
avr-libc Reference Manual
20021209cvs

Generated by Doxygen 1.2.18

Mon Dec 9 22:14:26 2002

CONTENTS i

Contents

1 AVR Libc 1

1.0.1 Supported Devices. 2

2 avr-libc Module Index 3

2.1 avr-libc Modules . 3

3 avr-libc Data Structure Index 4

3.1 avr-libc Data Structures. 4

4 avr-libc Page Index 4

4.1 avr-libc Related Pages. 4

5 avr-libc Module Documentation 5

5.1 EEPROM handling. 5

5.1.1 Detailed Description. 5

5.1.2 Define Documentation. 6

5.1.3 Function Documentation. 6

5.2 AVR device-specific IO definitions. 7

5.3 Program Space String Utilities. 8

5.3.1 Detailed Description. 8

5.3.2 Define Documentation. 8

5.3.3 Function Documentation. 9

5.4 Additional notes from<avr/sfr defs.h> 11

5.5 Power Management and Sleep Modes. 13

5.5.1 Detailed Description. 13

5.5.2 Define Documentation. 13

5.5.3 Function Documentation. 14

5.6 Character Operations. 14

5.6.1 Detailed Description. 14

5.6.2 Function Documentation. 15

5.7 System Errors (errno). 17

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

CONTENTS ii

5.7.1 Detailed Description. 17

5.7.2 Define Documentation. 17

5.8 Integer Types. 17

5.8.1 Detailed Description. 17

5.9 Mathematics. 18

5.9.1 Detailed Description. 18

5.9.2 Define Documentation. 19

5.9.3 Function Documentation. 19

5.10 Setjmp and Longjmp. 22

5.10.1 Detailed Description. 22

5.10.2 Function Documentation. 23

5.11 Standard IO facilities. 24

5.11.1 Detailed Description. 24

5.11.2 Define Documentation. 26

5.11.3 Function Documentation. 27

5.12 General utilities. 31

5.12.1 Detailed Description. 31

5.12.2 Define Documentation. 33

5.12.3 Typedef Documentation. 34

5.12.4 Function Documentation. 34

5.12.5 Variable Documentation. 40

5.13 Strings. 41

5.13.1 Detailed Description. 41

5.13.2 Function Documentation. 42

5.14 Interrupts and Signals. 48

5.14.1 Detailed Description. 48

5.14.2 Define Documentation. 51

5.14.3 Function Documentation. 52

5.15 Special function registers. 53

5.15.1 Detailed Description. 53

5.15.2 Define Documentation. 55

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

CONTENTS iii

6 avr-libc Data Structure Documentation 57

6.1 div t Struct Reference. 57

6.1.1 Detailed Description. 57

6.2 ldiv t Struct Reference. 57

6.2.1 Detailed Description. 57

7 avr-libc Page Documentation 58

7.1 Acknowledgments . 58

7.2 avr-libc and assembler programs. 58

7.2.1 Introduction. 58

7.2.2 Invoking the compiler . 59

7.2.3 Example program. 60

7.3 Frequently Asked Questions. 62

7.3.1 FAQ Index . 62

7.3.2 My program doesn’t recognize a variable updated within an
interrupt routine . 63

7.3.3 I get ”undefined reference to...” for functions like ”sin()”. . . 64

7.3.4 How to permanently bind a variable to a register?. 64

7.3.5 How to modify MCUCR or WDTCR early?. 64

7.3.6 What is all thisBV() stuff about? 65

7.3.7 Can I use C++ on the AVR?. 66

7.3.8 Shouldn’t I initialize all my variables?. 66

7.3.9 Why do some 16-bit timer registers sometimes get trashed?. 67

7.3.10 How do I use a #define’d constant in an asm statement?. . . . 68

7.3.11 Why does the PC randomly jump around when single-stepping
through my program in avr-gdb?. 68

7.3.12 How do I trace an assembler file in avr-gdb?. 69

7.3.13 How do I pass an IO port as a parameter to a function?. . . . 71

7.3.14 What registers are used by the C compiler?. 72

7.3.15 How do I put an array of strings completely in ROM?. 74

7.3.16 How to use external RAM?. 75

7.4 Inline Asm . 76

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

CONTENTS iv

7.4.1 GCC asm Statement. 77

7.4.2 Assembler Code. 78

7.4.3 Input and Output Operands. 79

7.4.4 Clobbers . 83

7.4.5 Assembler Macros. 85

7.4.6 C Stub Functions. 86

7.4.7 C Names Used in Assembler Code. 87

7.4.8 Links . 88

7.5 Using malloc() . 88

7.5.1 Introduction. 88

7.5.2 Internal vs. external RAM. 89

7.5.3 Tunables for malloc(). 89

7.5.4 Implementation details. 91

7.6 Memory Sections. 92

7.6.1 The .text Section. 92

7.6.2 The .data Section. 93

7.6.3 The .bss Section. 93

7.6.4 The .eeprom Section. 93

7.6.5 The .noinit Section. 93

7.6.6 The .initN Sections. 94

7.6.7 The .finiN Sections. 95

7.6.8 Using Sections in Assembler Code. 96

7.6.9 Using Sections in C Code. 96

7.7 Installing the GNU Tool Chain. 97

7.7.1 Required Tools. 98

7.7.2 Optional Tools . 98

7.7.3 GNU Binutils for the AVR target. 99

7.7.4 GCC for the AVR target. 100

7.7.5 AVR Libc . 101

7.7.6 UISP . 101

7.7.7 Avrprog. 102

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

1 AVR Libc 1

7.7.8 GDB for the AVR target. 102

7.7.9 Simulavr . 102

7.7.10 AVaRice. 103

7.8 Using the avrprog program. 103

7.9 Using the GNU tools. 105

7.9.1 Options for the C compiler avr-gcc. 105

7.9.2 Options for the assembler avr-as. 109

7.9.3 Controlling the linker avr-ld. 110

7.10 A simple project. 112

7.10.1 The Project. 112

7.10.2 The Source Code. 114

7.10.3 Compiling and Linking. 116

7.10.4 Examining the Object File. 116

7.10.5 Linker Map Files. 120

7.10.6 Intel Hex Files . 121

7.10.7 Make Build the Project. 122

7.11 Deprecated List. 124

1 AVR Libc

The latest version of this document is always available from
http://savannah.nongnu.org/projects/avr-libc/.

The AVR Libc package provides a subset of the standard C library for Atmel AVR 8-bit
RISC microcontrollers. In addition, the library provides the basic startup code needed
by most applications.

There is a wealth of information in this document which goes beyond simply describ-
ing the interfaces and routines provided by the library. We hope that this document
provides enough information to get a new AVR developer up to speed quickly using
the freely available development tools: binutils, gcc avr-libc and many others.

If you find yourself stuck on a problem which this document doesn’t quite address, you
may wish to post a message to the avr-gcc mailing list. Most of the developers of the
AVR binutils and gcc ports in addition to the devleopers of avr-libc subscribe to the
list, so you will usually be able to get your problem resolved. You can subscribe to
the list athttp://www.avr1.org/mailman/listinfo/avr-gcc-list/.
Before posting to the list, you might want to try reading theFrequently Asked Ques-

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

http://savannah.nongnu.org/projects/avr-libc/.
http://www.avr1.org/mailman/listinfo/avr-gcc-list/.

1 AVR Libc 2

tionschapter of this document.

Note:
This document is a work in progress. As such, it may contain incorrect in-
formation. If you find a mistake, please send an email to theavr-libc-
dev@nongnu.org describing the mistake. Also, send us an email if you find
that a specific topic is missing from the document.

1.0.1 Supported Devices

The following is a list of AVR devices currently supported by the library.

AT90S Type Devices:
• at90s1200[1]
• at90s2313
• at90s2323
• at90s2333
• at90s2343
• at90s4414
• at90s4433
• at90s4434
• at90s8515
• at90s8534
• at90s8535

ATmega Type Devices:
• atmega8
• atmega103
• atmega128
• atmega16
• atmega161
• atmega162
• atmega163
• atmega169
• atmega32
• atmega323
• atmega64 [untested]
• atmega8515 [untested]
• atmega8535 [untested]

ATtiny Type Devices:
• attiny10[1]
• attiny11[1]
• attiny12[1]
• attiny15[1]
• attiny22
• attiny26
• attiny28[1]

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

mailto:avr-libc-dev@nongnu.org
mailto:avr-libc-dev@nongnu.org

2 avr-libc Module Index 3

Misc Devices:
• at94K[2]
• at76c711[3]

Note:
[1] Assembly only. There is no support for these devices to be programmed in C
since they do not have a ram based stack.

Note:
[2] The at94K devices are a combination of FPGA and AVR microcontroller.
[TRoth-2002/11/12: Not sure of the level of support for these. More information
would be welcomed.]

Note:
[3] The at76c711 is a USB to fast serial interface bridge chip using an AVR core.
It seems to be supported by binutils and gcc, but is only partially supported by
avr-libc. The missing piece seems to becrt76711.o .

2 avr-libc Module Index

2.1 avr-libc Modules

Here is a list of all modules:

EEPROM handling 5

AVR device-specific IO definitions 7

Program Space String Utilities 8

Power Management and Sleep Modes 13

Character Operations 14

System Errors (errno) 17

Integer Types 17

Mathematics 18

Setjmp and Longjmp 22

Standard IO facilities 24

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

3 avr-libc Data Structure Index 4

General utilities 31

Strings 41

Interrupts and Signals 48

Special function registers 53

Additional notes from <avr/sfr defs.h> 11

3 avr-libc Data Structure Index

3.1 avr-libc Data Structures

Here are the data structures with brief descriptions:

div t 57

ldiv t 57

4 avr-libc Page Index

4.1 avr-libc Related Pages

Here is a list of all related documentation pages:

Acknowledgments 58

avr-libc and assembler programs 58

Frequently Asked Questions 62

Inline Asm 76

Using malloc() 88

Memory Sections 92

Installing the GNU Tool Chain 97

Using the avrprog program 103

Using the GNU tools 105

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5 avr-libc Module Documentation 5

A simple project 112

Deprecated List 124

5 avr-libc Module Documentation

5.1 EEPROM handling

5.1.1 Detailed Description

#include <avr/eeprom.h>

This header file declares the interface to some simple library routines suitable for han-
dling the data EEPROM contained in the AVR microcontrollers. The implementation
uses a simple polled mode interface. Applications that require interrupt-controlled
EEPROM access to ensure that no time will be wasted in spinloops will have to deploy
their own implementation.

Note:
All of the read/write functions first make sure the EEPROM is ready to be ac-
cessed. Since this may cause long delays if a write operation is still pending, time-
critical applications should first poll the EEPROM e. g. usingeepromis ready()
before attempting any actual I/O.

avr-libc declarations

• #defineeepromis ready() bit is clear(EECR, EEWE)
• uint8 t eepromreadbyte(uint8 t ∗addr)
• uint16 t eepromreadword (uint16 t ∗addr)
• void eepromwrite byte(uint8 t ∗addr, uint8t val)
• void eepromreadblock (void ∗buf, void∗addr, sizet n)

Backwards compatibility defines

• #defineeepromrb(addr) eepromreadbyte ((uint8t ∗)(addr))
• #defineeepromrw(addr) eepromreadword ((uint16t ∗)(addr))
• #define eepromwb(addr, val) eepromwrite byte ((uint8t ∗)(addr), (uint8-

t)(val))

IAR C compatibility defines

• #define EEPUT(addr, val) eepromwb(addr, val)
• #define EEGET(var, addr) (var) = eepromrb(addr)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.1 EEPROM handling 6

5.1.2 Define Documentation

5.1.2.1 #defineEEGET(var, addr) (var) = eeprom rb(addr)

Read a byte from EEPROM.

5.1.2.2 #defineEEPUT(addr, val) eeprom wb(addr, val)

Write a byte to EEPROM.

5.1.2.3 #define eepromis ready() bit is clear(EECR, EEWE)

Returns:
1 if EEPROM is ready for a new read/write operation, 0 if not.

5.1.2.4 #define eepromrb(addr) eeprom read byte ((uint8 t ∗)(addr))

Deprecated:
Useeepromreadbyte()in new programs.

5.1.2.5 #define eepromrw(addr) eeprom read word ((uint16 t ∗)(addr))

Deprecated:
Useeepromreadword() in new programs.

5.1.2.6 #define eepromwb(addr, val) eeprom write byte ((uint8 t ∗)(addr),
(uint8 t)(val))

Deprecated:
Useeepromwrite byte()in new programs.

5.1.3 Function Documentation

5.1.3.1 void eepromread block (void ∗ buf, void ∗ addr, sizet n)

Read a block ofn bytes from EEPROM addressaddr to buf .

5.1.3.2 uint8t eeprom read byte (uint8 t ∗ addr)

Read one byte from EEPROM addressaddr .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.2 AVR device-specific IO definitions 7

5.1.3.3 uint16t eeprom read word (uint16 t ∗ addr)

Read one 16-bit word (little endian) from EEPROM addressaddr .

5.1.3.4 void eepromwrite byte (uint8 t ∗ addr, uint8 t val)

Write a byteval to EEPROM addressaddr .

5.2 AVR device-specific IO definitions

#include <avr/io.h>

This header file includes the apropriate IO definitions for the device that has been
specified by the-mmcu= compiler command-line switch.

Note that each of these files always includes

#include <avr/sfr_defs.h>

SeeSpecial function registersfor the details.

Included are definitions of the IO register set and their respective bit values as specified
in the Atmel documentation. Note that Atmel is not very consistent in its naming
conventions, so even identical functions sometimes get different names on different
devices.

Also included are the specific names useable for interrupt function definitions as docu-
mentedhere.

Finally, the following macros are defined:

• RAMEND

A constant describing the last on-chip RAM location.

• XRAMEND

A constant describing the last possible location in RAM. This is equal to RAMEND
for devices that do not allow for external RAM.

• E2END

A constant describing the address of the last EEPROM cell.

• FLASHEND

A constant describing the last byte address in flash ROM.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 8

5.3 Program Space String Utilities

5.3.1 Detailed Description

#include <avr/io.h>
#include <avr/pgmspace.h>

The functions in this module provide interfaces for a program to access data stored in
program space (flash memory) of the device. In order to use these functions, the target
device must support either theLPMor ELPMinstructions.

Note:
These function are an attempt to provide some compatibility with header files that
come with IAR C, to make porting applications between different compilers eas-
ier. This is not 100% compatibility though (GCC does not have full support for
multiple address spaces yet).

Note:
If you are working with strings which are completely based in ram, use the stan-
dard string functions described inStrings.

Defines

• #definePSTR(s) ({static char c[] PROGMEM = (s); c;})
• #definePGM P const progchar∗
• #definePGM VOID P const progvoid ∗

Functions

• unsigned char elpm inline (unsigned long addr) ATTR CONST
• void ∗ memcpyP (void ∗, PGM VOID P, sizet)
• int strcasecmpP (const char∗, PGM P) ATTR PURE
• char∗ strcatP (char∗, PGM P)
• int strcmpP (const char∗, PGM P) ATTR PURE
• char∗ strcpyP (char∗, PGM P)
• size t strlenP (PGM P) ATTR CONST
• int strncasecmpP (const char∗, PGM P, sizet) ATTR PURE
• int strncmpP (const char∗, PGM P, sizet) ATTR PURE
• char∗ strncpyP (char∗, PGM P, sizet)

5.3.2 Define Documentation

5.3.2.1 #define PGMP const progchar ∗

Used to declare a variable that is a pointer to a string in program space.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 9

5.3.2.2 #define PGMVOID P const progvoid ∗

Used to declare a generic pointer to an object in program space.

5.3.2.3 #define PSTR(s) ({static char c[] PROGMEM = (s); c;})

Used to declare a static pointer to a string in program space.

5.3.3 Function Documentation

5.3.3.1 unsigned char elpm inline (unsigned long addr) [static]

Use this for access to>64K program memory (ATmega103, ATmega128), addr =
RAMPZ:r31:r30

Note:
If possible, put your constant tables in the lower 64K and use ”lpm” since it is
more efficient that way, and you can still use the upper 64K for executable code.

5.3.3.2 void∗ memcpy P (void ∗ dest, PGM VOID P src, sizet n)

ThememcpyP() function is similar tomemcpy(), except the src string resides in pro-
gram space.

Returns:
ThememcpyP() function returns a pointer to dest.

5.3.3.3 int strcasecmpP (const char∗ s1, PGM P s2)

Compare two strings ignoring case.

ThestrcasecmpP() function compares the two strings s1 and s2, ignoring the case of
the characters.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Returns:
ThestrcasecmpP() function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.3 Program Space String Utilities 10

5.3.3.4 char∗ strcat P (char ∗ dest, PGM P src)

ThestrcatP() function is similar tostrcat()except that thesrcstring must be located in
program space (flash).

Returns:
Thestrcat()function returns a pointer to the resulting stringdest.

5.3.3.5 int strcmp P (const char∗ s1, PGM P s2)

The strcmpP() function is similar tostrcmp()except that s2 is pointer to a string in
program space.

Returns:
ThestrcmpP() function returns an integer less than, equal to, or greater than zero
if s1 is found, respectively, to be less than, to match, or be greater than s2.

5.3.3.6 char∗ strcpy P (char ∗ dest, PGM P src)

ThestrcpyP() function is similar tostrcpy()except that src is a pointer to a string in
program space.

Returns:
ThestrcpyP() function returns a pointer to the destination string dest.

5.3.3.7 sizet strlen P (PGM P src)

The strlenP() function is similar tostrlen(), except that src is a pointer to a string in
program space.

Returns:
Thestrlen()function returns the number of characters in src.

5.3.3.8 int strncasecmpP (const char∗ s1, PGM P s2, sizet n)

Compare two strings ignoring case.

ThestrncasecmpP() function is similar tostrcasecmpP(), except it only compares the
first n characters of s1.

Parameters:
s1 A pointer to a string in the devices SRAM.

s2 A pointer to a string in the devices Flash.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.4 Additional notes from <avr/sfr defs.h> 11

n The maximum number of bytes to compare.

Returns:
ThestrcasecmpP() function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.3.3.9 int strncmp P (const char∗ s1, PGM P s2, sizet n)

ThestrncmpP() function is similar tostrcmpP() except it only compares the first (at
most) n characters of s1 and s2.

Returns:
ThestrncmpP()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.3.3.10 char∗ strncpy P (char ∗ dest, PGM P src, sizet n)

ThestrncpyP() function is similar tostrcpyP() except that not more than n bytes of
src are copied. Thus, if there is no null byte among the first n bytes of src, the result
will not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:
ThestrncpyP() function returns a pointer to the destination string dest.

