WADE: Simplified GUI Add-on Development for Third-party
Software

Xiaojun Mengl, Shengdong Zhao', Yongfeng Huangl, Zhongyuan Zhangl, James R. Eaganz,
Ramanathan Subramanian
'NUS-HCI Lab, National University of Singapore, “Télécom ParisTech & CNRS LTCI UMR 5141,
3ADSC, University of Illinois at Urbana-Champaign
!{xiaojun,zhaosd} @comp.nus.edu.sg,' xgjonathan@gmail.com,'zhang_zhongyuan@nus.edu.sg
james.cagan@telecom-paristech. fr,”’subramanian.r@adsc.com.sg

/‘ File Edit View Image Layers Adjustme
(| o .
= N @ E

Tool: & v Brushwidth: = 2

nnnnnnn

7' &8 WE¥ WADE
i@ A3 & =

ol

5

; B - Microsoft Visual Studio
@ WADE IDE § 5yp o 1o so T

private void toolStripLabell Click(cbject sender, EventAdfs

var MainForm = Cont
var commonActionStrip = MainForm.Controls.Find("CojgnActionsStrip”, true)[e]

as PaintDotNet.CommonActionsStrip;
var undo = commonActionsStrip.Items[12];
while (undo.Enabled)

undo.PerformClick();

b Start - Debug - | toolStripLabell System Windows.Forms.Toolsts

=(%][0] £

MergeAction Append
Mergelndex =l
Maodifiers. Private.

a) WYSIWYG Editing

No
= yimayFalse

RightToLeft

b) Codingin Event | |
Handler Template

Figure 1: WADE overview: 1) Kevin wants to make the following modifications to the original Paint.NET interface i) change menu
labels from English to Chinese, ii) remove unused menus and icons, and iii) add a new “undo all” function. To this end, he 2)
Installs WADE in Paint.NET, 3) Clones the Paint. NET GUI into the GUI builder of a WADE-supported IDE. Then, he (a) modifies
the GUI using a WYSIWYG editor, and (b) writes code associated with the “undo all” widget via the event handler template. 4) All
the above changes are compiled to an add-on that can be installed into Paint.NET for easy and convenient future use.

ABSTRACT

We present the WADE Integrated Development
Environment (IDE), which simplifies the modification of
the interface and functionality of existing third-party
software without access to source code. WADE clones the
Graphical User Interface (GUI) of a host program through
dynamic-link library (DLL) injection in order to enable (1)
WYSIWYG modification of the GUI and (2) the
modification of software functionality. We compare WADE
with an alternative state-of-the-art runtime toolkit
overloading approach in a user-study, finding that WADE
significantly simplifies the task of GUI-based add-on
development.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for
components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

CHI 2014, April 26-May 1, 2014, Toronto, ON, Canada.

Copyright © 2014 ACM 978-1-4503-2473-1/14/04..$15.00.
http://dx.doi.org/10.1145/2556288.2557349

Author Keywords
WADE; GUI; Add-on Integration; WYSIWYG; IDE

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation: User
Interfaces

General Terms
Human Factors

INTRODUCTION

Software rarely fulfills the needs of all users all the time [7,
12]. Mindful of the need to make software adaptable to
individual needs, developers typically allow for software
customization by providing:

e Capabilities for reconfiguring existing features and
functions to suit personal taste (e.g., via preferences
panes or dot files), or

e Software architecture for incorporating add-ons (e.g.,
using plugins, scripts and/or extensions) to
enhance/modify the behavior of the original application.

While these approaches can provide users with a great deal
of control, every approach necessitates additional effort
from the software developers to explicitly provide
customization support at the software development stage.
For example, plugins, scripting interfaces and extensions

http://dx.doi.org/10.1145/2556288.2557349

require the developer to provide and maintain an external
API to their software, which may potentially require
maintaining an additional and separate interface to internal
functionality.

Owing to the above issues, many software developers do
not provide support for add-ons. Even when they do, such
support is often limited [1]. To address this limitation,
much research has focused on approaches that enable third-
party developers to modify the interface or behavior of
existing applications without access to source code or to an
external API. These approaches typically work by either: 1)
operating on the surface-level of the interface, intercepting
input events and output pixels before they are delivered to
the application (e.g., Prefab [2, 3], Facade [14]), or 2)
integrating with the toolkit to gain access to the internal
program structures (e.g., Scotty [4], SubArctic [5]). For
convenience, we call the former as surface-based
approaches and the latter as toolkit-based deep approaches.

Surface-based approaches allow modifications to GUI
elements without access to the internal structure of an
application. For example, Fagade allows for reconfiguring
GUI elements via a simple drag and drop interface [14].
However, such approaches are limited by their ability to
infer the structure and functionality of the interface because
they do not have access to the internal program objects or
their semantics. FE.g., adding new functionality or
modifying the behavior of a GUI widget is difficult to
accomplish using surface-based approaches [4].

This limitation can be overcome to some extent by toolkit-
based deep approaches such as Scotty [4] or SubArctic [5],
which operate below the surface of the program to reveal
the underlying program logic and functionalities. This
allows them to alter the system’s appearance and behaviors
beyond the surface level. However, toolkit-based deep
approaches can be challenging to use. They require a
thorough understanding of the relevant parts of the system
in order to realize the desired behavior. Even for
experienced developers, much effort is needed to make
relatively simple modifications to third party software.

Therefore, there exists a trade-off between generalizability,
ease of use, and power (the ability to perform deeper
modifications). While all previous approaches have their
advantages, additional solutions are still needed to better
balance the power and ease of use for runtime modification
of third-party software.

