{e}

CONFIG

USER MANUAL

Managing CONFIGUIATIONSciiiiiiiieiiiiee ettt e ette e e et e e e et e e e e ebteeeeebteeeeeseaeeeeansaaaeanns 2

Adding @ NEW CONFIGUIAtION ..o..vviiiiiiiii et e s e e e saae e e e snaeee s 2
o Td o T W elo) ol 10T | o o [PP 3
(0o o) = (U = dTe] o o] o 1T [PP 3
Adding and deleting scenes from the configuration............ccoceovieieiiiiii e, 4
Yo o o= T Yol Y o =T PPR 4

D L] U= d Yo T ol =T [P 4
DTz] o g T T o= o L= PP 4

Y VSR o a1 F={UT 14 o o TP 4
Activate @ CONTIGUIATIONceiiiiiiie ettt e e e e e e e e eta e e esaaaeeeesasaeeeeennaeeaas 5
2 TUT o B I ele Yo 7 ={U =) (o o PR 5
(DL (=Y LR I ole Yo i F={U = o [0 o PP 5
Configure GameObjects depending on the configurationccccceeeecciiiiieeeeeeeeecccieeeee e, 6
OVEIVIEW ..ttt ettt e sttt e e s e e e e s et e e e s aab et e e s b et e e e abe e e e esabeeeeeannaeeeenneee 6
Setting up the layout: The FastConfig WindOWccooiuiiiiieiiiii it 6
Example of general use: Configure Local POSItioNcoociiieiiiiiiiieciee et 7
Specific configuration t0O0IS........coiiuiiiiiiiiie e e er e e eae 8
(@0)] i F= U =1 Yot u V7Y o ISP 8
(00T] =V =T =l X 14 o) o PP 9
(000]] =V =T Mo Tt | Y or-| LTS PR 9
(00T o] = U= € U 1 I =) SRR 10
CoNfIGUIE GUITEXEUIE......viiee ittt et e e et e e e et e e e e eaba e e e esabaeeeesnbaeeeenaseaeaenasees 10
(@foT o] = {U =N\ - [=T AT | SRR 11
(00T o] =W =T\ (=1 o ST L =] TSP UTPR 11
(00T o] =V =T =) YL (= o PSP 12
Building configurations from command liN€..........coiviiiiiiiiiiiiiciiecccree e 13

How to build from coOmMMaNd [IN@ovvviiiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeeeeeeeeeesessreressrsrsrsssrsraraees 13

MANAGING CONFIGURATIONS

To start defining and managing configurations, you must open the configuration window on
“Edit/ConfigurationToolkit/Settings”, and the configuration window will appear.

L= U
File | Edit | Assets GameObject Component Configuration Asset Store Tools Edut Window Help

Undo Selection Change Ctrl+Z

Redo Cirl+Y

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Duplicate Ctrl+D

Delete Shift+Del

Frame Selected F

Lock View to Selected Shift+F

Find Ctrl+F

Select All Crl+ A

Preferences...

Play Ctrl+P

Pause Ctrl+Shift+P

Step Chrl+Alt+P

Selection 3

Project Settings 3

Render Settings

Network Emulation 2

Graphics Emulation 3

Snap Settings...

ConfigurationToolkit 3 Settings

Fast config

Image 1: Opening the configurations window
The configuration window is where you will manage all the configurations of your project.

ADDING A NEW CONFIGURATION

To add a new configuration, press the 4+’ button in the configuration window. The edit
configuration window will show.

Configurations

Image 2: Configuration window

Configurations

Build

Image 3: Edit configuration window

By default, the icons when you create a new configuration are the icons defined in the Build
Settings.

EDITING A CONFIGURATION

To edit a configuration, select its name in the top bar of the Configuration window:

Configurationw
Configurations
Android

When you select a configuration, the configuration window will show up (as seen in Image 3:
Edit configuration window) and the configuration name will change its color to yellow.

