(UH) University of Hertfordshire

School of Electronic, Communication and Electrical
Engineering

BACHELOR OF ENGINEERING DEGREE WITH
HONOURS IN ELECTRICAL AND ELECTRONIC
ENGINEERING

Final Year Project Report

.LMXS ARM-BASED DIGITAL COMPASS

Report by:
Sheraz Khan Malik

Supervisor:

Kate Williams

APRIL 2008

DECLARATION STATEMENT

| certify that the work submitted is my own and that any material derived or quoted from the
published or unpublished work of other persons has been duly acknowledged (ref. UPR
AS/C/6.1, Appendix I, Section 2 — Section on cheating and plagiarism)

Student Full Name: Sheraz Khan Malik

Student Registration Number: 04106220

SIgNed: ..o
Date: 07 April 2008

Universityof
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

ABSTRACT

This report holds the detailed information about how to design an i.MXS ARM BASED
DIGITALL COMPASS. To complete the task a Tahoe development platform was used which
was provided by the university. It operates with VS.NET Micro Framework software and runs
with an input of 5V. To achieve the compass characteristic a magnetic sensor was used
provided by the university. It was interfaced with the 12C bus on the Tahoe board, and to make
the compass fully working a programme code was developed using VS.NET Micro Framework
software with the help of sample codes. The output was obtained as a digital compass and to

make it look even better a GUI was created by making modifications to the same code.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS i

Universityol
I-lerthrcnk?rhe:e

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

ACKNOWLEDGEMENTS

I would like to express my gratitute and appreciation to my project supervisor, Kate Williams for

encouraging me for my work with her advice and moral support.

| would also like to thank Mr John Willmort in Lab ¢c-460, who provided peaceful working

environment, and helped me regarding general problems in the project lab.

Finally | would like to thank my parents as well as my friends Owais, Tafseer, Saad, Bilal and
Gurpreet who encouraged me throughout my project.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS ii

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

TABLE OF CONTENTS

DECLARATION STATEMENT ... [
AB ST RACT e [
ACKNOWLEDGEMENTS ... s ii
TABLE OF CONTENTS ... a eas iii
LIST OF FIGURES v
GLOSSARY L Vi
1. INTRODUCTION ... 1
11 PROJECT AIM AND OBJECTIVEcooiiiiiiiiiiiee e 1
1.2 RESEARCH ... 1
121 TAHOE DEVELOPMENT KIT ..o 1
1.2.2 TAHOE BOARD ... 2
1.2.3 SOFTWARE ...ttt ettt et e et ettt ettt et e st s s be s be s bsbnbebnbnbnnnnn 3
1.24 MAGNETIC SENSORcoiiiiiiiiii 5

2. HARDW ARE ...ttt e e e e et e e et e s e e et et e te b e e e e e e e eenbnnn e s 6
2.1 L0411 ST 01 PP PP P PP PP PP PR PR PRPRPRPRPRPRPTIN 6
2.2 [2C INTERFACING ... 7
2.3 CONNECTING HARDW AREctttttettttttitttieieieieietetataeetseeeeeseeesesssessssssssssssssssssesssssnssssnnnnnes 9

3. CODING ..ttt et et s e e E R R e e E R £ e £ s £ e s £ s R R £ e R e £ e R e EnEnnnrnnnnnrnren 12
3.1 Program.CScooiiiiiiiiiii 12
3.2 O X o] F PP PP TP PR PUPTPPRPPP 14
3.2.1 Class ComMPass EI@MENT.......c.ueiiiiiieii e 15
3.2.2 ClaSS INTIO SCIEEN ...ttt sttt be e 19

3.3 BUSIO . CS .ttt ettt e e e e e e e a e 20
3.4 SEBINSOI.CS ittt e e s e 22

4. PROJECT TESTING AND WORKING ... 24
5. RESULTS AND DISCUSSIONotitiiitititiueuueeueueienetntntsenteneinrssssersssressrsrerersrererereeeees 27
6. N N I R 29
7. CONCLUSION & FURTHER DEVELOPMENTcciiiiiiiiiiiiiee e 30
REFERENCESo 31
BIBLIOG RAPHY ..o 32
APPENDIX.1 PROJECT CODE ... e 33
P O AN CS e 33
IO N o2~ PP PP P PP PP T PPPPTTPPRPTP 34
BUSIO L CS ..ttt e e e e e e e e 40
1= g To o ot ST P PP PP PP PP PPPPPPPPRPPPR 42
APPENDIX.2 SAMPLE CODE ... s as s s s e s s s s s anananananananananananananaeens 44

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS iii

Universityof
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

L0111 010 {00] o F= LT oS P 44
I2CSIAVE.CS ... 48
S aTo [F= L] o= T P PP P PP OTPPPN 52

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS iv

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

LIST OF FIGURES

1o [I R I T T I = o = o SR 2
Figure 2- Block diagram Meridian CPU.........ccooiiiiiiiiiiiiee s e e e e e e e e e 3
Figure 3- IDE fOr VS.NET 2005 ...iiiiiiiiiiiiiiiiee e sttt e e e e s s st e s e e e e s s santaaeeeeeeessannntaneneeeeesannsnnnnns 4
Figure 5- 12C BUS TEIMINOIOQY ..eeiiieiiiiiiiiiiiiee e e s ittt e e e e s s st e e e e e s e st e e e e e e s s snnbareeeeeeesannnnnnees 8
Figure 6- Project Hardware COMPONENTSuuvieiiiiieeiiiiie e et e et e st e st e e e b e e 10
Figure 7- Project BIOCK diagramcooueiioiiiiieeiiiiie ettt 11
Figure 8- Class diagram for Program COUEccuiiiiiiiiiiiiiiie ettt 12
Figure 9- Program.cs code for main WiNAOWcooiiiiiiiiiiiiee e 12
Figure 10- Program.cs code for button definitions ..., 13
Figure 11- LCD.cs showing Private variablescccccooo i, 14
Figure 12- LCD.cS ShOWING OVEITIAE BVENL.......cccoie it 14
Figure 13- LCD.cs Reloading intro screen using else statement..............cccee e, 15
FIgUre 14- COMPASS SCIEEMetiiiiitiiee it e ettt ettt e et b et e e e sttt e e e st e e e e e st et e e e anbr e e e e anbeeeeeaaeee 15
Figure 15- LCD.cs Compass SCreen diSPIay.........ccuvieiiiiiiiiiiiii et 16
Figure 16 (a)- Picture used for angle and direCtioN.............ooviiiiiiiiieeini e 16
Figure 16 (b)- Picture for analog compass AiSPlAYc.eeeerriiiiiiiiiiieeiiie e 16
Figure 17- LCD.cs Calculating screen Centre POINES.........ccoeeeieie e 17
Figure 18- LCD.cs array method for direCtion............coooeeeiiii i, 17
Figure 19- LCD.cs Calculating dir€CtioNS........ccoooeiiie i 17
Figure 20- LCD.cs Drawing compass NEEAIEeoieiiiiiiiiiiiieeeie et 18
Figure 21- INtro SCreen fOr COMPASSouvviieiiiiie ettt ettt ettt e et e e s sebe e e e e e 19
Figure 22- LCD.CS INtro SCreen diSPlayc.uviiiiiiiiiiiiie et 20
Figure 23- BuslO.cs Declaration of variables and CONStaNtSccccoovvieeeiiiiee e 20
Figure 24- BUslO.CS Read OPEratiONS........cccoeieie i 21
Figure 25- BUSIO.CS WItE OPEratioNSccccoeieie i 21
Figure 26- Sensor.cs showing address of register and sensor bus............cccoe oo, 22
Figure 27- Sensor.cs Getting compass heading ..., 22
Figure 28- IDE showing debug WINAOW.............cooiiiiiiiiiiii e 24
Figure 29- Compass intro screen displayed in LCDcooiiiiiiiiiiiie e 25
Figure 30- Compass screen displayed 0N LCDccooviiiiiiiiiiee e 25
Figure 31- Working COMPAsS iNIrO SCIEEIMeeeeiiiiiieiiiiiie et e ettt e e sbae e e 27
Figure 32- Working compass SCreen diSPlaycc.ueeiiiiieiiiiiiieieie e 28

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS v

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

GLOSSARY

ARM: It stands for Acorn RISC Machines, which is a 32 bit RISC (Reduced instruction set
computer) architecture developed by ARM Limited that is widely used by a number of
embedded designs.

i.MXS: It is the name of microprocessor designed by Freescale and operates at speed of
100MHz.

SDRAM: Synchronous Dynamic Random Access Memory, type of solid state computer
memory.

RISC: Stands for Reduced Instruction Set Computer

GUI: Graphical user interface. It allows people to interact with a computer and computer
controlled devices.

GPS: Global Positioning System is a navigation precise-positioning tool uses satellites to
determine position of the subject worldwide. ™

VS.NET: Visual Studio.NET is software based programming language also known as c-sharp, it
is used to develop console and GUI applications along with windows applications. 2
Console: Console application is a computer program designed to be used by the text only
computer interface. !

SDK: Software development kit is a set of development tools which allow a user or a software
engineer to create applications for a specific software package.

Emulator: An emulator is the software used to perform emulation of the hardware used by a
system. Emulation is the simulation of silicon chips or integrated circuits used in a hardware
system using computer software. !

SPI: Serial peripheral interface bus is a simple Master/Slave 4 wire protocol one for
synchronous clock (SCL), one for data transmitting, one for data receive and another for chip
select.

Chip Select: It is a control line that selects one chip out of several connected to the same
computer bus.

GPIO: General purpose input/output pins.

