagram:	:		Instructior	n code:	Operation:
X0			LD	X0	Loading in A contact of X0
	PLF	M0	PLF	МО	M0 falling-edge output
M0	SET	Y0	LD	M0	Loading in A contact of M0
I			SET	Y0	Y0 latched (On)
Timing diagram:					
X0					
M01	scan time		L		
Y0					

Mnemonic	Function
NOP	No Operation
Operand	N/A

Explanations:

NOP instruction does not conduct any operations in the program; therefore, after the execution of NOP, the existing logical operational result will be kept. If you want to delete a certain instruction without altering the length of the program, you can use NOP instruction.

Program Example:

Ladder diagram:	Instructior	n code:	Operation:
NOP instruction will be omitted in the ladder diagram.	LD	X0	Loading in B contact of X0
X0	NOP		No operation
	OUT	Y1	Driving Y1 coil

Mnemonic	Function
Р	Pointer
Operand	P0 ~ P255

Explanations:

Pointer P is used in API 00 CJ, API 01 CALL, API 256 CJN and API 257 JMP instructions. The use of P does not need to start from No. 0, and the No. of P cannot be repeated; otherwise, unexpected errors may occur

Program Example:

Ladder diagram:

Instructior	n code:	Operation:
LD	X0	Loading in contact A of X0
CJ	P10	From instruction CJ to P10
:		
P10		Pointer P10
LD	X1	Loading in A contact of X1
OUT	Y1	Driving Y1 coil

Mnemonic	Function				
0	Subroutine Pointer				
Operand	erand Sequential control program pointer: O100 Motion control program pointer: OX0 ~ OX99				

Explanations:

- O100 is the start pointer of general main control programs. You need the main control program to activate OX0 ~ OX99 motion subroutines. Execute M102 instruction to end O100 main control program.
- OX0 ~ OX99 are the pointers for 100 motion control subroutines and can be compiled by the programming engineer for different motion routes. Register D1868 (CR72) stores the No. of subroutine, in which b14 or b15 has to be "1", and finally b12 of D1846 (CR50) will activate the program. See the example below. Example: To activate OX99 motion subroutine, follow the two steps below:
 - (1) Set up the No. to be activated: D1868 = H'4063 (or H'8063, H'C063)
 - (2) Enable OX99: D1846 = H'1000

3. M2 is the instruction to end OX0 \sim OX99 motion subroutines.

Program Example:

In the program example below, N0000 ~ N0100 are O100 main control program; N0102 ~ N0304 are OX50 motion subroutines.

No. of row	Program
N000	0100
N001	LD M1000
:	:
:	:
N0099	OUT Y30
N0100	M102
N0101	NOP
N0102	OX50
N0103	DRVZ
N0104	ABS
:	:
:	:
N0304	M2

Mnemonic	Function
М	M-Code Instruction
Operand	M0 ~ M65535

Explanations:

- M-Code instruction is used in motion instruction. When M-Code is executed, first store the No. of M-Code into D1703. When M-Code is enabled, M1794 will be "On" automatically. If M1744 is set "On", M1794 will become "Off", indicating that the execution of M-Code is completed.
- Execute M-Code to control Y output. Set the high byte of D1873 as "1" to enable the output. The low byte is the start No. of Y output. When M1794 is "On" (i.e. starting to execute M-Code), the Y output No. corresponding to the setting in D1873 will be "On". When M1794 is "Off", the Y will be "Off". See Program Example 1.
- 3. M-Code generally is used in the sections of OX00 ~ OX00 subroutines.
- 4. There are two modes for M-Code instruction: "after" mode and "with" mode. The difference between the two modes is the timing of enabling M-Code instruction. See Program Example 2.
- 5. When the execution of M-Code is completed, M1794 will turn from On to Off in two ways:
 - (1) Set M1794 to be "0" directly to reset the action.
 - (2) Set M1744 to be "On" directly.

Program Example 1:

- How to design the procedure when you want to display the current No. of M-Code being executed in device Y when M6 is executed:
 - (1) First set the parameter in D1873 as follow:

MOV H0 D1873 N: Start No. of Y output 0: Disable 1: Enable

(2) Execute M-Code (M6), and DVP-PM will automatically write H'6 (binary 1010) into D1703 and The value in

D1703 into K2YN. N is the start No. of Y output.

MOV H6 D1703

MOV D1703 K2 Y_N

When the M-Codes of the two programs above are enabled, the program will run automatically. Therefore, you do not need to compile the program

(3) When N in D1873 is set as the settings in the table below, see also the table below for the output status of $K2Y_N$.

D1873	Y7	Y6	Y5	Y4	Y3	Y2	Y1	Y0					
H00	No Y output												
H0100	0	0	0	0	1	0	1	0					
H0101	0	0	0	1	0	1	0	-					
H0102	0	0	1	0	1	0	-	-					
H0103	0	1	0	1	0	-	-	-					
•					•								
· ·													

Program Example 2:

1. "after" mode: Only M-Code instruction in a single row of the program.

The timing diagram:

When LIN instruction is completed, M-Code (M100) will be enabled automatically. M1794 will be On automatically as well. To stop M100, set On M1744. If you need to re-enable M-Code, all you have to do is reset and re-enable M-Code in the program.

2. "with" mode: Place M-Code instruction at the end of the motion instruction.

LIN XKK500 Y300 F5000 M100

The timing diagram:

When LIN instruction is triggered, M-Code (M100) will be enabled automatically. M1794 will be On automatically as well. Set On M1744 to stop M100. If you need to re-enable M-Code, you have to wait until the action of LIN instruction is completed and reset the parameter, and next trigger M-Code by the program design.

Program Example 3:

N0100 and N0301 are special instruction for M-Code. N0105 = M-Code "with" mode; N0250 = M-Code "after" mode.

No. of row	Program
N000	O100
N001	LD M1000
:	:
:	:
N0099	OUT Y30
N0100	M102
N0101	NOP
N0102	OX50
N0103	DRVZ
N0104	ABS
N0105	DRV XD10 FXD12 M20
:	:
N0250	M08
:	:
N0304	M2

Remarks:

There are two special designated methods of using M-Code: 1) M102 for ending O100 main program; 2) M2 for ending OX0 ~ OX99 motion subroutines. Therefore, please avoid using M02 and M102 when using M-Codes.

MEMO

5.1 List of Instructions

Category	API	Mnemonic		Р	Function	STE	EPS	Page
Subgory		16-bit	32-bit	instruction		16-bit	32-bit	i uge
	00	CJ	-	✓	Conditional Jump	3	-	5-12
ontro	01	CALL	-	✓	Call Subroutine	3	-	5-15
Loop Control	02	SRET	-	-	Subroutine Return	1	-	5-15
doo-	08	RPT	-	-	Repetition Start (only 1 layer)	3	-	5-17
	09	RPE	-	-	Repetition End	1	-	5-17
Ē	10	CMP	DCMP	✓	Compare	7	9	5-19
Transmission Comparison	11	ZCP	DZCP	✓	Zone Compare	9	12	5-20
smi Ipal	12	MOV	DMOV	✓	Move	5	6	5-21
ran Con	18	BCD	DBCD	✓	Binary Coded Decimal	5	5	5-22
F °	19	BIN	DBIN	✓	Binary	5	5	5-23
	20	ADD	DADD	✓	Addition	7	9	5-24
Four Arithmetic Operation	21	SUB	DSUB	✓	Subtraction	7	9	5-26
	22	MUL	DMUL	✓	Multiplication	7	9	5-28
ope	23	DIV	DDIV	✓	Division	7	9	5-29
tic (24	INC	DINC	✓	Increment	3	3	5-30
emr	25	DEC	DDEC	~	Decrement	3	3	5-31
Arith	26	WAND	DWAND	✓	Logical Word AND	7	9	5-32
our /	27	WOR	DWOR	✓	Logical Word OR	7	9	5-33
Ĕ	28	WXOR	DWXOR	\checkmark	Logical Exclusive OR	7	9	5-34
	29	NEG	DNEG	✓	2's Complement (Negative)	3	3	5-35
Data	40	ZRST	-	~	Zone Reset	5	-	5-37
	49	-	DFLT	~	Floating Point	-	6	5-38
	78	FROM	DFROM	✓	Read CR Data in Special Modules	9	12	5-40
I/O	79	ТО	DTO	~	Write CR Data into Special Modules	9	13	5-41
	89	PLS	-	-	Rising-Edge Output	3	-	4-11
	90	LDP	-	-	Rising-Edge Detection Operation	3	-	4-9
S	91	LDF	-	-	Falling-Edge Detection Operation	3	-	4-9
stion	92	ANDP	-	-	Rising-Edge Series Connection	3	-	4-10
itruc	93	ANDF	-	-	Falling-Edge Series Connection	3	-	4-10
sul	94	ORP	-	-	Rising-Edge Parallel Connection	3	-	4-10
Basic Instruction	95	ORF	-	-	Falling-Edge Parallel Connection	3	-	4-11
ä	96	TMR	-	-	16-bit Timer	5	-	4-7
	97	CNT	DCNT	-	16-bit/32-bit Counter	5	6	4-8
	99	PLF	-	-	Falling-Edge Output	3	-	4-12
	100	MODRD	-	-	Read Modbus Data	7	-	5-44
Communi-	101	MODWR	-	-	Write Modbus Data	7	-	5-48
cations ⊂	110	-	DECMP	✓	Floating Point Compare	7	9	5-53
atior	111	-	DEZCP	✓	Floating Point Zone Compare	9	12	5-54
peri	116	-	DRAD	✓	Angle→Radian	-	6	5-55
at O	117	-	DDEG	✓	Radian→Angle	-	6	5-56
oir	120	-	DEADD	✓	Floating Point Addition	7	9	5-57
Floating Point Operation	121	-	DESUB	✓	Floating Point Subtraction	7	9	5-58
oati	122	-	DEMUL	✓	Floating Point Multiplication	7	9	5-59
Ē	123	-	DEDIV	✓	Floating Point Division	7	9	5-60
		I	1 2. 7	l		,	Ŭ	5.00

5 Categories and Use of Basic Application Instructions

0.1		Mne	monic	Р		ST	EPS	Paga
Category	API	16-bit 32-bit		instruction	Function	16-bit	32-bit	Page
	124	-	DEXP	✓	Exponent of Binary Floating Point	-	6	5-61
	125	-	DLN	✓	Natural Logarithm of Binary Floating Point	-	6	5-62
	126	-	DLOG	✓	Logarithm of Binary Floating Point	-	9	5-63
	127	-	DESQR	✓	Floating Point Square Root	5	6	5-64
	128	-	DPOW	✓	Floating Point Power Operation	-	9	5-65
	129	-	DINT	✓	Float to Integer	-	6	5-67
	130	-	DSIN	✓	Sine	5	6	5-68
	131	-	DCOS	✓	Cosine	5	6	5-70
	132	-	DTAN	✓	Tangent	5	6	5-72
	133	-	DASIN	✓	Arc Sine	-	6	5-74
	134	-	DACOS	✓	Arc Cosine	-	6	5-75
	135	-	DATAN	✓	Art Tangent	-	6	5-76
	136	-	DSINH	✓	Hyperbolic Sine	-	6	5-77
	137	-	DCOSH	✓	Hyperbolic Cosine	-	6	5-78
	138	-	DTANH	✓	Hyperbolic Tangent	-	6	5-79
	215	LD&	DLD&	-	S1 & S2	5	7	5-80
-	216		DLD	-	S1 S2	5	7	5-80
gic	217	LD^	DLD^	-	S1 ^ S2	5	7	5-80
e Lo	218	AND&	DAND&	-	S1 & S2	5	7	5-81
∫yp6 ratio	219	AND	DAND	-	S1 S2	5	7	5-81
Contact ⁻ Ope	220	AND [^]	DAND [^]	-	S1 ^ S2	5	7	5-81
	221	OR&	DOR&	_	S1 & S2	5	7	5-82
	222	OR	DOR	-	S1 S2	5	7	5-82
	223	OR [^]	DOR [^]		S1 ^ S2	5	7	5-82
	224	LD=	DLD=	-	S1 = S2	5	7	5-83
	225	LD= LD>	DLD=	_	S1 > S2	5	7	5-83
	226	LD>	DLD>	-	S1 < S2	5	7	5-83
	228	LD< LD<>	DLD<	-	S1 ≤ S2 S1 ≠ S2	5	7	5-83
uo	220	LD<>	DLD<>		$S1 \neq S2$ $S1 \leq S2$		7	
uctio			-	-		5		5-83
nstri	230 232	LD>=	DLD>=	-	$S1 \ge S2$	5	7 7	5-83
n Ir		AND=	DAND=	-	S1 = S2	5		5-84
arisc	233	AND>	DAND>	-	S1 > S2	5	7	5-84
зdш	234	AND<	DAND<	-	S1 < S2	5	7	5-84
Contact Type Comparison Instruction	236	AND<>	DAND<>	-	S1 ≠ S2	5	7	5-84
ype	237	AND<=	DAND<=	-	S1 ≤ S2	5	7	5-84
ct T∫	238	AND>=	DAND>=	-	S1 ≧ S2	5	7	5-84
ntac	240	OR=	DOR=	-	S1 = S2	5	7	5-85
Co	241	OR>	DOR>	-	S1 > S2	5	7	5-85
	242	OR<	DOR<	-	S1 < S2	5	7	5-85
	244	OR<>	DOR<>	-	S1 ≠ S2	5	7	5-85
	245	OR<=	DOR<=	-	$S1 \leq S2$	5	7	5-85
	246	OR>=	DOR>=	-	$S1 \ge S2$	5	7	5-85
S	256	CJN	-	✓	Negated Conditional Jump	3	-	5-86
er tion	257	JMP	-	-	Unconditional Jump	3	-	5-87
Other Instructions	258	BRET	-	-	Return to Bus Line	1	-	5-88
) Inst	259	MMOV	-	✓	Manifying Transfer with Sign Extension	6	-	5-89
	260	RMOV	-	✓	Reducing Transfer with Sign Holding	6	-	5-90

5.2 Composition of Application Instruction

- An application instruction has two parts: the instruction and operands
 Instruction: The function of the instruction
 Operands: The device for processing the operation of the instruction
 An application instruction usually occupies 1 step, and 1 operand occupies 2 or 3 steps depending on the instruction is a 16-bit or 32-bit one.
- Format of an application instruction

- 1 API No.
- Indication of if there is a 16-bit or 32-bit instruction. If there is a 32-bit instruction, the column will be marked with "D".
- 3 Mnemonic of the application instruction
- (4) Indication of if there is a pulse execution type instruction. If there is a pulse instruction, the column will be marked with "P".
- 5 Operands
- 6 Function of the application instruction
- (7) Steps occupied by the 16-bit/32-bit instruction
- (8) Column marked with * and in grey refers to V, Z index register modification is applicable.
- $(\ensuremath{\underline{9}})$ Column marked with * is the device applicable for the operand.
- 10 Device name
- ① Device type
- Input of application instruction:

Some application instructions are only composed of the instruction such as BRET and SRET. However, most application instructions are composed of the instruction part and many operands.

The application instructions represented as API 00 ~ API 260 for DVP-PM and every application instruction has its own mnemonic, e.g. the mnemonic of API 12 is MOV. Therefore, when using the ladder diagram editing software (PMSoft) to input API 12 into the program, you simply need to enter "MOV"; when using the hand-held programming panel (HPP03) to input API 12 into the program, enter the API No. "12".

The different application instructions designate different operands. Take MOV instruction for example:

MOV instruction is to move the operand designated in **S** to the operand designated in **D**.

Length of operand (16-bit instruction or 32-bit instruction)

The length of an operand can be 16-bit or 32-bit depending on the contents in the operand. The 32-bit instruction is indicated by adding a "D" before the 16-bit instruction.

16 bits MOV instruction

X1

When X0 = On, K10 will be sent to D10.

When X1 = On, the content in (D11, D10) will be sent to (D21, D20).

Continuous-execution instruction and pulse-execution instruction

D10

D20

DMOV

Continuous-execution and pulse-execution are two types of execution for an application instruction. The pulse-execution instructions are used more because it can decrease the period of program scan. And, if the continuous-execution instruction is not working, the required execution time will be shorter. Thus, some instructions are mostly used as pulse execution type, e.g. INC, DEC, and the kind of displacement instruction. Instructions marked with a "P" following the mnemonic are pulse execution instruction.

Pulse-execution instruction

When X0 goes from Off to On, MOVP instruction will be executed once, and the instruction will not be executed again in the scan period.

Continuous-execution instruction

In every scan period when X1 = On, MOV instruction will be executed once.

In the two figures, when X0, X1 = Off, the instruction will not be executed, and the content in operand **D** will remain unchanged.

- Designation of operands
 - 1. Bit devices X, Y, M and S can be combined into word device to store values and data for operations in the form of KnX, KnY, KnM and KnS in an application instruction.
 - 2. Data register D, time T, counter C and index register V, Z are designated by general operands.
 - 3. A data register is usually in 16-bit, i.e. of the length of 1 register D. A designated 32-bit data register refers to 2 consecutive register Ds.
 - If an operand of a 32-bit instruction designates D0, the 32-bit data register composed of (D1, D0) will be occupied. D1 is the higher 16-bit; D0 is the lower 16-bit. The same rule also apply to timer T and 16-bit counters C0 ~ C199.
 - 5. When the 32-bit counters C200 ~ C255 are used as data registers, they can only be designated by the operands of 32-bit instructions.
- Format of operand
 - 1. X, Y, M and S can only On/Off a single point and are defined as bit devices.

2. 16-bit (or 32-bit) devices T, C, D and V, Z are defined as word devices.

D10

You can place Kn (n = 1 refers to 4 bits. For 16-bit instruction, n = K1 ~ K4; for 32-bit instructions, n = K1 ~ K8) before bit devices X, Y, M and S to make it a word device for performing word-device operations. For example, K2M0 referes to 8 bits, M0 ~ M7.

When X0 = On, the contents in M0 \sim M7 will be moved to b0 \sim b7 in D19, and b8 \sim b15 will be set as "0".

0~268,435,455

-2,147,483,648 ~ +2,147,483,647

• Data processing of word devices combined from bit devices

	16-bit instruction		32-bit instruction				
Designated value	e: K-32,768 ~ K32,767	Designated value:	Designated value: K-2,147,483,648 ~ K2,147,483,647				
Values for desigr	nated K1 ~ K4	Values for designa	ted K1 ~ K8				
K1 (4 bits)	0 ~ 15	K1 (4 bits)	0 ~ 15				
K2 (8 bits)	0 ~ 255	K2 (8 bits)	0 ~ 255				
K3 (12 bits)	0 ~ 4,095	K3 (12 bits)	0 ~ 4,095				
K4 (16 bits)	-32,768 ~ +32,767	K4 (16 bits)	0 ~ 65,535				
<u>.</u>	÷	K5 (20 bits)	0 ~ 1,048,575				
		K6 (24 bits)	0 ~ 167,772,165				

Flags

The flags listed below are for indicating the operational result of the application instruction.

M1968: zero flag M1969: borrow flag M1970: carry flag All flags will turn On or Off according to the operational result of an instruction. For example, the execution result of operation instruction ADD/SUB/MUL/DIV in the sections of O100 ~ M102 main control programs will affect the status of M1968 ~ M1970. When the instruction is not executed, the On/Off status of the flag will be held. The status of the four flags relates to many instructions. See explanations on the relevant instructions for more details.

K7 (28 bits)

K8 (32 bits)

5.3 Handling of Numeric Values

- Devices only with On/Off status are called "bit devices", e.g. X, Y, M and S. Devices used exclusively for storing numeric values are called "word devices", e.g. T, C, D, V and Z. Bit device plus a specific bit device (place a digit before the bit device in Kn) can be used in the operand of an application instruction in the form of numeric value.
- n = K1 ~ K4 for a 16-bit value; n = K1 ~ K8 for a 32-bit value. For example, K2M0 refers to an 8-bit value composed of M0 ~ M7.

- K1M0, K2M0 and K3M0 are transmitted to 16-bit registers, and the vacant high bits will be filled in "0". The same rule can be applied when K1M0, K2M0, K3M0, K4M0, K5M0, K6M0 and K7M0 are transmitted to 32-bit registers, and the vacant high bits will be filled in "0".
- In the 16-bit (or 32-bit) operation, if the contents of the operand are designated as bit devices K1 ~ K3 (or K4 ~ K7), the vacant high bits will be regarded as "0". Therefore, the operation is a positive-value one.

The BCD value composed of X4 \sim X13 will be converted to BIN value and sent to D0.

- You can choose any No. for bit devices, but please make the 1s place of X and Y "0", e.g. X0, X10, X20, ...Y0, Y10..., and the 1s place of M and S "8's multiple" ("0" is still the best choice), e.g. M0, M10, M20....
- Designating continuous device No.

Take data register D for example, continuous D refers to D0, D1, D2, D3, D4...

For bit devices with specifically designated digit, continuous No. refers to:

K1X0	K1X4	K1X10	K1X14
K2Y0	K2Y10	K2Y20	Y2X30
K3M0	K3M12	K3M24	K3M36
K4S0	K4S16	K4S32	K4S48

Please follow the No. in the table and do not skip No. in case confusion may occur. In addition, if you use K4Y0 in the 32-bit operation, the higher 16 bits will be regarded as "0". For 32-bit data, please use K8Y0. The operations in DVP-PM are conducted in BIN integers. When the integer performs division, e.g. $40 \div 3 = 13$, the remainder is 1. When the integer performs square root operations, the decimal point will be left out. Use decimal point operation instructions to obtain the decimal point.

Application instructions relevant to decimal point:

API 110 (DECMP)	API 111 (DEZCP)	API 116 (DRAD)	API 117 (DDEG)
API 120 (DEADD)	API 121 (DESUB)	API 122 (DEMUL)	API 123 (DEDIV)
API 124 (DEXP)	API 125 (DLN)	API 126 (DLOG)	API 127 (DESQR)
API 128 (DPOW)	API 130 (DSIN)	API 131 (DCOS)	API 132 (DTAN)
API 133 (DASIN)	API 134 (DACOS)	API 135(DATAN)	API 136 (DSINH)
API 137 (DCOSH)	API 138 (DTANH)		

Binary Floating Point

DVP-PM presents floating points in 32 bits and adopts the IEEE754 standard:

 $1^{S} \times 2^{^{EB}} \times 1.M$, in which B = 127

Therefore, the range for the 32-bit floating point is $\pm 2^{-126} \sim \pm 2^{+128}$, i.e. $\pm 1.1755 \times 10^{-38} \sim \pm 3.4028 \times 10^{+38}$.

Example 1: Representing "23" in 32-bit floating point

Step 1: Convert "23" into a binary value: 23.0 = 10111

Step 2: Normalize the binary value: $10111 = 1.0111 \times 2^4$, in which 0111 is mantissa, and 4 is exponent.

Step 3: Obtain the exponent

 $\therefore E - B = 4 \rightarrow E - 127 = 4$ $\therefore E = 131 = 10000011_2$

Step 4: Combine the sign bit, exponent and mantissa into a floating point

0 100**0001**1 011**1000**0000**0000**0000**0000**₂ = 41B80000₁₆

Example 2: Representing "-23.0" into 32-bit floating point

The steps required are the same as those in Example 1. The only difference is user have to alter the sign bit into "1".

DVP-PM uses registers of 2 continuous No. to combine into a 32-bit floating point. For example, we use registers (D1, D0) for storing a binary floating point as below:

Decimal Floating Point

- Since the binary floating point is not very user-friendly, we can convert it into a decimal floating point for use.
 Please be noted that the decimal point operation in DVP-PM is still in binary floating point.
- The decimal floating point is represented by 2 continuous registers. The register of smaller No. is for the constant while the register of bigger No. for the exponent.

Example: Storing a decimal floating point in register (D1, D0)

Decimal floating point = [constant D0] x $10^{[exponent D1]}$

Constant D0 = ±1,000 ~ ±9,999

Exponent D1 = -41 ~ +35

The constant 100 does not exist in D0 due to 100 is represented as $1,000 \times 10^{-1}$. The range of decimal floating point is $\pm 1,175 \times 10^{-41} \sim \pm 3,402 \times 10^{+35}$.

The decimal floating point can be used in the following instructions:
 DEBCD: Converting binary floating point into decimal floating point
 DEBIN: Converting decimal floating point into binary floating point

- In O100 ~ M102 main control programs, when using ADD/SUB/MUL/DIV instructions, the execution result will affect the status of M1968 ~ M1970. See below for zero flag (M1968), borrow flag (M1970), carry flag (M1969) and their corresponding status to floating point operation instructions:
 - Zero flag: M1968 = On if the operational result is "0".
 - Borrow flag: M1970 = On if the operational result exceeds the minimum unit.
 - Carry flag: M1969 = On if the absolute value of the operational result exceeds the range of use.

5.4 V, Z Index Register Modification

The index registers are 16-bit registers. V is 16-bit register, and Z is 32-bit register. In DVP-PM, there are V0 \sim V7 and Z0 \sim Z7, totaling 16 points.

V is 16-bit data register, can be read and written. If you need a 32-bit register, you have to designate Z.

See the diagram on the left hand side. V, Z index register modification refers to the content in the operand changes with the contents in V and Z.

For example, Z0 = 8 and K20@Z0 represents constant K28 (20 + 8). When the condition is true, constant K28 will be transmitted to register D24.

Devices modifiable in DVP-PM: P, I, X, Y, M, S, K, H, KnX, KnY, KnM, KnS, T, C, D.

V and Z can modify the devices listed above but cannot modify themselves and Kn. K4M0Z0 is valid and K0Z0M0is invalid. Grey columns in the table of operand at the beginning page of each application instruction indicate the operands modifiable by V and Z.

If you need to modify device P, I, X, Y, M, S, KnX, KnY, KnM, KnS, T, C and D by V and Z, you have to designate V or Z.

When you use the instruction mode in PMSoft to modify constant K and H, you have to use @, for example, "MOV K10@Z0 D0V0".