CONFIGURATION PROPERTIES

The fields in the “Edit Configuration” window are described below:

Config name | The name of the configuration, used to identify your configurations on
ConfigurationToolkit. This name is used only by the ConfigurationToolkit,
and to identify the configuration when building from command line.

App Name | This sets the field “Product Name” in PlayerSettings

Plattform | The target platform to build to. When the platform can have different
targets, a second drop-down list will show next to this, to select the
specific build target.

Icon | The icons to use with this configuration. By default, the icons defined in
PlayerSettings are put here.

Scenes | The list of scenes on this configuration. For adding/removing scenes see
Adding and deleting scenes to the configuration.

Add Scene | Field to add a new scene to the configuration.

Compiler | List of definitions so you can make configuration dependent code with #if,
definitions | #elif and #else.

ADDING AND DELETING SCENES FROM THE CONFIGURATION
ADDING A SCENE

To add a scene to the configuration, select it from the “Add Scene” field of the configuration
window.

Image 4: Add scene field without scene selected

Once selected, a new “+” button will appear below the “Add scene field”. Press it to add the
selected scene to the current config.

endentTest

Image 5: Add scene field with a scene selected
Warning! If you don’t press the “+” button, the scene will not be added to the configuration.

Once you have added the scene, it will appear in the scenes list as shown below.

ndentTest, unity

Image 6: Scenes list with a scene added

DELETING A SCENE
To delete a scene from the configuration, press the “-“ button located at the right of the scene
name in the “Scenes” list.

DISABLING A SCENE

From the config manager, you can disable a scene without removing it from the list. Simply
click the checkbox at the left of the scene name to disable it. The scene will not be added to
the build.

SAVE A CONFIGURATION

Once you have defined a configuration you must save it. When you create or edit a
configuration, a message will be shown at the bottom left corner of the configuration window
warning you that the configuration is not saved.

Compiler Definitions:

Build

Image 7: "Config not saved" message

To save the configuration, simply press the “Save” button. The “Config not saved!” message
will disappear.

The first time you use the toolkit, a new file called “config.txt” will be created on
“Assets/Resources/”. This is where we’ll save all your configurations.

ACTIVATE A CONFIGURATION

To apply all your configuration settings to the project, you must activate a configuration.

To activate a configuration it must be selected, by pressing the configuration name on top of
the configurations window. Once the configuration name is highlighted in yellow, you can
activate it by pressing the “Activate” button. When you activate a configuration, the target
platform for Unity build is also changed.

Configurations

Build

Image 8: The configuration name will turn yellow when it's selected.
A faster mode of activating a configuration is by using the FastConfig window.

BUILD A CONFIGURATION

To build a configuration it must be selected, by pressing the configuration name on top of the
configurations window. Once the configuration name is highlighted in yellow, you can build it
by pressing the “Build” button.

DELETE A CONFIGURATION

To delete a configuration it must be selected, by pressing the configuration name on top of the
configurations window. Once the configuration name is highlighted in yellow, you can delete it
by pressing the “Delete” button.

If you are using a “Configure XXX script” with the configuration you’ve deleted, the setting for
that configuration will be removed only on the active scene. In other scenes, it will take the
next configuration on the list. You'll have to manually remove the settings for the deleted
configuration from your “Configure” scripts that use this configuration in other scenes.

CONFIGURE GAMEOBJECTS DEPENDING ON THE CONFIGURATION

With ConfigurationToolkit comes a sample scene called “ConfigurationToolkitSample”. This
scene contains examples about different tools to configure GameObjects.

OVERVIEW

The “Configure GameObject” tools allows you to set specific values for each configuration to a
GameObiject. With one of these scripts attached, you have to set values for each configuration
you need. If no values are set for a specific configuration, the default config in the GameObiject
will be taken.

SETTING UP THE LAYOUT: THE FASTCONFIG WINDOW

To quickly switch between active configurations without opening the Configuration Window,
you can use the FastConfig window.

