
BUILDING AUTOMATION

LonServer
Field Database Manager

User’s Manual

Application Program LSRVM03 – November 2001

2

Important Notice

The information included in this document is property of Apice s.r.l and can be changed without notice.

Apice s.r.l. will not be liable for errors that might be contained herein and for direct or indirect accidental
damage related to the supply, performance or use of the material which this document refers to.

It is forbidden to make soft and hard copies of this document, to translate or manipulate all or part of it
without the prior written consent of Apice s.r.l.

Publications

First edition – October 2000
Second edition – March 2001
Third edition – November 2001

Introduction

The LonSever is a powerful host-based LONWORKS node specialized in the distributed Field Database (FDB)
management. Its primary application is as Access Control Management Unit for up to 8 Gate Controllers in
Apice’s Globe2000 Access Control System.

The LonServer receives information from the IOL222 Gate Controllers and JLON Identification Units
containing the user’s identification data (badge number and/or PIN code), checks the database stored in the
on-board memory to understand whether the access must be granted and sends appropriate commands to
the Gate Controllers to unlock the protected gates.

Every transit occurred in any of the controlled gates will be retained locally in the FDB until the alignment of
the distributed FBD and the Local Database (LDB) stored in the Central Management Computer is reached.

The alignment of the distributed FDB and LDB is ensured by the AxWin Access Control Software developed
by Apice.

The Lon Server manages the Users and Badge archives, the Access Level information, the historical transit
data retention and anomalous transit conditions in a completely transparent way for the user.

The LonServer also manages the messages displayed on the JLON identification units.

From the hardware point of view, the node exploits the Neuron Chip for communication purposes only
(implements layer 1-6 of the ISO/OSI standard), while all the application is handled by an external 32 bits
microcontroller (layer 7). A dedicated operating system called LOS (Lonserver Operating System) has been
developed for the node and can be updated through RS232 port or directly from the LonWorks® network,
using the AxWin software.

This feature makes the LonServer suitable to be adapted for handling many different applications in the
Building Automation and Industrial Control fields.

Other application-specific operating systems have been developed and customized on demand to meet the
requirements of the customer’s application.
The node is used in customized versions in the Apice LONWORKS Parking System, in the Central Alarm unit
and in the Technological Alarms Monitoring unit for industrial environment.

3

In several applications the Lon Server can be used as Data & Event Logger, storing information in its FDB
generated by other devices in the network fed into an external-log input variable.

All the commercial versions include an RS232 port for application software upgrading, 128 or 512 kbytes on-
board RAM memory with backup lithium battery and real time clock embedded.

The internal power supply is obtained through an isolated DC/DC converter, where the incoming voltage can
range from 10 to 35 VDC/ 12 to 24VAC. This feature makes the product suitable for working in almost any
condition in the Building Automation and Industrial Controls fields.

Technical Specifications

Power supply 10 – 35 VDC/ 12 to 24VAC internal isolated DC/DC converter
Power consumption 70 mA @ 12V
Transceiver LONWORKS FTT-10 78 Kb/s
Communication
Processor

Neuron Chip 3150

Clock frequency 10 MHz
Host Processor 32 bits Microcontroller
Real Time Clock Chip on-board
RAM Memory 128 or 512 Kbytes on board – backup lithium battery
Service Interface Service pin or manual entry – service led on-board
Operating Temp. 0 – 50° C
Relative Humidity 20 – 80% non-condensing
Enclosure type Plastic blend autoextinguishing
Enclosure mounting Wall mounted or panel mount
Mechanical
Dimensions 150 x 90 x 45 mm
Application Program LSRVM03
Program ID 90:0A:0E:00:01:00:10:03
XIF file lsrvm03.xif
NV count 358
Alias count 0
Certification CE

Installation guidelines

The LonServer needs only to be wired on the power supply and provided with a LONWORKS® network
connection.

The following picture shows the rear view of the LonServer board, where the power supply and the network
cables are to be connected.

4

Regarding the power supply connection, please design the power supply line in a way to assure that the
node is always powered within the specified operating range.

The node is sensitive to the power supply polarity, so it cannot work properly if the supply line is swapped.
Anyway, the node is protected against this mis-wiring condition and it does not break down. Neverthless, no
guarantee of integrity is provided if the power supply value rings out the spec range or remains mis-wired
for a long period of time.

As far as the LONWORKS® network connections are concerned, the LonServer node must be wired following
the guidelines reported into “Junction Box and Wiring Guidelines for twisted pair LONWORKS® networks”
Engineering Bullettin, June 1999.

-

+

Power
supply

Network

Female DB9
connector , to
the PC COM
port

532

Service PIN
Service LED

Pin 2: TX wire

Pin 3: RX wire

Pin 5 GND wire

RS232 port

5

Service Interface

The LonServer node mounts both the service LED and the service PIN button on board, for easy installation.
This circuitry is not accesible by the outside of the enclosure.
Please, make sure the node is installed and commissioned properly before re-mounting the cover and
leaving the hardware in its final position.

6

Objects #0 type: node object

nvi00time type SNVT_time_stamp
This variable set the leggo 2000 RTC.

nvo00time type SNVT_time_stamp
This variable read out the leggo 2000 RTC. It is updated each second.

nvi00request type SNVT_obj_request
This LonMark request variable.

nvo00status type SNVT_obj_status
The LonMark status variable.

nv00version type SNVT_count
This is a const polled network variables. Its value is the firmware version, actually 10 = 10.

Object #0
Type #0

nv
nvi00time

SNVT_time_stamp nv
nvo00time

SNVT_time_stamp

nv
nvi00request

SNVT_obj_request nv
nvo00status

SNVT_obj_status

nv
nvo00version

SNVT_count

7

Objects #1..8 type: Access Controller

Object #1
Type: controller

int nci01id1Enabled1 UCPT_id1En_r1
SNVT_str_asc nci01filter1 UCPT_filter_r1
int nci01id3Enabled1 UCPT_id3En_r1

nv
nvi01pushButton

SNVT_lev_disc

nv
nvo01gateDrive

SNVT_lev_disc

nv
nvi01keyboard1

SNVT_str_asc

nv
nvi01reader1

SNVT_magcard

nv
nvo01alarmState

int

nv
nvo01coercition

SNVT_lev_disc

nv
nvi01alarmState

int

nv
nvo01denAccess

SNVT_lev_disc

int nci01id0Enabled UCPT_id0En

Int nci01alarmAccess UCPT_alarmAccess
int nci01effractions UCPT_effractions
SNVT_str_asc nci01Coercition1 UCPT_coercition1
SNVT_lev_disc nci01coercition3 UCPT_coercition3
int nci01timeAlarm UCPT_timeAlarm

