
© 2014 RouteWare / Uffe Kousgaard

A flexible Routing Server

RW NetServer 3.22

IContents

© 2014 RouteWare / Uffe Kousgaard

Table of Contents

Part I Welcome 3

... 31 Overview

... 42 Getting Started

... 63 History

Part II User Manual 13

... 131 Installation

... 132 MakeNetwork

... 15Data sources

... 17Attributes

... 183D nodes

... 19Encryption

... 193 General usage (important)

... 214 Server

... 21Configuration file

... 26Starting / stopping

... 28Special time on links

... 28Persistent speed / time / closes

... 28Turn Restrictions

... 29POI lists

... 30Ignore links in spatial searches

... 30Statistics

... 31System Requirements

... 32Performance

... 335 Clients

... 34Active-X (OCX)

.. 35Asp

.. 35MS Excel

... 37C / C++

... 38C#

... 39Delphi / Kylix

... 39Java SE

... 39PHP

... 40Python

... 41SOAP

... 416 Routing topics

... 41Network terminology

... 42Coordinate units

... 42Alpha parameter

... 45Isochrones (polygon)

... 47Limits

... 48Hierarchical Routing

... 50Very large networks

RW NetServerII

© 2014 RouteWare / Uffe Kousgaard

... 517 Upgrading from 2.7x

Part III Error codes 55

Part IV Reference 59

... 591 AddNodes

... 592 AirDistNode

... 593 AirDistPos

... 594 Alpha

... 605 BestNode

... 606 CheckLink

... 607 CheckNode

... 608 CloseLink

... 619 Coordinate2Location

... 6110 Coordinate2LocationSimple

... 6211 Coordinate2LocationIgnoreSetClosedLinks

... 6212 Coordinate2Node

... 6213 CoordSys

... 6214 CostDist

... 6315 CostTime

... 6316 ErrorMsg

... 6317 ExternIDfindID

... 6318 ExternIDfindIndex

... 6319 ExtraDist

... 6420 ExtraTime

... 6421 ExtraVarCreate

... 6422 GetLinkCost

... 6423 GetLinkCostDyn

... 6424 GetLinkDist

... 6525 GetLinkExtra

... 6526 GetLinkExtraDyn

... 6527 GetLinkSpeed

... 6528 GetLinkTime

... 6629 GetNodeCost

... 6630 GetNodeExtra

... 6631 GetOpenStatus

... 6732 GISformat

... 6733 IsoCost

... 6834 IsoCostDyn

IIIContents

© 2014 RouteWare / Uffe Kousgaard

... 6835 IsoCostDynLocationList

... 6836 IsoCostDynLocationListN

... 6937 IsoCostMulti

... 6938 IsoCostNodeList

... 6939 IsoCostNodeListN

... 7040 IsoCostOffSet

... 7141 IsoLink2

... 7142 IsoLink2Dyn

... 7143 IsoLink4

... 7244 IsoPoly2

... 7245 IsoPoly2Fast

... 7346 IsoPoly2Dyn

... 7347 IsoPoly2DynFast

... 7348 IsoPoly3

... 7449 IsoPoly4

... 7550 Link2FromNode

... 7551 Link2ToNode

... 7552 LinkMax

... 7553 Location2Coordinate

... 7654 LocationListGet

... 7655 LocationListGetNewPos

... 7656 LocationListGetOldPos

... 7657 LocationListLimit

... 7658 LocationListSet

... 7759 NearestLocation

... 7760 NearestNode

... 7861 NearestOpen

... 7862 NearestOpenDyn

... 7863 NetworkLength

... 7964 NodeCoordX

... 7965 NodeCoordY

... 7966 NodeListGet

... 7967 NodeListGetNewPos

... 7968 NodeListGetOldPos

... 8069 NodeListLimit

... 8070 NodeListSet

... 8071 NodeMax

... 8072 NWloaded

RW NetServerIV

© 2014 RouteWare / Uffe Kousgaard

... 8173 OptimumAlpha

... 8174 POIadd

... 8175 POIadd2

... 8276 PositionListGet

... 8277 PositionListSet

... 8278 ReadSpeed

... 8379 RoadName1_Get

... 8380 RoundAbout

... 8381 RoundAboutExitNode

... 8382 Route

... 8483 RouteDyn

... 8584 RouteDyn_Approach

... 8585 RouteFind

... 8586 RouteFindDyn

... 8687 RouteGetLink

... 8688 RouteGetNode

... 8689 RouteList

... 9090 RouteMaxCost

... 9091 RouteReady

... 9092 SetFastest

... 9193 SetLimit

... 9194 SetLinkResult

... 9195 SetLinkSpeed

... 9296 SetLinkTime

... 9297 SetNet

... 9298 SetShortest

... 9399 SharpTurnDrivingDirections

... 93100 StepsAdd

... 93101 StepsClear

... 93102 TSP2

... 95103 TSP2dyn

... 95104 TSP2extra

... 95105 UTurnAllowed

... 96106 Valency

... 96107 ViaListSet

Part V Reference: Pro only 99

... 991 ATSP

... 992 District

VContents

© 2014 RouteWare / Uffe Kousgaard

... 1013 Hierarchy

... 1024 HierarchyLevelSet

... 1025 NetworkCenter

... 1036 NetworkCenter2

... 1037 Node2Link

... 1048 SetApproach

Part VI Reference: Server 107

... 1071 Array

... 1072 CalcOptimumAlpha

... 1083 GetFile

... 1084 GetServerVersion

... 1085 KillAllIdState

... 1086 PutFile

... 1097 ReLoadNetwork

... 1098 UsePOILocationList

... 1099 UsePOINodeList

... 10910 UsePOIList

Welcome

Part I

3Welcome

© 2014 RouteWare / Uffe Kousgaard

1 Welcome

Welcome to the documentation for RW NetServer, a routing add-on for web mapping servers.

Main routing facilities

Shortest / fastest path
Supports one-way streets
Limit routes to vehicles < x tons etc.
Dynamic segmentation
Supports turn restrictions
Flexible driving directions
Output in both SHP, TAB, MIF, KML2 or GML2 format
Find nearest facility
Travelling salesman optimization
Drive-time regions
Works with your own data
Works with very large street databases
Multi-threaded
POI lists
Fast

Server

Runs on Windows or Linux (x86, kernel 2.2 or 2.4)
Self contained, easy setup

Clients

Native clients for almost any development language available
Compatible with most web mapping servers (ArcIMS, MapXtreme,)

1.1 Overview

RW NetServer is the server version of RW Net development framework. The absolute majority of
features from the RW Net Standard development framework is readily available in the server. A
few of the features from RW Net Pro are also available in RW NetServer Pro.

The server is designed to operate with a high uptime, high performance and with a high level of
scalability. This design is possible because of the true application server structure on which the
RW Net framework capabilities are provided.

RW NetServer consists of 3 main parts:

MakeNetwork
An import application (runs on Windows only). This is for setting up the street network for use in
the server.

Server
The server has built-in "application server technology" (known as kbmMW) and can run as a
console application on Linux (x86) and most flavours of 32 bit Windows (NT 4, Win 2000, XP, Win
2003, Win 2008).

It can also be installed as an NT service on Windows or a daemon on Linux.

21

33

13

21

4 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Client
A client is required to talk to the server.

Cross platform communication is fully supported. This means that clients and servers can run on
different platforms without problems.

RW NetServer is available in two versions, Standard and Pro, which are the same except for two
main differences: Standard allows 500,000 links in the road network, while Pro allows 16,000,000
links. This limit applies to both RW NetServer and MakeNetwork application.

Current users can start with the upgrade section to get a quick overview of the changes from
version 2.

1.2 Getting Started

This section contains a step-by-step instruction for getting started as easily as possible with the
sample data. The instructions are for windows only:

Unzip all files to an empty folder, c:\rwnetserver3 for instance.
Store the license file rwnetserver.lic (get it from RouteWare) in the folder \server_win32.
Start the makenetwork application.
Click on "select input" and navigate to \sample_data\shp folder.
Select fields from the dropdown list until it looks like this:

33

51

5Welcome

© 2014 RouteWare / Uffe Kousgaard

Click the "create network" button.
Inspect the file network_report.txt. Any errors reported at the end? Should be 0.
Open the rwnetserver.ini file. If you choose c:\rwnetserver3 as main folder, no changes are
needed. Otherwise update the 2 settings for file folders.
Start the RW NetServer application.
Click the Listen button.
Start the application in the demo folder
Click the Connect button

Let us make 2 calculations:

Select the "RW_NETCALC.3.00" service in the inventory list (list of services in the server)
Type "setshortest" in the Function edit box
Click the Call button
Type "route", "100" and "200" in the service call area as shown below.
Click the Call button

You have now calculated a route from node 100 to node 200 in the network. The distance was
12.262 km.

Select the "RW_NETBASE.3.00" service in the inventory list
Type "airdistnode", "1", "100" and "200" in the service call area (not illustrated below)
Click the Call button

You have now calculated the "as-the-crow-flies" distance between node 100 to node 200 in
network 1. The distance was 7.751 km.

6 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

You are now ready to turn to the User Manual

1.3 History

Version 3.22 (21. Aug 2014)

1. Python client
2. 6 limits instead of 4
3. RW_NetCalc.IgnoreClosedEndLink
4. RW_NetCalc.Node2Link
5. RW_NetMGMT.Reloadnetwork

Version 3.21 (21. Feb 2013)

1. Makenetwork as a console application for batch processing
2. Fixes to logging level 2
3. 4 limits instead of 3

13

40

103

109

13

7Welcome

© 2014 RouteWare / Uffe Kousgaard

Version 3.20 (12. Nov 2012)

1. Better log files (more details etc). Slightly updated INI file format.
2. RW_NetMGMT.KillAllIdState

Version 3.19a (26. Jun 2012)

1. Persisting of closed links changed. Uses a text file instead of changing attribute.bin.

Version 3.19 (15. Oct 2011)

1. User can specify service name and description.
2. Minor bug fixes in routing engine.
3. Updated PHP binaries

Version 3.18 (30. Aug 2010)

1. Minor bug fixes in routing engine and server layer.

Version 3.17 (3. Feb 2010)

1. Minor bug fixes in routing engine.

Version 3.16 (20. Mar 2009)

1. Automatic deletion of temporary output files has been corrected (it never worked)
2. When using ignorelinks and POI-lists, the lists are now calculated before links are being

"ignored"
3. Sample INI files updated to match keyword capitalization (issue on linux)
4. Asp demo updated
5. Performance improvements for certain isochrone calculations.

Version 3.15 (20. Nov 2008)

1. New INI file parameter IgnoreLinksExternalID.
2. Makenetwork improved for the network topology part (made faster).
3. Functions added: NetworkCenter , NetworkCenter2 , RouteDyn_Approach ,

SetApproach and SetLinkResult .
4. Several bugs fixed in routing engine (mostly the isopoly / isolink functions).
5. New 4th parameter in POI lists .
6. Documentation bugs fixed.

Version 3.14 (17. Jun 2008)

1. More functionality added for Predefined POI lists
2. Delphi example
3. ASP.NET example
4. Makenetwork will better handle reading of big files
5. New INI file parameter CoordinateWindow
6. Tested on linux 64-bit
7. KML2 added as output format
8. Use of MITAB 1.7.0 (multi-threaded)
9. Minor bug fixes

Version 3.13 (22. Oct 2007)

21

108

28

102 103 85

104 91

29

29

8 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

1. New functionality: Predefined POI lists
2. PHP 5 support
3. Updated examples
4. SOAP wsdl file is now .NET 2 compatible
5. Use of MITAB 1.6.3
6. Support for TAB as output format in Linux version
7. Various minor bug fixes

Version 3.12 (15. May 2007)

1. New RW Net functionality added: IsoPoly2Dyn , IsoPoly2DynFast , IsoPoly2Fast
2. Use of MITAB DLL 1.6.1 instead of 1.5.1
3. New INI file setting: UTurnAllowed
4. New attribute bits defined (U-turns and non-driving mode for vehicles)
5. Updated C# and SOAP client (bug fixed)
6. Improved installation / starting of NT service version
7. Support for new turn restriction format
8. Various documentation updates and other bugfixes

Version 3.11 (13. Feb 2007)

1. New RW Net functionality added: IsoCostOffSet .
2. Various bug fixes
3. Samples updated
4. Use of MITAB DLL 1.5.1 instead of 1.5.0

Version 3.10 (20. Jun 2006)

1. New RW Net functionality added: CostDist , CostTime , ExtraDist , ExtraTime ,
Link2FromNode and Link2ToNode .

2. New server methods: CalcOptimumAlpha , GetServerVersion and PutFile .
3. New INI file setting: ShortFileNames and SwapOneWay.
4. Updated INI file setting: ExternalIDOpen (cached / non-cached).
5. Updated INI file setting: Logging = 0 now disables logging completely.
6. Updated INI file setting: Limit functionality has new options.
7. Various bug fixes, documentation fixes etc.

Pro only:

1. New RW Net functionality: ATSP , District and Hierarchy .
2. Added support for queing and persistent storage of changes using CloseLink ,

SetLinkSpeed and SetLinkTime .
3. Windows Performance monitor

Version 3.06 (6. Apr 2006)

1. Various minor bug fixes, documentation fixes etc.

Version 3.05 (15. Mar 2006)

1. Streaming of files to client: GetFile
2. Access to result as arrays
3. Use of MITAB DLL 1.5.0 instead of 1.4.0
4. Various minor bug fixes

Version 3.00 (8. Dec 2005)

29

73 73 72

95

17

70

62 63 63 64

75 75

107 108 108

21

21

21

21

99 99 48

60

91 92

30

108

107

9Welcome

© 2014 RouteWare / Uffe Kousgaard

New major release. See here for information on how to upgrade.

Version 2.75 (30. June 2005)

1. Minor bug fixes

Version 2.74 (5. May 2005)

1. GML 2.1.2 support added
2. Bug fix for function coordinate2location
3. Use of MITAB DLL 1.4.0 instead of 1.3.0
4. Functions from RW Net added: AirDistPos, LocationListGet, LocationListGetNewPos,

LocationListGetOldPos, LocationListSet, NodeListGetNewPos, GetLinkCostDyn,
GetLinkExtraDyn, IsoCostDyn, IsoCostDynLocationList, IsoCostDynLocationListN, TSP2,
TSP2extra and TSP2dyn.

Version 2.73 (25. Nov 2004)

1. Bugfixes related to high load with multiple threads
2. New settings in ini file - Logging and Coord3 .

Version 2.72 (28. Sep 2004)

New facilities include:
1. Encryption
2. Support for Windows 2003
3. GISoutput format can be defined for each network
4. Bug fixes in core engine
5. Use of MITAB DLL 1.3.0 instead of 1.2.4

51

21 21

19

21

User Manual

Part II

13User Manual

© 2014 RouteWare / Uffe Kousgaard

2 User Manual

The user manual contains 6 chapters on these topics:

A short section about Installation .

MakeNetwork on how to import your street networks into RW NetServer.

General usage about how clients gets access to RW NetServer. This contains many
IMPORTANT notes.

Server describes how to start the server, setting it up, requirements etc.

Clients describes each of the available clients.

Routing topics with additional chapters on routing

How to upgrade from version 2.7x.

2.1 Installation

RW NetServer application is distributed as a setup application with all required files inside. Choose
to install in a folder of its own (such as c:\rwnetserver3\).

A license file (rwnetserver.lic) is required, can be obtained from RouteWare and should be stored
into the same directory as the makenetwork and rwnetserver executable. If the file is missing, the
license has expired or otherwise corrupt, you will be restricted to working with a road network of a
size of max. 3000 links.

2.2 MakeNetwork

The MakeNetwork.exe application (windows only) is used to import your own data into the format
required by RW NetServer.

Click the "Select Input" button and navigate to a TAB, MIF, SHP or CGF file. More details on
possible data sources.

This will automatically update the setting for the second file with attribute information. The attribute
file should be in one of these formats:

DAT (TAB)
MID (MIF)
DBF 3 (SHP & CGF).

The application will also attempt to detect the coordinate unit from the chosen dataset. If your SHP
file has a PRJ file present, it will be read too.

If you check "create node layer" a file is generated with all intersections, which you can open in
your GIS. First record has node ID 1 etc. This can be used for your own internal control of node
IDs.

Z-level from/to: These 2 numbers should be from -9 to 9 and is usually found in NavTeq and
TomTom data (fields ELEVFROM and ELEVTO) to denote different elevation levels for street
intersections in the network.

13

13

19

21

33

41

51

15

14 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

If you check the "locate 3D nodes", you should point to 2 fields with fromnode and tonode
information. More details here .

Click here for details on encryption settings .

Additional fields:

Attribute: Link attribute - see details here. You will have to pick a field even if you just want to
do simple shortest path calculations with no oneway directions or any other special settings. In
that case refer to any field in your dataset with all zero's.

Roadname: The name of the road, which will be used in the generation of driving directions.
There is no limit on the length of the text and you can even put in some HTML code, if certain
street names should be marked (e.g. Main Street) in the final output. This can be used
to highlight toll-roads etc. If you don't want to create driving directions, just skip this field. You will
still be able to calculate distances and show routes on maps. Text fields for roadname settings
should be in ASCII, ANSI or UTF-8 format (use UTF-8 if you want to generate GML2 output).
UTF-16 is not supported. You can setup several fields for different languages if you like to. If
your client uses UTF-16 (Java and C# do this), you plan to use non-ASCII characters and the
array output format, we recommend that you replace those non-ASCII characters with a different
sequence that can be replaced on the client side. Such that "å" could be stored as "/aa/" in your
roadname field and then a search-and-replace is done in your code.

Limit: These fields should hold an integer from 0-255. The integer is a limit in terms of max
weight, width, height or whatever may be needed. A special bit pattern mode is also available.
You can create 3 such limits at any time and you define how they should be used. 0 means no
limit. See details here .

