
MVSIS 2.0 User’s Manual

Donald Chai, Jie-Hong Jiang, Yunjian Jiang, Yinghua Li, Alan Mishchenko, Robert Brayton

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley CA 94720

(mvsis-devel@ic.eecs.berkeley.edu)

Abstract

MVSIS is a program modeled afterSIS, but the logic network it works on is such that all variables can
be multi-valued, each with its own range. We include all the technology-independent transformations ofSIS
for combinational logic synthesis as well as transformations specific to multi-valued nodes such asmerge,
pair decode, encode, print range, reset default. MVSIS has been made to have the look
and feel ofSIS. MVSIS can read and writeBLIF-MV andBLIF files with theread blif mv command as
well as binary PLAs in the ”.type fd” format.

MVSIS 2.0 is a major re-write of MVSIS 1.0. The goals of MVSIS 2.0 were to significantly speed up the
processing of logic, and to provide a clean source code for the first time. It is expected that future logic synthesis
research will benefit by implementing new ideas in MVSIS, even for binary logic. In the long run, MVSIS
will be a complete replacement of SIS, but with the added capability of handling multi-valued non-deterministic
networks. This user’s manual describes the essential features included in the MVSIS 2.0 release.

1 Introduction

Multi-level multi-valued (MV) logic synthesis can have many applications including:

1. Logic synthesis for multi-valued hardware devices.

2. Initial manipulation of a hardware description before it is encoded into binary and processed by standard
binary logic synthesis programs; MV is a natural way to describe procedures at a higher level.

3. A front end to a software compiler, since software lends itself naturally to the evaluation of multi-valued vari-
ables in a single cycle. Strong logic synthesis transformations can be applied to compilers aimed at embedded
applications.

4. Asynchronous synthesis

We have developed and included techniques for combinational optimization of MV networks. LikeSIS [1, 2],
MVSIS is an interactive tool, and has been made to have the look and feel ofSIS. When applied to purely binary
networks, it behaves almost exactly like the technology independent part ofSIS but is faster. In the sequel, the
main components ofMVSIS 2.0 are described, including the input specification, the MV-transformations and
descriptions of commands.

The underlying data-structures used in logic synthesis have been completely revised inMVSIS 2.0 for max-
imum efficiency. At this point in time, on binary files,MVSIS 2.0 is about 3-5 times faster than SIS, uses much

less memory, and can be applied more robustly to much larger designs. The data-structures have been designed
with numerous APIs1 to make the writing and debugging of new packages much easier. Almost all of the capability
of MVSIS 2.0 is in the area of technology independent optimization which has many new features. Many of the
algorithms have both a SOP-based version and a BDD based version. This allows dynamically choosing the version
that is faster under the given local circumstances. Node minimization is extended with a BDD approach, based
on Minato’s algorithm, to deal with very large two-level functions if ESPRESSO fails. New algorithms have been
developed to derive and use complete output observability relations of a node in the network (complete flexibility).
For algebraic methods, a completely new binary version of ”fastextract” has been written which can handle any
size of a problem in almost no time. A multi-valued version of this uses the so-called CST transformation which
maps the problem into the binary domain where the new fast binary method is used. Multi-valued algorithms such
as factor,decomp andfx, are supported using this transformation. Tests show that little optimality is lost, while
the algorithms are much faster than the corresponding MV algorithms in earlier versions of MVSIS.

In the MV domain, non-deterministic networks are properly handled according to a theory that has been devel-
oped [3]. There are several algorithms which convert to and from the MV domain;pair decode merge and
encode. These allow exploration of optimization potential in the MV domain before all signals are encoded into
binary.

In this manual we give an overview ofMVSIS 2.0 and review the ideas behind multi-valued logic synthesis.
We do not give all possible ways to call aMVSIS 2.0 command with all of its options, but for each command,
there is a short description of the options allowed. This can be seen by invoking<command> -h. Refer to the
Programmer’s Manual for details on the data-structures.

2 Design Specification

2.1 BLIF-MV Description Format

An MV circuit can be input toMVSIS as a netlist of MV-nodes (command:read blif mv). We use a simple
subset of theBLIF-MV [4] format that was used inVIS to specify the design. SuchBLIF-MV files can be generated
by the Verilog front-end toVIS (vl2mv) or can be written out byVIS. Binary networks specified inBLIF (the
format most commonly used inSIS) can also be read in using the same command (read blif mv). After a
design specification is read in, it is converted into an MV-network, a design representation used withinMVSIS. An
MV-network is a network of nodes; each node represents an MV-relation with a single multi-valued output. The
functions associated with the onsets of the values (i-sets), i.e. the binary-output function which is 1 if the relation
can take on valuei, of a node are stored in SOP or MDD form. There is one MV variable associated with the
output of each node. An edge connects nodei to node j if any of the i-sets atj depends explicitly on the variable
associated with nodei. The network has a set of primary inputs (all of which may be multi-valued) and a set of
nodes, designated as the outputs of the network. An important distinction with other MV methods, is that in our
representations, each variable can have a separate range of its own, including two values. All ranges are represented
by the sets�0�1� � � � �ni �1�, ni � 1.