In this paper, we propose WADE, a simplified and
WSYWYG Add-on Development Environment that can
ease the task of modifying GUI-based functions in existing
software with or without source code, while still enabling
developers to make deep changes to the software behavior.
To achieve this, WADE injects a dynamically-linked library
(DLL) into the host program to retrieve the GUI hierarchy
of the host program. It then clones the interface in the IDE
so that properties of GUI elements can be directly modified.

Furthermore, WADE provides scaffolding to directly
associate event handlers to existing widgets, so that
enhancing/modifying software behavior becomes simpler.

Figure 1 shows an example add-on development scenario
using WADE. Currently, WADE supports add-on
development using both the open source SharpDevelop 4.2
and the Microsoft Visual Studio 2012 Ultimate IDEs for
Windows Form applications on the Windows XP and
Windows 7 platforms.

We conducted an experiment to compare WADE with a
Scotty-like toolkit-based deep approach for modifying third
party applications. Our results show that users subjectively
found WADE much easier to use, and were objectively able
to develop GUI-based modifications 2.4 times faster than
the alternative approach on average. To summarize, the
contributions of this work are:

e We present the WADE prototype along with its software
architecture as an integrated solution for significantly
facilitating add-on creation for third party software
without source code.

e The WADE IDE provides scaffolding for code-based
GUI modification through template generation, thereby
enabling robust implementation of the complex
boilerplate associated with runtime modification.

e We present the results of an empirical comparison
between WADE and the state-of-the-art Scotty approach
for modifying software [4], which shows that WADE is
significantly faster for GUI modifications.

RELATED WORK

As previously mentioned, surface-based adaptation [2, 3,
14, 15] and toolkit-based subsurface modification [4, 5, 16]
are the two main approaches that support third-party
application modifications without access to the software’s
source code. As a comprehensive review of the different
variants of these two approaches has already been discussed
in Eagan et al. [4], we now highlight those works most
relevant to WADE.

Surface-level modification

Surface-level modifications do not require any support by
the application developer. Instead, they operate on the
interface that is presented to the user and the input events
he or she provides. For example, Yeh et al's Sikuli
scripting environment [17] allows users to write scripts that
reference screenshots of particular controls, to refer to
existing application elements.

Stuerzlinger et al.'s Ul Fagades [14] intercept individual
widgets as they interact with the window server. This
allows a developer to easily replace them at the window
server level with an alternate implementation, such as by
regrouping together widgets from different applications or
replacing a radio button with a pop-down menu. Dixon and
Fogarty's Prefab [2] examines pixels as they are drawn on
the screen to infer which parts correspond to which widgets.

It then allows the interception and replacement of these
pixels to change the output of a particular interface.
Combined with input redirection, Prefab can enable
alternate software functionality.

However, all of these solutions are limited by their ability
to infer the structure and functionality of the interface. They
do not have direct access to internal program objects or
their semantics. As a result, it is typically challenging for
such approaches to make modifications that alter both GUI
elements and their underlying program logic. Such
limitations can be overcome to some extent by toolkit-based
deep modification approaches.

Toolkit-based deep modification

Edwards et al.'s SubArctic toolkit [5] extends Java's AWT
to provide explicit hooks that allow third-party developers
to add new UI modifications. These hooks provide specific
support for extensibility, allowing a third-party developer to
add new functionality to existing applications built with the
SubArctic toolkit, without explicit software support.
However, Ul modifications are only feasible for
applications built using the SubArctic toolkit. For other
types of applications, such modifications become infeasible.

Eagan et al's Scotty [4] uses injection to perform runtime
toolkit overloading, in which an existing toolkit is altered
specifically to provide explicit support for modifications. It
provides a meta-toolkit for developers to modify existing
third-party applications. Third-party developers must,
however, explicitly inspect and make sense of the existing
application before eventually applying acquired knowledge
in a separate coding environment [6, 9]. This process can be
complex, creating barriers that limit such modifications to
experienced and dedicated programmers.

USING WADE

Our goal with WADE was to create an interface that unifies
the various tasks and tools involved in creating third-party
program modifications. In contrast to Scotty, where sense-
making and coding are independent, WADE integrates the
two phases into a single environment, making software
modification more user-friendly and practicable even to
novice programmers.

A third-party developer can use WADE to make a variety
of modifications to an application, such as a) basic property
changes to a GUI’s widgets, b) altering actions associated
with interface elements, and c) adding entirely new
functionalities. We demonstrate the utility of WADE
through the following scenarios. All scenarios have been
implemented using WADE.

Language localization and template creation

Kevin has created a diary template for Notepad.NET and
wants to share it with his Russian friend Ivanov, who is not
comfortable with English. Unfortunately, Notepad.NET
does not currently have a Russian translation, so Kevin
loads the WADE property editor add-on into Notepad.NET.
In the property editor, he systematically changes each

:: I
|

| &) 1
| N =
| New Open Save |
! I
I

Host GUI |nced

I Y

HOBOE Open Save

|
|
|
|
|
Actions |
|
|
|
|
|
|

Actions

Property Editor b= Property Editor e

bin_nouveau : mRibbon RibbonBution bin_nouveau : mRibbon.RibbonButton

|
1| &= —
| ED2 D4
Right ToLeft No Right ToLeft Mo
T e) Text [HOBOE]|
L/ _ TedMign _ _ _BottomCenter L TetMon __ _ _BoltomCenter |

Figure 2: Changing the label of the program from English to
Russian using WADE’s property editor. The user first selects
the GUI widget (the New button), and types its Russian name
in the text field of the property editor. Changes to the text are
immediately reflected in the host GUI.