Hierarchy: This field should hold a value from 1-5 for use with hierarchical routing. If you are
using NavTeq data, use the field func_class. If you use TomTom data, select the field netbclass
and tick the box below.

External ID: This field can be an external ID, typically an integer with many digits, that is
neverchanging and unique across the whole database (field ID in TomTom database, Link_ID in
NavTeq database and TOID in ITN database). If you don't need to refer to the external ID in your
application just skip the field.

18

19

17

47

48

15User Manual

© 2014 RouteWare / Uffe Kousgaard

If you use the TAB-format, it is a good idea to pack the table before creating the network, to make
sure no records are marked for deletion.

Output will be generated in the same folder as the input files. A text file called network_report.txt
will be generated in the same folder, if you select "create main network files".

Once the application has finished, you should move the generated *.bin files to a directory, which is
accessible to RW NetServer. You will have to put each network in a separate directory. For the
sake of performance this directory should be on a local harddisk.

Repeat the steps above for each network, you want to use with RW NetServer.

You should store a copy of the rwnetserver.lic file in the same folder as MakeNetwork application
or you will only be able to compile networks with up to 3000 links.

A console version is also included (makenetwork_console.exe), which can be controlled by an INI
file. See supplied sample.

2.2.1 Data sources

At RouteWare website you will find a list of street data providers for various parts of the world.
Data from these providers usually have a topological correct structure, which means they are
almost ready to use in RW NetServer.

But how should your own street data look like, in order to be used in RW NetServer? The short

16 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

answer is they should snap and split at intersections and the network should be plane
unless there is an overpass.

Below is shown some examples on networks, which are NOT correct, but all look correct unless
you check out the details:

Example 1: Missing snap at an intersection
This means the network doesn't connect and the movement to / from the disconnected section,
isn't possible. In the example below, the gap is just 1 meter and can't be seen at normal zoom
levels.

Example 2: Split at overpass / underpass
This means a lot of impossible turn movements are suddenly made possible. This is a typical
problem with TIGER data.

Example 3: Doesn't split/break at intersections
This means turns are not possible at most intersections.

17User Manual

© 2014 RouteWare / Uffe Kousgaard

Example 4: Double digitization with two street names, here name + route number
Not a really big problem, but the result of a route calculation may include one of the two streets in a
more or less random fashion.

Example 5: Multi sectioned polylines
Polylines with more than 1 section are ignored. They will not be part of any route.

2.2.2 Attributes

The attribute for each link in the network play a key role in defining how the link is used in the
routing calculations. This is defined through a bit-pattern:

0-31: Defines road class. These have no predefined meaning, but their value is translated into a
drivetime during network load by using the speed information from the INI file.

18 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Add 32 if mode 1 isn't allowed on this link.
Add 64 if mode 2 isn't allowed on this link.
Add 128 if mode 3 isn't allowed on this link.
Add 256 if mode 4 isn't allowed on this link.
Add 512 if it is a one-way street, which may not be travelled in the opposite of the digitised
direction.
Add 1024 if it is a one-way street, which may not be travelled in the digitised direction.
Add 2048 if a link is part of a roundabout. This is used for generating driving directions. See
RouteList .
Add 4096 if a link is a "non-driving" link. This can be used to mark ferries and car trains, so their
length is not included in driving directions. See RouteList .
Add 8192 if it is not allowed to make U-turns at the From-end of the link.
Add 16384 if it is not allowed to make U-turns at the To-end of the link.
Add 32768 if it is not to be returned by calls to Coordinate2Location . Equals calling

Coordinate2LocationIgnoreSet.

An example:

A road of class 4, which can only be travelled in the direction of digitization: 4 + 512 = 516.

2.2.3 3D nodes

In some datasets several nodes has the same set of coordinates. That is not allowed in RW
NetServer datastructure and is here refered to as 3D nodes. This is most commonly encountered
in datasets, which are plane, even in the case of overpasses. Not all datasets with this problem
has the needed information to even detect 3D nodes. If you are unsure if your data has this
problem, send a sample to RouteWare for inspection.

If you for each link in your dataset have 2 fields with fromnode and tonode information, you can
point to these fields in the makenetwork application and detect such situations, while you create
the network file.

The output will be a GIS point theme ("Node_3D"), which shows the position of these situations.
Same GIS format as the input is used.

The resulting file can be used in one of 3 ways:

1) To slightly modify the coordinates in the GIS street database, so the coordinates are not the
same anymore. If you choose this option, you will then have to create the network again. This
is not the best approach, if you on a regular basis receive updated street networks from an
external source and you have many of these situations.

2) Combine/join the links pairwise. This requires that any other attribute information (such as
streetname) is the same on both sides of the node. The same applies here as mentioned
above.

3) You can create a text file version of the coordinates of the nodes and use it as input to the turn
parameter. This requires that only 2 nodes at a time have the same set of coordinates.

86

86

61

19User Manual

© 2014 RouteWare / Uffe Kousgaard

2.2.4 Encryption

If you click the encryption settings button in the Makenetwork application, a new dialog will be
shown. Here you can generate a random number for encrypting the binary datafiles:

After the network has been compiled a new dialog shows the needed lines to insert into the
rwnetserver.ini file:

The binary files are now encrypted and you can safely distribute the binary files along with the
server application. A very determined hacker would still be able to get to the datafiles, but it would
be a lot harder and very deliberately. RouteWare has a seperate document describing the level of
security used. If you are a street database vendor and you are interested in deploying your data
with RW NetServer, you can request a copy of the document.

2.3 General usage (important)

RW NetServer has generally been created, so it closely matches how RW Net performs it's
calculations. There are, however, several changes due to the server environment. These are
described here, but even if you are not familar with RW Net, you should read this chapter
carefully.

When the server is started one or more networks are loaded into RAM. In order to use one of
these, a calculation object is created and attached to one of the networks. The calculation object is
used for most of the actual routing calculations.

Some calculations can however be executed directly on the network object and require no
calculation object. Network objects are stateless and are typical rather simple lookup functions for
returning information about the network (length of links etc), but can also be more complex
functions like spatial searches (coordinate2node function for instance).

You get access to the objects by calling one of the services:

Services

The server makes 4 services available for use by the clients:

62

20 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

RW_NETMGMT
Stateless service, uses the number of the network as first parameter in function calls.
Gives access to 6 functions: CloseLink , SetLinkSpeed , SetLinkTime ,
CalcOptimumAlpha , KillAllIdState and ReloadNetwork .
These functions are special because they change values on the given network and the
precalculated Alpha value.
The changes in the network can optionally be made persistent (Pro only).
As this service is generally a management type service, its usually not accessed by the 'general
public', but only by administrators.
In the supplied sample configuration file this service is disabled.

RW_NETBASE
Stateless service, uses the number of the network as first parameter in function calls.
Gives access to the rest of the functions in rwnetbase class.

RW_NETCALC
Statefull service, uses network 1 by default, can be overridden with function SetNet
Gives access to functions in the main rwcalc class - this is the service, that you will be using most.

KBMMW_INVENTORY
Stateless service. This service can optionally be enabled to let clients query the server for the
servers functionality.
As the service is stateless, and its functions (LIST, GET VERSION, GET AUTHOR, GET
ASSISTANCE, GET DESC ABSTRACT, GET DESC DETAILS, GET SYNTAX ABSTRACT, GET
SYNTAX DETAILS) are very lightweight, it can for example be used to poll to ensure a client still
have a valid, operational connection to the application server.

Function parameters

Parameters to functions are passed as arrays of variants and results are returned in the same
way. Results passed as "by reference" in RW Net are also returned as part of the variants array.

If the result is a single value, it is returned as a variable (integer for instance) and not as an array
with a single element.

Function parameters - GIS files

Some functions return a GIS file (SHP for instance) as part of the result, which can be shown on a
map. The server decides the (unique) name of the file and return this as a part of the result, the
last parameter in the variant array (without extension). This is true for these functions: IsoLink2,
IsoLink2Dyn, IsoLink4, isoPoly1new, IsoPoly2, IsoPoly3, IsoPoly4 and RouteList.

Generated GIS files can be streamed to the client by using the GetFile function. This allows you
to create GIS files at the server and send them to the client. This is especially usefull, when server
and client is not on the same computer or are otherwise on different networks.

Generated GIS files can also be accessed as an array from the client. This may be the best
option if none of the current GIS files matches your need.

Routing mode

By default RW NetServer uses fastest path calculation (SetFastest) as opposed to RW Net,
which has no default routing mode.

StateID

60 91 92

107 108 109

21

92

108

107

90

21User Manual

© 2014 RouteWare / Uffe Kousgaard

It is important to understand the concept of StateID in the server:

Property stateID refers to the instance of the service you want to use.
Calling a statefull service with stateID = -1 will create a new instance of the service on the server
and update property stateID for reference.
Calling a statefull service with stateID <> -1 will make the server re-use that instance.
Calling a stateless service will ignore the stateID setting, but it will be set to -1 afterwards !

Thus its very important to record the returned stateID and reuse that for subsequent calls to the
server. If not, new instances will be generated all the time, which at some point makes the server
reach its limits after which clients will not be able to get new service instances.

The safe way to do it is to call RW_NETCALC service with -1 as parameter the first time, record
the generated stateID and then supply that stateID in all future calls like this:

RW.SendRequestEx("RW_NETCALC", "", -1, "NODELISTSET", v_in, v_out)
sid = RW.StateID
RW.SendRequestEx("RW_NETCALC", "", sid, "NODELISTSET", v_in, v_out)
RW.ReleaseState

If you don't call any of the stateless services, you can also do it like this:

RW.StateID = -1
RW.SendRequest("RW_NETCALC", "", "NODELISTSET", v_in, v_out)
RW.SendRequest("RW_NETCALC", "", "NODELISTSET", v_in, v_out)
RW.ReleaseState

Here the first call to sendrequest will generate a new instance of the RW_NETCALC service (since
StateID is -1) and StateID property will be updated accordingly. In the next call to sendrequest, the
new StateID will be used. When calling ReleaseState the stateID property will be used again.

Sample code

Have a look at some of the sample code supplied with the various clients to see, how it works in
practice. The samples for Asp , MS Excel , Java and PHP are most complex and
show most areas of the client access.

Even more complex setups can be found in the RW Net documentation.

Also refer to the main reference section of this document.

2.4 Server

All behaviour of the server is controlled by the configuration file , which is explained in the next
section.

2.4.1 Configuration file

RW NetServer is being controlled by a configuration file - rwnetserver.ini - which is located in the
same directory as the main executable and holds the information about which networks RW
NetServer should load into memory.

In addition to the road network configuration there are a number of application server related
settings which, for the biggest part, are optional to configure.

0 / 1 settings always mean false / true.

35 35 39 39

21

22 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Settings for all networks

[Network]

GISFileDirectory points to the directory where GIS output should be created. This setting needs
to be local to the server. Such folder is likely to be shared with the client or be on the same
server. The directory must exist and be writeable. (default: Startup directory for server).

GISFileExpiration. Controls how old a generated GIS file is allowed to be before it's automatically
deleted (default 1800 secs). If set to 0, the files are never deleted.

GISoutput defines the output format from functions generating GIS files (routelist , isopoly2
 etc.). GML2 means a XML/XSD is generated. MIF means a MIF/MID file is generated. If

MITAB is specified a TAB/MAP/ID/DAT file is generated, if the correct version of MITAB.DLL is
available. Otherwise a MIF file is generated (default MIF). SHP means a SHP/SHX/DBF is
generated. If you plan to read the DBF part of a SHP file, be aware that some database drivers
only accepts short (8+3) filenames (see setting below). Microsofts JET engine has this problem.

Netmax defines the number of networks defined in the next sections. If Netmax=3, the next
sections should be "Net1", "Net2" and "Net3". A maximum of 50 are allowed (default 0).

ShortFilenames. Controls what type filename generation method is used by the server when a
file is being created. Default 0 means that the normal filename generation method is in
operation. The filename will be formatted like this: RW_YYYYMMDDHHmmSS_xxxxxxxxxx.???
where YYYY is the year of the file creation, MM=month, DD=day, HH=hour, mm=minute,
SS=second and xxxxxxxxxx=an ever increasing unique value provided as a base 26 value (each
'digit' is in the range A-Z). If set to 1, the format used is: RW_xxxxx.??? where xxxxx is an ever
increasing unique value provided as a base 26 value.

[Log]

ChunkSize: The size (in bytes) of the chunks that the log file will be split into. Default is -1 = no
splitting.

Filename = Has a default value of rwnetserver.log. Alternative is a specific filename.

LoggingLevel: Possible values are 0 - no logging, 1 - normal logging (default) and 2 - debug
logging (MANY details).

Path: Points to the folder where the log file is stored. Default value is directory of executable.

Settings for each network

[NetX]

Coord: Use same value as when the network was generated. 0=Miles, 1=Km, 2=Inch, 3=ft,
4=yd, 5=mm, 6=cm, 7=m, 8=surveyft, 9=nmi, 10=LatLong, 11=Link, 12=Chain, 13=Rod, 14=dm,
15=point. (default 10).

Coord3: 0 / 1 for loading coord3.bin file into RAM, 0 for reading it from disk. Use 1 if you have
enough RAM (default 0).

CoordinateWindow: This describes the allowed range for coordinates as input to functions. The
number is an extra percentage around MBR (minimum bounding rectangle) of the street network
(default 20). Use a negative value if you want to allow all values (not recommended).

86

72

23User Manual

© 2014 RouteWare / Uffe Kousgaard

EPSG: Coordinate code for use with GML output format (default 4326 = lat/long, WGS84).

ExternIDOpen: 0, 1 or 2. If 0, no external ID's are loaded. If 1, external ID's are loaded, but not
cached in memory. If 2, external ID's are loaded and cached in memory (default 0).

GISoutput: You can overwrite the GISoutput setting for each network. Default value is same as
the global setting defined above.

HierarchyEnable: 0 / 1. If enabled, Pro version will load the Hierarchy.bin file (default 0). See
details here

HierarchyLevel2: Floating point value indicating hierachy level 2. See details here

HierarchyLevel3: Floating point value indicating hierachy level 3.

HierarchyLevel4: Floating point value indicating hierachy level 4.

HierarchyLevel5: Floating point value indicating hierachy level 5.

IgnoreLinks: 0, 1 or 2 according to if RW NetServer should look for a file called ignorelinks.txt in
the same directory as the other network files, which contains information about links, which
should be ignored in spatial seaches. See details here . (default 0).

IgnoreLinksExternalID: 0 / 1. Allows you to specify that the content of file ignorelinks.txt above is
with external ID's instead of normal link ID's (default 0).

Key: A string for decryption of encrypted binary files. Skip for non-encrypted files. See details
here (default blank).

Limit1: 0, 1 or 2. If 0, no limit files are loaded. If 1, limits defined by limit1.bin is loaded into
memory. If 2, limits defined by limit1.bin is loaded into memory as a bit pattern. (default 0).

Limit2: 0, 1 or 2. If 0, no limit files are loaded. If 1, limits defined by limit2.bin is loaded into
memory. If 2, limits defined by limit2.bin is loaded into memory as a bit pattern. (default 0)

Limit3: 0, 1 or 2. If 0, no limit files are loaded. If 1, limits defined by limit3.bin is loaded into
memory. If 2, limits defined by limit3.bin is loaded into memory as a bit pattern. (default 0)

Limit4: 0, 1 or 2. If 0, no limit files are loaded. If 1, limits defined by limit4.bin is loaded into
memory. If 2, limits defined by limit4.bin is loaded into memory as a bit pattern. (default 0)

Mode: A number from 1-4. Can be used together with the attribute to define, which parts of
the network are accessible (default 1).

Path: Points to the folder with the network files generated with the MakeNetwork application.

PersistedClose: 0 / 1. If 1, any previously persisted link close settings are automatically loaded
by the server when its started. See details here (default 1).

PersistedSpeeds: 0 / 1. If 1, any previously persisted link speed settings are automatically
loaded by the server when its started. See details here (default 1).

PersistedTimes: 0 / 1. If 1, any previously persisted link time settings are automatically loaded by
the server when its started. See details here (default 1).

48

102

30

19

17

13

28

28

28

24 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

RoadFileIDX: 0 / 1 defines if roadfile X (1..99) should be opened (default 0).

RoadFileCachedX: 0 / 1 defines if roadfile X (1..99) should also be cached in RAM (default 0).

SharpTurnDrivingDirections: defines if sharp turns at intersections where the streetname doesn't
change, should trigger a turn description anyway. If you use 0 degrees it will never trigger and a
typical value would be 30 degree (default 0). Can be overridden by setting the property of the
same name.

SpeedX: X is a value from 0 to 31, which is a road class. Defines the speed for that road class. If
your network has road classes for which no speed information is defined, the default value is 1
(km/h or miles/h). No warning is given in this situation, but you may get strange results, as such
links are quite slow to travel compared to most normal links.

SwapOneWay: 0 / 1. If 1, all one-way restrictions are swapped during network loading. This can
be used to calculate isochrones where routes are calculated not from the center but to the center
(default 0).

Time: 0 / 1 according to if RW NetServer should look for a file called specialtime.txt in the same
directory as the other network files, which contains information about time information for
specific links. See details here (default 0).

Turn: 0 / 1 according to if RW NetServer should work in turnmode and look for a file called
turn.txt in the same directory as the other network files, which contains information on turn
restrictions. See details here (default 0).

Unit: 0 (km) / 1 (miles). Determines the unit used for defining road speeds (speedX parameter)
and how distances are returned by the server (default 0).

UseOneWay: 0 / 1 according to if one-way street information should be used, when reading
attributes . If you use a network for pedestrians you may prefer not to load one-way street
information (default 1).

UTurnAllowed: 0 / 1. Contains the default value for property UTurnAllowed (default 0).

Settings for POI-lists - see details here .

[Lists]

ListMax: States how many lists are defined below. (default 0)

[ListX]

File: Full path and filename of the list.
Net: ID for network.