MVSIS 2.0 supports sequential MV-networks with multi-valued latches but does no sequential optimization.
A latch, as with any other variable in the network, can be multi-valued. In theBLIF-MV file, a latch can be specified
using construct.latch, with the initial state specified using construct.reset. We only supportBLIF-MV files
with constant initial state values. All latch inputs are treated as primary outputs and all latch outputs as primary
inputs. The set of all inputs is denoted as CI (combinational inputs) and the set of all outputs is denoted as CO
(combinational outputs).

1Application Programming Interfaces

The initial specification as well as the current network may have non-deterministic relations at the nodes. This
may result in one or more of the primary outputs to be non-deterministic as functions of the primary inputs. The
result of synthesis may be a subset of the initial relation specified. This is defined to be valid as long as the network
is well-defined, i.e. for every input minterm, there exists at least one allowed value for each output.

2.2 External Specification

For multi-valued nodes, if a.default value is given, its i-set is defined to be the complement of the union of all
the other i-sets. Thus the node is completely specified in the sense that it has an allowed output value for each input
minterm. The node may still be non-deterministic if the table specifying the non-default values has a minterm with
more than one allowed output value. For a table without the.default value, if the sum-of-products specification
does not cover all the minterms in the input space, it is incompletely specified. In this case, the unspecified minterms
are assumed to be able to take any value at the output, namely they are don’t cares. The omission of a “default” in the
input file allows the specification of external don’t cares. In some applications, such as data mining, the otherwise
specified minterms may consume much space.

In the execution of some commands, it is important to re-derive the flexibility allowed from an external specifi-
cation file (an MV network). We assume either that the initial file is the spec or that the initial spec is specified in
a file indicated with the.spec option. An example of this use is themfs command. If the option-s is given it
will read in the ”spec” file and use this to derive the flexibility that can be used duringmfs optimization. If no-s
option is given,mfs will use the current network as the spec. On writing out the current file, theBLIF-MV file will
include a.spec notation. Currently, onlymfs has the ability to use an external specification file.

3 Combinational Optimization

3.1 Node Simplification

One of the ways to simplify the logic i-sets (one for each output value) at an MV-node is with thesimplify
command which uses the two-level logic minimizerESPRESSO-MV. The objective of a general two-level logic
minimizer is to find a logic representation with a minimum number of implicants (cubes) and literals while preserving
functionality. Satisfiability don’t cares from the local fanins and subset support variables are used in the minimization
unless the-d option is used. After simplication, the i-sets are replaced with simplified versions if the new functions
have been improved according to the cost function in use. Currently, there are 3 cost functions that can be used
which can be controlled by the globalset command. Ifset cost 0, the total number of cubes in all relations is
used, 1 uses the number of literals, and 2 uses the number of literals in the factored forms.

For each node, after an initial file is read in, one of the i-sets is selected as the default value. For example,
for a binary output function, the onset is usually the primary value (non-default) and the offset is the default value.
The concept of a default i-set is useful because it is never looked at (and is not part of the cost function evaluation)
unless a command requires it. For example, if the output of a binary function is used in the complemented form
in a fanout and the node is eliminated, then the complement must be computed to effect the elimination. The
values of the nodes and statistics of the network are based only on the non-default i-sets. However, there is one
commandreset default which looks at each node and chooses a default value for it based on the cost of the
node. For example, if the cost function is the number of cubes,reset default will cause all value functions to
be minimized, and the default value will be chosen as the one whose function has the most cubes.

In the future, there may be more complex cost functions depending on the target of the application, e.g., the
number of nodes, the number of values, the number of fanins or some physical information.

One of the strongest kinds of node simplification that can be performed on a network, is implemented using
the fullsimp (aliasfs) command. To perform this function on a multi-level MV-network, a don’t care set is
automatically generated. Subsets of the satisfiability and observability don’t care sets (SDC and ODC respectively)
are used. The notion of compatible observability don’t cares (CODC) used inSIS [5] has been generalized to take
MV-nodes into account [6]. Given these, MV-image computation techniques are used to map them to the local fanin
space of each node. An additional SDC of those nodes in the network whose support is a subset of the support
of the node being simplified is also added to the local don’t care set thus derived. This allows a form of Boolean
substitution whenfs is executed. The-r option suppresses Boolean re-substitution. Each node is then simplified
by ESPRESSO-MV using this local don’t care set and the option-m nocomp (only in the binary case).