UART: Universal Asynchronous Receiver/Transmitter controller is the key component of the
serial communications subsystem of a computer. The UART takes bytes of data and transmits
the individual bits in a sequential fashion. At the destination, a second UART re-assembles the
bits into complete bytes. Bl

IDE: Integrated development environment.

EEPROM: Electronically Erasable Programmable Read Only Memory.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS Vi

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

1. INRODUCTION

The project involves designing an i.MXS ARM Based Digital Compass. Digital compasses
have a great importance in today’s world. The modern technology has empowered mankind
to travel distant places. Compasses have played a vital role in many ways and are still being
used with a great importance. The people from the old age used different ways to direct them
towards their destinations. Compasses have made this job easier for today’s generation. They
are being used in aircrafts, robots, navigation systems, GPS receivers, sports watches,
submarines and etc.

This report contains various stages of work involved in designing the digital compass and all

the techniques and methodology used to achieve the required result.

1.1 PROJECT AIMS AND OBJECTIVES

The project aim was to design an I.MXS ARM Based Digital Compass with the help of the
provided Tahoe development kit and selecting a suitable magnetic sensor.

The objective of the project was to display output of the digital compass on the Tahoe board
by interfacing it with a suitable magnetic sensor, and using the VS.NET Micro Framework

software.

1.2 RESEARCH

The project research stage was to develop understanding for the steps involved in design and
working of digital compasses. The research process was carried out in order to understand
the working of the hardware as well as designing the software, which was achieved by using
internet and web based data. The main purpose of research stage was to get all the basic
information about the project and understand the steps involved in developing a digital

compass using the provided components.

1.2.1 TAHOE DEVELOPMENT KIT

The Tahoe development kit was provided by the university. The Tahoe platform provides an

ideal development system for Meridian CPU and .NET Micro Framework. The Tahoe platform

includes;
e 1- Tahoe Board.
e 1-USB cable.
e A VS.NET 2005 installation disk.
e SDK with customise emulator for .NET Micro Framework.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

Universityol
I-lerrfnni:tk?rhlfr-e ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

1.2.2 TAHOE BOARD

The Tahoe board is a fully functional system allowing an infinite variety of expansion via
support for serial, SPI and 12C communications. Shown below is the Figure of the Tahoe
board.

Powered by

- s ‘waua = 3
/ 5?.:7“, FusionWare
R, ! A e

s

q®

Figure -1 Tahoe Boar
The technical © specifications of the board are as follows;

Core:
» Embedded Fusion Meridian CPU
» lItis a microprocessor mounted at the back of the Tahoe platform operates at
100MHz.
» It has a 2MB flash and 8MB SDRAM.

GPIO:
» Most pins are configurable as GPIO if not used for other purposes
» Minimum of 16 GPIO Pins Available (up to 64)

Communication and expansion busses:
» 1x UART RS-232 DB9 connector
» 12C for external peripherals
» SPI Bus (can use GPIOs for “chip selects” if required)
>

USB Function (for application download and debug)

Timers and clocks:
» timer output
» Optional input for programmable timer (can use internal clock)
» Pulse width modulator (PWM)

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

Power supply:

» 5Vinput
» Allows powering direct from USB Function port (no additional supply needed)
» 3.3V outputs for peripherals.

Shown below is the block diagram for Meridian CPU;

2.7" LCD Connector
LcD L1 16 x GPIO
PWM OUT

SPIMISO
- SPI MOSI
—

(1 SPI CLK
L7 SPI FRAME
i.MXS TIMER IN
Processor

16 BitLCD []

_l
-
n
(9}
5]
>

Memory
Bus

L 1 UART1 CTS

- UART2 TXD
-_. UART2 RXD

L | UART2RTS
-. UART2CTS

Figure — 2 Block diagram for Meridian CPU

1.2.3 SOFTWARE

The software used for the project was VS.NET Micro Frame Work (Version 2005), the Tahoe
board is compatible with this software. The .NET Micro Framework ['is Microsoft's latest
implementation of the .NET Common Language Runtime (CLR). The most notable aspect of
the .NET Micro Framework is that it does not need any underlying operating system. The
Micro Framework requires very little in the way of system resources thus reducing the overall
cost of a system. (The minimum memory resources are about 384K of FLASH/ROM and
256K of RAM) The Micro Framework first appeared in the MSN Direct Smart Personal Object
Technology (SPOT) watches and devices. In May of 2006 Microsoft announced it would make
the .NET Micro Framework available to the general embedded community through hardware
partners. The most noticeable use of the Micro Framework so far is the Windows

Sideshow compatible devices built into many new laptops for Windows Vista. 7

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

Universityol
I-lerrfnni:tk?rhlfr-e ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The .NET Micro Framework ") consists of two parts the Common Language Runtime and the
Core Libraries. The Common Language Run time is a system, designed by Microsoft that
executes Microsoft Intermediate Language or MSIL instructions. The software is provided with
an SDK called “Tahoe SDK” that plugs directly into Visual Studio 2005 and applications can
be written directly in C# for CPUs with the .NET Micro Framework. The Core Libraries
provided in the SDK are an extended sub set of the framework available on the desktop. The
.NET Micro Framework adds many specialized components designed for small, low power
embedded systems like 1°C, and SPI.

The figure-3 shows a working view of the VS.NET 2005 software used in the project;

@2 DigiCompas - Microsoft Visual Studio

File Edit View Project Buld Debug Data Tools Window Community Help

EnRAEE R4 - NEP WEERF - N 4 - Do | P Debug * Any CPU - | [c
EE [}J A ;E E (3.4] &1 (3 & By Start Debugging

Lll;l‘t ~Sensor.cs| Program.cs | LCD.cs | BusIO.cs » 3 | Solution Explorer - Solution ... » 1 X
&n“|jg v|[& v] B EES

i Elusing System: f ; Solution ‘DigiCompas’ (1 project) A
= L'Jsing Microsoft.3P0T; = =2 @ DigiCompas

g 3 |=d] Properties

T

3] References
1 Resources
flg BuslO.cs

E namespace DigiCompas

[

F//Class implements functionality of the sensor board to re

. N - o #] LCD.cs
enzsor:IDispo=akle
:? ass Sensor:IDisposable] Program.cs =
| Resources.resx »
S /address=s of the =ensor bus < | & _
const byte DEFAULT ADDRESS = 0x60:// the default adres — —
- Properties >~ 1 X
//parameter (register number) or adress of the registe™ -
£
Output ~ 3 X
Show output from: Build - _ﬂ ,JJ EN = =]
—————— Build started: Project: DigiCompas, Configuration: Debug Any CEU --
3 b
_'aError List |] Cutput
Build started... I_I Ln2 Col 1 ch1 INS

Figure — 3 IDE for VS.NET 2005

The Micro Framework ™ offers embedded systems developers a line of CPUs that essentially
directly execute MSIL. There is no need for low level assembly language or other proprietary
languages. You can use the standardized C# language to implement a complete embedded

system from handling interrupts to displaying a rich Graphical User Interface (GUI). M

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

1.2.4 MAGNETIC SENSOR

In the project one of the important tasks was to decide which magnetic sensor must be used
for compassing as there were a lot of magnetic sensors available in market. There was a
variety of magnetic sensors available for compassing depending upon their output including
1-axis, two-axis and three-axis magnetic sensors.

Magnetic sensors ® detect changes, or disturbances, in magnetic fields that have been
created or modified, and from them derive information on properties such as direction,
presence, rotation, angle, or electrical currents. The output signal of these sensors requires
some signal processing for translation into the desired parameter. Although magnetic
detectors are somewhat more difficult to use, they do provide accurate and reliable data —
without physical contact.

A magnetic field is a vector quantity with both magnitude and direction. The scalar sensor
measures the field's total magnitude but not its direction. The omnidirectional sensor
measures the magnitude of the component of magnetization that lies along its sensitive axis.
The bidirectional sensor includes direction in its measurements. The vector magnetic sensor
incorporates two or three bidirectional detectors. Some magnetic sensors have a built-in

threshold and produce an output only when it is surpassed. (el

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

Universityol
I-lerrfnni:tk?rhlfr-e ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

2. HARDWARE

The hardware part of the project involved connecting the suitable magnetic sensor to the
Tahoe board. The selection of magnetic sensor was not an easy job as there were a lot of
varieties of magnetic sensor available. The selection criteria were based on the sensor
output, whereas the required output for sensor was to be digital, which means that an ADC
(Analog to Digital Converter) was also required as a part of hardware. As from the name it
suggests that an ADC converts an analog signal into digital signal.

The magnetic sensor chosen for this project was the CMPS03.

21 CMPS03

OVERVIEW:

The CMPSO03 is a two-axis compass module (sensor board). It is called a compass module as

it is SOC (system on a chip) itself. The compass [9]

uses the Philips KMZ51 magnetic field
sensor, which is sensitive enough to detect the Earth’s magnetic field. The output from two of
them mounted at right angles to each other is used to compute the direction of the horizontal
component of the Earth’s magnetic field. The compass also has an ADC which converts the
analog signal into digital signal. Shown below is the figure for CMPS03 showing direction for

its true north and its connections; (9]

Pin 9- Ov Ground
Pin & - No Connect
Pin 7 - No Connect
Pin 6 - Calibrate
Pin 5 - Calibrating
Pin 4 - PYM
Pin3-SDA

Pin2-SCL
Pin1 - +5v

w B

L -
-:I

e ;
2

?

&

a

G}
Gl
@

Figure — 4 CMPSO03 (connections) o

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

PIN CONNECTIONS:

Pin 1 +5 V. The compass module requires a 5v power supply at a nominal 15mA.