5.4 Additional notes from <avr/sfr defs.h>

The<avr/sfr defs.h > file is included by all of the<avr/ioXXXX.h > files,
which use macros defined here to make the special function register definitions look
like C variables or simple constants, depending on theSFR ASMCOMPATdefine.
Some examples from<avr/iom128.h > to show how to define such macros:

#define PORTA _SFR_IO8(0x1b)
#define TCNT1 _SFR_IO16(0x2c)
#define PORTF _SFR_MEM8(0x61)
#define TCNT3 _SFR_MEM16(0x88)

If SFR ASMCOMPATis not defined, C programs can use names likePORTAdirectly
in C expressions (also on the left side of assignment operators) and GCC will do the

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.4 Additional notes from <avr/sfr defs.h> 12

right thing (use short I/O instructions if possible). TheSFR OFFSETdefinition is
not used in any way in this case.

Define SFR ASMCOMPATas 1 to make these names work as simple constants (ad-
dresses of the I/O registers). This is necessary when included in preprocessed assem-
bler (∗.S) source files, so it is done automatically ifASSEMBLER is defined. By
default, all addresses are defined as if they were memory addresses (used inlds/sts
instructions). To use these addresses inin/out instructions, you must subtract 0x20
from them.

For more backwards compatibility, insert the following at the start of your old assem-
bler source file:

#define __SFR_OFFSET 0

This automatically subtracts 0x20 from I/O space addresses, but it’s a hack, so it is
recommended to change your source: wrap such addresses in macros defined here, as
shown below. After this is done, theSFR OFFSETdefinition is no longer necessary
and can be removed.

Real example - this code could be used in a boot loader that is portable between devices
with SPMCRat different addresses.

<avr/iom163.h>: #define SPMCR _SFR_IO8(0x37)
<avr/iom128.h>: #define SPMCR _SFR_MEM8(0x68)

#if _SFR_IO_REG_P(SPMCR)
out _SFR_IO_ADDR(SPMCR), r24

#else
sts _SFR_MEM_ADDR(SPMCR), r24

#endif

You can use thein/out/cbi/sbi/sbic/sbis instructions, without theSFR -
IO REGP test, if you know that the register is in the I/O space (as withSREG, for
example). If it isn’t, the assembler will complain (I/O address out of range 0...0x3f),
so this should be fairly safe.

If you do not define SFR OFFSET(so it will be 0x20 by default), all special register
addresses are defined as memory addresses (soSREGis 0x5f), and (if code size and
speed are not important, and you don’t like the ugly if above) you can always use lds/sts
to access them. But, this will not work ifSFR OFFSET!= 0x20, so use a different
macro (defined only if SFR OFFSET== 0x20) for safety:

sts _SFR_ADDR(SPMCR), r24

In C programs, all 3 combinations ofSFR ASMCOMPATand SFR OFFSETare
supported - theSFR ADDR(SPMCR)macro can be used to get the address of the
SPMCRregister (0x57 or 0x68 depending on device).

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.5 Power Management and Sleep Modes 13

The old inp()/outp() macros are still supported, but not recommended to use in new
code. The order ofoutp()arguments is confusing.

5.5 Power Management and Sleep Modes

5.5.1 Detailed Description

#include <avr/sleep.h>

Use of theSLEEP instruction can allow your application to reduce it’s power com-
sumption considerably. AVR devices can be put into different sleep modes by chang-
ing theSMnbits of theMCUControl Register (MCUCR). Refer to the datasheet for the
details relating to the device you are using.

Sleep Modes

Note:
FIXME: TRoth/2002-11-01: These modes were taken from the mega128 datasheet
and might not be applicable or correct for all devices.

• #defineSLEEPMODE IDLE 0
• #defineSLEEPMODE ADC SM0
• #defineSLEEPMODE PWR DOWN SM1
• #defineSLEEPMODE PWR SAVE (SM0 | SM1)
• #defineSLEEPMODE STANDBY (SM1 | SM2)
• #defineSLEEPMODE EXT STANDBY (SM0 | SM1 | SM2)

Sleep Functions

• void set sleepmode(uint8 t mode)
• void sleepmode(void)

5.5.2 Define Documentation

5.5.2.1 #define SLEEPMODE ADC SM0

ADC Noise Reduction Mode.

5.5.2.2 #define SLEEPMODE EXT STANDBY (SM0 | SM1 | SM2)

Extended Standby Mode.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.6 Character Operations 14

5.5.2.3 #define SLEEPMODE IDLE 0

Idle mode.

5.5.2.4 #define SLEEPMODE PWR DOWN SM1

Power Down Mode.

5.5.2.5 #define SLEEPMODE PWR SAVE (SM0 | SM1)

Power Save Mode.

5.5.2.6 #define SLEEPMODE STANDBY (SM1 | SM2)

Standby Mode.

5.5.3 Function Documentation

5.5.3.1 void setsleepmode (uint8 t mode)

Set the bits in theMCUCRto select a sleep mode.

5.5.3.2 void sleepmode (void)

Put the device in sleep mode. How the device is brought out of sleep mode depends on
the specific mode selected with theset sleepmode()function. See the data sheet for
your device for more details.

5.6 Character Operations

5.6.1 Detailed Description

These functions perform various operations on characters.

#include <ctype.h>

Character classification routines

These functions perform character classification. They return true or false status de-
pending whether the character passed to the function falls into the function’s classifi-
cation (i.e.isdigit() returns true if its argument is any value ’0’ though ’9’, inclusive.)

• int isalnum(int c) ATTR CONST

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.6 Character Operations 15

• int isalpha(int c) ATTR CONST
• int isascii(int c) ATTR CONST
• int isblank(int c) ATTR CONST
• int iscntrl (int c) ATTR CONST
• int isdigit (int c) ATTR CONST
• int isgraph(int c) ATTR CONST
• int islower(int c) ATTR CONST
• int isprint (int c) ATTR CONST
• int ispunct(int c) ATTR CONST
• int isspace(int c) ATTR CONST
• int isupper(int c) ATTR CONST
• int isxdigit (int c) ATTR CONST

Character convertion routines

If c is not an unsigned char value, orEOF, the behaviour of these functions is undefined.

• int toascii(int c) ATTR CONST
• int tolower(int c) ATTR CONST
• int toupper(int c) ATTR CONST

5.6.2 Function Documentation

5.6.2.1 int isalnum (int c)

Checks for an alphanumeric character. It is equivalent to(isalpha(c) || is-
digit(c)) .

5.6.2.2 int isalpha (int c)

Checks for an alphabetic character. It is equivalent to(isupper(c) || is-
lower(c)) .

5.6.2.3 int isascii (int c)

Checks whetherc is a 7-bit unsigned char value that fits into the ASCII character set.

5.6.2.4 int isblank (int c)

Checks for a blank character, that is, a space or a tab.

5.6.2.5 int iscntrl (int c)

Checks for a control character.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.6 Character Operations 16

5.6.2.6 int isdigit (int c)

Checks for a digit (0 through 9).

5.6.2.7 int isgraph (int c)

Checks for any printable character except space.

5.6.2.8 int islower (int c)

Checks for a lower-case character.

5.6.2.9 int isprint (int c)

Checks for any printable character including space.

5.6.2.10 int ispunct (int c)

Checks for any printable character which is not a space or an alphanumeric character.

5.6.2.11 int isspace (int c)

Checks for white-space characters. For the avr-libc library, these are: space, form-
feed (’\f’), newline (’\n’), carriage return (’\r’), horizontal tab (’\t’), and vertical tab
(’\v’).

5.6.2.12 int isupper (int c)

Checks for an uppercase letter.

5.6.2.13 int isxdigit (int c)

Checks for a hexadecimal digits, i.e. one of 0 1 2 3 4 5 6 7 8 9 a b c d e f A B C D E F.

5.6.2.14 int toascii (int c)

Convertsc to a 7-bit unsigned char value that fits into the ASCII character set, by
clearing the high-order bits.

Warning:
Many people will be unhappy if you use this function. This function will convert
accented letters into random characters.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.7 System Errors (errno) 17

5.6.2.15 int tolower (int c)

Converts the letterc to lower case, if possible.

5.6.2.16 int toupper (int c)

Converts the letterc to upper case, if possible.

5.7 System Errors (errno)

5.7.1 Detailed Description

#include <errno.h>

Some functions in the library set the global variableerrno when an error occurs. The
file, <errno.h >, provides symbolic names for various error codes.

Warning:
Theerrno global variable is not safe to use in a threaded or multi-task system. A
race condition can occur if a task is interrupted between the call which setserror
and when the task examineserrno . If another task changeserrno during this
time, the result will be incorrect for the interrupted task.

Defines

• #defineEDOM 33
• #defineERANGE34

5.7.2 Define Documentation

5.7.2.1 #define EDOM 33

Domain error.

5.7.2.2 #define ERANGE 34

Range error.

5.8 Integer Types

5.8.1 Detailed Description

#include <inttypes.h>

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.9 Mathematics 18

Use [u]intN t if you need exactly N bits.

Note:
If avr-gcc’s-mint8 option is used, no 32-bit types will be available.

5.9 Mathematics

5.9.1 Detailed Description

#include <math.h>

This header file declares basic mathematics constants and functions.

Note:
In order to access the functions delcared herein, it is usually also required to addi-
tionally link against the librarylibm.a . See also the relatedFAQ entry.

Defines

• #defineM PI 3.141592653589793238462643
• #defineM SQRT21.4142135623730950488016887

Functions

• doublecos(double x) ATTR CONST
• doublefabs(double x) ATTR CONST
• doublefmod (double x, double y) ATTR CONST
• doublemodf (double value, double∗ iptr)
• doublesin (double x) ATTR CONST
• doublesqrt(double x) ATTR CONST
• doubletan(double x) ATTR CONST
• doublefloor (double x) ATTR CONST
• doubleceil (double x) ATTR CONST
• doublefrexp (double value, int∗ exp)
• doubleldexp(double x, int exp) ATTR CONST
• doubleexp(double x) ATTR CONST
• doublecosh(double x) ATTR CONST
• doublesinh(double x) ATTR CONST
• doubletanh(double x) ATTR CONST
• doubleacos(double x) ATTR CONST
• doubleasin(double x) ATTR CONST
• doubleatan(double x) ATTR CONST

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.9 Mathematics 19

• doubleatan2(double y, double x) ATTR CONST
• doublelog (double x) ATTR CONST
• doublelog10(double x) ATTR CONST
• doublepow(double x, double y) ATTR CONST
• doublesquare(double x) ATTR CONST
• doubleinverse(double) ATTR CONST

5.9.2 Define Documentation

5.9.2.1 #define MPI 3.141592653589793238462643

The constantpi .

5.9.2.2 #define MSQRT2 1.4142135623730950488016887

The square root of 2.

5.9.3 Function Documentation

5.9.3.1 double acos (double x)

Theacos()function computes the principal value of the arc cosine ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.9.3.2 double asin (double x)

The asin() function computes the principal value of the arc sine ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.9.3.3 double atan (double x)

Theatan()function computes the principal value of the arc tangent ofx . The returned
value is in the range [0, pi] radians. A domain error occurs for arguments not in the
range [-1, +1].

5.9.3.4 double atan2 (double y, double x)

Theatan2()function computes the principal value of the arc tangent ofy / x , using
the signs of both arguments to determine the quadrant of the return value. The returned
value is in the range [-pi, +pi] radians. If bothx andy are zero, the global variable
errno is set toEDOM.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.9 Mathematics 20

5.9.3.5 double ceil (double x)

The ceil() function returns the smallest integral value greater than or equal tox , ex-
pressed as a floating-point number.

5.9.3.6 double cos (double x)

Thecos()function returns the cosine ofx , measured in radians.

5.9.3.7 double cosh (double x)

Thecosh()function returns the hyperbolic cosine ofx .

5.9.3.8 double exp (doublex)

Theexp()function returns the exponential value ofx .

5.9.3.9 double fabs (double x)

Thefabs()function computes the absolute value of a floating-point numberx .

5.9.3.10 double floor (double x)

Thefloor() function returns the largest integral value less than or equal tox , expressed
as a floating-point number.

5.9.3.11 double fmod (double x, double y)

The functionfmod() returns the floating-point remainder ofx / y .

5.9.3.12 double frexp (double value, int ∗ exp)

Thefrexp() function breaks a floating-point number into a normalized fraction and an
integral power of 2. It stores the integer in theint object pointed to byexp .

Thefrexp() function returns the valuex , such thatx is a double with magnitude in the
interval [1/2, 1) or zero, andvalue equalsx times 2 raised to the power∗exp . If
value is zero, both parts of the result are zero.

5.9.3.13 double inverse (double)

The functioninverse()returns1 / x .

Note:
This function does not belong to the C standard definition.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.9 Mathematics 21

5.9.3.14 double ldexp (double x, int exp)

Theldexp()function multiplies a floating-point number by an integral power of 2.

Theldexp()function returns the value ofx times 2 raised to the powerexp .

If the resultant value would cause an overflow, the global variable errno is set to
ERANGE, and the value NaN is returned.

5.9.3.15 double log (double x)

Thelog() function returns the natural logarithm of argumentx .

If the argument is less than or equal 0, a domain error will occur.

5.9.3.16 double log10 (double x)

Thelog() function returns the logarithm of argumentx to base 10.

If the argument is less than or equal 0, a domain error will occur.

5.9.3.17 double modf (double value, double∗ iptr)

The modf() function breaks the argumentvalue into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a double
in the object pointed to byiptr .

Themodf() function returns the signed fractional part ofvalue .

5.9.3.18 double pow (double x, double y)

The functionpow() returns the value ofx to the exponenty .

5.9.3.19 double sin (double x)

Thesin() function returns the sine ofx , measured in radians.

5.9.3.20 double sinh (double x)

Thesinh()function returns the hyperbolic sine ofx .

5.9.3.21 double sqrt (double x)

Thesqrt()function returns the non-negative square root ofx .

5.9.3.22 double square (double x)

The functionsquare()returnsx ∗ x .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.10 Setjmp and Longjmp 22

Note:
This function does not belong to the C standard definition.

5.9.3.23 double tan (double x)

Thetan()function returns the tangent ofx , measured in radians.

5.9.3.24 double tanh (double x)

Thetanh()function returns the hyperbolic tangent ofx .

5.10 Setjmp and Longjmp

5.10.1 Detailed Description

While the C language has the dreadedgoto statement, it can only be used to jump to
a label in the same (local) function. In order to jump directly to another (non-local)
function, the C library provides thesetjmp()and longjmp() functions. setjmp()and
longjmp()are useful for dealing with errors and interrupts encountered in a low-level
subroutine of a program.

Note:
setjmp()andlongjmp()make programs hard to understand and maintain. If possi-
ble, an alternative should be used.

For a very detailed discussion ofsetjmp()/longjmp(), see Chapter 7 ofAdvanced Pro-
gramming in the UNIX Environment, by W. Richard Stevens.

Example:

#include <setjmp.h>

jmp_buf env;

int main (void)
{

if (setjmp (env))
{

... handle error ...
}

while (1)
{

... main processing loop which calls foo() some where ...
}

}

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.10 Setjmp and Longjmp 23

...

void foo (void)
{

... blah, blah, blah ...

if (err)
{

longjmp (env, 1);
}

}

Functions

• int setjmp(jmp buf jmpb)
• void longjmp(jmp buf jmpb, int ret) ATTR NORETURN

5.10.2 Function Documentation

5.10.2.1 void longjmp (jmp buf jmpb, int ret)

Non-local jump to a saved stack context.

#include <setjmp.h>

longjmp() restores the environment saved by the last call ofsetjmp()with the corre-
sponding jmpbargument. Afterlongjmp() is completed, program execution contin-
ues as if the corresponding call ofsetjmp()had just returned the valueret.

Note:
longjmp() cannot cause 0 to be returned. Iflongjmp() is invoked with a second
argument of 0, 1 will be returned instead.

Parameters:
jmpb Information saved by a previous call tosetjmp().

ret Value to return to the caller ofsetjmp().

Returns:
This function never returns.

5.10.2.2 int setjmp (jmp buf jmpb)

Save stack context for non-local goto.

#include <setjmp.h>

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 24

setjmp()saves the stack context/environment injmpbfor later use bylongjmp(). The
stack context will be invalidated if the function which calledsetjmp()returns.

Parameters:
jmpb Variable of typejmp buf which holds the stack information such that the

environment can be restored.

Returns:
setjmp() returns 0 if returning directly, and non-zero when returning from
longjmp()using the saved context.

5.11 Standard IO facilities

5.11.1 Detailed Description

#include <stdio.h>

Warning:
This implementation of the standard IO facilities is new to avr-libc. It is not yet
expected to remain stable, so some aspects of the API might change in a future
release.

This file declares the standard IO facilities that are implemented inavr-libc . Due
to the nature of the underlying hardware, only a limited subset of standard IO is im-
plemented. There’s no actual file implementation available, so only device IO can be
performed. Since there’s no operating system, the application needs to provide enough
details about their devices in order to make them usable by the standard IO facilities.

Due to space constraints, some functionality has not been implemented at all (like
some of theprintf conversions that have been left out). Nevertheless, potential
users of this implementation should be warned: theprintf family, although usually
associated with presumably simple things like the famous ”Hello, world!” program,
is actually a fairly complex one which causes quite some amount of code space to be
taken, and it’s not fast either due to the nature of interpreting the format string at run-
time. Whenever possible, resorting to the (sometimes non-standard) predetermined
conversion facilities that are offered by avr-libc will usually cost much less in terms of
speed and code size.

In order to allow programmers a code size vs. functionality tradeoff, the function
vfprintf() which is the heart of the printf family can be selected in different flavours
using linker options. See the documentation ofvfprintf() for a detailed description.

The standard streamsstdin , stdout , andstderr are provided, but contrary to the
C standard, since avr-libc has no knowledge about applicable devices, these streams are
not already pre-initialized at application startup. Also, since there’s no notion of ”file”
whatsoever to avr-libc, there’s no functionfopen() that could be used to associate
a stream to some device. (Seenote 1.) Instead, functionfdevopen() is provided

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 25

to associate a stream to a device, where the device needs to provide a function to send
a character, to receive a character, or both. There’s no differentiation between ”text”
and ”binary” streams inside avr-libc. Character\n is sent literally down to the device’s
put() function. If the device requires a carriage return (\r) character to be sent
before the linefeed, itsput() routine must implement this (seenote 2).

For convenience, the first call tofdevopen() that opens a stream for reading will
cause the resulting stream to be aliased tostdin . Likewise, the first call tofde-
vopen() that opens a stream for writing will cause the resulting stream to be aliased
to both,stdout , andstderr . (Thus, if the open was done with both, read and write
intent, all three standard streams will be identical.) Note that these aliases are indistin-
guishable from each other, thus callingfclose() on such a stream will effectively
also close all of its aliases (note 3).