5.5 Instruction Index

Sorted by alphabetic order:

Catagon	ΑΡΙ	Mne	monic	Р	Function	STE	EPS	Dogo
Category	AFI	16-bit	32-bit	Instruction	Function	16-bit	32-bit	Page
	20	ADD	DADD	✓	Addition	7	9	5-24
	92	ANDP	-	-	Rising-Edge Series Connection	3	-	4-10
	93	ANDF	-	-	Falling-Edge Series Connection	3	-	4-10
	133	-	DASIN	✓	Arc Sine	-	6	5-74
	134	-	DACOS	✓	Arc Cosine	-	6	5-75
	135	-	DATAN	✓	Arc Tangent	-	6	5-76
	218	AND&	DAND&	-	S1 & S2	5	7	5-81
А	219	AND	DAND	-	S1 S2	5	7	5-81
	220	AND^	DAND^	-	S1 ^ S2	5	7	5-81
	232	AND=	DAND=	-	S1 = S2	5	7	5-84
	233	AND>	DAND>	-	S1 > S2	5	7	5-84
	234	AND<	DAND<	-	S1 < S2	5	7	5-84
	236	AND<>	DAND<>	-	S1 ≠ S2	5	7	5-84
	237	AND<=	DAND<=	-	S1 ≦ S2	5	7	5-84
	238	AND>=	DAND>=	-	$S1 \ge S2$	5	7	5-84
	18	BCD	DBCD	✓	Binary Coded Decimal	5	5	5-22
В	19	BIN	DBIN	✓	Binary	5	5	5-23
	258	BRET	-	-	Return to Bus Line	1	-	5-88
	00	CJ	-	✓	Conditional Jump	3	-	5-12
	01	CALL	-	✓	Call Subroutine	3	-	5-15
	10	CMP	DCMP	✓	Compare	7	9	5-19
С	97	CNT	DCNT	-	16-bit/32-bit Counter	5	6	4-8
	131	-	DCOS	✓	Cosine	5	6	5-70
	137	-	DCOSH	✓	Hyperbolic Cosine	-	6	5-78
	256	CJN	-	✓	Negated Conditional Jump	3	-	5-86
	23	DIV	DDIV	✓	Division	7	9	5-29
D	25	DEC	DDEC	✓	Decrement	3	3	5-31
	117	-	DDEG	✓	Radian \rightarrow Angle	-	6	5-56
	110	-	DECMP	✓	Floating Point Compare	7	9	5-53
	111	-	DEZCP	✓	Floating Point Zone Compare	9	12	5-54
	120	-	DEADD	✓	Floating Point Addition	7	9	5-57
_	121	-	DESUB	✓	Floating Point Subtraction	7	9	5-58
E	122	-	DEMUL	✓	Floating Point Multiplication	7	9	5-59
	123	-	DEDIV	✓	Floating Point Division	7	9	5-60
	124	-	DEXP	✓	Exponent of Binary Floating Point	-	6	5-61
	127	-	DESQR	✓	Floating Point Square Root	5	6	5-64
_	49	-	DFLT	✓	Floating Point	-	6	5-38
F	78	FROM	DFROM	✓	Read CR Data in Special Modules	9	12	5-40
	24	INC	DINC	✓	Increment	3	3	5-30
I	129	-	DINT	✓	Float to Integer	-	6	5-67
J	257	JMP	-	-	Unconditional Jump	3	-	5-87

5 Categories and Use of Basic Application Instructions

Cotorer	ΑΡΙ	Mne	monic	Р	P		EPS	Paga
Category	API	16-bit	32-bit	Instruction	Function	16-bit	32-bit	Page
	90	LDP	-	-	Rising-Edge Detection Operation	3	-	4-9
-	91	LDF	-	-	Falling-Edge Detection Operation	3	-	4-91
ľ	125	-	DLN	✓	Natural Logarithm of Binary Floating Point	-	6	5-62
ľ	126	-	DLOG	✓	Logarithm of Binary Floating Point	-	9	5-63
ľ	215	LD&	DLD&	-	S1 & S2	5	7	5-80
	216	LD	DLD	-	S1 S2	5	7	5-80
L	217	LD^	DLD^	-	S1 ^ S2	5	7	5-80
ľ	224	LD=	DLD=	-	S1 = S2	5	7	5-83
-	225	LD>	DLD>	-	S1 > S2	5	7	5-83
-	226	LD<	DLD<	-	S1 < S2	5	7	5-83
-	228	LD<>	DLD<>	-	S1 ≠ S2	5	7	5-83
-	229	LD<=	DLD<=	-	S1 ≦ S2	5	7	5-83
	230	LD>=	DLD>=	-	$S1 \ge S2$	5	7	5-83
	12	MOV	DMOV	✓	Move	5	6	5-21
-	22	MUL	DMUL	✓	Multiplication	7	9	5-28
М	100	MODRD	-	-	Read Modbus Data	7	-	5-44
-	101	MODWR	-	-	Write Modbus Data	7	-	5-48
-	259	MMOV	-	✓	Magnifying Transfer with Sign Extension	6	-	5-89
Ν	29	NEG	DNEG	✓	2's Complement (Negative)	3	3	5-35
	94	ORP	-	-	Rising-Edge Parallel Connection	3	-	4-10
ŀ	95	ORF	-	-	Falling-Edge Parallel Connection	3	-	4-11
-	221	OR&	DOR&	-	S1 & S2	5	7	5-82
	222	OR	DOR	-	S1 S2	5	7	5-82
-	223	OR^	DOR^	_	S1 ^ S2	5	7	5-82
0	240	OR=	DOR=	-	S1 = S2	5	7	5-85
ŀ	241	OR>	DOR>	-	S1 > S2	5	7	5-85
-	242	OR<	DOR<	-	S1 < S2	5	7	5-85
ŀ	244	OR<>	DOR<>	-	S1 ≠ S2	5	7	5-85
-	245	OR<=	DOR<=	_	S1 ≦ S2	5	7	5-85
-	246	OR>=	DOR>=	_	$S1 \ge S2$	5	7	5-85
	89	PLS	-	_	Rising-Edge Output	3	-	4-11
Р	99	PLF	-	-	Falling-Edge Output	3	-	4-12
-	128	-	DPOW	√	Floating Point Power Operation	-	9	5-65
	08	RPT	-	-	Repetition Start (only 1 layer)	3	-	5-17
-	09	RPE	-	-	Repetition End	1	-	5-17
R	116	-	DRAD	✓	Angle \rightarrow Radian	-	6	5-55
-	260	RMOV	-	✓	Reducing Transfer with Sign Holding	6	-	5-90
	02	SRET	-	_	Subroutine Return	1	-	5-15
-	21	SUB	DSUB	✓	Subtraction	7	9	5-26
S	130		DSIN	√	Sine	5	6	5-68
-	136	-	DSINH	· ✓	Hyperbolic Sine	-	6	5-77
	79	ТО	DTO	· ✓	Write CR Data into Special Modules	9	13	5-41
-	96	TMR	-	-	16-bit Timer	5	-	4-7
Т	132	-	DTAN	- -	Tangent	5	6	
-	132	-	DTAN	· ✓	Hyperbolic Tangent	-	6	5-72
W	26	WAND	DWAND	· ✓	Logical Word AND	7	9	5-32
٧V	20	WOR	DWAND	✓ ✓	Logical Word OR	7	9	5-32
	4 1	WUN	Diron			/	9	5-55

5 Categories and Use of Basic Application Instructions

Category		API Mnemonic P Function	Eurotion	STEPS		Paga		
Calegory	16-bit 32-bit Instruction	Function	16-bit	32-bit	Page			
	28	WXOR	DWXOR	~	Logical Exclusive OR	7	9	5-34
7	11	ZCP	DZCP	~	Zone Compare	9	12	5-20
2	40	ZRST	-	~	Zone Reset	5	-	5-37

5.6 Application Instructions

API	N	Inemoni	С	Operands	Function
00		CJ	Ρ	9	Conditional Jump
0	ОР			Range	Program Steps
S		P0 ~ F	255		CJ, CJP: 3 steps

Operands:

 ${\bf S}:$ The destination pointer of conditional jump

Explanations:

- 1. Operand **S** can designate P0 ~ P255.
- 2. P cannot be modified by index register V, Z.
- 3. When you do not want to execute a particular part of O100 main program in order to shorten the scan time and execute dual outputs, CJ instruction or CJP instruction can be adopted.
- 4. When the program designated by pointer P is prior to CJ instruction, WDT time-out will occur, and O100 main program will stop running. Please use it carefully.
- 5. CJ instruction can designate the same pointer P repeatedly. However, CJ and CALL cannot designate the same pointer P; otherwise errors may occur.
- 6. Actions of all devices while conditional jump is being executed.
 - a) Y, M and S remain their previous status before the conditional jump takes place.
 - b) The 10ms timer which is executing stops.
 - c) General-purpose counter will stop counting, and general application instruction will not be executed.
 - d) If the "reset instruction" of the timer is executed before the conditional jump, the device will be in the reset status while conditional jumping is being executed.

Program Example 1:

- When X0 = On, the program will automatically jump from address 0 to N (the designated label P1) and keep its execution. The addresses between 0 and N will not be executed.
- When X0 = Off, as an ordinary program, the program will keep on executing from address 0. CJ instruction will not be executed at this time.

Program Example 2:

1. The status of each device:
5 Categories and Use of Basic Application Instructions

Device	Contact status before CJ is executed	Contact status when CJ is being executed	Output coil status when CJ is being executed
Y, M, S	M1, M2, M3 Off	M1, M2, M3 Off → On	Y1 ^{*1} , M20, S1 Off
f, IVI, S	M1, M2, M3 On	M1, M2, M3 On → Off	Y1 ^{*1} , M20, S1 On
	M4 Off	M4 Off → On	Timer T0 is not enabled.
	M4 On	M4 On → Off	Time T0 immediately stops and is latched. M0 On → Off. T0 is reset as 0.
10ms Timer ^{*2}	M6 Off	M6 Off → On	Timer T240 is not enabled.
	M6 On	M6 On → Off	Time T240 immediately stops and is latched. M0 On → Off. T240 is reset as 0.
	M7, M10 Off	M10 On/Off trigger	Counter C0 does not count.
C0 ~ C234	M7 Off, M10 On/Off trigger	M10 On/Off trigger	Counter C0 stops counting and stays latched. After M0 goes Off, C0 will resume its counting.
	M11 Off	M11 Off → On	Application instructions are not executed.
Application instruction	M11 On	M11 On → Off	The skipped application instructions are not executed, but API 53 ~ 59, API 157 ~ 159 keep being executed.

*1: Y1 is a dual output. When M0 is Off, M1 will control Y1. When M0 is On, M12 will control Y1.

*2: When the timers used by a subroutine are driven and encounter the execution of CJ instruction, the timing will resume. After the timing target is reached, the output contact of the timer will be On.

2. Y1 is a dual output. When M0 = Off, Y1 is controlled by M1. When M0 = On, Y1 is controlled by M12.

MO			1
	CJ	P0	
M1	(Y1))	
M2	M20		
M3	MZU		
	(S1))	
M4	TMR	Т0	K10
M5 ──	RST	T240]
M6	TMR	T240	K1000
M7 	RST	C0	
M10	CNT	C0	K20
M11	MOV	K3	D0
	P0		
	CJ	P63	
M12	<u>Y1</u>	•	
	P63		
M13	RST	T240	
	RST	C0	
	RST	D0	

API	N	Inemonio	2	Operands	Function						
01		CALL	Ρ	6	Call Subroutine						
0	Ρ			Range	Program Steps						
	ũ	P0 ~ P2	255		CALL, CALLP: 3 steps						

S: The pointer of call subroutine

Explanations:

- 1. Operand **S** can designate P0 ~ P255.
- 2. P cannot be modified by index register V, Z.
- 3. Please compile the subroutine designated by the pointer after M102, M2 and SRET instructions.
- 4. The number of pointer P, when used by CALL, cannot be the same as the number designated by CJ, CJN and JMP instructions.
- 5. If only CALL instruction is in use, it can call subroutines of the same pointer number with no limits on the times.
- 6. You cannot use CALL to call other subroutines in a subroutine.

ΑΡΙ	Mnemonic	Funct	ion
02	SRET	Subroutine	Return
OP		Descriptions	Program Steps

Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. The subroutine will return to O100 main program from SRET adter the termination of subroutine and exxecute the instruction next to CALL instruction.

Program Example 1:

When X0 = On, CALL instruction will be executed, and the program will jump to the subroutine designated by P2. When SRET instruction is executed, the program will return to address 24 and continue its execution.

Program Example 2:

1. When X10 goes from Off to On, its rising-edge trigger will execute CALL P10 instruction, and the program will

jump to the subroutine designated by P10.

- 2. When X11 is On, CALL P11 will be executed, and the program will jump to the subroutine designated by P11.
- 3. When X12 is On, CALL P12 will be executed, and the program will jump to the subroutine designated by P12.
- 4. When X13 is On, CALL P13 will be executed, and the program will jump to the subroutine designated by P13.
- When X14 is On, CALL P14 will be executed, and the program will jump to the subroutine designated by P14.
 When SRET is executed, the program will return to the previous P^{*} subroutine and continue its execution.
- 6. After SRET instruction is executed in P10 subroutine, the execution will return to the main program.

API	ľ	Mne	mon	ic		Ор	era	nds									Function		
08		F	RPT			(S)		Repetition Start									
	ype	В	it De	evice	s				W	ord l	Devic	es					Program Steps		
OP 🛸		Х	Υ	Μ	S	K H KnX Kn				KnM	KnS	Т	С	D	٧	Ζ	RPT: 3 steps		
S						* * * *				*	*	*	*	*	*				

S: The number of repeated nested loops

Explanations:

- 1. No contact to drive the instruction is required.
- 2. RPT instruction supports V device.
- 3. See the specification of DVP-PM for its range of use.
- 4. The nested RPT ~ RPE loop can only be 1 layer. Errors will occur when the number of layers is more than 1.

ΑΡΙ	Mnemonic	Functio	n
09	RPE	Repetition	End
OP		Descriptions	Program Steps
N/A	N III		RPE: 1 steps

Explanations:

- 1. No operand. No contact to drive the instruction is required.
- RPT instruction designates RPT ~ RPE loops to execute back and forth for N times before they escape for the next execution.
- 3. N = K1 ~ K32,767. N is regarded as K1 when N \leq K1.
- 4. When RPT ~ RPE loop are not executed, you can use CJ instruction to escape the loop.
- 5. Errors will occur when
 - RPE instruction is placed before RPT instruction.
 - RPT instruction exists, but RPE instruction does not exist.
 - The numbers of instructions between RPT ~ RPE differ.
- 6. The nested RPT ~ RPE loop can only be 1 layer. Errors will occur when the number of layers is more than 1.

Program Example 1:

If you would like program section A to execute for 3 time, you can use RPT ~ RPE written as follow:

Program Example 2:

When X7 = Off, PLC will execute the program between RPT ~ RPE. When X7 = On, CJ instruction will jump to P6 and skip the program between RPT ~ RPE.

API	ſ	Ine	mon	ic			Ор	eran	ds								Function		
10	D	C	ИР	Ρ		S	D	<u>S2</u>		D Compare									
	Гуре	В	it De	vice	s				W	ord l	Devic	es					Program Steps		
OP \		Х	Υ	М	S	Κ	K H KnX Kr			KnM	KnS	Т	С	D	V	Ζ	CMP, CMPP: 7 steps		
S	1					* * * * *			*	*	*	*	*	*	*	DCMP, DCMPP: 9 steps			
S	2					* * * * *			*	*	*	*	*	*	*				
D			*	*	*														

S₁: Comparison value 1 S₂: Comparison value 2 D: Comparison result

Explanations:

- 1. CMP instruction supports V and Z. When CMP is used as 16-bit instruction, Z device cannot be adopted; when CMP is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specification of DVP-PM for its range of use.
- 3. The contents in S_1 and S_2 are compared, and the result will be stored in D.
- 4. **D** will occupy 3 consecutive points.

Program Example:

- 1. Designate device Y0, and operand **D** will automatically occupy Y0, Y1 and Y2.
- 2. When X10 = On, CMP instruction will be executed, and one of Y0, Y1 and Y2 will be On. When X10 = Off, CMP instruction will not be executed, and Y0, Y1 and Y2 will remain in their status before X10 = Off.
- If you need to obtain a comparison result with ≥, ≤ and ≠, make a series/parallel connection between Y0 and Y2.

API		Mnei	mon	ic				Oper	ands	\$							Function
11	D	Z	CP	Ρ		S1 S2 S D											Zone Compare
	Туре	В	it De	vice	s				/ord I	Devid	es					Program Steps	
OP \		Х	Υ	М	S	K H KnX KnY KnM KnS						Т	С	D	V	Ζ	
S	1					*							*	*	*	*	DZCP, DZCPP: 12 steps
S	2					* * * * * *						*	*	*	*	*	
S						* * * * * *						*	*	*	*	*	
D)		*	*	*												

- S_1 : Lower bound of zone comparison S_2 : Upper bound of zone comparison S: Comparison value
- D: Comparison result

Explanations:

- 1. ZCP instruction supports V and Z. When ZCP is used as 16-bit instruction, Z device cannot be adopted; when ZCP is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specification of DVP-PM for its range of use.
- 3. S is compared with S_1 , S_2 , and the result is stored in D.
- 4. The content in S1 should be smaller than the content in S2.
- 5. Operand **D** occupies 3 consecutive devices.

Program Example:

- 1. Designate device M0, and M0, M1 and M2 will be occupied automatically.
- When X0 = On, ZCP instruction will be executed, and one of M0, M1 and M2 will be On. When X0 = Off, ZCP instruction will not be executed, and M0, M1 and M2 will remain their status before X0 = Off.

API		Mne	mon	ic		Op	oera	nds									Function	
12	D	M	VC	F		S	D	Ð		Move								
	Туре	В	it De	evice	es				W	ord l	Devic	es					Program Steps	
OP		Х	Υ	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	٧	Ζ	MOV, MOVP: 5 steps	
S	5					*	*	*	*	*	*	*	*	*	*	*	DMOV, DMOVP: 6 steps	
Г)						*				*	*	*	*	*	*		

S: Source of data D: Destination of data

Explanations:

- 1. MOV instruction supports V and Z. When MOV is used as 16-bit instruction, Z device cannot be adopted; when MOV is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specification of DVP-PM for its range of use.
- 3. When MOV instruction is executed, the content in **S** will be moved directly to **D**. When MOV is not executed, the content in **D** will remain unchanged.
- 4. If the operational result refers to a 32-bit output (e.g. application instruction MUL and so on), you will have to use DMOV instruction to move the data.

Program Example:

- 1. MOV instruction has to be adopted in the moving of 16-bit data.
 - a) When X0 = Off, the content in D10 will remain unchanged. If X0 = On, the value K10 will be moved to data register D10.
 - b) When X1 = Off, the content in D10 will remain unchanged. If X1 = On, the present value in K2M4 will be moved to data register D10.
- 2. DMOV instruction has to be adopted in the moving of 32-bit data.

When X2 = Off, the content in (D31, D30) and (D41, D40) will remain unchanged. If X2 = On, the present value in (D21, D20) will be sent to data register (D31, D30). Meanwhile, the present value in (D51, D50) will be moved to data register (D41, D40).

ΑΡΙ	I	Iner	non	ic		Op	era	nds									Function			
18	D	BC	D	P S D						Binary Coded Decimal										
	Туре	В	it De	vice	es				W	ord I	Devic	es					Program Steps			
OP		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	BCD, BCDP: 5 steps			
5	3							*	*	*	*	*	*	*	*	*	DBCD, DBCDP: 6 steps			
Γ	2						*				*	*	*	*	*	*]			

S: Source of data D: Result of conversion

Explanations:

- 1. BCD instruction supports V and Z. When BCD is used as 16-bit instruction, Z device cannot be adopted; when BCD is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specification of DVP-PM for its range of use.
- 3. Flags: M1811, M1891, M1971 (operational error)
- 4. The content in **S** (BIN value) is converted into BCD value and stored in **D**.
- If the conversion result exceeds the range of 0 ~ 9,999, BCD will not be executed. If the conversion result exceeds the range of 0 ~ 99,999,999, DBCD will not be executed.
- 6. BCD instruction converts the BIN data in the positioning unit into BCD data (7-segment display and so on) to be output to the external device.

Program Example:

When X0 = On, the binary value in D10 will be converted into BCD value, and the 1s digit of the conversion result will be stored in K1Y0 (Y0 ~ Y3, the 4 bit devices).

X0			
	BCD	D10	K1Y0

If D10 = 001E (hex) = 0030 (decimal), the execution result will be: Y0 ~ Y3 = 0000 (BIN).

API	I	Mnei	mon	ic		0	per	ands	;								Function			
19	D	BIN				C	5	Θ)	Binary										
	Туре	ype Bit Devices							W	ord l	Devid	es					Program Steps			
OP		Х	Υ	Μ	S	Κ	K H KnX KnY			KnM	KnS	Т	С	D	٧	Ζ	BIN, BINP: 5 steps			
S	6						* *			*	*	*	*	*	*	*	DBIN, DBINP: 6 steps			
Г)						*			*	*	*	*	*	*	*				

S: Source of data D: Result of conversion

Explanations:

- 1. BIN instruction supports V and Z. When BIN is used as 16-bit instruction, Z device cannot be adopted; when BIN is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. Flags: M1811, M1891, M1971 (operational error)
- 4. The content in \mathbf{S} (BCD value) is converted into BIN value and stored in \mathbf{D} .
- 5. Valid range of **S**: BCD (0 ~ 9,999), DBCD (0 ~ 99,999,999)
- 6. Constant K and H will automatically be converted into BIN format. Thus, they do not need to adopt this instruction.

Program Example:

When X0 = On, the BCD value in K1M0 will be converted into BIN value and stored in D10.

Remarks:

Explanations on BCD and BIN instructions:

- 1. When DVP-PM needs to read an external DIP switch in BCD format, BIN instruction has to be first adopted to convert the read data into BIN value and store the data in DVP-PM.
- 2. When DVP-PM needs to display its stored data by a 7-segment display in BCD format, BCD instruction has to be first adopted to convert the data into BCD value and send the data to the 7-segment display.
- When X0 = On, the BCD value in K4X0 will be converted into BIN value and sent to D100. The BIN value in D100 will then be converted into BCD value and sent to K4Y20.

ΑΡΙ	Mnemonic						0	perai	nds		Function						
20	D ADD P S1 S2 D							Addition									
	Гуре	В	it De	vice	es				W	Devic	es					Program Steps	
OP \	\searrow	Х	Υ	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	ADD, ADDP: 7 steps
S ₁					* * * * *				*	*	*	*	*	*	DADD, DADDP: 9 steps		
S ₂	2					*	* * * *			*	*	*	*	*	*		
D		* *		*	*	*	*	*	*								

 \mathbf{S}_1 : Summand \mathbf{S}_2 : Addend \mathbf{D} : Sum

Explanations:

- 1. ADD instruction supports V and Z. When ADD is used as 16-bit instruction, Z device cannot be adopted; when ADD is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 4. ADD instruction adds up S_1 and S_2 in BIN format and stores the result in D.
- 5. The highest bit is sign bit 0 (+) and 1 (-), which is for algebraic addition, e.g. 3 + (-9) = -6.
- 6. Flag changes in binary addition

In 16-bit BIN addition,

- a) If the operational result = 0, the zero flag will be On.
- b) If the operational result < -32,768, the borrow flag will be On.
- c) If the operational result > 32,767, the carry flag will be On.

In 32-bit BIN addition,

- a) If the operational result = 0, the zero flag will be On.
- b) If the operational result < -2,147,483,648, the borrow flag will be On.
- c) If the operational result > 2,147,483,647, the carry flag will be On.

Program Example 1:

In 16-bit BIN addition:

When X0 = On, the content in D0 will plus the content in D10, and the sum will be stored in D20.

Program Example 2:

In 32-bit BIN addition:

When X1 = On, the content in (D31, D30) will plus the content in (D41, D40), and the sum will be stored in (D51,

D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.

Remarks:

Flags and the positive/negative sign of the values:

ΑΡΙ	ľ	Ine	mon	ic		Operands						Function					
21	D SUB P S1 S2 D						Subtraction										
	Гуре	В	it De	vice	es				W	Devic	es					Program Steps	
OP		Х	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	SUB, SUBP: 7 steps
S ₁	*		*	*	*	*	*	*	*	*	*	*	DSUB, DSUBP: 9 steps				
S	2 * * * * *		*	*	*	*	*	*									
D									*	*	*	*	*	*	*	*	

S ₁ : Minuend	S ₂ : Subtrahend	D: Remainder
---------------------------------	-----------------------------	--------------

Explanations:

- 1. SUB instruction supports V and Z. When SUB is used as 16-bit instruction, Z device cannot be adopted; when SUB is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 4. SUB instruction subtracts $\boldsymbol{S_1}$ and $\boldsymbol{S_2}$ in BIN format and stores the result in $\boldsymbol{D}.$
- 5. The highest bit is sign bit 0 (+) and 1 (-), which is for algebraic subtraction.
- 6. Flag changes in binary subtraction

In 16-bit DIN subtraction,

- a) If the operational result = 0, the zero flag will be On.
- b) If the operational result < -32,768, the borrow flag will be On.
- c) If the operational result > 32,767, the carry flag will be On.

In 32-bit BIN subtraction,

- a) If the operational result = 0, the zero flag will be On.
- b) If the operational result < -2,147,483,648, the borrow flag will be On.
- c) If the operational result > 2,147,483,647, the carry flag will be On.
- 7. For flag operation of SUB instruction and the positive/negative sign of the values, see the explanations in ADD instruction on the pervious page.

Program Example 1:

In 16-bit BIN subtraction:

When X0 = On, the content in D0 will minus the content in D10, and the remainder will be stored in D20.

Program Example 2:

In 32-bit BIN subtraction:

When X1 = On, the content in (D31, D30) will minus the content in (D41, D40), and the remainder will be stored in

(D51, D50). D30, D40 and D50 are low 16-bit data; D31, D41 and D51 are high 16-bit data.

. X1				
	DSUB	D30	D40	D50
''				

API	PI Mnemonic						0	perai	nds		Function						
22	D MUL P S1 S2 D							Multiplication									
	Гуре	pe Bit Devices							W	ord [Devic	es					Program Steps
OP \		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	MUL, MULP: 7 steps
S ₁	1					*	* * * * *				*	*	*	*	*	*	DMUL, DMULP: 9 steps
S	2	* * * * *				*	*	*	*	*	*						
D										*	*	*					

Explanations:

- MUL instruction supports V and Z. When SUB is used as 16-bit instruction, Z device cannot be adopted; when MUL is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- MUL instruction multiplies S₁ by S₂ in BIN format and stores the result in D. Be careful with the positive/negative sign of S₁, S₂ and D when doing 16-bit and 32-bit operations.
- 4. In 16-bit BIN multiplication:

Sign bit = 0 refers to a positive value.

b31 is a sign bit

Sign bit = 1 refers to a negative value.

Program Example:

b31 is a sign bit

The 16-bit D0 is multiplied by the 16-bit D10 and brings forth a 32-bit product. The higher 16 bits are stored in D21, and the lower 16 bits are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result.

b63 is a sign bit (i.e. b15 of D+3)

	MUL	D0	D10	D20
	MUL	D0	D10	K8M0

5 Categories and Use of Basic Application Instructions

API	Mnemonic						0	perai	nds		Function						
23	D DIV P				2	3	51	<u>S2</u>		D	Division						
	Гуре	В	it De	vice	es				W	/ord l	Devio	es					Program Steps
OP \		Х	Υ	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DIV, DIVP: 7 steps
S ₁	1 * *		*	*	*	*	*	*	*	*	*	*	DDIV, DDIVP: 9 steps				
S ₂	2 * * * * *			*	*	*	*	*	*								
D												*	*	*			

Operands:

S₁: Dividend S₂: Divisor D: Quotient and remainder

Explanations:

- 1. DIV instruction supports V and Z. When DIV is used as 16-bit instruction, Z device cannot be adopted; when DIV is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. DIV instruction divides **S**₁ and **S**₂ in BIN format and stores the result in **D**. Be careful with the positive/negative signs of **S**₁, **S**₂ and **D** when doing 16-bit and 32-bit operations.
- 4. DIV will not be executed when the divisor is 0.
- 5. In 16-bit BIN division:

6. In 32-bit BIN division:

Program Example:

When X0 = On, D0 will be divided by D10, and the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative status of the result.