There are two ways of getting the bearing from the module. A PWM signal is available on pin
4, or an 12C interface is provided on pins 2, 3.

Pin 2, 3 are an 12C interface and can be used to get a direct readout of the bearing. If the 12C
interface is not used then these pins should be pulled high (to +5v) via a couple of resistors.

Around 47k is ok, the values are not at all critical. [

Pin 4. The PWM signal is a pulse width modulated signal with the positive width of the pulse
representing the angle. The pulse width varies from 1mS (0°) to 36.99mS (359.9°) —in other
words 100uS/° with a +1mS offset. The signal goes low for 65mS between pulses, so the
cycle time is 65mS + the pulse width - i.e. 66ms-102ms. The pulse is generated by a 16 bit
timer in the processor giving a 1usS resolution. It was to be made sure that the 12C pins, SCL
and SDA, were connected to the 5v supply if PWM was used, as there are no pull-up resistors

on these pins.

Pin 5 is used to indicate calibration is in progress (active low). An LED can be connected from
this pin to +5v via a 390 ohm resistor if user wishes. !

Pin 6 is one of two ways to calibrate the compass, the other is writing 255 (OxFF) to the
command register. The calibrate input has an on-board pull-up resistor and can be left
unconnected after calibration.

Pins 7 and 8 are left unconnected as they have on board pull-up resistors.

Pin 9 is ground OV power supply.

2.2 12C INTERFACING

The 12C bus is a two wired bus serial data line (SDA) and serial clock line (SCL), usually to
interact within small number of divisions. It can operate at different speeds 100kbps (standard
mode), 400kbps (fast mode) and 3.4Mbps (high speed mode).The data transfer in I12C bus is
bi-directional and is 8-bit oriented and is in form of serial data.

On an 12C-bus any 12C device can be attached and every device can talk with any master,
passing information forward and backward.

Each device ™ has a unique 7-bit 12C address so that the master knows specifically whom
they are communicating with. Typically the four most significant bits are fixed and assigned to

specific categories of devices.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The three less significant bits are programmable through hardware address pins allowing up
to eight different I2C address combinations and therefore allowing up to eight of that type of
device to operate on the same 12C-bus. These pins are held high to VCC (1) or held low to
GND (0). 7-bit addressing allows up to 128 devices on the same bus but some of these
addresses are reserved for special commands so the practical limit is around 120. ™

Shown below is the diagram of the 12C bus terminology;

Master SDA Slave

Transmitter Receiver

sSCL

sSDA

Recaiver Transmitter

sSCL

Figure — 5 12C Bus Terminology 1ol

Master device controls the SCL, starts and stops the data transfer and controls the
addressing of the other devices.
Slave device itself is addressed by the Master. In case of the data transmitting and receiving
that Master-transmitter sends data to the slave-receiver and the Master-receiver requires data
from the Slave-transmitter.
The data bits are transferred after start condition. The data transmission is byte oriented
where;

1 byte = 8bit + one acknowledge bit

The most significant bit (MSB) always comes first. During the first byte transfer Master is

transmitter and address slave is receiver.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

I2C communication Protocol with the Compass module is same as the popular EEPROM’s.
The compass module has a 16 byte array of registers, some of which double up as 16bit

registers are as follows;

Register Function
0 Software Revision number
1 Compass Bearing as a byte, i.e. 0-255 for a full circle
2,3 Compass Bearing as aword, i.e. 0-3599 for a full circle, representing 0-359.9
degrees.
4,5 Internal Test - Sensorl difference signal - 16 bit signed word
6,7 Internal Test - Sensor2 difference signal - 16 bit signed word
8,9 Internal Test - Calibration value 1 - 16 bit signed word

10,11 Internal Test - Calibration value 2 - 16 bit sighed word

12 Unused - Read as Zero

13 Unused - Read as Zero

14 Unused - Read as Undefined
15 Command Register

Table showing functions of compass module registers.

Register 0 is !

the Software revision number (8 at the time of writing). Register 1 is the
bearing converted to a 0-255 value. This may be easier for some applications than 0-360
which requires two bytes. For better resolution registers 2 and 3 (high byte first) are a 16 bit
unsigned integer in the range 0-3599. This represents 0-359.9°. Registers 4 to 11 are internal
test registers and 12, 13 are unused. Register 14 is undefined. There is no need to read them

it would do nothing but waist the 12C bandwidth. Register 15 is used to calibrate the compass.

2.3 CONNECTING HARDWARE

The hardware connections were made according to the provided data sheet of the compass
module and the user manual given with the Tahoe board. The equipment used for the
hardware connections were as follows;

e 1-Soldering iron.

e 6- Coloured wires.

e 2- Connecting headers.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The compass module was not directly soldered on the 12C bus of the Tahoe board. Two
headers were used in order to prevent direct contact of the soldering iron to the Tahoe board
and the compass module (sensor board). Different coloured wires were used to differentiate
the connections. Initially all the wires were soldered on to the connecting headers in order to
avoid any damage to the sensor board or the Tahoe board. Red coloured wire was used for
5V connection and black for the OV ground. Pinl +5V of the sensor board was connected to
the +5V on the 12C bus and Pin9 0V ground was connected to the OV ground of the 12C bus.
Pins 2 (SCL) and 3 (SDA) of the compass module were connected to the SCL and SDA pins
of the 12C bus on the Tahoe board. Yellow colour wire was used for SCL and purple colour
wire was used for SDA. Pink and brown coloured wires were used for pin 5 and 6 but they
were left un-connected according to the given connections. The pin 6 was to be calibrated but
it was left un-connected as the calibration was done through the software.

Shown below is the picture of all the hardware components involved,;

COMPASS MODULE

TAHOE PLATORM

CONNECTING HEADERS

LT TTIT

Figure — 6 Project Hardware components

It was made sure that all the connections were accurate according to the data sheet before
powering the board as it could result in damaging the board. Extra care was taken while
handling the compass module as it was sensitive to static charge. In order to avoid that anti
static wrist band was used which was provided in the laboratory to avoid the hazard of static

charge.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

Shown below is the block diagram of the project hardware part, showing all the connections
from the sensor board to the 12C bus on the Tahoe board.

Input5V DB3 Connector
P 1 | — UsB

B
[C— Reset

0V Ground J

[}
] No Connect
L B— No Connect
Magnetic Sensor L] Calibrate
L} No Connect
5V CMPS03 u PWM
ov L} SDA —
— SDA L} SCL
SCL n +§ V“
n n E = -“> Hard Buttons
[5] [B B

Figure — 7 Project Block Diagram

Problems faced during the hardware connection were as follows;
e Lose connection due to weak soldering.
e Aninverted connection, SDA of the sensor board was connected to the SCL of the
Tahoe board.

e One of the headers was damaged with the soldering iron, which was then replaced

with a new one.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

3. CODING

This section of the report contains the detailed explanation of the programe code developed
for the project. For complete copy of the code as well as the sample code please refer to the
Appendix. The programe code was developed by looking at different examples of basic c-
language code regarding compassing and the sample code provided with the sensor board.
The programe code was divided into four main classes. The class diagram shown below

gives an overview about overall working of the programe code.

MAIN PROGRAM

Program.cs
Class

It implements.
functienality of 2enzor
board to get compazs
heading in degrees

Thiz class runs the This class LCD class is reponsible’
main application allows communication for GUland all the
window and button protocol with 2C bus display elements
definitions

Figure — 8 Class diagram for Programe code

3.1 Program.cs

The Program.cs class runs the main window application and also checks for the button
definitions.

namespace DigiCompas

y <summary>Core apllication object for the application</summary>
public class App ! EmbeddedFusion.SPOT.Application

$region Application Emtry Point
' <szummary>Main entry point for the application</summary>
public static woid Main()

{
S/ Init and run the application main window
Lo thelpp = new Zpp () !
theipp.Bun (thefipp . MainWindow) ;

]

$endregion

Figure — 9 Program.cs code for main window

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

12

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

It shows in figure-9, that this class allows to initiate and run the main window application. The

main window application is like a starting point for the class.

#region Button Definitions
f// <summary>Button Definitions for this application</sunmary>

<remarks>
/ For Demo purposes defines all the directions and =select button.
Currently the only one actually used in this application is the select button.

f </remarks>

static B
S /add button definitions for application

onDefinition[] ButtonDefs = {

new Bu 1.Up, true, Tahoe.FPFins.S35WS),
new Bu 1. Left, true, Tahoe.Pins.5W6),
new Bu 1.5elect, false, Tahoe.Fins.35WT),
new Bu 1. Right, true, o
new Bu 1. Down, true, e

ki

$endregion

Figure — 10 Program.cs code for button definitions

The above figure-10 is showing the button definition part of the class Program.cs. In this part
of Program.cs the buttons on the Tahoe board are accessed with the help of the program
code. It shows that the functioning button is the “Select” button which is named as SW7, and
in the programe code it shows that it checks for all the buttons and gets value “True”.
Whereas on button SW7 it gets “False” this allows it to jump towards the next step. It is not
necessary to define all the buttons. Only the required button can also be defined but it is done

for demo purposes.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

3.2 LCD.cs

The LCD.cs class inherits window class which is inbuilt class of the SDK. This class is
responsible to show any button activity and show different images and text (GUI) to be
displayed on the screen. The LCD class is further divided into two sub classes for different
screens. LCD class is important class as it holds all the GUI elements and is responsible to

show all the text and image activity.

class LCD : Window

Private wariables
private Font SmallFont;
private Color bkgColor = Color.Black;
public LCD()

//Read resources file to get font
this.5mallFont = Rescources.GetFont (Resources.FontResources.myfont) ;

ffcreate introscreen object

IntraoScreen intro = new IntroScreen() !