The window is located on “Edit\ConfigurationToolkit\Fast Config”. This opens a small window
with a drop-down list of the defined configs.

- Unity - Untitled - ConfigToolkit - PC. Mac & Linux Standalone* «~ -olEN

Image 9: The "Fast Config" window (highlighted in red)

We usually dock this small window on the bottom-right corner of the unity editor, to have a
quick access to the tool.

Using this window doesn’t perform the Switch Platform action because of the time it can
consume. It changes the icons for the configuration platform, the scripting symbols for all the
platforms (so dependent compilation could be done) and the product name.

< Unity - Untitied - ConfigToolit - PC, Mac & Linux Standalone* - - o IEN

Image 10: Fast Config window docked

To quickly switch between configurations, simply select it from the drop-down list of the
FastConfig window.

EXAMPLE OF GENERAL USE: CONFIGURE LOCAL POSITION

The basic principles of setting up values for different configuration applies to all the scripts. To
show how we can add specific values for a configuration, we’ll take for example the
“ConfigureLocalPosition” script.

First, we’ll define three configurations called configl, config2 and config3, as described in
Adding a new configuration. Then we’ll add a GameObject (cylinder in this example) to the
scene, and attach out ConfigureLocalPosition script.

When attached, the values in the inspector will look like this:

Configure Local Position (!
Script B ConfigureLocalPosition

Image 11: Configure Local Position script after attachment to GameObject

If we press play, the cylinder will be placed in the same position we have defined in the
Transform field of the Inspector. If the active config is not set in the script, the GameObject
will take the values set in the Transform component of the Inspector.

“,n

To set a specific value for a configuration, we’ll press the “+” button, and the

ConfigureLocalPosition fields will change into this:

Configure Local Position (Script)
Script B ConfigureLocalPosition

configl

Pos

Image 12: Adding a specific value for a config in ConfigureLocalPosition

Here we can define the position for one of the configurations we have defined. I'll configure a
position for “config2” configuration selecting it from the drop-down list, and I'll add a new
specific position for “config3” by pressing the “+” button and selecing it from the list. To
remove a configuration you have to press the “-“ button at the right of the configuration
name.

The Script values should be like this:

Configure Local Position (Script)
Script B ConfigureLocalPasition
| position config

Image 13: Configure Local Position script for two configurations

Now, if | set the “config2” configuration as active (either using the FastConfig window or the
Activate button) and press Play, my GameObject will have a position of (0, 5, 0). If | set the
“config3” as active and press Play, my GameObject will have a position of (0, 0.5, 0), and if | set
any other config as active and press Play, the GameObject will have the position defined in the
Transform component of the GameObject.

Note that the position only changes when pressing play, not when switching the active config.
In the Editor, the position of the object will be defined by its Transform. ConfigToolkit tools
only affect the GameObject’s properties on Run time.

SPECIFIC CONFIGURATION TOOLS

The “ConfigurationToolkitSample” scene contains an empty GameObject named
“ExampleGameObject” with one child for each Specific Configuration tool that ConfigToolkit
has, showing the use them.

Below is a description of how each script works. To see a guide step-by-step on how to use this
scripts, go to Example of general use: Configure Local Position.

CONFIGURE ACTIVATION

This script is used to enable/disable a GameObject depending on the selected configuration.

The value for each configuration is set with the checkbox labelled “Active”:

Configure Activation (Script)
ipt @ ConfigureActivation
vefault Activation b

canfigl

Image 14: Configure Activation script

This script has a default value, “Default State” that will be applied if a configuration is not set in
the script. In the above example, for configl the GameObject will be enabled, disabled for
config2 and enabled for config3.

CONFIGURE POSITION
This script allows you to set a position for a specific configuration. If no position is set, the
GameObiject will take the values set on the Transform component.