During any of the above forms of simplification, if it is estimated that simplification will take too long, the node
will be minimized with a simpler form of minimization or left unchanged. The complexity of anESPRESSO-MV
session is estimated by the number of cubes in the onset and don’t care set, and the number of fanin variables. If this
is too large,ESPRESSO-MV is not called. There is also a timeout for thefullsimp andsimplify commands,
controlled by the-t option. The specified time (in integer seconds) is shared among three time consuming com-
putations; CODC computation, image computation, andESPRESSO-MV minimization. If any one of these takes
longer than the allocated time, the simplification for that node is terminated and only the local SDC is used for the
node minimization.

A more powerful node simplification method [7], calledmfs performs the same overall steps asfullsimp
(deriving flexibility and simplifying the nodes) but does it with the following differences:

1. The flexibility at a node is represented as a relation2 between the node’s fanins and its output (generally multi-
valued). This relation gives all allowed combinations of inputs and outputs of the node, i.e. when they appear
at the node, will not violate the overall network behavior allowed at the primary outputs. It is acomplete
description of a node’s flexibility (hence called the complete flexibility of a node (CF)).

2. The flexibility computation and node simplification are interleaved. The reason for this is that the complete
flexibility at one node is not compatible with that of another node; thus a node must be optimized immediately
after the flexibility is computed. When a node is modified, the changes are introduced into the network before
the complete flexibility of the next node is computed.

3. Node representations before and after simplification are allowed to be non-deterministic3. Having a non-
deterministic node before simplification is not a problem because the flexibility relation computed at a node
always contains the node representation, which can also be a relation. Allowing for a non-deterministic
representation after simplification is a useful optimization, since its use can reduce the literal count in the
node representation.

4. The default value may be changed if this improves the cost function of the network. In the binary case,
changing the default corresponds to a phase assignment step at the node, which is not performed in SIS or in
most binary synthesis programs.

5. New heuristic MV-SOP minimization methods, which allow for non-determinism of the resulting representa-
tions, have been developed for use with this new procedure.

2In the multi-valued output case, this relation can describe ”partial cares” which state that for a given minterm, the node output can be any
of a subset of values. Note that for the binary output case, a partial care is the same as a don’t care since any subset of values with more than
one value is the full set, and hence a don’t care.

3Note that because of the use of the default value, this can’t happen in the binary case

If the mfs command is given with the ”-k” option and a node name, it will simplify the node and display
the Karnaugh map of both the initial relation at the node and the derived complete flexibility relation, which is
usually non-deterministic. Executing this again will display the node relation obtained after minimizing the complete
flexibility relation.

An example is the following:

mvsis 115> mfs -k m1
Original MV Relation of Node <m1>.
m \ l

0 1 2 3 4
+----------+----------+----------+----------+----------+

0 | --2----- | ---3---- | ---3---- | -1------ | ---3---- |
+----------+----------+----------+----------+----------+

1 | ------6- | ---3---- | -------7 | -----5-- | -------7 |
+----------+----------+----------+----------+----------+

2 | ------6- | ---3---- | -------7 | -----5-- | -------7 |
+----------+----------+----------+----------+----------+

3 | ----4--- | 0------- | ----4--- | ----4--- | ----4--- |
+----------+----------+----------+----------+----------+

Derived MV Relation of Node <m1>.
m \ l

0 1 2 3 4
+----------+----------+----------+----------+----------+

0 | 012345-- | 012345-- | 01234567 | 012345-- | -1-3-5-- |
+----------+----------+----------+----------+----------+

1 | ------6- | -1-3-5-- | -------7 | -1-3-5-7 | ------67 |
+----------+----------+----------+----------+----------+

2 | ------6- | -1-3-5-- | -1-3-5-7 | -1-3-5-7 | ------67 |
+----------+----------+----------+----------+----------+

3 | 0-2-4--- | 0-2-4--- | 0-2-4-6- | ----4--- | 012345-- |
+----------+----------+----------+----------+----------+

pal3x: ci/co = 6/1 lat = 0 nd = 11 cube = 45 ff-lit = 140 lev = 5
mvsis 116>

Here the notation is that the set of numbers given at a minterm location are the output values allowed. For
example-1-3-5-- denotes that only the output values1,3,5 are allowed, while0,2,4,6,7 are not allowed.
The entrie with01234567 most likely comes from SDCs.-1-3-5-- is an example of a partial care. Note that if
only don’t cares would be used, there is only one minterm in the don’t care set. In contrast, there are 16 minterms
with partial cares.