/fassign this wview to lecd
this.Child = intro;

ffetart rendering thi=s view
intro.S5tartRendering () ;

Figure — 11 LCD.cs code showing Private variables

In figure-11 the LCD class window is defining variables, which give the font size, background
colour and create a new intro screen on the LCD of the Tahoe board. The

intro.StartRendering allows the text to be printed on the screen.

protected override wvoid OnButtonDown (Microsoft.SPOT.Input.ButtonEventlirgs e)

S /fDectect button action and respond accordingly
base.OnButtonDown (e} ;

SF1E child i=s introscreen then load the compas view
if (thi=.Child is IntroScreen)
IntroScreen intro = this.Child as IntroScreens

intro.Destrov () :

intro.Invalidate () :

CompassElement compass = new CompassElement (bkgColor, this.SmallFont):
this.Child = compass;

compass.StartRendering ()

Figure — 12 LCD.cs code showing override event

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The figure-12 shows the override event for the button activity using “if/else” statements. The
override event is used in order to make changes into the start rendering event. The start
rendering event has a default method of printing text. Override event provides user to play
with the start rendering function and change it as required. It shows that the override event
detects the button action and responds accordingly if the rite button is pressed it will exit the

intro screen and load the compass view screen.

else//LORD INTRC SCREEN AGRIN.

CompassElement compass = this.Child as CompassElement;
compass.Destrov()

compass.Invalidate ()

IntroScreen intro = new IntroScreen():

this.Child = intro;

intro.5tarctRendering();

Figure — 13 LCD.cs Reloading intro screen using else statement

In above figure-13 it is showed that if the wrong button is pressed the program will invalidate
the compass view screen and load the intro screen again using the “else” statement.

The LCD class has further two sub classes explained below.

3.2.1 Class Compass Element

The class compass element displays the compass reading and compass screen on to the
LCD of the Tahoe board. In this class the different images are displayed on to the compass

screen. The compass screen obtained is shown below;

Figure — 14 Compass Screen

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 15

School of Electronic, Communication and Electrical Engineering

BEng Final Year Project Report

class CompassElement : UIElement
Sensor compass = new Sensor():
Bitmap bmpCompass = Resources.GetBitmap (Eesources.BitmapResources.Compass))
Bitmapr bmpAngle = EResources.GetBitmap (Resources.BitmapResources.Angle) !

Figure — 15 LCD.cs code compass screen display

The figure-15 shows how to display any bitmap image. Any Bitmap file can be displayed using
these lines of code; any bitmap file present in the resource folder of the programe can be
displayed by using this part of the program code. The picture format can be Bitmap as well as
JPEG. The above piece of code is simply accessing the bitmap files from the resources and

displaying them as image on the LCD for compass and angle. The images used are shown

Figure — 16(a) Picture used for angle and direction

below,

The figure-16(a) shows the picture used to display the angle of the compass as well as the

direction.

Figure — 16(b) Picture for analog compass display

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

16

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The picture (figure-16(b)) was used for analog compass display with the help of the program
code explained above and showed in figure-15. Both these images (16a, 16b) were displayed
on the screen but before doing that the centre points of the screen were calculated which can

be shown in the figure-16 below.

/fcalcuate the center points of the screen
int cx = (dc.Width - bmpCompass.Width) F 2;
int cy = (de.Height - bmpCompass.Height) [2:

Figure — 17 LCD.cs Calculating screen centre points

The compass direction was displayed by using array method. The compass direction was
divided in 16 directions between 0’ to 360’'which gives a value of 22.5.That means the
compass direction must change after every 22.5’ degrees. The array was assigned with 16
numbers.

{/Initialize the array of named directions |
string[] Directions = "N,NNE,NE,ENE,E,ESE, SE, S5E, 5, S5W, SW, WSW, W, WIW, JOW, NNW, N" . Split (', ')

[
r

Figure — 18 LCD.cs array method for direction

The process was very simple. On getting the angle value from the sensor board, the value
was then divided with the calculated value 22.5. It gives a number between 1- 16 and
depending on the number the array displays the direction. The figure-18 below shows the

piece of code for the process explained.

J/Calulating the direction

int Dir = System.Math.hbs((int) (fAngle / 22.5)):

string DirName = Directions[Dir]: //Direction name

dc.DrawText (Angle, this.TextFont, Colors.Green, bmpAngle.Width / 2, 25);
dc.DrawText (Dirlame, this.TextFont, Colors.Green, bmpingle.Width / 2 + 70, 25):

Figure — 19 LCD.cs Calculating directions

The last two lines of the code in figure-19 are drawing text for angle and direction on the
screen with a selected green colour and also calculating the points where the text should be
displayed or in other words the parameters for the text and angle. The direction calculation

can be shown for example if we assume the angle value to be 45’ degrees.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

17

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

We have;
g = 45°

Calculated value for directions = 22.5°

g 457
2.5

2.5

]
]

=2
Hence the calculated direction will be NE (North East) as it is the 2" number direction from
the left hand side if you see figure-17. The calculated value is passed to array and the string
then display’s the direction that comes on that number which is 2. So that means the

compass should be pointing at NE (North East) at an angle of 45’ degrees.

S fU=se H to calibratce

int N = 30;

int intAngle = (int) (fAingle) + H:

fifCalculating the compass needle length using
I ¥= Fx=ini(a)

ff ¥= Fxcos(a)

double sval = (double)Microsoft.SPOT.Math.5in(intAngle) / 1000;//5ine walue
double cwval = (double)Microsoft.3POT.Math.Cos(intAngle) / 1000;//cosine walusg
int ry = (int) (ClockBRadiu=s * =val):

int rx = (int) (ClockRadiu=s * cwval);

S /to obtain full compass needle

int ryvl = - (int) (ClockRadius * =val);

int rxl = —(int) (ClockRadius * cwval):

int %1 = x0 - rx;
int y¥1 = y0 - ry:

int = =0 - rxl;

B
ki ka3

int v0 - ryl;

b

//DRAWS COMPASS NEEDLE (white for North)
dec.Drawline {(new Pen{(Color.White, 5), =0, w0, =1, wl):

ffdraw pivot circle
dec.DrawEllips=e (this.Background, new FPen({Coclor.Black), =0, y0, 4, 4):

//DREWS COMPASS WEEDLE (black for South)
do.Drawline (new Fen(Color.Black, 5), =0, v0, =2, v2):
base.OnRender (dc) :

Figure — 20 LCD.cs Drawing Compass needle

The program code shown in above figure-20 is drawing the compass needle. The compass
needle was drawn using the Math function for drawing vector. North was used to calibrate the
compass it was given an off -set value of 90. So the default position of the compass angle
was 90.The compass needle was to be drawn according to the clock radius of the blue circle

in the compass picture shown in figure-16(b). It was approximately 50 pixels.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The value of the clock radius was first defined at the top of the program code in Private
variables. The compass needle was then drawn by taking Cos and Sine of the compass
angle. Initially it resulted in a big value giving the compass needle an abnormal length. To
avoid this calculated value was then divided by 1000 to get it to unity. As we know that the
value for Sine and Cos is between 0-1, after that it was then multiplied by 50 (clock radius),
which controlled the length of the compass needle according to the clock radius of the blue
circle.

To obtain the full length of the compass needle the same code was used by adding a
negative sign to it which gave a compass needle of similar length but on the opposite

direction. To differentiate the opposite side its colour was changed to black

3.2.2 Class Intro Screen

As from the name it shows that this class is responsible for loading the intro screen onto the
LCD screen of the Tahoe board. The same lines of code were used for this class as

discussed before in figure-15. Shown below is the picture of the intro screen of the compass.

Figure — 21 Intro Screen for compass

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 19

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

class IntroScreen : UlElement

//private members
private Bitmap myPic = Resources.GetBitmap (Resources.BitmapResources.myPic))
e

private Font myFont = Resources.GetFont (Rescurces.FontResources.myfont);

Figure — 22 LCD.cs Intro Screen display

The exact same code was used to display the intro screen elements. The pictures were
accessed through the resource files and were displayed by using the program code in figure-
21.