nv
nvi01gateFdbk

SNVT_lev_disc

nv
nvo01unlockGate

SNVT_lev_disc

nv
nvo01lockGate

SNVT_lev_disc

int nci01unlockTBand UCPT_unlockTband
int nci01lockTBand UCPT_lockTband

Identification level 0

Identifier #1
Levels 1, 2 and 3

Identifier #2
Levels 1, 2 and 3

Gate control

Alarm control

nv
nvo01diagnostic

SNVT_str_asc

nv
nvi01keyboard2

SNVT_str_asc

nv
nvi01reader2

SNVT_magcard

nv
nvo01blocked

SNVT_lev_disc

int nci01id1Enabled2 UCPT_id1En_r2
SNVT_str_asc nci01filter2 UCPT_filter_r2
int nci01id3Enabled2 UCPT_id3En_r2

nv
nvi01unlockGate

SNVT_lev_disc

nv
nvi01lockGate

SNVT_lev_disc

int nci01unIdLog UCPT_unIdLog
int nci01idLog UCPT_idLog
int nci01denAccLog UCPT_denAccLog
int nci01gateEvLog UCPT_gateEvLog
SNVT_count nci01pgm UCPT_pgm

Logger,
miscellaneus

8

The access controller object is extremely powerful. The LonServer has 8 different access controllers, each
one able of handling one access point. An access point is a gate, a door, a barrier or any other device which
needs to be activated through an identification process.
The identification process can have 4 different levels:

Level 0 means no identification, like a command coming from a push button or a presence detector.
Level 1 means the PIN code recognition
Level 2 means card recognition
Level 3 means card + PIN code recognition

Identification levels can be set separately for each access point. They can also be switched automatically
from one to the other during the day and the week, and also depending from the alarm state. I.e. each
identification level can be always disabled, enabled only in a certain time band or always enabled. The
identification level can also be disabled when the alarm is active.

Each access point can be driven by one or more pushbuttons and two identifiers. Each identifier is composed
of one reader and one keyboard.

An interaction with the alarm state is performed when the access is done when the alarm is active. In this
case, the alarm status moves into pre-alarm or turn-off conditions.

The coercition access can be detected using identification levels 1 and 3.

In certain time band, the gate can switch to locked or unlocked state.

An accurate event log is performed by object.

Three door alarms can be detected using the gate controller built inside the IOL222 node and the access can
be logged with the gate result status.

When the user inserts the PIN code and makes a number of mistakes greater than the maximum allowed,
and effraction is generated and the identifier (reader + keyboard) goes into the blocked status for 3
minutes. This blocked status is read out by a network variable too.

An accurate diagnostic network variable allows to simplify installation and start-up operations when the
server is not accessible.

Network variables description:

Identification level 0:

nvi01pushButton type SNVT_lev_disc
This variable is driven by any LonMark sensor to enable the gate opening. This operation does not identify
the user but however can be saved to the event memory (see nci01unIdLog).

UCPT_id0En (or nci01id0Enabled) type int default = 255
This variable describes the identification level 0 mode:

UCPT_id0En Description
0 The pushbutton opening is not enabled
1..64 The pushbutton opening is enabled in time band

1..64
65..254 Values not allowed
255 The pushbutton opening is always enabled

9

Identifier #1 (identification level 1, 2 and 3)

nvi01keyboard1 type SNVT_str_asc
This variable receives data from an APICE keyboard object, like the one embedded into the JLON device.
The server answers through explicit messages, to avoid binding and address table consumption. The
keyboard bound to this variable works normally as outdoor keyboard. (outside the protected side of the
gate).

nvi01reader1 type SNVT_magcard
This variable receive datas from an APICE reader object, like the one embedded into the IOL222 or JLON
devices. The server answers through explicit messages, to avoid binding and address table consumption.
The keyboard bound to this variable works normally as the outdoor reader (outside the protected side of the
gate).

UCPT_id1En_r1 (or nci01id1Enabled1) type int default = 255
PIN operation (identification level 1).

UCPT_id1En_r1 Description
0 The sole pin operation is not allowed
1..64 The sole pin operation is allowed in time band

1..64
65..253 Value not allowed
254 Only the usage of justification is allowed
255 The sole pin operation is always allowed

UCPT_filter_r1 (or nci01filter1)
type SNVT_str_asc default = “PPPPCCCC”

This variable configures how the magcard string is split. Use a ‘P’ character to indicate a fix code (prefix)
field character, and a ‘C’ character to indicate a card code field character; the character ‘0’ stands for don’t
care.

Example:

The magcard has the following record trak:
0010005402356

where:
001 = don’t care (characters to skip)
00054 = card code
02356 = fixed code

the filter value must be:
000CCCCCPPPPP

If a PX10 reader is used as proximity card reader, you can simply set the filter to X: in this case all 40 bits
read out from the proximity card are used to identify the badge.

UCPT_id3En_r1 (or nci01id3Enabled1) type int default = 0
Card + PIN operation (identification level 3).

UCPT_id3En_r1 Description
0 The PIN code is never required
1..64 The PIN code is required in time band 1..64
65..254 Value not allowed
255 The PIN code is always required

10

 Identifier #2 (identification level 1, 2 and 3)

nvi01keyboard2 type SNVT_str_asc
This variable receives data from an APICE keyboard object, like the one embedded into the JLON device.
The server answers through explicit messages, to avoid binding and address table consumption. The
keyboard bound to this variable works normally as indoor keyboard. (inside the protected side of the gate).

nvi01reader2 type SNVT_magcard
This variable receive datas from an APICE reader object, like the one embedded into the IOL222 or JLON
devices. The server answers through explicit messages, to avoid binding and address table consumption.
The keyboard bound to this variable works normally as the indoor reader (inside the protected side of the
gate).

UCPT_id1En_r2 (or nci01id1Enabled2) type int default = 255
PIN operation (identification level 2).

UCPT_id1En_r2 Description
0 The sole pin operation is not allowed
1..64 The sole pin operation is allowed in time band 1..64
65..253 Value not allowed
254 Only the usage of justification is allowed
255 The sole pin operation is always allowed

UCPT_filter_r2 (or nci01filter2)
type SNVT_str_asc default = “PPPPCCCC”

This variable configures how the magcard string is split. Use a ‘P’ character to indicate a fix code (prefix)
field character, and a ‘C’ character to indicate a card code field character; the character ‘0’ stands for don’t
care.