A new capability inMVSIS 2.0 is the use of windowing. Currently, only the ”mfs” command uses this, e.g.
with the commandmfs -i n -o m. Heren specifies the number of levels in the TFI to include in the window
andm the number of levels in the TFO to include. All nodes, such that all paths from the selected node to a node is
less or equal tom�n� in the TFO (TFI), are included in the window. In addition, any side node which is on any path
from a node in the TFIn to a node in the TFOm is included. The corresponding windowWn�m�v� is then extracted
from the network and the nodev is minimized using the window as its own specification. The resulting change at
nodev is then put back in the network. Then ”mfs” moves on to the next node, its window extracted and the node
minimized. The use of windows allows the ”mfs” command to be applied to arbitrarily large networks, since the
BDDs associated with a window network can always be built (if the parameters for the windown�m are limited).

Part of the optimization improvements ofMVSIS 2.0 is due to the use of much superior BDD methods which
in certain cases have been specialized for the types of operations found in MVSIS and in general in logic synthesis.

3.2 Algebraic Methods

An important step in network optimization, uses algebraic methods for extracting new nodes representing logic
functions that are common factors of other nodes. We developed and implemented inMVSIS 1.0 new algebraic
techniques for MV-logic [8, 9, 10] which treat binary and multi-valued variables uniformly. These include methods
for finding common sub-expressions, semi-algebraic division, decomposing a multi-valued network, and factoring
an SOP form. For descriptions of these, refer to the previous releases of MVSIS.

However, a technique called Co-Singleton Transform (CST) was developed since then [11]. This uses a special
encoding of MV into binary to map the network into a binary one. Then the algebraic binary operations are per-
formed (using fast algorithms4) to obtain a new network. Finally, the network in mapped back into an MV network.
It has been shown that the use of the CST leads to little loss in optimality when used in an overall optimization script,
while the results are obtained significantly faster5.

The relevant commands and brief descriptions of their abilities are listed below.

1. The commandfxu looks at all the nodes in the network and tries to extract good common factors (two-cube
divisors and cubes) and creates new nodes in the network, re-expressing other nodes in terms of these newly
introduced nodes. It is one of the transforms used to break down large functions into smaller pieces.

2. The commanddecomp does a complete factoring of each node, but instead of creating a factored form for
each, decomposes the node according to its factorization. Thus more intermediate nodes are produced this
way. Such intermediate nodes may not have been produced byfxu, so there is a possibility of finding
different (better?) factors. After this, elimination can be done to clean up the network, possibly followed by
simplify, fs, mfs to look for Boolean substitutions.

3. The commandstrash is like decomp but it replaces the current network by a functionally equivalent net-
work composed of only ANDs and inverters (which are collapsed into the fanout AND-gates, unless a fanout
is a CO). This network is constructed using a structural hashing algorithm similar to [12]. If the original net-
work is multi-valued and non-deterministic, the resulting network is equivalent to the original one in terms of
SS-behavior [3].

3.3 Network Manipulations

1. Collapsing converts the entire multi-level network so that the i-sets for each output are in terms of the primary
inputs only. Thus the number of nodes in the network will be exactly the number of combinational outputs
(COs). Our version of collapse [13] is based on building the MDDs of the outputs, and deriving an ISOP
[14] for each value. In many binary examples it will be noticed that this is much faster than theSIS version.
Generally, this is very fast if the MDDs can be built efficiently. In addition the use of Minato’s ISOPs gives a
result that is already partially minimized.

2. Elimination of a node consists of substituting the node relation into all the node’s fanouts and then removing
the node from the network. The elimination command requires a value above which a node will not be
eliminated if its ”value” exceeds this threshhold. Elimination can be done either by manipulating cubes or
BDDs. The method used is automatically chosen in MVSIS depending on the the method which is estimated
to be the most efficient.

4Orginally these were imported from SIS, but inMVSIS 2.0 all these operations have been improved considerably, e.g. by 5X, so no
external calls to SIS are required

5These operations are much faster than in SIS, due to their improved binary versions.