3.3 BuslO.cs

The BuslO.cs class is responsible for I2C communication protocol between the software and
the hardware. The class allows the software to communicate with the 12C bus of the Tahoe
board. This class manipulates the functionality of the 12C slave class which is provided with

the SDK. This class performs the read/write operation on the required registers.

class BusIC:IDisposable

/{Declaration of variable=s and constants//
public const int I2C SPEED = 100;//I2C Bus speed in EHz

const int I2C TIMEQUT = 5000:;// Timeout for the I2C operations
private IZ2CDevice I2S8lawve;

private byte[] _registerBuffer = new byte[l] { 0x00 };

private byte[] _writeBuffer = new byte[2] { 0x00, 0x00 };

pukblic BusIO(byte Address)

I251lave=new I2CDevice (new IZCDevice.Configuration(Address,TI2C SPEED));

This class manupulates the functionality of I2Cslave class which i1s provided with SDE//

Figure — 23 BuslO.cs Declaration of variables and constants

All the variables and constants are defined in this piece of programe code shown in figure-23.
The values used are default values. The register 1 is used as it gives compass bearing as a
byte, i.e. 0-255 for a full circle. The register numbers used for I2C communication are 2 and 3
as explained above that these registers get compass bearing as a word, i.e. 0-3599 for a full

circle, representing 0’-359.9’ degrees in angle.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

20

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

public void Read(byte[] readBuffer)
I2Chevice.I2CTran=saction[] =xact = new IZ2CDevice.IlZCTIransaction|]
IZ25lave.CreateReadTIransaction (readBuffer)
b
lock (I251lawve)

int bytesCount = IZ5lave.Execute(xact,I2C _TIMEOUT) ;
if (bytesCount < readbBuffer.Length)

Figure — 24 BuslO.cs Read operations

In the above (figure-24) part of the program code the BuslO class is to read any port on the
I12C bus of the Tahoe board. Execute method will read bytes on the 12C bus and returns the

number of bytes successfully on the bus.

public void Write (byte[] writeBuffer)

I2CDhevice.I2CTransaction[] Xact = new IZ2CDevice.IlIZCTransaction[]
IZ25lave.CreateWriteTranzaction (writeBuffer)
}:

lock (I251lawve)

int bytesCount = I253lave.Execute (xact, I2C TIMECQUT);

if (bytesCount < writeBuffer.Length)

Figure — 25 BuslO.cs Write operations

In figure-25 the program code writes the port on the 12C bus. The Execute method here will
write bytes on the 12C bus and returns the number of bytes successfully on the bus. The
process taking place in this part of code is similar to the one explained for code in figure-24
the only difference is that this time the code is performing the write operation instead of read

operation.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

3.4 Sensor.cs

The sensor class implements the functionality of the sensor board to read the compass

values in degrees.

cla=ss Sensor:IDisposable

const byte DEFAULT ADDRESS = 0Ox&0;
const byte REG AZTMUTH HIGH = 2Z;

private BusID I2Bus;
private byte[] _dataBuffer = new byte[2] { 0x00, 0x00 };

Figure — 26 Sensor.cs showing address of register and sensor bus

This part of the program code (Figure-26) assigns address to the sensor bus. The address
used is 60 as it was the default address given for the sensor board. In the next step the
compass heading is taken from the register 2. As explained above the register 2 and 3 get
compass bearing as a word i.e. 0-3599 for a full circle representing 0’- 359.9’ degrees of

angle.

puklic float GetAzimuthi()

{//read higher register into the buffer [dataBuffer]
I2Bus.ReadRegister (REG AZTMUTH HIGH, dataBuffer);

/fconvert bytes to float wvalue and return the value to calling function

return GetValue(dataBuffer, EyteCrder.BigEndian) S 10f:

S /function to convert bytes to float wvalue
public long GetValue (byte[] bytelhrray, EByteOrder bytelrder)

if (bvteOrder == EByteUrder.BigEndian)

return FromBigEndian (byteArray, 0, byteArray.Length):
el=e

throw new NotImplementedException ("Not Implemented™):

Figure — 27 Sensor.cs getting compass heading
This section of program code (Figure-27) gets the Azimuth value from the sensor board and

then reads the register value when it is high into the data buffer. The next step it shows that

the byte order is set using Big Endian.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

22

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The Big Endian means the big end first, which means that the high order bytes are stored first
into the low memory location. Then it converts the receiving bytes into float (decimal) type and
returns the value to the calling function. If the condition is not satisfied then it uses the “else”

statement to display an error message.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

23

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

4. PROJECT TESTING AND WORKING

This section of the report contains the project testing on hardware as well as software basis,

and the problems faced during the software and hardware testing.

The hardware was tested with the help of software. All the communication and expansion
buses of the Tahoe board were tested at very initial stage to confirm that the board itself was
working perfectly. This was done by running default test programs provided with the software
for the each communication bus. It helped in understanding the nature of the hardware as
well as the software. In hardware there were problems faced during testing of the SPI bus it
kept on showing error messages which was then rectified by making changes to the test
program code. It helped in understanding the debugging process which later on helped in
software testing. After connecting the sensor board with Tahoe board the software was then

tested before the final testing of the whole project.

The software testing was carried throughout the program code development process. Initially
there were errors in the program code. Debugging was carried out constantly to make sure
that the program code was correctly working before testing it with the hardware.

The debugging process helped in error diagnosis and also helped in understanding the c-

sharp language limitations.

[#2 DigiCompas - Microsoft Visual Studio

Fle Edt View Refactor Project Buld Debug Data Tools Window Community Help

F-E- @ ¥ 9080 b D - Any CPU i) MR
Dl #5120 L3 98 B = o
[Sensor.cs*| Program.cs | LCD.cs | BuslO.cs - x | [Solution Explorer -Digco... ~ & X
£ | [§ vigicompas.sensor v [s* VBRI E&
3 const byte REG AZIMUTH HIGH = 2 —| (A soluton DigiCompas' (1 profect)
;n = — = §# DigiCompas
g //private BusIO I2Bus; =] Properties
private byte[] _dataBuffer = new byte[2] { 0x00, 0x00 }; 53] References

[Resources
] BuslO.cs
#] LCD.cs
4] Program.cs
(= (53 Resources.resx
%] Resources,Designer.cs
r i [byte Sensor DEFALLT_ADDRESS]] sensor.cs

//constructor for sensor class
E public Semsor()

I2Bus = new BusIO(DEFAULT_ADDRESS);

//get azmuth value from the sensor bosrd
/fpublic float GetAzimucth()
/read nigher register inte the buffer [dataBuffer)
I25us.ReadRegister (REG _AZIMUTH HIGH, _dataBuffer); < >

Properties -ax
//convert bytes to float value and return the value to callin
GerValye(_dataBuffer, ByteOrder.B3igEndian) [10%; Debug Window Z
= A
L s ==

//function to convert bytes to float value
public lony GetValue (byte[] byneArzay, ByteOrder bytebrder)

v
< >
Error List 1 x
@ 17Errors | 1\ 0 Warnings | (i) 0 Messages
Description Fie Line Column Froject A
@ 1 Invaiid token '{ in class, struct, or interface member dedaration Sensor.cs E3 E] DigiCompas
@ 2 Invalid token '(in dass, struct, or interface member deciaration Sensor.cs B 3t DigiCompas
@ 3 Invaiid token ', in dass, struct, or interface member declaration Sensor.cs B a8 DigiCompas
v

53 Error List | 5] Output

Figure — 28 IDE showing debug window

After completing the testing process for hardware and software the whole project was then

tested to get the required results.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

24

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The hardware was connected to the PC/Laptop with the help of provided USB cable. As soon
as the cable is plugged in the power light of the Tahoe board turns green (on). The software is
then run. Once the debug button is pressed the program code is build and debugged
completely. After completing the debug process the intro screen appears on the LCD of the

Tahoe board telling the user to press button SW7 to start.

[

’ DIGI COMPASS

Final

Figure — 29 Compass intro screen displayed on LCD

As soon as the user hits the SW7 button or the select button on the Tahoe board it moves on
to the next screen which is the compass screen. The compass screen displays angle
measured by the sensor board and the directions calculated through the program code. It also
displays the compass needle which changes direction with respect to the changing angle. The
angle changes with the change in direction of sensor board i.e. right or left. Shown below is

the picture of the compass screen displaying angle, direction and compass needle.

Figure — 30 Compass screen displayed on LCD

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 25

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

The direction name and compass needle direction showed in figure-30 is correct with respect

to the angle measured by the sensor board. It can be proved as follows;
Number of compass direction = 360/ 16 = 22.5

Angle measured by the sensor board = 119.8®

Direction appearing on the display = ESE (East South East)

Measured angle / compass direction = 119.8% / 22.5 = 5.3, Approx 5

Whereas the divided direction names are;

N, NNE,NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW, W, WNW, NW, NNW, N

Hence out of these directions starting from 0, ESE is the 5" number direction which has been
displayed on the LCD screen and even the compass needle is pointing towards the same
direction.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

5. RESULTS AND DISCUSSION

This section of the report contains all the results obtained at the testing and implementation
stage f the project. The results obtained were as expected and were satisfying the objective of
the project.

Figure — 31 Working Compass intro screen

The figure-29 is showing the picture of the whole project running and displaying the intro
screen, which shows that the software and the hardware are working correctly. Also it can be
seen that the sensor board is connected to the Tahoe board. The button labelled as SW7 is
the select button which allows the user to move on to compass screen by pressing it. These
pictures were taking at the project demonstration time.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
Hertfordshire ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

Figure — 32 Working Compass screen displayed

Figure-30 shows the working display of the project as Digital Compass. It can be seen that
the angle is displayed in degrees and the name of the direction is also displayed. Also the

compass needle is pointing in the direction displayed.

From the results it can be seen that the project was a success in terms of achieving the
required task. It meets the brief of, developing an i.MXS ARM Based Digital Compass device
that directs the user towards the wanted direction based on its true north. The results also

justify all the details explained above in the report regarding the project.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

28

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

6. EVALUATION

The projects meets the requirements for i.MXS ARM Based Digital Compass. Project was
completed within the specified time without facing any high level difficulties. The project
satisfies the requirement of an i.MXS ARM Based Digital Compass. The device created can
be used in different applications such as aircrafts, robots, Navigation systems, GPS receivers
and etc.

Although the project did not exactly followed the time plan provided in the feasibility study,
due to some delays in the progress but it was completed before the given time.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

29

University
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

7. CONCLUSION & FURTHER DEVELOPMENT

The project satisfied the requirements of an i.MXS ARM Based Digital Compass. This project
helped in improving learning skills and provided a chance of enhancing knowledge. It helped
in understanding the basic concepts of digital compasses, and the background knowledge
about the magnetic sensors and their operations. It also improved the skills in learning c-

sharp programming language.