Settings for application server

[Server]

UniqueIdentifier identifies the server in a multiserver setup and when the server is monitored
using Windows Performance Monitor. See details here .

GatherStatistics: 0 / 1 (default 0). Controls if server level statistics should be collected. 0=false.
There is currently no way to extract statistics from a Linux based server, so on that platform one
can just as well set the value to 0.

93

28

28

17

95

29

30

25User Manual

© 2014 RouteWare / Uffe Kousgaard

CPUAffinityMask: some_numeric_mask. Controls which CPU's the server is allowed to use.
Default 0=all provided by OS. The numeric mask is a bit mask where each CPU is identified by a
bit: bit 0 (value 1) identifies first CPU (CPU 1), bit 1 identifies second CPU etc. A mask of 6 (=
110 binary) thus means that CPU 2 and CPU 3 can be used by the server. Remember that
hyper-threading enabled CPU's count as two CPU's.

Servicename: A string which specifies the name for the service, if you install RW NetServer as a
NT service. Default "rwnetserver".

Servicedisplayname: A string which specifies the display name for the service, if you install RW
NetServer as a NT service. Default "rwnetserver".

Servicedescription: A string which specifies the description of the service as it is shown in the
service manager.

If you want to install and run several copies of the NT Service on the same computer, both
servicename and servicedisplayname has to be unique.

Settings for transport

[Transport1]

BindIP=0.0.0.0. Define a TCP/IP mask for networks allowed to connect to this transport. Default
0.0.0.0 which allows all TCP/IP networks to access.

BindPort. Defines which port the server will use to listen for clients on this transport (default
3000).

VerifyTransfer: 0 / 1 (default 1). Control if data transferred via this transport should be verified.
Recommended to be set to 1 and required to be 1 for several client types.

StreamFormat: STANDARD or SOAP (default STANDARD). Control which protocol to use for
the data communication. STANDARD implements a fast binary protocol which is required by
several client types. SOAP provides a SOAP interface as described by the kbmMW.wsdl file.

[Transport2]

Section for transport oriented settings for the second supported transport. See explanation for
Transport1. It's optional if this section should be included. If only one transport is required, only
define the Transport1 section.

Settings for services in server

The server contains 3 services with the same 5 parameters. Default values are different as listed
below:

Enabled: 0 / 1. Controls if the service should be available to clients or not (default 1).

GatherStatistics: 0 / 1. Controls if statistics should be gathered for the service. The statistics can
be viewed using Windows Performance Monitor on Windows platforms (default 0).

MaxIdleTime: Control how many seconds a service instance is allowed to be idle before being
garbage collected by removal of the service instance until next time it's needed (default 3600
secs).

26 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

MaxInstances: Control how many simultanous instances that are allowed to run of the service.
The more instances, the more simultaneous requests for functionality hosted by that service, are
allowed to run. However be aware that CPU or memory resources may be a bottleneck. In such
situations it is better to limit the allowed number of simultaneous instances and let the
application server queue requests until an instance is available.

RequestTimeout: Controls how many seconds a request is allowed to last before the client is
notified about a timeout and the request is cancelled.

[RW_NETCALC service]
This service is the main RW NetServer calculation service. It contains lots of functions which are
used prepare and do route calculations. Statefull service.

MaxInstances (default 10)
GatherStatistics (default 0)
MaxIdleTime (default 3600 secs)
RequestTimeout (default 300 secs)

[RW_NETBASE service]
This service provides access to the street network related functions and queries. Stateless service.

MaxInstances (default 1)
GatherStatistics (default 0)
MaxIdleTime (default 3600 secs)
RequestTimeout (default 300 secs)

[RW_NETMGMT service]
This service provides access to 4 functions for modifying the street networks. Stateless service.

MaxInstances (default 1)
GatherStatistics (default 0)
MaxIdleTime (default 3600 secs)
RequestTimeout (default 0=infinity)

[Inventory service]
The inventory service provides meta information about itself and other services to clients
requesting such information. Stateless service.

MaxInstances (default 1)
GatherStatistics (default 0)
MaxIdleTime (default 3600 secs)
RequestTimeout (default 0=infinity)

2.4.2 Starting / stopping

RW NetServer can, on the Windows platform, be run as a normal application, or as an NT service.
On Linux, it can be started as a daemon or console application.

Operating as a normal application (Windows)

27User Manual

© 2014 RouteWare / Uffe Kousgaard

Start the server simply by executing the rwnetserver3.exe. After starting the server, it must be
instructed to listen for clients. This is done by clicking the Listen button.

Stop the server by clicking on the 'x' to close the application. Alternatively one can click the 'Don't
listen' button to let the server continue to run, but not accept any more requests from clients on any
of the defined transports.

Operating as an NT service (Windows)

The server can be installed as an NT service (the service name is rwnetserver). Use
install_service.bat file.

Similarly it can be uninstalled as an NT service. Use uninstall_service.bat file.

Start and stop the service via the NT service control panel. The server starts and stops to listen at
the same time as the service is started / stopped.

Please notice that due to NT security policies, the networks must reside on local physical hard
drives when RW NetServer is run as a service.

See INI file for options, if you want to run multiple copies of the NT service and have the proper
license for this.

All logs are stored in the rwnetserver.log file.

Operating as a console application (Linux)

Start the server simply by executing the rwnetserver3 executable file.

Stop the server by clicking on the 'x' to close the application.

All logs are stored in the rwnetserver.log file residing in the same directory as the executable file
itself.

28 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

2.4.3 Special time on links

You can define special travel time on single links by creating a file called "specialtime.txt" a
standard textfile, which holds one link ID and a travel time (in minutes) on each line. Use space as
a seperator.

Example:
12 5.8
100 15

Link 12 now has a travel time of 5.8 minutes, while link 100 has a travel time of 15 minutes.

This is typically used for ferries, car trains and other links, where the travel time isn't defined by the
travel speed, but from timetable data. If you are using shortest path, this of course hasn't any effect
since you cannot override the length of a link.

2.4.4 Persistent speed / time / closes

These features are only available in RW NetServer Pro.

When SetLinkSpeed or SetLinkTime or CloseLink is being executed, the administrator
making the call to the application server, can choose if the given values should be persisted, and
thus automatically reused the next time the application server restarts.

The persistent values always override any conflicting value given in special times on links .

All persistent time values are stored in a file called linktime.txt
All persistent speed values are stored in a file called linkspeed.txt
All persistent link close values are stored in a file called linkclose.txt

2.4.5 Turn Restrictions

Calculations can be performed calculations in two modes: With or without support for turn
restrictions. If you sepcify a turn.txt file, turnmode is automatically used. The internal working of the
two modes are quite different, which means performance and RAM requirements are also
different:

Turn restriction mode is app. 2 times as slow as normal mode.
Allowing U-turns slow the calculations down further (app. 30%).
Turn restriction mode takes up more RAM.

When adding restrictions to the network you can choose between either a 100% restriction (any
negative value) or a delay expressed in the same unit as costs. If cost is measured in minutes,
using "1" would add a delay of 1 minute for a specific turn. This could be e.g. a left-turn in countries
with right-side driving or vice-versa. Don't use turn-delays combined with shortest path routes - it
just wouldn't make sense to add a 1 km to the route, since the reported distances would be wrong.

When querying a route the delay is added just after the turn has been performed: A delay of 2
minutes at node B has no impact on the cost of going from node A to node B, whereas if you move
on to the next node, the 2 minutes are reflected in the next node on the route.

Defining turn restrictions

The format one or more lines, where each line stores one restriction with parameters stored in
space seperated format. Different types of restrictions are possible:

0: Simple Turn restriction, 2 external link IDs + 1 cost value

91 92 60

28

95

29User Manual

© 2014 RouteWare / Uffe Kousgaard

1: Simple Turn restriction, 2 link IDs + 1 cost value
2: TurnStandard, coordinates for node
3: Mandatory turn, 2 external link IDs
4: Mandatory turn, 2 link IDs
5: Complex Turn restriction, >2 external link IDs + 1 cost value
6: Complex Turn restriction, >2 link IDs + 1 cost value

Simple and complex turn restrictions are both declared as a sequence of links, defining the turn.
A "turnstandard" restriction is one where it is only allowed to drive straight through the intersection.
Typically used for overpasses - see also 3D nodes .
A mandatory turn is one, where the turn after link1 has to be to link2.

File example:

// comment
0 A4003234 A4003127 -1
1 456 230 -1
2 -77.024098 38.902711
3 A4003234 A4003127
4 456 230
5 A4003279 A4003234 A4003127 -1
6 89 456 230 -1

Lines starting with // are ignored as comments.

Version 2.00 - 3.11 reads restriction type 1 and 2.
Version 3.12 - 3.15 reads all types.

Complex turn restrictions are ignored so far.

The free ITN converter will create turn restriction files in this format.

2.4.6 POI lists

A POI list is a list of predefined coordinates (POI = Point-Of-Interest) in the network along with a
textual description. At server startup these are loaded into RAM and translated into node numbers
and locations in the street network.

You can use the list for 2 main purposes:

1. To load into the list of nodes or locations for locating the nearest facility. This makes it much
easier and faster to locate the nearest facility of some kind - see function NearestLocation
and NearestNode .

2. For including POI information in driving directions output, such as location of toll stations,
petrol stations etc. See function RouteList for an example.

A list in the configuration file is identified by 3 values:
ID
filename
Associated street network

This setup allows you to relate the same list with several street networks or several lists with the
same street network.

When you want to use a specific list call function UsePOINodelist / UsePOILocationList or
UsePOIlist .

File format

18

77

77

86

109 109

109

30 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Currently only input format is CSV format (see sample data) and lists can not be updated after the
server has started. Long lists may take considerable time to load during server start. Other file
extensions are reserved for future use, so stick to CSV for now.

The 4 fields are these: x (longitude), y (latitude), text description and direction code (optional).

The direction code allows you to restrict in which direction a certain POI can be seen from the
road.

0: Both directions (default)
1: Only to the right side of the road (in countries with right-hand driving)
2: Only to the left side of the road (in countries with left-hand driving)

RW NetServer compares the coordinates of the POI and the street coordinates to determine, if the
POI is on either side of the road, so make sure the coordinates are exact.

Not sure which kind of country your are in? Look at Wikipedia.

2.4.7 Ignore links in spatial searches

When you use the functions for turning a set of coordinates into a position in the street network
(either node or location on a link), you may often prefer not to find certain links or nodes. This
could be a route, which should not start at motorway links or in pedestrian areas. To implement
this, you just prepare a text file with one link ID on each line for the street sections, you want to
ignore in the searches.

If the ini file parameter is 1, then any node, which is only connected to such ignored links, will also
be ignored, when searching for the nearest node (function Coordinate2node).

If the parameter is 2 instead, it will ignore all nodes connected to any ignored link.

Through the configuration file you can define that the text file contains either link ID's or external
ID's.

2.4.8 Statistics

RW NetServer 3 contains quite advanced support for statistics. When running the server on a
Windows platform, one can use Windows Performance Monitor to obtain statistics on any number
of RW NetServer's.

On Linux there are currently no way to extract the statistics from the RWNetServer.

On Windows 2 utilities are needed (see folder statistics_win32):
kbmMWWinPerfMonRegistration.exe and kbmMWWinPerfMon.dll

Place them in a directory of your choise, but make sure that they are not removed from that
particular directory after they have been registered.

To activate statistics add or alter the Server section of the rwnetserver.ini file.

[Server]
UniqueIdentifier=RWNetServer3a
GatherStatistics=1

UniqueIdentifier must be a unique identifying name of a RW NetServer instance. It can be anything
consisting of characters and numerics, but can't contain spaces or other special characters except
for underscore (_).

31User Manual

© 2014 RouteWare / Uffe Kousgaard

If there are multiple RWNetServer3.exe's running on the same machine, they must be named
differently in the ini file, stored in different folders and thus must use different rwnetserver.ini files.

RWNetServer3a, RWNetServer3b etc. are examples of names.

Next the DLL must be registered on the Windows machine running RW NetServer. For the
registration process to succeed, its required that the UniqueIdentifier is provided as an argument,
e.g:

kbmMWWinPerfMonRegistration RWNetServer3a /register

This registration must be done for all the RW NetServers for which statistics are required.

When RW NetServer is started up and is being used (actively called by a client), some
measurement points will be available in the Windows Performance Monitor application which can
be found as the icon Performance in Control Panel/Advanced section.

For what readings are available and how to interpret the readings, please read page 5 to 11 in the
following whitepaper:
http://www.components4programmers.com/downloads/kbmmw/documentation/
kbmMW_and_Windows_Performance_Monitor.pdf

2.4.9 System Requirements

RW NetServer requires Windows NT4, 2000, XP, 2003 or 2008. 32 or 64-bit can be used.
Linux (x86) is also possible with kernel 2.2 or 2.4. We have tested with quite a few distributions,
including Ubuntu 4 and SUSE 64-bit distributions.

CPU
A fast CPU is always a good idea, but any modern computer will do. It is only if you are using very
large street databases or are expecting massive amounts of routing requests, that it may be
needed to test if you need a multi-processor machine or the fastest possible CPU's.

Harddisk
RW NetServer uses the harddisk for some operations, but generally a fast harddisk is not
important.

RAM
To determine, how much RAM is needed by RW NetServer you can use this approximation:

(34 + Limits + 12 * MT) * L bytes for networks without turn restrictions
(34 + Limits + 23 * MT) * L bytes for networks with turn restrictions.

MT = Maxthread
L = Number of links in the network
Limits = 0 - 3 depending on the number of limits in the network.

Example:
700,000 links
2 limits (width, height)
Turn restrictions
3 threads

(34 + 2 + 23 * 3) * 700,000 = 70 MB.

If you have too little RAM, you can select a lower number of max threads, split the networks

32 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

between several routing servers (if you have >1 network), add more RAM or skip support for turn
restrictions. Which solution is the best, depends on your specific set-up.

Simplification of the network is also a possibility. This involves either deleting links of less
importance or removal of pseudo-nodes. For removal of pseudo-nodes, look at function Join in
RW Net Pro or RouteFinder Pro. See also section on very large networks .

Additional software

No more software is needed except a client to access the server and a tcp/ip stack.

2.4.10 Performance

Performance of the core routing functionality is important to anyone considering using large street
networks.

From the TIGER data (USA) we have extracted a 4,500,000 links street network covering the
central part of USA (1600 x 1600 km).

The test was done with this setup:

Dynamic segmentation, 2 calls to function Coordinate2location
Generation of driving directions, function RouteList
Latitude/Longitude coordinates
Alpha = 1.3
Fastest route
Caching of all data, except file coord3.bin
Computer was an AMD Athlon 64 3200+ with 2 GB RAM.
The network required 450 MB harddisk space.

We have randomly calculated a large number of routes.

Average time per route:

Short routes Long routes RAM usage

Normal mode 422 msec 1358 msec 268 MB

Turn restriction mode 645 msec 2876 msec 313 MB

Long routes can be as long as 3100 km, but most will be a lot shorter.
Short routes are within the same network, but start and end location is restricted to a 500 x 500 km
rectangle with 450,000 links.

Multi-threading

The normal-mode, long route test from above has been executed on a number of different
computers and with different number of threads. As can be seen from the table below, true dual
CPU gives more processing power than a hyper-threading enabled (HT) CPU. Of course this
requires simoultaneous routing requests and an application allowing for it, such as RW NetServer:

Number of routes per minute:

CPU 1 thread 2 threads 3 threads 4 threads
Dual P3-866 19 32
P4-3000 (HT) 34 46
AMD Athlon 64 3200+ 44 44

Dual Xeon 3.2 GHz (HT) 40 66 82 92

50

33

61

86

33User Manual

© 2014 RouteWare / Uffe Kousgaard

Local vs. remote connection

Timings above are for local connections (server address = 127.0.0.1 / localhost). If you are making
a remote connection across the internet or LAN, each function call may take up to 1 second extra,
depending on the exact setup and network configuration.

2.5 Clients

You get access to RW NetServer by using one of these client libraries:

Active-X / OCX
C / C++
C#
Delphi / Kylix / C++ Builder
Java SE
PHP
SOAP

All clients are strictly copyrighted Components4Developers and may only be distributed to users of
RW NetServer for the purpose of providing access to RW NetServer servers.

Sample code

The sample code for all clients generally perform these calculations:

1. Connect to the server
2. Calculate 2 random coordinates (from and to).
3. Connect to a street network
4. Define fastest route
5. Select a file output format (GML2)
6. Translates coordinates into street network nodes
7. Generate driving directions between the nodes
8. Transfer the generated files to the client
9. Select a file output format (array)
10. Generate driving directions between the same nodes again
11. Prints the result
12. Select a file output format (SHP)
13. Performs an isochrone calculation
14. Transfers the generated files to the client
15. Releases the calculation object
16. Disconnects from the server

Mapping Servers

RW NetServer can be used together with most popular mapping servers for the internet / intranet:

AutoDesk MapGuide
ArcGIS Server
GeoServer
MapInfo MapXtreme
MapServer
NetGIS

Depending on the system they will require one of the clients listed above.

34

37

38

39

39

39

41

34 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

2.5.1 Active-X (OCX)

A widely used client type is the Active-X client. It makes it possible to access the RW NetServer
from all sorts of Windows applications that support Active-X (automation objects). This includes,
but is not limited to Visual Basic, Active Server Pages (asp), ColdFusion, MS Office etc.

The Active-X client must be installed on the machine it's supposed to be used on.

Two batch files (register.bat and unregister.bat) are supplied for installation / uninstallation of the
Active-X.

Reference (Properties)

String ConnectionString
A connection string could look like this:
STREAMFORMAT=STANDARD;VERIFYTRANSFER=YES;HOST=127.0.0.1;PORT=3000

It serves to set several properties in one call, namely StreamFormat, VerifyTransfer, Host and
Port.

Variant Data
This value is not used by RW NetServer, but can essentially contain any information depending on
the situation.

String Host
Must contain either a name of a host or an IP address of the server to connect to.