Example:

The magcard has the following record trak:
0010005402356

where:
001 = don’t match (characters to skip)
00054 = card code
02356 = fix code

the filter value must be:
000CCCCCPPPPP

If a PX10 reader is used as proximity card reader, you can simply set the filter to X: in this case all 40 bits
read out from the proximity card are used to identify the badge.

UCPT_id3En_r2 (or nci01id3Enabled2) type int default = 0
Card + PIN operation (identification level 3).

UCPT_id3En_r2 Description
0 The PIN code is never required
1..64 The PIN code is required in time band 1..64
65..254 Not allowed
255 The PIN code is always required

11

Gate controller

nvo01gatedrive type SNVT_lev_disc
This variable drives the normal opening of the remote gate controller. The output goes to ST_ON and return
to ST_OFF value after a while. The gate controller is activated by the rising edge of this variable (update to
ST_ON).

nvo01unlockGate type SNVT_lev_disc
This variable goes to ST_ON when the unlock time band is active or nvi01lockGate goes to ST_ON. The
unlock state skip the gate feedback information, saving immediately in the event memory the access request
coming from the keyboard or the reader as ‘Transit done’. The door alarms are ingnored, and are not saved
if the gate is unlocked. This variable can also be bound to the remote IOL222 gate controller unlock input
variable.

nvi01unlockGate type SNVT_lev_disc
Put the gate unlocked.

nvo01lockGate type SNVT_lev_disc
This variable goes to ST_ON value when the lock time band is active or nvi01unlockGate goes to ST_ON.
The lock state does not allow access from pushbutton, keyboard and reader. This variable can also be bound
to the IOL222 gate controller lock input variable. When this variable is ST_ON, the nvo01unlockGate is
automatically set to ST_OFF.

nvi01lockGate type SNVT_lev_disc
Put the gate lock.

nvi01gateFdbk type SNVT_lev_disc
This variable receives the feedback from the IOL222 gate controller. Although the type is SNVT_lev_disc, the
meaning of each value is the following:

Value
(int)

Value
(SNVT_lev_disc)

Description

0 ST_OFF End access
1 ST_LOW Begin access
2 ST_MED Open door
3 ST_HIGH Intruder state
4 ST_ON Door left open
5 NA Not transit done

The IOL222 gate controller object provides the rigth feedback. The door feedback is used to store the access
and door state together and store gate anomalies. To use the feedback, the variable nci01needFdbk must
be set to 1.

UCPT_unlockTband (or nci01unlockTBand) type int default = 0
A value beetween 1 and 64 is the time band number to unlock gate. When this time band is active, the gate
is in unlock state. The value 0 means not used.

UCPT_lockTband (or nci01lockTBand) type int default = 0
A value beetween 1 and 64 is the time band number to the lock gate. When this time band is active, the
gate is in lock state. The value 0 means not used.

12

Alarm controller

nvi01alarmState type SNVT_lev_disc
This variable drives the alarm state of the object. Every time the value changes, it is always logged and
propagated in nvo01alarmState.

nvi01alarmState Alarm state
ST_OFF Off
ST_LOW During the turning-on time
ST_MED During the pre-alarm time
ST_HIGH In alarm
ST_ON On

nvo01alarmState type SNVT_lev_disc
This variable is modified either by nvi01alarmState changes or by an access occurring when the alarm is
turned-on. In the second case, but not with manual open operation, the event and user identification are
logged together.

nvo01blocked type SNVT_lev_disc
This variable is ST_ON during the security block time and ST_OF during normal operation. See
nci01effractions for more information.

nvo01coercition type SNVT_lev_disc
This variable goes to ST_ON when a coercition event is detected. It remains in this state for
nci01timeAlarm , then returns to ST_OFF.

nvo01denAccess type SNVT_lev_disc
This variable goes to ST_ON if the LonServer detects a number of errors greater than the maximum allowed.
It remains in this state for nci01timeAlarm, then return to ST_OFF.

UCPT_effractions (or nci01effractions) type int default = 0
When an identifier detects some consecutive access denied operations, it can generate an alarm and/or
block itself for 3 minutes. For the PIN code operation, 3 consecutive errors are normally allowed for the first
code entrance operation before an error is counted. After the first three mistakes, each mistake is counted
as one additional error.

bit 7 6 5 4 3 2 1 0
field A3 A2 A1 A0 B3 B2 B1 B0

Max # of mistakes to generate
alarm (0= do not generate). Max # of mistakes to

generate block.

13

UCPT_coercition1 (or nci01coercition1)
type SNVT_str_asc default = “”
This variable contains a coercition code for identification level 1. If the first character is 0 (empty string), the
object has not a coercition code for sole PIN operation.

UCPT_coercition3 (or nci01coercition3)
type SNVT_lev_disc default = ST_OFF
When the card+PIN code operation is enabled, this variable allows to distinguish a coercition event when the
user digits a PIN+1 code on the keyboard. This requires that the variable is programmed to ST_ON.

UCPT_timeAlarm (or nci01timeAlarm) type int default = 5
This variable is used to set the nvo01coercition and nvo01accErr alarm time (in seconds).

UCPT_alarmAccess (or nci01alarmAccess) type int default = ?
This variable change the access mode for each identifier when alarm is on.

bit 7 6 5 4 3 2 1 0
field A20 M22 M21 M20 A10 M12 M11 M10

MX2 MX1 MX0 Description
0 0 0 Access denied
0 0 1 Always allowed normally
0 1 0 Allowed with PIN, card and card + PIN
0 1 1 Allowed with card or card + PIN
1 0 0 Allowed with card + PIN only
1 0 1 Access denied
1 1 0 Access denied
1 1 1 Access denied

AX0 Description
0 After access send alarm in pre-alarm state.
1 After access turn off alarm.

Notes: When the alarm is turned on and a pushbutton opening request is received, the alarm rigths for this
device are the same as those of identifier 1. Access is allowed to different identification level even if they are
normally enabled. If one identificatoion level is normally disabled, when alarm is turned on it continues to be
disabled.

Identifier 1Identifier 2

14

Logger

UCPT_unIdLog (or nci01unIdLog) type int default = 0
Unidentified event logger (pushbutton open)

UCPT_unIdLog Description
0 The pushbutton opening is not saved
1..64 The pushbutton opening is saved in time band 1..64
65..254 Value not allowed
255 The pushbutton opening is always saved

UCPT_idLog (or nci01idLog) type int default = 255
Identified event logger. In this version, log of identified access is always enabled and this variable is not
used.

UCPT_denAccLog (or nci01denAccLog) type int default = 255
Access denied logger.