API	Mnemonic						Оре	eran	ds		Function								
24	D		INC	;	Ρ		(D									Increment		
	Type Bit Devices W							/ord l	Devic	es					Program Steps				
OP \	\backslash	Х	Υ	М	S	Κ	ΗI	KnX	KnY	KnM	KnS	Т	С	D	۷	Ζ	INC, INCP: 3 steps		
D							*			*	*	*	*	*	*	*	DINC, DINCP: 3 steps		

D: Destination device

Explanations:

- 1. INC instruction supports V and Z. When INC is used as 16-bit instruction, Z device cannot be adopted; when INC is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. If the instruction is not a pulse execution one, the content in the designated device D will plus "1" in every scan period whenever the instruction is executed.
- 4. API 24 adopts the pulse execution instruction (INCP, DINCP).
- 5. In the 16-bit operation, 32,767 pluses "1" into -32,768. In the 32-bit operation, 2,147,483,647 pluses "1" into -2,147,483,648.

Program Example:

When X0 goes from Off to On, the content in D0 will plus "1" automatically.

I X0		
	INCP	

API		M	nem	onic			Op	berar	nds								Function
25					Ρ)								Decrement
	ype	e Bit Devices					Wor					es					Program Steps
OP \		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	٧	Ζ	DEC, DECP: 3 steps
D									*	*	*	*	*	*	*	*	DDEC, DDECP: 3 steps

D: Destination device

Explanations:

- 1. DEC instruction supports V and Z. When DEC is used as 16-bit instruction, Z device cannot be adopted; when DEC is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. If the instruction is not a pulse execution one, the content in the designated device D will minus "1" in every scan period whenever the instruction is executed.
- 4. API 25 adopts the pulse execution instruction (DECP, DDECP).
- 5. In the 16-bit operation, -32,768 mimuses "1" into 32,767. In the 32-bit operation, -2,147,483,648 minuses "1" into 2,147,483,647.

Program Example:

When X0 goes from Off to On, the content in D0 will minus "1" automatically.

I X0		
	DECP	D0

API		Mr	nem	onic				Ор	erand	ds		Function						
26	D	V	VAN	D	Ρ		3		<u>S</u> 2	Ð)						Logical Word AND	
	ype Bit Devices								Devic	es					Program Steps			
OP 🛸		Х	Υ	М	S	Κ	Η	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	WAND, WANDP: 7 steps	
S ₁						*	*	*	*	*	*	*	*	*	*	*	DWAND, DWANDP: 9 steps	
S ₂						*	*	*	*	*	*	*	*	*	*	*		
D									*	*	*	*	*	*	*	*		

S1: Source data device 1 S2: Source data device 2 D: Operational result

Explanations:

- 1. WAND instruction supports V and Z. When WAND is used as 16-bit instruction, Z device cannot be adopted; when WAND is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. WAND instruction conducts logical AND operation of S_1 and S_2 and stores the result in D.
- 4. Operation rule: The operational result will be "0" if any of the bits in S_1 or S_2 is "0".

Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WAND logical AND operation, and the result will be stored in D4.

Program Example 2:

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DWAND logical AND operation, and the result will be stored in (D41, D40).

API		Mr	nem	onic				Ор	eran	ds							Function
27	D	WOR P			Ρ		3		<u>S</u> 2	Ð)						Logical Word OR
	уре	В	it De	vice	s				W	/ord l	Devic	es					Program Steps
OP \	\backslash	Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	WOR, WORP: 7 steps
S ₁						*	*	*	*	*	*	*	*	*	*	*	DWOR, DWORP: 9 steps
S ₂						*	*	*	*	*	*	*	*	*	*	*	
D									*	*	*	*	*	*	*	*	

S1: Source data device 1 S2: Source data device 2 D: Operational result

Explanations:

- 1. WOR instruction supports V and Z. When WOR is used as 16-bit instruction, Z device cannot be adopted; when WOR is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. WOR instruction conducts logical OR operation of S_1 and S_2 and stores the result in D.
- 4. Operation rule: The operational result will be "1" if any of the bits in S_1 or S_2 is "1".

Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WOR logical OR operation, and the result will be stored in D4.

Program Example 2:

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DWOR logical OR operation, and the result will be stored in (D41, D40).

API		Mr	nem	onic				Ор	erand	ds							Function
28	D	WXOR P					3		<u>S</u> 2	Ð)						Logical Exclusive OR
	ype Bit Devices								W	/ord [Devid	es					Program Steps
OP 🔪		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	WXOR, WXORP: 7 steps
S ₁						*	*	*	*	*	*	*	*	*	*	*	DWXOR, DWXORP: 9 steps
S ₂						*	*	*	*	*	*	*	*	*	*	*	
D									*	*	*	*	*	*	*	*	

S₁: Source data device 1 S₂: Source data device 2 D: Operational result

Explanations:

- 1. WXOR instruction supports V and Z. When WXOR is used as 16-bit instruction, Z device cannot be adopted; when WXOR is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. WXOR instruction conducts logical XOR operation of S_1 and S_2 and stores the result in D.
- Operation rule: If the bits in S₁ and S₂ are the same, the corresponding bit of the operational result in D will be "0". If the bits in S₁ and S₂ are different, the corresponding bit of the operational result in D will be "1".

Program Example 1:

When X0 = On, the 16-bit D0 and D2 will perform WXOR logical XOR operation, and the result will be stored in D4.

Program Example 2:

When X1 = On, the 32-bit (D11, D10) and (D21, D20) will perform DWXOR logical XOR operation, and the result will be stored in (D41, D40).

API		M	nem	onic			0	pera	nds								Function			
29					Ρ)		2's Complement (Negative)									
	ype	В	evice	s	Wor					d Devices						Program Steps				
OP \	X Y M S		S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	۷	Ζ	NEG, NEGP: 7 steps					
D									*	*	*	*	*	*	*	*	DNEG, DNEGP: 9 steps			

D: Device to store 2's complement

Explanations:

- 1. NEG instruction supports V and Z. When NEG is used as 16-bit instruction, Z device cannot be adopted; when NEG is used as 32-bit instruction, V device cannot be adopted.
- 2. See the specifications of DVP-PM for its range of use.
- 3. NEG instruction converts a negative BIN value into an absolute value.
- 4. API 29 adopts the pulse execution instruction (NEGP, DNEGP).

Program Example 1:

When X0 goes from Off to On, the phase of every bit of the content in D10 will be reversed (i.e. $0 \rightarrow 1, 1 \rightarrow 0$) and plus

"1". The result will then be stored in D10.

Program Example 2:

Obtaining the absolute value of a negative value:

- 1. When the 15th bit of D0 is "1", M0 will be On. (D0 is a negative value.)
- 2. When M0 = On, use NEG instruction to obtain 2's complement of D0 and further its absolute value.

Program Example 3:

Obtaining the absolute value of the remainder in the subtraction. When X0 = On,

- 1. If D0 > D2, M0 = On.
- 2. If D0 = D2, M1 = On.
- 3. If D0 < D2, M2 = On.
- 4. D4 is then able to remain positive.

Remarks:

Negative value and its absolute value:

- 1. The sign of a value is indicated by the highest (most left) bit in the register. "0" indicates that the value is a positive on, and "1" indicates that the value is a negative one.
- 2. NEG instruction is able to convert a negative value into its absolute value.

(D0)=2	
(D0)=1 00000000000000000001	
(D0)=0 000000000000000000000	
(D0)=-1	(D0)+1=1 0000000000000000001
(D0)=-2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 →	(D0)+1=2 000000000000000010
(D0)=-3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 →	(D0)+1=3 0000000000000000111
(D0)=-4	(D0)+1=4 0000000000000000100
(D0)=-5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 →	(D0)+1=5 00000000000000101
(D0)=-32,765	(D0)+1=32,765
	$\bullet \begin{array}{ c c c c c c c c c c c c c c c c c c c$
(D0)=-32,766 10000000000000010 →	(D0)+1=32,766 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
(D0)=-32,767	(D0)+1=32,767
(D0)=-32,768	(D0)+1=-32,768
Maxi	imum aAbsolute value = 32,767

API		Mne	mon	ic		C	Dpe	rand	s						Function								
40	ZRST P															Zero Reset							
	Туре		Bit Devices				Wor					es					Program Steps						
OP \		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	ZRST, ZRSTP: 5 steps						
D	1		*	*	*							*	*	*									
D			*	*	*							*	*	*									

D₁: Start device of the range to be reset D₂: End device of the range to be reset

Explanations:

- 1. The No. of operand $\bm{D_1} \leq$ the No. of operand $\bm{D_2}.$
- 2. D_1 and D_2 have to designate devices of the same type.
- 3. All the devices do not support V and Z index modification.
- 4. See the specifications of DVP-PM for its range of use.
- 5. 16-bit counter and 32-bit counter can use ZRST instruction together.
- 6. When $D_1 > D_2$, only operands designated by D_2 will be reset.

Program Example:

- 1. When X0 = On, auxiliary relay M300 ~ M399 will be reset to Off.
- 2. When X1 = On, 16-bit counters C0 ~ C127 will all be reset (being written in 0; contact and coil reset to Off).
- 3. When X10 = On, timers T0 ~ T127 will all be reset (being written in 0; contact and coil reset to Off).
- 4. When X2 = On, steps S0 ~ S127 will be reset to Off.
- 5. When X3 = On, data registers $D0 \sim D100$ will be reset to 0.
- When X4 = On, 32-bit counters C235 ~ C254 will all be reset (being written in 0; contact and coil being reset to Off).

X0			
	ZRST	M300	M399
X1	ZRST	C0	C127
X10			
	ZRST	Т0	T127
X2			
	ZRST	S0	S127
X3			
	ZRST	D0	D100
X4			
┝─┥┝────	ZRST	C235	C254

Remarks:

Bit devices Y, M, S and word devices T, C, D can use RST instruction individually.

API		Mner	moni	ic			Ор	eran	ds								Function
49	D	FI	LT	F	þ		S									Floating Point	
	Туре	В	vice	s				/ord [Devic	20					Program Steps		
	· · ·	_										00					r rogram otops
OP	\sim	X	Y	M	S	K	Н	KnX		KnM	-		С	D	V	Z	DFLT, DFLTP: 6 steps
	$\overline{\ }$		Y			K *	H *	KnX		-	-		С	D *	V	Z	

S: Source device for conversion D: Device for storing the conversion result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. Only 32-bit instructions DFLT and DFLTP are applicable.
- 3. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 4. FLT instruction converts BIN integer into binary floating point value.
 - a) If the absolute value of the converstion result > max. floating point value, the carry flag will be On.
 - b) If the absolute value of the conversion result < min. floating point value, the borrow flag will be On.
 - c) If the conversion result is "0", the zero flag will be On.

Program Example 1:

- 1. When X11 = On, D1 and D0 (BIN integers) are converted into D21 and D20 (binary floating point values).
- If 32-bit register D0 (D1) = K100,000, X11 will be On. The 32-bit value of the converted floating point will be H'4735000 and stored in the 32-bit register D20 (D21).

Program Example 2:

Using FLT instruction to complete the following operation:

(495) 661-24-61, http://www.stoikltd.ru

107392 Москва ул.Просторная 7,

n				
-	DFLT	D10	D100	
-	DBIN	K2X0	D200	
(2)				
3	DFLT	D200	D202	
	DEDIV	K615	K10	D300
(4)				
ß	DEDIV	D100	D202	D400
6	DEMUL	D400	D300	D20
		D 0 0	Dee	
$\overline{\mathcal{O}}$	DERCD	D20	D30	
8	DINT	D20	D40	
	2 (1) (2) (3) (4) (5) (6) (7) (8)	① DFLT ② DBIN ③ DFLT ③ DFLT ④ DEDIV ⑤ DEDIV ⑥ DEMUL ⑦ DEBCD	DFLT D10 ① DBIN K2X0 ② DFLT D200 ③ DFLT D200 ④ DEDIV K615 ④ DEDIV D100 ⑤ DEMUL D400 ⑦ DEBCD D20 ⑦ DINT D20	DFLT D10 D100 1 DBIN K2X0 D200 2 DFLT D200 D202 3 DFLT D200 D202 4 DEDIV K615 K10 5 DEDIV D100 D202 6 DEMUL D400 D300 7 DEBCD D20 D40

- ① D11 and D10 (BIN integers) are converted into D101 and D100 (binary floating point values).
- ② X7 ~ X0 (BCD values) are converted into D201 and D200 (BIN values).
- ③ D201 and D200 (BIN integers) are converted into D203 and D202 (binary floating point values).
- 3 The result of K615 \div K10 is stored in D301 and D300 (binary floating point values).
- S The result of binary decimal division (D101, D100) ÷ (D203, D202) is stored in D401 and D400 (binary floating point values).
- The result of binary decimal multiplication (D401, D400) × (D301, D300) is stored in D21 and D20 (binary floating point values).
- ⑦ D21 and D20 (binary floating point values) are converted into D31 and D30 (decimal floating point values).
- ⑧ D21 and D20 (binary floating point values) are converted into D41 and D40 (BIN integers).

API	N	Mnemonic					Operands					Function						
78	D	D FROM P (m)											Read CR Data in Special Modules					
OP	Туре		Bit D	evic	es		Word					es					Program Steps	
U F		X	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	FROM, FROMP: 9 steps	
	m1					*	*					*	*	*	*	*	DFROM, DFROMP: 17 steps	
	m ₂			*	*					*	*	*	*	*				
	D											*	*	*	*	*		
	n					*	*					*	*	*	*	*		

m1: No. of special modulem2: CR# in special module to be readNumber of data to be read at a time

D: Device for storing read data n:

- **Explanations:**
- 1. Range of $\boldsymbol{m_1}$ (16-bit and 32-bit): 0 \sim 255
- 2. Range of m_2 (16-bit and 32-bit): 0 ~ 499
- 3. Range of **n**:

16-bit: 1 ~ (500 - m2)

32-bit: 1 ~ (500 - m2)/2

- 4. FROM instruction supports V and Z. When FROM is used as 16-bit instruction, Z device cannot be adopted; when FROM is used as 32-bit instruction, V device cannot be adopted.
- 5. FROM instruction is used for reading the data in the CR in special modules.
- 6. See Remarks of API 79 TO for the numbering of special modules.

Program Example:

- Read CR#29 of special module No. 0 into D0 and CR#30 into D1. Only 2 groups of data are read at a time (n = 2).
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed, and the data read will not be changed.

Х0 H FROM K0	K29	D0	K2
-----------------	-----	----	----

API	Mn	nemonic			Operands					Function							
79	D	то	F		(m1) (m2) (S) (n)						Write CR Data into Special Modules						
Туре		E	evice	s	Word					l Devices						Program Steps	
OP `		Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	TO, TOP: 9 steps
n	ו ₁					*	*					*	*	*	*	*	DTO, DTOP: 17 steps
n	1 ₂					*	*					*	*	*	*	*	
9	S					*	*					*	*	*	*	*	
r	ı					*	*					*	*	*	*	*	

 \mathbf{m}_1 : No. of special module \mathbf{m}_2 : CR# in special module to be written \mathbf{S} : Data to be written in CR \mathbf{n} : Number of data to be written at a time

Explanations:

- 1. Range of $\boldsymbol{m_1}$ (16-bit and 32-bit): 0 \sim 255
- 2. Range of m_2 (16-bit and 32-bit): 0 ~ 499
- 3. Range of n:

16-bit: 1 ~ (500 - m2)

32-bit: 1 ~ (500 - m2)/2

- 4. TO instruction supports V and Z. When TO is used as 16-bit instruction, Z device cannot be adopted; when TO is used as 32-bit instruction, V device cannot be adopted.
- 5. TO instruction is used for writing the data into the CR in special modules.

Program Example:

- Use 32-bit instruction DTO to write the contents in D11 and D10 into CR#13 and CR#12 of special module No. 0.
 Only 1 group of data is written in at a time (n = 1).
- 2. When X0 = On, the instruction will be executed. When X0 = Off, the instruction will not be executed, and the data written will not be changed.

X0 I					
	DTO	K0	K12	D10	K1
	5.0		=	5.0	

Remarks:

Operand rules:

- m₁: The No. of special modules connected to DVP-PM. No. 0 is the module closest to DVP-PM. Maximum 8 modules are allowed to connect to DVP-PM, and they will not occupy any I/O points.
- m2: CR#. CR (control register) is the 16-bit memories built in the special module, numbered in decimal as #0 ~
 #n. All operational status and settings of the special modules are contained in the CR.
- 3. FROM/TO instruction is for reading/writing 1 CR at a time. DFROM/DTO instruction is for reading/writing 2 CRs at a time.

Higher 16 bits Lower 16 bits CR #10 CR #9 ← Designated CR#

4. Number of groups "n" to be transmitter: n = 2 in 16-bit instructions and n = 1 in 32-bit instruction mean the same.

FROM/TO Application Example 1:

Adjust the A/D conversion curve of DVP04AD-H2. Set the OFFSET value of CH1 as 0V (= $K0_{LSB}$) and GAIN value as 2.5V (= $K2,000_{LSB}$).

M1002					
	то	K0	K1	H0	K1
	то	K0	K33	H0	K1
XO					
	то	K0	K18	K0	K1
	ТО	K0	K24	K2000	K1

- 1. Write H'0 into CR#1 of analog input module No. 0, and set CH1 as mode 0 (voltage input: -10V ~ +10V).
- 2. Write H'0 into CR#33 and allow OFFSET/GAIN tuning in CH1 ~ CH4.
- When X0 goes from Off to On, write the OFFSET value K0_{LSB} into CR#18 and GAIN value K2,000_{LSB} into CR#24.

FROM/TO Application Example 2:

Adjust the A/D conversion curve of DVP04AD-H2. Set the OFFSET value of CH2 as $2mA (= K400_{LSB})$ and GAIN value as $18mA (= K3,600_{LSB})$.

M1002					
	то	K0	K1	H18	K1
	то	K0	K33	H0	K1
XO					
	то	K0	K19	K400	K1
	то	K0	K25	K3600	K1

- 1. Write H'18 into CR#1 of analog input module No. 0, and set CH2 as mode 3 (current input: -20mA ~ +20mA).
- 2. Write H'0 into CR#33 and allow OFFSET/GAIN tuning in CH1 ~ CH4.
- When X0 goes from Off to On, write the OFFSET value K400_{LSB} into CR#19 and the GAIN value K3,600_{LSB} into CR#25.

FROM/TO Application Example 3:

Adjust the D/A conversion curve of DVP02DA-H2. Set the OFFSET value of CH2 as $0mA (= K0_{LSB})$ and GAIN value as $10mA (= K1,000_{LSB})$.

- 1. Write H'18 into CR#1 of analog output module No. 1 and set CH2 as mode 3 (current output: 0mA ~ +20mA).
- 2. Write H'0 into CR#33 and allowe OFFSET/GAIN tuning in CH1 and CH2.
- When X0 goes from Off to On, write the OFFSET value K0_{LSB} into CR#22 and the GAIN value K1,000_{LSB} into CR#28.

FROM/TO Application Example 4:

Adjust the D/A conversion curve of DVP02DA-H2. Set the OFFSET value of CH2 as $2mA (= K400_{LSB})$ and GAIN value as $18mA (= K3,600_{LSB})$

- 1. Write H'10 to CR#1 of analog output module No. 1 and set CH2 as mode 2 (current output: +4mA ~ +20mA).
- 2. Write H'0 to CR#33 and allow OFFSET/GAIN tuning in CH1 and CH2.
- When X0 goes from Off to On, write the OFFSET value K400_{LSB} into CR#23 and GAIN value K3,600_{LSB} into CR#29.

API	Mn	emo	nic	Operands						Function							
100	M	ODR	D	(S 1	Read M							Vod	odbus Data			
	Туре		Bit Devices						۷	Word Devices							Program Steps
OP _		XYMSKHKnXK					KnY	KnM	KnS	Т	С	D	V	Ζ	MODRD: 7 steps		
S ₁	1					*	*							*			
S ₂	S ₂		*	*							*						
n						*	*							*			

S₁: Address of communication device S₂: Address of data to be read n: Length of read data

Explanations:

- 1. Range of **S**₁: K0 ~ K254
- 2. Range of \mathbf{n} : K1 \leq n \leq K6
- 3. See the specifications of DVP-PM for its range of use.
- 4. Flags: M1120 ~ M1129, M1140 ~ M1143. See Remarks for more information.
- MODRD is a drive instruction exclusively for peripheral communication equipment in Modbus ASCII mode/RTI mode. The built-in RS-485 communication ports in Delta VFD series AC motor drives (except for VFD-A series) are all compatible with Modbus communication format. MODRD can be used for controlling communication (data reading) of Delta AC motor drives.
- 6. If **S**₂ is illegal to the designated communication device, the device will respond with an error, and DVP-PM will record the error code in D1130. M1141 will be On as well.
- 7. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1085. After receiving the feedback data is completed, DVP-PM will auto-check if all data are correct. If there is an error, M1140 will be On.
- 8. In ASCII mode, due to that the feedback data are all in ASCII, DVP-PM will convert the feedback data into numerals and store them in D1050 ~ D1055. D1050 ~ D1055 will be invalid in RTU mode.
- 9. After M1140 or M1140 turns On, the program will send a corrent datum to the peripheral equipment. If the feedback datum is correct, M1140 and N1141 will be reset.

Program Example 1:

Communication between DVP-PM and VFD-S series AC motor drive (ASCII mode, M1143 = Off)

M1002	MOV H87 D1120 Set up communication protocol 9,600, 8, E, 1
	SET M1120 Retain communication protocol
x0	MOV K100 D1129 Set up communication time-out:100ms
†	- SET M1122 Set up sending request
	MODRD K1 H2101 K6 MODRD K1 H2101 K6 device address 01 data address H2101 data length 6 words
M1127 receiving completed	Process of received data Process of received data DVP-PM will automatically convert the data into numerals and store them in D1050 ~ D1055. RST M1127 Sending/receiving of data is completed. The flag is reset.

DVP-PM ⇒ VFD-S, DVP-PM sends: "01 03 2101 0006 D4"

VFD-S ⇒ DVP-PM, DVP-PM receives: "01 03 0C 0100 1766 0000 0000 0136 0000 3B"

Registers for sent data (sending messages)

Register	DA	ΓΑ	Explanation					
D1089 low	ʻ0'	30 H	ADR 1	Address of AC motor drive:				
D1089 high	'1'	31 H	ADR 0	ADR (1,0)				
D1090 low	'0'	30 H	CMD 1	Instruction code: CMD (1.0)				
D1090 high	'3'	33 H	CMD 0 Instruction code: CMD (1					
D1091 low	'2'	32 H						
D1091 high	'1'	31 H	- Starting Data Address					
D1092 low	'0'	30 H						
D1092 high	'1'	31 H						
D1093 low	'0'	30 H						
D1093 high	'0'	30 H	Number of Date	(counted by words)				
D1094 low	'0'	30 H	Number of Data (counted by words)					
D1094 high	'6'	36 H	1					
D1095 low	'D'	44 H	LRC CHK 1	Chekcsum: LRC CHK (0,1)				
D1095 high	'4'	34 H	LRC CHK 0					

Registers for received data (responding messages)

Register	I	DATA	Ex	olanation								
D1070 low	ʻ0'	30 H	ADR 1									
D1070 high	'1'	31 H	ADR 0									
D1071 low	ʻ0'	30 H	CMD 1	CMD 1								
D1071 high	'3'	33 H	CMD 0									
D1072 low	ʻ0'	30 H	Number of Data (count	ad by byta)								
D1072 high	ʻC'	43 H		ed by byte)								
D1073 low	'0'	30 H		DVP-PM automatically								
D1073 high	'1'	31 H	Content in address	converts ASCII codes to numerals and stores the								
D1074 low	'0'	30 H	2101 H	numeral in $D1050 = 0100$								
D1074 high	ʻ0'	30 H		Н								
D1075 low	'1'	31 H		DVP-PM automatically								
D1075 high	'7'	37 H	Content in address	converts ASCII codes to numerals and stores the								
D1076 low	'6'	36 H	2102 H	numeral in $D1051 = 1766$								
D1076 high	'6'	36 H		Н								
D1077 low	'0'	30 H		DVP-PM automatically converts ASCII codes to numerals and stores the numeral in D1052 = 0000 H								
D1077 high	'0'	30 H	Content in address									
D1078 low	'0'	30 H	2103 H									
D1078 high	'0'	30 H										
D1079 low	'0'	30 H		DVP-PM automatically								
D1079 high	'0'	30 H	Content in address	converts ASCII codes to numerals and stores the								
D1080 low	'0'	30 H	2104 H	numeral in $D1053 = 0000$								
D1080 high	'0'	30 H		Н								
D1081 low	'0'	30 H		DVP-PM automatically								
D1081 high	'1'	31 H	Content in address	converts ASCII codes to numerals and stores the								
D1082 low	'3'	33 H	2105 H	numeral in $D1054 = 0136$								
D1082 high	'6'	36 H		Н								
D1083 low	'0'	30 H	Content in address	DVP-PM automatically								
D1083 high	'0'	30 H	2106 H	converts ASCII codes to								

Register	I	DATA	Explanation				
D1084 low	ʻ0'	30 H		numerals and stores the			
D1084 high	'0'	30 H		numeral in D1055 = 0000 H			
D1085 low	'3'	33 H	LRC CHK 1				
D1085 high	'B'	42 H	LRC CHK 0				

Program Example 2:

Communication between DVP-PM and VFD-S series AC motor drive (RTU mode, M1143 = On)

DVP-PM ⇒ VFD-S, DVP-PM sends: "01 03 2102 0002 6F F7" VFD-S ⇒ DVP-PM, DVP-PM receives: "01 03 04 1770 0000 FE 5C"

Registers for sent data (sending messages)

Register	DATA	Explanation					
D1089 low	01 H	Address					
D1090 low	03 H	Function					
D1091 low	21 H	Starting Data Address					
D1092 low	02 H	Starting Data Address					
D1093 low	00 H	Number of Data (counted by words)					
D1094 low	02 H	Number of Data (counted by words)					
D1095 low	6F H	CRC CHK Low					
D1096 low	F7 H	CRC CHK High					

Registers for received data (responding messages)

Register	DATA	Explanation					
D1070 low	01 H	Address					
D1071 low	03 H	Function					
D1072 low	04 H	Number of Data (counted by byte)					
D1073 low	17 H	Content in address 2102 H					
D1074 low	70 H						
D1075 low	00 H	Content in address 2103 H					
D1076 low	00 H						
D1077 low	FE H	CRC CHK Low					
D1078 low	5C H	CRC CHK High					

Program Example 3:

- 1. In the communication between DVP-PM and VFD-S series AC motor drive (ASCII mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
- When X0 = On, DVP-PM will read the data in VFD-S data address H'2100 of device 01 and store the data in ASCII format in D1070 ~ D1085. DVP-PM will automatically convert the data into numerals and store them in D1050 ~ D1055.
- M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for reading the data again.
- 4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for reading the data again.
- 5. M1140 will be On when sending address error occurs. The program will trigger M1140 and send request to M1122 for reading the data again.