String Location
This is an optional field for the client to provide to tell more about where or in what situation the
client is being used. Its free text format.

Integer MaxRetries
Controls how many times the client should try to reconnect until it gives up.

String Password
Optionally provide a password for the current client operation. Is only required to specify if the
server require authentication.

Integer Port
The port number that the client should try to connect to.

Integer StateID
Returns and sets the stateid. If setting it to -1 means that no previous state was known, and a new
state (if it's a statefull service) is needed. If getting and it have the value -1, It means that the call
just made was a stateless call.

String StreamFormat
Is used for setting the format/protocol used when communicating with the server. It can be set to
STANDARD, XML or SOAP.

String Token
When a server require authorization, and a username and password has been provided by the
client in a call to the server, the server will usually respond with a token value in this property. The
token should be used instead of the username and password on later calls to the server, unless
the user is another.

String UserName

35User Manual

© 2014 RouteWare / Uffe Kousgaard

Provide the name of the user calling the server.

Boolean VerifyTransfer
Controls if the transport protocol adds extra validation to the data. Its generally recommended to
have VerifyTransfer set to true.

Reference (Methods)

Connect
Connects to the server given by the Host and Port properties.

Disconnect
Disconnects from the currently connected server.

ClearAllStates
The client keeps track of what statefull services have been obtained.
This method clears the clients knowledge about that without informing the server about it.

ReleaseAllStates
This method tells the server that the client is releasing all the states held by the client. The client
will call the server as many times as its needed to release all states known by the client.

ReleaseState
Release the current state, given by StateID. Its very important to release the state when the
service is no longer required for the specific client needs.

SendRequest(String ServiceName, String ServiceVersion, String Function_, Variant Args, out
Variant Result)
Make a call to the server using the current StateID of the client instance. If that is -1, then it's a
stateless call or a call for a new instance of a statefull service.

The Args argument can be a single value or an array of values. Multiple levels of nested single
dimension arrays are supported. The same goes for Result.

SendRequestEx(String ServiceName, String ServiceVersion, Integer StateiD, String Function_,
Variant Args, out Variant Result)
Same as SendRequest, except allows to make a call to the server giving a specific state ID as part
of the call.

2.5.1.1 Asp

RW NetServer can also be called from asp (active server pages) using the OCX client. An
example of this can be seen in the ocx/sample folder. Copy this asp file to the root of your
webserver (IIS) and point your browser to http://127.0.0.1/rw_netserver_demo.asp

Make sure user IUSR_xxxx has write access to the root of the c-drive or search for "C:\" and
replace.

The sample code uses VBscript.

2.5.1.2 MS Excel

We will show how to use the client from Excel. This is a sample Excel spreadsheet with fields for
choosing from- and to coordinates for which we would like to find the fastest route and display its
distance and time:

36 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Open the spreadsheet and "enable" macros. Press F9 and then click the button and you will see
the results being calculated.

Behind the scenes

Before being able to create the macro, we need to tell VBA to use kbmMWComClient (our OCX):

Go into Tools > VB Editor and then again Tools > Reference.

37User Manual

© 2014 RouteWare / Uffe Kousgaard

In it, find the entry 'kbmMWComClient library'. If its not there, you have forgotten to install the OCX
properly. Make sure to put a checkmark on the entry and click the 'OK' button to confirm. Now VBA
know about the OCX and know that we want to use it for use in a sample VBA macro.

Please refer to the spreadsheet in the ocx/sample folder for details of the macro code. There are
many comments included.

2.5.2 C / C++

The pure C client has been written with portability in mind. As long a C compiler and a Posix
compliant sockets library are available, it should be possible to compile the pure C client on any
platform.

Compiling the C client

Prerequisites for compiling the C client is GCC or compatible C compiler and a Posix compliant
sockets library.
Put the kbmMW C client source and makefile in any directory of your choise.
Issue the appropriate command matching your system:
- For Unix/Linux: make -f makefile.unix
- For Windows: make -f makefile.win32

This generates a libkbmMWClient.a file (for Unix/Linux) or libkbmMWClient.lib (for Windows)
which is the library you need to link with when you compile your C clients.

On Unix/Linux, place the library file in the directory /usr/lib/kbmmw and place all include files (*.h)
in /usr/include/kbmmw.

Sample

As C doesn't contain rich data types as variants or streams out, the pure C library have had to
emulate those features to make the client compatible with RW NetServer 3. The implementation is
designed to look like being 'object oriented' even though pure C doesn't contain any object

38 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

orientation elements. The purpose of this is to have better grouping of the C libraries
functionalities.

See the C/sample folder for an example of a pure C console client application.

When compiling the sample, remember to compile the kbmMW client source codes into the
project, and make sure to refer to the appropriate Posix compliant sockets library during the linking
phase.

The output from this application will be similar to this:

Result:
 StatusCode=0 (OK)
Err=0, Node=8184, Dist=0.3002960321801950

More documentation

Find more documentation at:
http://www.components4programmers.com/downloads/kbmmw/documentation/
kbmMW_C_client.pdf

2.5.3 C#

This client type is suitable for any .Net installation, including Compact Framework. It requires .NET
1.1 or 2.0 runtime. Pocket PC 2003 and newer devices has 1.1 installed.

To compile a .Net application with RW NetServer access, one need to refer to the
kbmMWClient.dll .Net assembly.

Sample

See the C#/sample folder for an example of a C# application.

One difference to notice here is the requirement for creating a specific TkbmMWTCPIPTransport
which is then referenced by the TkbmMWSimpleClient. Apart from that, the usage is very similar to
Java.

To compile this sample from the command line, use the compile.bat file.

And the output from running the sample:

err=0 node=8184 dist=0.300296032180195

In the ASP.NET folder you can see another sample, that can also be tested live here:
http://livedemo.routeware.dk/aspnet_demo/default.aspx

More documentation

Find more documentation at:
http://www.components4programmers.com/downloads/kbmmw/documentation/
kbmMW_CS_Client.pdf

39User Manual

© 2014 RouteWare / Uffe Kousgaard

2.5.4 Delphi / Kylix

In order to access the server from within any of Embarcadero development tools (Delphi 5-7,
2005-2010, XE - XE6, Kylix 3, C++ Builder 6), you will need kbmMW from
Components4developers.

Sample

A sample is included in the Delphi folder.

2.5.5 Java SE

The Java client is designed to work with any JRE v. 1.3 or newer installation that provides access
to the standard Java sockets library. To use it, one must make the kbmMWJavaClient.jar Java
archive accessible for any Java projects needing access to a RW NetServer. In some
environments its enough to specify the JAR file in the CLASSPATH or via the -cp option to the
Java application. In most Java development IDE's there are ways to configure accessible JAR
files. Please consult the documentation for your Java development tool. The Java based
TkbmMWSimpleClient resides within the JavaClient package must be referred to as being
member of the JavaClient package.

The transport that the Java client connects to on the RW NetServer must be configured to use
STANDARD streamformat.

Sample

See the java/sample folder for an example of a java client:

Javatest.java: If used with the sample data, the output will be:

err=0 node=8184 dist=0.300296032180195

More documentation

Find more documentation at:
http://www.components4programmers.com/downloads/kbmmw/documentation/
kbmMW_Java_client.pdf

2.5.6 PHP

The PHP extension makes it possible to access RW NetServer 3 from PHP scripts which for
example are very popular for web applications and similar setups.

PHP version 4.2.x and up is supported and a pre-compiled version for Windows is included. The
pre-compiled versions are known to work with at least PHP 4.3.11, 4.4.0 and 5.2.1. For version
5.2.15+ you need the thread-safe version. Version 5.3.x is not supported at the moment.

Installing the extension on windows

Copy the php4_kbmmw.dll file to your php/extensions folder and add an entry in the php.ini file (in
windows folder):

[PHP]
extension=php4_kbmmw.dll

Make sure you have msvcr71.dll in your system32 folder. If it is missing, copy it from the same
folder as php4_kbmmw.dll resides in.

40 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Use php5_kbmmw.dll for PHP 5.

Building the PHP extension

On Linux the extension is compiled into the executable, while it is a seperate dll on windows.

Make sure that you have the following installed:

Full PHP development package for PHP v.4.2.x or newer.
Full C development SDK matching your system (GCC primarly supported by PHP).
libtool v. 1.4.x (not 1.5.x as that wont work with the standard PHP building procedures. Please
notice that PHP automatically generates a local symbolic link to /usr/local/bin/libtool which is
placed in PHP's root directory.)
automake v. 1.5
Autoconf v. 2.13 (earlier versions have problems with cleaning up its cache properly. To
circumvent, delete the contents of the autom4te.cache directory before doing buildconf.)
kbmMW pure C-client. The include files must be placed in /usr/include/kbmmw and the library
file libkbmMWClient.a must be placed in /usr/lib/kbmmw
kbmMW PHP extension. This must be placed in a directory named kbmmw in the PHP
subdirectory ext

When these prerequisites are in place, configuration of PHP with kbmMW can begin. Usually it is
required to be root to succeed with the PHP configuration.

First optionally clean the files from the autom4te.cache directory in the PHP install directory.

./buildconf --force
Will generate the configuration scripts needed by the build process.

./configure --enable-kbmmw
Will generate the compile scripts needed to compile PHP with kbmMW extension support. More
extensions can be given on the command line.

make
Will compile PHP and the required extensions (in our case including the kbmMW extension).

Sample

See the PHP/sample folder for an example of a PHP client.

More documentation

Find more documentation at:
http://www.components4programmers.com/downloads/kbmmw/documentation/
kbmMW_PHP_client.pdf

2.5.7 Python

The python client allows you to access RW NetServer directly from Python 2 and 3.

If you are going to use it with Python 2, it is important that you add the enum.py packpage to
python 2 lib folder.
Find it at: https://pypi.python.org/pypi/enum34 or use the version we have included.

Tested with python 2.7.7 and 3.4.1

41User Manual

© 2014 RouteWare / Uffe Kousgaard

2.5.8 SOAP

The SOAP client is a workaround in case you can't use any of the other protocols, since it has a
higher performance overhead.
If you need to access from SOAP, we recommend that you create a C# SOAP server, which
makes the calls to RW NetServer instead.

See the soap folder for a WSDL file for the server.

Note, that VerifyTransfer in the configuration file must be false for SOAP.

Find more documentation at:
http://www.components4programmers.com/downloads/kbmmw/documentation/
SOAP_with_kbmMW.PDF

2.6 Routing topics

Here you will find chapters with additional information about the routing functionality in RW
NetServer:

Terminology used within RW NetServer routing
Information about coordinate units
Explanation of alpha parameter used for speeding up calculations
Information about isochrones
How to handle large networks (>2 million links)

2.6.1 Network terminology

Terminology used to describe the various elements of a street network:

A link consists of several connected vertices (2 or more, blue squares on the map below). The first
vertex of a link is called the start-node / from-node and the last vertex is called the end-node / to-
node.

Most of the nodes share coordinates with nodes of other links. The number of links sharing a node
is referred to as the valency of the node. You should normally never reach more than 10. See also
function Valency .

A node is also called an intersection - even if the valency is 1 or 2. A link where one of the nodes
has valency 1 is called a dangling link. A node with valency 2 is called a pseudo-node. The red
node on the map is such a pseudo-node.

A link is identified by it's ID (Magenta text on the map: 1, 2, 3), which corresponds to the record
ID's of the input dataset used by function NWcreate.

A node is identified by it's ID (Black text on the map: 1, 2, 3). Node ID's are primarily ordered by
valency in descending order and secondarily by x-coordinate in ascending order. Node ID's are
assigned during network creation and can not be controlled by the user.

A location is a position on a link: e.g. 50% along link 70 - counted in the same direction as that the
link has been digitized in. This app. matches the cursor on the map below. Locations are used
when doing dynamic routing. The percentage needs to be strictly between 0 and 1.

41

42

42

45

50

96

42 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

2.6.2 Coordinate units

2 primary kind of coordinate units are supported:

Spheric / Latitude-longitude
Cartesian / Projected

When working with spheric coordinates, all distance calculations are performed using great circle
distances and the Earth is considered a perfect sphere with radius 6378130 meter.

When working with cartesian coordinates, all distance calculations are performed using straight
Pythagoras formula. Several different cartesian units are supported. See MakeNetwork
application and INI file for a description. Make sure the same coordinate unit is specified both
places.

It is worth noting, that RW Net never performs any transformation between coordinate systems. It
always works with the native coordinates of the base dataset used when creating the network. It
will return strange results, if you set the coordinates as spheric, while they are really meters or
vice-versa. It is YOUR responsibility to make sure this is correct.

2.6.3 Alpha parameter

The alpha parameter is used in function Route / RouteDyn (not for isochrones). It makes
it possible to calculate routes faster than would normally be possible, and even faster if the user
accepts only getting the correct result in <100% of the situations.

If you just want the result returned as fast as possible and still correct routes calculated, you can

13

59 83 84

43User Manual

© 2014 RouteWare / Uffe Kousgaard

use function OptimumAlpha to calculate the optimum value for Alpha.

By increasing the value of alpha to "1.3 x OptimumAlpha", you will get a route returned, which may
be closer to a straight line between start and end node, but at the same time longer or slower than
the true shortest or fastest route. Using 1.3 might improve calculation speed with a factor 5-10
depending on the network. See further down this page for more details on this.

On the map below an example is shown, where the exact shortest route is shown with alpha=1. On
the same map, a route with alpha=1.3 is shown. The 2 routes a very different, but the actual length
doesn't need to be that different. It is easy to see that the route with alpha=1.3 is closer to a
straight line than the shortest route (which is also the fastest in this case).

In the diagram below, the results from a test with TIGER data for Connecticut is presented. It
shows how many % of the calculated routes are still correct, when alpha is increased relatively to
the optimum value. The results are based on 1000 random node-to-node calculations.

Example: If the optimum value of alpha is 0.8 (for a fastest path calculation) and alpha=1.15 is
used in the calculation the relative value of alpha is 1.15/0.8 = 1.44. From the diagram it can be
seen, that 33% of the calculated routes will in fact still be correct, while 80-33=47% will be <2%
longer, 91-80=11% will be 2-4% longer and the last 9% will be more than 4% longer than the exact
fastest route. "Longer" of course refers to the time of the route, not the length.

This diagram would look different, if you had another network, used another set of road link
speeds, used another coordinate system or changed the setup in some other way. But the overall
result would be the same.

This can also be used for adjusting the calculated length of a route once you know, how much the
average route is longer than the correct result.

81

44 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

The actual impact on calculation time is shown in the diagram below. It can be seen that adjusting
alpha has the biggest relative impact on long routes (105-193 km), where the number of route's
calculated per second improves from 2.5 to 40 (16x faster) if alpha is increased from 1.0 to 1.4.
Any further increase in alpha has only little impact. For short route's (0-37 km), speed increases
from 35 to 90 route's per second.

45User Manual

© 2014 RouteWare / Uffe Kousgaard

The same diagram for the fastest path is shown below. The main difference from shortest path is
the overall slower calculations (40% slower) and the smaller impact, when the relative value of
alpha is increased. For long routes, the number of routes per second is only 4x higher, when using
relative alpha=1.4 instead of 1.0. For short routes the difference is 2x.

2.6.4 Isochrones (polygon)

A typical use of RW Net is to create isochrones around one or more center facilities. This can be
based on either time or distance (or more generally cost). When such an isochrone is calculated,
the cost is only defined on the street network itself. But typically there is a wish to have the
isochrone presented as a polygon layer, often with thematic colours.

Many approaches can be used to transform the link-based results into polygons, but it is not
possible to create a transformation, which will be acceptable in every single scenario - simply
because it isn't clear what the cost is once you leave the road and what street segment you want to
start from.

In RW Net the "off-road" cost is 0, so that "the cost inside a drivetime polygon somehow describes
the cost of driving from the nearest road to the target facility". The nearest road does, however, not
always has to be the one with the lowest cost !

In RW Net an approach is chosen which uses voronoi polygons created around the nodes in the
street network. This is a very fast method, but has some drawbacks in the case of long street
sections without any breaks / nodes. To make the result more correct, it is possible to dynamically
add additional nodes along long street sections (AddNodes).

Calculation of the voronoi polygons uses 2D formulas for the trigonometric calculations, so
isochrones based on spheric coordinates will not be 100% correct, but it is unlikely that this will
ever be a problem for normal use.

See also function IsoPoly2 , IsoPoly3 , IsoPoly4 and property AddNodes .

59

72 73 74 59

46 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Below you can see 2 maps. The first shows an isopoly2 calculation with isochrones at 1, 2 and 3
km. Only the true nodes of the network has been used in the calculation (shown on the map). On
the second map, additional nodes for every 50 meters has been added and a more exact and
smooth polygon is the result.

47User Manual

© 2014 RouteWare / Uffe Kousgaard

2.6.5 Limits

These functions makes it possible to calculate routes, while taking certain limitations
for the links into account. 2 types are available:

1. A scalar quantity such as a maximum weight, height, width etc. If the limit for a
certain link in the network is 100 and you calculate a route for a vehicle with a
value >100, that link will be avoided in the route. It is mandatory to scale your
limits into the 1-255 interval.

2. A bit pattern for defining special links such as ferries, toll roads etc. which you
may want to avoid in your routing. If the limit for a link is 3 = 00000011 it may
mean it is both a ferry and a toll "road" (most ferries are not free, so that seems
logical). If your value has either bit 1 or 2 set, that link will be avoided in the
route. It is possible to define 8 such bits within each limit.

For both types, a link value of 0 means no limitations at all.

48 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Use SetLimit to define a value for the route about to be calculated.

Example with maximum height expressed as decimeters:

rwcalc1.SetLimit(1,0) // no limit (default)
cost1 = rwcalc1.Route(node1,node2)

rwcalc1.SetLimit(1,40) // 40 dm = 4.0 meter
cost2 = rwcalc1.Route(node1,node2)

rwcalc1.SetLimit(1,42) // 42 dm = 4.2 meter
cost3 = rwcalc1.Route(node1,node2)

With the proper sample data, this will result in 3 different routes. The first route is the
shortest, the second is longer and the last one is the longest (most restrictive
limitation).