UCPT_denAccLog Description
0 The access denied are not saved.
1..64 The access denied saved in time band 1..64.
65..254 Value not allowed.
255 The access denied are always saved.

UCPT_gateEvLog (or nci01gateEvLog) type int default = 1
Gate event logger.

UCPT_gateEvLog Description
0 The gate states are not saved.
1..64 The gate states are saved in time band 1..64.
65..254 Value not allowed.
255 The gate states are always saved.

When the gate states are saved, an identified event is saved only when gate complete the transaction or
when it goes in alarm conditions. Other unidentified gate states are saved as well. When the gate states are
not saved, an identified access is saved immediatly after the badge is passed, without waiting for the
transaction to complete or alarms to come up.

15

Diagnostic

nvo01Diagnostic type SNVT_str_asc
This variable provides useful information during the installation and start-up phases. In fact, when an
operation fails, the reason is shown in this variable. The meaning of diagnostic messages is the following:

Message Means
#01 Pushbutton disabled When a pushbutton operation is done but the nci01enable is set to 0

or to an unactive time band number.
#02 Pushb. Disabled w/t alarm When a pushbutton operation is done with the alarm turned-on and

nci01alarmDsbl set to ST_ON.
#03 Object blocked When a PIN or a card read operation is done while the identifier is

blocked. The pushbutton operation is not affected by the blocked state.
#04 Sole PIN disabled When a sole PIN operation is done but the nci01pinEnabledX

variable is set to 0 or to an unactive time band number.
#05 PIN disabled w/t alarm A sole PIN operation is attempted when the alarm is turned-on and the

nci01disablePinX variable is set to ST_ON value.
#06 PIN aborted Not used in this version
#07 Wrong PIN detected This error occurs in the first 3 PIN code mistakes. Later the #14.03

message is read out.
#08 Coercition detected When a coercition access is detected
#09 Access authorized When an allowed access is detected from a keyboard or a card read

operation.
#10 Pin operation pending When a card read operation is detected but the keyboard is busy in a

PIN digit operation.
#11 Card filter does not match When a card is read but the record track does not match the filter

settings in nci01filterX variable.
#12 Reader disabled w/t alar When a card read operation is detected with the alarm turned on but

either the reader is disabled (nci01alarmAccX = 0) or the user has
not the rigths to turn-off the alarm. The same condition for the keyboard
object reads out the #14.04 message.

#13 PIN code request The card read operation required PIN code.
#14 Access denied This message is not read out in this version. This version uses the

#14.XX messages with more details.
#15 Gate locked When a pushbutton either a PIN or a card read operations is done when

the gate is locked.
#14.01 Card unknown The record track matches the filter but not the fixed code field. Set one

of the nci09prefX variable to a match fixed code.
#14.02 Code unknown The filter and the fixed code match together but the card code is not in

memory. Store the card in memory to have access.
#14.03 Wrong PIN This message is read out after a wrong PIN operation after the first 3

mistakes.
#14.04 No rigth This messages is read out in sole PIN operation with alarm inserted,

when the user has not the rigths to turn the alarm off.
#14.05 Reader error Not used in this version
#14.06 APB error This message is read out when the user data are stored in the memory

but the user is not enabled in this identifier (maybe it is in other
identifiers)

#14.07 Time band This message is read out when the user time band access for this
identifier is turned off.

#14.08 Expired This message is read out when the user’s badge is expired. (1)
#14.09 No credit This message is read out when the user has not an enough credits to

complete the current operation. (1)
#14.10 Database error This message is read out if an internal database error is detected.

(1) The current version does not handle the expiration time band and the credit. This messages will be used
in future releases.

16

Object working mode

UCPT_pgm (or nci01pgm) type SNVT_str_asc default = 0
This variable is used to change internal object working mode. This firmware version does not handle this
value, but the variable is implemented for future use.

NOTE:
If a keyboard bound is removed or is changed with another keyboard object having different subnet/node
address, you must write, using a maintenance tool, the string CLEAR in nviXXkeyboardX network variable to
reset the internal address memory buffer.

If the local readers and keyboard are used, you need to bind nvo15keyboard output network variable to
nviXXkeyboard1 input network variable. In general the local reader (nvo13reader or nvo14reader) bound
with the nviXXreader2 network variable uses the keyboard bound in nviXXkeyboard1 network variable.

It is possible to distinguish the card sweeping direction in the local reader using nci11pgm configuration
network variable. For more details see object 13 and 14.

When nvi01alarmState is ST_LOW, it is always possible to turn off the alarm without turning off rigths too.
When nvi01alarmState has a value greater than ST_LOW, the user’s turn-off rigths are required and the
object must be programmed to allow access with alarm state turned on.

17

Object #9 type: common params access controller

Object 9 contains the network variables to handle the memory information concerning the list of enabled
cards, the user types and the logger. This object also stores in several configuration network variables the
common access control information, like the user messages, the fixed code, etc.

Object #9
Type #controller

int nci09pinDigit
SNVT_str_asc nci09idleMsg1
SNVT_str_asc nci09idleMsg2
SNVT_str_asc nci09blockMsg1
SNVT_str_asc nci09blockMsg2
SNVT_str_asc nci09insPinMsg1
SNVT_str_asc nci09okMsg1
SNVT_str_asc nci09okMsg2
SNVT_str_asc nci09cardUMsg1
SNVT_str_asc nci09cardUMsg2
SNVT_str_asc nci09codeUMsg1
SNVT_str_asc nci09codeUMsg2
SNVT_str_asc nci09wrongPinMsg1
SNVT_str_asc nci09wrongPinMsg2
SNVT_str_asc nci09noRigthMsg1
SNVT_str_asc nci09noRigthMsg2
SNVT_str_asc nci09rdErrMsg1
SNVT_str_asc nci09rdErrMsg2
SNVT_str_asc nci09notApbMsg1
SNVT_str_asc nci09notApbMsg2
SNVT_str_asc nci09tBandMsg1
SNVT_str_asc nci09tBandMsg2
SNVT_str_asc nci09expiredMsg1
SNVT_str_asc nci09expiredMsg2
SNVT_str_asc nci09noCredMsg1
SNVT_str_asc nci09noCredMsg2
SNVT_str_asc nci09pref1
SNVT_str_asc nci09pref2
SNVT_str_asc nci09pref3
SNVT_str_asc nci09pref4
SNVT_str_asc nci09pref5
SNVT_str_asc nci09pref6
SNVT_str_asc nci09pref7
SNVT_str_asc nci09pref8

nv
nvi09nextEvent

SNVT_lev_disc nv
nvo09logger

SNVT_str_asc

nv
nvi09rewindLog

SNVT_lev_disc nv
nvo09logCount

SNVT_count

nv
nvi09memCmd

SNVT_str_asc nv
nvo09event

SNVT_str_asc

nv
nvo09memRead

SNVT_str_asc

nv
nvo09memCount

SNVT_count

nv
nvi09extLog

SNVT_str_asc

18

LOGGER:

nvo09logger type SNVT_str_asc
This variable reads out, one record at a time, the log file information. The current record is read out until
nvi09nextEvent is updated to ST_ON value. The current record is not the last event happened but the
last event read out. When the log file is completely read out, the string EMPTY is sent.
The meaning of the various fields is the following:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
dd mm ce Yy hh nn ss snd n ev cH cL cL cL cL arg arg arg arg