[om == = e e e e e e e e e e e e e 1
I [B4 Untitled (100%) - PaintNET v3.0 Untitled (100%) - Pai I
I File | Edit View Image Layers | File | Edit View Image Layers Adjustm |
) New. ColeN] New.. Ctrl=N
s open.. CuleD & Open- Ll |
I) - R - d Open Recent » |
"
Pe “ Aequire »
| Aequire ' R Close Ctrew |
Claze Ctrl+W
| - == o Save Curl-5 |
I | Save Ctrles G SaveAs. CtieShiftes |
W Seveds.. Ctri+Shifts 5 b »
I T Batch Irnage Comversion » IPEG
‘4 Print... Ctrl+P FRa Pant. Cib+P EMP
I Eat o aed
Before After

Figure 3: Using WADE, one can easily add an external service
to the host program. The utility enabling batch image
conversion to JPEG, BMP and PNG is added to Paint. NET by
linking to the ImageMagick graphic library.

widget’s label to its Russian translation, as shown in Figure
2. He then exports those changes to a new add-on
component that Ivanov can load into his English copy.

Kevin then decides to add a toolbar button as a shortcut to
the new diary template he has created. While the property
editor can alter properties of existing widgets, it cannot add
new widgets. Kevin loads the WADE IDE and chooses the
Clone GUI command to clone the Notepad.NET interface
into a new project. Using the WADE add-on that Kevin
already loaded into Notepad.NET for translation, the clone
command walks the interface hierarchy and serializes it to
the WADE IDE. In the WADE IDE’s GUI builder, Kevin
then adds a new toolbar button for the diary. He then uses
WADE to generate an event handler template, into which
he writes the code to load his new diary template.

Link to external function call

Lee took a lot of photos in RAW format on her recent trip
to Toronto and wants to convert them to JPEGs so that she
can open them in Paint NET. Unfortunately, Paint.NET
does not have a batch conversion interface. There is a
command-line tool that offers that capability, but she can

never remember the right incantation to make it work. She
clones Paint.NET’s interface into WADE and adds a new
Batch Conversion menu (Figure 3). She then uses
WADE'’s event handler template to invoke the appropriate
actions using the command line library, compiles the add-
on and installs it into Paint.NET.

Discussion

The above scenarios illustrate some of the different kinds of
third-party program modifications that WADE supports. In
the first example, Kevin is able to provide a translation for a
third-party interface for his friend Ivanov, just by using
WADE’s property editor add-on for existing programs. For
more complex modifications to the interface, such as when
Lee adds batch conversion support to Paint.NET, it is
necessary to write some code for the new functionality.
Here, WADE provides a) support to clone the existing
interface into a new project and b) scaffolding to help Lee
write her event handlers. The only code she needs to write
is the code specifically related to her functionality, which
she can then integrate into the cloned GUI hierarchy using
WADE’s GUI editor. We present the detailed
implementation in the following sections.

Comparison with previous approaches

Other tools provide similar kinds of third-party program
modification. Fagade [14] enables the user to easily
simplify an interface by removing and regrouping widgets.
However, it does not support changing labels, font styles,
background images, etc.

Prefab uses a localization example similar to Kevin’s
scenario in order to show the power of pixel-based
approaches. However, Prefab can only access pixels but not
the text, and must therefore apply a character recognition
process to extract associated text strings. In contrast,
WADE retrieves the original label text directly from the
host application’s internal structure.

The remaining modifications require deep access to the
program’s internal structures. As such, surface approaches
such as Facade and Prefab cannot pierce through the
surface to decipher these structures.

Toolkit-based subsurface approaches, such as Scotty, can
accomplish all the tasks above, but do not provide the
scaffolding and support of an IDE that WADE does. In
order to perform language localization, for example, a
developer must inspect the UI hierarchy and associate
program objects to identify widgets and corresponding
labels, before writing the appropriate code from scratch to
change the labels to another language. WADE, on the other
hand, simplifies this process by presenting a unified
environment and scaffolding for many of these changes.
We now describe how WADE facilitates software
modifications using the GUI builder.

WADE IDE FOR ADD-ON DEVELOPMENT
While the details of developing add-ons for third-party
software without source code can be complex, the basic

idea involves two important aspects. First, third-party
applications may not come with a pre-designed add-on
architecture. Therefore, an environment should be designed
in which the host application can manage and communicate
with add-ons created and integrated with it at a later time.
Second, because the application source code is not
available, the IDE must facilitate understanding of the host
application’s internal structure and provide tools to support
the creation of add-ons.

Injecting WADE add-on manager to host application

To achieve the first goal, WADE adopts an approach
similar to Scotty’s, by injecting an add-on manager into the
host application’s process space. While Scotty is designed
to work on the Mac OS X Cocoa platform, WADE is
developed for Windows Form applications on the Windows
operating system. WADE uses the registry key binding
technique to insert compiled code, in the form of a
Dynamic Linked Library (DLLs), into the host application
at runtime. Once loaded, the injected DLL can use the
CreateRemoteThread method to create threads that run in
the virtual address space of the host processor. This allows
it to serve as an add-on manager to load and register any
compiled add-ons (also in the form of DLLs) within the
host application [13].

Supporting third-party add-on development

However, simply enabling external add-ons to be integrated
with the host application is not enough. In order to create
meaningful add-ons, a third-party programmer must make
sense of an existing application, and apply that knowledge
to the development of any new functionality.

Scotty provides various tools including a hierarchy browser,
an object inspector, a widget picker, and an interactive
interpreter (Python) to support sense-making in the Cocoa
environment [4]. While none of the individual tools may be
too difficult to use, they only provide partial answers.
Knowing how and where to get the different pieces of
information, and discovering how to combine them
effectively to obtain a high level picture, are both tedious
and challenging. Therefore, typically, only experienced
programmers are able to use Scotty-like approaches.

In order to reduce the knowledge barrier involved in
integrating the different tasks mentioned above, we
introduce an IDE specifically for third-party add-on
development. An IDE is a software application that
provides comprehensive facilities to computer programmers
for software development. It is designed to maximize
programmer productivity by providing tightly-knit
components for authoring, modifying, compiling, deploying
and debugging software with similar user interfaces. The
IDE, therefore, is more user-friendly and powerful as
compared to multiple distinct tools provided by Scotty.