Remarks:

- The activation condition placed before the three instructions, API 100 MODRD (Function Code H'03) cannot use rising-edge contacts (LDP, ANDP, ORP) and falling-edge contacts (LDF, ANDF, ORF); otherwise, the data stored in the receiving registers will be incorrect.
- 2. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

API	Mnemonic				Operands					Function							
101	Ν	10DV	DDWR S1) (S ₂ (n)				Write Modbus Data						
	уре	Bit Devices					Wor					es					Program Steps
OP \		Х	Υ	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	MODWR: 7 steps
S ₁						*	*							*			
S ₂	2					*	*							*			
n						*	*							*			

 S_1 : Address of communication device S_2 : Address of data to be read n: Data to be written

Explanations:

- 1. Range of **S**₁: K0 ~ K254.
- 2. See the specifications of DVP-PM for its range of use.
- 3. Flags: M1120 ~ M1129, M1140 ~ M1143. See Remarks for more information.
- 4. MODWR is a drive instruction exclusively for peripheral communication equipment in Modbus ASCII mode/RTU mode. The built-in RS-485 communication ports in Delta VFD series AC motor drives (except for VFD-A series) are all compatible with Modbus communication format. MODWR can be used for controlling communication (data writing) of Delta AC motor drives.
- If S2 is illegal to the designated communication device, the device will respond with an error, and DVP-PM will record the error code in D1130. M1141 will be On as well. For example, if 8000H is illegal to VFD-S, M1140 will be On and D1130 = 2. For error codes, please refer to the user manual of VFD-S.
- 6. The feedback (returned) data from the peripheral equipment will be stored in D1070 ~ D1076. After receiving the feedback data is completed, DVP-PM will auto-check if all data are correct. If there is an error, M1140 will be On.
- 7. After M1140 or M1140 turns On, the program will send a correct datum to the peripheral equipment. If the feedback datum is correct, M1140 and M1141 will be reset.

Program Example 1:

Communication between DVP-PM and VFD-S series AC motor drive (ASCII mode, M1143 = Off)

M1002	MOV H87 D1120 Set up communication protocol 9,600, 8, E, 1								
	SET M1120 Retain communication protocol								
X0	MOV K100 D1129 Set up communication time-out: 100ms								
	SET M1122 Set up sending request Set up communication instruction device address 01								
	MODWR K1 H0100 H1770 data address H0100 data H1770								
M1127	Process of received data Process of received data DVP-PM will automatically convert the data into numerals and store them in D1050 ~ D1055.								
receiving completed	RST M1127 Sending/receiving of data is completed. The flag is reset.								

DVP-PM ⇒ VFD-S, DVP-PM sends: "01 06 0100 1770 71"
VFD-S ⇒ DVP-PM, DVP-PM receives: "01 06 0100 1770 71"

Registers for sent data (sending	moccoace)
Tregisters for serie data (seriuling	messayes)

Register	DA	TA		Explanation				
D1089 low	ʻ0'	30 H	ADR 1	Address of AC motor drive:				
D1089 high	'1'	31 H	ADR 0	ADR (1,0)				
D1090 low	' 0'	30 H	CMD 1	Instruction and a: CMD (1.0)				
D1090 high	'6'	36 H	CMD 0	Instruction code: CMD (1,0)				
D1091 low	' 0'	30 H						
D1091 high	'1'	31 H	Data Address					
D1092 low	' 0'	30 H	Data Address					
D1092 high	ʻ0'	30 H						
D1093 low	'1'	31 H						
D1093 high	'7'	37 H	Data contents					
D1094 low	'7'	37 H	Data contents					
D1094 high	ʻ0'	30 H						
D1095 low	'7'	37 H	LRC CHK 1 Error checksum: LRC CHK					
D1095 high	'1'	31 H	LRC CHK 0 (0,1)					

Registers for received data (responding messages)

Register	DA	TA	Explanation
D1070 low	'0'	30 H	ADR 1
D1070 high	'1'	31 H	ADR 0
D1071 low	'0'	30 H	CMD 1
D1071 high	'6'	36 H	CMD 0
D1072 low	ʻ0'	30 H	
D1072 high	'1'	31 H	Data Address
D1073 low	'0'	30 H	Data Address
D1073 high	'0'	30 H	
D1074 low	'1'	31 H	
D1074 high	'7'	37 H	Data content
D1075 low	'7'	37 H	Data content
D1075 high	'0'	30 H	
D1076 low	'7'	37 H	LRC CHK 1
D1076 high	'1'	31 H	LRC CHK 0

Program Example 2:

Communication between DVP-PM and VFD-S series AC motor drive (RTU mode, M1143 = On)

DVP-PM ⇒ VFD-S, DVP-PM sends: "01 06 2000 0012 02 07"

VFD-S ⇒ DVP-PM, DVP-PM receives: "01 06 2000 0012 02 07"

Registers for sent data (sending messages)

Register	DATA	Explanation						
D1089 low	01 H	Address						
D1090 low	06 H	Function						
D1091 low	20 H	Data Address						
D1092 low	00 H	Dala Audiess						
D1093 low	00 H	Data content						
D1094 low	12 H	Data content						
D1095 low	02 H	CRC CHK Low						
D1096 low	07 H	CRC CHK High						

Registers for received data (responding messages)

Register	DATA	Explanation							
D1070 low	01 H	Address							
D1071 low	06 H	Function							
D1072 low	20 H	Data Address							
D1073 low	00 H	Data Audress							
D1074 low	00 H	Data content							
D1075 low	12 H	Data content							
D1076 low	02 H	CRC CHK Low							
D1077 low	07 H	CRC CHK High							

- 1. In the communication between DVP-PM and VFD-S series AC motor drive (ASCII mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur.
- 2. When X0 = On, DVP-PM will write H1770 (K6,000) into VFD-S data address H0100 of device 01.
- M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again.
- 4. M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122

for writing the data again.

5. M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again.

- In the communication between DVP-PM and VFD-S series AC motor drive (ASCII mode, M1143 = Off), retry when communication time-out, data receiving error and sending address error occur. The times of retry = D0 (default = 3). When communication Retry is successful, you can return to controlling by triggering condition.
- 2. When X0 = On, DVP-PM will write H1770 (K6,000) into VFD-S data address H0100 of device 01.
- M1129 will be On when communication time-out occurs. The program will trigger M1129 and send request to M1122 for writing the data again. The times of retry = D0 (default = 3).
- M1140 will be On when data receiving error occurs. The program will trigger M1140 and send request to M1122 for writing the data again. The times of retry = D0 (default = 3).
- M1141 will be On when sending address error occurs. The program will trigger M1141 and send request to M1122 for writing the data again. The times of retry = D0 (default = 3).

M1002	
	MOV H87 D1120 Set up communication protocol 9,600, 8, E, 1
	SET M1120 Retain communication protocol
	MOV K100 D1129 Set up communication time-out: 100ms
	MOV K3 D0
	SET M1122 Set up sending request
M1129 	Communication time-out Retry
Data receiving error Retry	
	Sat up communication instruction:
xo	MODWR K1 H0100 H1770 Set up communication instruction: device address 01 data address H0100 data H1770
M1122	
<u> </u> −1†	INC D100
M1127 Receiving completed	Process of received data The received data are stored in D1070 \sim D1085 in ASCII format.
[RST M1127 Sending/receiving of data is completed. The flag is reset.
	RST D100
M1129	RST M1129 Communication time-out. The flag is reset.
	RST M1140
M1141	RST M1141

Remarks:

- The activation condition placed before API 101 MODWR (Function Code H'06, H'10) cannot use rising-edge contacts (LDP, ANDP, ORP) and falling-edge contacts (LDF, ANDF, ORF) and have to enable sending request M1122 first.
- 2. There is no limitation on the times of using this instruction in the program, but only one instruction is allowed to be executed at a time.

ΑΡΙ	Mnemonic					Оре	rand	ls		Function								
110	D ECMP P				<u>(\$1</u>		<u>S2</u>	Θ		Floating Point Compare								
	уре	E	Bit De	evice	rices						Word Devices						Program Steps	
OP			Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DECMP, DECMPP: 9 steps		
S	b ₁					*								*			, , , , , , , , , , , , , , , , , , , ,	
S	b ₂			*								*						
[)		*	*	*													

 S_1 : Binary floating point comparison value 1 S_2 : Binary floating point comparison value 2

D: Comparison result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. Only 32-bit instructions DECMP and DECMPP are applicable.
- 3. D occupies 3 consecutive devices.
- 4. F refers to floating point input. Be sure to add a decimal point when using it.
- The binary floating point values S₁ and S₂ are compared with each other. The comparison result (>, =, <) is stored in D.
- 6. If S_1 or S_2 is a designated floating point F, the instruction will compare in binary floating point.

Program Example:

- 1. Designate device M10, and M10 ~ M12 will be occupied automatically.
- When X0 = On, DECMP instruction will be executed, and one of M10 ~ M12 will be On. When X0 = Off, DECMP will not be executed, and M10 ~ M12 will remain in their status before X0 = Off.
- 3. To obtain results in \geq , \leq , \neq , series/parallel connect M10 ~ M12.
- 4. Use RST or ZRST instruction to clear the result.

Remarks:

API	Mn	Mnemonic)per	ands			Function								
111	111 D EZCP P S 1							S	Φ		Floating Point Zone Compare								
OP	Type Bit Devices								V	Vord	Devic	es					Program Steps		
		Х	Υ	М	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DEZCP, DEZCPP: 12 steps		
S	S ₁					*								*					
S	S ₂					*								*					
5	S					*								*					
[)		*	*	*												1		

S₁: Lower bound of binary floating point

S2: Upper bound of binary floating point

- $\boldsymbol{S}:$ Binary floating point comparison result
- D: Comparison result

Explanations:

- 1. D occupies 3 consecutive devices.
- $2. \quad \boldsymbol{S_1} \; \leqq \; \boldsymbol{S_2}.$
- 3. See the specifications of DVP-PM for its range of use.
- 4. F refers to floating point input. Be sure to add a decimal point when using it.
- 5. Only 32-bit instructions DEZCP and DEZCPP are applicable.
- The binary floating point values S₁ and S₂ are compared with each other. The comparison result (>, =, <) is stored in D.
- 7. If S_1 or S_2 is a designated floating point F, the instruction will compare in binary floating point.
- 8. When $S_1 > S_2$, S_1 will be used as upper/lower bound for the comparison.

Program Example:

- 1. Designate device M0, and M0 \sim M2 will be occupied automatically.
- When X0 = On, DEZCP instruction will be executed, and one of M0 ~ M2 will be On. When X0 = Off, DEZCP will not be executed, and M0 ~ M2 will remain in their status before X0 = Off.
- 3. Use RST or ZRST instruction to clear the result.

Remarks:

API	Mn	Mnemonic Ope					Function										1		
116	D	RAD	F	D	S				Angle \rightarrow Radian										
	Type Bit Devices				S	Word Devices											Program Steps		
OP		Х	Υ	Μ	S	F H Kn			KnY	KnM	KnS	Т	С	D	V	Ζ	DRAD, DRADP: 6 steps		
Ś	S					*								*					
[D													*					

S: Source (angle) **D**: Result (radian)

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DRAD and DRADP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. Radian = angle × (π /180)
- 6. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 8. If the result = 0, the zero flag will be On.

Program Example:

When X0 = On, designate the angle of the binary floating point (D1, D0). Convert the angle into radian and store the result in binary floating point in (D11, D10).

Remarks:

API	Mnemonic Oper					eran	erands Function										n		
117	D DEG P S				S	\sim	D		Radian → Angle										
	Туре		Bit De	evice	es				Word Devices								Program Steps		
OF		Х	Υ	Μ	S	F H Kn>			KnY	KnM	KnS	Т	С	D	V	Ζ	DDEG, DDEGP: 6 steps		
	S					*								*			,		
[D													*					

S: Source (radian) D: Result (angle)

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DDEG and DDEGP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. Angle = radian × (180 / π)
- 6. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 7. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 8. If the result = 0, the zero flag will be On.

Program Example:

When X0 = On, designate the radian of the binary floating point (D1, D0). Convert the radian into angle and store the result in binary floating point in (D11, D10).

Remarks:

API	Ν	/Inemo	nic			Оре	rand	ds		Function							
120			D I	P	<u>(S1</u>	Floating										Poi	nt Addition
	Туре		Bit D	evic	es				V	Word Devices							Program Steps
OP		X	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DEADD, DEADDP: 9 steps
	S ₁ *									*							
	S_2					*								*			
	D									*							

S ₁ : Summand	S ₂ : Addend	D: Sum
---------------------------------	-------------------------	--------

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DEADD and DEADDP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. $S_1 + S_2 = D$. The floating point value in the register designated by S_1 and S_2 are added up, and the sum is stored in the register designated by **D**. The addition in conducted in binary floating point system.
- 6. If S_1 or S_2 is a designated floating point F, the instruction will conduct the addition in binary floating point.
- S₁ and S₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the contact is On, the register will be added once in every scan by pulse execution instruction DEADDP.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example 1:

When X0 = On, binary floating point (D1, D0) + binary floating point (D3, D2), and the result will be stored (D11, D10).

Program Example 2:

When X2 = On, binary floating point (D11, D10) + F1234.0 (automatically converted into binary floating point), and the result will be stored in (D21, D20).

Remarks:

For floating point operations, see "5.3 Handling of Numeric Values".

(495) 661-24-61, http://www.stoikltd.ru

API	Mn	emo	nic			Оре	ranc	ds		Function								
121	D	ESUE	3 F	D	<u>(\$1</u>		S2)	Θ		Floating Point Subtraction								
OP	уре	E	Bit De	evice	s				V	Word Devices							Program Steps	
UP		Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DESUB, DESUBP: 9 steps	
S	S ₁			*										*				
S	S ₂ *										*							
[D									*								

S₁: Minuend **S**₂: Subtrahend **D**: Remainder

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DEADD and DEADDP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

5. $S_1 - S_2 = D$. The floating point value in the register designated by S_2 is subtracted from the floating point value in the register designated by S_1 , and the result will be stored in the register designated by D. The subtraction is conducted in binary floating point system.

- 6. If S_1 or S_2 is a designated floating point F, the instruction will conduct the subtraction in binary floating point.
- S₁ and S₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the contact is On, the register will be subtracted once in every scan by pulse execution instruction DESUBP.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example 1:

When X0 = On, binary floating point (D1, D0) – binary floating point (D3, D2), and the result will be stored in (D11, D10).

I X0				
	БЕОЦВ	DO	D 0	D10
	DESUB	00	02	DIU

Program Example 2:

When X2 = On, F1234.0 (automatically converted into binary floating point) – binary floating point (D1, D0), and the result will be stored in (D11, D10).

Remarks:

ΑΡΙ	Mr	nemo	nic		(Оре	ranc	ls		Function							
122	D	EMU		D	<u>S1</u>	Floating Point Mult										Multiplication	
	уре	E	Bit De	evice	s				V	Vord I	Devic	es				Program Steps	
OP		Х	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DEMUL, DEMULP: 9 steps
S	S ₁			*								*			,,,,,,		
S	S ₂					*								*			
[D													*			

S₁: Multiplicand **S**₂: Multiplicator **D**: Product

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DEMUL and DEMULP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. $S_1 \times S_2 = D$. The floating point value in the register designated by S_1 is multiplied with the floating point value in the register designated by S_2 , and the result will be stored in the register designated by D. The multiplication is conducted in binary floating point system.
- 6. If S_1 or S_2 is a designated floating point F, the instruction will conduct the multiplication in binary floating point.
- S₁ and S₂ can designate the same register. In this case, if the "continuous execution" instruction is in use, during the period when the contact is On, the register will be multiplied once in every scan by pulse execution instruction DEMULP.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example 1:

When X1 = On, binary floating point (D1, D0) × binary floating point (D11, D10), and the result will be stored in (D21, D20).

Program Example 2:

When X2 = On, F1234.0 (automatically converted into binary floating point) × binary floating point (D1, D0), and the result will be stored in (D11, D10).

Remarks:

For floating point operations, see "5.3 Handling of Numeric Values".

(495) 661-24-61, http://www.stoikltd.ru

API	Mn	emo	nic			Оре	ranc	ds		Function									
123	D	EDIV	/ F	D	<u>(\$1</u>		<u>S2</u>)	Θ		Floating Point Division									
	уре	E	Bit De	evice	s				V	Word Devices							Program Steps		
OP		Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DEDIV, DEDIVP: 9 steps		
S	S_1 $*$							*			,								
S	S ₂					*								*					
[D													*					

 S_1 : Dividend S_2 : Divisor D: Quotient and remainder

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DEDIV and DEDIVP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970
Operational error flag	M1793	M1873	M1953

See below for more information.

S₁ ÷ S₂ = D. The floating point value in the register designated by S₁ is divided by the floating point value in the register designated by S₂, and the result will be stored in the register designated by D. The division is conducted in binary floating point system.

- 6. If S_1 or S_2 is a designated floating point F, the instruction will conduct the division in binary floating point.
- 7. If $S_2 = 0$, operational error will occur, and the instruction will not be executed. The operational error flag will be On, and the error code H'0E19 will be recorded.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example 1:

When X1 = On, binary floating point (D1, D0) \div binary floating point (D11, D10), and the quotient will be stored in (D21, D20).

Program Example 2:

When X2 = On, binary floating point (D1, D0) \div F1234.0 (automatically converted into binary floating point), and the result will be stored in (D11, D10).

Remarks:

API	API Mnemonic					bera	nds		Function								n	
124	D	EXP	I	D	S	Ð	D	ŀ	Exponent of Binary Floating Point									
	уре	E	Bit D	evice	es				Word Devices							Program Steps		
OP			Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DEXP, DEXPP: 6 steps	
	S S		*								*			,				
I								*										

S: Device for operation source D: Device for operational result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DEXP and DEXPP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. e = 2.71828 as the base and **S** as exponent for EXP operation: $EXP^{[D+1, D]} = [S + 1, S]$
- Both positive and negative values are valid for S. When designating D registers, the data should be 32-bit, and the operation should be performed in floating point system. Therefore, S should be converted into a floating point value.
- 7. The content in $\mathbf{D} = e^{\mathbf{S}}$; e = 2.71828, $\mathbf{S} =$ designated source data.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example:

- 1. When M0 = On, convert (D1, D0) into binary floating point and store it in register (D11, D10).
- 2. When M1 = On, use (D11, D10) as the exponent for EXP operation and store the binary floating point result in register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 × 10^[D31]) and store it in register (D31, D30)

	DFLT	D0	D10
M1	DEXP	D10	D20
M2	DEBCD	D20	D30

Remarks:

API	l Mnemonic Or					erar	nds		Function								
125	125 D LN P S					D		Natural Logarithm of Binary Floating Point								ary Floating Point	
OP	Type Bit Devices					Word Devices Program Step								Program Steps			
UP		Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DLN, DLNP: 6 steps
;	S					*								*			,
	D													*			

S: Device for operational source D: Device for operational result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DLN and DLNP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970
Operational error flag	M1793	M1873	M1953

See below for more information.

- 5. LN instruction performs natural logarithm "In" operation by S: LN [S +1, S] = [D + 1, D]
- 6. Only positive values are valid for **S**. When designating D registers, the data should be 32-bit, and the operation should be performed in floating point system. Therefore, **S** should be converted into a floating point value.
- 7. If **S** is not a positive value, operational error will occur, and the instruction will not be executed. The operational error flag will be On, and the error code H'0E19 will be recorded.
- 8. $e^{D} = S \rightarrow$ The content in **D** = In**S**; **S** = designated source data.
- 9. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 10. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 11. If the result = 0, the zero flag will be On.

Program Example:

- 1. When M0 = On, convert (D1, D0) into binary floating point and store it in (D11, D10).
- When M1 = On, use register (D11, D10) as the real number for In operation and store the binary floating point result in register (D21, D20).
- When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 × 10^[D31]) and store it in register (D31, D30).

M0 	DFLT	D0	D10
M1 	DLN	D10	D20
M2 	DEBCD	D20	D30

Remarks:

API	N	Inemo	onic			(Эре	rand	ds		Function							
126	126 D LOG P			Ρ		(S_1)	0	S2	Θ)	Logarithm of Binary Floating Point							ry Floating Point
	Type Bit Devices				s				N	Word Devices						Program Steps		
OP		X	Υ	Ν	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DLOG, DLOGP: 9 steps
S	S ₁						*								*			
S	S ₂						*								*			
[C														*			

 S_1 : Device for base S_2 : Device for operation source D: Device for operational result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DLOG and DLOGP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 5. LOG instruction performs "log" operation of the content in S_1 and S_2 and stores the result in D.
- 6. Only positives are valid for the content in S_1 and S_2 . When designating D registers, the data should be 32-bit, and the operation should be performed in floating point system. Therefore, S_1 and S_2 should be converted into floating point values.
- 7. $\mathbf{S_1}^{\mathsf{D}} = \mathbf{S_2}, \mathbf{D} = ? \rightarrow \mathbf{D} = \mathrm{Log_{S1}}^{\mathsf{S2}}$
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

Program Example:

- 1. When M0 = On, convert (D1, D0) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
- When M1 = On, perform log operation on the binary floating points in the 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit register (D21, D20).
- 3. When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 × 10^[D31]) and store it in register (D31, D30).

MO				
	DFLT	D0	D10	
	DFLT	D2	D12	
M1 	DLOG	D10	D12	D20
M2 	DEBCD	D20	D30	

Remarks:

AP	· · _ · _ · _ ·					eran	ds		Function								
127	127 D ESQR P S				S		D	Floating Point Square Root								uare Root	
OP	Type Bit Device			s				Word Devices						Program Steps			
UP		Х	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DESQR, DESQRP: 6 steps
	S					*								*			
	D													*			

S: Source device D: Operational result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. **S** ≧ 0.
- 3. F refers to floating point input. Be sure to add a decimal point when using it.
- 4. Only 32-bit instructions DESQR and DESQRP are applicable.
- 5. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Operational error flag	M1793	M1873	M1953

See below for more information.

- ESQR instruction performs a square root operation on the content in the register designated by S and stores the result in the register designated by D. The square root operation is performed in floating point system.
- 7. If **S** is a designated floating point F, the instruction will convert it into a binary floating point value before the operation.
- 8. If the result of the operation = 0, the zero flag will be On.
- S can only be a positive value. Performing any square root operation on a negative value will result in "operational error", and ESQR will not he executed. The operational error flag will be On, and the error code H'0E19 will be recorded.

Program Example 1:

When X0 = On, calculate the square root of the binary floating point (D1, D0) and store the result in register (D11, D10).

Binary floating point Binary floating point

Program Example 2:

When X2 = On, calculate the square root of F1234.0 (automatically converted into binary floating point) and store the result in register (D11, D10)

Remarks:

API	N	Inem	onic			(Оре	ranc	ls		Function							
128					S 1	Floating Point							nt Po	ower Operation				
OP	Type Bit				vices						Word Devices							Program Steps
		X	Y	Ν	Ν	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DPOW, DPOWP: 9 steps
S	S ₁						*								*			
S	S ₂						*								*			
)														*			

 $\label{eq:sigma_1} S_1: \text{Device for base} \qquad S_2: \text{Device for exponent} \qquad D: \text{Device for operational result}$

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DPOW and DPOWP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970
Operational error flag	M1793	M1873	M1953

See below for more information.

- 5. POW instruction performs power multiplication of binary floating point S1 and S2 and stores the result in **D**. $D = POW [S_1 + 1, S_1] \wedge [S_2 + 1, S_2]$
- 6. Only positives are valid for the content in S1. Both positives and negatives are valid for the content in S2. When designating D registers, the data should be 32-bit, and the operation should be performed in floating point system. Therefore, S1 and S2 should be converted into floating point values.
- 7. If S1 and S2 are invalid, operational error will occur, and the instruction will not be executed. The operational error flag will be On, and the error code H'0E19 will be recorded.
- 8. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 9. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 10. If the result = 0, the zero flag will be On.

- 1. When M0 = On, convert (D1, D0) and (D3, D2) into binary floating points and store them in the 32-bit registers (D11, D10) and (D13, D12).
- When M1 = On, perform POW operation on the binary floating points in 32-bit registers (D11, D10) and (D13, D12) and store the result in the 32-bit registers (D21, D20).
- When M2 = On, convert the binary floating point (D21, D20) into decimal floating point (D30 × 10^[D31]) and store it in register (D31, D30).

M0				_
	DFLT	D0	D10	
	DFLT	D2	D12	
M1				
	DPOW	D10	D12	D20
M2				
┝┥┝─	DEBCD	D20	D30	

Remarks:

API	Mn	iemo	nic		Op	erai	nds		Function										
129	D	INT	I	Ρ	S		D	D Float to Integer											
	уре	E	Bit D	evice	es				Word Devices							Program Steps			
OP		Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DINT, DINTP: 5 steps		
	S													*					
[D										*								

S: Source device D: Converted result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. Only 32-bit instructions DINT and DINTP are applicable.
- 3. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

- 4. The binary floating point value in the register designated by **S** is converted to BIN integer and stored in the register designated by **D**. The decimal of BIN integer is left out.
- 5. INT is the inverse operation of API 49 DFLT instruction.
- 6. If the conversion result = 0, the zero flag will be On

If there is any decimal left out, the borrow flag will be On.

If the result exceeds the range (-2,147,483,648~2,147,483,647), the carry flag will be On.

Program Example:

When X1 = On, the binary floating point (D21, D20) will be converted into BIN integer, and the result will be stored in (D31, D30). The decimal of the BIN integer will be left out.

Α	PI Mi	nemo	nic		Ор	eran	nds		Function											
13	30 D	SIN	ļ	Ρ	S	> c	D		Sine											
OF	Туре	E	Bit D	evic	es				Word Devices								Program Steps			
		X	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DSIN, DSINP: 6 steps			
	S	S				*								*						
	D													*						

S: Source value D: SIN result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DSIN and DSINP are applicable.
- 4. $0^{\circ} \leq angle < 360^{\circ}$
- 5. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Angle/radian flag	M1760	M1840	M1920

See below for more information.

- 6. S can be an angle or radian, decided by the angle/radian flag.
- 7. When the angle/radian flag is Off, the program will be in radian mode, and the RAD value = angle $\times \pi/180$.
- 8. When the angle/radian flag is On, the program will be in angle mode, and the range of angle should be $0^{\circ} \leq$ angle <360°.
- 9. If the result = 0, the zero flag will be On.
- 10. The SIN value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.

Program Example 1:

When the angle/radian flag = Off, the program will be in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its SIN value. The binary floating point result will be stored in (D11, D10).

M1002	RST	Angle/radian flag	
X0	DSIN	D0	D10
1			

Program Example 2:

When the angle/radian flag = Off, the program is in radian mode. Input terminals X0 and X1 will select the angle. The angles will be converted into RAD value for calculating the SIN value.

Program Example 3:

When the angle/radian flag = On, the program will be in angle mode. When X0 = On, use the angle of (D1, D0) to obtain SIN value and store the binary floating point result in (D11, D10). $0^{\circ} \leq$ angle <360°

Remarks:

Α	PI I	Inem	noni	ic		Ор	eran	ds		Function											
13	131 D COS P					S	\sim	D		Cosine											
	Туре		Bit	De	vice	s				Word Devices								Program Steps			
OF		X	(Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DCOS, DCOSP: 6 steps			
	S	6				*								*							
	D)										*									

S: Source value D: COS result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DCOS and DCOSP are applicable.
- 4. $0^{\circ} \leq angle < 360^{\circ}$
- 5. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Angle/radian flag	M1760	M1840	M1920

See below for more information.