The top row shows the ascii elements of the network variable, the bottom row the field means.

dd Day (1..31)
mm Month (1..12)
ce Century (19, 20…)
yy Year (99, 00, …)
nn Minute (00..59)
ss Seconds (00.59)
snd Sender (See table below)
n Sender number (See table below)
ev Event kynd(See table below)
cH Code High (Used for proximity cards)
cL Code Low Card code in long format. ascii[11] is the MSB, ascii[14] is the LSB.
arg Argument Argument in long format. ascii[15] is the MSB, ascii[18] is the LSB.

Senders table:

Sender # Sender
1 Pushbutton controller
2 Keyboard
3 Reader
4 Gate
5 Alarm point
6 Memory

Sender number:
The sender number is related to the access controller object, as shown in the table:

Device/OBJ OBJ1 OBJ2 OBJ3 OBJ4 OBJ5 OBJ6 OBJ7 OBJ8
Pushbutton 1 2 3 4 5 6 7 8
Keyboard1 1 3 5 7 9 11 13 15
Reader 1 1 3 5 7 9 11 13 15
Keyboard 2 2 4 6 8 10 12 14 16
Reader 2 2 4 6 8 10 12 14 16
Gate 1 2 3 4 5 6 7 8
Memory 0 0 0 0 0 0 0 0

19

Event code:
The following table shows the event codes. The Cd column, if remarked, means that the event contains the
card code identifier. The arg column, if remarked, means that the field can contain an argument field. The X
marks mean that the field is optional, while the O marks that is mandatory. The mnemonic column shows
the mnemonic event code for the nvo09event variable.

Description Cd Arg Mnemonic
0 No event NONE
1 Transit done X X PASS
2 Transit not done X X NO PASS
3 Door left open X X LEFTOPEN
4 Coercition O COERCIT
5 Intruder door alarm INTRUDER
6 Access denied. Argument shows the cause of refusing X O See table below
7 Security block of identifier activated X BLOCKED
8 Security block end UNBLOCKED
9 Gate goes in lock state LOCK ON
10 Gate return from the lock state LOCK OFF
11 Gate goes in unlock state UNLK ON
12 Gate return from the lock state UNLK OFF
13 Pushbutton enable time band goes active MANU ON
14 Pushbutton enable time band goes not active MANU OFF
15 Sole PIN enable time band goes active PIN ON
16 Sole PIN enable time band goes not active PIN OFF
17 Card + PIN request time band goes active PINRQ ON
18 Card + PIN request time band goes not active PINRQ OF
19 Alarm goes into pre-alarm state X PREALARM
20 Alarm is turned off X ALRM OFF
21 Alarm is turned on X ALRM ON
22 Alarm goes in alarm state (obsolete) ALARM
23 Alarm is being inserted (exit time) X INSERT
24 A new card is stored O O STORED
25 A card in memory has been modified O O EDIT
26 A card in memory has been deleted O DELETED
27 All card memory has been deleted DEL CARD
28 All log event has been deleted DEL LOG
29 The devices has been overriden with default values DEF VAL
30 Gate close GATECLS
31 Alarm triggered (Alarm condition detected)
32 Alarm restored (restore normal operation)

Code field:
The code field contains the codeHi and CodeLow when identified people cause the event. For the card
memory sender, the code field contains the modified code.

Arg field:
The transit event can contain an argument, such as justify or debit values (not enable in this version). The
access denied event contains the reason of refusing, while the memory event contains the enable capability
of the card as 16 bit Hex number, where LSB is the enable flag for identifier 1 and the MSB for the identifier
#16.

20

Access denied refusing code:
The meaning of each code is shown in the following table:

Code Description Mnemonic
0 Coercition COERCIT
1 Not applicable NONE
2 Card does not match the fixed code CARD UNK
3 Card code not stored in memory CODE UNK
4 Wrong pin WRONGPIN
5 No rigths to turn-off the alarm NO RIGTH
6 Not applicable NO ERR M
7 Not applicable NO ERR M
8 Card is in memory but is not enabled in this identifier NOT APB
9 Access time band is not active TM BAND
10 Card is expired EXPIRED
11 Credit is not enougth CREDIT
12 Database internal error DBERROR

nvi09nextEvent type SNVT_lev_disc
When this variable is updated to ST_ON, the next event is sent to the nvo09logger variable.

nvi09rewindEvent type SNVT_lev_disc
When this variable is updated to ST_ON, the log is rewound to the oldest event which sent to the
nvo09logger variable.

nvo09event type SNVT_str_asc
This variable is useful in debug session or in start-up operation. This variable is updated with the last event
logged and it show the event in the followed format:

Sxx-event-codeLow-Arg

Where:

S Sender identifier (1 character):
N = none
M = Pushbutton (manual open)
K = Keyboard
R = Reader
G = Gate
A = Alarm point
E = Memory

xx Sender number, 2 characters formatted whith left zero filler.
- Separator
event Mnemonic, 8 characters with left space filler.
- Separator
codeLow Code low, 8 characters whith left zero filler.
- Separator
Arg Argument, 8 character, hexadecimal notation with left zero filler.

For details about the sender number and mnemonic, see tables of nvo09logger description above.

nvo09logCount type SNVT_count
This variable shows the event numer to be read out from the nvo09logger network variable.

21

nvi09extLog type SNVT_str_asc
This variable receives external events to be saved in the logger. The used fields are:

ascii[0] = sender type
ascii[1] = sender number
ascii[2] = event

Other fields will be used in future releases.

 CARD MEMORY:

nvo09memCount type SNVT_count
This variable shows the number of the cards stored in memory.

nvi09memCmd type SNVT_str_asc
This variable allows to send command to the memory.

nvo09memRead type SNVT_str_asc
This variable is used to show the command result.