2.6.6 Hierarchical Routing

Some street databases has special attributes for the most important streets, the ones being used
as part of long routes. This will typically be motorways, but can also be ferries, bridges and some
minor streets which are required to have a connected network.

The advantages of restricting routes to these more important streets are:

Much faster point-2-point route calculations for long routes (function Route , RouteDyn
and RouteList).
Simpler routes, which doesn't make short-cuts via minor roads to make a long route a little
shorter / faster.

The map below shows an example from TeleAtlas Multinet data with 5 layers of importance
(hierarchies):

91

83 84

86

49User Manual

© 2014 RouteWare / Uffe Kousgaard

RW NetServer uses a method where the calculation of the route is restricted to level 1..X as soon
as level X has been reached on the route unless you are within a certain distance Y of the final
target. Then additional levels are included in the search again.

For the algorithm to work properly the parameter Y has to be supplied for levels 2 to 5. Level 1 (the
toplevel) is of course always included in the search. The best values for these parameters depend
on the geometric properties of the network and how the hierarchy attribute has been setup.

If you have less than 5 levels in your datasource - 3 for instance - use levels 1, 2 and 3.

If you choose small parameters values, a smaller part of the network is considered when you get
close to the target and this improves calculation speed. The downside is you risk not finding the
target at all (!), because there are no major streets within the limits you have defined. The solution
to this problem is to re-calculate without the hierarchy setting or just use a more relaxed setting
(bigger parameters values). Such re-calculations are costly and when choosing parameters it is
important to find a balance between normal, fast calculations and the slow re-calculations.

In the documentation for HierarchyLevelSet you can see suggestions for TeleAtlas and Navteq
datasets and here is an example of how to use it:

rwcalc1.HierarchyLevelSet(145,90,40,7)
rwcalc1.hierarchy = true
dist = rwcalc1.Route(node1,node2)
if dist = -33 then
begin

102

50 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

 rwcalc1.hierarchy = false
 dist = rwcalc1.Route(node1,node2)
 rwcalc1.hierarchy = true
end

The logic above is already part of the RouteList function internally.

See also functions HierarchyLevelSet and Hierarchy .

2.6.7 Very large networks

In some situations you may want to work with very large street networks, which for one reason or
the other is too large to handle (lack of RAM, you want faster calculations, licensing issues etc.).

One solution to such a problem is to delete the less important streets from the street database.
This can typically decrease the size of a database significantly and most commercially available
databases already has attributes for this kind of operation (e.g. select * where street_level>2). This
also normally ensures that the rest of the streets still constitute a connected street network without
any subnets.

The drawback is of course that all routes are limited to the selected street and driving directions
very close to the start and end of the route will be missing. It will however still be possible to show
a map with all streets and a signature of some kind, which shows the target, which is enough for
many purposes.

The picture below shows an example, where the white streets has been omitted from the actual
street network in the routing calculations, but they are still shown on the map, so the route starts a
little away from the real start point:

86

102 101

51User Manual

© 2014 RouteWare / Uffe Kousgaard

2.7 Upgrading from 2.7x

If you have used version RW NetServer 2.7x previously, here is a list of main items to change:

Makenetwork application

This has been updated to make it easier to use, but do generally still output the same files (except
for a change in filename, see below).

Server-side

Previously it was only possible to have 1 roadname file. It is now possible to load several, so make
these changes:

Rename file roadname.bin to roadname01.bin
Rename file roadnumber.bin to roadnumber01.bin
Edit the configuration file and include:

[netX]
RoadFileID1=1

Changes to the configuration file (rwnetserver.ini):

Rename MaxThread to MaxInstances and move it to section [RW_NETCALC service]
Logging should be moved to section [network]
Rename turn_dif to SharpTurnDrivingDirections

52 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Delete any GISoutput setting in section [NetX]

If you generate GIS output from function isopolyX or generateGISfile, you will have to define the
desired path through the GISFileDirectory setting instead of supplying a full path, when calling the
function.

You will also have to include the new sections in the configuration file. See the sample provided.

Client-side

A lot of the functions are still the same, but a few specific changes should be mentioned:

The part with creating driving directions is completely different. Use function RouteList now.
Function RouteFind now behaves like in RW Net (i.e. different from before)
Error codes are now the same as in RW Net
When generating GIS file output, the server will now tell you the name of the generated file and
the server also keeps track of deleting expired files, so there is not the same need for client-side
session tracking.

The syntax and framework for calling the functions has changed. Example:

Before:

distance = rw_netcalc.route(node1,node2)

After:

ReDim va(2)
va(0) = node1
va(1) = node2
Call RW.SendRequest("RW_NETCALC", "", "ROUTE", va, v)
Error = v(0)
Distance = v(1)

Connecting to the server and disconnecting again is also different. Please see the supplied sample
codes for this. This may look more complicated, but the total number of function calls is generally
much reduced, thanks to the RouteList function.

86

Error codes

Part III

55Error codes

© 2014 RouteWare / Uffe Kousgaard

3 Error codes

All functions return a value, which can either be the result from the function or an error code:

0 No error

-10 Network not loaded

-11 RW Net trial license has expired

-12 Network too big for license or input file empty

-13 Invalid shapefile

-14 Too many links at one node (no more than 1900)

-15 Wrong version code in network file

-16 Function not available in turnmode

-17 CGF file is password protected

-18 Function only available in turnmode

-19 External ID not open - see externIDopen

-20 Field name not found in file

-21 Field isn't of type number/decimal 11.3

-22 Field is not numerical

-30 Number out of bounds

-31 Couldn't load network: wrong path, file not found etc

-32 File couldn't be found, opened, created etc.

-33 Node2 / link2 not found

-34 No node index created

-35 Route not ready

-36 Route index out of bounds

-37 No results calculated

-38 Nodes in subnet or node=0

-39 Function ExtraVarCreate hasn't been called

-40 General error

-41 Out of memory

-42 Internal error

-43 Function not available in Free/Standard version (OCX only)

-44 No spatial index found (spatialindex.bin)

-45 No link found

-46 No coordinate file found (coord3.bin)

-47 Not possible with encrypted files

-48 Road file is already open

-49 Road file is not open

-50 Cancelled by user

-51 Number of records in road file doesn't match network

-52 The network contains subnets

-53 (Not implemented yet)

-54 No solution found, increase factor in function CPP

-55 One or more nodes or locations are not defined in list

-56 Only shortest or fastest route can be processed with this function

-57 Function VRPcreate has not been called

-58 VRP solution not possible - limits too tight

-59 Isochrone steps too big - no output

64

56 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

-60 Limit files has wrong size

-61 Invalid ''lambda'' parameter

-62 Coordinate not within valid window

-63 Hierarchy need to be loaded

-64 Call SetLinkResult first

See also function ErrorMsg .

91

63

Reference

Part IV

59Reference

© 2014 RouteWare / Uffe Kousgaard

4 Reference

4.1 AddNodes

Property AddNodes: double;

Setting this property to a value >0 affects the output of function isopoly2 and
isopoly4 .

If the value of AddNodes is, say 1 km, and a link is 3.6 km long, additional nodes will
be inserted at 0.9, 1.8 and 2.7 km in the generation of isochrones. No additional
nodes are added if the link is shorter than 1 km.

Watch out for using very low values or the number of additional nodes gets so big,
that the generation of isochrones runs out of memory.

See also separate discussion on isochrone calculation.

Use same length unit as defined in the configuration file.

ActiveX / VCL / CLX component: RWcalc

4.2 AirDistNode

Function AirDistNode(node1,node2: longint): double;

Calculates the as-the-crow-flies distance between two nodes. Uses the current
coordinate system.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.3 AirDistPos

Function AirDistPos(Xlong1,Ylat1,Xlong2,Ylat2: double): double;

Calculates the as-the-crow-flies distance between two geographic positions. Uses the
current coordinate system.

Possible error codes: -30
ActiveX / VCL / CLX component: RWnetBase

4.4 Alpha

Property Alpha: double;

Alpha is used in function Route and 0<=alpha<=4.

See seperate description of alpha .

In the freeware version alpha is always 0.

72

74

45

42

60 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

ActiveX / VCL / CLX component: RWcalc

4.5 BestNode

Function BestNode: integer;

See function Route for a description.

Possible error codes: -10 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.6 CheckLink

Function CheckLink(link: integer): boolean;

Returns true if the link number is valid.

ActiveX / VCL / CLX component: RWnetBase

4.7 CheckNode

Function CheckNode(node: integer): boolean;

Returns true if the node number is valid.

ActiveX / VCL / CLX component: RWnetBase

4.8 CloseLink

Function CloseLink(link: integer; code: smallint): integer;

Changes the status of the specified link for network loaded in RAM:

0: Two-way street
512: One-way street, which may only be travelled in the digitised direction.
1024: One-way street, which may only be travelled in the reverse of the digitised
direction.
1536: Closed street.

On RW NetServer Pro an additional optional argument is available: (How: integer)

It can take these values:

0: The change is immediate and temporary. If the network is currently being used by
some client, the change will be aborted.
1: The change is automatically postponed to the time the network is not in use by
clients. The change is temporary.
2: The change is immediate and persistent. If the network is currently being used by
some client, the change will be aborted.
3: The change is automatically postponed to the time the network is not in use by

61Reference

© 2014 RouteWare / Uffe Kousgaard

clients. The change is persisted.

Default is 0.

Persistent changes (2 and 3) are stored in the file linkclose.txt.

See also GetOpenStatus

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RW_NetMGMT

4.9 Coordinate2Location

Function Coordinate2Location(const XLongV,YLatV: double; var
link: integer; var percent: double; var side: integer; var
dist,XLongNew,YLatNew: double): integer;

Finds the nearest location based on a set of coordinates. A location is a position along
a link. This is described as a percentage (0 <= percent <= 1) along the link ID.

The side of the link is also returned in relation to direction of digitization: Right (0) or
Left (1).

The air distance and coordinates of the location is returned in dist and XLongNew &
YLatNew.

You will get error -30 if you supply a set of lat/long values not within valid range, i.e.
-90..90 and -180..180.

There is quite some calculation work involved in this function, so you should consider
to cache the results (store the location in an array/database), if the same coordinates
are otherwise supplied over and over. This can have a significant impact on total
calculation time.

Typical errors when using this function is using (0,0) as input or swapping
coordinates. Both will slow down the calculations and return wrong results.

See also Location2Coordinate , Coordinate2LocationSimple .

Possible error codes: -10 -30 -40 -43 -44 -46 -62
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.10 Coordinate2LocationSimple

Function Coordinate2LocationSimple(const XLongV,YLatV:
double; var link: integer; var percent: double): integer;

Same as Coordinate2Location , just with fewer parameters returned. Percentage is
also returned as 0 < percent < 1.

66

75 61

61

62 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Possible error codes: -10 -30 -40 -43 -44 -46 -62
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.11 Coordinate2LocationIgnoreSetClosedLinks

Procedure Coordinate2LocationIgnoreSetClosedLink;

Defines that all closed links (GetOpenStatus = 1536) should be ignored, when
calling function Coordinate2Location .

Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.12 Coordinate2Node

Function Coordinate2Node(const XLongV,YLatV: double; var
node: integer; var dist: double): integer;

Finds the nearest node based on a set of coordinates. Returns node number and air
distance in node and dist. This function replaces FindNode and FindNodeFast.

You will get error -30 if you supply a set of lat/long values not within valid range, i.e.
-180..180 and -90..90.

There is quite some calculation work involved in this function, so you should consider
to cache the results (store the node numbers in an array/database), if the same
coordinates are otherwise supplied over and over. This can have a significant impact
on total calculation time.

Typical errors when using this function is using (0,0) as input or swapping
coordinates. Both will slow down the calculations and return wrong results.

Possible error codes: -10 -30 -40 -44 -62
ActiveX / VCL / CLX component: RWnetBase

4.13 CoordSys

Property CoordSys: string;

Returns the coordsys clause (MapInfo format) of the currently loaded network. Read-
only.

ActiveX / VCL / CLX component: RWnetBase

4.14 CostDist

Property CostDist: double;

See Route for a description. Default value is 1. CostDist>=0.

ActiveX / VCL / CLX component: RWcalc

66

61

63Reference

© 2014 RouteWare / Uffe Kousgaard

4.15 CostTime

Property CostTime: double;

See Route for a description. Default value is 0. CostTime>=0.

ActiveX / VCL / CLX component: RWcalc

4.16 ErrorMsg

Function ErrorMsg(code: integer): string

Translates an error code into a text message. This should not be used in all end-user
environments.
See also the list of error codes .

ActiveX / VCL / CLX component: RWnetBase

4.17 ExternIDfindID

Function ExternIDfindID(index: integer): string;

Look up the external ID based on the rowID (as returned by function RouteGetLink
etc).

If return string is empty, an error occurred.

ActiveX / VCL / CLX component: RWnetBase

4.18 ExternIDfindIndex

Function ExternIDfindIndex(id: string): integer;

Look up the rowID based on the external ID (as needed for input by function
SetLinkSpeed etc).

If rowID is <=0, an error occured.

Possible error codes: -19 -32 -40
ActiveX / VCL / CLX component: RWnetBase

4.19 ExtraDist

Property ExtraDist: double;

See Route for a description. Default value is 0.

ActiveX / VCL / CLX component: RWcalc

55

83

64 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

4.20 ExtraTime

Property ExtraTime: double;

See Route for a description. Default value is 1.

ActiveX / VCL / CLX component: RWcalc

4.21 ExtraVarCreate

Function ExtraVarCreate: integer;

Creates an extra variable which is updated by function Route and IsoCost . Uses
4 bytes per link.

Possible error codes: -40 -41
ActiveX / VCL / CLX component: RWcalc

4.22 GetLinkCost

Function GetLinkCost(Link: integer): single;

Same as GetNodeCost , just for links instead.

Turnmode disabled:
Returns the maximum cost of the two end nodes of the link.

Turnmode enabled:
Link>0: Returns the cost of going to the ToNode
Link<0: Returns the cost of going to the FromNode

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWcalc

4.23 GetLinkCostDyn

Function GetLinkCostDyn(Link: integer; percent: double): single;

Returns the cost of getting to a specific location of a link. This function can be used
after a call to either IsoCost or IsoCostDyn function.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.24 GetLinkDist

Function GetLinkDist(Link: integer): single;

Returns the length of a specific link. The result is returned in km or miles according
to the configuration file.

83

83 67

66

67 68

65Reference

© 2014 RouteWare / Uffe Kousgaard

If 0 is returned, the corresponding record was deleted or not a line-object in the GIS
file used when creating the binary network.

Some links may actually have a length of 0, if it consists of 2 vertices with the same
set of coordinates. Such are however reported in file "network_report.txt" as part of
the network creation (see Make network).

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.25 GetLinkExtra

Function GetLinkExtra(Link: integer): single;

Same as GetLinkCost , but returns link extra-result.

Possible error codes: -10 -30 -39
ActiveX / VCL / CLX component: RWcalc

4.26 GetLinkExtraDyn

Function GetLinkExtraDyn(Link: integer; percent: double):
single;

Returns the extra variable connected to a specific location of a link. This function can
be used after a call to either IsoCost or IsoCostDyn function.

Possible error codes: -10 -30 -39 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.27 GetLinkSpeed

Function GetLinkSpeed(link: integer): single;

Returns the travelling speed for a specific link. Returned in km/h or miles/h according
to the configuration file.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.28 GetLinkTime

Function GetLinkTime(link: integer): single;

Returns the travelling time for a specific link.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

64

67 68

66 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

4.29 GetNodeCost

Function GetNodeCost(Node: integer): single;

After a call to IsoCost the cost to all nodes are calculated. With GetNodeCost, you
can query the cost to individual nodes very fast (instantaneous). This can be used to
create a complete distance table.

Please note, if you have called IsoCost with a limit on the distance, the result for
some nodes may be unlimited.

This can also be used after a call to Route, but in this case even fewer links will have
a defined result. However all nodes on the route are defined.

When used in combination with turn restrictions, remember that a certain node can
be part of a route more than once. In this case use GetLinkCost function instead when
querying cost along the route.

Possible error codes: -10 -30 -43
ActiveX / VCL / CLX component: RWcalc

4.30 GetNodeExtra

Function GetNodeExtra(Node: integer): single;

Same as GetNodeCost, but returns extra-result.

Possible error codes: -10 -30 -39
ActiveX / VCL / CLX component: RWcalc

4.31 GetOpenStatus

Function GetOpenStatus(link: integer): integer;

Returns the status of the specified link for the current mode:

0: Two-way street
512: One-way street, which may only be travelled in the digitised direction.
1024: One-way street, which may only be travelled in the reverse of the digitised
direction.
1536: Closed street.

See also CloseLink

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

67

60

67Reference

© 2014 RouteWare / Uffe Kousgaard

4.32 GISformat

Property GISformat;

Defines the output format for functions such as IsoPoly2:

0: MIF (default)
1: SHP
2: MITAB - TAB format (not available in .NET version, will generate MIF file instead)
3: GML2 - GML 2.1.2
4: None
5: Array
6: KML2 - KML 2.0

TAB format is only possible on the windows platform if the MITAB.DLL is found on the
path. If you specify TAB as format and this is not the situation, MIF files will be
generated instead. This requires MITAB.DLL version 1.5.0 found at RouteWare
website.

MIF and TAB files are generated with coordinate clauses as specified, when the
network was created. For SHP files no .PRJ file is created.

GML format will create 2 files with XML and XSD extensions.

KML files can be opened with Google Earth desktop application. You should only use
this format if your coordinate data are in latitude/longitude (WGS 84) format, since
no coordinate conversion will be performed.

If you plan to read the DBF part of a SHP file, be aware that some database drivers
only accepts short (8+3) filenames. Microsofts JET engine has this problem.