- 6. S can be angle or radian, decided by the angle/radian flag.
- 7. When the angle/radian flag is Off, the program will be in radian mode, and the RAD value = angle $\times \pi/180$.
- 8. When the angle/radian flag is On, the program will be in angle mode, and the range of angle should be $0^{\circ} \leq$ angle <360°.
- 9. If the result = 0, the zero flag will be On.
- 10. The COS value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.

11. Switch between radian and angle by the angle/radian flag: When the flag = Off, S will be a RAD value; when the flag = On, S will be an angle value ($0^{\circ} 360^{\circ}$).

Program Example 1:

When the angle/radian flag = Off, the program will be in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its COS value. The binary floating point result will be stored in (D11, D10).

M1002			
	RST	Angle/radian flag	
X0		5	
	DCOS	D0	D10

Program Example 2:

When the angle/radian flag = On, the program will be in angle mode. When X0 = On, use the angle of (D1, D0) to obtain COS value and store the binary floating point result in (D11, D10). $0^{\circ} \leq angle < 360^{\circ}$

Remarks:

	API	Mn	emo	nic		O	pera	nds		Function											
	132	D	TAN	F	D	3	Ð	Þ)		Tangent										
		уре	E	Bit Devices						Word Devices							Program Steps				
C)P		Х	Y	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DTAN, DTANP: 6 steps			
	e,	S					*								*						
	[C													*						

S: Source value D: TAN result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DTAN and DTANP are applicable.
- 4. $0^{\circ} \leq angle < 360^{\circ}$
- 5. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Angle/radian flag	M1760	M1840	M1920

See below for more information.

- 6. S can be angle or radian, decided by the angle/radian flag.
- 7. When the angle/radian flag is Off, the program will be in radian mode, and the RAD value = angle $\times \pi/180$.
- 8. When the angle/radian flag is On, the program will be in angle mode, and the range of angle should be $0^{\circ} \leq$ angle <360°.
- 9. If the result = 0, the zero flag will be On.
- 10. The TAN value obtained by **S** is calculated and stored in the register designated by **D**. The figure below offers the relation between radian and the result.

Program Example 1:

When the angle/radian flag = Off, the program will be in radian mode. When X0 = On, use the RAD value of binary floating point (D1, D0) and obtain its TAN value. The binary floating point result will be stored in (D11, D10).

Program Example 2:

When the angle/radian flag = On, the program will be in angle mode. When X0 = On, use the angle of (D1, D0) to obtain TAN value and store the binary floating point result in (D11, D10). $0^{\circ} \leq$ angle $<360^{\circ}$

Remarks:

API	N	Mne	emo	nic			0	pera	and	S		Function							
133	D	A	ASIN		Р		C	S D Arc Sine											
	ype	Bit De				Bit Devices					V	Word Devices							Program Steps
OP			Х	Υ	Ν	Λ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DASIN, DASINP: 6 steps
	S							*								*			
[D															*			

S: Source value (binary floating point) D: ASIN result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DASIN and DASINP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Operational error flag	M1793	M1873	M1953

See below for more information.

5. ASIN value = \sin^{-1} . The figure below offers the relation between the entered sin value and the result.

- 6. The decimal floating point of the SIN value designated by **S** should be in the range -1.0 ~ +1.0. If the value falls without the range, the operational error flag will be On, and the error code H'0E19 will be recorded.
- 7. If the result = 0, the zero flag will be On.

Program Example:

When X0 = On, obtain the ASIN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

API	M	nemo	nic		C)per	and	S							Fu	ncti	ion		
134	D	ACOS	S I	D	C	S	▣)		Arc Cosine									
	Type Bit Devices				es				V	Word Devices							Program Steps		
UP		X	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DACOS, DACOSP: 6 steps		
9	6			*								*							
])													*					

S: Source value (binary floating point) D: ACOS result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DACOS and DACOSP are applicable.
- 4. Flags:

U U			
	OX	OY	O100
Zero flag	M1808	M1888	M1968
Operational error flag	M1793	M1873	M1953

See below for more information.

5. ACOS value = \cos^{-1} . The figure below offers the relation between the entered cos value and the result.

- 6. The decimal floating point of the COS value designated by **S** should be in the range $-1.0 \sim +1.0$. If the value falls without the range, the operational error flag will be On, and the error code H'0E19 will be recorded.
- 7. If the result = 0, the zero flag will be On.

Program Example:

When X0 = On, obtain the ACOS value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

AF	Pl Mr	emo	nic		0	oera	nds								Fur	nctio	on		
13	5 D	ATAN	1	Ρ	3	SD				Arc Tangent									
	Type Bit Devices			es				Word Devices								Program Steps			
OP		Х	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DATAN, DATANP: 6 steps		
	S					*								*					
	D													*					

S: Source value (binary floating point) D: ATAN result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DATAN and DATANP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968

See below for more information.

5. ATAN value = \tan^{-1} . The figure below offers the relation between the entered tan value and the result

6. If the result = 0, the zero flag will be On.

Program Example:

When X0 = On, obtain the ATAN value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

Remarks:

API	Mn	emo	nic		0	oera	nds								Fur	nctio	on	
136	D	SINH	I F	D	3	D Hyperbolic Sine										Sine		
	Type OP		Bit De	evice	s				۷	Vord I	es					Program Steps		
UP		Х	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DSINH, DSINHP: 6 steps	
9	S					*								*				
]	D										*							

S: Source value (binary floating point) D: SINH result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DSINH and DSINHP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

5. SINH value = $(e^{s} - e^{-s}) / 2$

Program Example:

1. When X0 = On, obtain the SINH value of binary floating point (D1, D0) and store the binary floating point result

in (D11, D10).

- 2. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 3. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 4. If the result = 0, the zero flag will be On.

Remarks:

AP	l Mn	emo	nic		C)pera	and	S							Fu	Incti	ion
13	7 D (COSI	+ F	D	C	S D Hyperbolic Cosine										Cosine	
	Type Bit Devices								٧	Word Devices							Program Steps
OP				S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DCOSH, DCOSHP: 6 steps	
	S					*								*			
	D													*			

S: Source value (binary floating point) D: COSH result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DCOSH and DCOSHP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

5. COSH value = $(e^{s} + e^{-s}) / 2$

Program Example:

1. When X0 = On, obtain the COSH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

- 2. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 3. If the absolute value of the result < minimum floating point available, the borrow flag will be On.
- 4. If the result = 0, the zero flag will be On.

Remarks:

API	Mn	emo	nic		C	pera	ands	S				Function								
138	D	TANH	I F	D	C	S D Hyperbolic Tangent										Tangent				
	Type Bit Devices				s				۷	Word Devices							Program Steps			
OP		Х	Υ	Μ	S	F	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	DTANH, DTANHP: 6 steps			
	S			*								*								
[D													*						

S: Source value (binary floating point) D: TANH result

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. F refers to floating point input. Be sure to add a decimal point when using it.
- 3. Only 32-bit instructions DTANH and DTANHP are applicable.
- 4. Flags:

	OX	OY	O100
Zero flag	M1808	M1888	M1968
Borrow flag	M1809	M1889	M1969
Carry flag	M1810	M1890	M1970

See below for more information.

5. TANH value = $(e^{s} - e^{-s}) / (e^{s} + e^{-s})$

Program Example:

1. When X0 = On, obtain the TANH value of binary floating point (D1, D0) and store the binary floating point result in (D11, D10).

- 2. If the absolute value of the result > maximum floating point available, the carry flag will be On.
- 3. If the absolute value of the result < minimum floating point available, the borrow flag will be On
- 4. If the result = 0, the zero flag will be On.

Remarks:

API	Mn	emo	nic		C	Oper	and	s						Function								
215~ 217	D	LD#			C	<u>S1</u>)	S	Ð		Contact Logical Operation LD#												
	Type Bit Devices								V	Vord I	ices					Program Steps						
OP		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	LD#: 5 steps					
9	S ₁			*	*	*	*	*	*	*	*	*	*	*	DLD#: 7 steps							
C	S_2					*	*	*	*	*	*	*	*	*	*	*						

S₁: Data source device 1 S₂: Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. #: &, |, ^
- LD# instruction compares the content in S₁ and S₂. If the result is not "0", the instruction will be On. If the result is "0", instruction will be Off.
- 4. LD# can be connected directly with bus.

API No.	16-bit instruction	32-bit instruction	"	On" c	onditio	n		"Off" co	ondition	
215	LD&	DLD&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0
216	LD	D LD	S ₁		S ₂	≠0	S ₁		S ₂	=0
217	LD^	DLD^	S ₁	۸	S ₂	≠0	S ₁	٨	S ₂	=0

- 5. &: Logical 'AND' operation
- 6. |: Logical 'OR' operatioin
- 7. ^: Logical 'XOR' operation
- When 32-bit counters (C200 ~ C255) are used in this instruction for operation, please adopt 32-bit instruction (DLD#). If 16-bit instruction (LD#) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

- 1. When the result of logical AND operation of C0 and C10 \neq 0, Y10 will be On.
- 2. When the result of logical OR operation of D200 and D300 \neq 0 and X1 = On, Y11 will be On and held.
- 3. When the result of logical XOR operation of C201 and C200 \neq 0 or M2 = On, M50 will be On.

API	Mnemonic				С	pera	ands	S		Function							
218~ 220	20 D AND#			G	51	(S2	D		Contact Logical Operation AND							peration AND#	
	Туре		Bit Devices						N	Word Devices						Program Steps	
OP `		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	AND#: 5 steps
5	S ₁					*	*	*	*	*	*	*	*	*	*	*	DAND#: 7 steps
9	S ₂					*	*	*	*	*	*	*	*	*	*	*	

S₁: Data source device 1 S₂: Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. #: &, |, ^
- 3. AND# instruction compares the content in S_1 and S_2 . If the result is not "0", the instruction will be On. If the result is "0", instruction will be Off.
- 4. AND# is series connected to contacts:

API No.	16-bit instruction	32-bit instruction	"(On" co	onditio	n	"Off" condition				
218	AND&	D AND&	S ₁	&	S ₂	≠0	S ₁	&	S ₂	=0	
219	AND	D AND	S ₁		S ₂	≠0	S ₁		S ₂	=0	
220	AND^	DAND^	S ₁	٨	S ₂	≠0	S ₁	۸	S ₂	=0	

- 5. &: Logical 'AND' operation
- 6. |: Logical 'OR' operatioin
- 7. ^: Logical 'XOR' operation
- When 32-bit counters (C200 ~ C255) are used in this instruction for operation, please adopt 32-bit instruction (DAND#). If 16-bit instruction (AND#) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

- 1. When the result of logical AND operation of C0 and C10 \neq 0, Y10 will be On.
- 2. When the result of logical OR operation of D10 and D0 \neq 0 and X1 = Off, Y11 will be On and held.
- When X2 = On and the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit register D100 (D101) ≠ 0 or M3 = On, M50 will be On.

ΑΡΙ					C	Oper	and	S		Function								
221~ 223	D OR#				C	<u>S1</u>)	S	2		Contact Logical operation OR#								
<u> </u>	Type Bit Dev			vice	S				N	Word Devices							Program Steps	
OP		Х	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	OR#: 5 steps	
	S ₁				* * * *		*	*	*	*	*	*	*	*	DOR#: 7 steps			
	S ₂					*	*	*	*	*	*	*	*	*	*	*	1	

S₁: Data source device 1 S₂: Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. #: &, |, ^
- OR# instruction compares the content in S₁ and S₂. If the result is not "0", the instruction will be On. If the result is "0", instruction will be Off.
- 4. OR# is parallel connected to contacts:

API No.	16-bit instruction	32-bit instruction	"C	Dn" co	onditio	n	•	"Off" condition					
221	OR&	DOR&	S 1	&	S ₂	≠0	S 1	&	S ₂	=0			
222	OR	D OR	S 1		S ₂	≠0	S ₁		S ₂	=0			
223	OR^	DOR^	S 1	۸	S ₂	≠0	S ₁	۸	S ₂	=0			

- 5. &: Logical 'AND' operation
- 6. |: Logical 'OR' operatioin
- 7. ^: Logical 'XOR' operation
- When 32-bit counters (C200 ~ C255) are used in this instruction for operation, please adopt 32-bit instruction (DOR#). If 16-bit instruction (OR#) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

- 1. When X1 = On, or the result of logical AND operation of C0 and C10 \neq 0, Y0 will be On
- M60 will be On when X2 = On, M30 = On, or the result of logical OR operation of 32-bit register D10 (D11) and 32-bit register D20 (D21) ≠ 0, or the result of logical XOR operation of 32-bit register D200 (D201) and 32-bit counter C235 ≠ 0.

API	Mn	Mnemonic			C	Oper	and	s		Function							
224~ 230	D	LD* (<u>S1</u>)	Load Compare								mpare		
	Type Bit Device			evice	s				V	Word Devices							Program Steps
OP	у хілі м		Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	LD : 5 steps	
	S ₁			*	*	*	*	*	*	*	*	*	*	*	DLD : 7 steps		
	S ₂					*	*	*	*	*	*	*	*	*	*	*	

 S_1 : Data source device 1 S_2 : Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. %:=,>,<,<>, \leq , \geq
- LD[™] instruction compares the content in S₁ and S₂. Take API 224 (LD=) for example, if the result is "=", the instruction will be On. If the result is "≠", the instruction will be Off.
- 4. LD% can be connected directly with bus.

API No.	16-bit instruction	32-bit instruction	"On" condition	"Off" condition
224	LD=	DLD=	$S_1 = S_2$	$S_1 \neq S_2$
225	LD>	D LD>	$S_1 > S_2$	$S_1 \leq S_2$
226	LD<	D LD<	$S_1 < S_2$	$S_1 \ge S_2$
228	LD<>	DLD<>	$S_1 \neq S_2$	$S_1 = S_2$
229	LD<=	D LD<=	$S_1 \leq S_2$	$S_1 > S_2$
230	LD>=	D LD>=	$\mathbf{S_1} \ge \mathbf{S_2}$	$S_1 < S_2$

 When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, please adopt 32-bit instruction (DLD^{*}). If 16-bit instruction (LD^{*}) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

- 1. When the content in C10 = K200, Y10 will be On.
- 2. When the content in D200 > K-30 and X1 = n, Y11 will be On and held.
- 3. When the content in C200 < K678, 493 or M3 = On, M50 will be On.

ΑΡΙ	Mnemonic				C	Oper	and	s		Function							
232~ 238				C	<u>S1</u>)	S	Ð		AND Compare								
OP	Туре	E	Bit De	evice	S					Word Devices						Program Steps	
		Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	AND : 5 steps
9	S ₁					*	*	*	*	*	*	*	*	*	*	*	DAND : 7 steps
6	S_2					*	*	*	*	*	*	*	*	*	*	*	

S1: Data source device 1 S2: Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- $2. \quad \text{\%:=, >, <, <>, \leq, } \geq$
- 3. AND \times instruction compares the content in S_1 and S_2 . Take API 232 (AND=) for example, if the result is "=", the instruction will be On. If the result is " \neq ", the instruction will be Off.
- 4. AND * is series connected to contacts:

API No.	16-bit instruction	32-bit instruction	"On" condition	"Off" condition
232	AND=	D AND=	$S_1 = S_2$	$S_1 \neq S_2$
233	AND>	D AND>	$S_1 > S_2$	$S_1 \leq S_2$
234	AND<	D AND<	$S_1 < S_2$	$\mathbf{S_1} \ge \mathbf{S_2}$
236	AND<>	DAND<>	$S_1 \neq S_2$	$S_1 = S_2$
237	AND<=	D AND<=	$S_1 \leq S_2$	$S_1 > S_2$
238	AND>=	D AND>=	$S_1 \ge S_2$	$S_1 < S_2$

 When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, please adopt 32-bit instruction (DAND%). If 16-bit instruction (AND%) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

- 1. When X0 = On and the present value in C10 = K200, Y10 will be On.
- 2. When X1 = Off and the content in register D10 \neq K-10, Y11 will be On and held.
- 3. When X2 = On and the content in the 32-bit register D0 (D11) < 678, 493 or M3 = On, M50 will be On.

API	Mnemonic C			Operands				Function									
240~ 246	D	OR*	R* (<u>S1</u>)	S1 S2 OR Compare							npare			
OP	Туре		Bit Devices							Word Devices							Program Steps
U.		Х	Y	Μ	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	OR: 5 steps
S	S ₁ *			*	*	*	*	*	*	*	*	*	*	DOR : 7 steps			
S	2 * * * *				*	*	*	*	*	*	*	*					

S₁: Data source device 1 S₂: Data source device 2

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- $2. \quad \text{``:=,>,<,<>,} \leq , \geq$
- 3. OR \approx instruction compares the content in **S**₁ and **S**₂. Take API 240 (OR=) for example, if the result is "=", the instruction will be On. If the result is " \neq ", the instruction will be Off.
- 4. OR * is parallel connected to contacts:

API No.	16-bit instruction	32-bit instruction	"On" condition	"Off" condition
240	OR=	D OR=	$S_1 = S_2$	$S_1 \neq S_2$
241	OR>	DOR>	$S_1 > S_2$	$\bm{S_1} \leqq \bm{S_2}$
242	OR<	DOR<	$S_1 < S_2$	$S_1 \ge S_2$
244	OR<>	DOR<>	$S_1 \neq S_2$	$S_1 = S_2$
245	OR<=	DOR<=	$\bm{S_1} \leqq \bm{S_2}$	$S_1 > S_2$
246	OR>=	DOR>=	$S_1 \ge S_2$	$S_1 < S_2$

 When 32-bit counters (C200 ~ C255) are used in this instruction for comparison, please adopt 32-bit instruction (DOR^{*}). If 16-bit instruction (OR^{*}) is adopted, "program error" will occur, and the ERROR LED indicator on the panel of DVP-PM will flash.

Program Example:

- 1. When X1 = On and the present value in C10 = K200, Y0 will be On.
- 2. M60 will be On when X2 = On, M30 = On and the content in 32-bit register D100 (D101) \geq K100,000.

API	Mnemonic	Operands	Function				
256	CJN P	S	Negated Conditional Jump				
OF		Range	Program Steps				
S) P0 ~ P255		CJN, CJNP: 3 steps				

S: The destination pointer of conditional jump

Explanations:

- 1. Operand **S** can designate P.
- 2. Device P does not support V and Z index register modification.
- 3. When the contact before CJN is "On", the execution will continue in the next row of the program. When the contact before CJN is "Off", the execution will jump to where the designated P is.
- 4. When you do not want to execute a particular part of O100 main program in order to shorten the scan time and execute dual outputs, CJN instruction or CJNP instruction can be adopted.
- 5. When the program designated by pointer P is prior to CJN instruction, WDT time-out will occur, and O100 main program will stop running. Please use it carefully.
- 6. CJN instruction can designate the same pointer P repeatedly. However, CJN and CALL cannot designate the same pointer P; otherwise errors may occur
- 7. Actions of all devices while the negated conditional jump is being executed.
 - a) Y, M and S remain their previous status before the jumping takes place.
 - b) The 10ms timer which is executing stops.
 - c) General-purpose counter will stop counting, and general application instruction will not be executed.
 - d) If the "reset instruction" of the timer is executed before the jumping, the device will be in the reset status while the jumping is being executed.

Program Example 1:

- 1. When X0 = On, the program will automatically jump from address 0 to N (the designated label P1) and keep its execution. The addresses between 0 and N will not be executed.
- 2. When X0 = On, as an ordinary program, the program will keep on executing from address 0. CJN instruction will not be executed at this time.

API	М	nemonic	Operands	Function				
257		JMP	6	Unconditional Jump				
OF)		Range	Program Steps				
S)	P0 ~ P255		JMP: 3 steps				

 \boldsymbol{S} : The destination pointer of conditional jump

Explanations:

- 1. Operand **S** can designate P.
- 2. No contact to drive the instruction is required.
- 3. Device P does not support V and Z index register modification.
- 4. JMP instruction is similar to CJ instruction. The difference is that a contact before CJ instruction to drive it is required, but JMP instruction does not need such contact to drive it.
- 5. JMP does not support pulse execution JMPP instruction.

Program Example:

When the scan of program reaches address 0, either there is a contact (regardless of the contact status) or no contact before JMP, the program will automatically jump from address 0 to N (the designated label P1) and continue its execution. The addresses between 0 and N will not be executed.

API	Mnemonic	Funct	ion
258	BRET	Return to E	Bus Line
OP		Descriptions	Program Steps
N/A	A l	N/A	BRET: 1 steps

Explanations:

- 1. No operand. No contact to drive the instruction is required.
- 2. When BRET instruction is executed, the instructions which need a contact to be driven will be equivalent to being connected to a bus. Therefore, you can execute these instructions directly.

Program Example:

1. In general programs, the instructions behind the contact will be executed only when X0 = On.

2. When BRET instruction is added into the program, the instructions which need a contact to be driven will be equivalent to being connected to a bus and can be executed directly.

ΑΡΙ	М	Mnemonic O			oera	nds			Function								
259	MMOV P CS		Ð	D)	Magnifying Transfer with Sign Extension								th Sign Extension			
OP 1	Туре		Bit Devices						١	Word Devices						Program Steps	
01		X	Υ	М	S	Κ	Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	MMOV, MMOVP: 5 steps
5	S					*	*	*	*	*	*	*	*	*	*	*	
Γ					*	*	*	*	*	*	*	*					

S: Data source (16-bit) D: Data destination (32-bit)

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. MMOV instruction sends the data (including the sign bit) in ${f S}$ into ${f D}$.

Program Example:

When X23 = On, the data in D4 will be sent to D6 and D7.

b15 of D4 is sent to b15 ~ b31 of (D7, D6) as a negative value (same as it is in D4).

API	М	nemo	nic		C	Ope	rand	S		Function								
260		RMO	V	Ρ	S			\mathbf{D}		Reducing Transfer with Sign Holding								
OP	Туре		Bit Devices						١	Word Devices							Program Steps	
0.		X	Y	Μ	1 S	k	(Н	KnX	KnY	KnM	KnS	Т	С	D	V	Ζ	RMOV, RMOVP: 5 steps	
	S			k	*	*	*	*	*	*	*	*	*	*				
	D								*	*	*	*	*	*	*	*		

S: Data source (16-bit) D: Data destination (32-bit)

Explanations:

- 1. See the specifications of DVP-PM for its range of use.
- 2. RMOV instruction sends the data (without the sign bit) in S into D

Program Example:

When X24 = On, b31 (the most significant bit) of D7 (**S**) will be sent to b15 (the most significant bit) of D4 (**D**). Other less significant bits will then start to be sent in sequence. $b15 \sim b30$ of D7 will be ignored (not be sent).

MEMO

6.1 List of Motion Instructions and G-Code Instructions

Category	MON	Mnemonic	Function	Response Time	Page			
	00	DRV	High-Speed Positioning	20 ~ 25ms	6-5			
	01	LIN	2-Axis Synchronous Linear Interpolation (considering remaining distance)	20 ~ 22ms	6-7			
	02	CW	Clockwise Arc Movement (set the position of center)	20 ~ 24ms	6-9			
	03	CCW	Counterclockwise Arc Movement (set the position of center)	20 ~ 24ms	6-9			
	04	CW	Clockwise Arc Movement (set the radius)	20 ~ 24ms	6-11			
	05	CCW	Counterclockwise Arc Movement (set the radius)	20 ~ 24ms	6-11			
	06	TIM	Pause Time	-	6-13			
_	07	DRVZ	Return to Mechanical Zero Point (zero return)	20 ~ 25ms	6-14			
ctior	08	SETR	Set up Electrical Zero Point	-	6-17			
istru	09	DRVR	Return to Electrical Zero Point	20 ~ 25ms	6-18			
Motion Instruction	10	INTR	2-Axis Synchronous Single-Speed Interpolation (ignoring remaining distance)	20 ~ 25ms	6-19			
Mo	11	SINTR	Inserting Single-Speed Operation	20 ~ 25ms	6-20			
	12	DINTR	Inserting 2-Speed Operation	20 ~ 25ms	6-22			
	13	MOVC	Set up Linear Movement Compensation	-	6-24			
	14	CNTC	Arc Center Compensation	-	6-25			
	15	RADC	Arc Radius Compensation	-	6-26			
	16	CANC	Cancel Compensation	-	6-27			
	17	ABST	Set up Absolute Coordinate	-	6-28			
	18	INCT	Set up Relative Coordinate	-	6-28			
	19	SETT	Set up Current Position	-	6-29			
Category	G-Code	Mnemonic	Function		Page			
	0	DRV	High-Speed Positioning		6-30			
	1	LIN	2-Axis Synchronous Linear Interpolation (considering remainin	g distance)	6-34			
ion	2	CW	Clockwise Arc Movement (set the position of center)		6-37			
2 3 Code Instruction 3 5 4		CCW	Counterclockwise Arc Movement (set the position of center)		6-37			
		CW	Clockwise Arc Movement (set the radius)		6-38			
Code	3	CCW		6-38				
0-0	4	TIM	Pause Time					
	90	ABS	Set up Absolute Coordinate					
	91	INC	Set up Relative Coordinate		6-39			

6.2 Composition of Motion Instructions and G-Code Instructions

6.2.1 Motion Instructions

A motion instruction has two parts: the mnemonic and operand

N	Inemonic	Function of the instruction
Operand	Function	For which axis
Operand	Parameter	Parameter value

- "Function" part in the operand must not be ignored.
- "Parameter" part in the operand can be represented as follows:
 - Enter numeral + 32-bit register (DD). The operand parameters are all in 32 bits.
 For example: DRV X1000 FX1000 Y1000 FYDD1000
 - Enter K, H, D + numeral. The operand parameters are all in 16 bits.
 For example: DRV XK1000 FXH1000 YK1000 FYD1000
 - Enter numeral. The operand parameters can be 16 bits or 32 bits.
 For example: DRV X1000 FXH1000 YK1000 FY1000
- Program steps occupied by motion instruction
 - Mnemonic: 1 step.
 - Operand parameter with only numeral: 3 steps per operand
 - Operand parameter with K, H, D, DD + numeral: 2 steps per operand
 - Operand parameter with KK, HH + numeral: 3 steps per operand
- Format of a motion instruction:

1 MON (motion) No.

- 2 Mnemonic
- ③ Operand function: for which axis
- ④ Operand parameter: parameter value
- (5) Function of the MON instruction
- 6 Device type
- \bigcirc Device name
- 8 Parameter column marked with * is the device applicable for the operand.
- (9) Parameter column marked with * and in grey refers to V, Z index register modification is applicable.
- 10 Notes for the instruction

(495) 661-24-61, http://www.stoikltd.ru

107392 Москва ул.Просторная 7,

000 "HIIO "CTONK ATA",

Input of motion instruction

Some motion instructions are only composed of the instruction part (mnemonic), e.g. DRVZ, SETR, ABS and so on. However, most motion instructions are composed of the instruction part and many operands. No contact is required to be placed before a motion instruction.