Modern IDEs often come with an integrated GUI builder
(also known as GUI editor), which simplifies GUI creation
by allowing the designer to arrange widgets using a drag-

and-drop WYSIWYG editor. As today’s user interfaces are
commonly programmed using an event-driven architecture,
GUI builders also simplify creation of event-driven code,
by supporting code that connects widgets with the incoming
(input) and outgoing (drawing) events that trigger functions
providing the application logic.

Integrating WADE with the IDE and GUI builder
However, integrating an IDE with a GUI builder into the
third party add-on development process is no simple task.
GUI builders in existing IDEs are designed to facilitate the
creation of new interfaces from scratch, rather than to
modify existing interfaces. In addition, existing GUI
builders tend to assume that source code associated with the
GUI components will be available. In our case, however,
that crucial piece of information is missing.

In order to enable the WADE GUI builder to modify GUI
components and their associated program logic for a third-
party application, the following steps are needed:

1) Extract the GUI hierarchy information from the host
application.

2) Send this information to the GUI builder inside of an IDE.

3) In the IDE, convert this information into a format that can
be displayed as GUI widgets in the GUI builder, so
programmers can manipulate them in a WYSIWYG
fashion.

4) Analyze and compile the changes made by the
programmer into an add-on that can correctly modify the
appearance and behavior of the host application at
runtime.

Before elaborating on the implementation process, we will
first define a few terms.

GUI frameworks typically organize widgets into a tree. The
root tree has sub-trees that represent windows and their
associated widgets.

We term the root tree of the host application as host GUI
hierarchy, which contains many host widget sub-trees.
Each host widget sub-tree represents a window that has a
hierarchy of host widgets.

We replicate the host GUI hierarchy inside the IDE’s GUI
builder. The replicated copy is called the cloned GUI
hierarchy, which consists of many cloned widget sub-trees.
Each cloned widget sub-tree has many cloned widgets.

The relationship between these terms is illustrated in the
left and right panels of Figure 4. We now describe in more
detail the steps involved in using WADE to modify GUI
components and associated program logic for a third-party
applications.

Step 1: Extract GUI hierarchy information

We overload the Injected Add-on Manager to perform
several additional steps beyond basic add-on management.
In order to gain access to all of the widgets in the host GUI

Supported IDE

,>~ GUI Builder AN
4

Host Application
- N
4 — \\
3 Host GUI Hierarchy

Cll cloned GUI Hierarchy

Cloned Widget Trees "‘, O
(XX}
-
<

Cj LX) (’ \ Cloned Widgets
-~

Cj Xyl O Host Widgets
Injected Add-on | . ' | \apE pE Add-on
\ Manager / Vi

AN
N / e 7

Figure 4: WADE components: the Injected Add-on Manager
(left panel) inside the host application manages add-ons and
communicates the GUI information with a compatible IDE via
the WADE IDE Add-on component (right panel). The WADE
IDE Add-on then clones the host application’s GUI in the
IDE’s GUI Builder to allow WYSWYG modification of the
original UL The changes made in IDE can then be compiled
into a third-party add-on to alter the appearance and behavior
of the host application.

hierarchy, the Injected Add-on Manager walks each of
these trees to extract its structure and to identify the
properties (e.g., name, size, location, label, etc.) of each
widget in the hierarchy. We use the
System.Windows.Forms.Control class in .NET, whose
controls property exposes a collection of all of these child
controls. Through this component, we can access the
structure and properties of an entire application's existing
interface.

In addition, the Injected Add-on Manager constructs a
component dictionary of all the widgets of the unmodified
host GUI hierarchy by using the name and address of each
widget as a (key, value) pair in the dictionary. This
information is saved as a reference point so that any
potential changes made by a third-party programmer using
the IDE can later be discovered.

Step 2: Send information to the GUI builder

The Injected Add-on Manager then serializes the extracted
properties of each host widget via the WADE IDE Add-on to
the IDE. For most widgets, information such as name, size,
location, text, etc. are directly sent through a basic text
stream. For widgets with background images or complex
structures, such information is first saved as cache files in
image or XML format before being transferred over.

Step 3: Convert and present GU!I information in GUI builder
After receiving complete GUI information from the
Injected Add-on Manager, the WADE IDE Add-on then
constructs a project with the same UI properties as
extracted from the original program. With the extracted Ul
information, the WADE IDE Add-on clones the existing
interface into a new project in the IDE. In our current
WADE implementation, we have integrated the WADE IDE
Add-on with SharpDevelop 4.2 and Microsoft Visual Studio
2012 Ultimate to provide code and GUI builder support.
The WADE IDE Add-on uses the serialized information to

replicate the host GUI hierarchy on the canvas of the
supported IDE’s GUI builder.

Step 4: Analyze and apply changes

Third-party add-on developers can then modify the cloned
GUI hierarchy in a WYSIWYG fashion. This modified
cloned GUI hierarchy and its associated program behavior
is compiled into an add-on (in a DLL) that can be loaded
into the host application by the Injected Add-on Manager.

Using the earlier constructed component dictionary, the
Injected Add-on Manager can then examine the modified
cloned GUI hierarchy inside the add-on and apply the
changes to the host GUI hierarchy as described by the
following simplified algorithm:

1) make all widgets in the host GUI hierarchy invisible
2) foreach cloned widget tree in the cloned GUI hierarchy:

3) perform a breadth-first walk through all the cloned
widgets, and for each cloned widget:

4) try to find its corresponding host widget by looking
up in the component dictionary using the widget
name as the key

5) if a corresponding host widget is found:

6) iterate through the properties (including event
handlers) of the cloned widget and set them to
those of the host widget, and make it visible

7) if a corresponding host widget cannot be found:

8) add this cloned widget to the parent of the
corresponding host widget in the host GUI
hierarchy, and make it visible

Using this algorithm, WADE can apply a third-party
programmer’s changes in the cloned GUI hierarchy to the
GUI hierarchy of the host application. These changes
include adding or deleting a widget, modifying the
properties of a widget, or adding or modifying the event
handlers of a widget.