This property is available on both objects (except for the DLL version).

If you specify it for RWcalc object, it will override the setting of the RWnetBase
object. Setting None is only possible for the RWcalc object and is also the default.

ActiveX / VCL / CLX component: RWnetBase & RWcalc

4.33 IsoCost

Function IsoCost(Node: integer; MaxCost: single): integer;

Calculates an isochrone from node until a maximum cost of maxcost has been
reached. If maxcost is 0, there is no upper limit and the whole network will be
calculated, except for subnets.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

68 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

4.34 IsoCostDyn

Function IsoCostDyn(link: integer; percent: double; MaxCost:
single): integer;

Calculates an isochrone from the location defined by (link,percent) until a maximum
cost of maxcost has been reached. If maxcost is 0, there is no upper limit and the
whole network will be calculated, except for subnets.

See Network terminology for a description of a location.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.35 IsoCostDynLocationList

Function IsoCostDynLocationList(link: integer; percent: double;
locationnum: integer): integer;

Calculates an isochrone from a location until all locations on the list has been
reached. If some of the locations are in a subnet the whole network will be calculated.

Link is the starting link.
Percent is the position along the starting link.
Locationnum denotes the number of locations on the list. See function LocationListSet

 for more information.

This function is good for calculating distance matrices as fast as possible.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.36 IsoCostDynLocationListN

Function IsoCostDynLocationListN(link: integer; percent:
double; locationnum,nearest: integer; maxcost: single): integer;

Calculates an isochrone from a location until "Nearest" locations on the list has been
reached. If maxcost<>0, the function will however stop as soon as maxcost has been
reached.

Link is the starting link.
Percent is the position along the starting link.
Locationnum denotes the number of locations on the list. See function LocationListSet

 for more information.

The function returns the actual number of locations found on the list. After successful
return the index's for the location list are updated to reflect the order of the nearest
locations. This is done through LocationListGetNewPos and LocationListGetOldPos

41

76

76

76

69Reference

© 2014 RouteWare / Uffe Kousgaard

 functions.

This function is good for locating the nearest N objects on the location list as fast as
possible.

You can improve performance of this function by not having any very long links in
your network, such as a long ferry route.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.37 IsoCostMulti

Function IsoCostMulti(Nodenum: smallint; maxcost: single):
integer;

Calculates isochrones simultaneously for several nodes, which has been entered
through function NodeListSet .

Nodenum defines the number of nodes on the node list and maxcost defines if there is
a maximum cost. 0 means no maximum.

This function is ideal for locating areas, which has more than x km to a facility, if you
have several facilities or testing how new facilities will affect the market.

Possible error codes: -10 -40 -41 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.38 IsoCostNodeList

Function IsoCostNodeList(Node,nodenum: integer): integer;

Calculates an isochrone from node until all nodes on the list has been reached. If
some of the nodes are in a subnet the whole network will be calculated.

Nodenum denotes the number of nodes on the list. See function NodeListSet for
more information.

This function is good for calculating distance matrices as fast as possible.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.39 IsoCostNodeListN

Function IsoCostNodeListN(Node,nodenum,nearest: integer;
maxcost: single): integer;

76

80

80

70 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Calculates an isochrone from node until "Nearest" nodes on the list has been reached.
If maxcost<>0, the function will however stop as soon as maxcost has been reached.

Nodenum denotes the number of nodes on the list. See function NodeListSet for
more information.

The function returns the actual number of nodes found on the list. After successful
return the index's for the node list are updated to reflect the order of the nearest
nodes. This is done through NodeListGetNewPos and NodeListGetOldPos
functions.

This function is good for locating the nearest N objects on the node list as fast as
possible.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.40 IsoCostOffSet

Property IsoCostOffSet: boolean;

Setting this property to true allows you to add a cost offset to each node, when
calculating multi-centered isochrones. This affects these functions: isocostmulti ,
isolink2 , isolink4 , isopoly2 , isopoly3 and isopoly4 .

This can for instance be used to create drivetime regions around a number of fire-
stations, which has different start times.

To enter the offset values, use the ViaListSet functions as in this example:

IsoCostOffSet = true
SetFastest
NodeListSet(1,80)
NodeListSet(2,107)
NodeListSet(3,45)
ViaListSet(1,"",2)
ViaListSet(2,"",6)
ViaListSet(3,"",4)
StepsAdd(8)
StepsAdd(12)
IsoPoly2("new_drivetime",3,true,0,0,0,0)

This will add 2 minutes to node 80, 6 minutes to node 107 and 4 minutes to node 45.
Drivetime isochrones will be drawn at 8 and 12 minutes.

ActiveX / VCL / CLX component: RWcalc

80

79 79

69

71 71 72 73 74

96

71Reference

© 2014 RouteWare / Uffe Kousgaard

4.41 IsoLink2

Function IsoLink2(filename: string; nodenum: integer): integer;

IsoLink2 calculates isocost links, which shows how far it is possible to go within a
specified amount of cost from one or more nodes.

Use procedure StepsClear and StepsAdd to add a list of the actual isochrones
generated.

The output is similar to IsoPoly2 , but the result is a polyline theme instead of a
polygon theme and the polylines are dynamically segmented to show the exact
position of the steps.

The result is saved to filename, which should include path and filename, but exclude
extension.

Nodenum specifies the number of nodes entered into the standard NodeListSet .

The output format is determined by property GISformat .

Possible error codes: -10 -30 -40 -41 -46
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.42 IsoLink2Dyn

Function IsoLink2Dyn(filename: string; link: integer; percent:
double): integer;

IsoLink2Dyn works the same way as IsoLink2 except for this difference:

Starting point is a single location, identified by a link/percent pair.

Possible error codes: -10 -30 -40 -41 -46
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.43 IsoLink4

Function IsoLink4(filename: string; nodenum: integer): integer;

IsoLink4 calculates links, which shows which center is the nearest on a street
network.

The functionality is similar to IsoPoly4 , but the result is a polyline theme instead of
a polygon theme and the polylines are dynamically segmented to show the exact
position where it changes, which center is the nearest.

The result is saved to filename, which should include path and filename, but exclude
extension.

93 93

72

80

67

71

74

72 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Nodenum specifies the number of nodes entered into the standard nodelist
(centers).

The output format is determined by property GISformat .

Possible error codes: -10 -30 -40 -41 -46
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.44 IsoPoly2

Function IsoPoly2(filename: string; nodenum: integer; Doughnut:
boolean; Xlong1,Ylat1,Xlong2,Ylat2: double): integer;

IsoPoly2 calculates isocost polygons, which shows how far it is possible to go within a
specified amount of cost from one or more nodes.

The result is saved to filename, which should include path and filename, but exclude
extension.

The output format is determined by property GISformat .

Nodenum specifies the number of nodes entered into the standard nodelist .

It is possible to define, that doughnut polygons should be generated, e.g 0-5 minutes,
5-10 minutes etc. or standard polygons e.g. 0-5 minutes, 0-10 minutes etc.

Use procedure StepsClear and StepsAdd to add a list of the actual isochrones
generated.

The best way to understand these parameters is to try rwnetdemo.exe, which makes
it possible to adjust the parameters easily and see the result immediately.

It is possible to define a bounding box for the calculation. If it doesn't cover at least
all nodes in the nodelist, it is extended to do so. Specifying all 0's means it just
covers the whole network. See also IsoPoly2Fast .

See also property AddNodes and separate discussion .

Latitude/longitude coordinates are not really supported by this function, but only in
rare situations will it actually affect the generated polygons.

Possible error codes: -10 -30 -40 -41 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.45 IsoPoly2Fast

Function IsoPoly2Fast(filename: string; nodenum: integer;
Doughnut: boolean; buffer: double): integer;

This is the same function as IsoPoly2 , except the required bounding box gets
calculated for the user with a buffer added. We recommend a value of 3 km / 2 miles

80

67

67

80

93 93

72

59 45

72

73Reference

© 2014 RouteWare / Uffe Kousgaard

in urban areas and more in rural areas (>10).

This means the calculation goes much faster for small isochrones in large networks
and the RAM requirement is also greatly reduced.

There is a small risk of not getting the exact same result as calling IsoPoly2 with
0,0,0,0 as parameter, but this should only occur in extreme situations. If so, increase
the size of the buffer.

4.46 IsoPoly2Dyn

Function IsoPoly2Dyn(filename: string; link: integer; percent:
double; Doughnut: boolean; Xlong1,Ylat1,Xlong2,Ylat2: double):
integer;

IsoPoly2Dyn works the same way as IsoPoly2 except for this difference:

Starting point is a single location, identified by a link/percent pair.

Possible error codes: -10 -30 -40 -41 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.47 IsoPoly2DynFast

Function IsoPoly2DynFast(filename: string; link: integer;
percent: double; Doughnut: boolean; buffer: double): integer;

This is the same function as IsoPoly2Dyn , except the required bounding box gets
calculated for the user with a buffer added. We recommend a value of 3 km / 2 miles
in urban areas and more in rural areas (>10).

This means the calculation goes much faster for small isochrones in large networks
and the RAM requirement is also greatly reduced.

There is a small risk of not getting the exact same result as calling IsoPoly2Dyn with
0,0,0,0 as parameter, but this should only occur in extreme situations.

4.48 IsoPoly3

Function IsoPoly3(filename: string; maxcost: single; nodenum,
min_valency: integer; Xlong1,Ylat1,Xlong2,Ylat2: double):
integer;

IsoPoly3 calculates voronoi polygons (cells), which shows the cost associated with
each node in the network.

The result is saved to filename, which should include path and filename, but exclude
extension.

The attribute file also holds information on the id of the nearest node.

72

73

74 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

The output format is determined by property GISformat .

The function can use one or more nodes as a basis for the calculation of node cost.
Nodenum specifies the number of nodes entered into the standard nodelist.

Maxcost specifies the maximum cost for the voronoi cells.

By specifying min_valency it is possible to restrict the generation of cells to nodes
with a minimum valency, that is the more important nodes.

It is also possible to restrict the cells to a specific area of the network based on a
window defined by (xmin,ymin) - (xmax,ymax).

The best way to understand these parameters is to try rwnetdemo.exe, which makes
it possible to adjust all parameters easily and see the result immediately.

See also property AddNodes and separate discussion .

Latitude/longitude coordinates are not really supported by this function, but only in
rare situations will it actually affect the generated polygons.

Possible error codes: -10 -30 -40 -41 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.49 IsoPoly4

Function IsoPoly4(filename: string; maxcost: single; nodenum:
integer; Xlong1,Ylat1,Xlong2,Ylat2: double): integer;

IsoPoly4 calculates polygons, which shows which areas are closest to each center as
defined in the NodeListSet function.

The result is saved to filename, which should include path and filename, but exclude
extension.

The output format is determined by property GISformat .

The output file holds information on the id of the nearest node.

The function can use one or more nodes as a basis for the calculation of node cost.
Nodenum specifies the number of nodes entered into the standard nodelist.

The best way to understand these parameters is to try rwnetdemo.exe, which makes
it possible to see the result immediately.

Set maxcost = 0, unless:
1) You want to limit the generated polygons to a maximum distance, so that areas
beyond doesn't get related to any center.
or
2) You have a very large network and want to reduce calculation time. Set maxcost to
a value, that guarantees all areas are covered.

67

59 45

67

75Reference

© 2014 RouteWare / Uffe Kousgaard

It is possible to define a bounding box for the generated polygons. If it doesn't cover
at least all nodes in the nodelist, it is extended to do so. Specifying all 0's means it
just covers the network.

See also property AddNodes and separate discussion .

Latitude/longitude coordinates are not really supported by this function, but only in
rare situations will it actually affect the generated polygons.

Possible error codes: -10 -30 -40 -41 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.50 Link2FromNode

Function Link2FromNode(link: integer): integer;

Returns the number of the node at the start of the link. This is where digitizing has
started.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.51 Link2ToNode

Function Link2ToNode(link: integer): integer;

Returns the number of the node at the end of the link. This is where digitizing has
ended.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.52 LinkMax

Function LinkMax: integer;

Return the highest link-number in the currently loaded network, which should equal
to the number of links in the corresponding GIS-network.

Possible error codes: -10
ActiveX / VCL / CLX component: RWnetBase

4.53 Location2Coordinate

Function Location2Coordinate(link: integer; percent: double; var
xlong,ylat: double): integer;

Translates a location into a set of coordinates. This makes it the reverse function of
Coordinate2location .

Possible error codes: -10 -30 -46

59 45

61

76 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.54 LocationListGet

Function LocationListGet(index: integer; var link: integer; var
percent: double): integer;

Reads values from the location list. These are returned as link/percent pairs.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.55 LocationListGetNewPos

Function LocationListGetNewPos(index: integer): integer;

Can be used in the same way as NodeListGetNewPos , just for the location list.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.56 LocationListGetOldPos

Function LocationListGetOldPos(index: integer): integer;

Can be used in the same way as NodeListGetOldPos , just for the location list.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.57 LocationListLimit

Function LocationListLimit: integer

Returns current maximum number of nodes in the location list. The start value is
3000 locations. See function LocationListSet for increasing the length of the list.

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.58 LocationListSet

Function LocationListSet(index, link: integer; percent: double):
integer;

Use this function to enter a list of locations.

79

79

76

77Reference

© 2014 RouteWare / Uffe Kousgaard

LocationListSet(1,100,0.1) sets the first location to be link #100, 10% from the
beginning. All functions taking the location list as input, expects you to start with
position 1 in the list.

If LocationListLimit returns 3000 and you call LocationListSet(3001,link,percent), the
length of the list will automatically be increased by 100 more locations every time the
current limit is exceeded. If you know you need 10000 locations, then start by calling
LocationListSet(10000,link,percent) - that will be slightly more efficient.

NOTE: Not all functions relying on the location list may perform well, if you enter
many locations into the list.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.59 NearestLocation

Function NearestLocation(link: integer; percent: double;
locationnum: integer): integer

Finds the nearest location from a list of locations, calculated from a starting location.

Enter a list of possible nearest locations through the standard location list functions
and call the function with these parameters:

Link is the starting link.
Percent is the position along the starting link.
Locationnum is the number of locations on the location list .

Returns the ID of the nearest location on location list, that is a number between 1
and locationnum. The real location can then be found with LocationListGet . If
return value=0, none of the locations where found.

You can improve performance of this function by not having any very long links in
your network, such as a long ferry route.

Possible error codes: -10 -30 -40 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.60 NearestNode

Function NearestNode(node,nodenum: integer): integer

Finds the nearest node from a list of nodes, calculated from a starting node.

Enter a list of possible nearest nodes through the standard node list functions and call
the function with these parameters:

Node is the starting node.
Nodenum is the number of nodes on the node list .

76

76

80

78 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Returns the ID of the nearest node on node list, that is a number between 1 and
nodenum. The real node ID can then be found with NodeListGet . If return value=0,
none of the nodes where found.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.61 NearestOpen

Function NearestOpen(const node: integer; var
NearestNode,NearestLink: integer; var cost: single): integer;

This function takes as input a node and will return the nearest open link, that is one
which is not closed for driving in both directions. The nearest node, where it is
possible to start a route, is also returned and the cost of getting there.

This can be used when starting a route in a pedestrian-only area, where several links
are closed for driving, but has addresses attached.

The function also work in turn-restriction mode. Then both one-way restrictions and
any turn-restrictions will be ignored in the search for the nearest open link.

Returns 0 if no errors.

Possible error codes: -10 -30 -45
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.62 NearestOpenDyn

Function NearestOpenDyn(const link: integer; const Percent:
double; var NearestNode,NearestLink: integer; var cost: single):
integer;

Same as function NearestOpen , except the input is a link number and a position
along the link.

Observe that 0<PERCENT<1.

Possible error codes: -10 -30 -45
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.63 NetworkLength

Function NetworkLength: double;

Returns the total length of the whole network in km or miles according to the
configuration file.

Possible error codes: -10

79

78

79Reference

© 2014 RouteWare / Uffe Kousgaard

ActiveX / VCL / CLX component: RWnetBase

4.64 NodeCoordX

Function NodeCoordX(node: integer): double;

Returns the x-coordinate (or longitude) of node.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.65 NodeCoordY

Function NodeCoordY(node: integer): double;

Returns the y-coordinate (or latitude) of node.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.66 NodeListGet

Function NodeListGet(index: integer): integer;

Reads values from the nodelist.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.67 NodeListGetNewPos

Function NodeListGetNewPos(index: integer): integer;

Can be used as a supplement to NodeListGet . See TSP2 for an example on how
to use it.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.68 NodeListGetOldPos

Function NodeListGetOldPos(index: integer): integer;

Can be used as a supplement to NodeListGet . See TSP2 for an example on how
to use it.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

79 93

79 93

80 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

4.69 NodeListLimit

Function NodeListLimit: integer

Returns current maximum number of nodes in the node list. The start value is 3000
nodes. See function NodeListSet for increasing the length of the list.

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.70 NodeListSet

Function NodeListSet(index, node: integer): integer;

Use this function to enter a list of nodes, which is input to a lot of other functions.

This can e.g. be a list of nodes to visit in optimal order (function TSP2).

NodeListSet(1,100) sets the first node to be node #100. All functions taking the
nodelist as input, expects you to start with position 1 in the list.

If NodeListLimit returns 3000 and you call NodeListSet(3001,node), the length of the
list will automatically be increased by 100 more nodes every time the current limit is
exceeded. If you know you need 10000 nodes, then start by calling NodeListSet
(10000,node) - that will be slightly more efficient.

NOTE: Not all functions relying upon the nodelist may perform well, if you enter many
nodes into the list.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.71 NodeMax

Function NodeMax: integer;

Return the highest node-number in the currently loaded network.

Possible error codes: -10
ActiveX / VCL / CLX component: RWnetBase

4.72 NWloaded

Function NWloaded: boolean;

Returns true if the network has been loaded.