6.2.2 G-Code Instructions

• A G-Code instruction has two parts: the mnemonic and operand

Mn	emonic	Function of the instruction
Operand	Function	For which axis
Operand	Parameter	Parameter value

- "Function" part in the operand must not be ignored
- Enter integer or decimal in numeral. The operand parameters are all in 32 bits.
 For example: G0 X100 Y100 or G0 X100.0 Y100.0
- Operand with decimal is 1,000 times larger than it being without decimal point.
 For example: G0 X100.0 Y100.0 = G0 X100000 Y100000 °
- Program steps occupied by G-Code instruction
 - Mnemonic: 1 step
 - Operand parameter with numeral: 3 steps per operand
- Format of a G-Code instruction:

- 1 G-Code instruction No.
- (2) Operand function: for which axis
- 3 Operand parameter: parameter value
- (4) Function of the G-Code instruction
- Input of G-Code instruction

Some G-Code instructions are only composed of the instruction part (mnemonic), e.g. G90, G91. However, most G-Code instructions are composed of the instruction part and many operands. No contact is required to be placed before a G-Code instruction.

How to use G-Code

(a) Many instructions can be placed in the same row in the program

For example: G91G01 X100.0 Y300.0 F500.0 M8 G04 X4.5;

(b) When the same group of instructions is placed in the same row in the program, the last instruction has the priority.

For example: G2 G0 G03 G01 X100.0 Y300.0 F500.0; => G1 X100.0 Y300.0 F500.0;

(c) Fast moving instruction (G00) does not need to use parameter V_{MAX} For example: G0 X100.2 Y500.0; (495) 661-24-61, http://www.stoikltd.ru

(d) Fast moving instruction (G0) and linear interpolation instruction (G1) have continuity. N0000 G0 X500.0 Y125.0: N0001 X-400.0 Y-500.0; => G0 X-400.0 Y-500.0; N0002 G1 X100.0 Y25.0 F200.0; X-200.0 Y50.0; N0003 => G1 X-200.0 Y50.0 F200.0; (e) Speed parameter F of G1 G2 G3 has continuity. N0000 G1 X500.0 Y125.0 F200.0; N0001 G3 X-40.0 Y-50.0 R100.0; => G3 X-40.0 Y-50.0 R100. F200.0; N0002 G2 X100.0 Y25.0 I400.5 F200.0; G1 X-200.0 Y50.0; => G1 X-200.0 Y50.0 F200.0; N0003 (f) G90 (absolute coordinate) and G91 (relative coordinate) have the top priority. G90 G1 X100.0 Y300.0 F500.0; => G90 G1 X100.0 Y300.0 F500.0; G1G90 X100.0 Y300.0 F500.0; => G90 G1 X100.0 Y300.0 F500.0; (g) Program code with or without spaces can all be identified. G1G91X500.0 Y125.0F200.0; => G1 G91 X500.0 Y125.0 F200.0; (h) Coordinates and speeds will all be converted into 32 bits. G1 X-125.5 F200.0; => G1 X-125500 F200000; (i) Coordinates and speeds with decimal (.) will be multiplied by 1,000. G1 X100 Y-125.5 F200.0; => G1 X100 Y-125500 F200000; The unit of pause instruction: 10ms (i) G4 X4.5 (pause for 4.5 seconds) => TIM 450; G4 X5 (pause for 5 seconds) => TIM500; G4 P4500 (pause for 4.5 seconds) => TIM450; P2509 (pause for 2.5 seconds) => TIM250; G4 (k) G-Codes DVP-PM does not support will be ignored. G21G54G1 X-125.5 F200.0; => G1 X-125500 F200000; G43G87G96 X250.5 F200.0; => G1 X250500 F200000;

In which the speed is the maximum moving speed (V_{MAX}) set in the parameter in DVP-PM.

6.3 Motion Instructions

MON	N	Inemon	ic		Operar	nds		Function			
00		DRV			=X(V1) Y	P₂ FY	V_2	High-Speed Positioning			
· ·			it Devic	es	Doub	le-Word De	evices	Notes			
OP 🔨		K	Н	D	KK	HH	DD	DRV instruction supports V, Z index register			
P ₁		*	*	*	*	*	*	modification on the devices.			
V ₁	V ₁ *		*	*	* *		*	See specifications of DVP-PM for the range of			
P ₂	P ₂ * * * *		*	* *							
V_2			*	You can place an M-Code instruction after DRV.							

Operands:

 P_1 : Target position on X axis V_1 : Moving speed on X axis

s **P**₂: Target position on Y axis

V₂: Moving speed on Y axis

Explanations:

- 1. Maximum V_1 , $V_2 = V_{MAX}$
- 2. Range of parameters: (16-bit) K = -32, 768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 3. Acceleration/deceleration time and bias speed can be set up in special D.
- 4. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 5. The operation:

- Start ___
- 6. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 7. If you set up the moving speed on axis, you have to set up the target position on the axis. However, if you set up the target position, it is not necessary to set up the moving speed. There are 8 parameter combinations for DRV instruction.

NO.	Instruction	Parameter combination
1		X P ₁
2		$X (P_1) F X (V_1)$
3		Y (P ₂)
4	DRV	$Y (\underline{P}_2) F Y (\underline{V}_2)$
5	DUN	$X (P_1) Y (P_2)$
6		$X (P_1) Y (P_2) FY (V_2)$
7		$X (P_1) F X (V_1) Y (P_2)$
8		$X \xrightarrow{P_1} FX \xrightarrow{V_1} Y \xrightarrow{P_2} FY \xrightarrow{V_2}$

8. If you set up the target position on the axis without setting up the moving speed, the operation will run at V_{MAX} .

Program Example:

1. DRV XK12345 YH7567 FYKK40000

In this example, the two axes will fast move to target position (K12,345, H7567) in linear movement. The target position can be an absolute coordinate or relative coordinate, which is determined by the instruction closest to DRV. The moving speed on X axis is not set (i.e. output by V_{MAX}), and Y axis outputs at 40K per second.

2. Moving path

3. Combination of operand:

DRV XKK-345289 FXD100 YDD10Z5 FYDD102 DRV XDD20 FXHH2345 YK456@V4 FYDD0 These instructions are legal. Device D is indirect set value.

Remarks:

D1822, D1823	Maximum speed of X axis. D1822 for low word; D1823 for high word.
D1824, D1825	Bias speed of X axis. D1824 for low word; D1825 for high word.
D1836	Acceleration time of X axis
D1837	Deceleration time of X axis
D1902, D1903	Maximum speed of Y axis. D1902 for low word; D1903 for high word.
D1904, D1905	Bias speed of Y axis. D1904 for low word; D1905 for high word.
D1916	Acceleration time of Y axis
D1917	Deceleration time of Y axis

MON	N	Inemon	ic	Operands					Function		
01		LIN		X P1 Y P2 F V					2-Axis Synchronous Linear Interpolation (considering remaining distance)		
	ре	Bi	t Dev	ices	6	Double-Word Device			Notes		
OP 🔨		K	Н		D	KK	HH	DD	LIN instruction supports V, Z index register		
P ₁	* * * * *		*	modification on the devices.							
P ₂		* * * * *		*	See specifications of DVP-PM for the range of						
F		*	*		*	* *		*	use.		

P1: Target position on X axis P2: Target position on Y axis V: Speed for 2-axis linear interpolation

Explanations:

- 1. Maximum $\mathbf{V} = V_{MAX}$.
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 3. Acceleration/deceleration time and bias speed can be set up in special D.
- 4. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 5. Individual output on X, Y axis:

Start ___

- 6. The interpolation speed is monitored by special registers: D1850 ~ D1851 for X axis; D1930 ~ D1931 for Y axis.
- 7. D1865 is for setting up stop mode with the consideration on the remaining distance (see Remarks for more information).
- 8. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 9. Target position is necessary, and moving speed is not necessary. There are 6 parameter combinations for LIN instruction.

NO.	Instruction	Parameter combination
1		X (P ₁)
2		X P ₁ F V
3	LIN	Y (P ₂)
4		YP ₂ FV
5		$X (P_1) Y (P_2)$
6		$X (P_1) Y (P_2) F (V)$

10. If you set up the target position on the axis without setting up the moving speed, the operation will run at V_{MAX} .

Program Example:

1. LIN XK12345 YH7567 FKK40000

In this example, the two axes fast move to (K12,345, H7567) in linear movement. The target position can be an absolute coordinate or relative coordinate, which is determined by the instruction closest to LIN. The linear movement operates at speed 40KHz.

2. Moving path:

- 3. Combination of operand:
 - LIN XKK-345289 YDD10Z5 FD100
 - LIN XDD20 Y456@V4

These instructions are legal. Device D is indirect set value.

Remarks:

D1822, D1823	Maximum speed of X axis. D1822 for low word; D1823 for high word.
D1824, D1825	Bias speed of X axis. D1824 for low word; D1825 for high word.
D1836	Acceleration time of X axis
D1837	Deceleration time of X axis
	Stop mode for OX0 ~ 99
D1865	(K1: completing unfinished distance after next activation => considering remaining distance
	K2: executing the next instruction after next activation
	Others: restart)
D1902, D1903	Maximum speed of Y axis. D1902 for low word; D1903 for high word.
D1904, D1905	Bias speed of Y axis. D1904 for low word; D1905 for high word.
D1916	Acceleration time of Y axis
D1917	Deceleration time of Y axis

MON	Mnemonic			Operands		Function				
02 03	CW / CCW		W	$\begin{array}{c} X (P_1) Y (P_2) \\ I (P_3) J (P_4) F (V) \end{array}$				Clockwise/Counterclockwise Arc Movement (set the position of center)		
· · ·	pe Bit De		it Devic	vices Double-Word De			evices	Notes		
OP 🔪	$\overline{\ }$	K	Н	D	KK	HH	DD	CW/CCW instruction supports V, Z index register		
P ₁		*	*	*	*	*	*	modification on the devices.		
P ₂	*		*	*	*	*	*	You can place an M-Code instruction after		
P ₃	* * * * *		*	CW/CCW.						
P ₄	* * * * *		*							
V		*	*	* * *		*				

- P1: Target position of arc on X axis P2: Target position of arc on Y axis P3: Center of arc on X axis
- P4: Center of arc on Y axis V: Arc interpolation speed

Explanations:

- 1. $V_{MAX} = 500 \text{KHz}.$
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 3. Acceleration/deceleration time and bias speed can be set up in special D.
- 4. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 5. Individual output on X, Y axis:

6. 2-axis synchronous interpolation:

- 7. If the target position is not in the trajectory of the center and starting point, DVP-PM will automatically set up the termination of the arc at the contact point of the arc and tangent line according to the target position set up by the user.
- 8. The 16-bit parameter devices and 32-bit parameter devices can be used together.

 Target position is necessary, and moving speed is not necessary. There are 18 parameter combinations for CW/CCW instruction.

NO.	Instruction	Parameter combination
1		$X (P_1) (P_3)$
2		$X (P_1) (P_3) F (V)$
3		$X (P_1) J (P_4)$
4		$X (P_1) J (P_4) F (V)$
5		$X (P_1) (P_3) J (P_4)$
6		$X (P_1) (P_3) J (P_4) F (V)$
7		$Y (\underline{P}_2) (\underline{P}_3)$
8		$Y (\underline{P}_2) (\underline{P}_3) F (\underline{V})$
9	CW/CCW	$Y (\underline{P}_2) J (\underline{P}_4)$
10		$Y (\underline{P}_2) J (\underline{P}_4) F (\underline{V})$
11		$Y (\underline{P}_2) (\underline{P}_3) J (\underline{P}_4)$
12		$Y (\underline{P}_2) (\underline{P}_3) J (\underline{P}_4) F (\underline{V})$
13		$X (P_1) Y (P_2) I (P_3)$
14		$X (P_1) Y (P_2) I (P_3) F (V)$
15		$X (P_1) Y (P_2) J (P_4)$
16		$X (P_1) Y (P_2) J (P_4) F (V)$
17		$X (P_1) Y (P_2) I (P_3) J (P_4)$
18		$X (P_1) Y (P_2) I (P_3) J (P_4) F (V)$

^{10.} If you set up the target position on the axis without setting up the moving speed, the operation will run at V_{MAX} .

11. The arc movement can reach 360°.

Program Example:

 Set the program in absolute coordinate, using CW clockwise arc instruction, target position of arc as (10000, 10000), the center at (2500, 2500) relative to the starting point of the arc, and output speed as 2,000Hz.

The program should be written as:

ABS

CW XK10000 YK10000 IK2500 JK2500 FK2000

2. Combination of parameters: The instructions below can also adopt indirect set value and are legal.

CW XK123 YDD10V7 I450000 JD10 FKK50000 CCW XHAABB YDD100 IK4500 JK3500 FK4000@V5

MON	Μ	Inemon	ic		Operands			Function		
04 05	CW/CCW X P			Y P2 R F V			Clockwise/Counterclockwise Arc Movement (set the radius)			
· · ·	pe	Bit Devices		Double-Word Devices			Notes			
		K	Н	D	KK	HH	DD	CW/CCW instruction supports V, Z index register		
P ₁		*	*	*	*	*	*	modification on the devices.		
P ₂		*	*	*	*	*	*	You can place an M-Code instruction after DRV.		
L	* * * * * *									
V	* * * * * *									

- P1: Target position of arc on X axis P2: Target position of arc on Y axis
- L: Radius of arc (R = "+" when radian < 180° ; R = "-" when radian > 180°)
- V: Speed for arc to move to target position

Explanations:

- 1. Maximum $\mathbf{V} = V_{MAX}$.
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 3. Acceleration/deceleration time and bias speed can be set up in special D.
- 4. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 5. 2-axis synchronous interpolation:

CCW Counterclockwise Operation CW Clockwise Operation

- 6. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 7. Target position is necessary, and moving speed is not necessary. There are 6 parameter combinations for CW/CCW instruction.

NO.	Instruction	Parameter combination
1		
2		
3	CW/CCW	YP ₂ RL
4		YP ₂ R F V
5		$X (P_1) Y (P_2) R (L)$
6		$X (P_1) Y (P_2) R (P_1) F (V)$

8. If you set up the target position on the axis without setting up the moving speed, the operation will run at V_{MAX}

Program Example:

1. Set the program in absolute coordinate, using CW clockwise arc instruction, target position of arc as (10000,

10000), radius = 500, radian < 180° (+), and speed at 1,000 pulses per second.

The program should be written as:

ABS

CW XK10000 YK10000 RK5000 FK1000

- 2. For how to set up arc radius compensation, please refer to MON 15 RADC.
- 3. The arc movement cannot reach 360°.
- 4. Combination of parameters: The instructions below can also adopt indirect set value and are legal.

CW XK123 YDD10 RKK450000 FKK50000

CCW XHAABB R350000 F400000@V5

MON	Μ	Inemoni	ic	Operands						Function			
06		TIM		Ţ			T Pause Time		Pause Time				
	ре	Bit Devices		Double-Word Devices		S	Notes						
OP 🔨		K	H	1	D	KK	HH	1 C	D	TIM instruction supports V, Z index register			
Т	* * * * *			*	modification on the devices.								
										 See the specifications of DVP-PM for the range of use. You can place an M-Code instruction after DBV. 			

T: Pause time (unit: 10ms => K100 refers to pausing for 1 second)

Explanations:

1. TIM instruction is used for setting up the pause time between instruction and instruction.

Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.

Program Example:

The program should be written as follow:

MON	Mnemonic	Operands	Function				
07	DRVZ	Z N/A Return to Mechanical Zero Point (Zero Return)					

Explanations:

- 1. You can place an M-Code instruction after DRVZ.
- 2. Before enabling DRVZ, you have to first set up its parameters as follow:
 - a) Zero return speed (V_{RT}): The speed for returning to mechanical zero point. V_{RT} cannot be modified during the execution. Range: 0 ~ 500KHz. Limitation: $V_{MAX} > V_{RT} > V_{BIAS}$
 - b) Zero return deceleration speed (V_{CR}): The speed generated when the zero point signal is triggered during the operation. In order to accurately position at the zero point, it is suggested that you set V_{CR} at low speed. Range: 0 ~ 500KHz. Limitation: $V_{CR} < V_{RT}$. V_{CR} cannot be modified during the execution.
 - c) Acceleration time: The time spent on accelerating to $V_{\text{RT}}.$
 - d) Deceleration time: The time spent on decelerating from V_{RT} to V_{CR} and from V_{CR} to zero speed.
 - e) Number of zero point signals (PG0) in zero return (N): Reference signal for the motor to decelerate and stop.
 When a DOG signal is detected, the program will start to count the number of PG0 pulses for the reference to stop. Range: 0 ~ +32,767 PLS.
 - f) Number of pulse signals in zero return (P): Reference signal for the motor to decelerate and stop. Positive set values are for forward-running pulses, and negative set values are for reverse-running pulses. Range: -32,768 ~ 32,767.
 - g) Disabling zero return on X, Y axis.
- 3. Parameters below should be set up in special registers. D1816 for X axis; D1896 for Y axis.
 - a) Zero return direction
 - b[8] = 0: Decreasing towards current position (CP)
 - b[8] = 1: Increasing towards current position (CP)
 - b) Zero return mode
 - b[9] = 0: Normal mode
 - b[9] = 1: Overwrite mode
 - c) Detecting DOG falling edge in zero return
 - b[10] = 0: On
 - b[11] = 1: Off
 - d) There are four zero return modes in total. See 3.12 for how they work.

Program Example:

When X0 = On, DRVZ instruction in OX00 will be executed, and the zero return on Y axis will be disabled. X axis accelerates for 100ms to V_{RT} (500KHz), searching for the mechanical zero point. When DOG signal is triggered, X axis will decelerate for 100ms to 10KHz. When the falling edge of DOG signal is triggered, the zero return mode will be in normal mode, starting to count the number of PG0 signals (N) and number of pulse signals in zero return (P) until the counting and the positioning is completed.

X0			
	MOVP	H8000	D1868
	OUT	M1074	
хо —И	MOVP	H0	D1846
	OX0		
	BRET		
	DMOV	K500000	D1828
	DMOV	K10000	D1830
	MOV	K100	D1836
	MOV	K100	D1837
	MOV	K0	D1832
	MOV	K0	D1833
	MOV	H0030	D1816
	SET	M1825	
	DRVZ		
	M2	ĺ	

Remarks:

1. Relevant flags:

M1745	Disabling zero return of X axis in OX
M1825	Disabling zero return of Y axis in OX
M1074	Enabling OX motion subroutine

=	
D1816	Parameter setting of X axis
D1846	Operation instruction for X axis
D1868	Setting up the No. of OX
D1828	Zero return speed of X axis: V_{RT} (low word)
D1829	Zero return speed of X axis: V_{RT} (high word)
D1830	Zero return deceleration speed of X axis: V_{CR} (low word)
D1831	Zero return deceleration speed of X axis: V_{CR} (high word)
D1832	Number of zero point signals at X axis: N
D1833	Supplemented distance at X axis: P
D1836	Acceleration time of X axis: T _{ACC}
D1837	Deceleration time of X axis: T _{DEC}

D1896	Parameter setting of Y axis
D1908	Zero return speed of Y axis: V_{RT} (low word)
D1909	Zero return speed of Y axis: V_{RT} (high word)
D1910	Zero return deceleration of Y axis (low word)
D1911	Zero return deceleration of Y axis (high word)
D1912	Number of zero point signals at Y axis: N
D1913	Supplemented distance at Y axis: P
D1916	Acceleration time of Y axis: T _{ACC}
D1917	Deceleration time of Y axis: T _{DEC}

MON	Mnemonic	Operands	Function
08	SERT	N/A	Set up Electrical Zero Point

Explanations:

- 1. You can place an M-Code instruction after SERT.
- 2. When SETR is executed, you can set the current position of X, Y axis as the electrical zero point. That is, you can move the content in the current position register into the register for electrical zero point.

Program Example:

The program should be written as:

Remarks:

D1848	Current position of X axis: CP (low word)
D1849	Current position of X axis: CP (high word)
D1866	Electrical zero point address on X axis (low word)
D1867	Electrical zero point address on X axis (high word)
D1928	Current position of Y axis: CP (low word)
D1929	Current position of Y axis: CP (high word)
D1946	Electrical zero point address on Y axis (low word)
D1947	Electrical zero point address on Y axis (high word)

MON	Mnemonic	Operands	Function			
09	DRVR	N/A	Return to Electrical Zero Point			

Explanations:

- 1. You can place an M-Code instruction after DRVR.
- 2. When DRVR instruction is executed, X and Y axes will return to electrical zero point at V_{MAX} (0 ~ 500KHz).
- 3. Moving path:

Program Example:

The program should be written as:

Remarks:

	-
D1822	Maximum speed of X axis: V_{MAX} (low word)
D1823	Maximum speed of X axis: V _{MAX} (high word)
D1848	Current position of X axis: CP (low word)
D1849	Current position of X axis: CP (high word)
D1866	Electrical zero point address on X axis (low word)
D1867	Electrical zero point address on X axis (high word)
D1902	Maximum speed of Y axis: V_{MAX} (low word)
D1903	Maximum speed of Y axis: V_{MAX} (high word)
D1928	Current position of Y axis: CP (low word)
D1929	Current position of Y axis: CP (high word)
D1946	Electrical zero point address on Y axis (low word)
D1947	Electrical zero point address on Y axis (high word)

MON	М	nemoni	ic Operands						Function			
10		INTR		X P ₁ Y P ₂ F V					2-Axis Synchronous Single-Speed Interpolation (ignoring remaining distance)			
	Type Bit De				s Double-Word Device				Notes			
OP 🔨		K	Н		D	KK	HH	DD	INTR instruction supports V, Z index register			
P ₁		*	*		*	*	*	*	modification on the devices.			
P ₂		* * * * * * * * * * * *		*	See specifications of DVP-PM for the range of							
F				*	Use.							
									You can place an M-Code instruction after INTR.			

P1: Target position of arc on X axis P2: Target position of arc on Y axis

V: Speed for 2-axis linear interpolation

Explanations:

- 1. Maximum $\mathbf{V} = V_{MAX}$.
- 2. Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 3. Acceleration/deceleration time and bias speed can be set up in special D.
- 4. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 5. Individual output on X, Y axis:

Start ____

- 6. The interpolation speed is monitored by special registers: D1850 ~ D1851 for X axis; D1930 ~ D1931 for Y axis.
- 7. The functions of LIN and INTR are the same, except that LIN can set up stop mode.
- 8. Target position is necessary, and moving speed is not necessary. There are 6 parameter combinations for INTR instruction.

NO.	Instruction	Parameter combination
1		X P ₁
2		
3	INTR	Y (P ₂)
4		YP2 FV
5		$X (P_1) Y (P_2)$
6		$X (P_1) Y (P_2) F (V)$

Remarks:

See Remarks of LIN instruction for relevant special registers.

11 SINTR X P ₁ F V Y P ₂ F V Inserting Single-Speed Operation	MON	N	Inemoni	ic	C	perands			Function
	11		SINTR				-		Inserting Single-Speed Operation
Type Bit Devices Double-Word Devices Notes		Type Bit Devices Double-Wor					le-Word D	evices	Notes
OP K H D KK HH DD SINTR instruction supports V, Z index register			K	Н	D	KK	HH	DD	SINTR instruction supports V, Z index register
P ₁ * * * * * * modification on the devices.	P ₁		*	*	*	*	*	*	
P ₂ * * * * * * * See specifications of DVP-PM for the range of	P ₂		*	*	*	*	*	*	See specifications of DVP-PM for the range of
F * * * USE. Image: Structure of the structur	F		*	*	*	*	*	*	 use. You can place an M-Code instruction after SINTR

P1: Additional distance on X axis P2: Additional distance on Y axis V: Operation speed

Explanations:

- 1. Maximum $\mathbf{V} = V_{MAX}$.
- 2. The first operand in SINTR can be inserting single-speed positioning on X axis or Y axis.
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 4. Acceleration/deceleration time and bias speed can be set up in special D.
- 5. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 6. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 7. The operation:

- 8. When SINTR instruction is enabled, the operation speed will start from V_{BIAS} and accelerate to V(I) and then operate stably. When the execution encounters triggered DOG signals, it will follow the additional distance set in the program and continue the operation.
- 9. The target position and moving speed have to be set up. There are 2 parameter combinations for SINTR instruction.

NO.	Instruction	Parameter combination
1	SINTB	X P ₁ F V
2	SINTA	Y P ₂ F V

Program Example:

1. When X0 = On, SINTR instruction in program OX00 will be executed. X axis accelerates to single-speed

operation at 500KHz in 100ms. When the DOG signal is triggered, the additional 500,000 pulses output set in the program and the positioning will be completed.

2. Program OX00 and SINTR instruction will be disabled.

Remarks:

- 1. Even you adopt absolute coordinate system in the program, once SINTR is executed, the displacement will be regarded as additional distance.
- 2. Relevant special registers:

D1848	Current position of X axis: CP (low word)
D1849	Current position of X axis: CP (high word)
D1836	Acceleration time of X axis: T _{ACC}
D1837	Deceleration time of X axis: T _{DEC}

MON	Ν	Inemon	ic		Operands			Function	
12		DINTR $X (P_1) F (V_1) F (V_2)$ $Y (P_2) F (V_1) F (V_2)$					Inserting 2-Speed Operation		
	ре	Bi	t Devi	ces	Doub	e-Word De	evices	Notes	
OP 🔨		K	Н	D	KK	HH	DD	DINTR instruction supports V, Z index register	
P ₁		*	*	*	*	*	*	modification on the devices.	
P ₂		*	*	*	*	*	*	See specifications of DVP-PM for the range of	
V ₁		*	*	*	*	*	*	USE.	
V ₂		*	*	*	*	*	*	You can place an M-Code instruction after DINTR.	

P1: Additional distance on X axis P2: Additional distance on Y axis V1: The first speed

V₂: The second speed

Explanations:

- 1. Maximum V_1 , $V_2 = V_{MAX}$.
- 2. The first operand in DINTR can be inserting 2-speed positioning on X axis or Y axis.
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 4. Acceleration/deceleration time and bias speed can be set up in special D.
- 5. Acceleration/deceleration time increases or decreases in proportional to the setting of V_{MAX} .
- 6. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 7. The operation:

- 8. When DINTR instruction is enabled, the operation speed will start from V_{BIAS} and accelerate to V(I) and then operate stably. When the execution encounters triggered DOG signals, it will further accelerate to V(II) and follow the additional distance set in the program and continue the operation.
- 9. The target position and moving speed have to be set up. There are 2 parameter combinations for SINTR instruction.

NO.	Instruction	Parameter combination
1		$X (P_1) F (V_1) F (V_2)$
2		$Y (P_2) F (V_1) F (V_2)$

Program Example:

- When X0 = On, DINTR instruction in program OX00 will be executed. X axis accelerates to the first speed 250KHz in 100ms and operate at the speed stably. When the DOG signal is triggered, it will further accelerate to the second speed 500KHz, and the additional 500,000 pulses output set in the program and the positioning will be completed.
- 2. When X0 = Off, program OX00 and DINTR instruction will be disabled.