Adding widgets is handled in the 7" and 8" statements of
the algorithm. When the Injected Add-on Manager finds a
cloned widget not in the component dictionary, it knows it
is a new widget and adds it accordingly to the host GUI
hierarchy.

Deleting widgets is implicitly handled by initially setting
all host widgets to be invisible (1 statement in algorithm),
and only making visible those found in the cloned GUI
hierarchy. The deleted widgets therefore will remain
invisible after this process, and will appear to the user as if
they had been deleted from the host application. We choose
to hide the widget instead of deleting it because removing a
widget at runtime may be risky. As a widget may have
unknown runtime dependencies, permanently removing it
may cause the application to crash. Thus, we choose a safer
approach to achieve a similar effect.

Property modification of a widget is also handled in a
simple yet effective fashion in the 5™ and 6™ statements of
the algorithm. The number of widgets in the host GUI
hierarchy 1is typically not exhaustive. So, instead of
expending effort to explicitly detect individual changes, we
simply reset all properties of all host widgets to the
properties of their corresponding cloned widgets, regardless
of whether the cloned widget has been modified or not.

Event handler modifications are also implicitly handled
during the property resetting process because the .NET
framework treats event handlers as part of the properties of
a widget. Changing and associating new program logic with
host widgets can be effectively applied without much
additional effort beyond implementing the desired
functionality.

As such, we successfully integrate the GUI builder and a
number of IDE features into the third-party software add-on
development process.

While WADE demonstrates a promising step towards
addressing the power and ease of use trade-off for runtime
modifications, it is important to note that WADE is not
without limitations.

Interface dynamics

WADE enables the user to perform WYSIWYG
modification of the GUI hierarchy only to the initial
application state. Many interfaces, however, are dynamic
and rely on runtime code that may alter the interface from
how it appeared at the moment it was imported into WADE
(i.e., dynamic widgets). Since the content of a widget can
change at runtime, content modification through the GUI
editor may not be applied back to the original application.
Changes to the application may also conflict with the
modifications implemented in WADE, possibly leading to
unstable modifications that may not behave as expected.

However, certain interface dynamics can still be addressed
using the WADE approach. For example, if dynamic
widgets are initialized only once upon program invocation,
it may still be possible to apply modifications using a
monitoring program that knows when to take action after
initialization.

Custom widgets

Another limitation of WADE is that the current
implementation provides limited support for modification
of custom widgets. Custom widgets often have derived
custom properties and behaviors that are not recognizable
by the GUI builder; they therefore cannot be properly
displayed in the IDE.

However, not all custom widgets are unrecognizable.
Custom widgets that derive from a standard, known widget
will be treated as the base widget. The GUI editor can thus
handle the inherited properties, but will be ignorant of any
derivative behavior and properties.

Overall, developers are advised to first get familiar with the
application behavior to clearly identify customization and
runtime interface dynamics before using WADE to perform
runtime modifications.

Security implications

Overloading at runtime can cause problems if the
replacement method violates any of the assumptions in the
original application’s design. It is thus recommended to
practice careful and defensive programming to avoid
breaking the original application logic [4].

However, as compared to toolkit modification approaches,
WADE diminishes the risk of breaking the host application.
In existing approaches, all modifications involve writing
arbitrary code. With WADE’s property editors and
templates, the surface footprint of this code is diminished,
and supported modifications can wuse known clean
implementations. Writing additional code will remain risky
as in Scotty and other toolkit approaches, but certain
common modifications are now much safer.

USER STUDY

In order to assess the usefulness of WADE, we performed a
user study. In terms of purpose and capabilities, WADE is
most similar to Scotty [4]. Other alternatives, while having
their own advantages, are less comparable to WADE in
terms of the functionality provided or applicability. For
example, surface-based approaches such as Fagade and
Prefab lack the ability penetrate underneath the surface;
SubArtic requires use of the SubArtic toolkit to begin with.

While we expected WADE to significantly simplify add-on
development as compared to Scotty, a primary objective of
the user-study was to quantify the speed-up obtained with
WADE over Scotty while modifying third-party software,
and identify those WADE characteristics responsible for the
speed-up. To this end, we performed a controlled
experiment to assess and compare the strengths and
limitations of the Scotty and WADE approaches.

Participants

Eight participants (7 males, 1 female) ranging from 21 to 32
years old (u = 25.5, o = 3.34) participated in this study. All
participants were experienced computer users and
programmers.

Apparatus

The experiment was conducted using a DELL Optiplex 990
Desktop computer running on the Windows XP operating
system, with 4 GB RAM and Intel Core i17-2600-3.40 GHz
CPU. A Dell E2211H monitor, a USB optical mouse and a
standard keyboard were used as the input/output devices.
The Paint.NET interface to be modified is implemented in
C# using Microsoft Visual Studio.