All the printf family functions come in two flavours: the standard name, where the
format string is expected to be in SRAM, as well as a version with ”P” appended where
the format string is expected to reside in the flash ROM. The macroPSTR(explained in
Program Space String Utilities) will become very handy to declare these format strings.

Note 1:
It might have been possible to implement a device abstraction that is compatible
with fopen() but since this would have required to parse a string, and to take all
the information needed either out of this string, or out of an additional table that
were to be provided by the application, this approach has not been taken.

Note 2:
This basically follows the Unix approach: if a device such as a terminal needs
special handling, it is in the domain of the terminal device driver to provide this
functionality. Thus, a simple function suitable asput() for fdevopen() that
talks to a UART interface might look like this:

int
uart_putchar(char c)
{

if (c == ’\n’)
uart_putchar(’\r’);

loop_until_bit_is_set(UCSRA, UDRE);
UDR = c;
return 0;

}

Note 3:
This implementation has been chosen because the cost of maintaining an alias
is considerably smaller than the cost of maintaining full copies of each stream.
Yet, providing an implementation that offers the complete set of standard
streams was deemed to be useful. Not only that writingprintf() instead of

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 26

fprintf(mystream, ...) saves typing work, but since avr-gcc needs to
resort to pass all arguments of variadic functions on the stack (as opposed to pass-
ing them in registers for functions that take a fixed number of parameters), the
ability to pass one parameter less by implyingstdin will also save some execu-
tion time.

Defines

• #defineFILE struct file
• #definestdin(iob[0])
• #definestdout(iob[1])
• #definestderr(iob[2])
• #defineEOF(-1)
• #defineputc(c, stream) fputc(c, stream)
• #defineputchar(c) fputc(c, stdout)

Functions

• FILE ∗ fdevopen(int(∗ put)(char), int(∗ get)(void), int opts)
• int fclose(FILE ∗ stream)
• int vfprintf (FILE ∗ stream, const char∗ fmt, va list ap)
• int fputc (int c, FILE ∗ stream)
• int printf (const char∗ fmt,...)
• int printf P (const char∗ fmt,...)
• int sprintf (char∗ s, const char∗ fmt,...)
• int sprintf P (char∗ s, const char∗ fmt,...)
• int snprintf(char∗ s, sizet n, const char∗ fmt,...)
• int snprintf P (char∗ s, sizet n, const char∗ fmt,...)
• int fprintf (FILE ∗ stream, const char∗ fmt,...)
• int fprintf P (FILE ∗ stream, const char∗ fmt,...)

5.11.2 Define Documentation

5.11.2.1 #define EOF (-1)

EOFdeclares the value that is returned by various standard IO functions in case of an
error. Since the AVR platform (currently) doesn’t contain an abstraction for actual files,
its origin as ”end of file” is somewhat meaningless here.

5.11.2.2 #define FILE struct file

FILE is the opaque structure that is passed around between the various standard IO
functions.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 27

5.11.2.3 #define putc(c, stream) fputc(c, stream)

The macroputc used to be a ”fast” macro implementation with a functionality iden-
tical to fputc() . For space constraints, inavr-libc , it is just an alias forfputc .

5.11.2.4 #define putchar(c) fputc(c, stdout)

The macroputchar sends characterc to stdout .

5.11.2.5 #define stderr (iob[2])

Stream destined for error output. Unless specifically assigned, identical tostdout .

If stderr should point to another stream, the result of anotherfdevopen() must
be explicitly assigned to it without closing the previousstderr (since this would also
closestdout) .

5.11.2.6 #define stdin (iob[0])

Stream that will be used as an input stream by the simplified functions that don’t take
astream argument.

The first stream opened with read intent usingfdevopen() will be assigned to
stdin .

5.11.2.7 #define stdout (iob[1])

Stream that will be used as an output stream by the simplified functions that don’t take
astream argument.

The first stream opened with write intent usingfdevopen() will be assigned to both,
stdin , andstderr .

5.11.3 Function Documentation

5.11.3.1 int fclose (FILE∗ stream)

This function closesstream , and disallows and further IO to and from it.

It currently always returns 0 (for success).

5.11.3.2 FILE∗ fdevopen (int(∗ put)(char), int(∗ get)(void), int opts)

This function is a replacement forfopen() .

It opens a stream for a device where the actual device implementation needs to be
provided by the application. If successful, a pointer to the structure for the opened

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 28

stream is returned. Reasons for a possible failure currently include that neither the
put nor theget argument have been provided, thus attempting to open a stream with
no IO intent at all, or that insufficient dynamic memory is available to establish a new
stream.

If the put function pointer is provided, the stream is opened with write intent. The
function passed asput shall take one character to write to the device as argument ,
and shall return 0 if the output was successful, and a nonzero value if the character
could not be sent to the device.

If the get function pointer is provided, the stream is opened with read intent. The
function passed asget shall take no arguments, and return one character from the
device, passed as anint type. If an error occurs when trying to read from the device,
it shall return-1 .

If both functions are provided, the stream is opened with read and write intent.

The first stream opened with read intent is assigned tostdin , and the first one opened
with write intent is assigned to both,stdout andstderr .

The third parameteropts is currently unused, but reserved for future extensions.

5.11.3.3 int fprintf (FILE ∗ stream, const char∗ fmt, ...)

The functionfprintf performs formatted output tostream . Seevfprintf()
for details.

5.11.3.4 int fprintf P (FILE ∗ stream, const char∗ fmt, ...)

Variant offprintf() that uses afmt string that resides in program memory.

5.11.3.5 int fputc (int c, FILE ∗ stream)

The functionfputc sends the character(though given as typeint) to stream .
It returns the character, orEOFin case an error occurred.

5.11.3.6 int printf (const char∗ fmt, ...)

The function printf performs formatted output to streamstderr . Seevf-
printf() for details.

5.11.3.7 int printf P (const char∗ fmt, ...)

Variant ofprintf() that uses afmt string that resides in program memory.

5.11.3.8 int snprintf (char ∗ s, sizet n, const char∗ fmt, ...)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 29

Like sprintf() , but instead of assumings to be of infinite size, no more thann
characters (including the trailing NUL character) will be converted tos .

Returns the number of characters that would have been written tos if there were
enough space.

5.11.3.9 int snprintf P (char ∗ s, sizet n, const char∗ fmt, ...)

Variant ofsnprintf() that uses afmt string that resides in program memory.

5.11.3.10 int sprintf (char∗ s, const char∗ fmt, ...)

Variant ofprintf() that sends the formatted characters to strings .

5.11.3.11 int sprintf P (char ∗ s, const char∗ fmt, ...)

Variant ofsprintf() that uses afmt string that resides in program memory.

5.11.3.12 int vfprintf (FILE ∗ stream, const char∗ fmt, va list ap)

vfprintf is the central facility of theprintf family of functions. It outputs values
to stream under control of a format string passed infmt . The actual values to print
are passed as a variable argument listap .

vfprintf returns the number of characters written tostream , or EOF in case of
an error. Currently, this will only happen ifstream has not been opened with write
intent.

The format string is composed of zero or more directives: ordinary characters (not
%), which are copied unchanged to the output stream; and conversion specifications,
each of which results in fetching zero or more subsequent arguments. Each conversion
specification is introduced by the%character. The arguments must correspond properly
(after type promotion) with the conversion specifier. After the%, the following appear
in sequence:

• Zero or more of the following flags:

– # The value should be converted to an ”alternate form”. For c, d, i, s, and
u conversions, this option has no effect. For o conversions, the precision of
the number is increased to force the first character of the output string to
a zero (except if a zero value is printed with an explicit precision of zero).
For x and X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for
X conversions) prepended to it.

– 0 (zero) Zero padding. For all conversions, the converted value is padded
on the left with zeros rather than blanks. If a precision is given with a
numeric conversion (d, i, o, u, i, x, and X), the 0 flag is ignored.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.11 Standard IO facilities 30

– - A negative field width flag; the converted value is to be left adjusted on
the field boundary. The converted value is padded on the right with blanks,
rather than on the left with blanks or zeros. A - overrides a 0 if both are
given.

– ’ ’ (space) A blank should be left before a positive number produced by a
signed conversion (d, or i).

– + A sign must always be placed before a number produced by a signed
conversion. A + overrides a space if both are used.

- An optional decimal digit string specifying a minimum field width. If the
converted value has fewer characters than the field width, it will be padded with
spaces on the left (or right, if the left-adjust173 ment flag has been given) to fill
out the field width.

• An optional precision, in the form of a period . followed by an optional digit
string. If the digit string is omitted, the precision is taken as zero. This gives the
minimum number of digits to appear for d, i, o, u, x, and X conversions, or the
maximum number of characters to be printed from a string for s con173 versions.

• An optionall length modifier, that specifies that the argument for the d, i, o, u,
x, or X conversion is a"long int" rather thanint .

• A character that specifies the type of conversion to be applied.

The conversion specifiers and their meanings are:

• diouxX The int (or appropriate variant) argument is converted to signed deci-
mal (d and i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal
(x and X) notation. The letters ”abcdef” are used for x conversions; the letters
”ABCDEF” are used for X conversions. The precision, if any, gives the mini-
mum number of digits that must appear; if the converted value requires fewer
digits, it is padded on the left with zeros.

• p Thevoid ∗ argument is taken as an unsigned integer, and converted similarly
as a%xcommand would do.

• c Theint argument is converted to an"unsigned char" , and the resulting
character is written.

• s The "char ∗" argument is expected to be a pointer to an array of character
type (pointer to a string). Characters from the array are written up to (but not
including) a terminating NUL character; if a precision is specified, no more than
the number specified are written. If a precision is given, no null character need
be present; if the precision is not specified, or is greater than the size of the array,
the array must contain a terminating NUL character.

• %A %is written. No argument is converted. The complete conversion specifica-
tion is ”%%”.

• eE The double argument is rounded and converted in the format"[-
]d.ddde177dd" where there is one digit before the decimal-point character
and the number of digits after it is equal to the precision; if the precision is miss-
ing, it is taken as 6; if the precision is zero, no decimal-point character appears.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 31

An E conversion uses the letter ’E’ (rather than ’e’) to introduce the exponent.
The exponent always contains two digits; if the value is zero, the exponent is 00.

• fF The double argument is rounded and converted to decimal notation in the
format "[-]ddd.ddd" , where the number of digits after the decimal-point
character is equal to the precision specification. If the precision is missing, it is
taken as 6; if the precision is explicitly zero, no decimal-point character appears.
If a decimal point appears, at least one digit appears before it.

• gG The double argument is converted in stylef or e (or F or E for G conver-
sions). The precision specifies the number of significant digits. If the precision
is missing, 6 digits are given; if the precision is zero, it is treated as 1. Stylee is
used if the exponent from its conversion is less than -4 or greater than or equal to
the precision. Trailing zeros are removed from the fractional part of the result; a
decimal point appears only if it is followed by at least one digit.

In no case does a non-existent or small field width cause truncation of a numeric field;
if the result of a conversion is wider than the field width, the field is expanded to contain
the conversion result.

Since the full implementation of all the mentioned features becomes fairly large, three
different flavours ofvfprintf() can be selected using linker options. The defaultvf-
printf() implements all the mentioned functionality except floating point conversions.
A minimized version ofvfprintf() is available that only implements the very basic in-
teger and string conversion facilities, but none of the additional options that can be
specified using conversion flags (these flags are parsed correctly from the format spec-
ification, but then simply ignored). This version can be requested using the following
compiler options:

-Wl,-u,vfprintf -lprintf_min

If the full functionality including the floating point conversions is required, the follow-
ing options should be used:

-Wl,-u,vfprintf -lprintf_flt -lm

Limitations:
• The specified width and precision can be at most 127.
• For floating-point conversions, trailing digits will be lost if a number close to

DBL MAX is converted with a precision> 0.

5.12 General utilities

5.12.1 Detailed Description

#include <stdlib.h>

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 32

This file declares some basic C macros and functions as defined by the ISO standard,
plus some AVR-specific extensions.

Data Structures

• structdiv t
• structldiv t

Non-standard (i.e. non-ISO C) functions.

• #defineRANDOM MAX 0x7FFFFFFF
• char∗ itoa (int val, char∗ s, int radix)
• char∗ ltoa (long int val, char∗ s, int radix)
• char∗ utoa(unsigned int val, char∗ s, int radix)
• char∗ ultoa(unsigned long int val, char∗ s, int radix)
• long random(void)
• void srandom(unsigned long seed)
• long randomr (unsigned long∗ctx)

Conversion functions for double arguments.

Note that these functions are not located in the default library,libc.a , but in the
mathematical library,libm.a . So when linking the application, the-lm option needs
to be specified.

• #defineDTOSTRALWAYS SIGN0x01
• #defineDTOSTRPLUS SIGN0x02
• #defineDTOSTRUPPERCASE0x04
• char∗ dtostre(double val, char∗ s, unsigned char prec, unsigned char-

flags)
• char∗ dtostrf(double val, char width, char prec, char∗ s)

Defines

• #defineRAND MAX 0x7FFF

Typedefs

• typedef int(∗ comparfn t)(const void∗, const void∗)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 33

Functions

• inline void abort(void) ATTR NORETURN
• int abs(int i) ATTR CONST
• long labs(long i) ATTR CONST
• void ∗ bsearch(const void∗ key, const void∗ base, sizet nmemb, sizet

size, int(∗ compar)(const void∗, const void∗))
• div t div (int num, int denom) asm (” divmodhi4”) ATTR CONST
• ldiv t ldiv (long num, long denom) asm (” divmodsi4”) ATTR -

CONST
• void qsort(void ∗ base, sizet nmemb, sizet size, comparfn t compar)
• longstrtol (const char∗ nptr, char∗∗ endptr, int base)
• unsigned longstrtoul(const char∗ nptr, char∗∗ endptr, int base)
• inline longatol (const char∗ nptr) ATTR PURE
• inline int atoi (const char∗ nptr) ATTR PURE
• void exit (int status) ATTR NORETURN
• void ∗ malloc(size t size) ATTR MALLOC
• void free(void ∗ ptr)
• void ∗ calloc(size t nele, sizet size) ATTR MALLOC
• doublestrtod(const char∗ nptr, char∗∗ endptr)
• int rand(void)
• void srand(unsigned int seed)
• int rand r (unsigned long∗ctx)

Variables

• size t malloc margin
• char∗ malloc heapstart
• char∗ malloc heapend

5.12.2 Define Documentation

5.12.2.1 #define DTOSTRALWAYS SIGN 0x01

Bit value that can be passed inflags to dtostre().

5.12.2.2 #define DTOSTRPLUS SIGN 0x02

Bit value that can be passed inflags to dtostre().

5.12.2.3 #define DTOSTRUPPERCASE 0x04

Bit value that can be passed inflags to dtostre().

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 34

5.12.2.4 #define RANDMAX 0x7FFF

Highest number that can be generated byrand().

5.12.2.5 #define RANDOMMAX 0x7FFFFFFF

Highest number that can be generated byrandom().

5.12.3 Typedef Documentation

5.12.3.1 typedef int(∗ compar fn t)(const void∗, const void∗)

Comparision function type forqsort(), just for convenience.

5.12.4 Function Documentation

5.12.4.1 inline void abort (void)

The abort() function causes abnormal program termination to occur. In the limited
AVR environment, execution is effectively halted by entering an infinite loop.

5.12.4.2 int abs (int i)

Theabs()function computes the absolute value of the integeri .

Note:
Theabs()andlabs()functions are builtins of gcc.

5.12.4.3 inline int atoi (const char ∗ nptr)

The atoi() function converts the initial portion of the string pointed to bynptr to
integer representation.

It is equivalent to:

(int)strtol(nptr, (char **)NULL, 10);

5.12.4.4 inline long atol (const char∗ nptr)

Theatol() function converts the initial portion of the string pointed to bynptr to long
integer representation.

It is equivalent to:

strtol(nptr, (char **)NULL, 10);

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 35

5.12.4.5 void∗ bsearch (const void∗ key, const void∗ base, sizet nmemb,
size t size, int(∗ compar)(const void∗, const void∗))

The bsearch()function searches an array ofnmembobjects, the initial member of
which is pointed to bybase , for a member that matches the object pointed to by
key . The size of each member of the array is specified bysize .

The contents of the array should be in ascending sorted order according to the compar-
ison function referenced bycompar . Thecompar routine is expected to have two
arguments which point to the key object and to an array member, in that order, and
should return an integer less than, equal to, or greater than zero if the key object is
found, respectively, to be less than, to match, or be greater than the array member.

Thebsearch()function returns a pointer to a matching member of the array, or a null
pointer if no match is found. If two members compare as equal, which member is
matched is unspecified.

5.12.4.6 void∗ calloc (sizet nele, sizet size)

Allocatenele elements ofsize each. Identical to callingmalloc() usingnele
∗ size as argument, except the allocated memory will be cleared to zero.

5.12.4.7 div t div (int num, int denom)

The div() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure nameddiv t that contains two int members namedquot and
rem.

5.12.4.8 char∗ dtostre (double val, char ∗ s, unsigned char prec, unsigned
char flags)

The dtostre()function converts the double value passed inval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done in the format"[-]d.ddde177dd" where there is one digit be-
fore the decimal-point character and the number of digits after it is equal to the preci-
sionprec ; if the precision is zero, no decimal-point character appears. Ifflags has
the DTOSTREUPPERCASE bit set, the letter ’E’ (rather than ’e’) will be used to
introduce the exponent. The exponent always contains two digits; if the value is zero,
the exponent is"00" .

If flags has the DTOSTREALWAYS SIGN bit set, a space character will be placed
into the leading position for positive numbers.

If flags has the DTOSTREPLUS SIGN bit set, a plus sign will be used instead of a
space character in this case.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 36

5.12.4.9 char∗ dtostrf (double val, char width, char prec, char ∗ s)

The dtostrf() function converts the double value passed inval into an ASCII repre-
sentationthat will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done in the format"[-]d.ddd" . The minimum field width of the
output string (including the ’.’and the possible sign for negative values) is given in
width , andprec determines the number of digits after the decimal sign.

5.12.4.10 void exit (int status)

The exit() function terminates the application. Since there is no environment to re-
turn to,status is ignored, and code execution will eventually reach an infinite loop,
thereby effectively halting all code processing.

In a C++ context, global destructors will be called before halting execution.

5.12.4.11 void free (void∗ ptr)

Thefree()function causes the allocated memory referenced byptr to be made avail-
able for future allocations. Ifptr is NULL, no action occurs.

5.12.4.12 char∗ itoa (int val, char ∗ s, int radix)

The functionitoa() converts the integer value fromval into an ASCII representation
that will be stored unders . The caller is responsible for providing sufficient storage in
s .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter ’a’.