3. Merging is an operation unique to the multi-valued domain. It takes a list of nodes and forces amerge of them
into a single multi-valued node by building one i-set for each combination of values of the nodes being merged.
The new i-sets are the intersections of the corresponding i-sets of the combinations. For example, ifmerge x
y z is given for 3 binary variables, a new variable w with 8 values will be constructed, where e.g.w�5� � xyz
In the worst case, if for example, there arek binary nodes in the list, it will create a single node with 2k values.
Since some new i-sets may be empty, the number of i-sets created may be much fewer. In addition, if a pair
of values always appears together in all the fanouts, then their functions will be combined (unioned) into a
single i-set. Merging is one of the methods for creating intermediate MV nodes. Note that node extraction and
decomposition only create binary output nodes, since these methods are based on AND/OR factoring.

4. Pair decode is an automatic process (in contrast tomerge) which looks around for variables to merge. These
include the combinational inputs (CIs). It automatically finds promising candidates and evaluates them for
their potential savings by examining the i-sets that would be created, as well as the effect on the fanouts’
i-sets. Thepair decode operation is similar to input pairing that has been done for PLA synthesis in the
past. It is another method which can create intermediate MV nodes.

5. Encode is like the inverse of the merge of binary functions. It tries to find a good binary encoding for each
multivalued variable in the network, excluding primary inputs and outputs. Encoding is performed from
combinational outputs to combinational inputs in topological order. This order can be reversed by the -d
option. There are three encoding methods specified by the-m option:

� in Input encoding considers the optimization of a multi-value node’s fanouts. As few binary codes are
used as possible such that more satisfiability don’t cares can be used to optimize its fanout nodes.

� out This considers the optimization of the new binary nodes, which replace the original multi-valued
node.

� inout automatically switches between input and output encoding for a multi-valued node, depending
on the number of fanouts, the number of binary nodes, and the number of excessive binary codes.

4 Verification

MV-networks are verified inMVSIS 2.0 by formal methods. For this, the global i-sets are computed for each out-
put using an MDD representation (like symbolic simulation) and compares the MDD structures with the network’s
external specification. Since sequential optimization is not performed, this comparison is purely combinational.
SinceMVSIS 2.0 supports optimization of non-deterministic networks [7], formal verification checks for con-
tainment instead of equivalence. The commandverify can take a file as an argument. In this case, the current
network is compared to the network in the file. For convenience,verify without any argument will check verifi-
cation against the last file read in by a read command. If containment is not present, an error vector will be printed
out.

5 Sequential Optimization

Currently, unlike SIS, all optimizations are performed on the combinational part of the sequential network. At
present no sequantial optimization operations are included inMVSIS 2.0.

6 Other Commands and Options

6.1 Iteration

Several commands have the option to apply the command a given numbern times, or until a fixed point, i.e. no
change occurs in the network. The command structure is, for examplefs -i n wheren is the iteration count. If
no-i option is given, iteration to a fixed point is implied.

6.2 Printing, reading and writing

There are several write commands, e.g.write blif mv,write blif, and several read commands, e.g.read blif mv
andread pla. read blif mv automatically detects if a file isBLIF or BLIF-MV and acts appropriately.

To view the results at any stage, there are several print commands which print to the console.print prints for
all nodes, the SOP form of each i-set. If the-d option is given it will also display the default i-sets.print factor
prints, for all nodes, the factored form of each non-default i-set. Each of these can take, as an argument, a list of
names of nodes to be printed. In general, *, like inSIS, stands for a list of all nodes in the network.

print range prints out the size of the range for each variable;print value the value of each node (ac-
cording to the current cost function);print stats the statistics of the network in terms of the network name, the
number of combinational inputs/outputs, the number of nodes, the number of cubes, and the number of literals in the
factored and the number of levels in the networkps.print stats -s prints out a number of a number of other
statistics.print io prints the inputs and outputs of the network. If a list of nodes is given, it prints out the fanins
and fanouts of each node in the list. Commandprint domi computes and prints the immediate dominators of the
requested nodes, or all nodes in the network.

Sometimes, in order to view an output or factorization better, it is useful to change the names of the variables to
short names using the commandchng name. It is a toggle between short names and the original names. Associated
is a commandreset names which resets the naming of short names for the variables so that all variables appear
in lexicographic order with no gaps in the naming. Inputs are named first,�a�b�c� � � ��, then outputs, and finally
intermediate nodes.

6.3 History and Undo

A new history capability has been added. The user will note that each command line is given a number which
denotes the state of the network at a result of the last command. If a command can’t have changed the state, the
number is not increased after this command.MVSIS 2.0 saves a number of backup states (copies) of the networks
which is specified by the global set commandset savesteps n (default isn � 1). As beforeundo toggles
between the current state and the previous state. For larger jumps,snatch <line number>will revert back the
the specified state if it has been saved.