Add a card in memory:

ascii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
field A T H E E L L L L P P P P T T

A = Character A
T = Type (1..16)
H = Code high (0..255)
EE = Enable flag (16 bits, one for each identifier, see below)
LLLL= Code low, 4 bytes long. ascii[5] = MSB, ascii[8] = LSB.
PPPP = PIN code, 4 bytes long. ascii[9] = MSB, ascii[12] = LSB.
TT = Tag, 2 bytes long. ascii[13] = MSB, ascii[14] = LSB.

Enable flag details:

ascii[3] ascii[4]
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0
16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

The top row shows the ascii[] element in the network variable, while the middle row shows the bit number,
where bit 7 is the MSB. The lower row is the related identifier number. If the bit is set to 1 the card is
enabled in the identifier, otherwise if the bit is set to 0, the card is not enable in the identifier.

Results:
The nvo09memRead variable shows the results:

OK: STORED If the card is stored in memory
ER: PIN EXSIST If the card is not stored because the PIN code already exsists.
ER: MEMORY FULL If the memory buffer is full

22

Update card in memory:

This command is similar to the previous one but in this case the sent enable flag are or(ed) with the enable
flag stored in memory. To distinguish with the previous command, the update card start with the character
U.

ascii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
field U T H E E L L L L P P P P T T

Results:
This command has the same results of the previous command.

Check card in memory:
This command is used to test if a card is stored in memory.

ascii 0 1 2 3 4 5 6 7 8
field C - H - - L L L L

Results:
ER: NOT IN MEMORY If the card is not found in memory.
If the card is found, the result will be OK followed by all the card info, as shown below:

ascii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
field O K : T H E E L L L L P P P P T T

Remove a card from memory:
This command is used to remove a card from the memory.

ascii 0 1 2 3 4 5 6 7 8
field D - H - - L L L L

Results:
OK: DELETED Even if the card is not found in memory.

Read card memory at n position:

ascii 0 1 2 3 … …
field R x x x … ‘\0’

The xxx.. is an ASCII string, zero ending, showing the position to be read.

Results:

ER: NOT IN MEMORY If the position is greater then the number of cards stored in memory.
If the card is found, the message is OK followed by all the card info, as shown below:

ascii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
field O K : T H E E L L L L P P P P T T

23

USER TYPE MEMORY:
The user type memory is handled through the nvi09memCmd and nvo09memRead network variables too.
The command provided to handle this memory is the F command, as shown below:

Write a user type:
This command changes the access time band and the alarm rigths of an user type into an identifier.

ascii 0 1 2 3 4 5 6 7 8 9 10 11
field F u u . i i , f f , a \0

Where:

F Command character
uu User type, using two characters with left zero filled (1..16).
. Separator
ii Identifier number, using two characters with left zero filled (1..16).
, Separator
ff User uu, identifier ii access time band (0..32)
a Alarm rigth (0..3):

0 = NONE
1 = ONLY INSERT
2 = INSERT AND UNINSERT
3 = ALL

\0 Null terminator

Results:

ER: WRONG FORMAT if the ascii[3] or ascii[9] or ascii[11] don’t matches.
ER: WRONG ARGUMENTS if the arguments are out of range

Or if the command is executed:

ascii 0 1 2 3 4 5 6 7 8 9 10 11
field F u u . i i , f f , a \0

Delete an user type:

This command restores the no access time band and the no alarm rigths for an user into an identifier.

ascii 0 1 2 3 4 5 6
field F u u . i i D

In delete command, 0 values are allowed in uu and ii fields. 0 value means all like in examples:

F01.01D delete the user type 1 in identifier 1
F01.00D delete the user type 1 in all identifiers
F00.01D delete all user types in identifier 1
F00.00D delete all user types in all identifiers

Results:

ER: WRONG FORMAT if ascii[3] does not match.
OK: TYPE uu DEL KEYB ii
OK: TYPE uu DEL ALL KEYB
OK: KEYB ii DEL ALL TYPES
OK: DEL ALL TYPES ALL KEYB

24

Read user type:

To read an user type use the following command:

ascii 0 1 2 3 4 5 6
field F u u . i i ?

Results:

ER: WRONG FORMAT if ascii[3] doesn’t match.
ER: WRONG ARGUMENTS if arguments are out of range

Or if the command is executed:

ascii 0 1 2 3 4 5 6 7 8 9 10 11
field F u u . i i , f f , a \0

PASSWORD PROTECTED OPERATIONS:

Using nvi09memCmd is possible to erase all the card memory, all the event memory and to restore the
LonServer to the default values (factory defaults). To do this, the password is required. The default value is
123456.

Delete card memory:

ascii 0 1 2 3 4 5 6 7
field M C x x x x x x

xxxxxx = password (6 characters)

Results:

ER: WRONG PASSWORD if the password is not correct
OK: CLEAR CARD MEMORY if the password is fine

Delete event memory:

ascii 0 1 2 3 4 5 6 7
field M E x x x x x x

xxxxxx = password (6 characters)

Results:

ER: WRONG PASSWORD if the password is not correct
OK: CLEAR LOG MEMORY if the password is fine

Restore default:

ascii 0 1 2 3 4 5 6 7
field M A x x x x x x

xxxxxx = password (6 characters)

25

Results:

ER: WRONG PASSWORD if the password is not correct
OK: DEFAULT RESTORED if the password is fine

Change password:

ascii 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
field M P x x x x x x , n n n n n n

xxxxxx = password (6 characters)
nnnnnn = new password (6 characters)

Results:

ER: WRONG PASSWORD if the password is not correct
OK: PASSWORD CHANGED if the password is fine

CONFIGURATION NETWORK VARIABLES

UCPT_pinDigits (or nci09pinDigit) type int default = 5
The digit number of PIN (3..9)

UCPT_idleMsg1 (or nci09idleMsg1)
type SNVT_str_asc default = “#D#PASSARE TESSERA”
UCPT_idleMsg2 (or nci09idleMsg2)
type SNVT_str_asc default = “<- <- <- <- <-”
Idle message row 1 and 2. The #D# means print date and time in the first row of the local display. If the
local keyboard is used, the idle message in local display will be date and time in the first row and the rest of
string in nci09idleMsg1 the second row. JLON ignore the #D# command.

UCPT_blockMsg1 (or nci09blockMsg1)
type SNVT_str_asc default = “ EFFRAZIONE”
UCPT_blockMsg2 (or nci09blockMsg2)
type SNVT_str_asc default = “ATTENDERE PREGO”
Identifier blocked message, row 1 and 2.

UCPT_insPinMsg1 (or nci09insPinMsg1)
type SNVT_str_asc default = “INSERIRE CODICE”
Insert PIN request, only row 1.