As Scotty was developed for the Cocoa framework in Mac
OS whereas WADE runs on the .NET framework in
Windows, we created a Scotty-like development
environment (Scotty simulator) to support user tasks on
Windows using the following tools:

A anoged Spy
File Wew Hep
i Fe X |
deveny M3py - Miciosol Visual Shado |184] Propaities | Evenis
= Wirdewaipplcation?d Foml [1900] aa _ A

= Foml [WindowsAppbcationT3 Forml]
butlon] [Systes Wirndows Forms Bullor]
= panell [SpsemWindows Foms Parel] Accasaiblet arme
= spContsiner] [SystemWindows Foum _ Accesublefice Dietat
= cronames [System Windows Foee) Appeatance

Az siablaD estiphion

beehiewd [SystemWirdows Fy | DckColor I Red
= cnonamed [Syshem Windows Foam BerderStys Freed 0t
= tobContoll [System Windows || | Cumsor B eam

Micionoft Sans Senl, 8250t

= 1akPagel [SystemWindow B Fant B it
——

= tableLapouFanel 5y | FoueColr

label [Spemiy | [Lines Stiirg] Asay
labwd [Sistem Wi RightTolelt Ma

labetd [Swsben Wi SerolBiars Hane
labelZ [Srbeninfe Tet Testing
L P Tesdbhon Left

Figure 5. Screenshot of the ManagedSpy tool.

Runtime add-on manager: a tool that enables a compiled
add-on to be installed onto an existing program at runtime.

ManagedSpy: a Microsoft utility program that allows
developers to spy on an application's GUI at runtime.
Figure 5 presents a screen-shot of the program which
allows a user to discover the names, types, and properties of
the host application’s GUI components at runtime. The
ManagedSpy serves a similar functionality to the hierarchy
browser, widget picker, and object observer tools offered in
the Scotty environment. For WADE, we provided the add-
on manager and the WADE IDE based on SharpDevelop
4.2 with GUI builder as previously described.

Task and Training

Before the actual experiment, each participant was given a
tutorial demonstration and three practice tasks similar to the
experimental tasks to familiarize him/herself with the use of
the Scotty simulator and WADE. For each approach, we
provided a manual with the information necessary for the
users to complete the tasks.

The manual for the Scotty-like approach included step-by-
step instructions for (i) accessing the GUI window and
child widgets, (ii) changing widget properties using the
information retrieved by ManagedSpy, (iii) coding snippets
to hide items, (iv) coding snippets to add new widgets, and
(v) using the add-on manager to insert DLLs back to the
host application. The WADE manual included instructions
on how to (i) trigger commands to inject the add-on
manager DLL, (ii) clone the host application, (iii) write
GUI modifications to a DLL and (iv) re-inject this DLL
back to the host program.

Note that the instructions we provided made code-based
modifications (as with the Scotty simulator) much easier,
because in real world scenarios, the methodology for
achieving GUI modifications is not obvious and must be
figured out in a trial and error fashion. However, to
facilitate participants’ completion of the tasks, we provided
all the requisite information in the user manual.

The tasks to be completed using (a) our Scotty simulator
and (b) WADE in the experiment are described below:

e Personalized reconfiguration: In the first task, users
were required to rename two menu items, hide three
menu items, change the font size and style of the main
menu bar, and change the representational picture for a
widget.

¢ Adding functionality via add-ons: For the second task,
users were required to add a new button called “Undo all”
on the icon bar (as in Figure 1). Once the “Undo all”
button is clicked, it would undo all user modifications for
a particular session.

Experimental Design

We wused a within-participants design in which all
participants were asked to perform all tasks using both
approaches. Participants were randomly assigned to two
groups of four participants each. Half of the participants
performed the two tasks with the Scotty simulator first,
followed by WADE, while the other half performed the two
tasks in the reverse order. Each participant performed the
entire experiment in one sitting lasting 1-2 hours, with
optional breaks between tasks.

In summary, the design was as follows (excluding practice
tasks): 8 subjects x 2 coding approaches (Scotty-simulator
vs. WADE) x 2 tasks (GUI reconfiguration, add-on
development) = 32 tasks in total. Comparative factors were
time spent on the tasks, whether or not the task was
successful, and participants' subjective preferences in their
post-experiment questionnaire.

Results
The user-study results confirmed that software modification
is much easier with WADE than with Scotty.

Accuracy: Seven participants finished all tasks, while one
participant only finished the first task using both
approaches. Therefore, from the task completion point of
view, there was no difference between the two approaches.

However, there was a difference in the number of attempts
it took for participants to finish each task. An atfempt
denotes each instance a participant believed the task was
complete, and tried to execute the modifications he/she had
made. Errors in program execution, therefore, resulted in
multiple attempts. On average, participants required 1.13
attempts to complete a task using WADE, and 1.75
attempts with the Scotty-like approach. A paired #-test
comparison between the two approaches revealed that this
difference is marginally significant (; = 4.07, p = .083).
This result suggests that users are likely to commit fewer
mistakes during interface modification using WADE than
Scotty.

Time to task completion: We then conducted a 2x2
repeated measures ANOVA on the task-completion times
with the approach type (WADE/Scotty) and task type
(reconfiguration/add-on integration) as the relevant factors.
Figure 6 presents the results. As expected, we found a
significant main effect of the approach used (¥, ; = 31.41,

1,200
1,100 |
1,000
900
800
700
600
500
400
300
200
100

u Scotty-like

=EWADE

Time (sec)

Overall Reconfiguration Add-on integration

Figure 6: Comparison of task completion times for WADE
and Scotty.

2<0.01) on the task-completion time, which implies that on
average, users completed the two tasks significantly (about
2.4 times) faster using WADE (264.4 s) than with the
Scotty-simulator (639 s).

Qualitative comparison: After the experiment, participants
were asked to rate various aspects of the two approaches on
a 5-point Likert scale. In all, they answered four questions
concerning usefulness (how useful was the software
modification tool?), user productivity (how much did this
tool improve your productivity?), learnability (how easy
was it to learn the steps involved in this approach?) and
overall satisfaction. WADE received a minimum average
score of 4.75 on all counts. On the other hand, the Scotty-
like approach received a highest score of 3.25 for
usefulness, and a lowest score of 2.25 on user productivity.