6.4 Miscellaneous Commands

1. rename This command permanently changes the names of all nodes (including CIs and COs) to short names
which are constructed using lower-case alphanumeric characters only. Note that, after running this command,
the network cannot be verified against the original network, because verification is based on comparing the
functionality of two networks with identical CI/CO names. Command ”rename” is useful in two cases: (1) to
permanently get rid of very long node names, which for large networks may consume considerable memory
and are not efficient for accessing the nodes through the hash table hashing node names into node pointers,

and (2) to disguise industrial netlists before releasing them as public domain benchmarks (hopefully, this will
encourage more companies to do so:). Note that this command is different formchng name which just toggles
between short names and long (original) names.

2. reset name This command is the same as inSIS. It compacts the short names of the nodes. However, unlike
SIS the short names are not stored in the nodes. They are derived on the fly from the node IDs (unique integer
numbers assigned to each node). Therefore, ”resetname” in MVSIS compacts the node IDs, which leads to
shortening of the short names.

3. print nd Prints the list of all non-deterministic nodes in the current network.

4. default This is a very useful command. When run without command line arguments, it assigns the default
value for the nodes whenever possible. When run with the argument ”-d”, it does the reverse, unassigns, or
deletes, the default value. In this case, if the default value was previously set at a node, the corresponding
default i-set is computed and inserted into the node’s representation, so that the default value is no longer
used.

5. dize Determinizes the current network if it was non-deterministic. Does not change the network if it is deter-
ministic. The determinization performed is a brute-force one. The i-sets of each node are considered in their
numeric order and each of the following i-sets is ”sharped” with the OR of the i-sets considered before.

6. free This command is used to free one of the two functional representation at each node of the current network.
To free the MV SOP representation, type ”free cvr”. To free the MDD MV relation representation, type ”free
mvr”. Each representation is stored at a node using lazy evaluation, i.e. they are only computed and stored
when required by a command. If a particular representation has been computed, it is stored at the node. If
another command changes the node’s functionality, the stored representation is invalidated.free forces the
invalidation of the named type of representation.

7. window This command is used to test the efficiency of windowing for a particular circuit. A window is defined
by giving a list of nodes, called the window core, (typically, a window core may be composed of one node
only) and two parameters, which specify the number of levels of limited TFI and TFO to include. The window
with these parameters is constructed by including into it the nodes of the current network, which fall into at
least one of the following four categories: (1) the nodes of the window core; (2) the nodes in the TFI of the
window core, such thatall paths from the core to them is less than the given parameter; (3) the nodes in the
TFO of the window core, such thatall the path from the core to them is less than the given parameter; (4) all
the nodes that are in the TFO of nodes of category (2) and in the TFI of nodes in the category (3).

Typing ”window -a” prints the statistics for all windows with the specified parameters centered in each node
of the current network. If switch ”-a” is not used, but instead a list of node names is provided on the command
line, the list of nodes is assumed to represent a window core. The window centered at this core is computed
and written into a BLIF or BLIF-MV file (depending on whether the network in binary or MV). The name of
the output file is derived from the network’s model name A, the name B of the first node in the core, and the
total number N of nodes in the resulting window: ”AB N.blif” or ”A B N.mv”.

8. The commandclub groups nodes into a set of disjoint clusters and collapses all nodes in the same cluster.
The default approach is to compute the prime dominators for each node (a dominator that is not dominated by
any other node), and collapse all nodes into its prime dominators. This tends to give results that lie between
those of eliminate and collapse. An alternative approach (method greedy) visits all nodes from primary inputs

to primary outputs in a levelized order, and heuristically merges nodes into a cluster such that the sharing of
fanin and fanouts is maximized within a cluster. The size of a cluster is limited by parameters settable at the
command line (number of input/output bits and total number of literals).

Several experimental commands, that are not already included in the manual and are not listed above, are prefixed
with an underscore (””) and hidden from the user. However, typing ”help -a” will list all commands including the
hidden ones.

6.5 Setting global parameters

Theset command sets various global parameters, which control the transformations. With no argument,set prints
out the current values of the global parameters.

1. cost controls the type of cost function to be used in the evaluation of the value of a node.set cost 0
uses the number of cubes as the cost function;set cost 1 uses the number of literals in the factored form
SOP, andset cost 2 uses the number of literals in the factored form expressions.

2. namemode can be set to 0 to use long names default and to 1 to use short names.

3. autoexec can be given a command which will automatically execute after each command line is executed.
A typical use isset autoexec print stats -c, which will print out the statistics (including literals
in the factored forms) of the network after each transformation.