Remarks:

D1848	Current position of X axis: CP (low word)
D1849	Current position of X axis: CP (high word)
D1836	Acceleration time of X axis: T _{ACC}
D1837	Deceleration time of X axis: T _{DEC}

MON	Μ	nemonio	;		Оре	erands				Function
13		MOVC			X [1) Y (L ₂)			Set	t up Linear Movement Compensation
	ре	Bit	Dev	vices	5	Doubl	e-Wo	rd De	vices	Notes
		K	Η		D	KK	H	Η	DD	MOVC instruction supports V, Z index register
L ₁		*	*		*	*	*		*	modification on the devices.
L ₂		*	*		*	*	*		*	See specifications of DVP-PM for the range of
										 use. You can place an M-Code instruction after MOVC.

 L_1 : Compensation on X axis L_2 : Compensation on Y axis

Explanations:

- 1. You can set up only the compensation on X axis, e.g. MOVC XDD0.
- When MOVC instruction is executed, the set compensation will be written automatically into special registers: D1708 ~ D1709 for X axis; D1724 ~ D1725 for Y axis.
- 3. The linear movement compensation can be adopted in DRV, LIN and TNTR instructions.
- 4. Write the compensation value into the compensation register and execute linear movement instructions, and the compensation will be executed.
- 5. Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 6. The 16-bit parameter devices and 32-bit parameter devices can be used together.

NO.	Instruction	Parameter combination
1	MOVC	X L ₁
2		

Remarks:

D1708	Compensation value of X-axis moving distance (low word)
D1709	Compensation value of X-axis moving distance (high word)
D1724	Compensation value of Y-axis moving distance (low word)
D1725	Compensation value of Y-axis moving distance (high word)

MON	Μ	Inemon	ic	Ор	erands			Function		
14		CNTC) $J(\underline{L}_2)$		Arc Center Compensation			
	ре	Bi	t Devi	ces	Doubl	e-Word	Devices	Notes		
		K	Н	D	KK	HH	DD	CNTC instruction supports V, Z index register		
L ₁		*	*	*	*	*	*	modification on the devices.		
L_2		*	*	*	*	*	*	See specifications of DVP-PM for the range of		
	•							use. • You can place an M-Code instruction after CNTC.		

 L_1 : Compensation of center on X axis L_2 : Compensation of center on Y axis

Explanations:

- When CNTC instruction is executed, the set compensation will be written automatically into special registers: D1710 ~ D1711 for X axis; D1726 ~ D1727 for Y axis.
- 2. The arc center compensation can be adopted in CW and CCW instructions.
- 3. Write the compensation value into the compensation register and execute arc instructions, and the compensation will be executed.
- 4. Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 5. The 16-bit parameter devices and 32-bit parameter devices can be used together.

Remarks:

D1710	Compensation value of X-axis center (low word)
D1711	Compensation value of X-axis center (high word)
D1726	Compensation value of Y-axis center (low word)
D1727	Compensation value of Y-axis center (high word)

MON	N	Inemoni	ic		Оре	erands				Function
15		RADC			R					Arc Radius Compensation
	ре	Bi	t De	vice	s	Doubl	e-Wor	rd De	evices	Notes
OP 🔨	$\overline{\ }$	K	H	1	D	KK	HH	-	DD	RADC instruction supports V, Z index register
L		*	*	k	*	*	*		*	modification on the devices.
										 See specifications of DVP-PM for the range of use. You can place an M-Code instruction after RADC.

L: Compensation of arc radius on X-Y axis

Explanations:

- When RADC instruction is executed, the set compensation will be written automatically into special registers D1712 ~ D1713.
- 2. The arc radius compensation can be adopted in CW and CCW instructions.
- 3. Write the compensation value into the compensation register and execute arc instructions, and the compensation will be executed.
- 4. Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 5. The 16-bit parameter devices and 32-bit parameter devices can be used together.

Remarks:

D1712	Compensation radius of X-axis arc (low word)
D1713	Compensation radius of X-axis arc (high word)

MON	Mnemonic	Operands	Function
16	CANC	N/A	Cancel Compensation

Explanations:

- 1. You can place an M-Code instruction after CANC.
- When CANC instruction is executed, all motion compensations will be cancelled, i.e. special registers D1708 ~ D1709, D1724 ~ D1725, D1710 ~ D1711, D1726 ~ D1727, and D1712 ~ D1713 will all be cleared automatically.

Remarks:

Compensation value of X-axis moving distance (low word)
Compensation value of X-axis moving distance (high word)
Compensation value of Y-axis moving distance (low word)
Compensation value of Y-axis moving distance (high word)
Compensation value of X-axis center (low word)
Compensation value of X-axis center (high word)
Compensation value of Y-axis center (low word)
Compensation value of Y-axis center (high word)
Compensation radius of X-axis arc (low word)
Compensation radius of X-axis arc (high word)

MON	Mnemonic	Operands	Function
17	ABST	N/A	Set up Absolute Coordinate
MON	Mnemonic	Operands	Function

Explanations:

- 1. Executing ABST instruction: Starting from 0, when the target position > current position, the motor will run forwardly. When the target position < current position, the motor will run reversely.
- 2. Executing INCT instruction. Calculating the distance created by the motor from the current position. When the relative coordinate is positive, the motor will run forwardly. When the relative coordinate is negative, the motor will run reversely.
- 3. The arc center coordinate (I, J), radius (R) and the displacement coordinates set by SINT and DINT instructions are all regarded as additional values.

Program Example:

When DVP-PM switches from MANU to AUTO, if ABST or INCT is not designated in the program, the default setting for the program will be in ABST (relative coordinate) system. After INCT instruction is executed, the motion instructions starting from the next row (e.g. DRV, LIN, CW, CCW) will be operated in relative coordinate system. The program should be written as:

MON	Mnemonic		ic	Operands			Function	
19	SETT			$X (P_1) Y (P_2)$			Set up Current Position	
	ре	Bi	t Devi	evices Do		uble-Word Devices		Notes
OP 🔨		K	Н	D	KK	HH	DD	SETT instruction supports V, Z index register
P ₁		*	*	*	*	*	*	modification on the devices.
P ₂		*	*	*	*	*	*	See specifications of DVP-PM for the range of
							·	use. ■ You can place an M-Code instruction after SETT.

P1: Current position on X axis P2: Current position on Y axis

Explanations:

- 1. You can set up only the current position on X axis, e.g. SETT XDD0.
- When SETT instruction is executed, the set current position will be written automatically into the special register: D1848 ~ D1849 for X axis; D1928 ~ D1929 for Y axis.
- Range of parameters: (16-bit) K = -32,768 ~ 32,767; H = 0 ~ FFFF; D = 0 ~ 9,999; (32-bit) KK = -2,147,483,648
 ~ 2,147,483,647; HH = 0 ~ FFFFFFF; DD = 0 ~ 9,998.
- 4. The 16-bit parameter devices and 32-bit parameter devices can be used together.
- 5. When SETT instruction is executed, the value in the current position register will be modified into the value designated by the instruction. Therefore, the mechanical zero point and electrical zero point will be changed.
- 6. There are 2 parameter combinations for SETT instruction.

NO.	Instruction	Parameter combination
1	OETT	X (P ₁)
2	SETT	$X (P_1) Y (P_2)$

Program Example:

The program should be written as:

Remarks:

D1848	Current position of X axis: CP (low word)					
D1849	Current position of X axis: CP (high word)					
D1928	Current position of Y axis: CP (low word)					
D1929	Current position of Y axis: CP (high word)					
6.4 G-Code Instructions

	Mnemonic	Operands	Function
G-Code	G0	$X (P_1) Y (P_2) Z (P_3)$	High-Speed Positioning (I)

Operands:

P₁: Target position on X axis **P**₂: Target position on Y axis

P₃: Target position on Z axis (built-in 3rd axis)

Explanations:

- 1. Range of parameters: -2,147,483,648 ~ 2,147,483,647 (without decimal point); -2,147,483.648 ~ 2,147,483.647 (with decimal point)
- 2. For relevant special registers, see Remarks of MON 00 DRV.
- 3. When G0 instruction is executed, the moving speed will be fixed at maximum speed V_{MAX} .
- 4. The settings of position have continuity. See Remarks.
- 5. Acceleration/deceleration time and bias speed can be set up in special D.
- 6. Acceleration/deceleration time and bias speed increase or decrease in proportional to the setting of V_{MAX} .
- 7. The operation:

8. DVP-PM does not support 3-axis synchronous control; therefore, you have to design a 2-axis high-speed interpolation in X-Y axis and Z axis for independent high-speed movement. For the safety of the mechanical operation, when G0 instruction is executed, Z-axis high-speed movement will be executed first before the X-Y-axis high-speed interpolation. That is to say, when DVP-PM is executing G0 instruction with X-Z, Y-Z, X-Y-Z combinations, the program will automatically be divided as:

G0	$Z P_3$		(A)
G0	$X \mathbf{P}_1$	YP_2	(B)

See Remarks for more explanations on row (A) and (B)

Remarks:

1. The settings of position have continuity, for example:

G0 X500.0 Y500.0

X1000.0 Y1000.0

After the row with G0 instruction is executed, the program will execute the next row. The second row of the program will reach the target position automatically by G0.

2. The program example when G0 adopts Z-axis target position (built-in 3rd axis control):

G0 X1000 Y1000 **Z100**

After the compilation:

G0 **Z100**; ... (A)

G0 X1000 Y1000; ... (B)

(A) is the first executed, and at this time Z axis fast moves to position K100. Next (B) is executed and moves to target position (1000, 1000) at the maximum speed.

	Mnemonic	Operands	Function
G-Code	G0	Z (P ₃)	High-Speed Positioning (3 rd axis control)

Remarks:

The program example when G0 adopts Z-axis target position (built-in 3rd axis control):

G0 **Z100**; ... (A)

(A) is first executed. At this time, DVP-PM writes target position K100 on Z axis into the 32-bit D1328. The moving speed for G0 has already existed in the program. Therefore, write K-1 into the 32-bit D1330 (for the program to determine whether it is G0 or G1). After that, call and execute P255 subroutine.

Operation of step (A):

P255 is a subroutine for controlling the 3rd axis (e.g. pen lifting, clipping and release, and so on) compiled from the data in 32-bit D1328 and 32-bit D1330.

When you use Z-axis control, please do not use D1328 ~ D1331 and P255 repeatedly.

	Mnemonic	Operands	Function
G-Code	G0	X (P ₁) Y (P ₂)	High-Speed Positioning (II)

Explanations:

See Remarks of MON 00 DRV for relevant special registers.

	Mnemonic	Operands	Function
G-Code	G1	$X(P_1) Y(P_2) Z(P_3) F(V)$	2-Axis Synchronous Linear Interpolation
	$\mathbf{X} = \mathbf{Y} + $	(considering remaining distance)	

- P1: Target position on X axis P2: Target position on Y axis
- **P**₃: Target position on Z axis (built-in 3rd axis control) **V**

V: Speed for 2-axis linear interpolation

Explanations:

- Range of P₁, P₂: -2,147,483,648 ~ 2,147,483,647 (without decimal point); -2,147,483.648 ~ 2,147,483.647 (with decimal point)
- 2. Range of V: 0 ~ 500,000 (without decimal point); 0 ~ 500.0 (with decimal point)
- 3. The speed has continuity. See Remarks.
- 4. For how to position, see MON 01 LIN.
- 5. DVP-PM does not support 3-axis synchronous control; therefore, you have to design a 2-axis high-speed interpolation in X-Y axis and Z axis for independent high-speed movement. For the safety of the mechanical operation, when G1 instruction is executed, Z-axis movement will be executed first before the X-Y-axis interpolation. That is to say, when DVP-PM is executing G1 instruction with X-Z, Y-Z, X-Y-Z combinations, the program will automatically be divided as:
 - G1 Z **P**3 F**V**

G1 X \mathbf{P}_1 Y \mathbf{P}_2 FV (B)

See Remarks for more explanations on row (A) and (B)

(A)

Remarks:

1. The settings of speed have continuity, for example:

G1 X100 Y100 F200;

X200 Y200;

After the row with G1 instruction is executed, the program will execute the next row. The second row of the program will reach the target position automatically by speed F200 set in the first row.

2. The program example when G1 adopts Z-axis target position (built-in 3rd axis control):

G1 X1000 Y1000 **Z100** F200;

After the compilation:

G1 **Z100** F200; ... (A)

G1 X1000 Y1000 F200; ... (B)

(A) is first executed, and at this time Z axis fast moves to target position K100 at speed K200. Next (B) is executed and moves to target position (1000, 1000) at speed K200.

	Mnemonic	Operands	Function
G-Code	G1	ZP ₃ FV	The 3 rd Axis Control

Remarks:

The program example when G1 adopts Z-axis target position (built-in 3rd axis control):

G0 **Z100 F200**; ... (A)

(A) is first executed. At this time, DVP-PM writes target position K100 on Z axis into the 32-bit D1328 and 2-axis linear interpolation speed K200 into the 32-bit D1330. After that, call and execute P255 subroutine.

Operation of step (A):

P255 is a subroutine for controlling the 3rd axis (e.g. pen lifting, clipping and release, and so on) compiled from the data in 32-bit D1328 and 32-bit D1330.

Using Z-axis control, please do not use D1328 ~ D1331 and P255 repeatedly.

	Mnemonic	Operands	Function
G-Code	G1 X (P1) Y (P2)		2-Axis Synchronous Linear Interpolation
		(considering remaining distance)	

Explanations:

See Remarks of MON 01 LIN for how to position.

	Mnemonic	Operands	Function
G-Code	G2	$X (P_1) Y (P_2) I (P_3)$	Clockwise/Counterclockwise Arc Movement
	G3	J P4 F V	(set the position of center)

 P_1 : Target position of arc on X axis P_2 : Target position of

P₂: Target position of arc on Y axis P₃: Center of arc on X axis

P₄: Center of arc on Y axis V: Speed for arc interpolation

Explanations:

- Range of P₁, P₂, P₃, P₄: -2,147,483,648 ~ 2,147,483,647 (without decimal point); -2,147,483.648 ~ 2,147,483.647 (with decimal point)
- 2. Range of V: 0 ~ 500,000 (without decimal point); 0 ~ 500.0 (with decimal point)
- 3. The speed has continuity. See Remarks.
- 4. For how to position, see MON 02 CW and MON 03 CCW.

Remarks:

1. The settings of speed have continuity, for example:

G2 X0.0 Y100.0 I0.0 J50.0 F100.0;

X0.0 Y0.0 I0.0 J50.0;

2. After the row with G2 instruction is executed, the program will execute the next row. The second row of the program will reach the target position automatically by speed F100 set in the first row.

	Mnemonic	Operands	Function
G-Code	G2	$X (P_1) Y (P_2)$	Clockwise/Counterclockwise Arc Movement
	G3	$R \square F V$	(set the radius)

- P_1 : Target position of arc on X axis P_2 : Target position of arc on Y axis
- L: Radius of arc (R = "-" when radian < 180 °; R = "+" when radian > 180 °)

V: Speed for arc to move to target position

Explanations:

- Range of P₁, P₂, R: -2,147,483,648 ~ 2,147,483,647 (without decimal point); -2,147,483.648 ~ 2,147,483.647 (with decimal point)
- 2. Range of V: 0 ~ 500,000 (without decimal point); 0 ~ 500.0 (with decimal point)
- 3. For how to position, see MON 04 CW and MON 05 CCW.

	Mnemonic	Operands	Function
G-Code	G4	X T P T	Pause Time

XT: Pause time (unit: 1 sec). G4X1 refers to pausing for 1 second; G4 X2.5 refers to pausing for 2.5 seconds.

PT: Pause time (unit: 1 ms). G4 P100 refers to pausing for 0.1 second; G4 P4500 refers to pausing for 4.5 seconds.

Explanations:

- 1. 10ms is the base for **PT**. If **PT** < 10ms, **PT** will be regarded as 0ms. That is to say, if **PT** = 23ms, it will be regarded as 20ms.
- 2. See MON 06 TIM for the operation of G4.

	Mnemonic	Operands	Function
G-Code	G90	N/A	Set up Absolute Coordinate

See MON 17 ABS for the operation of G90

	Mnemonic	Operands	Function
G-Code	G91	N/A	Set up Relative Coordinate

See MON 18 INC for the operation of G90

7.1 How to Connect DVP-EH2, DVP-PM (as Master) and DVP-PM (as Slave)

There is a special register area in DVP-PM which corresponds to the control registers in the Master. The users can thereby control the data exchange and motion between the Slave and Master depending on their actual demands.

7.1.1 The Structure

- DVP-EH2 and DVP-PM Master use FROM/TO instruction to drive DVP-PM Slave for executing all kinds of motions.
- DVP-EH2 and DVP-PM Master use FROM/TO instruction to read/write the control registers (CR#0 ~ CR#199, corresponding to special registers D1500 ~ D1699 in the Slave) in DVP-PM Slave.

7.1.2 Example of Master-Slave Connection

- How to set up
 - 1. Decide which the data in DVP-PM Slave to be controlled by the Master are. Use MOV instruction to move the data into the special registers in DVP-PM.
 - 2. Decide which control registers in the Master will control the Slave.
- Example 1

Requirements:

 DVP-EH2 Master gives FROM/TO instruction, corresponding to D1500 ~ D1699 in DVP-PM Slave, to control X and Y axes for executing all kinds of manual motion modes (see 3.12.3).

Master	SI	ave	Content	
Master	Planned internally	Planned by user	Content	
CR#0	D1500	Set up by the system	Model code of DVP-PM Slave	
CR#1	D1501	D1846	Operation instruction for X axis	
CR#2 ~ 3	D1502 ~ D1503	D1848 ~ D1849	Current position of X axis CP (PLS)	
CR#4 ~ 5	D1504 ~ D1505	D1850 ~ D1851	Current speed of X axis (PPS)	
CR#6 ~ 7	D1506 ~ D1507	D1860 ~ D1861	MPG input frequency of X axis	
CR#8 ~ 9	D1508 ~ D1509	D1862 ~ D1863	Accumulated number of MPG input pulses of X axis	

Table for CR in the Master and corresponding special registers in the Slave:

1. If you need to use other modes in DVP-PM Slave, please refer to Chapter 3 and correspond the registers for the functions required with the "Planned by the user" column and add the functions in the example program to execute all kinds of control modes offered by DVP-PM.

 D1500 ~ D1699 are the special registers planned internally in the Slave, among which D1500 is the read-only register for storing the model code (H'6260) of DVP-PM. Therefore, D1501 ~ D1699 are the registers which can be used freely.

Program in DVP-EH2 Master

Ladder diagram:

IM1002					
	FROM	K0	K0	D0	K1
	T				
	то	K0	K1	H1	K1
M1000					
HH	DFROM	K0	K2	D2	K1
	DFROM	K0	K4	D4	K1
	DFROM	K0	K6	D6	K1
	DFROM	K0	K8	D8	K1

Operation:

When DVP-EH2 Master is in RUN, read CR#0 of the Slave, corresponding to D1500 in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable STOP mode for X axis in Slave.

Read CR#2 of Slave, corresponding to D1502 \sim D1503 in Slave.

Read CR#2 of Slave, corresponding to D1504 \sim D1505 in Slave.

Read CR#2 of Slave, corresponding to D1506 \sim D1507.

Read CR#2 of Slave, corresponding to D1508 \sim D1509.

When X0 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable JOG+ mode of X axis in Slave.

When X1 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable JOG- mode of X axis in Slave.

When X2 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable zero return mode of X axis in Slave.

When X3 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable single-speed mode of X axis in Slave.

When X4 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable 2-speed mode of X axis in Slave.

When X5 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable inserting single-speed mode of X axis in Slave.

When X6 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable inserting 2-speed mode of X axis in Slave.

When X7 = On, write CR#1 of Slave, corresponding to D1501 in Slave, to enable MPG mode of X axis in Slave.

When X0 \sim X7 = Off, write CR#1 of Slave, corresponding to D1501 in Slave, to enable STOP mode of X axis in Slave.

Program in DVP-PM Slave

Ladder diagram:

Operation:

Enable O100 in Slave, and clear the current position of X axis as "0".

Clear the number of accumulated MPG pulses of X axis as "0".

Set up the target position (I) of X axis P(I)

Set up the operation speed (I) of X axis V(I)

Set up the target position (II) of X axis P(II)

Set up the operation speed (II) of X axis V(II)

Move D1501, corresponding to CR#0, to X axis for parameter setting.

Move the current position of X axis D1848 ~ D1849 to D1502 ~ D1503, corresponding to CR#2 ~ CR#3.

Move the current speed of X axis D1850 ~ D1851 to D1504 ~ D1505, corresponding to CR#4 ~ CR#5.

Move MPG input frequency of X axis D1860 \sim D1861 to D1502 \sim D1503, corresponding to CR#6 \sim CR#7.

Move the number of MPG pulses of X axis D1862 \sim D1863 to D1508 \sim D1509, corresponding to CR#8 \sim CR#9.

Example 2

Requirements:

 DVP-EH2 Master gives FROM/TO instruction, corresponding to D1500 ~ D1699 in DVP-PM Slave, to control OX motion program and execute all kinds of motion modes (see Chapter 6 for how to use motion instructions).

Table for CR in the Master and corresponding special registers in the Slave:

Master	Sla	ive	Content	
IVIASIEI	Planned internally	Planned by user	Content	
CR#0	D1500	-	Model code of DVP-PM Slave	
CR#1	D1501	D1868	No. of OX program	
CR#2	D1502	D1846	Operation instruction for X axis (OX)	

Program of DVP-EH2 Master

Ladder diagram:

Operation:

When DVP-EH2 Master is in RUN, read CR#0 of Slave, corresponding to D1500 in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable OX00 and execute DRV instruction in Slave.

Write CR#2 of Slave, corresponding to D1502 in Slave, to enable OX subroutine in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable OX01 and execute LIN instruction in Slave.

Write CR#2 of Slave, corresponding to D1502 in Slave, to enable OX subroutine in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable OX02 and execute CW instruction in Slave.

Write CR#2 of Slave, corresponding to D1502 in Slave, to enable OX subroutine in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable OX03 and execute CCW instruction in Slave.

Write CR#2 of Slave, corresponding to D1502 in Slave, to enable OX subroutine in Slave.

Write CR#1 of Slave, corresponding to D1501 in Slave, to enable OX03 and execute DRVZ instruction in Slave.

Write CR#2 of Slave, corresponding to D1502 in Slave, to enable OX subroutine in Slave.

LD M1002 DMOV K0 D1848 DMOV K0 D1928 M102

OX00 DRV X200000 FX100000 Y200000 FY100000 М2

OX01 LIN X100000 Y100000 F200000 M2

OX02 CW X0 Y100000 I0 J50000 F200000 M2

OX03 CCW X0 Y100000 I0 J50000 F200000 M2

OX04 BRET DMOV K200000 D1828 DMOV K100000 D1830 DMOV K200000 D1908 DMOV K100000 D1910 DRVZ

M2

When X0 ~ X4 = Off, write CR#1 of Slave, corresponding to D1501 in Slave, to disable OX

Enable O100 in Slave and clear the record of the

Place motion instruction DRV in OX00 subroutine.

Place motion instruction LIN in OX01 subroutine.

Place motion instruction CW in OX02 subroutine.

Place motion instruction CCW in OX03 subroutine.

current position of X, Y axis as "0".

Place motion instruction DRVZ in OX04 subroutine,

and set up relevant parameters for DRVZ.

8.1.1 Design Procedure

- Trajectory 1: Set up the absolute coordinates of the four points (-20, 20), (60, 20), (60, 100) and (-20, 100).
 Depart from (0, 0).
- Trajectory 2: Set up the absolute coordinates of the four points (-10, 10), (20, 10), (20, 70) and (-10, 70).
 Depart from (0, 0).
- 3. Trajectory 3: Set up the absolute coordinates of the three points (-25, 25), (25, 25) and (0, 85). Depart from (0, 0).
- 4. Trajectory 4: Set up the absolute coordinates of the seven points (10, 10), (10, 30), (10, 110), (10, 230), (10, 210), (10, 130) and (10, 10). Depart from (0, 0).
- 5. How to write the program codes of a motion instruction:

/*instruction mode: Place the initialized value in O100 main program. Clear the current position of X, Y axis as"0" and enable OX0 subroutine*/

O100				/*O100 main program*/
LD	M1002			
DMOV	K0	D1848		/*Set the current position of X axis as $0^*/$
DMOV	K0	D1928		/*Set the current position of Y axis as $0^*/$
RST	M1074			/*Disable OX motion subroutine*/
MOV	H8000	D1868		/*Write the No. (0) of OX to be enabled*/
SET	M1074			/*Enable OX motion subroutine*/
M102				
/*OX0 subr	outine: Call po	ointer P0 in sul	broutine*/	
OX0				/*OX motion subroutine*/
BRET				/*Trigger condition*/
CALL	P0			/*Call P0 subroutine*/
M2				
/*Program co	odes below ar	e how to write	the motion instru	ction for trajectory 1*/
P0				/*P0 subroutine*/
ABST				/*Obtain absolute coordinate*/
DRV	X-20000	Y20000		/*Fast move to designated position*/
LIN	X60000	Y20000	F20000	/*Move to designated position by linear interpolation. Can also be written as LIN X60000 F20000 */
LIN	X60000	Y100000	F20000	/*Move to designated position by linear interpolation. Can also be written as LIN Y100000 */
LIN	X-20000	Y100000	F20000	/*Move to designated position by linear interpolation. Can also be written as LIN X-20000 */
LIN	X-20000	Y20000	F20000	/*Move to designated position by linear interpolation. Can also be written as LIN Y20000 */

/*Program codes below are how to write G-Code for trajectory 1: Place the motion program to be operated in the pointer.*/

the pointer.	/				/*D0 autoritie a*/
P0					/*P0 subroutine*/
G90					/*Obtain absolute coordinate*/
G0	X-20.0	Y20.0			/*Fast move to designated position*/
G1	X60.0	Y20.0	F20.0		/*Move to designated position by linear interpolation. Can also be written as G1 X60.0 F20.0 */ /*Move to designated position by linear
G1	X60.0	Y100.0	F20.0		interpolation. Can also be written as G1 Y100.0 */ /*Move to designated position by linear
G1	X-20.0	Y100.0	F20.0		interpolation. Can also be written as G1 X-20.0 */ /*Move to designated position by linear
G1	X-20.0	Y20.0	F20.0		interpolation. Can also be written as G1 Y20.0 */
SRET					
/*Program c	odes below ar	e how to write	e the motion in	struction for	trajectory 2*/
P0					/*P0 subroutine*/
ABST					/*Obtain absolute coordinate*/
DRV	X-10000	Y10000			/*Fast move to designated position*/
LIN	X20000	Y10000	F40000		/*Move to designated position by linear interpolation. Can also be written as LIN X20000 F40000 */
CCW	X20000	Y70000	R30000	F20000	/*Move to designated position by arc interpolation. Can also be written as CCW Y70000 R30000 F20000 */ /*Move to designated position by linear
LIN	X-10000	Y70000	F20000		interpolation. Can also be written as LIN X-10000 */ /*Move to designated position by arc
CCW	X-10000	Y10000	J-30000	F20000	interpolation. Can also be written as CCW Y10000 J-30000 */
SRET					
/*Program c	odes below ar	e how to write	e G-Code for t	rajectory 2*/	
P0					/*P0 subroutine*/
G90					/*Obtain absolute coordinate*/
G0	X-10.0	Y10.0			/*Fast move to designated position*/
G1	X20.0	Y10.0	F40.0		/*Move to designated position by linear interpolation. Can also be written as G1 X20.0 F40.0 */
G3	X20.0	Y70.0	R30.0	F20.0	/*Move to designated position by arc interpolation. Can also be written as G3 Y70.0 R30.0 F20.0 */
G1	X-10.0	Y70.0	F20.0		/*Move to designated position by linear interpolation. Can also be written as G1 X-10.0 */
G3	X-10.0	Y10.0	J-30.0	F20.0	/*Move to designated position by arc interpolation. Can also be written as G3 Y10.0 J-30.0 */
SRET					