Configure Local Position (Script)
Script B ConfigureLocalPosition

configl

Image 15: Configure Local Position script

In the above example, the GameObiject will have a position of (0, 2, 0) for configl, (0, 4, 0) for
config2, and will not change its position for config3.

CONFIGURE LOCAL SCALE

This script allows you to configure the local scale of a GameObject.

Configure Local Scale (Script)
Script B ConfigurelLocalScale

scale config

Image 16: Configure Local Scale script

CONFIGURE GUI TEXT

This script changes the Text value of a GUIText for each configuration defined. If a
configuration is not set in the script, the value will be the same as in the GUIText component.

¥ GUIText

Anchaor

Alignment

GUI Text
ifigl

In the example above, the text for configl will be “Config 1”, for config2 will be “Config 2” and

Other configs|
upper left

left

X @

1

4

Arial

None [(Material)
i]

Marmal

v

ConfigureGUIText

Config 1

Config 2

+

Image 17: Configure GUIText script

for config3 and any other config will be “Other configs”.

CONFIGURE GUITEXTURE

This allows you to change the texture image from a GUITexture component for each

configuration.

Configure GUITexture (Script)
Script B ConfigureGUITexture

config2

Texture

Image 18: Configure GUITexture script

CONFIGURE MATERIAL

This allows you to define a Mesh Renderer’s material for each configuration. Multiple
materials are allowed.

configl
Elements
Materiall
Materiall

Elements
Materiald ® MatZ2
® Default-Particle

+

Image 19: Configure Material script

CONFIGURE MESHFILTER

This script allows you to define a mesh from a MeshFilter component for each configuration.
Combined with Configure Material, it’s a simple way of having different meshes for each
platform (IE low poly for mobile plattforms and hi-poly for PC).

Configure Mesh Filter (Script)

Script B ConfigureMeshFilter
Mesh

configl

Image 20: Configure MeshfFilter script

CONFIGURE TEXT MESH

Similar to Configure GUI Text, this script allows you to define the Text value of a TextMesh for
each configuration defined.

Script

configl

Visionary Clinic

Image 21: Configure TextMesh script

To use this feature you need to have Unity Pro, for the target platform you want to build to.

You can build a configuration you’ve defined with Configuration Toolkit from command line.
This comes handy when building a Continuous Integration Server.

To build from command line, you have to user the CommandLineBuild class. You have an
overview of calling scripts from command line here.

HOW TO BUILD FROM COMMAND LINE

First, you have to have at least a configuration defined as seen in Adding a new configuration.

Then you can close Unity and launch a build from command line. To do so, you'll have to write
a command like the following (works on DOS window and .bat file):

"D:\Unity43\Editor\Unity.exe" -projectPath “D:\ConfigToolkitTest” -executeMethod
CommandLineBuild.Build -config "Win2" -buildPath "D:\ConfigToolkitTest\Binary\Win2\TestWin2.exe" -
quit -batchmode -logfile "win2log.txt"

Let’s break down the previous line and explain the arguments.

"D:\Unity43\Editor\Unity.exe" is the path to my Unity executable file. It’s usually located on
the “Program Files” folder.

-projectPath “D:\ConfigToolkitTest” sets the path to the root my project. You have to put the
path to your project

-executeMethod CommandlLineBuild.Build Calls the Build method of the CommandLineBuild
class

The following two arguments must be right next to —executeMethod:
-config "Win2" This is the name of your config as defined on Config Toolkit.

-buildPath "D:\ConfigToolkitTest\Binary\Win2\TestWin2.exe" This sets the output
file/path for the build. If you were developing for Android, you should put a path to an APK for
example, for iOS it sould be a path, etc.

-quit Tells Unity to close after build. If you remove this parameter, it will remain opened after
the build.

-batchmode Tells Unity to run in batchmode (no popups or dialogs)

-logfile "win2log.txt" Saves a build log to the specified file. Useful to locate build errors.

https://docs.unity3d.com/Documentation/Manual/CommandLineArguments.html