The projects requirements were;

e To design an i.MXS ARM Based Digital Compass.

e To display digital compass output on the Tahoe board using magnetic sensor and
VS.NET Micro Framework software.

The project achievements were;

e Ani.MXS ARM Based Digital Compass was designed.

e The output of Digital compass was displayed on LCD of Tahoe board using sensor

board and VS.NET Micro Framework software.

For future development it was decided that an off-set window will be introduced in the digital
compass. The output window will allow any user to set their true north according to their
requirement.

For example if a user thinks that the true north showed by the compass has an error of about
5 degrees. The user will press the selected button for the off-set window. A new screen will
appear asking the user to enter off-set value. This off set window will appear after the second
screen which is the compass screen or it could be accessed any time while the compass is
running by pressing the selected button. After entering the off-set value the user will be able

set the true north as required.

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

30

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report
Reference
Number Reference Link

[1]

http://scign.jpl.nasa.gov/learn/gpsl.htm

[2]

http://en.wikipedia.org/wiki/Vs.net

(3]

http://en.wikipedia.org/wiki/Console application

[4]

http://www.mameworld.net/easyemu/emuwhatis.htm

(5]

http://www.freebsd.org/doc/en _US.ISO8859-1/articles/serial-uart/index.html

(6]

http://www.embeddedfusion.com/uploadedFiles/products/TahoeDetailSheet.pdf

[7]

http://www.embeddedfusion.com/default.aspx?id=76

(8]

http://www.sensorsmag.com/articles/0399/0399 18/

[9]

http://www.robot-electronics.co.uk/htm/cmps3tech.htm

(10]

http://www.nxp.com/products/interface control/i2c/facts/

[11]

http://www.robot-electronics.co.uk/acatalog/examples.html

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

31

http://scign.jpl.nasa.gov/learn/gps1.htm
http://en.wikipedia.org/wiki/Vs.net
http://en.wikipedia.org/wiki/Console_application
http://www.mameworld.net/easyemu/emuwhatis.htm
http://www.freebsd.org/doc/en_US.ISO8859-1/articles/serial-uart/index.html
http://www.embeddedfusion.com/uploadedFiles/products/TahoeDetailSheet.pdf
http://www.embeddedfusion.com/default.aspx?id=76
http://www.sensorsmag.com/articles/0399/0399_18/
http://www.robot-electronics.co.uk/htm/cmps3tech.htm
http://www.nxp.com/products/interface_control/i2c/facts/
http://www.robot-electronics.co.uk/acatalog/examples.html

University of
' H

School of Electronic, Communication and Electrical Engineering

BEng Final Year Project Report

BIBLIOGRAPHY

BOOKS TITLE AUTHOR
1 Visual C# 2005 a developer’s notebook. JESSE LIBERTY
2 Programming C# Jesse Liberty JESSE LIBERTY
3 Professional C# 2005 with .NET 3.0 CHRISTIAN NAGEL

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

32

University of
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

APPENDIX.1 PROJECT CODE

Program.cs

using System;

using Microsoft.5POT;

using Microsoft.5POT.Input;

using Microsoft.S5POT.Hardware:

using Microsoft.SPCT.Presentation:

using Microsoft.5POT.Presentation.Media;
using EmbeddedFuszion.SPOT.Hardware;

namespace DigiCompas

[/ <summary>Core apllication object for the application</summarys
public class App : EmbeddedFusion.SPOT.Application

$region Application Entry Point
[<summarv>Main entrv point for the application</summarys
public static void Main()

/f Init and run the application main window
Lpp thelpp = new App():
thelipp.Run (theipp.MainWindow) ;

}
tendregion

$region Constructor

[<summarvrConstructor for the application object</summary:
[/ <remarks>»

/f/ Creates a new Full Screen LCD Window as the

ff/ main window for the application.

fff </remarks>

App ()
! base (hpp.ButtonDefs)

thiz.MainWindow = new LCD{):

thiz.MainWindow.Height = SystemMetrics.ScreenHeight;
thiz.MainWindow.Width = SystemMetrics.ScreenWidth;

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

33

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

}
tendregion

$region Button Definitions
[f/ <summary>Button Definitions for thiz application</summaryr
/// <remarks>
/// For Demo purposes defines all the directions and select button.
/// Currently the only one actually used in this application is the select button.
[l/ </remarks>
atatic ButtonDefinition[] ButtonDefs = {
//Bdd button definitions for application

new ButtonDefinition(Button.Up, true, Tahoe.Pins.SWS),
new ButtonDefinition(Button.Left, true, Tahoe.Pin=z.SWe),
new ButtonDefinition(Button.Select, false, Tahoe.Pinz.SWT),
new ButtonDefinition(Button.Right, true, Tahoe.Pins,.S5WE),
new ButtonDefinition(Button.Down, true, Tahoe.Pinaz,SW3)

¥

tendregion

LCD.cs

using System;

using System.Collections;

using Microsoft.S5POT;

using Microsoft.5POT.Presentation.Media;
using Microsoft.5POT.Presentation;

using System.Threading;

using EmbeddedFusion.SPOT;

namespace DigiCompas

/{ LCD class inherits window class which iz inbuilt class of SDE

// This class is responsible to detect any button activity and show
// different images and text (GUI) to be displaved on the =screen

// LCD class has two sub classes for two different screens

claszs LCD : Window

/f Private wariables

private Font SmallFont;

private Color bkgColor = Color.Black;
public LCD{)

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

34

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

//Read resources file to get font
thiz.5mallFont = Resources,zetFont (Resources.FontResources.myfont);

//create introscreen object
IntroScreen intro = new IntroScreeni);

//assign this view to lcd
this.Child = intro;

//start rendering this view
intro,StartRendering();

//override event for detecting the button activity
protected override void CnButtonDown(Microsoft.SPOT.Input.ButtonEventlrgs e)

//Detect button action and respond accordingly
base.OnButtonDown (e) ;

//if child i3 introscreen then load the compas view
if (this.Child is IntroScreen)

IntroScreen intro = thiz,Child as IntroScreen;

intro.Destroy();

intro,Invalidate();

CompassElement compass = new CompassElement (bkgColor, this.SmallFont) i
thiz.Child = compass;

compass. StartRendering();

}
else//LOAD INTRO SCREEN AGAIN.

CompassElement compass = this.Child as CompassElement;
compass.Destroy();

compass, Invalidate () ;

IntroScreen intro = new IntroScreen();

thiz.Child = intro;

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 35

University of
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

intro.5tartRendering();

// This class i3 responsible to display compass reading and GUI
class CompassElement : UIElement

Sensor compas3 = new Senaor();
Bitmap bmpCompass = Resources.GetBitmap (Resources.BitmapResources.Conpass):
Bitmap bmpingle = Resources.GetBitmap (Resources.BitmapResources.Angle):

//Initialize the array of named directionz (16)
string|] Directions = "N,WNE,NE,ENE,E,ESE,SE, 35E,5, 53W, SW, WW, W, WNW, I0W, NNW, H" . Split (', ') ;

[/Private variables of the class CompassElement
So0lidColorBrush Background;

Font TextFont;

int ClockRadius = 50;

private bool Stopped:

Thread TimerThread:

private delegate void VoidProcDelegate();

//Conatructor for CompassElement
public CompazsElement (Color BkgColor, Font TextFont)

this.Background = new SolidColorBrush(BkgColor):
this.TextFont = TextFont;
public void Destrov()

Stopped = true;

public void StartRendering()

TimerThread = new Thread(new ThreadStart (TimerThreadProc)):
TimerThread.Start ()

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 36

University of
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

void TimerThreadProc()
while (this.TimerThread.ThreadState == ThreadState.Running && !Stopped)

DispatcherOperation op = this,Dispatcher.BeginInvoke (new VoidProcDelegate (base,Invalidate));
op.Wait();
Thread.5leep(100);

[/Gverride default rendering method to paint a custom screen
public override void OnRender (DrawingContext de)

// fill the entire background with the background color
de.DrawRectangle (this.Background, null, 0, 0, de.Width, dc.Height);

//calcuate the center points of the screen
int cx = (dc.Width - bmpCompass.Width) / 2;
int cy = (dc.Height - bmpCompass.Height) / 2;

//points where Image for angle will be displayed
int ax = (dc.Width - bmpAngle.Width) / 2;
int ay = 2;

//paint compass image and angle text box
de.Drawlmage (bnpdngle, ax, ay + 15);
de. DrawImage (bnpConpass, cx, cy + 30);

[/calculate different values to be used to display angle and named directions
float fingle = compass.GetAzimuth();
fingle = (360 - fingle);// fangle value i3 given by the board

//precision to 2 desimal points
fingle = (float) ((int) (fAngle * 10) / 10.0);

string Angle = fAngle.ToString();

//Calulating the direction

int Dir = System.Math.Zbs((int) (fingle / 22.5));

string DirMame = Directions[Dir]; //Direction name

dc.DrawText (Angle, this.TextFont, Colors,Green, bmplngle.Width / 2, 25);

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 37

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

dc.DrawText (DirName, this.TextFont, Colors.Green, bmphAngle.Width / 2 + 70, 25);

int x0 = dc.Width / 2; //Center point
int y0 = dc.Height / 2;
y0 = y0 + 30; //offset

//Use N to calibrate

int N = 80;

int intAngle = (int) (fAngle) + N;

//Calculating the compass needle length using

// ¥= Fx3in(a)

/! Y= Fxcos|a)

double sval = (double)Microsoft.SPOT.Math.Sin(intAngle) / 1000;//5ine value
double cval = (double)Microsoft.SPOT.Math.Cos(intlngle) / 1000;//cosine value
int ry = (int) (ClockRadiuz * sval);

int rx = (int) (ClockRadius * cval);