UCPT_okMsg1 (or nci09okMsg1)
type SNVT_str_asc default = “ENTRARE PREGO”
UCPT_okMsg2 (or nci09okMsg2)
type SNVT_str_asc default = “”
Access allowed message, row 1 and 2.

UCPT_cardUMsg1 (or nci09cardUMsg1)
type SNVT_str_asc default = “CODICE O CARTA”
UCPT_cardUMsg2 (or nci09cardUMsg2)
type SNVT_str_asc default = “ SCONOSCIUTI”

26

Access denied for unknow card, row 1 and 2.

UCPT_codeUMsg1 (or nci09codeUMsg1)
type SNVT_str_asc default = “ UTENTE NON”
UCPT_codeUMsg2 (or nci09codeUMsg2)
type SNVT_str_asc default = “ ABILITATO”
Access denied for code unknown, row 1 and 2.

UCPT_wrongPinMsg1 (or nci09wrongPinMsg1)
type SNVT_str_asc default = “CODICE PIN”
UCPT_wrongPinMsg2 (or nci09wrongPinMsg2)
type SNVT_str_asc default = “ERRATO”
Wrong PIN message, row 1 and 2.

UCPT_noRightMsg1 (or nci09noRigthMsg1)
type SNVT_str_asc default = “ACCESSO NEGATO”
UCPT_noRightMsg2 (or nci09noRigthMsg2)
type SNVT_str_asc default = “ALLARME INSERITO”
No enougth rigth to access with alarm on, row 1 and 2.

UCPT_rdErrMsg1 (or nci09rdErrMsg1)
type SNVT_str_asc default = “ERRORE LETTURA”
UCPT_rdErrMsg2 (or nci09rdErrMsg2)
type SNVT_str_asc default = “PROVARE DI NUOVO”
Card doesn’t match the filter message, row 1 and 2.

UCPT_notApbMsg1 (or nci09notApbMsg1)
type SNVT_str_asc default = “PERCORSO”
UCPT_notApbMsg2 (or nci09notApbMsg2)
type SNVT_str_asc default = “NON CORRETTO”
Card enabled but not in this identifier message, row 1 and 2.

UCPT_tBandMsg1 (or nci09tBandMsg1)
type SNVT_str_asc default = “FASCIA ORARIA”
UCPT_tBandMsg2 (or nci09tBandMsg2)
type SNVT_str_asc default = “NON VALIDA”
Access time band not active message, row 1 and 2.

UCPT_expiredMsg1 (or nci09expiredMsg1)
type SNVT_str_asc default = “VALIDITA’”
UCPT_expiredMsg2 (or nci09expiredMsg2)
type SNVT_str_asc default = “SCADUTA”
Card expired message, row 1 and 2.

UCPT_noCredMsg1 (or nci09noCredMsg1)
type SNVT_str_asc default = “CREDITO UTENTE”
UCPT_noCredMsg2 (or nci09noCredMsg2)
type SNVT_str_asc default = “INSUFFICENTE”
Not enougth credit message, row 1 and 2.

UCPT_pref1 (or nci09pref1) type SNVT_str_asc default = “”
Fix code # 1.

27

UCPT_pref2 (or nci09pref2) type SNVT_str_asc default = “”
Fix code # 2.

UCPT_pref3 (or nci09pref3) type SNVT_str_asc default = “”
Fix code # 3.

UCPT_pref4 (or nci09pref4) type SNVT_str_asc default = “”
Fix code # 4.

UCPT_pref5 (or nci09pref5) type SNVT_str_asc default = “”
Fix code # 5.

UCPT_pref6 (or nci09pref6) type SNVT_str_asc default = “”
Fix code # 6.

UCPT_pref7 (or nci09pref7) type SNVT_str_asc default = “”
Fix code # 7.

UCPT_pref8 (or nci09pref8) type SNVT_str_asc default = “”
Fix code # 8.

28

Object #10 type: time band controller

The time band controller handles up to 64 differents weekly time bands. Time bands can be used by all the
access control objects. In order to provide general purpose time band outputs, time bands state 61 to 64 are
read out using 4 SNVT_lev_disc network variables. Each time band has 4 weekly time intervals. When one
time interval is active, the whole time band is active as well.

nvi10tBand type SNVT_str_asc
This variable is used to add, delete and show a time band. See command description below.

nvo10tBand type SNVT_str_asc
This variable shows the command results provided by nvi10tBand. See command description below.

nvi10tb61 type SNVT_lev_disc
This variable shows the time band #61 state. ST_ON means time band active.

nvi10tb62 type SNVT_lev_disc
This variable shows the time band #62 state. ST_ON means time band active.

nvi10tb63 type SNVT_lev_disc
This variable shows the time band #63 state. ST_ON means time band active.

nvi10tb64 type SNVT_lev_disc
This variable shows the time band #64 state. ST_ON means time band active.

Object #10
Type: controller

nv
nvi10tBand

SNVT_str_asc nv
nvo10tBand

SNVT_str_asc

nv
nvo10tb61

SNVT_lev_disc

nv
nvo10tb62

SNVT_lev_disc

nv
nvo10tb63

SNVT_lev_disc

nv
nvo10tb64

SNVT_lev_disc

29

COMMAND DESCRIPTION:

Add time interval:
The command syntax to provide to the variable nvi10tBand is:

ff.i,hh:mm,HH:MM,days

Where:

ff time band number(1..64)
. dot separator
i time band interval(1..4)
, Comma separator
hh:mm Starting time in 24 hour notation
HH:MM Ending time in 24 hour notation.
Days List of the enabled days. 7 characters where the character 0 is used for not enabled days and the

character 1 for enabled days. The first character is for Sunday, the second for Monday…; the last
one is for Saturday.

Example:

 01.1,08:20,12:45,0111110

The time interval #1 in the time band #1 is set from 8:30 to 12:45 from Monday to Friday.

Results:

The variable nvo10tBand shows the command results.

ff.x,WRONG ARGUMENT the interval is out of range.
xx.i,WRONG ARGUMENT the time band is out of range.
ff.i,WRONG FORMATTED the ascii[7] or [10] or [13] or [16] do not match.
ff.i,WRONG TIME ARGUMENT time argument are inconsistent.
WRONG COMMAND FORMAT ascii[5] does not match.
ff.i,hh:mm,HH:MM,days,[ON|OFF] on command success. The ON or OFF state show the interval activation

state.