4. alias is like set. It is used to create nick-names for various commands. For examplealias ps
print stats can be used to print out the stats of the network with the single commandps. alias with
no arguments will print out a list of all aliases defined so far. A typical set of aliases is incorporated in the file
master.mvsisrc, which is executed whenMVSIS is started. Such a file must be in the same directory as
mvsis. savesteps has been discussed above in the ”history” section.

6.6 Help and Scripts

1. help prints the set of commands available. Any command with the option ”-h” or ”-?” will print a detailed
description of the command.

2. source reads and executes commands from a file (a.script file).

7 Caveats and Comments

1. In general, someMVSIS commands do not have time-out filters yet. Some computations which use the com-
plement operation or BDDs may blow up sometimes. We have filters infullsimp, mfs andeliminate
to try to control this, but it is possible that an operation will not terminiate. In that case it is necessary to use
CTRL C to terminate MVSIS.

2. MVSIS 2.0 is for the first time being made available in source code. It will compile under LINUX and
WINDOWS.

3. MVSIS 2.0 almost always works correctly on non-deterministic networks, i.e. ones where some primary
output has more than one value for some primary input minterm. Like the use of external don’t cares in the
binary case, the new network may not be equivalent to the original but should have a behavior that iscontained
in the original. The commandverify checks that the containment is maintained. In rare cases if a network
has internal ND nodes, the resulting network may not verify. The source of this is known and a theory exists
about how to fix this [3]. However, in this release ofMVSIS 2.0, since such occurrences are rare we have
chosen to not modify this version. Such a non-verification can only happen in the non-binary case. Therefore
for MV examples, it is important to do a final verification to determine that the resulting network is indeed
correct. In general, we have found that although in practice it is possible that a network can get out of spec,
many of the MV optimizations inMVSIS 2.0 have the potential for self-correction and this seems to explain
why non-verification is rare.

4. MVSIS 2.0 can be applied to files specified inBLIF or BLIF-MV using the commandread blif mv
which automatically detects the type of file to be read. Results on binary examples can be compared to those
obtained bySIS. Currently,MVSIS 2.0 compares favorably withSIS and is much faster. Since ”phase
assignment” is automatic in MVSIS, often the results are better. For large examples, MVSIS can easily
outperform SIS, since fullsimp in SIS will time-out and provide no optimization, whereas MVSIS can use
windowing. In addition, themfs command provides more flexibility for minimization.

5. MVSIS 2.0 is available in source code running under either Linux or Windows [15].

6. A BLIF-MV file can be generated from Verilog usingvl2mv which is available as part of theVIS [16]
release. Alternatively, it can be generated from Esterel programs, using the translatordc2mv, which converts
declarative code (DC) formats produced by the Esterel compiler toBLIF-MV.

8 Conclusions and Further Remarks

The new version of MVSISMVSIS 2.0 embodies a lot of effort by many people over many years working on
both binary and multi-valued synthesis.MVSIS 2.0 can manipulate and optimize multi-valued multi-level non-
deterministic networks and is the natural generalization ofSIS which does binary network optimization. Our
goal has been to makeMVSIS 2.0 the system of choice for multi-level network optimization, be it binary or
multi-valued. A similar occurrence happened whenESPRESSO-MV replacedESPRESSO-IIC in two-level logic
minimization. In this latest release, for the technology independent optimizations, the goal has been achieved.

Applications of true multi-valued logic are increasing and should increase further as this new capability is better
understood and experimented with. Future developments include many improvements, already known for existing
methods. In addition, there are many new ideas in logic that need experimentation. Some of these come from the
fact that the domain of optimization is expanded by opening up multi-valued possibilities. For example, we have
discovered several new binary methods by transforming to the multi-valued domain, performing some operations,
and transforming back [17]. These possibly would not have been imagined by considering only the binary case.

Much of the future interest use of MVSIS will be on binary applications. In order to include the many binary
logic synthesis options of SIS (e.g. technology mapping), we plan to release a version which allows both MVSIS
and SIS to co-exist in memory. Operations (commands) which unique SIS will be automatically intercepted and
executed by converting the internal data-structures to those of SIS, applying the appropriate command, and mapping
the result back to the MVSIS data-structures. The overhead for doing this will be minimal and unnoticed since
MVSIS will make up for it by its the greater speed on the commands it has. As more algorithms are re-coded for the
MVSIS data-structures, SIS should slowly migrate out of existence.