Discussion

Factors contributing to WADE'’s performance advantage
Results of the user study clearly demonstrate the advantages
of using WADE’s integrated approach for reconfiguration
and add-on development tasks. The performance gain with
WADE arose due to a number of factors as enumerated
below.

1) The WYSIWIG GUI editor allows participants to more
directly interact with and manipulate widgets and their
properties. This consequently saves time and effort required
to look up the GUI widget hierarchy for appropriate names
and properties before applying any changes, as indicated by
our participants: “WADE enables direct manipulation which
is easy, faster and intuitive. (P1, P5)”.

2) Fewer task completion attempts using WADE can be
attributed to the fact that direct interface manipulation
essentially involves recognition of widgets and their
properties, while coding relies on sense making and recall.
It is easier to make mistakes using the pure coding
approach, as indicated by the higher average number of
attempts mentioned earlier.

3) Although coding is necessary to add/modify GUI
functionality, the WADE IDE provides scaffolding in the
form of event handler templates to aid the development

process. “The event handler template makes coding easier”
(P1).

4) In the Scotty-like approach, the sense-making process
and coding for the add-ons are separate tasks handled using
different tools and applications, causing additional
overhead both cognitively, in terms of remembering and
linking the information, as well as physically, in terms of
operating and interacting with multiple, different tools. In
WADE, the IDE provides an integrated environment for
coding, which can reduce the time spent on managing and
interpreting the code. As indicated by P4: “Switching back
and forth between ManagedSpy and IDE is tedious and
frustrating”.

5) Finally, as all necessary instructions required for
modifying Ul components using the Scotty simulator,
typically unavailable in the real world, were provided to
users, latency involved in discovering the correct
modification commands is not accounted for in this study.
Therefore, one can expect WADE to enable an even larger
performance gain over toolkit-based deep approaches such
as Scotty in real-world scenarios.

In summary, the advantages of WADE over Scotty-like
approaches are (1) Direct and easy location-cum-
manipulation of target widgets due to the WYSIWYG
editor; (2) Fewer chances of committing errors during
interface modification as the Ul modification process is
simplified by the WADE IDE; (3) Scaffolding provided by
WADE for incorporating add-ons, in the form of event
handlers, enables easier and faster addition/modification of
functionality; (4) Facilitation provided by the IDE
significantly reduces switching time between different
applications and tools; (5) Less search time required to find
the correct statements to manipulate GUI properties.

While the user study conclusions are not surprising, as
WYSIWYG GUI editing is easier than explicit code
hacking, it demonstrates that an IDE greatly simplifies UI
modification as compared to a Scotty-like approach even
for relatively experienced programmers. All of our
participants mentioned that they are less likely to use the
Scotty simulator for implementing third-party add-ons. On
the other hand, WADE significantly lowers the knowledge
barrier for developing third-party GUI add-ons. Six out of
eight participants indicated that they would use WADE to
write add-ons for third-party software.

Limits of the GUI builder metaphor

While many of the modifications were easier to perform
using a GUI builder, participants also found it less
convenient when dealing with repetitive or looping tasks.
For example, if a participant is asked to change 6 out of 7
labels to a different font type, it is easier to use a loop than
manually perform the changes multiple times. The GUI
metaphor delivers important benefits to learnability,
memorability, and error prevention, but it can be inefficient
for frequent users [8]. In such cases, a command language

may be preferred as it allows simpler programming of
similar and repetitive tasks, but at the cost of requiring the
user to learn command names and syntax, putting more
demands on the user’s memory and increasing the chance
of errors. Combining both approaches may mitigate this
trade-off. For example, Inky [8] allows for sloppy
command input and provides rich visual feedback to reduce
the cost on user’s memory, making it less error-prone.
Sikuli [17], on the other hand, enables inclusion of visual
images in the command to make it easier and more intuitive
to refer to graphical elements. To some extent, WADE
follows the same approach by introducing the GUI builder
into Scotty’s command line programming environment to
improve the ease of use and robustness of the third party
add-on development. However, our user study has revealed
that there is room for improvement to better combine the
advantages of the GUI builder and command line
programming to further improve the efficiency and ease of
use of third party add-on development.

EXTENSION TO OTHER FRAMEWORKS & PLATFORMS
Although WADE is currently only implemented for the
Windows Forms framework, its approach can be
generalized to most other frameworks and platforms.

In general, the WADE approach involves the following
three framework-dependent steps:

1) Create an injected add-on manager that can enter the
runtime process to manage add-ons, retrieve the GUI
hierarchy information, and apply changes back to the host
application.

2) Identify a suitable IDE that has GUI builder support and
allows add-on integration.

3) Implement an add-on for the IDE that can import the
GUI hierarchy from the host application, display it in the
GUI builder, and compile the changes to a DLL add-on.

Choosing runtime code intervention method

The key to step 1 is runtime code observation and
intervention. On Windows, we use DLL injection. (A
solution for Mac OS X is described in [4].) While there are
several ways to achieve DLL injection in Windows, we
present two primary methods below: a) registry key-based
injection and b) system hook-based injection [14].

Registry key-based injection works by adding a new DLL
to a registry Applnit key. In Windows Vista and Windows
7, this feature is disabled by default, but can be achieved
through code signing. Whenever a new application loads,
the DLL will be loaded into the same process as well.

System hook-based injection works by using a separate
background monitoring application that detects new
programs and uses methods such as SetWindowsHookEx.
While more cumbersome and complex, this approach
injects the DLL at the deeper thread level and can be used
by all versions of Windows.

Choosing which method to use depends on the frameworks
used. Some (e.g., Windows Forms) allow modification of
the UI thread in the process level. Other frameworks (e.g.,
QT [11]) do not allow such modifications; therefore, thread
level intervention becomes necessary. Once the appropriate
runtime code observation and intervention method is
identified for a particular framework and platform, the
remaining effort mostly concerns the work of writing the
injected add-on manager for the framework.