/*Program codes below are how to write the motion instruction for trajectory 3*/ P0 /*P0 subroutine*/ INCT /*Obtain relative position*/ DRV X-25000 Y25000 /*Fast move to designated position*/ /*Move to designated position by linear interpolation. Can also be written as LIN X50000 Y0 F20000 LIN X50000 Y0 F20000 */ /*Move to designated position by linear LIN X-25000 Y60000 F20000 interpolation. Can also be written as LIN X-25000 Y60000 */ /*Move to designated position by linear LIN interpolation. Can also be written as X-25000 Y-60000 F20000 LIN Y-60000 */ DRV X25000 Y-25000 /*Fast move to designated position*/ SRET /*Program codes below are how to write G-Code for trajectory 3*/ P0 /*P0 subroutine*/ G91 /*Obtain relative coordinate*/ G0 X-25.0 Y25.0 /*Fast move to designated position*/ /*Move to designated position by linear G1 X50.0 Y0 F20.0 interpolation. Can also be written as G1 X50.0 Y0 F20.0 */ /*Move to designated position by linear G1 X-25.0 Y60.0 F20.0 interpolation. Can also be written as G1 X-25.0 Y60.0 */ /*Move to designated position by linear G1 X-25.0 Y-60.0 F20.0 interpolation. Can also be written as G1 Y-60.0 */ G0 X25.0 Y-25.0 /*Fast move to designated position*/ SRET /*Program codes below are how to write the motion instruction for trajectory 4*/ P0 /*P0 subroutine*/ /*Obtain absolute coordinate*/ ABST DRV X10000 Y10000 /*Fast move to designated position*/ /*Move to designated position by linear LIN X10000 Y30000 F20000 interpolation. Can also be written as LIN Y30000 F20000 */ /*Move to designated position by arc X10000 interpolation. Can also be written as CCW Y110000 J40000 F20000 CCW Y110000 J40000 */ /*Move to designated position by arc CW X10000 Y230000 R60000 F15000 interpolation. Can also be written as CW Y230000 R60000 F15000 */ /*Move to designated position by linear interpolation. Can also be written as LIN X10000 Y210000 F15000 LIN Y210000 */ /*Move to designated position by arc CCW X10000 F15000 interpolation. Can also be written as Y130000 J-40000 CCW Y130000 J-40000 */ /*Move to designated position by arc CW X10000 Y10000 F20000 interpolation. Can also be written as R60000

CW Y10000 F20000 */

SRET

/*Program codes below are how to write G-Code for trajectory $4^{\ast/}$

P0					/*P0 subroutine*/
G90					/*Obtain absolute coordinate*/
G0	X10.0	Y10.0			/*Fast move to designated position*/
G1	X10.0	Y30.0	F20.0		/*Move to designated position by linear interpolation. Can also be written as G1 Y30.0 F20.0 */
G3	X10.0	Y110.0	J40.0	F20.0	/*Move to designated position by arc interpolation. Can also be written as G3 Y110.0 J40.0 */
G2	X10.0	Y230.0	R60.0	F15.0	/*Move to designated position by arc interpolation. Can also be written as G2 Y230.0 R60.0 F15.0 */
G1	X10.0	Y210.0	F15.0		/*Move to designated position by linear interpolation. Can also be written as G1 Y210.0 */
G3	X10.0	Y130.0	J-40.0	F15.0	/*Move to designated position by arc interpolation. Can also be written as G3 Y130.0 J-40.0 */
G2	X10.0	Y10.0	R60.0	F20.0	/*Move to designated position by arc interpolation. Can also be written as G2 Y10.0 F20.0 */
SRET					

6. When M1072 in DVP-PM is On, the motion mode will start to be executed.

8.2 Applying "motionSample" in PMSoft

Follow the example below to draw English letters, any graph or text. If you wish to apply this function to any 2-axis control equipment, you can modify the example program below for you to realize more diverse control programs. Path: Open PMSoft => File => Open Examples... => select "motionSample_26Letter" file to open the example program.

8.2.1 Design Plan

Suppose we have decided to draw English letters and graphs by DVP-PM, we have to convert the letter and graph into G-Code (i.e. NC code) before designing the main control program of DVP-PM. Due to that DVP-PM only offers 2-axis (X, Y) interpolation, we have to add a Z axis for the "pen-lifting" controlled by the third axis. In this example, we will use DVP-EH series MPU (can be replaced by other controllers) to complete the third axis control.

The design plan:

8 Application Examples

8.2.2 Design Example Program

First, we design the main program of DVP-PM. To make to clearer, we will divide the program into four blocks.

1. OX0 ~ M2: For setting up function parameters of X, Y axes

When DVP-PM is in AUTO status and OX is ready (M1792 = On), X0 will be On to enable OX0 subroutine. After OX0 is enabled, we have to set up parameters required for zero return, JOG speed and input terminal polarity on X, Y axes.

Next, enable zero return and move X, Y axes to (-200000, -200000) by 100KHz. Clear the current position as 0 and call P0 subroutine. OX0 subroutine will end when the execution of P0 subroutine is completed.

If you need to use other control modes, please refer to explanations on special register D in Chapter 2.

Ladder diagram:

Operation:

Start of OX0 motion subroutine

Zero return speed (V_{RT}) of X axis = 200KHz

Zero return deceleration speed (V_{CR}) of X axis = 200KHz

Zero return speed (V_{RT}) of Y axis = 200KHz

Zero return deceleration speed (V_CR) of Y axis = 200 KHz

JOG speed of X axis = 100KHz

JOG speed of Y axis =100KHz

Set up input terminal polarity of X, Y axes

Enable zero return on X, Y axes

X, Y axes move to (-200000,-200000) by 100KHz.

Clear the current position of X axis as 0

Clear the current position of Y axis as 0

Y calls P0 subroutine

End of OX0 motion subroutine

2. O100 ~ M102: Main program control

O100 main program controls whether to enable OX0 subroutine. When X0 (condition contact for enabling OX0) and M1792 (flag deciding whether OX is ready) in the program are On, OX0 subroutine will be enabled. You can further place other operations in the main program.

Operations:

When OX is ready (M1792 = On), prepare to enable OX0 motion subroutine. Enable OX0 motion subroutine

It can execute other operations

It can execute other operations

It can execute other operations

3. P255 ~ SRET: Generation of the 3rd axis (Z) control signals

When we use G0 and G1 (G-Code) in given in Chapter 6 for the target position on Z axis, the generated value in D1328 will decide the On/Off status of Y7, which will further give signals for DVP-EH series MPU to lift or release the pen (i.e. up/down movement of Z axis). When Z operand appears in the G-Code (NC-Code) instruction in P0 subroutine, P255 subroutine will be enabled automatically. For more details, please refer to G0 and G1 instructions in Chapter 6.

Ladder diagram:

Operations:

Start of P255 subroutine

Y7 (control signals for pen lifting) is decided by the target position (D1328) on Z axis. Pausing for 0.1 second

End of P255 subroutine

Due to that there is the control signal (Y7) to drive Z axis in P255 subroutine in DVP-PM, offering On/Off of Y7 to the external input point X0 in DVP-EH, when X0 = On, the output pulses will control the step motor and move the Z axis to position 1 (i.e. lifting the pen). When X0 = Off, the output pulses will control the step motor and move the Z axis to position 2 (i.e. releasing the pen).

The program of DVP-EH:

	DDRVI	K5000	K200000	Y0	Y1
Х0 И	DDRVI	K-5000	K200000	Y0	Y1

Connect the input devices Y0 and Y1 in DVP-EH to the pulse input terminals on the step motor.

4. P0 ~ SRET: 2-axis (X, Y) interpolation control

After we convert the letter or graph into G-Code (NC-Code), we will not place the G-Code into OX0 subroutine but into P0 subroutine in order to simplify the program. We will then be able to draw the letter or graph following the three program blocks above.

Ladder diagram:

Operations:

When the program blocks 1 ~ 4 are completed, we will be able to draw English letters, graphs or any text by DVP-PM.

8.3 Planning Variable Speed Operation

This section introduces how to trigger many segments of speed (variable speed) in a fixed route by using single-speed output mode.

8.3.1 Design Plan

- 1. Trigger condition 1: Controlled by external input signal. X0 ~ X3 are for switching to the $2^{nd} \sim 5^{th}$ speed.
- 2. Trigger condition 2: Determined by current position. M0 ~ M3 are for switching to the $2^{nd} \sim 5^{th}$ speed.
- 3. Trigger condition 3: Controlled by time. T0 ~ T3 are for switching to the $2^{nd} \sim 5^{th}$ speed.

32-bit D1838 (total number of output pulses) = number of pulses in Segment 1 + Segment 2 + ... + Segment 5

8.3.2 Design Example Program

Ladder diagram of trigger condition 1:

M1002			-
	MOV	K100	D1824
	MOV	K100	D1836
	MOV	K100	D1837
	DMOV	K0	D1848
	DMOV	K100000	D1838
	DMOV	K10000	D1840
	DMOVP	K20000	D1840
	DMOVP	K9000	D1840
<u>├</u> ─-┥├─────┤	DMOVP	K18000	D1840
	DMOVP	K7000	D1840
	DMOVP	H102	D1846

Operations:

Set up bias speed of X axis (V_{\text{BIAS}})

Set up acceleration time of X axis (T_{ACC})

Set up deceleration time of X axis (T_{\text{DEC}})

Clear the current position of X axis as 0

Set up the moving distances of all segments for X axis

Set up the operation speed for the 1^{st} segment on X axis

X0 = On, modify the operation speed into 20,000Hz

X1 = On, modify the operation speed into 9,000Hz

X2 = On, modify the operation speed into 18,000Hz

X3 = On, modify the operation speed into 7,000Hz

X7 = On, software enables motion instruction (single-speed) of X axis. The output executes until the end of the entire route. Ladder diagram for trigger condition 2:

÷.

·	
MOV K100 D1824	Set up th
MOV K100 D1836	Set up th
MOV K100 D1837	Set up th
DMOV K0 D1848	Clear the
DMOV K100000 D1838	Set up th for X axis
DMOV K10000 D1840	Set up th segment
SET MO	Compare
DMOVPK20000 D1840	M0 = On 20,000H
SET M1	Compare M1 = On
DMOVP K9000 D1840	9,000Hz
SET M2	Compare M2 = On
DMOVPK18000 D1840	18,000H
SET M3	Compare M3 = On
DMOVP K7000 D1840	7,000Hz. of the en
	MOV K100 D1836 MOV K100 D1837 DMOV K100 D1837 DMOV K0 D1848 DMOV K10000 D1838 DMOV K10000 D1840 SET M0 DMOVP K20000 D1840 SET M1 DMOVP K9000 D1840 SET M2 DMOVP K18000 D1840 SET M2

Operations:

Set up the bias speed of X axis (V_{BIAS})

Set up the acceleration time of X axis $(T_{\mbox{\scriptsize ACC}})$

Set up the deceleration time of X axis (T_{DEC})

Clear the current position of X axis as 0

Set up the moving distances of all segments for X axis

Set up the operation speed for the 1st segment on X axis

Compare the current position M0 = On, modify the operation speed into 20,000Hz

Compare the current position M1 = On, modify the operation speed into 9,000Hz

Compare the current position M2 = On, modify the operation speed into 18,000Hz

Compare the current position M3 = On, modify the operation speed into 7,000Hz. The output executes until the end of the entire route.

X7 = On, software enables motion instruction (single-speed) of X axis.

Ladder diagram for trigger condition 3:

M1002			
	MOV	K100	D1824
	MOV	K100	D1836
	MOV	K100	D1837
	DMOV	K0	D1848
	DMOV	K100000	D1838
	DMOV	K10000	D1840
	MOVP	H102	D1846
	TMR	Т0	K100
	DMOVP	K20000	D1840
	TMR	T1	K100
	DMOVP	K9000	D1840
	TMR	T2	K100
	DMOVP	K18000	D1840
	TMR	Т3	K100
	DMOVP	K7000	D1840
·			

Operations:

Set up the bias speed of X axis (V_{\text{BIAS}})

Set up the acceleration time of X axis (T_{ACC})

Set up the deceleration time of X axis (T_{\mbox{\tiny DEC}})

Clear the current position of X axis as 0

Set up the moving distances of all segments for X axis

Set up the operation speed for the 1st segment on X axis

X7 = On, the software enables the motion instruction (single-speed) of X axis and starts to count, preparing for switching to the 2nd segment.

T0 = On, modify the operation speed into 20,000Hz and start to count, preparing for switching to the 3rd segment.

T1 = On, modify the operation speed into 9,000Hz and start to count, preparing for switching to the 4^{th} segment.

T2 = On, modify the operation speed into 18,000Hz and start to count, preparing for switching to the 5^{th} segment.

T2 = On, modify the operation speed into 7,000Hz. The output executes until the end of the entire route.

8.4 How to Connect DVP-PM (as Master) and DVP01PU-H2 (as Slave) for 3rd Axis Control

The operation:

- 1. Enable O100 and execute OX0.
- 2. Wen the execution encounters G01 Z-25000 F10000 in OX0 subroutine, the program will call P255.
- 3. When in P255 and D1328 < 0, execute DVP01PU-H2 with target position K1,000 and operation speed K10,000.
- 4. Return to OX0 after the execution of P255 is completed. Wait for 10 seconds.
- 5. When the execution encounters G01 Z10000 F20000 in OX0 subroutine, the program will call P255.
- When in P255 and D1328 > 0, execute DVP01PU-H2 with target position K2,000 and operation speed K20,000.
- 7. Return to OX0 after the execution of P255 is completed.

How to write the program codes:

/*instruction mode: Place the initialized value in O100 main program. Clear the current position of X, Y axis as"0" and enable OX0 subroutine*/

O100					/*O100 main program*/
LD	M1002				
MOV	H8000	D1868			/*Write the No. (0) of OX to be enabled*/
SET	M1074				/*Enable OX motion subroutine*/
M102					
/*OX0 si	ubroutine*/				
G1	Z-25000	F10000			/*G1 3 rd axis control*/
ТІМ	K1000				/*Pause for 10 seconds*/
G1	Z10000	F20000			/*G1 3 rd axis control*/
M2					
/*P255 s	subroutine*/				
BRET					
то	K0	K31	H2	K1	/*Close DVP01PU software*/
DLD>=	K0	D1328			/*D1328 comparison*/
DTO	K0	K23	K1000	K1	/*Set up target position for DVP01PU*/
DTO	K0	K25	D1330	K1	/*Set up operation speed for DVP01PU*/
то	K0	K32	H1	K1	/*Set up single speed for DVP01PU*/
ТО	K0	K31	H100	K1	/*Enable DVP01PU software*/
DLD<	K0	D1328			/*D1328 comparison*/
DTO	K0	K23	K2000	K1	/*Set up target position for DVP01PU*/
DTO	K0	K25	D1330	K1	/*Set up operation speed for DVP01PU*/
ТО	K0	K32	H1	K1	/*Set up single speed for DVP01PU*/
ТО	K0	K31	H100	K1	/*Enable DVP01PU software*/

9.1 Appendix A: Special Registers for Manual Motion Mode

	Spec	ial D					
X a	axis	Ya	axis	Content	Range	Default setting	Page
HW	LW	HW	LW			e e ug	
	D1816		D1896	Parameter setting	b0 ~ b15	H0	3-33
	D1817		D1897	Backlash compensation	1 ~ +32,767 PLS	K0	3-37
D1819	D1818	D1899	D1898	Number of pulses required per revolution of the motor (A)	1 ~ +2,147,483,647 PLS/REV	K2,000	3-37
D1821	D1820	D1901	D1900	Distance created for 1 motor revolution (B)	1 ~ +2,147,483,647 * 1	K1,000	3-38
D1823	D1822	D1903	D1902	Maximum speed	0 ~ +2,147,483,647 * 2	K500,000	3-38
D1825	D1824	D1905	D1904	Bias speed	0 ~ +2,147,483,647 * 2	K0	3-38
D1827	D1826	D1907	D1906	JOG speed V _{JOG}	0 ~ +2,147,483,647 * 2	K5,000	3-38
D1829	D1828	D1909	D1908	Zero return speed V _{RT}	0 ~ +2,147,483,647 * 2	K50,000	3-39
D1831	D1830	D1911	D1910	Zero return deceleration speed V_{CR}	0 ~ +2,147,483,647 * 2	K1,000	3-39
	D1832		D1912	Number of PG0 signals N	0 ~ +32,767 PLS	K0	3-39
	D1833		D1913	Number of pulse signals P	-32,768 ~ +32,767 PLS	K0	3-40
D1835	D1834	D1915	D1914	Definition of zero point HP	0 ~ ±999,999 * 1	K0	3-40
	D1836		D1916	Acceleration time T _{ACC}	10 ~ +32,767 ms	K100	3-40
	D1837		D1917	Deceleration time T _{DEC}	10 ~ +32,767 ms	K100	3-40
D1839	D1838	D1919	D1918	Target position (I) P(I)	-2,147,483,648 ~ +2,147,483,647 * 1	K0	3-40
D1841	D1840	D1921	D1920	Operation speed (I) V(I)	-2,147,483,648 ~ +2,147,483,647 * 1	K1000	3-41
D1843	D1842	D1923	D1922	Target position (II) P(II)	-2,147,483,648 ~ +2,147,483,647 * 1	К0	3-41
D1845	D1844	D1925	D1924	Operation speed (II)V(II)	0 ~ +2,147,483,647 * 1	K2,000	3-41
	D1846		D1926	Operation instruction	b0 ~ b15	H0	3-42
	D1847		D1927	Work mode	b0~b15	H0	3-45
D1849	D1848	D1929	D1928	Current position CP (PLS)	-2,147,483,648 ~ +2,147,483,647 * 1	К0	3-46
D1851	D1850	D1931	D1930	Current speed CS (PPS)	0 ~ +2,147,483,647 PPS	K0	3-46
D1853	D1852	D1933	D1932	Current position CP (unit *2)	-2,147,483,648 ~ +2,147,483,647 * 1	К0	3-47
D1855	D1854	D1935	D1934	Current speed CS (unit *2)	0 ~ +2,147,483,647 PPS	K0	3-47
	D1856		D1936	Execution status	b0 ~ b15	H0	3-47
	D1857		D1937	Error code	See the error code table	H0	3-47
	D1858		D1938	Electronic gear (numerator)	1 ~ +32,767	K1	3-47
	D1859		D1939	Electronic gear (denominator)	1 ~ +32,767	K1	3-47
D1861	D1860	D1941	D1940	MPG input frequency	Pulse frequency by MPG input	К0	3-48
D1863	D1862	D1943	D1942	Accumulated number of MPG input pulses	Number of input pulses from MPG	К0	3-48
	D1864		D1944	Response speed of MPG input	Response speed of MPG input	K5	3-48

Registers for the Motion			ation		Operation Mode							
X axis Y axis		Parameter Name		Zero return	Single-speed positioning	Single-speed positioning interruption	2-speed positioning	2-speed positioning interruption	Variable speed	MPG input		
HW	LW	HW	LW			Ze	Sin D	Sin p ir	ν <u>α</u>	00.5	Varia	Σ
D1819	D1818	D1899	D1898	Number of pulses required per No need to be set up if the unit (b0, b revolution of motor (A) (D1896)) is motor unit.			t (b0, b1	1 of D1816				
D1821	D1820	D1901	D1900	Distance created by 1 revolution of motor (B)	Needs to be set up if the unit is machine unit or combined unit.					or		
	D1816		D1896	Parameter setting			\bigcirc	\bigcirc				
D1823	D1822	D1903	D1902	Maximum speed (V _{MAX})	0	\bigcirc	0	0	\bigcirc	0	\bigcirc	\odot
D1825	D1824	D1905	D1904	Bias speed (V _{BIAS})	0	\bigcirc	0	0	\bigcirc	0	\bigcirc	0
D1827	D1826	D1907	D1906	JOG speed (V _{JOG})	\bigcirc	-	-	-	-	-	-	-
D1829	D1828	D1909	D1908	Zero return speed (V_{RT})								
D1831	D1830	D1911	D1910	Zero return deceleration speed (V_{CR})				-	-	-	-	-
	D1832		D1912	Number of PG0 signals in zero return (N)	- ©		-					
	D1833		D1913	Number of pulse signals in zero return (P)								
D1835	D1834	D1915	D1914	Definition of zero point (HP)								
	D1836		D1916	Acceleration time (T _{ACC})	0	0	0	0	\bigcirc	0	\bigcirc	-
	D1837		D1917	Deceleration time (T _{DEC})	0	\odot	0	0	\odot	0	\bigcirc	-
D1839	D1838	D1919	D1918	Target position(I) (P(I))		-	0	0	\bigcirc	0	-	0
D1841	D1840	D1921	D1920	Operation speed (I) (V(I))	-	-	0	0	\bigcirc	0	\bigcirc	-
D1843	D1842	D1923	D1922	Target position (II) (P(II))	-	-	-	-	\bigcirc	0	I	0
D1845	D1844	D1925	D1924	Operation speed (II) (V(II))	-	-	-	-	\bigcirc	0	I	-
	D1846		D1926	Operation instruction	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\odot
	D1847		D1927	Work mode	\odot	\bigcirc	\odot	\odot	\odot	\odot	\odot	\odot
D1849	D1848	D1929	D1928	Current position (CP) (PLS)	\bigcirc	\bigcirc	\odot	0	\bigcirc	0	\bigcirc	\odot
D1851	D1850	D1931	D1930	Current speed (CS) (PPS)	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	0	\bigcirc	\odot
D1853	D1852	D1833	D1932	Current position (CP) (unit)		\bigcirc	\odot	\odot	\odot	\odot	\odot	\bigcirc
D1855	D1854	D1935	D1934	Current speed (CS) (unit)	0	\odot	\odot	\odot	\bigcirc	Ô	\odot	\odot
	D1858		D1938	Numerator of electronic gear	-	-	-	-	-	-	-	\bigcirc
	D1859		D1939	Denominator of electronic gear	-	-	-	-	-	-	-	\odot
D1861	D1860	D1941	D1940	Frequency of MPG input	-	-	-	-	-	-	-	\odot
D1863	D1862	D1943	D1942	Accumulated number of MPG input pulses	-	-	-	-	-	-	-	0
	D1864		D1944	MPG response speed	-	-	-	-	-	-	-	0

 $\odot\,$ refers to the control register for the operation mode.

See 3.12.1 for how to set up the special registers in manual motion mode.

Category	MON	Mnemonic	Function	Page				
	00	DRV	High-Speed Positioning	6-5				
	01	LIN	6-7					
	02	CW	Clockwise Arc Movement (set the position of center)					
	03	CCW	Counterclockwise Arc Movement (set the position of center)	6-9				
	04	CW	Clockwise Arc Movement (set the radius)	6-11				
	05	CCW	Counterclockwise Arc Movement (set the radius)	6-11				
(0	06	TIM	Pause Time	6-13				
suo	07	DRVZ	Return to Mechanical Zero Point (zero return)	6-14				
ıcti	08	SETR	Set up Electrical Zero Point	6-17				
stru	09	DRVR	Return to Electrical Zero Point	6-18				
Motion Instructions	10	INTR	2-Axis Synchronous Single-Speed Interpolation (ignoring remaining distance)	6-19				
lotic	11	SINTR	Inserting Single-Speed Operation	6-20				
Σ	12	DINTR	Inserting 2-Speed Operation	6-22				
	13	MOVC	Set up Linear Movement Compensation	6-24				
	14	CNTC	Arc Center Compensation	6-25				
	15	RADC	Arc Radius Compensation	6-26				
	16	CANC	Cancel Compensation	6-27				
	17	ABST	Set up Absolute Coordinate					
	18	INCT	Set up Relative Coordinate					
	19	SETT	Set up Current Position	6-29				
Category	G-Code	Mnemonic	Function	Page				
	0	DRV	High-Speed Positioning	6-30				
suo	1	LIN	2-Axis Synchronous Linear Interpolation (considering remaining distance)	6-34				
G-Code Instructi	2	CW	Clockwise Arc Movement (set the position of center)	6-37				
	3	CCW	Counterclockwise Arc Movement (set the position of center)					
ü	2	CW	Clockwise Arc Movement (set the radius)	6-38				
pde	3	CCW	Counterclockwise Arc Movement (set the radius)	6-38				
ပို	4	TIM	Pause Time					
Ġ	90	ABS	Set up Absolute Coordinate					
	91	INC	Set up Relative Coordinate	6-39				

9.2 Appendix B: Motion Instructions & G-Code Instructions

See 6.3 and 6.4 for details of motion instructions and G-Code instructions.

9.3 Appendix C: Error Codes

After you write the program into DVP-PM, the illegal use of operands (devices) or incorrect syntax in different program blocks, O100, OX, will result in flashing of ERROR indicator and error flag being On. See the tables below for the error codes (in hex) stored in the error code register if the motion parameters set are incorrect.

Program block	Program block O100				OX				
Error turo	Program	Program Motion error		Program	Motion error				
Error type	error	X axis	Y axis	error	X axis	Y axis			
Error flag	M1953	M1793	M1873	M1793	M1793	M1873			
Error register	D1802	D1857	D1937	D1857	D1857	D1937			
Number of steps	D1803	D1869		D1869	D1869				

Devices for storing error codes and number of steps in different program blocks:

Error codes (in hex)

Code	Cause of error	Code	Cause of error
0002	No content in the subroutine in use	0031	Forward pulses are forbidden.
0003	No corresponding Pn in CJ, CJN and JMP	0032	Reverse pulses are forbidden.
0004	Subroutine flag exists in the main program	0033	Left/right limit is reached.
0005	No subroutine	0040	The device used is in incorrect range.
0006	The pointer in the same program is repeated.	0041	MODRD, MODWR communication time-out
0007	The subroutine pointer is repeated.	0044	Incorrect V/Z index register modification
0008	Pointers of jump instruction in different subroutines are repeated.	0045	Incorrect floating point conversion
0009	The jump instruction and call subroutine instruction use the same flags.	0E18	Incorrect BCD conversion
000A	The pointer is the same as the pointer in the subroutine.	0E19	Incorrect division (divisor = 0)
0011	Incorrect target position (I)	C401	General circuit error
0012	Incorrect target position (II)	C402	LD/LDI instruction is used continuously for more than 9 times.
0021	Incorrect operation speed (I)	C404	RPT ~ RPE is more than 1 layers
0022	Incorrect operation speed (II)	C405	SRET is used between RPT and RPE
0023	Incorrect zero return deceleration speed (V_{RT})	C4EE	There is no end instruction (M102, M2) in the program.
0024	Incorrect zero return deceleration speed (V_{CR})	C4FF	No such instruction/ operand, or the range is incorrect.
0025	Incorrect JOG speed		