Acknowledgements

We gratefully acknowledge the support of the SRC in funding this project, under contract SRC 683.004, over many
years. Although this support ends in June 2003, MVSIS development will continue under separate funding from
severals compainies whose main interest is in binary logic synthesis. The logic synthesis class of Spring 1999 at
Berkeley startedMVSIS as a combined class project under the guidance of Subarnarekha Sinha, class TA. The class
members were Yunjian Jiang, Niraj Shah, Scott Weber, Heloise Hse, Fernando De Bernardinis, David Chinnery,
and Rupak Majumdar. The work of A. Mishchenko has been supported by Intel under a separate contract. Other
contributors to MVSIS have been supported by the California Micro program and our industrial sponsors, Cadence,
Fujitsu, and Synplicity.

References

[1] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha, H. Savoj, P. R. Stephan, R. K.
Brayton, and A. L. Sangiovanni-Vincentelli, “SIS: A System for Sequential Circuit Synthesis,” Tech. Rep.
UCB/ERL M92/41, Electronics Research Lab, Univ. of California, Berkeley, CA 94720, May 1992.

[2] E. M. Sentovich, K. J. Singh, C. Moon, H. Savoj, R. K. Brayton, and A. L. Sangiovanni-Vincentelli, “Sequential
Circuit Design Using Synthesis and Optimization,” inProc. of the Intl. Conf. on Computer Design, pp. 328–
333, Oct. 1992.

[3] A. Mishchenko and R. Brayton, “A theory of non-deterministic networks,” inInternational Workshop on Logic
and Synthesis, May 2003.

[4] R. K. Brayton, M. Chiodo, R. Hojati, T. Kam, K. Kodandapani, R. P. Kurshan, S. Malik, A. L. Sangiovanni-
Vincentelli, E. M. Sentovich, T. Shiple, K. J. Singh, and H.-Y. Wang, “BLIF-MV: An Interchange Format
for Design Verification and Synthesis,” Tech. Rep. UCB/ERL M91/97, Electronics Research Lab, Univ. of
California, Berkeley, CA 94720, Nov. 1991.

[5] H. Savoj and R. K. Brayton, “The Use of Observability and External Don’t Cares for the Simplification of
Multi-Level Networks,” inProc. of the Design Automation Conf., pp. 297–301, June 1990.

[6] Y. Jiang and R. K. Brayton, “Don’t cares and multi-valued logic network minimization,” inProc. of the Intl.
Conf. on Computer-Aided Design, Nov. 2000.

[7] A. Mishchenko and R. Brayton, “Simplification of non-deterministic multi-valued networks,”To be submitted
to International Workshop on Logic and Synthesis, June 2002.

[8] R. K. Brayton, “Algebraic methods for multi-valued logic,” Tech. Rep. UCB/ERL M99/62, Electronics Re-
search Laboratory, University of California, Berkeley, Dec. 1999.

[9] M. Gao and R. K. Brayton, “Semi-algebraic methods for multi-valued logic,” inProc. of the Intl. Workshop on
Logic Synthesis, May. 2000.

[10] M. Gao and R. K. Brayton, “Multi-valued multi-level network decomposition,” inProc. of the Intl. Workshop
on Logic Synthesis, June 2001.

[11] J.-H. Jiang, A. Mishchenko, and R. Brayton, “Reducing multi-valued algebraic operations to binary,” inProc.
of DATE, Mar. 2003.

[12] A. Kuehlmann, V. Paruthi, F. Krohm, and M. K. Ganai, “Robust boolean reasoning for equivalence checking
and functional property verification,” inTrans. CAD, pp. 1377–1394, Dec. 2002.

[13] A. Mishchenko, R. Brayton, and T. Sasao, “Exploring multi-valued minimization using binary methods,” in
International Workshop on Logic and Synthesis, May 2003.

[14] S. Minato, “Fast generation of irredundant sum-of-products forms from binary decision diagrams,” inProc. of
SASIMI (Synthesis and Simulation Meeting and International Interchange), pp. 64–73, 1992.

[15] R. K. Brayton and et al., “MVSIS.”http://www- cad.eecs.berkeley.edu/mvsis/.

[16] R. K. Brayton, G. D. Hachtel, A. Sangiovanni-Vincentelli, F. Somenzi, A. Aziz, S.-T. Cheng, S. Edwards,
S. Khatri, Y. Kukimoto, A. Pardo, S. Qadeer, R. K. Ranjan, S. Sarwary, T. R. Shiple, G. Swamy, and T. Villa,
“VIS: A system for verification and synthesis,” inIEEE International Conference on Computer-Aided Verifi-
cation, 1996.

[17] A. Mishchenko and R. Brayton, “Boolean paradigm in multi-valued logic synthesis,”To be submitted to Inter-
national Workshop on Logic and Synthesis, June 2002.