Theitoa() function returns the pointer passed ass .

5.12.4.13 long labs (long i)

Thelabs()function computes the absolute value of the long integeri .

Note:
Theabs()andlabs()functions are builtins of gcc.

5.12.4.14 ldiv t ldiv (long num, long denom)

The ldiv() function computes the valuenum/denom and returns the quotient and re-
mainder in a structure namedldiv t that contains two long integer members named
quot andrem.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 37

5.12.4.15 char∗ ltoa (long int val, char ∗ s, int radix)

The functionltoa() converts the long integer value fromval into an ASCII represen-
tation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter ’a’.

Theltoa() function returns the pointer passed ass .

5.12.4.16 void∗ malloc (sizet size)

The malloc() function allocatessize bytes of memory. Ifmalloc() fails, a NULL
pointer is returned.

Note thatmalloc()doesnot initialize the returned memory to zero bytes.

See the chapter aboutmalloc() usagefor implementation details.

5.12.4.17 void qsort (void∗ base, sizet nmemb, sizet size, compar fn t
compar)

Theqsort()function is a modified partition-exchange sort, or quicksort.

The qsort()function sorts an array ofnmembobjects, the initial member of which is
pointed to bybase . The size of each object is specified bysize . The contents of the
array base are sorted in ascending order according to a comparison function pointed to
by compar , which requires two arguments pointing to the objects being compared.

The comparison function must return an integer less than, equal to, or greater than zero
if the first argument is considered to be respectively less than, equal to, or greater than
the second.

5.12.4.18 int rand (void)

Therand()function computes a sequence of pseudo-random integers in the range of 0
to RANDMAX(as defined by the header file<stdlib.h>).

Thesrand()function sets its argumentseed as the seed for a new sequence of pseudo-
random numbers to be returned byrand(). These sequences are repeatable by calling
srand()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

In compliance with the C standard, these functions operate onint arguments. Since
the underlying algorithm already uses 32-bit calculations, this causes a loss of preci-
sion. Seerandom() for an alternate set of functions that retains full 32-bit precision.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 38

5.12.4.19 int randr (unsigned long∗ ctx)

Variant of rand() that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

5.12.4.20 long random (void)

Therandom()function computes a sequence of pseudo-random integers in the range of
0 toRANDOMMAX(as defined by the header file<stdlib.h>).

The srandom()function sets its argumentseed as the seed for a new sequence of
pseudo-random numbers to be returned byrand(). These sequences are repeatable by
callingsrandom()with the same seed value.

If no seed value is provided, the functions are automatically seeded with a value of 1.

5.12.4.21 long randomr (unsigned long∗ ctx)

Variant ofrandom()that stores the context in the user-supplied variable located atctx
instead of a static library variable so the function becomes re-entrant.

5.12.4.22 void srand (unsigned int seed)

Pseudo-random number generator seeding; seerand().

5.12.4.23 void srandom (unsigned long seed)

Pseudo-random number generator seeding; seerandom().

5.12.4.24 double strtod (const char∗ nptr, char ∗∗ endptr)

The strtod() function converts the initial portion of the string pointed to bynptr to
double representation.

The expected form of the string is an optional plus (’+’) or minus sign (’- ’) followed
by a sequence of digits optionally containing a decimal-point character, optionally fol-
lowed by an exponent. An exponent consists of an ’E’ or ’ e’, followed by an optional
plus or minus sign, followed by a sequence of digits.

Leading white-space characters in the string are skipped.

Thestrtod()function returns the converted value, if any.

If endptr is notNULL, a pointer to the character after the last character used in the
conversion is stored in the location referenced byendptr .

If no conversion is performed, zero is returned and the value ofnptr is stored in the
location referenced byendptr .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 39

If the correct value would cause overflow, plus or minusHUGEVAL is returned (ac-
cording to the sign of the value), andERANGEis stored inerrno . If the correct value
would cause underflow, zero is returned andERANGEis stored inerrno .

FIXME: HUGE VAL needs to be defined somewhere. The bit pattern is 0x7fffffff, but
what number would this be?

Note:
Implemented but not tested.

5.12.4.25 long strtol (const char∗ nptr, char ∗∗ endptr, int base)

The strtol() function converts the string innptr to a long value. The conversion is
done according to the given base, which must be between 2 and 36 inclusive, or be the
special value 0.

The string may begin with an arbitrary amount of white space (as determined byiss-
pace()) followed by a single optional ’+’ or ’ - ’ sign. If base is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a
zero base is taken as 10 (decimal) unless the next character is ’0’, in which case it is
taken as 8 (octal).

The remainder of the string is converted to a long value in the obvious manner, stopping
at the first character which is not a valid digit in the given base. (In bases above 10, the
letter ’A’ in either upper or lower case represents 10, ’B’ represents 11, and so forth,
with ’Z’ representing 35.)

If endptr is not NULL, strtol() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however,strtol() stores the original value of
nptr in endptr . (Thus, if∗nptr is not ’\0’ but ∗∗endptr is ’\0’ on return, the
entire string was valid.)

Thestrtol() function returns the result of the conversion, unless the value would under-
flow or overflow. If no conversion could be performed, 0 is returned. If an overflow or
underflow occurs,errno is set toERANGEand the function return value is clamped
to LONGMIN or LONGMAX, respectively.

5.12.4.26 unsigned long strtoul (const char∗ nptr, char ∗∗ endptr, int base)

Thestrtoul()function converts the string innptr to an unsigned long value. The con-
version is done according to the given base, which must be between 2 and 36 inclusive,
or be the special value 0.

The string may begin with an arbitrary amount of white space (as determined byiss-
pace()) followed by a single optional ’+’ or ’ - ’ sign. If base is zero or 16, the string
may then include a"0x" prefix, and the number will be read in base 16; otherwise, a

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.12 General utilities 40

zero base is taken as 10 (decimal) unless the next character is ’0’, in which case it is
taken as 8 (octal).

The remainder of the string is converted to an unsigned long value in the obvious
manner, stopping at the first character which is not a valid digit in the given base. (In
bases above 10, the letter ’A’ in either upper or lower case represents 10, ’B’ represents
11, and so forth, with ’Z’ representing 35.)

If endptr is not NULL, strtoul() stores the address of the first invalid character in
∗endptr . If there were no digits at all, however,strtoul()stores the original value of
nptr in endptr . (Thus, if∗nptr is not ’\0’ but ∗∗endptr is ’\0’ on return, the
entire string was valid.)

Thestrtoul() function return either the result of the conversion or, if there was a lead-
ing minus sign, the negation of the result of the conversion, unless the original (non-
negated) value would overflow; in the latter case,strtoul()returns ULONGMAX, and
errno is set toERANGE. If no conversion could be performed, 0 is returned.

5.12.4.27 char∗ ultoa (unsigned long int val, char ∗ s, int radix)

The functionultoa()converts the unsigned long integer value fromval into an ASCII
representation that will be stored unders . The caller is responsible for providing suf-
ficient storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter ’a’.

Theultoa()function returns the pointer passed ass .

5.12.4.28 char∗ utoa (unsigned int val, char ∗ s, int radix)

The functionutoa()converts the unsigned integer value fromval into an ASCII repre-
sentation that will be stored unders . The caller is responsible for providing sufficient
storage ins .

Conversion is done using theradix as base, which may be a number between 2
(binary conversion) and up to 36. Ifradix is greater than 10, the next digit after
’9’ will be the letter ’a’.

Theutoa()function returns the pointer passed ass .

5.12.5 Variable Documentation

5.12.5.1 char∗ malloc heap end

malloc() tunable.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 41

5.12.5.2 char∗ malloc heap start

malloc() tunable.

5.12.5.3 sizet malloc margin

malloc() tunable.

5.13 Strings

5.13.1 Detailed Description

#include <string.h>

The string functions perform string operations on NULL terminated strings.

Note:
If the strings you are working on resident in program space (flash), you will need
to use the string functions described inProgram Space String Utilities.

Functions

• void ∗ memccpy(void ∗, const void∗, int, sizet)
• void ∗ memchr(const void∗, int, sizet) ATTR PURE
• int memcmp(const void∗, const void∗, sizet) ATTR PURE
• void ∗ memcpy(void ∗, const void∗, sizet)
• void ∗ memmove(void ∗, const void∗, sizet)
• void ∗ memset(void ∗, int, sizet)
• int strcasecmp(const char∗, const char∗) ATTR PURE
• char∗ strcat(char∗, const char∗)
• char∗ strchr(const char∗, int) ATTR PURE
• int strcmp(const char∗, const char∗) ATTR PURE
• char∗ strcpy(char∗, const char∗)
• size t strlcat(char∗, const char∗, sizet)
• size t strlcpy(char∗, const char∗, sizet)
• size t strlen(const char∗) ATTR PURE
• char∗ strlwr (char∗)
• int strncasecmp(const char∗, const char∗, sizet) ATTR PURE
• char∗ strncat(char∗, const char∗, sizet)
• int strncmp(const char∗, const char∗, sizet)
• char∗ strncpy(char∗, const char∗, sizet)
• size t strnlen(const char∗, sizet) ATTR PURE
• char∗ strrchr(const char∗, int) ATTR PURE

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 42

• char∗ strrev(char∗)
• char∗ strstr(const char∗, const char∗) ATTR PURE
• char∗ strupr(char∗)

5.13.2 Function Documentation

5.13.2.1 void∗ memccpy (void∗ dest, const void∗ src, int val, sizet len)

Copy memory area.

Thememccpy()function copies no more than len bytes from memory area src to mem-
ory area dest, stopping when the character val is found.

Returns:
Thememccpy()function returns a pointer to the next character in dest after val, or
NULL if val was not found in the first len characters of src.

5.13.2.2 void∗ memchr (const void∗ src, int val, sizet len)

Scan memory for a character.

Thememchr()function scans the first len bytes of the memory area pointed to by src
for the character val. The first byte to match val (interpreted as an unsigned character)
stops the operation.

Returns:
The memchr()function returns a pointer to the matching byte or NULL if the
character does not occur in the given memory area.

5.13.2.3 int memcmp (const void∗ s1, const void∗ s2, sizet len)

Compare memory areas.

The memcmp()function compares the first len bytes of the memory areas s1 and s2.
The comparision is performed using unsigned char operations.

Returns:
Thememcmp()function returns an integer less than, equal to, or greater than zero
if the first len bytes of s1 is found, respectively, to be less than, to match, or be
greater than the first len bytes of s2.

Note:
Be sure to store the result in a 16 bit variable since you may get incorrect results if
you use an unsigned char or char due to truncation.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 43

Warning:
This function is not -mint8 compatible, although if you only care about testing for
equality, this function should be safe to use.

5.13.2.4 void∗ memcpy (void∗ dest, const void∗ src, sizet len)

Copy a memory area.

Thememcpy()function copies len bytes from memory area src to memory area dest.
The memory areas may not overlap. Usememmove()if the memory areas do overlap.

Returns:
Thememcpy()function returns a pointer to dest.

5.13.2.5 void∗ memmove (void∗ dest, const void∗ src, sizet len)

Copy memory area.

Thememmove()function copies len bytes from memory area src to memory area dest.
The memory areas may overlap.

Returns:
Thememmove()function returns a pointer to dest.

5.13.2.6 void∗ memset (void∗ dest, int val, sizet len)

Fill memory with a constant byte.

The memset()function fills the first len bytes of the memory area pointed to by dest
with the constant byte val.

Returns:
Thememset()function returns a pointer to the memory area dest.

5.13.2.7 int strcasecmp (const char∗ s1, const char∗ s2)

Compare two strings ignoring case.

Thestrcasecmp()function compares the two strings s1 and s2, ignoring the case of the
characters.

Returns:
The strcasecmp()function returns an integer less than, equal to, or greater than
zero if s1 is found, respectively, to be less than, to match, or be greater than s2.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 44

5.13.2.8 char∗ strcat (char ∗ dest, const char∗ src)

Concatenate two strings.

Thestrcat()function appends the src string to the dest string overwriting the ‘\0’ char-
acter at the end of dest, and then adds a terminating ‘\0’ character. The strings may not
overlap, and the dest string must have enough space for the result.

Returns:
Thestrcat()function returns a pointer to the resulting string dest.

5.13.2.9 char∗ strchr (const char ∗ src, int val)

Locate character in string.

Thestrchr()function returns a pointer to the first occurrence of the character val in the
string src.

Here ”character” means ”byte” - these functions do not work with wide or multi-byte
characters.

Returns:
The strchr() function returns a pointer to the matched character or NULL if the
character is not found.

5.13.2.10 int strcmp (const char∗ s1, const char∗ s2)

Compare two strings.

Thestrcmp()function compares the two strings s1 and s2.

Returns:
Thestrcmp()function returns an integer less than, equal to, or greater than zero if
s1 is found, respectively, to be less than, to match, or be greater than s2.

5.13.2.11 char∗ strcpy (char ∗ dest, const char∗ src)

Copy a string.

The strcpy() function copies the string pointed to by src (including the terminating
‘\0’ character) to the array pointed to by dest. The strings may not overlap, and the
destination string dest must be large enough to receive the copy.

Returns:
Thestrcpy()function returns a pointer to the destination string dest.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 45

Note:
If the destination string of astrcpy()is not large enough (that is, if the programmer
was stupid/lazy, and failed to check the size before copying) then anything might
happen. Overflowing fixed length strings is a favourite cracker technique.

5.13.2.12 sizet strlcat (char ∗ dst, const char∗ src, sizet siz)

Concatenate two strings.

Appends src to string dst of size siz (unlikestrncat(), siz is the full size of dst, not space
left). At most siz-1 characters will be copied. Always NULL terminates (unless siz<=
strlen(dst)).

Returns:
Thestrlcat()function returns strlen(src) + MIN(siz, strlen(initial dst)). If retval>=
siz, truncation occurred.

5.13.2.13 sizet strlcpy (char ∗ dst, const char∗ src, sizet siz)

Copy a string.

Copy src to string dst of size siz. At most siz-1 characters will be copied. Always
NULL terminates (unless siz == 0).

Returns:
Thestrlcpy()function returns strlen(src). If retval>= siz, truncation occurred.

5.13.2.14 sizet strlen (const char∗ src)

Calculate the length of a string.

Thestrlen()function calculates the length of the string src, not including the terminat-
ing ‘\0’ character.

Returns:
Thestrlen()function returns the number of characters in src.

5.13.2.15 char∗ strlwr (char ∗ string)

Convert a string to lower case.

Thestrlwr() function will convert a string to lower case. Only the upper case alphabetic
characters [A .. Z] are converted. Non-alphabetic characters will not be changed.

Returns:
Thestrlwr() function returns a pointer to the converted string.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 46

5.13.2.16 int strncasecmp (const char∗ s1, const char∗ s2, sizet len)

Compare two strings ignoring case.

Thestrncasecmp()function is similar tostrcasecmp(), except it only compares the first
n characters of s1.

Returns:
Thestrncasecmp()function returns an integer less than, equal to, or greater than
zero if s1 (or the first n bytes thereof) is found, respectively, to be less than, to
match, or be greater than s2.

5.13.2.17 char∗ strncat (char ∗ dest, const char∗ src, sizet len)

Concatenate two strings.

Thestrncat()function is similar tostrcat(), except that only the first n characters of src
are appended to dest.

Returns:
Thestrncat()function returns a pointer to the resulting string dest.

5.13.2.18 int strncmp (const char∗ s1, const char∗ s2, sizet len)

Compare two strings.

Thestrncmp()function is similar tostrcmp(), except it only compares the first (at most)
n characters of s1 and s2.

Returns:
Thestrncmp()function returns an integer less than, equal to, or greater than zero
if s1 (or the first n bytes thereof) is found, respectively, to be less than, to match,
or be greater than s2.

5.13.2.19 char∗ strncpy (char ∗ dest, const char∗ src, sizet len)

Copy a string.

The strncpy()function is similar tostrcpy(), except that not more than n bytes of src
are copied. Thus, if there is no null byte among the first n bytes of src, the result will
not be null-terminated.

In the case where the length of src is less than that of n, the remainder of dest will be
padded with nulls.

Returns:
Thestrncpy()function returns a pointer to the destination string dest.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.13 Strings 47

5.13.2.20 sizet strnlen (const char∗ src, sizet len)

Determine the length of a fixed-size string.

The strnlen function returns the number of characters in the string pointed to by src, not
including the terminating ’\0’ character, but at most len. In doing this, strnlen looks
only at the first len characters at src and never beyond src+len.

Returns:
The strnlen function returns strlen(src), if that is less than len, or len if there is no
’\0’ character among the first len characters pointed to by src.

5.13.2.21 char∗ strrchr (const char ∗ src, int val)

Locate character in string.

Thestrrchr()function returns a pointer to the last occurrence of the character val in the
string src.

Here ”character” means ”byte” - these functions do not work with wide or multi-byte
characters.

Returns:
The strrchr()function returns a pointer to the matched character or NULL if the
character is not found.

5.13.2.22 char∗ strrev (char ∗ string)

Reverse a string.

Thestrrev()function reverses the order of the string.

Returns:
Thestrrev()function returns a pointer to the beginning of the reversed string.

5.13.2.23 char∗ strstr (const char ∗ s1, const char∗ s2)

Locate a substring.

Thestrstr()function finds the first occurrence of the substrings2 in the strings1 . The
terminating ‘\0’ characters are not compared.

Returns:
Thestrstr()function returns a pointer to the beginning of the substring, or NULL
if the substring is not found.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.14 Interrupts and Signals 48

5.13.2.24 char∗ strupr (char ∗ string)

Convert a string to upper case.

Thestrupr()function will convert a string to upper case. Only the lower case alphabetic
characters [a .. z] are converted. Non-alphabetic characters will not be changed.

Returns:
Thestrupr()function returns a pointer to the converted string. The pointer is the
same as that passed in since the operation is perform in place.

5.14 Interrupts and Signals

5.14.1 Detailed Description

Note:
This discussion of interrupts and signals was taken from Rich Neswold’s docu-
ment. SeeAcknowledgments.

It’s nearly impossible to find compilers that agree on how to handle interrupt code.
Since the C language tries to stay away from machine dependent details, each compiler
writer is forced to design their method of support.

In the AVR-GCC environment, the vector table is predefined to point to interrupt rou-
tines with predetermined names. By using the appropriate name, your routine will be
called when the corresponding interrupt occurs. The device library provides a set of
default interrupt routines, which will get used if you don’t define your own.

Patching into the vector table is only one part of the problem. The compiler uses, by
convention, a set of registers when it’s normally executing compiler-generated code.
It’s important that these registers, as well as the status register, get saved and restored.
The extra code needed to do this is enabled by tagging the interrupt function with-
attribute ((interrupt)) .