//to obtain full compass needle

int ryl = -{int) (ClockRadius * zval);
int rxl = -(int) (ClockRadius * cval);
int x1 = x0 - rx;

int yl = y0 - ry;

int x2 = x0 - rxl;

int y2 = y0 - ryl;

J//DRIWS CCMPLSS NEEDLE (white for North)
dc.Drawline (new Pen(Color.White, 3), x0, y0, x1, vi);

//draw pivot circle
dc.DrawEllipse (this.Background, new Pen(Color.Black), x0, v0, 4, 4);

J//DRENS CCMPLSS NEEDLE (black for South)
dc.Drawline (new Pen(Color.Black, 5), x0, v0, x2, v2);
baze.OnRender (dc);

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 38

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

[<summary:

{7/ this class displays the intro screen on lcd
[</ summary>

class IntroScreen : UILElement

[/private members

private Bitmap myPic = Resourcez.GetBitmap (Rezources.BitmapResources.myPic):
private Font myFont = Resources.GetFont (Resources.FontResources.myiont):
private string myText = "";//caption

private bool Stopped;//stopping flag for thread

Thread TimerThread;//rendering thread

Datelime t0O;

int frames = 0;

Color clr = Colors.Green;

private delegate void VoidProcDelegate();

public override void CnBender (DrawingContext dc)

//draw background image and the blinking text on top

int px = (dc.Width - myPic.Width) / 2;//left of the image
int py = (dc.Height - myPic.Height) / 2;//top of the image
dec.Drawlnage (myPic, px, pv):

if (frames » 2)

{/togge color of caption and reset the framecount

framezs = 0;

clr = clr == Colors.Red 7 Colors.Green @ Colors.Red;
'

frames++://increment framecount

//draw the blinking caption
dec, Drawlext (myText, myFont, clr, 5, 150);

public void Destroy()

Stopped = true;

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 39

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

public void StartRendering|)

/[/create and 3tart the rendering thread

TimerThread = new Thread(new ThreadStart (TimerThreadProc));
TimerThread. Start();

t0 = DateTime.Now;

void TimerThreadProc()

//1oop while thread stop flag 13 not 3et or while thread state 13 not changed
while (thiz,TimerThread,ThreadState == ThreadState.Running && !'Stopped)

DispatcherCperation op = this.Dispatcher.BeginInvoke (new VoidProcDelegate (base,Invalidate));
op.Wait{);
Thread.5leep(100);

}
}
}
}
BuslO.cs

using System;
using Microsoft.SPOT;
using Microsoft.S5POT.Hardware;

namespace DigiCompas
clas=s BusI0:IDisposable

ffDeclaration of wvariable= and constants//

public const int I2C SPEED = 100;//I2C Bus speed in KHz

const int I2C TIMEOUT = 5000;// Timeout for the I2C operations
private I2CDevice IZ25lave;

private byte[] registerBuffer = new byte[l] { 0x00 };

e

private byte[] writeBuffer = new byte[2] { 0x00, O0x00 }:

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 40

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

public BusIC(byte Address)

I251lave=new I2CDevice (new I2CDevice.Configuration(Address,I2C SPEED));

S <summaryy

J// Geniric Read Operation, to read any port on the bus
J </ summary>

J/f <param name="readBuffer"»</param:

public void ERead (byte[] readBuffer)

I2CDevice.I2CTransaction[] xact = new I2CDevice.l2CTranszaction[]
I251ave.CreateReadIransaction (readbuffer)
b

lock (I251lave)

J// Execute method will write/read bytes on the IZC bus
J/and returns number of bytes successfully on the bus
int bytesCount = I25lave.Execute (xact,I2C TIMECUT);

if (byteszCount < readbBuffer.lLength)
throw new System.IC.ICException("IC Error").

[<summaryr

/f/ Gereric Write Operation, to write any data on any port on the bus
M </ summaryy

/f/ <param name="writeBuffer"></paramr

public void Write(byte[] writeBuffer)

I2CDevice.I2CTransaction[] xact = new I2CDevice.l2CTranszaction[]
I251ave.Createliritelransaction (writeBuffer)
b

lock (I25lave)

int bytesCount = I25lave.Execute (xact, I2C TIMECUT);

if (bytesCount < writeBuffer.Length)

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 41

School of Electronic, Communication and Electrical Engineering

BEng Final Year Project Report

_registerBuffer[0] register;
Write(registerBuffer):
Eead (readBuffer) ;

public woid Dispose ()

IZ51lave.Dispose () ;

public void ReadBRegister (bvte regiszter, byte[]

readBuffer)

Sensor.cs

u=zing System;
uzing Microsoft.S5POT:;

namespace DigiCompas
clas=s Sensor:IDisposable

S faddres=ss of the sensor bus
const byte DEFAULT ADDRESS

4]

fiparameter (register number)
const byte REG AZIMUTH HIGH

private BusIO IZBus;
private byte[] dataBuffer

Ii

S fconstructor for sensor class
public Sensor ()

IZ2Bus

ffget azmuth value from the =e
public float GethAzimmth ()

xel;

or adress of the register

d:

ew byvte[2] 0x00, 0Ox00 1:

new BusIO(DEFAULT ADDRESS) ;

nsor board

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

42

University of
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

//read higher register into the buffer [dataBuffer]
I2Bus.ReadRegister (REG AZIMUTH HIGH, dataBuffer);

return GetValue(dataBuffer, ByteOrder.BigEndian) [/ 10f;
}
f/function to convert bytes to float value
public long GetWalue (byte[] bytelArray, ByteOrder bytelrder)

if (byteOrder == ByteOrder.BigEndian)
return FromBigEndian (bytehrray, 0, byteldrray.Length):

throw new HotImplementedException("Hot Inplemented™);
}
//function to be used by getValue function
private long FromBigEndian(byvte[] byteArray, int startlndex, int length

long retValue 0;
int stoplndex = startIndex + length - 1;
for (int i = startIndex; i < (stoplndex): i++)

retValue |= bytekhrray[i]:
retValue = retValue << B;
}
return retValue | byteArray[stoplndex];

}
public void Dispose ()

IZBu=.Di=zpose():
}
//enumrator for byte order types

public enum Bytelrder

LittleEndian,
BigEndian

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 43

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

APPENDIX.2 SAMPLE CODE

The part of the sample code

M ysed has been highlighted.

CMPS03Compass.cs

f
f
f
f
f
iy
iy
iy
iy
iy
f
f

{

using System;

using Microsoft.SPOT;

using Microsoft.S5POT.Hardware;
using Devantech.Hardware;
using System.Threading:

namespace Devantech.Hardware.CHPS03

< SUMMATry>
Inplements functionality of the Devantech CHP303 Compass
</ 3ummary>
<exanple>
<code>
nsing (CHMPS03Compazs compass = new CHES03Compass())
{
J/ Gets actwmal azimmth
float azimuth = compass.GetAzimuth) ;
}
</ code>
< /fexamples

public class CHPS03Compaszs : IDisposabkle, IChangabklelddress

#region Consztants
const byte DEFAULT ADDRESS = 0x60;

const byte REG REVISION = 0;
const byte REG BEARING = 1;
const byte BEEG AZIMUTH HIGH = 2;
const byte REG UNLOCK 1 = 12;
conat byte REG COMMAND = 15;

const byte FACTORY RESET 1 = 0x355;
const byte FACTORY RESET 2 Ox5L;
const byte FACTORY RESET 3 = OxAS;
const byte FACTORY RESET 4 OxFZ:

fendregion

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 44

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

$region Constructors

[<summary>
{f{ CMP503 Compass Module on default address 0xCO (0x60 Thit)
[</ summarys>
public CMPS03Compass() : this(CMPS03Compass.DEFAULT ADDRESS)

[/ <summaryr

{f{ CMP303 Compass Module

Jf{ </ summary>

{/{ <param name="devicelddrezs">Thit address of the sonar</param>»
public CMP303Compass (byte devicelddress)

this. slave = new IZC5lave(deviceAddress);

tendregion
$region CMPF503Compass

{1 <summary>

[/{ BReturnz actual azimuth

f1 </ summaryy

[/ <returnsrhzimuth</returnss
public float GetAzimuth()

_slave.ReadRegister (CMP503Compass.REG AZIMUTH HIGH, dataBuffer);

return Endianity.GetValue(dataBuffer, ByteOrder.BigEndian) [10f;

[/ <summarys

//{ Returnz actual azimuth a3 the bearing of the byte
[</ summary>

[/ <returnsrhzimuth byte bearing</returnsr

public byte GetBearing()

_slave.ReadRegister (CMP503Compass . REG BEARING, dataBuffer);

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

return databulrer|[U];

J// <summaryr

/f/ Beturns firmware revision of the device
/i </summaryy

public byte Eeviszion

get
return dataBuffer([0];

/A <summaryy

/{/{ Restores factory calibration.