ActiveX / VCL / CLX component: RWnetBase

80

93

81Reference

© 2014 RouteWare / Uffe Kousgaard

4.73 OptimumAlpha

Function OptimumAlpha: single;

Returns the optimum value of alpha.

See the discussion on alpha for more information.

Possible error codes: -10 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.74 POIadd

Procedure POIadd(link: integer; percent: double; text: string);

Adds a new POI to the list of POI for use in RouteList function.

Call Coordinate2location to get link / percent from the coordinates of the POI.

See also POIadd2 .

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.75 POIadd2

Procedure POIadd2(link: integer; percent: double; text: string;
direction: integer);

The same function as POIadd , except it takes an additional paramter, so it can be
controlled in which direction the POI will be included.

Direction:
-1: Include only if link is travelled in opposite of digitized direction
0: Both directions
+1: Include only if link is travelled in digitized direction

There are basically 2 situations:

1) POI that can be seen by all, no matter side of road, direction of vehicle or right /
left-hand driving. Use POIadd instead.

2) POI that can be seen, if the vehicle is on the same side of the road as the POI. The
POI is facing towards the traffic.

From the call to Coordinate2location you have the side of the road. Now you can
look up the direction parameter in this table:

Side Right-hand driving Left-hand driving

0 +1 -1

42

86

61

81

81

81

61

82 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

1 -1 +1

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.76 PositionListGet

Function PositionListGet(index: integer; var x,y: double): integer;

Read coordinates of positions entered into the positionlist. See also PositionListSet .

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.77 PositionListSet

Function PositionListSet(index: integer; x,y: double): integer;

Use this function to enter a list of coordinates, which can be used together with
function RouteList . The positionlist is used when including off-road sections in the
graphical output.

The list will automatically grow as you enter more entries.

Possible error codes: -10 -30 -43 -62
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.78 ReadSpeed

Function ReadSpeed(filename, fieldname: string; fieldindex:
integer): integer;

From the specified filename speed is read for each link. Non-positive speeds are
interpreted as the link being closed - the same as calling CloseLink with parameter
1536.

The file should be of type DBF (version 3) or DAT file (part of a TAB file).

In the case of a DAT file, the corresponding TAB file needs to be present.
If you supply fieldindex=0, the fieldname will be used. If you supply a fieldindex (1..)
it will be used for reading from the file.

Filename should include a fully qualified path.

Possible error codes: -10 -20 -22 -30 -32 -40 -51
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

82

86

60

83Reference

© 2014 RouteWare / Uffe Kousgaard

4.79 RoadName1_Get

Function RoadName1_Get(ID,linkID: integer; var text: string):
integer;

This function will return the road name (in text variable) for a specific pair of files
(defined by ID) and linkID.

Possible error codes: -10 -30 -49
ActiveX / VCL / CLX component: RWnetBase

4.80 RoundAbout

Function RoundAbout(link: integer): boolean;

Returns true if a link is part of a roundabout. In all other situations false is returned.
This is defined through attribute codes .

ActiveX / VCL / CLX component: RWnetBase

4.81 RoundAboutExitNode

Function RoundAboutExitNode(node: integer): boolean;

Returns true, when
- The valency of the node is >=3 and
- Two of the links connected to the node is marked as a roundabout and
- It is possible to leave the roundabout using the third link

Returns false otherwise.

This is used internally by function RouteList for creating driving directions.

Possible error codes: -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWnetBase

4.82 Route

Function Route(Node1,Node2: integer): single;

Calculates the cost of the cheapest route from node1 to node2 according to Alpha ,
CostTime and CostDist . Returns the Cost.

Cheapest route is defined as the route, which minimizes this expression:

Cost = CostDist*distance + CostTime*time, where CostDist and CostTime >=0.

Either CostDist or CostTime should be >0.

If ExtraVarCreate has been called, an additional variable is calculated as

17

86

42

63 62

64

84 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

extra = extradist*distance + extratime*time.

Distance is defined according to the configuration file and time is always minutes.

If error -33 is returned, you can check function BestNode to see the node, which
was nearest to node2.

Use OnRouteProgress event to track progress in very large networks. In small /
medium sized networks it is not needed.

Possible error codes: -10 -30 -33
ActiveX / VCL / CLX component: RWcalc

4.83 RouteDyn

Function RouteDyn(link1,link2: integer; percent1,percent2:
double; var fromto1,fromto2,routelength: integer; var extra:
single): single;

This function is used for dynamic routing. This means a route can be calculated from
somewhere along a link to somewhere along another link. The normal Route function
always goes from node to node.

Link1 and percent1 denotes where on link1 the route should start. The percentage (0
< percent1 < 1) counts from the same end as the link has been digitized.

Link2 and percent2 is the same, just for the link, where the route ends.

Fromto1 is part of the result. If fromto1=0, the calculated route goes through the
start node of link1. If fromto1=1, the calculated route goes through the end node of
link1.

Fromto2 has the same meaning, just for link2.

Routelength holds the number of nodes in the calculated route. If routelength=0, the
route is a subset of link1. This can only happen if link1=link2, that is if the routing is
along the same link. Even when link1=link2, routelength can also be >0.

You should never call function RouteFind after RouteDyn as this is an integrated
part of RouteDyn. However RouteGetLink , RouteGetNode etc. can be called the
normal way.

Variable extra hold the extra cost, if ExtraVarCreate has been called.

The result holds the cost of the route.

There are a few restrictions when using loop links, that is links which start and end at
the same node:
Loop links can not hold one-way information.
When computing a route where link1=link2 and the link is also a loop link, turn
restrictions are not considered.

It is advisable to split loop links in the network in 2 sections, this removes the

60

85

86 86

85Reference

© 2014 RouteWare / Uffe Kousgaard

restrictions mentioned above.

Use OnRouteProgress event to track progress in very large networks. In small /
medium sized networks it is not needed.

Possible error codes: -10 -30 -33 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.84 RouteDyn_Approach

Function RouteDyn_Approach(link1,link2: integer;
percent1,percent2: double; approach1,approach2: integer; var
fromto1,fromto2,routelength: integer; var extra: single): single;

Same function as RouteDyn , except it offers 2 additional parameters:

It is possible to define how to leave the first link and approach the last link on the
route.

This can be used to make sure school-kids are picked up at the correct side of a street
or dropped off in front of a school without having to cross the street.

If approach1=512 the route will start in the same direction as digitization, if 1024 the
reverse. Use 0 if direction doesn't matter.

If approach2=512 the route will end in the same direction as digitization, if 1024 the
reverse. Use 0 if direction doesn't matter.

Possible error codes: -10 -30 -33 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.85 RouteFind

Function RouteFind(node2: integer): integer;

Locates the link and nodes on a route from node2 to node1, which has been defined
in a previous call to either Route or IsoCost .

Returns the number of nodes on the route. The number of links is one less.

See also RouteGetLink and RouteGetNode .

Possible error codes: -10 -30 -35
ActiveX / VCL / CLX component: RWcalc

4.86 RouteFindDyn

Function RouteFindDyn(link: integer; percent: double; var
fromto1,fromto2,routelength: integer; var extra: single): single;

84

83 67

86 86

86 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

This function is used for getting a route to location (link,percent) after a call to
IsoCostDyn.

The following 2 examples perform the same calculation (that is calculating 2 routes),
but the second method is much faster, when you want to calculate many routes
starting at the same location. Depending on your actual data, you may need much
more than 2 routes to see an improvement:

RouteDyn(link1,link2a,percent1,percent2a,fromto1a,fromto2a,routelengtha,extraa)
RouteDyn(link1,link2b,percent1,percent2b,fromto1b,fromto2b,routelengthb,extrab)

IsoCostDyn(link1,percent1,0)
RouteFindDyn(link2a,percent2a,fromto1a,fromto2a,routelengtha,extraa)
RouteFindDyn(link2b,percent2b,fromto1b,fromto2b,routelengthb,extrab)

Please see function RouteDyn for further details.

Possible error codes: -10 -30 -33 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.87 RouteGetLink

Function RouteGetLink(index: integer): integer;

After a call to RouteFind , you can query the resulting route and get the ID of all
links on the route. The ID's are returned in reverse order, so RouteGetLink(1) returns
the link closest to the target (i.e. node2).

"ID" is returned if a link is travelled in the digitized direction. If the link is travelled in
the opposite direction then "-ID" is returned.

Errors are always returned as "0" !

ActiveX / VCL / CLX component: RWcalc

4.88 RouteGetNode

Function RouteGetNode(index: integer): integer;

After a call to RouteFind , you can query the resulting route and get the ID of all
nodes on the route. The ID's are returned in reverse order as it is described for
function RouteGetLink .

Possible error codes: -10 -35 -36
ActiveX / VCL / CLX component: RWcalc

4.89 RouteList

function RouteList(filename: string;
tspmode,listmode,listnum,concatmode: integer; offroadspeed:
double; Starttime: Tdatetime; timeformat: integer; vialist:

84

85

85

86

87Reference

© 2014 RouteWare / Uffe Kousgaard

boolean; roadnameID: integer; var distance,time: double):
integer;

This function allows you to enter a list of nodes, locations or positions and have a
route calculated, that passes through all of them and have the result generated in
various ways, ready to be shown on a map. It includes the option of doing travelling
salesman optimization and creating driving directions at the same time, making it
much easier to get very complex results generated by just specifying a number of
parameters.

The parameters are explained here, one by one:

Output filename
This is fully qualified filename with path. As usual don't specify the extension as that
is determined by the GISformat property.

TSPmode
This defines how the routing points are connected. In case of optimization, the TSP2

 function is used and most of the parameters are also the same as for that
function. Only 3 and 4 are new:

0: Optimization, start - end
1: Optimization, round-trip
2: Optimization, start - no fixed end
3: No optimization, start-end
4: No optimization, round-trip
10: Optimization, start - end (straight line distances used in optimization)
11: Optimization, round-trip (straight line distances used in optimization)
12: Optimization, start - no fixed end (straight line distances used in optimization)

Listmode
This defines the type of input for the routing points:
1: Nodelist
2: Locationlist (dynamic segmentation)
3: Positionlist (dynamic segmentation)

If you use mode 3, the positions will be translated into locations as part of the
function call (and overwrite anything on the Locationlist). In the output you will see a
section from the road and to the exact position. This part is referred to as "off-road"
and the speed is defined by setting parameter offroadspeed (see below).

Listnum
Number of routing points on the list - refers to parameter above.

Concatmode
This describes how the GIS objects should be concatenated:
1: With all road segments between routing points as 1 record
2: With off-road segments separately
3: Driving directions
4: With all segments separately

Offroadspeed
This is for use with listmode 3. If this is zero and listmode=3, it is effectively the

67

93

80

76

82

88 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

same as listmode=2, but you don't have to call the coordinate2location function
yourself, making the setup a bit easier.
The value should be expressed as either km/h or mi/h depending on the configuration
file.

Starttime
You can use this parameter to define, when the route starts and have a timestamp on
all records, which tells when that exact section of the route is entered. Format is a
fraction of a day (11:23 = 11/24 + 23/(24*60) = 0.4743055). The integer part of the
argument is not used unless timeformat=3.

Timeformat
This specifies the format for the timestamp field:
0: Skip timestamp field in output
1: 24 hour format (H:mm)
2: AM/PM (h:mm)
3: Unformatted floating point number - time of day.

At midnight the time wraps for (1) and (2), so "23:59" is followed by "0:00" and
"0:01". If you prefer to do your own formatting, use (3).

Vialist
This is a list that can contain a name and a time for the routing points to be visited on
the route. These will be included in the output and the time will be added to the
running total. Specify true / false. See function vialistset . If name="" and time=0,
the via point will not be included in the output, but will still be used in the routing.

RoadnameID
This points to an already loaded database with road names.
You can use 0 as parameter, if no Roadname database has been loaded.

Distance
This variable returns the total distance in km or miles.

Time
This variable returns the total time in minutes.

In order for both distance and time to be returned, you need to call ExtraVarCreate
in advance.

These are additional options, not controlled through RouteList parameters:

POI in driving directions output
It is possible to include POI (point-of-interest) in the output, when concatmode = 3.
This can be toll stations, petrol stations etc. You can have thousands of POI, but only
those on the actual route will be included in the output.

This is an example of output:

Description Distance Total distance

Road 1 0.2 0.2

Road 2 0.3 0.5

POI 0 0.4

Road 3 0.5 1.0

96

64

89Reference

© 2014 RouteWare / Uffe Kousgaard

Explanation:
Road 1 is travelled from 0.0-0.2 km
Road 2 is travelled from 0.2-0.5 km
POI is at 0.4 km (on Road 2)
Road 3 is travelled from 0.5-1.0 km

See chapter POI Lists on how to add POI.

SetApproach
You can define curb approach for the whole route through the seperate function
SetApproach . This is only available in Pro version.

SharpTurnDrivingDirections
This parameter is defined through setting the corresponding property . If the value
is >0, it is possible to trigger a turn description in the output even when the street
name doesn't change, but the road makes a clear turn in an intersection. Just define
how sharp the turn should be. Suggested value is 60-75 degrees. Please note this
only applies to sharp turns in intersections - not halfway down a link.

The routelist function will return 0 if no error occurred.

The possible fields of the generated file are these:
ID (only if vialist = true)
LinkID (only when concatmode = 4)
Roadname or vialist name (only when concatmode = 3 or 4)
Time (minutes, 1 decimal after the comma = 6 sec accuracy)
Total time (minutes, 1 decimal after the comma = 6 sec accuracy)
Timestamp (string or float format, uses offset value)
Distance (3 decimals after the comma = meter accuracy)
Total distance (3 decimals after the comma = meter accuracy)
Speed (1 decimal after the comma)
Turn (integer)

Turn is coded this way:
-1: Starting point, if via points are used in output
-2: If next line is a via point
-3: end point, if via points are used in output
0-359: Turning angle
360: Not possible
361-: "Take (value-360). exit from roundabout"

Turning angles from 0-359 can be interpreted this way (45 deg for each section):

0-22: Straight on
23-67: Slight turn to the left
68-112: Turn to the left
113-157: Sharp turn to the left
158-202: U-turn like
203-247: Sharp turn to the right
248-292: Turn to the right
293-337: Slight turn to the right
338-359: Straight on

104

93

90 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

You are of course welcome to define your own verbal description of turning angles.

Some of the fields may be skipped in the output depending on the input parameters.

Possible error codes: -10 -30 -33 -38 -40 -49 -55 -56
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.90 RouteMaxCost

Function RouteMaxCost(iterations: integer; var node1, node2:
integer): single;

This function will return the maximum cost of any cheapest node-2-node route in the
network. Node1 and node2 will return the nodes for the associated route.

The function uses an approach of a random start points to locate the maximum cost,
so a number of iterations needs to be specified. 10 is usually enough, but in rare
situations you may need more.

Using dynamic segmentation it may be possible to locate higher costs than for node-
2-node routes.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.91 RouteReady

Function RouteReady: boolean;

Returns true if a call to RouteFind has been made and a route is ready for output.

ActiveX / VCL / CLX component: RWcalc

4.92 SetFastest

Procedure SetFastest;

This function is a shortcut to defining cost as the fastest route and extra variable as
distance. It simply sets these 4 parameters this way:

costtime = 1
costdist = 0
extratime = 0
extradist = 1

See also SetShortest

ActiveX / VCL / CLX component: RWcalc

85

92

91Reference

© 2014 RouteWare / Uffe Kousgaard

4.93 SetLimit

Procedure SetLimit(limitID, value: integer);

Defines the limit for a route or isochrone.

LimitID should be 1-9.
Value should be 0-255. 0 (default) means no limit.

See description here: Limits

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.94 SetLinkResult

Function SetLinkResult(link: integer; value: single): integer;

This function makes it possible to change the result on individual links.

Possible error codes: -10 -30
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.95 SetLinkSpeed

Function SetLinkSpeed(link, speed: integer): integer;

Use this function for changing the speed on a specific link. This only affects the speed
as it is loaded into memory.

This function is of most use for temporarily changing the speed of link in connection
with roadwork's etc.

On RW NetServer Pro an additional optional argument is available: (How: integer)

It can take these values:

0: The change is immediate and temporary. If the network is currently being used by
some client, the change will be aborted.
1: The change is automatically postponed to the time the network is not in use by
clients. The change is temporary.
2: The change is immediate and persistent. If the network is currently being used by
some client, the change will be aborted.
3: The change is automatically postponed to the time the network is not in use by
clients. The change is persisted.

Default is 0.

For persistent changes (2 and 3), see here.

Possible error codes: -10 -30 -43
Versions: Standard Pro

47

92 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

ActiveX / VCL / CLX component: RW_NetMGMT

4.96 SetLinkTime

Function SetLinkTime(link: integer; time: single): integer;

This function makes it possible to change the time on individual links. This can be
used for special links, which doesn't match the road classes: A ferry could be an
example, where you want to enter the exact sailing time, because individual ferries
don't use the same speed.

Time should be >0.

On RW NetServer Pro an additional optional argument is available: (How: Integer)
It can take these values:

0: The change is immediate and temporary. If the network is currently being used by
some client, the change will be aborted.
1: The change is automatically postponed to the time the network is not in use by
clients. The change is temporary.
2: The change is immediate and persistent. If the network is currently being used by
some client, the change will be aborted.
3: The change is automatically postponed to the time the network is not in use by
clients. The change is persisted.

Default is 0.

For persistent changes (2 and 3), see here.

Possible error codes: -10 -30 -43
Versions: Standard Pro
ActiveX / VCL / CLX component: RW_NetMGMT

4.97 SetNet

Procedure SetNet(rwnetbase: TRWnetBase);

Links the TRWcalc component to a TRWnetBase component.

VCL / CLX component: TRWcalc

4.98 SetShortest

Procedure SetShortest;

This function is a shortcut to defining cost as the shortest route and extra variable as
time. It simply sets these 4 parameters this way:

costtime = 0
costdist = 1
extratime = 1
extradist = 0

See also SetFastest 90

93Reference

© 2014 RouteWare / Uffe Kousgaard

ActiveX / VCL / CLX component: RWcalc

4.99 SharpTurnDrivingDirections

Property SharpTurnDrivingDirections: integer

See function RouteList for a description.