These details seem to make interrupt routines a little messy, but all these details are
handled by the Interrupt API. An interrupt routine is defined with one of two macros,
INTERRUPT()andSIGNAL(). These macros register and mark the routine as an in-
terrupt handler for the specified peripheral. The following is an example definition of
a handler for the ADC interrupt.

#include <avr/signal.h>

INTERRUPT(SIG_ADC)
{

// user code here
}

Refer to the chapter explainingassembler programmingfor an explanation about inter-
rupt routines written solely in assembler language.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.14 Interrupts and Signals 49

If an unexpected interrupt occurs (interrupt is enabled and no handler is installed, which
usually indicates a bug), then the default action is to reset the device by jumping to
the reset vector. You can override this by supplying a function namedvector -
default which should be defined with eitherSIGNAL() or INTERRUPT()as such.

#include <avr/signal.h>

SIGNAL(__vector_default)
{

// user code here
}

The interrupt is chosen by supplying one of the symbols in following table. Note that
every AVR device has a different interrupt vector table so some signals might not be
available. Check the data sheet for the device you are using.

[FIXME: Fill in the blanks! Gotta read those durn data sheets ;-)]

Note:
TheSIGNAL() andINTERRUPT()macros currently cannot spell-check the argu-
ment passed to them. Thus, by misspelling one of the names below in a call to
SIGNAL() or INTERRUPT(), a function will be created that, while possibly being
usable as an interrupt function, is not actually wired into the interrupt vector table.
No warning will be given about this situation.

Signal Name Description
SIG 2WIRE SERIAL 2-wire serial interface (aka. I178C [tm])
SIG ADC ADC Conversion complete
SIG COMPARATOR Analog Comparator Interrupt
SIG EEPROMREADY Eeprom ready
SIG FPGA INTERRUPT0
SIG FPGA INTERRUPT1
SIG FPGA INTERRUPT2
SIG FPGA INTERRUPT3
SIG FPGA INTERRUPT4
SIG FPGA INTERRUPT5
SIG FPGA INTERRUPT6
SIG FPGA INTERRUPT7
SIG FPGA INTERRUPT8
SIG FPGA INTERRUPT9
SIG FPGA INTERRUPT10
SIG FPGA INTERRUPT11
SIG FPGA INTERRUPT12
SIG FPGA INTERRUPT13
SIG FPGA INTERRUPT14
SIG FPGA INTERRUPT15
SIG INPUT CAPTURE1 Input Capture1 Interrupt
SIG INPUT CAPTURE3 Input Capture3 Interrupt
SIG INTERRUPT0 External Interrupt0
SIG INTERRUPT1 External Interrupt1
SIG INTERRUPT2 External Interrupt2

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.14 Interrupts and Signals 50

Signal Name Description
SIG INTERRUPT3 External Interrupt3
SIG INTERRUPT4 External Interrupt4
SIG INTERRUPT5 External Interrupt5
SIG INTERRUPT6 External Interrupt6
SIG INTERRUPT7 External Interrupt7
SIG OUTPUT COMPARE0 Output Compare0 Interrupt
SIG OUTPUT COMPARE1A Output Compare1(A) Interrupt
SIG OUTPUT COMPARE1B Output Compare1(B) Interrupt
SIG OUTPUT COMPARE1C Output Compare1(C) Interrupt
SIG OUTPUT COMPARE2 Output Compare2 Interrupt
SIG OUTPUT COMPARE3A Output Compare3(A) Interrupt
SIG OUTPUT COMPARE3B Output Compare3(B) Interrupt
SIG OUTPUT COMPARE3C Output Compare3(C) Interrupt
SIG OVERFLOW0 Overflow0 Interrupt
SIG OVERFLOW1 Overflow1 Interrupt
SIG OVERFLOW2 Overflow2 Interrupt
SIG OVERFLOW3 Overflow3 Interrupt
SIG PIN
SIG PIN CHANGE0
SIG PIN CHANGE1
SIG RDMAC
SIG SPI SPI Interrupt
SIG SPM READY Store program memory ready
SIG SUSPENDRESUME
SIG TDMAC
SIG UART0
SIG UART0 DATA UART(0) Data Register Empty Interrupt
SIG UART0 RECV UART(0) Receive Complete Interrupt
SIG UART0 TRANS UART(0) Transmit Complete Interrupt
SIG UART1
SIG UART1 DATA UART(1) Data Register Empty Interrupt
SIG UART1 RECV UART(1) Receive Complete Interrupt
SIG UART1 TRANS UART(1) Transmit Complete Interrupt
SIG UART DATA UART Data Register Empty Interrupt
SIG UART RECV UART Receive Complete Interrupt
SIG UART TRANS UART Transmit Complete Interrupt
SIG USART0 DATA USART(0) Data Register Empty Interrupt
SIG USART0 RECV USART(0) Receive Complete Interrupt
SIG USART0 TRANS USART(0) Transmit Complete Interrupt
SIG USART1 DATA USART(1) Data Register Empty Interrupt
SIG USART1 RECV USART(1) Receive Complete Interrupt
SIG USART1 TRANS USART(1) Transmit Complete Interrupt
SIG USB HW

Global manipulation of the interrupt flag

The global interrupt flag is maintained in the I bit of the status register (SREG).

• #definesei() asm volatile (”sei” ::)
• #definecli() asm volatile (”cli” ::)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.14 Interrupts and Signals 51

Macros for writing interrupt handler functions

• #defineSIGNAL(signame)
• #defineINTERRUPT(signame)

Allowing specific system-wide interrupts

In addition to globally enabling interrupts, each device’s particular interrupt needs to
be enabled separately if interrupts for this device are desired. While some devices
maintain their interrupt enable bit inside the device’s register set, external and timer
interrupts have system-wide configuration registers.

Example:

// Enable timer 1 overflow interrupts.
timer_enable_int(_BV(TOIE1));

// Do some work...

// Disable all timer interrupts.
timer_enable_int(0);

Note:
Be careful when you use these functions. If you already have a different interrupt
enabled, you could inadvertantly disable it by enabling another intterupt.

• void enableexternalint (unsigned char ints)
• void timer enableint (unsigned char ints)

5.14.2 Define Documentation

5.14.2.1 #define cli() asm volatile (”cli” ::)

#include <avr/interrupt.h>

Disables all interrupts by clearing the global interrupt mask. This function actually
compiles into a single line of assembly, so there is no function call overhead.

5.14.2.2 #define INTERRUPT(signame)

Value:

void signame (void) __attribute__ ((interrupt)); \
void signame (void)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.14 Interrupts and Signals 52

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially en-
abled. This allows interrupt handlers to be interrupted.

5.14.2.3 #define sei() asm volatile (”sei” ::)

#include <avr/interrupt.h>

Enables interrupts by clearing the global interrupt mask. This function actually com-
piles into a single line of assembly, so there is no function call overhead.

5.14.2.4 #define SIGNAL(signame)

Value:

void signame (void) __attribute__ ((signal)); \
void signame (void)

#include <avr/signal.h>

Introduces an interrupt handler function that runs with global interrupts initially dis-
abled.

5.14.3 Function Documentation

5.14.3.1 void enableexternal int (unsigned char ints)

#include <avr/interrupt.h>

This function gives access to thegimsk register (oreimsk register if using an AVR
Mega device). Although this function is essentially the same as using theoutb() func-
tion, it does adapt slightly to the type of device being used.

5.14.3.2 void timerenable int (unsigned char ints)

#include <avr/interrupt.h>

This function modifies thetimsk register using theoutb() function. The value you
pass viaints is device specific.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.15 Special function registers 53

5.15 Special function registers

5.15.1 Detailed Description

When working with microcontrollers, many of the tasks usually consist of controlling
the peripherals that are connected to the device, respectively programming the subsys-
tems that are contained in the controller (which by itself communicate with the circuitry
connected to the controller).

The AVR series of microcontrollers offers two different paradigms to perform this task.
There’s a separate IO address space available (as it is known from some high-level
CISC CPUs) that can be addressed with specific IO instructions that are applicable to
some or all of the IO address space (in , out , sbi etc.). The entire IO address space
is also made available asmemory-mapped IO, i. e. it can be accessed using all the
MCU instructions that are applicable to normal data memory. The IO register space is
mapped into the data memory address space with an offset of 0x20 since the bottom
of this space is reserved for direct access to the MCU registers. (Actual SRAM is
available only behind the IO register area, starting at either address 0x60, or 0x100
depending on the device.)

AVR Libc supports both these paradigms. While by default, the implementation uses
memory-mapped IO access, this is hidden from the programmer. So the programmer
can access IO registers either with a special function likeoutb() :

#include <avr/io.h>

outb(PORTA, 0x33);

or they can assign a value directly to the symbolic address:

PORTA = 0x33;

The compiler’s choice of which method to use when actually accessing the IO port is
completely independent of the way the programmer chooses to write the code. So even
if the programmer uses the memory-mapped paradigm and writes

PORTA |= 0x40;

the compiler can optimize this into the use of ansbi instruction (of course, provided
the target address is within the allowable range for this instruction, and the right-hand
side of the expression is a constant value known at compile-time).

The advantage of using the memory-mapped paradigm in C programs is that it makes
the programs more portable to other C compilers for the AVR platform. Some people
might also feel that this is more readable. For example, the following two statements
would be equivalent:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.15 Special function registers 54

outb(DDRD, inb(DDRD) & ˜LCDBITS);
DDRD &= ˜LCDBITS;

The generated code is identical for both. Whitout optimization, the compiler strictly
generates code following the memory-mapped paradigm, while with optimization
turned on, code is generated using the (faster and smaller)in/out MCU instructions.

Note that special care must be taken when accessing some of the 16-bit timer IO reg-
isters where access from both the main program and within an interrupt context can
happen. SeeWhy do some 16-bit timer registers sometimes get trashed?.

Modules

• Additional notes from<avr/sfr defs.h>

Bit manipulation

• #define BV(bit) (1 << (bit))

IO operations

• #defineinb(sfr) SFRBYTE(sfr)
• #defineinw(sfr) SFRWORD(sfr)
• #defineoutb(sfr, val) (SFRBYTE(sfr) = (val))
• #defineoutw(sfr, val) (SFRWORD(sfr) = (val))

IO register bit manipulation

• #definecbi(sfr, bit) (SFRBYTE(sfr) &= ∼ BV(bit))
• #definesbi(sfr, bit) (SFRBYTE(sfr) |= BV(bit))
• #definebit is set(sfr, bit) (inb(sfr) & BV(bit))
• #definebit is clear(sfr, bit) (∼inb(sfr) & BV(bit))
• #defineloop until bit is set(sfr, bit) do{ } while (bit is clear(sfr, bit))
• #defineloop until bit is clear(sfr, bit) do{ } while (bit is set(sfr, bit))

Deprecated Macros

• #defineoutp(val, sfr) outb(sfr, val)
• #defineinp(sfr) inb(sfr)
• #defineBV(bit) BV(bit)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.15 Special function registers 55

5.15.2 Define Documentation

5.15.2.1 #defineBV(bit) (1 << (bit))

#include <avr/io.h>

Converts a bit number into a byte value.

Note:
The bit shift is performed by the compiler which then inserts the result into the
code. Thus, there is no run-time overhead when usingBV().

5.15.2.2 #define bitis clear(sfr, bit) (∼inb(sfr) & BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is clear.

5.15.2.3 #define bitis set(sfr, bit) (inb(sfr) & BV(bit))

#include <avr/io.h>

Test whether bitbit in IO registersfr is set.

5.15.2.4 #define BV(bit) BV(bit)

Deprecated:
For backwards compatibility only. This macro will eventually be removed.

Use BV() in new programs.

5.15.2.5 #define cbi(sfr, bit) (SFR BYTE(sfr) &= ∼ BV(bit))

#include <avr/io.h>

Clear bitbit in IO registersfr .

5.15.2.6 #define inb(sfr)SFR BYTE(sfr)

#include <avr/io.h>

Read a byte from IO registersfr .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

5.15 Special function registers 56

5.15.2.7 #define inp(sfr) inb(sfr)

Deprecated:
For backwards compatibility only. This macro will eventually be removed.

Useinb() in new programs.

5.15.2.8 #define inw(sfr)SFR WORD(sfr)

#include <avr/io.h>

Read a 16-bit word from IO register pairsfr .

5.15.2.9 #define loopuntil bit is clear(sfr, bit) do { } while (bit is set(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is clear.

5.15.2.10 #define loopuntil bit is set(sfr, bit) do { } while (bit is clear(sfr, bit))

#include <avr/io.h>

Wait until bit bit in IO registersfr is set.

5.15.2.11 #define outb(sfr, val) (SFR BYTE(sfr) = (val))

#include <avr/io.h>

Write val to IO registersfr .

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

5.15.2.12 #define outp(val, sfr) outb(sfr, val)

Deprecated:
For backwards compatibility only. This macro will eventually be removed.

Useoutb() in new programs.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

6 avr-libc Data Structure Documentation 57

5.15.2.13 #define outw(sfr, val) (SFR WORD(sfr) = (val))

#include <avr/io.h>

Write the 16-bit valueval to IO register pairsfr . Care will be taken to write the
lower register first. When used to update 16-bit registers where the timing is critical
and the operation can be interrupted, the programmer is the responsible for disabling
interrupts before accessing the register pair.

Note:
The order of the arguments was switched in older versions of avr-libc (versions
<= 20020203).

5.15.2.14 #define sbi(sfr, bit) (SFR BYTE(sfr) |= BV(bit))

#include <avr/io.h>

Set bitbit in IO registersfr .

6 avr-libc Data Structure Documentation

6.1 div t Struct Reference

6.1.1 Detailed Description

Result type for functiondiv().

The documentation for this struct was generated from the following file:

• stdlib.h

6.2 ldiv t Struct Reference

6.2.1 Detailed Description

Result type for functionldiv().

The documentation for this struct was generated from the following file:

• stdlib.h

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7 avr-libc Page Documentation 58

7 avr-libc Page Documentation

7.1 Acknowledgments

This document tries to tie together the labors of a large group of people. Without
these individuals’ efforts, we wouldn’t have a terrific,free set of tools to develop AVR
projects. We all owe thanks to:

• The GCC Team, which produced a very capable set of development tools for an
amazing number of platforms and processors.

• Denis Chertykov [denisc@overta.ru] for making the AVR-specific
changes to the GNU tools.

• Denis Chertykov and Marek Michalkiewicz [marekm@linux.org.pl] for
developing the standard libraries and startup code forAVR-GCC .

• Theodore A. Roth [troth@verinet.com] for setting up avr-
libc’s CVS repository, bootstrapping the documentation project
using doxygen, and continued maintenance of the project on
http://savannah.gnu.org/projects/avr-libc

• Uros Platise for developing the AVR programmer tool,uisp.

• Joerg Wunsch [joerg@FreeBSD.ORG] for adding all the AVR development
tools to the FreeBSD [http://www.freebsd.org] ports tree and for pro-
viding thedemo project.

• Brian Dean [bsd@bsdhome.com] for developingavrprog (an alternate to
uisp) and for contributingdocumentationwhich describes how to use it.

• All the people who have submitted suggestions, patches and bug reports. (See
the AUTHORS files of the various tools.)

• And lastly, all the users who use the software. If nobody used the software, we
would probably not be very motivated to continue to develop it. Keep those bug
reports coming. ;-)

7.2 avr-libc and assembler programs

7.2.1 Introduction

There might be several reasons to write code for AVR microcontrollers using plain
assembler source code. Among them are:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

mailto:denisc@overta.ru
mailto:marekm@linux.org.pl
mailto:troth@verinet.com
http://savannah.gnu.org/projects/avr-libc
mailto:joerg@FreeBSD.ORG
http://www.freebsd.org
mailto:bsd@bsdhome.com

7.2 avr-libc and assembler programs 59

• Code for devices that do not have RAM and are thus not supported by the C
compiler.

• Code for very time-critical applications.
• Special tweaks that cannot be done in C.

Usually, all but the first could probably be done easily using theinline assemblerfacility
of the compiler.

Although avr-libc is primarily targeted to support programming AVR microcontrollers
using the C (and C++) language, there’s limited support for direct assembler usage as
well. The benefits of it are:

• Use of the C preprocessor and thus the ability to use the same symbolic constants
that are available to C programs, as well as a flexible macro concept that can use
any valid C identifier as a macro (whereas the assembler’s macro concept is
basically targeted to use a macro in place of an assembler instruction).

• Use of the runtime framework like automatically assigning interrupt vectors. For
devices that have RAM,initializing the RAM variablescan also be utilized.

7.2.2 Invoking the compiler

For the purpose described in this document, the assembler and linker are usually not
invoked manually, but rather using the C compiler frontend (avr-gcc) that in turn
will call the assembler and linker as required.

This approach has the following advantages:

• There is basically only one program to be called directly,avr-gcc , regardless
of the actual source language used.

• The invokation of the C preprocessor will be automatic, and will include the
appropriate options to locate required include files in the filesystem.

• The invokation of the linker will be automatic, and will include the appropri-
ate options to locate additional libraries as well as the application start-up code
(crt XXX.o) and linker script.

Note that the invokation of the C preprocessor will be automatic when the filename
provided for the assembler file ends in .S (the capital letter ”s”). This would even apply
to operating systems that use case-insensitive filesystems since the actual decision is
made based on the case of the filename suffix given on the command-line, not based on
the actual filename from the file system.

Alternatively, the language can explicitly be specified using the-x assembler-
with-cpp option.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 60

7.2.3 Example program

The following annotated example features a simple 100 kHz square wave generator
using an AT90S1200 clocked with a 10.7 MHz crystal. Pin PD6 will be used for the
square wave output.

#include <avr/io.h> ; Note [1]

work = 16 ; Note [2]
tmp = 17

inttmp = 19

intsav = 0

SQUARE = PD6 ; Note [3]

; Note [4]:
tmconst= 10700000 / 200000 ; 100 kHz => 200000 edges/s
fuzz= 8 ; # clocks in ISR until TCNT0 is set

.section .text

.global main ; Note [5]
main:

rcall ioinit
1:

rjmp 1b ; Note [6]

.global SIG_OVERFLOW0 ; Note [7]
SIG_OVERFLOW0:

ldi inttmp, 256 - tmconst + fuzz
out _SFR_IO_ADDR(TCNT0), inttmp ; Note [8]

in intsav, _SFR_IO_ADDR(SREG) ; Note [9]

sbic _SFR_IO_ADDR(PORTD), SQUARE
rjmp 1f
sbi _SFR_IO_ADDR(PORTD), SQUARE
rjmp 2f

1: cbi _SFR_IO_ADDR(PORTD), SQUARE
2:

out _SFR_IO_ADDR(SREG), intsav
reti

ioinit:
sbi _SFR_IO_ADDR(DDRD), SQUARE

ldi work, _BV(TOIE0)
out _SFR_IO_ADDR(TIMSK), work

ldi work, _BV(CS00) ; tmr0: CK/1
out _SFR_IO_ADDR(TCCR0), work

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.2 avr-libc and assembler programs 61

ldi work, 256 - tmconst
out _SFR_IO_ADDR(TCNT0), work

sei

ret

.global __vector_default ; Note [10]
__vector_default:

reti

.end

Note [1]
As in C programs, this includes the central processor-specific file containing the
IO port definitions for the device. Note that not all include files can be included
into assembler sources.