/{{ Works only for revision 14 and above
fff </summary>

public volid FactoryCalibrationi)

byte[] data = new byte[4]
CHMP503Compass.FACTORY RESET 1,
CMP503Compass.FACTORY RESET 2,
CMP503Compass.FACTORY RESET 3,
CMP503Compasz.FACTORY RESET 4,

}:

$endregion
tregion IChangablelddress Members

f/{ <summaryy

/{/ Changes address of the I2C device.

ff{ Works only for revision 14 and above

/i </summaryy

ff/ <param name="newhddress">New Thit address</param»
public vold ChangelZCi4ddress (bvte newlddress)

_slave.WriteRegister (CMP503Compass.REG UNLOCE 1, data);

_=2lave.ReadRegister (CMP503Compass.REG REVISION, dataBuffer);

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

46

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

byte[] data = new byte[4]
I2C5lave .ADDRESS CHANGE 1,
I2C5lave .ADDRESS CHANGE 2,
TI2C5lave .ADDRESS CHANGE 3,
(byte) (newAddress << 1),

t:

slave.WriteRegister (CMPS03Compass.REG UNLOCK 1, data);

zlave.Dispose () ;

J/ Wait a few miliseconds to make things "sattle”
Thread.Sleep(30);

// Create slave with new address
_slave = new I[2C5lave (newhAddress);

$endregion
#region IDispo=zable Members

[/ <snmmary>

[/// Dispose obhject
[l </sumary>
public volid Dispose()

{

_slave.Dispose();
}
gendregion

private I2C5lave slave;
private byte[] dataBuffer = new byte[2] { Ox00, Ox0O0 }:

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 47

University of
'H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

|2CSlave.cs

i
Y
I

£/
£
£

f
£/
£

£/
f
£

i
Y
/Y

Y
I
I
I
i

US10ng oyoLem;
using Microsoft.S5POT;
using Microsoft.5POT.Hardware;

namespace Devantech.Hardware

ff <summaryy

[/ Implements I2C functionality for the Devantech hardware
J </ summaryy

public class I2C5lave : IDisposable

< EMNMATY >
EHz speed of the I2C buns
</smmary:>

public const int I2C SPEED = 100:

< SUmMmarys
Address change command 1 for Devantech devices
</ summary>

public const byte ADDRESS CHANGE 1 = OxAQ;

< SUIMary>
bddress change command 2 for Devantech devices
</ summarys

public const byte ADDRESS CHANGE 2 = OxAA;

< SUmmaryy
bBddress change command 3 for Devantech devices
</ summary>

public const byte ADDRESS CHANGE 3 = OxAS;

< EMMMATY >
I2C operations timeont
</snmmary>

const int I2C TIMEOUT = 3000:

gregion Constructors

< ESTMMATY >
Creates instance of the I2C =lave
</ summary>

<param name="devicelAddress">Thit device address{fparanb

<param name="bnsSpeed">Speed of the I2C bus</param>

public I2CS5lave (byte deviceAddress, int busSpeed)

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS

48

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

this. slaveDevice = new I2CDevice (new
I2CDevice.Confignration (deviceAddreszz, bnsipeed));

}

[<summaryy
/// Creates instance of the I2C slave
JI </ summary>
[/ <param name="devicelddresz">Thit device address</param>
public I2C5lave (byte devicelddrezs)
: thiz(deviceAddress, I2C SPEED)

#endregion
#region Read Cperations

[<summaryy

/// Generic read operation from I2C slave

JI </ summary>

[/ <param name="readBuffer">Buffer for output</param>
public void Read(byte[] readBuffer)

{
I2CDevice.I2CTransaction[] xact = new I2CDevice.I2CTransaction[] {
_slaveDevice.CreateReadTransaction (readBuffer)
b
lock (slaveDevice)
{
int bytesCount = slaveDevice.Execute (xact, I2CS5lave.I2C TIMEQUT):
if (bytesConnt < readBuffer.length)
throw new
System.I0.I0Exception
(Resources.StringResources . ErrorI2CCommunication.ToString())
}
}

[<summaryy
/// Reads register from I2C slave
[/ </summaryy

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 49

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

/// <param name="register":Register address</param:
/{/ <param name="readBuffer":>Buffer for output</paramr
public void ReadBegister(byte register, byte[] readBuffer)

_registerBuffer[0] = register;
Write(registerBuffer):
RBead(readBuffer)

tendregion
#region Write Cperations

J// <smmary
/// Generic write operation from I2C slave
/] </sumarys
/// <param name="writeBuffer">Buffer for inpunt</param:
public void Write(byte[] writeBuffer)
{
I2CDevice.I2CTransaction[] xact = new I2CDevice.Il2CTransaction[] {
_slaveDevice.CreatelWriteTransaction(writeBuffer)

}:

lock (_slaveDevice)

{
int bytesCount = slaveDevice.Execute(xact, I2C3lave.I2C TIMEOUT):

if (bytesCount < writeBuffer.Llength)
throw new Systen.
I0.ICException (Resources. StringResources.ErrorI2CCommunication. ToString()):
}

[<summarys

[// Writes data into register

[</summaryy

[/ <param name="register"»Register address</param:
[/ <param name="value":Data to write</param>
public void WriteRegister(byte register, byte value)

writeBuffer[0] = register;

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 50

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

b

}

}

{

_writesuffer[l] = value;
Write(writeBuffer);

[<summaryy

[{/ Writes data into register

[</summary>

[/ <param name="register">Register address</paramr

/// <param name="writeBuffer"»Buffer for input</param>
public void WriteRegister(byte register, byte[] writeBuffer)

byte[] data = new byte[writeBuffer.length + 1];
Array.Copy(writeBuffer, 0, data, 1, writeBuffer.Length):
// Set first byte as the register address

data[0] = register;

Write(data);

$endregion

[<summarys

/// Chnange I2C address of the slave.

/// Wote: Suitable for most Devantech devices

[/ </summaryr

/{/ <param name="commandRegister">Command register of the device</param:
[/ <param name="newlkddrezs">New Thit address</paramr

public void ChangelZCAddress (byte commandRegister, byte newlAddreszs)

byte[] changeCommand = new byte[2] { commandRegister, ADDRESS CHANGE 1 };
Write (changeCommand) ;

changeCommand[1] = ADDRESS CHANGE 2;

Write (changeCommand) ;

changeCommand[1] = ADDRESS CHANGE 3;

Write (changeCommand) ;

// Devantech hardware needs new address in 8-bit. 30 we need to shift.
changeCommand[l] = (byte) (newhddress << 1);

Write (changeCommand) ;

gregion IDispozable Members

/// <smumary>

/// Dispose object
/1] </suumary>
public void Dispose()

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 51

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

i

_slaveDevice.Dispose()

1
fendregion
private I2CDevice slaveDevice;

private byte[] registerBuffer = new byte([l] { 0x00 };
private byte[] writeBuffer = new byte([2] { O0x00, O0x00 }:;

Endianity.cs

using System;
namespace Devantech.Hardware

/1] <summaryr

//] Implements basic endianity operations
[</ 3ummaryy

public static class Endianity

fff <summarys
//] Gets value from the byte array
/1] </ 3ummaryy
/// <param name="bytelrray"»Bvte array</paramr
//] <param name="bytelrder"»Byte order</param:
/// <returns:Long valme</returnss
public static long GetValume (byte[] byteArray, ByteOrder byteOrder)
{
if (byteOrder == ByteOrder.BigEndian)
return FromBigEndian(byteArray, 0, byteArray.Length);
else
throw new NotlmplementedException
hResnurues.StringResnurues.HntImplementedLittleEndian.TnString:}};

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 52

University of
' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

1] <summaryy

/] Get value from the byte array

/I </3mmarys

/// <paran name="bytehrray"yByte array</param

//] <paran name="startIndex"»3tart index in array</param
/] <param name="length">Number of bytes to parse</paramr
/{1 <param name="byteOrder"»Byte order</param

/I <returnsylong value</recurnsy

public static long GetValue (byte|]

bytedrray, int startIndex, int length, Bytelrder byteQrder)

if (byteOrder == ByteQrder.BigEndian)
return FromBigEndian(byteArray, startIndex, length);
else
throw new NotImplementedException
Resources, dtringResources.NotImplementedlittleEndian. ToString());

}

[/} <summarys

/// Splits number into the byte array

{1 </summaryy

/{1 <param name="mumber">Value to split</paramy

/{1 <param name="outpuchrray"yLrray where the bytes be stored</paramy

//] <paran name="byteQrder"»Byte ozder of the array¢/parems

public static void GetBytes(long number, byte[] outputArray, ByteQrder byteCrder)

if (byteOrder == ByteQrder.BigEndian)
ToBigEndian (number, outputArray);
else
throw new NotImplementedException(Resources,StringResources.NotInplementedLittleEndian, ToString());

1] <summaryy

/// Splits number into the byte array in Big Endian

/{1 </sumaryy

/[<param name="number">Number to split<{/paramy

/{1 <param name="outpuchrray"yLrray where the bytes be stored</paramy
public static void ToBigEndian(long number, byte[] outputArray)

int length = outputhrray.length;

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 53

Universityol
I-lerrfnni:tk?rhlfr-e ' H

School of Electronic, Communication and Electrical Engineering BEng Final Year Project Report

outputhrray[length-1] = (byte)number;
for (int 1 = length-2; 1 »=0; i--|
outputArray[i] = (byte) (number »» (8 * (i+1)));

[]] <smmary>
/][Gets value from array byte organized as Big Endian
/1] </sumary>
/][<paran name="byteArray":Byte array</param
/][<paran name="startIndex"»Start index</params
/][<paran name="length">Nmmber of bytes to parse</params
/][<returnsslong value</returnss
private static long FromBigEndian(byte[] byteArray, int startIndex, int length)
{
long retValue = 0;
int stopIndex = startIndex+length-1;
for (int 1 = startIndex; 1 < (stopIndex); i+4)
{
retValue |= bytehrray[i];
retValue = retValoe << §;

}
return retValoe | byteArray[stopIndex];

Sheraz Khan Malik /i.MXS ARM BASED DIGITAL COMPASS 54