Time band #1

Interval #1

Starting time

Ending time

Sunday

Saturday

30

Query a time band:

With this command we can query the time band activation state or the details for each interval.

ff.i? (1 <= i <= 4) shows the interval details
ff.0? (i = 0) shows the time band activation

Results:

ff.x,WRONG ARGUMENT the interval is out of range.
xx.i,WRONG ARGUMENT the time band is out of range.
WRONG COMMAND FORMAT ascii[5] does not match.
ff.i,hh:mm,HH:MM,days,[ON|OFF] for detail view
ACTIVE for time band query with time band active
NOT ACTIVE for time band query with time band not active

Delete a time band:

ff.iD (1 <= i <= 4) delete the interval
ff.0D i = 0 delete the time band

Results:

ff.x,WRONG ARGUMENT the interval is out of range.
xx.i,WRONG ARGUMENT the time band is out of range.
WRONG COMMAND FORMAT ascii[5] does not match.
ff.0,DELETED time band deleted
ff.i,DELETED single time interval deleted

31

Object #11 type: special purpose presence controller

This special controller is used to count people inside a certain area. This kind of controller works in several
modes, related to the nci11pgm value. At the moment only mode 0 and 1 are enabled. The value 1 is
related to card direction detection (see objects 13 and 14 for more details).

Working mode 0:

The object can handle up 20 areas, each area containing up to 15 peoples. When the user accesses through
either reader1 or keyboard1 of any access control object, the area related to the user’s card memory tag
field is incremented of his presence. If the user was already present in the area, the count is not
incremented. The same happens when the user accesses through either reader2 or keyboard2, but this time
the count is decremented, if the user was present in the area.

When all areas are empty, the object can turn the alarm on. If nobody was present in the area and the
alarm was turned on, as soon as an authorised user with enough rights enter the area the alarm can be
immediately turned off.

nvi11select type int
This variable allows to chose the area.

nvi11resetArea type SNVT_lev_disc
When this variable receive an ST_ON update, the selected area is reset to 0 (no presence); if all areas are
zero and the nci11autoTurnOn = ST_ON, the alarm is turned on.

nvi11reset type SNVT_lev_disc
When this variable receive an ST_ON update, all areas are reset to 0 (no presence everywhere) and the
alarm is turned on (provided that nci11autoTurnOn = ST_ON).

nvi11alarmState type SNVT_lev_disc
This variable receives the alarm state from other objects.

Object #11
Type: controller

SNVT_lev_disc nci11useObject UCPT_useObject
SNVT_lev_disc nci11autoTurnOn UCPT_autoTurnOn
SNVT_lev_disc nci11autoTurnOff UCPT_autoTurnOff
SNVT_count nci11pgm UCPT_pgm

nv
nvi11select

int nv
nvo11count

SNVT_count

nv
nvi11resetArea

SNVT_lev_disc nv
nvo11cardInfo

SNVT_switch

nv
nvi11reset

SNVT_lev_disc

nv
nvi11alarmState

SNVT_lev_disc

nv
nvo11alarmState

SNVT_lev_disc

32

nvo11count type SNVT_lev_disc
This variable shows the total number of people in the selected area.

nvo11cardInfo type SNVT_switch
On update, this variable sends areas occupancy information: the term value contains the area number,
while the term state is 0 if the area is unoccupied and 1 is it is occupied.

nvo11alarmState type SNVT_lev_disc
This variable is used to send the alarm status to other objects.

UNVT_useObject (or nci11useObject)
type SNVT_lev_disc default = ST_ON
If this variable is set to ST_OFF the object does not work.

UNVT_autoTurnOn (or nci11autoTurnOn)
type SNVT_lev_disc default = ST_ON
If this variable is set to ST_ON, when no presence is detected in all areas (unoccupied), the alarm is turned
on. If it is set to ST_OFF the auto turn-on function is disabled.

nci11autoTurnOff type SNVT_lev_disc default = ST_ON
If this variable is set to ST_ON, when the first presence is detected in one area, the alarm is turned off. If it
is set to ST_OFF the auto turn-off function is disabled.

33

Object #12 type: controller

This controller is able to estabilish a cominication with other LonServers. For more details see the system
guide.

nvi12com type SNVT_str_asc
This variable receives information from other LonServers.

nvo12com type SNVT_str_asc
This variable sends information to other LonServers.

Object #12
Type controller

nv
nvi12com

SNVT_str_asc nv
nvo12com

SNVT_str_asc

34

Object #13 type: Controller

This object interfaces the optional embedded reader in the LonServer device.

nvo13magcard type SNVT_magcard
Each time a card is run in the slot or a proximity card is detected, the nvo13magcard network variable is
updated. It can be bound to an access control object reader input. (if nci11pgm = 0)

If nci11pgm = 1 running the card from rigth to left updates nvo13reader network variable, running card
from left to rigth updates nvo14reader network variable. This allows to see two virtual different readers
depending from the sweeping direction.

Object #13
Reader controller

nv
Nvo13reader

SNVT_magcard

Magcard or proximity
card embedded reader

35

Object #14 type: Controller

This object interfaces the optional external local reader.

nvo14magcard type SNVT_magcard
Each time a card is run in the slot or a proximity card is detected, the nvo14magcard network variable is
updated. It can be bound to an access control object reader input. (if nci11pgm = 0)

If nci11pgm = 1 running the card from rigth to left updates nvo13reader network variable, running the card
from left to rigth updates nvo14reader network variable. This allows to see two virtual different readers
depending from the sweeping direction.

Object #14
Reader controller

nv
Nvo14reader

SNVT_magcard

Magcard or proximity
card embedded reader

36

Object #15 type: Controller

This object interface the local keyboard.

Nvo15keyboard type SNVT_str_asc
Each time a key is digit on keyboard, the nvo15keyboard network variable is updated. The key pressed is
added to the end of the string nvo15keyboard.ascii until a maximum 30 allowed characters are not
reached. When the string is full, all characters shift by one position and the new data is added to the last
position.

Example 1:
Used press 4, 2, 5, 8 keys,
nvo15keyboard.ascii = 4258

Example 2:
nvo15keyboard.ascii = 4258..456 (full)
User press key 1
Nvo15keyboard.ascii = 258..4561 (full)

It can be bound to any access control object keyboard input.

Object #15
Keyboard controller

nv
Nvo15keyboard

SNVT_str_asc

JLON keyboard

1 2 3 4

5 6 7 8

SI 9 0 NO

The oldest key is thrown away

The new key is stored at the end

37

Apice Building Automation

Via G.B. Vico 45b – 50053 Empoli (FI) - Italy
Phone +39 0571 920442 Fax +39 0571 920474

email: sales@apice.org Home page: www.apice.org