Note [2]
Assignment of registers to symbolic names used locally. Another option would be
to use a C preprocessor macro instead:

#define work 16

Note [3]
Our bit number for the square wave output. Note that the right-hand side con-
sists of a CPP macro which will be substituted by its value (6 in this case) before
actually being passed to the assembler.

Note [4]
The assembler uses integer operations in the host-defined integer size (32 bits or
longer) when evaluating expressions. This is in contrast to the C compiler that
uses the C typeint by default in order to calculate constant integer expressions.
In order to get a 100 kHz output, we need to toggle the PD6 line 200000 times
per second. Since we use timer 0 without any prescaling options in order to get
the desired frequency and accuracy, we already run into serious timing consid-
erations: while accepting and processing the timer overflow interrupt, the timer
already continues to count. When pre-loading theTCCNT0register, we therefore
have to account for the number of clock cycles required for interrupt acknowledge
and for the instructions to reloadTCCNT0(4 clock cycles for interrupt acknowl-
edge, 2 cycles for the jump from the interrupt vector, 2 cycles for the 2 instructions
that reloadTCCNT0). This is what the constantfuzz is for.

Note [5]
External functions need to be declared to be .global . main is the application en-
try point that will be jumped to from the ininitalization routine incrts1200.o .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 62

Note [6]
The main loop is just a single jump back to itself. Square wave generation itself is
completely handled by the timer 0 overflow interrupt service. Asleep instruction
(using idle mode) could be used as well, but probably would not conserve much
energy anyway since the interrupt service is executed quite frequently.

Note [7]
Interrupt functions can get theusual namesthat are also available to C programs.
The linker will then put them into the appropriate interrupt vector slots. Note that
they must be declared .global in order to be acceptable for this purpose.

Note [8]
As explained in the section aboutspecial function registers, the actual IO port
address should be obtained using the macroSFR IO ADDR. (The AT90S1200
does not have RAM thus the memory-mapped approach to access the IO registers
is not available. It would be slower than usingin / out instructions anyway.)
Since the operation to reloadTCCNT0is time-critical, it is even performed before
savingSREG. Obviously, this requires that the instructions involved would not
change any of the flag bits inSREG.

Note [9]
Interrupt routines must not clobber the global CPU state. Thus, it is usually neces-
sary to save at least the state of the flag bits inSREG. (Note that this serves as an
example here only since actually, all the following instructions would not modify
SREGeither, but that’s not commonly the case.)
Also, it must be made sure that registers used inside the interrupt routine do
not conflict with those used outside. In the case of a RAM-less device like the
AT90S1200, this can only be done by agreeing on a set of registers to be used
exclusively inside the interrupt routine; there would not be any other chance to
”save” a register anywhere.
If the interrupt routine is to be linked together with C modules, care must be taken
to follow the register usage guidelinesimposed by the C compiler. Also, any
register modified inside the interrupt sevice needs to be saved, usually on the stack.

Note [10]
As explained inInterrupts and Signals, a global ”catch-all” interrupt handler that
gets all unassigned interrupt vectors can be installed using the namevector -
default . This must be .global , and obviously, should end in areti instruc-
tion. (By default, a jump to location 0 would be implied instead.)

7.3 Frequently Asked Questions

7.3.1 FAQ Index

1. My program doesn’t recognize a variable updated within an interrupt routine

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 63

2. I get ”undefined reference to...” for functions like ”sin()”

3. How to permanently bind a variable to a register?

4. How to modify MCUCR or WDTCR early?

5. What is all this BV() stuff about?

6. Can I use C++ on the AVR?

7. Shouldn’t I initialize all my variables?

8. Why do some 16-bit timer registers sometimes get trashed?

9. How do I use a #define’d constant in an asm statement?

10. Why does the PC randomly jump around when single-stepping through my pro-
gram in avr-gdb?

11. How do I trace an assembler file in avr-gdb?

12. How do I pass an IO port as a parameter to a function?

13. What registers are used by the C compiler?

14. How do I put an array of strings completely in ROM?

15. How to use external RAM?

7.3.2 My program doesn’t recognize a variable updated within an interrupt rou-
tine

When using the optimizer, in a loop like the following one:

uint8_t flag;
...

while (flag == 0) {
...

}

the compiler will typically optimize the access toflag completely away, since its
code path analysis shows that nothing inside the loop could change the value offlag
anyway. To tell the compiler that this variable could be changed outside the scope of
its code path analysis (e. g. from within an interrupt routine), the variable needs to be
declared like:

volatile uint8_t flag;

Back toFAQ Index.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 64

7.3.3 I get ”undefined reference to...” for functions like ”sin()”

In order to access the mathematical functions that are declared in<math.h >, the
linker needs to be told to also link the mathematical library,libm.a .

Typically, system libraries likelibm.a are given to the final C compiler command
line that performs the linking step by adding a flag-lm at the end. (That is, the initial
lib and the filename suffix from the library are written immediately after a-l flag. So
for a libfoo.a library, -lfoo needs to be provided.) This will make the linker
search the library in a path known to the system.

An alternative would be to specify the full path to thelibm.a file at the same place
on the command line, i. e.after all the object files (∗.o). However, since this re-
quires knowledge of where the build system will exactly find those library files, this is
deprecated for system libraries.

Back toFAQ Index.

7.3.4 How to permanently bind a variable to a register?

This can be done with

register unsigned char counter asm("r3");

SeeC Names Used in Assembler Codefor more details.

Back toFAQ Index.

7.3.5 How to modify MCUCR or WDTCR early?

The method of early initialization (MCUCR, WDTCRor anything else) is different (and
more flexible) in the current version. Basically, write a small assembler file which
looks like this:

;; begin xram.S

#include <avr/io.h>

.section .init1,"ax",@progbits

ldi r16,_BV(SRE) | _BV(SRW)
out _SFR_IO_ADDR(MCUCR),r16

;; end xram.S

Assemble it, link the resultingxram.o with other files in your program, and this piece
of code will be inserted in initialization code, which is run right after reset. See the
linker script for comments about the new.init N sections (which one to use, etc.).

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 65

The advantage of this method is that you can insert any initialization code you want
(just remember that this is very early startup – no stack and nozero reg yet), and
no program memory space is wasted if this feature is not used.

There should be no need to modify linker scripts anymore, except for some very special
cases. It is best to leavestack at its default value (end of internal SRAM – faster,
and required on some devices like ATmega161 because of errata), and add-Wl,-
Tdata,0x801100 to start the data section above the stack.

For more information on using sections, including how to use them from C code, see
Memory Sections.

Back toFAQ Index.

7.3.6 What is all this BV() stuff about?

When performing low-level output work, which is a very central point in microcon-
troller programming, it is quite common that a particular bit needs to be set or cleared
in some IO register. While the device documentation provides mnemonic names for
the various bits in the IO registers, and theAVR device-specific IO definitionsreflect
these names in definitions for numerical constants, a way is needed to convert a bit
number (usually within a byte register) into a byte value that can be assigned directly
to the register. However, sometimes the direct bit numbers are needed as well (e. g. in
ansbi() call), so the definitions cannot usefully be made as byte values in the first
place.

So in order to access a particular bit number as a byte value, use theBV() macro. Of
course, the implementation of this macro is just the usual bit shift (which is done by the
compiler anyway, thus doesn’t impose any run-time penalty), so the following applies:

_BV(3) => 1 << 3 => 0x08

However, using the macro often makes the program better readable.

”BV” stands for ”bit value”, in case someone might ask you. :-)

Example: clock timer 2 with full IO clock (CS2x = 0b001), toggle OC2 output on
compare match (COM2x = 0b01), and clear timer on compare match (CTC2= 1). Make
OC2 (PD7) an output.

TCCR2 = _BV(COM20)|_BV(CTC2)|_BV(CS20);
DDRD = _BV(PD7);

Back toFAQ Index.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 66

7.3.7 Can I use C++ on the AVR?

Basically yes, C++ is supported (assuming your compiler has been configured and
compiled to support it, of course). Source files ending in .cc , .cpp or .Cwill automat-
ically cause the compiler frontend to invoke the C++ compiler. Alternatively, the C++
compiler could be explicitly called by the nameavr-c++ .

However, there’s currently no support forlibstdc++ , the standard support library
needed for a complete C++ implementation. This imposes a number of restrictions on
the C++ programs that can be compiled. Among them are:

• Obviously, none of the C++ related standard functions, classes, and template
classes are available.

• The operatorsnew anddelete are not implemented, attempting to use them
will cause the linker to complain about undefined external references. (This
could perhaps be fixed.)

• Some of the supplied include files are not C++ safe, i. e. they need to be wrapped
into
extern "C" { . . . }

(This could certainly be fixed, too.)

• Exceptions are not supported. Since exceptions are enabled by default in the
C++ frontend, they explicitly need to be turned off using-fno-exceptions
in the compiler options. Failing this, the linker will complain about an undefined
external reference togxx personality sj0 .

Constructors and destructorsaresupported though, including global ones.

When programming C++ in space- and runtime-sensitive environments like microcon-
trollers, extra care should be taken to avoid unwanted side effects of the C++ calling
conventions like implied copy constructors that could be called upon function invo-
cation etc. These things could easily add up into a considerable amount of time and
program memory wasted. Thus, casual inspection of the generated assembler code
(using the-S compiler option) seems to be warranted.

Back toFAQ Index.

7.3.8 Shouldn’t I initialize all my variables?

Global and static variables are guaranteed to be initialized to 0 by the C standard.avr-
gcc does this by placing the appropriate code into section .init4 (seeThe .initN
Sections). With respect to the standard, this sentence is somewhat simplified (because
the standard allows for machines where the actual bit pattern used differs from all bits

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 67

being 0), but for the AVR target, in general, all integer-type variables are set to 0, all
pointers to a NULL pointer, and all floating-point variables to 0.0.

As long as these variables are not initialized (i. e. they don’t have an equal sign and
an initialization expression to the right within the definition of the variable), they go
into the.bsssection of the file. This section simply records the size of the variable,
but otherwise doesn’t consume space, neither within the object file nor within flash
memory. (Of course, being a variable, it will consume space in the target’s SRAM.)

In contrast, global and static variables that have an initializer go into the.datasection
of the file. This will cause them to consume space in the object file (in order to record
the initializing value),and in the flash ROM of the target device. The latter is needed
since the flash ROM is the only way that the compiler can tell the target device the
value this variable is going to be initialized to.

Now if some programmer ”wants to make doubly sure” their variables really get a 0
at program startup, and adds an initializer just containing 0 on the right-hand side,
they waste space. While this waste of space applies to virtually any platform C is
implemented on, it’s usually not noticeable on larger machines like PCs, while the
waste of flash ROM storage can be very painful on a small microcontroller like the
AVR.

So in general, variables should only be explicitly initialized if the initial value is non-
zero.

Back toFAQ Index.

7.3.9 Why do some 16-bit timer registers sometimes get trashed?

Some of the timer-related 16-bit IO registers use a temporary register (called TEMP in
the Atmel datasheet) to guarantee an atomic access to the register despite the fact that
two separate 8-bit IO transfers are required to actually move the data. Typically, this
includes access to the current timer/counter value register (TCNTn), the input capture
register (ICRn), and write access to the output compare registers (OCRnM). Refer to
the actual datasheet for each device’s set of registers that involves the TEMP register.

When accessing one of the registers that use TEMP from the main application, and
possibly any other one from within an interrupt routine, care must be taken that no
access from within an interrupt context could clobber the TEMP register data of an
in-progress transaction that has just started elsewhere.

To protect interrupt routines against other interrupt routines, it’s usually best to use the
SIGNAL() macro when declaring the interrupt function, and to ensure that interrupts
are still disabled when accessing those 16-bit timer registers.

Within the main program, access to those registers could be encapsulated in calls to the
cli() andsei()macros. If the status of the global interrupt flag before accessing one of
those registers is uncertain, something like the following example code can be used.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 68

uint16_t
read_timer1(void)
{

uint8_t sreg;
uint16_t val;

sreg = SREG;
cli();
val = TCNT1;
SREG = sreg;

return val;
}

Back toFAQ Index.

7.3.10 How do I use a #define’d constant in an asm statement?

So you tried this:

asm volatile("sbi 0x18,0x07;");

Which works. When you do the same thing but replace the address of the port by its
macro name, like this:

asm volatile("sbi PORTB,0x07;");

you get a compilation error:"Error: constant value required" .

PORTBis a precompiler definition included in the processor specific file included in
avr/io.h . As you may know, the precompiler will not touch strings andPORTB,
instead of0x18 , gets passed to the assembler. One way to avoid this problem is:

asm volatile("sbi %0, 0x07" : "I" (PORTB):);

Note:
avr/io.h already provides asbi() macro definition, which can be used in C
programs.

Back toFAQ Index.

7.3.11 Why does the PC randomly jump around when single-stepping through
my program in avr-gdb?

When compiling a program with both optimization (-O) and debug information (-
g) which is fortunately possible inavr-gcc , the code watched in the debugger is

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 69

optimized code. While it is not guaranteed, very often this code runs with the exact
same optimizations as it would run without the-g switch.

This can have unwanted side effects. Since the compiler is free to reorder code ex-
ecution as long as the semantics do not change, code is often rearranged in order to
make it possible to use a single branch instruction for conditional operations. Branch
instructions can only cover a short range for the target PC (-63 through +64 words from
the current PC). If a branch instruction cannot be used directly, the compiler needs to
work around it by combining a skip instruction together with a relative jump (rjmp)
instruction, which will need one additional word of ROM.

Another side effect of optimzation is that variable usage is restricted to the area of code
where it is actually used. So if a variable was placed in a register at the beginning of
some function, this same register can be re-used later on if the compiler notices that the
first variable is no longer used inside that function, even though the variable is still in
lexical scope. When trying to examine the variable inavr-gdb , the displayed result
will then look garbled.

So in order to avoid these side effects, optimization can be turned off while debugging.
However, some of these optimizations might also have the side effect of uncovering
bugs that would otherwise not be obvious, so it must be noted that turning off opti-
mization can easily change the bug pattern. In most cases, you are better off leaving
optimizations enabled while debugging.

Back toFAQ Index.

7.3.12 How do I trace an assembler file in avr-gdb?

When using the-g compiler option,avr-gcc only generates line number and other
debug information for C (and C++) files that pass the compiler. Functions that don’t
have line number information will be completely skipped by a singlestep command
in gdb . This includes functions linked from a standard library, but by default also
functions defined in an assembler source file, since the-g compiler switch does not
apply to the assembler.

So in order to debug an assembler input file (possibly one that has to be passed through
the C preprocessor), it’s the assembler that needs to be told to include line-number
information into the output file. (Other debug information like data types and variable
allocation cannot be generated, since unlike a compiler, the assembler basically doesn’t
know about this.) This is done using the (GNU) assembler option--gstabs .

Example:

$ avr-as -mmcu=atmega128 --gstabs -o foo.o foo.s

When the assembler is not called directly but through the C compiler frontend (either
implicitly by passing a source file ending in .S, or explicitly using-x assembler-
with-cpp), the compiler frontend needs to be told to pass the--gstabs option

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 70

down to the assembler. This is done using-Wa,--gstabs . Please take care toonly
pass this option when compiling an assembler input file. Otherwise, the assembler code
that results from the C compilation stage will also get line number information, which
confuses the debugger.

Note:
You can also use-Wa,-gstabs since the compiler will add the extra ’- ’ for you.

Example:

$ EXTRA_OPTS="-Wall -mmcu=atmega128 -x assembler-with-cpp"
$ avr-gcc -Wa,--gstabs ${EXTRA_OPTS} -c -o foo.o foo.S

Also note that the debugger might get confused when entering a piece of code that has
a non-local label before, since it then takes this label as the name of a new function that
appears to have been entered. Thus, the best practice to avoid this confusion is to only
use non-local labels when declaring a new function, and restrict anything else to local
labels. Local labels consist just of a number only. References to these labels consist
of the number, followed by the letterb for a backward reference, orf for a forward
reference. These local labels may be re-used within the source file, references will pick
the closest label with the same number and given direction.

Example:

myfunc: push r16
push r17
push r18
push YL
push YH
...
eor r16, r16 ; start loop
ldi YL, lo8(sometable)
ldi YH, hi8(sometable)
rjmp 2f ; jump to loop test at end

1: ld r17, Y+ ; loop continues here
...
breq 1f ; return from myfunc prematurely
...
inc r16

2: cmp r16, r18
brlo 1b ; jump back to top of loop

1: pop YH
pop YL
pop r18
pop r17
pop r16
ret

Back toFAQ Index.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 71

7.3.13 How do I pass an IO port as a parameter to a function?

Consider this example code:

#include <inttypes.h>
#include <avr/io.h>

void
set_bits_func_wrong (volatile uint8_t port, uint8_t mask)
{

port |= mask;
}

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

*port |= mask;
}

#define set_bits_macro(port,mask) ((port) |= (mask))

int main (void)
{

set_bits_func_wrong (PORTB, 0xaa);
set_bits_func_correct (&PORTB, 0x55);
set_bits_macro (PORTB, 0xf0);

return (0);
}

The first function will generate object code which is not even close to what is intended.
The major problem arises when the function is called. When the compiler sees this
call, it will actually pass the value in the thePORTBregister (using anIN instruction),
instead of passing the address ofPORTB(e.g. memory mapped io addr of0x38 , io
port 0x18 for the mega128). This is seen clearly when looking at the disassembly of
the call:

set_bits_func_wrong (PORTB, 0xaa);
10a: 6a ea ldi r22, 0xAA ; 170
10c: 88 b3 in r24, 0x18 ; 24
10e: 0e 94 65 00 call 0xca

So, the function, once called, only sees the value of the port register and knows nothing
about which port it came from. At this point, whatever object code is generated for
the function by the compiler is irrelevant. The interested reader can examine the full
disassembly to see the the function’s body is completely fubar.