Identifying IDEs with GUI builder and add-on support
The second step is to choose a suitable IDE that supports
GUI editing for add-on development. To shorten the
development time, it is recommended that an existing IDE
be chosen for a particular framework to work.

As WYSIWYG GUI editing becomes more popular, it is
not difficult to identify such IDEs for many of the modern
frameworks. For example, in the Java platform, NetBeans
and Eclipse are two such IDEs; Qt Creator [10] is an
example that satisfies these requirements for the popular Qt
framework; XCode is an IDE that is suitable for the Mac
OS Cocoa framework. We implemented the WADE
prototype for both the Visual Studio and Sharp Develop
IDEs.

Developing an add-on for importing and presenting GUI
Once a suitable IDE is identified, the steps mentioned in the
implementation section can be followed to create an add-on
that can import and present the host GUI hierarchy in the
IDE’s GUI builder. The exact process of implementing add-
ons may be complex and depends on the details of the
particular environment. However, it is technically feasible
and the approach we have proposed in the implementation
section can serve as a useful guideline for the development
process.

CONCLUSIONS AND FUTURE WORK

The WADE IDE is shown to be useful for realizing a
variety of GUI-based modifications in existing software.
The presented user study confirms that while these
modifications are achievable employing alternative
approaches, WADE significantly lowers the requisite
knowledge and effort barriers. Future work involves
extending the current implementation to other OS
platforms, widening WADE support to handle custom and
dynamic widgets, and potentially enabling debugging
capabilities inside the WADE IDE for add-on development.

ACKNOWLEDGMENT

We thank the AC and anonymous reviewers for their
constructive comments and feedback. We thank members
of the NUS-HCI Lab for their support. This research is
supported by National University of Singapore Academic
Research Fund WBS R-252-000-414-101 and by A*STAR,
Singapore, under the Human Sixth Sense Program (HSSP)
grant.

REFERENCES

1. Besacier, G., and Vernier, F. Toward user interface
virtualization: legacy applications and innovative
interaction systems. In EICS, 157-166, 2009.

2. Dixon, M., and Fogarty, J. Prefab: implementing
advanced behaviors using pixel-based reverse
engineering of interface structure. In CHI, 1525-1534,
2010.

3. Dixon, M., Leventhal, D., and Fogarty, J. Content and
hierarchy in pixel-based methods for reverse
engineering interface structure. In CHI, 969-978, 2011.

4. Eagan, J.R., Beaudouin-Lafon, M., and Mackay, W. E.
Cracking the cocoa nut: user interface programming at
runtime. In UIST, 225-234, 2011.

5. Edwards, W. K., Hudson, S. E., Marinacci, J.,
Rodenstein, R., Rodriguez, T., and Smith, I. Systematic
output modification in a 2d user interface toolkit. In
UIST, 151158, 1997.

6. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J.,
Rector, K., and Kwan, I. End-user debugging strategies:
A sensemaking perspective. In TOCHI, 19(1):5:1-5:28,
May 2012.

7. Mackay, W.E. Triggers and barriers to customizing
software. In CHI, 153-160, 1991.

8. Miller, R.C., Chou, V.H., Bernstein, M., Little, G.,
Kleek. M. V., Karger, D., and schraefel. M. 2008. Inky: a
sloppy command line for the web with rich visual
feedback. In UIST (2008), 131-140.

9. Pirolli, P. and Card, S. The sense-making process and
leverage points for analyst technology as identified
through cognitive task analysis. In ICIA, 2005.

10.Qt Creator. http://gitorious.org/qt-creator/qt-creator
11.Qt framework. http://qt-project.org/

12.Robinson, M. Design for unanticipated use. In ECSCW,
187-202, 1993.

13.Shewmaker, J. Analyzing DLL Injection,
http://www.bluenotch.com/files/Shewmaker-DLL-
Injection.pdf.

14. Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel,
N. User Interface Facades: Towards Fully Adaptable
User Interfaces. In UIST, 309-318, 2006.

15.Tan, D.S., Meyers, B., and Czerwinski, M. Wincuts:
manipulating arbitrary window regions for more
effective use of screen space. In CHI extended abstracts,
1525-1528, 2004.

16. WineHQ. http://www.winehq.org/.

17.Yeh, T., Chang, T., and Miller, R. Sikuli: using gui
screenshots for search and automation. In UIST (2003),
183-192,20

http://qt-project.org/
http://www.bluenotch.com/files/Shewmaker-DLL-Injection.pdf
http://www.bluenotch.com/files/Shewmaker-DLL-Injection.pdf
http://www.winehq.org/

	WADE: Simplified GUI Add-on Development for Third-party Software
	ABSTRACT
	Author Keywords
	ACM Classification Keywords
	General Terms

	INTRODUCTION
	Related work
	Surface-level modification
	Toolkit-based deep modification

	Using WADE
	Language localization and template creation
	Link to external function call
	Discussion
	Comparison with previous approaches

	WADE IDE FOR Add-on development
	Injecting WADE add-on manager to host application
	Supporting third-party add-on development
	Integrating WADE with the IDE and GUI builder
	Step 1: Extract GUI hierarchy information
	Step 2: Send information to the GUI builder
	Step 3: Convert and present GUI information in GUI builder
	Step 4: Analyze and apply changes

	Interface dynamics
	Custom widgets
	Security implications

	user study
	Participants
	Apparatus
	Task and Training
	Experimental Design
	Results
	Discussion
	Factors contributing to WADE’s performance advantage

	Limits of the GUI builder metaphor

	EXTENSION TO OTHER FRAMEWORKS & PLATFORMS
	Choosing runtime code intervention method
	Identifying IDEs with GUI builder and add-on support
	Developing an add-on for importing and presenting GUI

	conclusions and future work
	Acknowledgment
	REFERENCES