Default value is 0.

ActiveX / VCL / CLX component: RWcalc

4.100 StepsAdd

Procedure StepsAdd(step: single);

Adds a new value to the list of isochrones generated, when calling function isopoly2
. Values <=0 are ignored.

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.101 StepsClear

Procedure StepsClear;

Clears the internal list of steps used for function isopoly2 .

Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.102 TSP2

Function TSP2(nodenum: integer; TSPtype: smallint;
maxseconds: integer): single;

Calculates the optimum order to visit a list of nodes. TSP2 uses a 2-optimum
algorithm.

The cost between two nodes are calculated in both directions, but the average is used
in the optimization.

Nodenum is the number of nodes in the optimization (2<=nodenum<=NodeListLimit
).

With 2 GB RAM and with a call to extravarcreate , the limit for nodenum is app.
14000. With no call to extravarcreate, the limit is appr. 20000. That many nodes
requires several hours of optimization time.

TSPtype = 0 or 10:
A route is calculated, which starts at the first node and ends at the last node in the

86

72

72

80

64

94 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

list. The order of the other nodes are optimized.

TSPtype = 1 or 11:
A round trip is calculated, where the order of all nodes are optimized.

TSPtype = 2 or 12:
A trip is calculated, where only the first node is fixed. The last node on the route will
be somewhere far from the first node. This method requires more computing time
than type 0 and 1, when ATSP =false.

If TSPtype = 10, 11 or 12 straight line distances are used in the optimization. This is
a lot faster, but also less accurate.

Maxseconds can be used to limit the total time used for the optimization. Please note
that this only applies to the part of the TSP function that actually does the
optimization - calculation of the distance matrix is always processed first. Specify 0 to
let the procedure run until all possibilities has been tested.

The function returns the minimum cost.

At the same time the "extra" variable is calculated for the whole route. Get this with
function TSP2extra .

The new (optimum) order of the nodes can be retrieved with function
NodeListGetNewPos . Please note this is different from the now obsolete TSP
function.

Example input data:
NodeList[1] = 10
NodeList[2] = 17
NodeList[3] = 8
NodeList[4] = 5
NodeList[5] = 12
NodeList[6] = 20

The optimization calculates, that the optimum order is node 8, 17, 5, 12, 20, 10. This
is returned in this way:

Example output data:
NodeListGetNewPos[1] = 3
NodeListGetNewPos[2] = 2
NodeListGetNewPos[3] = 4
NodeListGetNewPos[4] = 5
NodeListGetNewPos[5] = 6
NodeListGetNewPos[6] = 1

It is also possible to look it up the other way around, i.e. which position on the
ordered list has the Nth node on the list:

NodeListGetOldPos[1] = 6
NodeListGetOldPos[2] = 2
NodeListGetOldPos[3] = 1
NodeListGetOldPos[4] = 3
NodeListGetOldPos[5] = 4

99

95

79

95Reference

© 2014 RouteWare / Uffe Kousgaard

NodeListGetOldPos[6] = 5

The table below shows how well the algorithm performs for 88 standard test datasets
from TSPlib. As an example there are 9 datasets with 201-300 nodes. After 1 minute
of optimization, the average result is 1.5% worse than true optimum. If the
optimization was stopped already after 3 seconds, the average result was 1.6% worse
than true optimum. More than 1 minute will not improve it further (unless you have
more than 300 nodes). All test runs with <45 nodes was solved to 100% optimality.

Nodes Test runs 3 sec 1 min 10 min 30 min 4 hours

1-200 40 100.7

201-300 9 101.6 101.5

301-1000 14 103.7 102.7 102.5

1001-1250 5 104.9 104.1 103.5 103.4

1251-2350 14 105.9 104.8 104.2 103.8 103.6

2351-6000 6 106.3 105.9 105.2 104.9 104.8

If you enter a node number more than once, a short distance will be used for the
distance between each occurrence.

With many nodes, the processing time increases a lot - especially for mode 0, 1 and
2.

Entering node number 0, triggers error -38 and so does nodes in a subnet.

Use OnTSPProgress event for tracking progress.

Possible error codes: -10 -30 -38 -40 -41 -43 -50
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

4.103 TSP2dyn

Function TSP2dyn(locationnum: integer; TSPtype: smallint;
maxseconds: integer): single;

This works exactly the same way as the TSP2 function, except it is using the
location list functions instead of the node list functions.

4.104 TSP2extra

Function TSP2extra: single;

This returns the extra variable after a call to function TSP2 or TSP2dyn, if extravar
was defined in advance.

4.105 UTurnAllowed

Property UTurnAllowed;

Defines if U-turns are allowed when Turn=1 in INI file.

93

64

96 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

False: All U-turns are banned (default).
True: All U-turns are allowed, unless banned through attribute settings.

ActiveX / VCL / CLX component: RWcalc

4.106 Valency

Function Valency(node: integer): integer;

Returns the valency of the node. Valency is the number of links connected to a node.

Valency is a number from 1 to 1900, which is the highest possible valency in RW Net.

Possible error codes: -10 -30
ActiveX / VCL / CLX component: RWnetBase

4.107 ViaListSet

Function ViaListSet(index: integer; name: string; time: double):
integer;

The Via List can be used to define a list of places to visit on a route. In particular this
includes a name and a time (in minutes) to spend on each place. The function should
be used together with function RouteList . Index should be >= 1.

To define the geographical position of the places, use either NodeListSet ,
LocationListSet or PositionListSet .

An example with 4 places:

ViaListSet(1,"Start",0)
ViaListSet(2,"Customer 1",5)
ViaListSet(3,"Customer 2",3)
ViaListSet(4,"Stop",0)

The list will automatically grow as you enter more entries. Default value is an empty
string and 0 minutes.

The function can also be used with isochrone generation, see IsoCostOffSet .

Possible error codes: -10 -30
Versions: Standard Pro
ActiveX / VCL / CLX component: RWcalc

17

86

80

76 82

70

Reference: Pro
only

Part V

99Reference: Pro only

© 2014 RouteWare / Uffe Kousgaard

5 Reference: Pro only

RW NetServer Pro includes these functions not found in RW NetServer Standard:

ATSP (asymmetric travelling salesman algorithm)
District (school districting etc.)
Hierarchical routing

5.1 ATSP

Property ATSP: boolean;

ATSP is short for Asymmetric Travelling Salesman Problem.

Setting this property to true, makes the TSP2 and TSP2dyn functions use
another algorithm, that is better suited for street networks with many one-way
restrictions (i.e. asymmetric distance matrix). In such instances the improvement of
the solution can be as much as 4-8% (depends a lot on the actual data) compared to
the normal 2-optimal algorithm. In situations with symmetric distance matrices, the
solution is app. of the same quality as the normal algorithm.

Calculation time is generally the same for smaller problems (0-50 nodes), but it is
faster than the normal algorithm for larger problems (significant improvements can
be achieved).

The algorithm uses random permutations (known as simulated annealing), so you can
not always get the same result back between different runs on the same input data.

In the free/standard version ATSP is always false.

ActiveX / VCL / CLX component: RWcalc

5.2 District

Function District(method: integer; centerfile, customerfile,
outputfile: string): integer;

This function solves the problem of assigning students to schools, where each school
has a maximum capacity. The criteria for assigning students is to minimize the total
cost (normally distance) for all students. The function can be used for other problems
too and therefore schools are also referred to as centers, while the students are
referred to as customers below.

Centerfile is the filename of a text-file, which contains the information for the centers.
Include one line for each center with this space-delimited information: X-coordinate,
Y-coordinate and capacity.

Customerfile is the filename of a text-file, which contains the information for the
customers. Include one line for each customer with this space-delimited information:
X-coordinate and Y-coordinate.

99

99

48

93 95

100 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

There can be any number of centers (>= 1) and customers (>= 1). If the total
capacity of the centers is smaller than the number of customers, only some of the
customers will be assigned to a center.

The outputfile is the name of a text-file with the results from the calculations. It looks
like this:

ID Center Priority Cost
1 4 1 0.657
2 0 0 0.000
3 0 0 0.000
4 0 0 0.000
5 3 1 1.331
6 0 0 0.000
7 0 0 0.000
8 3 1 1.125
9 3 1 1.176
10 3 1 1.091

ID refers to the number of the customer in the customerfile (line number).
Center is the number of the center, which the customer has been assigned to. Here
both customer 2, 3, 4, 6 and 7 have not been assigned.
Priority is 1, of the customer has been assigned to the nearest center, 2 if it was the
2nd nearest etc.
Cost is the actual cost of getting there.

The function returns 0, if no errors happened.

The Method parameter is not being used at the moment, but will later be used for
adding more district optimization methods.

Possible error codes: -10 -32 -40 -41 -43
Versions: Pro
ActiveX / VCL / CLX component: RWcalc

This map shows an example of 6 schools and assignment of students. It can easily be seen, that
school 1 has too little capacity since many of the nearest students has been assigned to other
schools with sufficient capacity (both schools 2, 5 and 6):

101Reference: Pro only

© 2014 RouteWare / Uffe Kousgaard

5.3 Hierarchy

Property Hierarchy: boolean;

You can only change this property, if a hierarchy file has been loaded during server
start.

See also Hierarchical routing

ActiveX / VCL / CLX component: RWcalc

48

102 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

5.4 HierarchyLevelSet

Procedure HierarchyLevelSet(h2, h3, h4, h5: double);

Sets the 4 hierarchy parameters for use in hierarchical routing. Values should be
expressed in km or miles, depending upon the configuration file.

These values are normally set through the INI file, but can be overridden if required.

Input requirement: h2 >= h3 >= h4 >= h5 >= 0.
By default all parameters are set to infinite, meaning no hierarchy is applied.

We have executed tests with TomTom (netbclass field) and Navteq (func_class field)
databases and recommend these values:

Km Miles

TomTom 130, 120, 100, 22 81, 75, 62, 14

Navteq 145, 90, 40, 7 90, 55, 25, 4.4

Tests were executed on UK data with a large number of random routes. Compared to
not using a hierarchy, calculations were 6 times faster with TomTom data (0.3 secs
per route) and 11 times faster with Navteq data (0.1 sec per route). Navteq has
better hierarchy attributes and a little less details in the network, hence the
differences.

For short routes (<50 km) there is only little difference between using a hierarchy or
not, while calculation of longer routes (>400 km) in the UK may be as much as 20-40
times faster (Navteq) and 6-30 times faster (TomTom).

See also Hierarchical routing

ActiveX / VCL / CLX component: RWcalc

5.5 NetworkCenter

Function NetworkCenter(NodeNumber, MaxIterations: Integer;
Eps, power: Double; var TotalCost: Double): integer;

This function solves the minimax problem for the street network. This means locate a
number of facilities in a network, so the distance from any node to the nearest facility
is minimized. The method uses an allocate-locate strategy.

Input parameters are NodeNumber, which tells how many facilities you want.

Maxiterations controls the granularity of a grid used for testing additional nodes to
prevent getting stuck in local optima. We recommed 0 to 3. 3 gives for instance 3 x 3
= 9 nodes. With higher values you get much longer calculation times, but 2 is
generally sufficient.

Eps controls the relative difference in TotalCost value between master iterations, that
make the calculations stop. We recommend 0.01 (i.e 1%). Do not use 0 or you risk
an endless loop.

48

103Reference: Pro only

© 2014 RouteWare / Uffe Kousgaard

Power controls the kind of target:
1) With power=100 it uses the classical minimax strategy, i.e. all parts of the network
are treated equally important.
2) With power=1 it minimizes the cost to each link from the center multiplied by the
length of the link. Here the length of the link serves as a weight or proxy for number
of inhabitants etc.
3) With power>1 the cost above is raised to the power of the value. Typical values
will be from 1 to 2.

You can fill in the nodelist in advance with the location of existing facilities, since last
step in the calculations is minimizing the total distance between existing locations
and new centers, by sorting the new centers so they match with the previous
locations.

Result is available through function NodeListGet .

See also NetworkCenter2 .

Possible error codes: -10 -30 -40 -41
Versions: Pro
ActiveX / VCL / CLX component: RWcalc

5.6 NetworkCenter2

Function NetworkCenter2(NodeNumber, MaxIterations: Integer;
Eps, power, cutoff: Double; var TotalCost: Double): integer;

Same function as NetworkCenter , except weight for each link is supplied by calling
SetLinkResult and an additional cutoff parameter is available.

Cutoff is used when power<>100: If cost < cutoff, the link is not included in
calculation of totalcost. If cost > cutoff, (cost-cutoff) is used in the calculation of
totalcost.

This can be used for location fire stations for instance. If cutoff is 10 minutes, the
optimization process will focus on minimizing drive times beyond 10 minutes.
Anything below 10 minutes will be considered within the limit.

Possible error codes: -10 -30 -40 -41 -64
Versions: Pro
ActiveX / VCL / CLX component: RWcalc

5.7 Node2Link

Function Node2Link(node, linkindex: integer): integer;

Returns the ID of the link starting at node. Linkindex should be <= the valency of
node.

This function is typically used together with Link2FromNode , Link2ToNode and
Valency to perform user specific network topological analysis.

Possible error codes: -10 -30 -43

79

103

102

91

75 75

96

104 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

Versions: Pro
ActiveX / VCL / CLX component: RWnetBase

5.8 SetApproach

Procedure SetApproach(approach1, approach2: integer;
viapoints: boolean);

This procedure works in connection with function RouteList and makes it possible
to define how the generated route should start and end, if it uses dynamic
segmentation. For node based routes, it has no influence.

If approach1 = 512 the route will start in the direction of digitization for the first link.
If the value is 1024 it will be opposite. If the value is 0 (default) it will be whatever is
the shortest / fastest.

In the same way approach2 manages how the route will end.

If parameter viapoints is true, all viapoints will be approached from one side and the
route will then continue, so no U-turn is required.

Depending on oneway restrictions in the network, one or more of these rules may be
broken in the output.

Versions: Pro
ActiveX / VCL / CLX component: RWcalc

86

Reference:
Server

Part VI

107Reference: Server

© 2014 RouteWare / Uffe Kousgaard

6 Reference: Server

These are functions not part of RW Net - only RW NetServer.

6.1 Array

To get access to a GIS file as an array, start by setting the GISformat property to 5.

Now the array is the last variant returned instead of the usual filename, when calling functions such
as RouteList. You can now iterate all elements of the array. An example of this is shown in all
sample codes.

Fieldtype is a number from 1-7:
1: Char
2: Integer (signed 32-bit)
3: Smallint (signed 16-bit)
4: Decimal
5: Float
6: Date (string, format "YYYYMMDD")
7: Logical

6.2 CalcOptimumAlpha

CalcOptimumAlpha is used to force a recalculation of the optimum Alpha value for a given net.

CalcOptimumAlpha is a method of the RW_NETMGMT service.

67

108 RW NetServer

© 2014 RouteWare / Uffe Kousgaard

This is always done internally when the server starts, but after you have made calls to eiter
SetLinkSpeed or SetLinkTime it is also needed if speed has been increased.

The calculated value will automatically be used for subsequent route calculations using that net,
until the optimum Alpha is recalculated next time.

The function takes 1 argument, namely the network ID (1..n).

The output is the calculated optimum Alpha value, which is mostly provided for your information.

6.3 GetFile

GetFile is a function that allows you to transfer a GIS file generated as part of the RouteList
function for instance.

GetFile is a method of the RW_NETBASE service.

It takes 2 parameters as input:

GIS format (0, 1, 2 or 3).
Filename without extension. This is as returned from the function that generated the file.

Output is a variant array, with as many items as there are parts in the file format. The various parts
come in this order:

MIF: mif, mid
SHP: shp, shx, dbf
TAB: tab, map, id, dat
GML: xml, xsd

The sample code for all langauges include the GetFile functionality and it shows how to store the
2, 3 or 4 parts, a GIS file consists of, to disk.

6.4 GetServerVersion

This function returns a string containing the version of the server, e.g. "3.13".

GetServerVersion is a method of the RW_NETMGMT service.

6.5 KillAllIdState

KillAllIdState allows you to kill all running RW_NETCALC instances.
It is a workaround in case there are orphaned instances, which are not cleaned properly.

KillAllIdState is a method of the RW_NETMGMT service.

6.6 PutFile

PutFile is a function that allows you to transfer a file to the application server from a client. This is
for example of interest when using the District function.

PutFile is a method of the RW_NETBASE service.

It takes 2 parameters as input:

Ext. The extension the file should have (without any dots). Notice that the full filename is, for

91 92

86

67

99

109Reference: Server

© 2014 RouteWare / Uffe Kousgaard

security reasons, generated by the server and returned to the client as a result of this call.
Data. The data that should be in the file.

Output is the server side generated file name without the extension.

6.7 ReLoadNetwork

ReLoadNetwork allows you to reload all networks, without restarting the server.

ReLoadNetwork is a method of the RW_NETMGMT service.

It requires that there are no currently running calculations.
If there are, these are likely to return with an error.

It is even possible to replace the network files on the fly, if these ini-file settings are in place:
Coord3 = 1
ExternIDOpen = 0 or 2
RoadFileCachedX = 1.

It will not read the INI file again.

6.8 UsePOILocationList

Use this function to load one of the POI lists into the locationlist.

UsePOILocationList is a method of the RW_NETCALC service.

It takes 1 parameter as input:

List ID

Output is a single integer:

Number of items in list

If you use an invalid list ID, you get -59 as return value.
If the list you refer to isn't associated with your current network, you get -60 as return value.

6.9 UsePOINodeList

Same as UsePOILocationList , except it works for the NodeList.

6.10 UsePOIList

Same as UsePOILocationList , except it adds the content to the list of POI for use with function
RouteList in driving directions mode. This means you can add several lists, if you have one list
for toll stations and another for petrol stations.

109

109

86