The second function shows how to pass (by reference) the memory mapped address of
the io port to the function so that you can read and write to it in the function. Here’s
the object code generated for the function call:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 72

set_bits_func_correct (&PORTB, 0x55);
112: 65 e5 ldi r22, 0x55 ; 85
114: 88 e3 ldi r24, 0x38 ; 56
116: 90 e0 ldi r25, 0x00 ; 0
118: 0e 94 7c 00 call 0xf8

You can clearly see that0x0038 is correctly passed for the address of the io port.
Looking at the disassembled object code for the body of the function, we can see that
the function is indeed performing the operation we intended:

void
set_bits_func_correct (volatile uint8_t *port, uint8_t mask)
{

f8: fc 01 movw r30, r24
*port |= mask;

fa: 80 81 ld r24, Z
fc: 86 2b or r24, r22
fe: 80 83 st Z, r24

}
100: 08 95 ret

Notice that we are accessing the io port via theLD andST instructions.

Theport parameter must be volatile to avoid a compiler warning.

Note:
Because of the nature of theIN andOUTassembly instructions, they can not be
used inside the function when passing the port in this way. Readers interested in
the details should consult theInstruction Setdata sheet.

Finally we come to the macro version of the operation. In this contrived example, the
macro is the most efficient method with respect to both execution speed and code size:

set_bits_macro (PORTB, 0xf0);
11c: 88 b3 in r24, 0x18 ; 24
11e: 80 6f ori r24, 0xF0 ; 240
120: 88 bb out 0x18, r24 ; 24

Of course, in a real application, you might be doing a lot more in your function which
uses a passed by reference io port address and thus the use of a function over a macro
could save you some code space, but still at a cost of execution speed.

Back toFAQ Index.

7.3.14 What registers are used by the C compiler?

• Data types:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 73

char is 8 bits,int is 16 bits,long is 32 bits,long long is 64 bits,float and
double are 32 bits (this is the only supported floating point format), pointers
are 16 bits (function pointers are word addresses, to allow addressing the whole
128K program memory space on the ATmega devices with> 64 KB of flash
ROM). There is a-mint8 option (seeOptions for the C compiler avr-gcc) to
makeint 8 bits, but that is not supported by avr-libc and violates C standards
(int mustbe at least 16 bits). It may be removed in a future release.

• Call-used registers (r18-r27, r30-r31):

May be allocated by gcc for local data. Youmay use them freely in assem-
bler subroutines. Calling C subroutines can clobber any of them - the caller is
responsible for saving and restoring.

• Call-saved registers (r2-r17, r28-r29):

May be allocated by gcc for local data. Calling C subroutines leaves them un-
changed. Assembler subroutines are responsible for saving and restoring these
registers, if changed. r29:r28 (Y pointer) is used as a frame pointer (points to
local data on stack) if necessary.

• Fixed registers (r0, r1):

Never allocated by gcc for local data, but often used for fixed purposes:

r0 - temporary register, can be clobbered by any C code (except interrupt han-
dlers which save it),maybe used to remember something for a while within one
piece of assembler code

r1 - assumed to be always zero in any C code,maybe used to remember some-
thing for a while within one piece of assembler code, butmustthen be cleared
after use (clr r1). This includes any use of the[f]mul[s[u]] instructions,
which return their result in r1:r0. Interrupt handlers save and clear r1 on entry,
and restore r1 on exit (in case it was non-zero).

• Function call conventions:

Arguments - allocated left to right, r25 to r8. All arguments are aligned to start in
even-numbered registers (odd-sized arguments, includingchar , have one free
register above them). This allows making better use of themovwinstruction on
the enhanced core.

If too many, those that don’t fit are passed on the stack.

Return values: 8-bit in r24 (not r25!), 16-bit in r25:r24, up to 32 bits in r22-r25,
up to 64 bits in r18-r25. 8-bit return values are zero/sign-extended to 16 bits by
the caller (unsigned char is more efficient thansigned char - just clr
r25). Arguments to functions with variable argument lists (printf etc.) are all
passed on stack, andchar is extended toint .

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 74

Warning:
There was no such alignment before 2000-07-01, including the old patches for
gcc-2.95.2. Check your old assembler subroutines, and adjust them accordingly.

Back toFAQ Index.

7.3.15 How do I put an array of strings completely in ROM?

There are times when you may need an array of strings which will never be modified. In
this case, you don’t want to waste ram storing the constant strings. This most obvious
thing to do is this:

#include <avr/pgmspace.h>

PGM_P array[2] PROGMEM = {
"Foo",
"Bar"

};

int main (void)
{

char buf[32];
strcpy_P (buf, array[1]);
return 0;

}

The result is not want you want though. What you end up with is the array stored in
ROM, while the individual strings end up in RAM (in the .data section).

To work around this, you need to do something like this:

#include <avr/pgmspace.h>

const char foo[] PROGMEM = "Foo";
const char bar[] PROGMEM = "Bar";

PGM_P array[2] PROGMEM = {
foo,
bar

};

int main (void)
{

char buf[32];
strcpy_P (buf, array[1]);
return 0;

}

Looking at the disassembly of the resulting object file we see that array is in flash as
such:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.3 Frequently Asked Questions 75

0000008c <foo>:
8c: 46 6f ori r20, 0xF6 ; 246
8e: 6f 00 .word 0x006f ; ????

00000090 <bar>:
90: 42 61 ori r20, 0x12 ; 18
92: 72 00 .word 0x0072 ; ????

00000094 <array>:
94: 8c 00 .word 0x008c ; ????
96: 90 00 .word 0x0090 ; ????

foo is at addr 0x008c.

bar is at addr 0x0090.

array is at addr 0x0094.

Then in main we see this:

strcpy_P (buf, array[1]); /* copy bar into buf
de: 60 e9 ldi r22, 0x90 ; 144
e0: 70 e0 ldi r23, 0x00 ; 0
e2: ce 01 movw r24, r28
e4: 01 96 adiw r24, 0x01 ; 1
e6: 0e 94 79 00 call 0xf2

The addr of bar (0x0090) is loaded into the r23:r22 pair which is the second parameter
passed to strcpyP. The r25:r24 pair is the addr of buf.

Back toFAQ Index.

7.3.16 How to use external RAM?

Well, there is no universal answer to this question; it depends on what the external
RAM is going to be used for.

Basically, the bitSRE(SRAM enable) in theMCUCRregister needs to be set in order
to enable the external memory interface. Depending on the device to be used, and
the application details, further registers affecting the external memory operation like
XMCRAandXMCRB, and/or further bits inMCUCRmight be configured. Refer to the
datasheet for details.

If the external RAM is going to be used to store the variables from the C program (i.
e., the .data and/or .bss segment) in that memory area, it is essential to set up the
external memory interface early during thedevice initializationso the initialization of
these variable will take place. Refer toHow to modify MCUCR or WDTCR early?for
a description how to do this using few lines of assembler code, or to the chapter about
memory sections for anexample written in C.

The explanation ofmalloc() contains adiscussionabout the use of internal RAM vs.
external RAM in particular with respect to the various possible locations of theheap

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 76

(area reserved formalloc()). It also explains the linker command-line options that are
required to move the memory regions away from their respective standard locations in
internal RAM.

Finally, if the application simply wants to use the additional RAM for private data
storage kept outside the domain of the C compiler (e. g. through achar ∗ variable
initialized directly to a particular address), it would be sufficient to defer the initializa-
tion of the external RAM interface to the beginning ofmain(), so no tweaking of the
.init1 section is necessary. The same applies if only the heap is going to be located
there, since the application start-up code does not affect the heap.

It is not recommended to locate the stack in external RAM. In general, accessing exter-
nal RAM is slower than internal RAM, and errata of some AVR devices even prevent
this configuration from working properly at all.

Back toFAQ Index.

7.4 Inline Asm

AVR-GCC

Inline Assembler Cookbook

About this Document

The GNU C compiler for Atmel AVR RISC processors offers, to embed assembly
language code into C programs. This cool feature may be used for manually optimizing
time critical parts of the software or to use specific processor instruction, which are not
available in the C language.

Because of a lack of documentation, especially for the AVR version of the compiler, it
may take some time to figure out the implementation details by studying the compiler
and assembler source code. There are also a few sample programs available in the net.
Hopefully this document will help to increase their number.

It’s assumed, that you are familiar with writing AVR assembler programs, because this
is not an AVR assembler programming tutorial. It’s not a C language tutorial either.

Note that this document does not cover file written completely in assembler language,
refer toavr-libc and assembler programsfor this.

Copyright (C) 2001-2002 by egnite Software GmbH

Permission is granted to copy and distribute verbatim copies of this manual provided
that the copyright notice and this permission notice are preserved on all copies. Permis-
sion is granted to copy and distribute modified versions of this manual provided that
the entire resulting derived work is distributed under the terms of a permission notice
identical to this one.

This document describes version 3.3 of the compiler. There may be some parts, which
hadn’t been completely understood by the author himself and not all samples had been

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 77

tested so far. Because the author is German and not familiar with the English language,
there are definitely some typos and syntax errors in the text. As a programmer the
author knows, that a wrong documentation sometimes might be worse than none. Any-
way, he decided to offer his little knowledge to the public, in the hope to get enough
response to improve this document. Feel free to contact the author via e-mail. For the
latest release checkhttp://www.ethernut.de.

Herne, 17th of May 2002 Harald Kippharald.kipp@egnite.de

Note:
As of 26th of July 2002, this document has been merged into the
documentation for avr-libc. The latest version is now available at
http://savannah.nongnu.org/projects/avr-libc/.

7.4.1 GCC asm Statement

Let’s start with a simple example of reading a value from port D:

asm("in %0, %1" : "=r" (value) : "I" (PORTD) :);

Eachasm statement is devided by colons into four parts:

1. The assembler instructions, defined as a single string constant:

"in %0, %1"

2. A list of output operands, separated by commas. Our example uses just one:

"=r" (value)

3. A comma separated list of input operands. Again our example uses one operand
only:

"I" (PORTD)

4. Clobbered registers, left empty in our example.

You can write assembler instructions in much the same way as you would write assem-
bler programs. However, registers and constants are used in a different way if they refer
to expressions of your C program. The connection between registers and C operands is
specified in the second and third part of theasm instruction, the list of input and output
operands, respectively. The general form is

asm(code : output operand list : input operand list : clobber list);

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

http://www.ethernut.de.
mailto:harald.kipp@egnite.de
http://savannah.nongnu.org/projects/avr-libc/.

7.4 Inline Asm 78

In the code section, operands are referenced by a percent sign followed by a single
digit. %0refers to the first%1 to the second operand and so forth. From the above
example:

%0refers to"=r" (value) and

%1refers to"I" (PORTD) .

This may still look a little odd now, but the syntax of an operand list will be explained
soon. Let us first examine the part of a compiler listing which may have been generated
from our example:

lds r24,value
/* #APP

in r24, 12
/* #NOAPP

sts value,r24

The comments have been added by the compiler to inform the assembler that the in-
cluded code was not generated by the compilation of C statements, but by inline as-
sembler statements. The compiler selected registerr24 for storage of the value read
from PORTD. The compiler could have selected any other register, though. It may not
explicitely load or store the value and it may even decide not to include your assembler
code at all. All these decisions are part of the compiler’s optimization strategy. For
example, if you never use the variable value in the remaining part of the C program,
the compiler will most likely remove your code unless you switched off optimization.
To avoid this, you can add the volatile attribute to theasm statement:

asm volatile("in %0, %1" : "=r" (value) : "I" (PORTD) :);

The last part of theasm instruction, the clobber list, is mainly used to tell the compiler
about modifications done by the assembler code. This part may be omitted, all other
parts are required, but may be left empty. If your assembler routine won’t use any
input or output operand, two colons must still follow the assembler code string. A
good example is a simple statement to disable interrupts:

asm volatile("cli"::);

7.4.2 Assembler Code

You can use the same assembler instruction mnemonics as you’d use with any other
AVR assembler. And you can write as many assembler statements into one code string
as you like and your flash memory is able to hold.

Note:
The available assembler directives vary from one assembler to another.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 79

To make it more readable, you should put each statement on a seperate line:

asm volatile("nop\n\t"
"nop\n\t"
"nop\n\t"
"nop\n\t"
::);

The linefeed and tab characters will make the assembler listing generated by the com-
piler more readable. It may look a bit odd for the first time, but that’s the way the
compiler creates it’s own assembler code.

You may also make use of some special registers.

Symbol Register
SREG Status register at address 0x3F
SP H Stack pointer high byte at address 0x3E
SP L Stack pointer low byte at address 0x3D
tmp reg Register r0, used for temporary storage
zero reg Register r1, always zero

Registerr0 may be freely used by your assembler code and need not be restored at the
end of your code. It’s a good idea to usetmp reg and zero reg instead of
r0 or r1 , just in case a new compiler version changes the register usage definitions.

7.4.3 Input and Output Operands

Each input and output operand is described by a constraint string followed by a C
expression in parantheses.AVR-GCC3.3 knows the following constraint characters:

Note:
The most up-to-date and detailed information on contraints for the avr can be found
in the gcc manual.

Note:
The x register isr27:r26 , the y register isr29:r28 , and thez register is
r31:r30

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 80

Constraint Used for Range
a Simple upper registers r16 to r23
b Base pointer registers

pairs
y, z

d Upper register r16 to r31
e Pointer register pairs x, y, z
G Floating point constant 0.0
I 6-bit positive integer

constant
0 to 63

J 6-bit negative integer
constant

-63 to 0

K Integer constant 2
L Integer constant 0
l Lower registers r0 to r15
M 8-bit integer constant 0 to 255
N Integer constant -1
O Integer constant 8, 16, 24
P Integer constant 1
q Stack pointer register SPH:SPL
r Any register r0 to r31
t Temporary register r0
w Special upper register

pairs
r24, r26, r28, r30

x Pointer register pair X x (r27:r26)
y Pointer register pair Y y (r29:r28)
z Pointer register pair Z z (r31:r30)

These definitions seem not to fit properly to the AVR instruction set. The author’s as-
sumption is, that this part of the compiler has never been really finished in this version,
but that assumption may be wrong. The selection of the proper contraint depends on
the range of the constants or registers, which must be acceptable to the AVR instruction
they are used with. The C compiler doesn’t check any line of your assembler code. But
it is able to check the constraint against your C expression. However, if you specify
the wrong constraints, then the compiler may silently pass wrong code to the assem-
bler. And, of course, the assembler will fail with some cryptic output or internal errors.
For example, if you specify the constraint"r" and you are using this register with an
"ori" instruction in your assembler code, then the compiler may select any register.
This will fail, if the compiler choosesr2 to r15 . (It will never chooser0 or r1 ,
because these are uses for special purposes.) That’s why the correct constraint in that
case is"d" . On the other hand, if you use the constraint"M" , the compiler will make
sure that you don’t pass anything else but an 8-bit value. Later on we will see how to
pass multibyte expression results to the assembler code.

The following table shows all AVR assembler mnemonics which require operands, and
the related contraints. Because of the improper constraint definitions in version 3.3,
they aren’t strict enough. There is, for example, no constraint, which restricts integer

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 81

constants to the range 0 to 7 for bit set and bit clear operations.

Mnemonic Constraints Mnemonic Constraints
adc r,r add r,r
adiw w,I and r,r
andi d,M asr r
bclr I bld r,I
brbc I,label brbs I,label
bset I bst r,I
cbi I,I cbr d,I
com r cp r,r
cpc r,r cpi d,M
cpse r,r dec r
elpm t,z eor r,r
in r,I inc r
ld r,e ldd r,b
ldi d,M lds r,label
lpm t,z lsl r
lsr r mov r,r
mul r,r neg r
or r,r ori d,M
out I,r pop r
push r rol r
ror r sbc r,r
sbci d,M sbi I,I
sbic I,I sbiw w,I
sbr d,M sbrc r,I
sbrs r,I ser d
st e,r std b,r
sts label,r sub r,r
subi d,M swap r

Constraint characters may be prepended by a single constraint modifier. Contraints
without a modifier specify read-only operands. Modifiers are:

Modifier Specifies
= Write-only operand, usually used for all

output operands.
+ Read-write operand (not supported by

inline assembler)
& Register should be used for output only

Output operands must be write-only and the C expression result must be an lvalue,
which means that the operands must be valid on the left side of assignments. Note,
that the compiler will not check if the operands are of reasonable type for the kind of
operation used in the assembler instructions.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 82

Input operands are, you guessed it, read-only. But what if you need the same operand
for input and output? As stated above, read-write operands are not supported in inline
assembler code. But there is another solution. For input operators it is possible to use
a single digit in the constraint string. Using digit n tells the compiler to use the same
register as for the n-th operand, starting with zero. Here is an example:

asm volatile("swap %0" : "=r" (value) : "0" (value));

This statement will swap the nibbles of an 8-bit variable named value. Constraint"0"
tells the compiler, to use the same input register as for the first operand. Note however,
that this doesn’t automatically imply the reverse case. The compiler may choose the
same registers for input and output, even if not told to do so. This is not a problem in
most cases, but may be fatal if the output operator is modified by the assembler code
before the input operator is used. In the situation where your code depends on different
registers used for input and output operands, you must add the& constraint modifier to
your output operand. The following example demonstrates this problem:

asm volatile("in %0,%1" "\n\t"
"out %1, %2" "\n\t"
: "=&r" (input)
: "I" (port), "r" (output)

);

In this example an input value is read from a port and then an output value is written to
the same port. If the compiler would have choosen the same register for input and out-
put, then the output value would have been destroyed on the first assembler instruction.
Fortunately, this example uses the& constraint modifier to instruct the compiler not to
select any register for the output value, which is used for any of the input operands.
Back to swapping. Here is the code to swap high and low byte of a 16-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %B0" "\n\t"
"mov %B0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

First you will notice the usage of registertmp reg , which we listed among other
special registers in theAssembler Codesection. You can use this register without
saving its contents. Completely new are those lettersA andB in %A0and%B0. In fact
they refer to two different 8-bit registers, both containing a part of value.

Another example to swap bytes of a 32-bit value:

asm volatile("mov __tmp_reg__, %A0" "\n\t"
"mov %A0, %D0" "\n\t"
"mov %D0, __tmp_reg__" "\n\t"

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 83

"mov __tmp_reg__, %B0" "\n\t"
"mov %B0, %C0" "\n\t"
"mov %C0, __tmp_reg__" "\n\t"
: "=r" (value)
: "0" (value)

);

If operands do not fit into a single register, the compiler will automatically assign
enough registers to hold the entire operand. In the assembler code you use%A0to refer
to the lowest byte of the first operand,%A1to the lowest byte of the second operand
and so on. The next byte of the first operand will be%B0, the next byte%C0and so on.

This also implies, that it is often neccessary to cast the type of an input operand to the
desired size.

A final problem may arise while using pointer register pairs. If you define an input
operand

"e" (ptr)

and the compiler selects registerZ (r30:r31) , then

%A0refers tor30 and

%B0refers tor31 .

But both versions will fail during the assembly stage of the compiler, if you explicitely
needZ, like in

ld r24,Z

If you write

ld r24, %a0

with a lower casea following the percent sign, then the compiler will create the proper
assembler line.

7.4.4 Clobbers

As stated previously, the last part of theasm statement, the list of clobbers, may be
omitted, including the colon seperator. However, if you are using registers, which
had not been passed as operands, you need to inform the compiler about this. The
following example will do an atomic increment. It increments an 8-bit value pointed
to by a pointer variable in one go, without being interrupted by an interrupt routine
or another thread in a multithreaded environment. Note, that we must use a pointer,
because the incremented value needs to be stored before interrupts are enabled.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 84

asm volatile(
"cli" "\n\t"
"ld r24, %a0" "\n\t"
"inc r24" "\n\t"
"st %a0, r24" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)
: "r24"

);

The compiler might produce the following code:

cli
ld r24, Z
inc r24
st Z, r24
sei

One easy solution to avoid clobbering registerr24 is, to make use of the special tem-
porary register tmp reg defined by the compiler.

asm volatile(
"cli" "\n\t"
"ld __tmp_reg__, %a0" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a0, __tmp_reg__" "\n\t"
"sei" "\n\t"
:
: "e" (ptr)

);

The compiler is prepared to reload this register next time it uses it. Another problem
with the above code is, that it should not be called in code sections, where interrupts
are disabled and should be kept disabled, because it will enable interrupts at the end.
We may store the current status, but then we need another register. Again we can solve
this without clobbering a fixed, but let the compiler select it. This could be done with
the help of a local C variable.

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)

);
}

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 85

Now every thing seems correct, but it isn’t really. The assembler code modifies the
variable, thatptr points to. The compiler will not recognize this and may keep its
value in any of the other registers. Not only does the compiler work with the wrong
value, but the assembler code does too. The C program may have modified the value
too, but the compiler didn’t update the memory location for optimization reasons. The
worst thing you can do in this case is:

{
uint8_t s;
asm volatile(

"in %0, __SREG__" "\n\t"
"cli" "\n\t"
"ld __tmp_reg__, %a1" "\n\t"
"inc __tmp_reg__" "\n\t"
"st %a1, __tmp_reg__" "\n\t"
"out __SREG__, %0" "\n\t"
: "=&r" (s)
: "e" (ptr)
: "memory"

);
}

The special clobber ”memory” informs the compiler that the assembler code may mod-
ify any memory location. It forces the compiler to update all variables for which the
contents are currently held in a register before executing the assembler code. And of
course, everything has to be reloaded again after this code.

In most situations, a much better solution would be to declare the pointer destination
itself volatile:

volatile uint8_t *ptr;

This way, the compiler expects the value pointed to byptr to be changed and will
load it whenever used and store it whenever modified.

Situations in which you need clobbers are very rare. In most cases there will be better
ways. Clobbered registers will force the compiler to store their values before and reload
them after your assembler code. Avoiding clobbers gives the compiler more freedom
while optimizing your code.

7.4.5 Assembler Macros

In order to reuse your assembler language parts, it is useful to define them as macros
and put them into include files. AVR Libc comes with a bunch of them, which could
be found in the directoryavr/include . Using such include files may produce com-
piler warnings, if they are used in modules, which are compiled in strict ANSI mode.
To avoid that, you can write asm instead ofasm and volatile instead of
volatile . These are equivalent aliases.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 86

Another problem with reused macros arises if you are using labels. In such
cases you may make use of the special pattern%=, which is replaced by a
unique number on eachasm statement. The following code had been taken from
avr/include/iomacros.h :

#define loop_until_bit_is_clear(port,bit) \
__asm__ __volatile__ (\
"L_%=: " "sbic %0, %1" "\n\t" \

"rjmp L_%=" \
: /* no outputs \
: "I" ((uint8_t)(port)), \

"I" ((uint8_t)(bit)) \
)

When used for the first time,L %= may be translated toL 1404 , the next usage might
createL 1405 or whatever. In any case, the labels became unique too.

7.4.6 C Stub Functions

Macro definitions will include the same assembler code whenever they are referenced.
This may not be acceptable for larger routines. In this case you may define a C stub
function, containing nothing other than your assembler code.

void delay(uint8_t ms)
{

uint16_t cnt;
asm volatile (

"\n"
"L_dl1%=:" "\n\t"
"mov %A0, %A2" "\n\t"
"mov %B0, %B2" "\n"
"L_dl2%=:" "\n\t"
"sbiw %A0, 1" "\n\t"
"brne L_dl2%=" "\n\t"
"dec %1" "\n\t"
"brne L_dl1%=" "\n\t"
: "=&w" (cnt)
: "r" (ms), "r" (delay_count)
);

}

The purpose of this function is to delay the program execution by a specified number
of milliseconds using a counting loop. The global 16 bit variable delaycount must
contain the CPU clock frequency in Hertz divided by 4000 and must have been set
before calling this routine for the first time. As described in theclobbersection, the
routine uses a local variable to hold a temporary value.

Another use for a local variable is a return value. The following function returns a 16
bit value read from two successive port addresses.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.4 Inline Asm 87

uint16_t inw(uint8_t port)
{

uint16_t result;
asm volatile (

"in %A0,%1" "\n\t"
"in %B0,(%1) + 1"
: "=r" (result)
: "I" (port)
);

return result;
}

Note:
inw() is supplied by avr-libc.

7.4.7 C Names Used in Assembler Code

By defaultAVR-GCCuses the same symbolic names of functions or variables in C and
assembler code. You can specify a different name for the assembler code by using a
special form of theasm statement:

unsigned long value asm("clock") = 3686400;

This statement instructs the compiler to use the symbol name clock rather than value.
This makes sense only for external or static variables, because local variables do not
have symbolic names in the assembler code. However, local variables may be held in
registers.

With AVR-GCCyou can specify the use of a specific register:

void Count(void)
{

register unsigned char counter asm("r3");

... some code...
asm volatile("clr r3");
... more code...

}

The assembler instruction,"clr r3" , will clear the variable counter.AVR-GCCwill
not completely reserve the specified register. If the optimizer recognizes that the vari-
able will not be referenced any longer, the register may be re-used. But the compiler
is not able to check wether this register usage conflicts with any predefined register. If
you reserve too many registers in this way, the compiler may even run out of registers
during code generation.

In order to change the name of a function, you need a prototype declaration, because
the compiler will not accept theasm keyword in the function definition:

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.5 Using malloc() 88

extern long Calc(void) asm ("CALCULATE");

Calling the functionCalc() will create assembler instructions to call the function
CALCULATE.

7.4.8 Links

For a more thorough discussion of inline assembly usage, see the gcc user
manual. The latest version of the gcc manual is always available here:
http://gcc.gnu.org/onlinedocs/

7.5 Using malloc()

7.5.1 Introduction

On a simple device like a microcontroller, implementing dynamic memory allocation
is quite a challenge.

Many of the devices that are possible targets of avr-libc have a minimal amount of
RAM. The smallest parts supported by the C environment come with 128 bytes of
RAM. This needs to be shared between initialized and uninitialized variables (sections
.data and .bss) , the dynamic memory allocator, and the stack that is used for calling
subroutines and storing local (automatic) variables.

Also, unlike larger architectures, there is no hardware-supported memory management
which could help in separating the mentioned RAM regions from being overwritten by
each other.

The standard RAM layout is to place .data variables first, from the beginning of the
internal RAM, followed by .bss . The stack is started from the top of internal RAM,
growing downwards. The so-called ”heap” available for the dynamic memory allocator
will be placed beyond the end of .bss . Thus, there’s no risk that dynamic memory will
ever collide with the RAM variables (unless there were bugs in the implementation of
the allocator). There is still a risk that the heap and stack could collide if there are large
requirements for either dynamic memory or stack space. The former can even happen
if the allocations aren’t all that large but dynamic memory allocations get fragmented
over time such that new requests don’t quite fit into the ”holes” of previously freed
regions. Large stack space requirements can arise in a C function containing large
and/or numerous local variables or when recursively calling function.

Note:
The pictures shown in this document represent typical situations where the RAM
locations refer to an ATmega128. The memory addresses used are not displayed
in a linear scale.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

http://gcc.gnu.org/onlinedocs/

7.5 Using malloc() 89

!

brkval (<= *SP − __malloc_margin)

__malloc_heap_start == __heap_start
__bss_end
__data_end == __bss_start

__data_start

RAMENDSP

variables
.data

variables
.bss

0x
10

FF

0x
01

00

heap stack

on−board RAM external RAM

0x
11

00

0x
FF

FF

Figure 1: RAM map of a device with internal RAM

Finally, there’s a challenge to make the memory allocator simple enough so the code
size requirements will remain low, yet powerful enough to avoid unnecessary memory
fragmentation and to get it all done with reasonably few CPU cycles since microcon-
trollers aren’t only often low on space, but also run at much lower speeds than the
typical PC these days.

The memory allocator implemented in avr-libc tries to cope with all of these con-
straints, and offers some tuning options that can be used if there are more resources
available than in the default configuration.

7.5.2 Internal vs. external RAM

Obviously, the constraints are much harder to satisfy in the default configuration where
only internal RAM is available. Extreme care must be taken to avoid a stack-heap
collision, both by making sure functions aren’t nesting too deeply, and don’t require
too much stack space for local variables, as well as by being cautious with allocating
too much dynamic memory.

If external RAM is available, it is strongly recommended to move the heap into the
external RAM, regardless of whether or not the variables from the .data and .bss
sections are also going to be located there. The stack should always be kept in internal
RAM. Some devices even require this, and in general, internal RAM can be accessed
faster since no extra wait states are required. When using dynamic memory allocation
and stack and heap are separated in distinct memory areas, this is the safest way to
avoid a stack-heap collision.

7.5.3 Tunables for malloc()

There are a number of variables that can be tuned to adapt the behavior ofmalloc()
to the expected requirements and constraints of the application. Any changes to these

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.5 Using malloc() 90

tunables should be made before the very first call tomalloc(). Note that some library
functions might also use dynamic memory (notably those from theStandard IO facili-
ties), so make sure the changes will be done early enough in the startup sequence.

The variables malloc heap start and malloc heap end can be used to re-
strict themalloc() function to a certain memory region. These variables are statically
initialized to point to heap start and heap end , respectively, where heap -
start is filled in by the linker to point just beyond .bss , and heap end is set to 0
which makesmalloc()assume the heap is below the stack.

If the heap is going to be moved to external RAM,malloc heap end mustbe
adjusted accordingly. This can either be done at run-time, by writing directly to this
variable, or it can be done automatically at link-time, by adjusting the value of the
symbol heap end .

The following example shows a linker command to relocate the entire .data and .bss
segments, and the heap to location 0x1100 in external RAM. The heap will extend up
to address 0xffff.

avr-gcc ... -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff ...

Note:
Seeexplanationfor offset 0x800000. See the chapter aboutusing gccfor the-Wl
options.

SP
RAMEND

__malloc_heap_end == __heap_end
brkval
__malloc_heap_start == __heap_start

__bss_end
__data_end == __bss_start

__data_start

variables
.data

variables
.bss

heap

external RAM

0x
10

FF

0x
01

00

stack

on−board RAM

0x
11

00

0x
FF

FF

Figure 2: Internal RAM: stack only, external RAM: variables and heap

If dynamic memory should be placed in external RAM, while keeping the variables in
internal RAM, something like the following could be used. Note that for demonstration
purposes, the assignment of the various regions has not been made adjacent in this
example, so there are ”holes” below and above the heap in external RAM that remain
completely unaccessible by regular variables or dynamic memory allocations (shown
in light bisque color in the picture below).

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.5 Using malloc() 91

avr-gcc ... -Wl,--defsym=__heap_start=0x802000,--defsym=__heap_end=0x803fff ...

SP
RAMEND
__bss_end
__data_end == __bss_start

__data_start

__malloc_heap_start == __heap_start
brkval

__malloc_heap_end == __heap_end

0x
10

FF

0x
01

00

stack

on−board RAM

0x
11

00

0x
FF

FF

.data
variablesvariables

.bss
heap

0x
20

00

external RAM

0x
3F

FF

Figure 3: Internal RAM: variables and stack, external RAM: heap

If malloc heap end is 0, the allocator attempts to detect the bottom of stack in or-
der to prevent a stack-heap collision when extending the actual size of the heap to gain
more space for dynamic memory. It will not try to go beyond the current stack limit,
decreased by malloc margin bytes. Thus, all possible stack frames of interrupt
routines that could interrupt the current function, plus all further nested function calls
must not require more stack space, or they will risk colliding with the data segment.

The default value of malloc margin is set to 32.

7.5.4 Implementation details

Dynamic memory allocation requests will be returned with a two-byte header
prepended that records the size of the allocation. This is later used byfree(). The
returned address points just beyond that header. Thus, if the application accidentally
writes before the returned memory region, the internal consistency of the memory al-
locator is compromised.

The implementation maintains a simple freelist that accounts for memory blocks that
have been returned in previous calls tofree(). Note that all of this memory is considered
to be successfully added to the heap already, so no further checks against stack-heap
collisions are done when recycling memory from the freelist.

The freelist itself is not maintained as a separate data structure, but rather by modifying
the contents of the freed memory to contain pointers chaining the pieces together. That
way, no additional memory is reqired to maintain this list except for a variable that
keeps track of the lowest memory segment available for reallocation. Since both, a
chain pointer and the size of the chunk need to be recorded in each chunk, the minimum
chunk size on the freelist is four bytes.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.6 Memory Sections 92

When allocating memory, first the freelist is walked to see if it could satisfy the request.
If there’s a chunk available on the freelist that will fit the request exactly, it will be
taken, disconnected from the freelist, and returned to the caller. If no exact match could
be found, the closest match that would just satisfy the request will be used. The chunk
will normally be split up into one to be returned to the caller, and another (smaller)
one that will remain on the freelist. In case this chunk was only up to two bytes larger
than the request, the request will simply be altered internally to also account for these
additional bytes since no separate freelist entry could be split off in that case.

If nothing could be found on the freelist, heap extension is attempted. This is where
malloc margin will be considered if the heap is operating below the stack, or

where malloc heap end will be verified otherwise.

If the remaining memory is insufficient to satisfy the request,NULLwill eventually be
returned to the caller.

When callingfree(), a new freelist entry will be prepared. An attempt is then made to
aggregate the new entry with possible adjacent entries, yielding a single larger entry
available for further allocations. That way, the potential for heap fragmentation is
hopefully reduced.

7.6 Memory Sections

Remarks:
Need to list all the sections which are available to the avr.

Weak Bindings
FIXME: need to discuss the .weak directive.

The following describes the various sections available.

7.6.1 The .text Section

The .text section contains the actual machine instructions which make up your program.
This section is further subdivided by the .initN and .finiN sections dicussed below.

Note:
The avr-size program (part of binutils), coming from a Unix background,
doesn’t account for the .data initialization space added to the .text section, so in
order to know how much flash the final program will consume, one needs to add
the values for both, .text and .data (but not .bss), while the amount of pre-allocated
SRAM is the sum of .data and .bss.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.6 Memory Sections 93

7.6.2 The .data Section

This section contains static data which was defined in your code. Things like the fol-
lowing would end up in .data:

char err_str[] = "Your program has died a horrible death!";

struct point pt = { 1, 1 };

It is possible to tell the linker the SRAM address of the beginning of the .data section.
This is accomplished by adding-Wl,-Tdata, addr to the avr-gcc command
used to the link your program. Not thataddr must be offset by adding 0x800000
the to real SRAM address so that the linker knows that the address is in the SRAM
memory space. Thus, if you want the .data section to start at 0x1100, pass 0x801100
at the address to the linker. [offsetexplained]

Note:
When usingmalloc() in the application (which could even happen inside library
calls),additional adjustmentsare required.

7.6.3 The .bss Section

Uninitialized global or static variables end up in the .bss section.

7.6.4 The .eeprom Section

This is where eeprom variables are stored.

7.6.5 The .noinit Section

This sections is a part of the .bss section. What makes the .noinit section special is that
variables which are defined as such:

int foo __attribute__ ((section (".noinit")));

will not be initialized to zero during startup as would normal .bss data.

Only uninitialized variables can be placed in the .noinit section. Thus, the following
code will causeavr-gcc to issue an error:

int bar __attribute__ ((section (".noinit"))) = 0xaa;

It is possible to tell the linker explicitly where to place the .noinit section by adding
-Wl,--section-start=.noinit=0x802000 to theavr-gcc command line

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.6 Memory Sections 94

at the linking stage. For example, suppose you wish to place the .noinit section at
SRAM address 0x2000:

$ avr-gcc ... -Wl,--section-start=.noinit=0x802000 ...

Note:
Because of the Harvard architecture of the AVR devices, you must manually add
0x800000 to the address you pass to the linker as the start of the section. Oth-
erwise, the linker thinks you want to put the .noinit section into the .text section
instead of .data/.bss and will complain.

Alternatively, you can write your own linker script to automate this. [FIXME: need an
example or ref to dox for writing linker scripts.]

7.6.6 The .initN Sections

These sections are used to define the startup code from reset up through the start of
main(). These all are subparts of the.text section.

The purpose of these sections is to allow for more specific placement of code within
your program.

Note:
Sometimes it is convenient to think of the .initN and .finiN sections as functions,
but in reality they are just symbolic names the tell the linker where to stick a chunk
of code which isnot a function. Notice that the examples forasmandC can not
be called as functions and should not be jumped into.

The.initN sections are executed in order from 0 to 9.

.init0:
Weakly bound to init(). If user defines init(), it will be jumped into immediately
after a reset.

.init1:
Unused. User definable.

.init2:
In C programs, weakly bound to initialize the stack.

.init3:
Unused. User definable.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.6 Memory Sections 95

.init4:
Copies the .data section from flash to SRAM. Also sets up and zeros out the .bss
section. In Unix-like targets, .data is normally initialized by the OS directly from
the executable file. Since this is impossible in an MCU environment,avr-gcc
instead takes care of appending the .data variables after .text in the flash ROM
image. .init4 then defines the code (weakly bound) which takes care of copying
the contents of .data from the flash to SRAM.

.init5:
Unused. User definable.

.init6:
Unused for C programs, but used for constructors in C++ programs.

.init7:
Unused. User definable.

.init8:
Unused. User definable.

.init9:
Jumps intomain().

7.6.7 The .finiN Sections

These sections are used to define the exit code executed after return frommain()or a
call toexit(). These all are subparts of the.text section.

The.finiN sections are executed in descending order from 9 to 0.

.finit9:
Unused. User definable. This is effectively whereexit() starts.

.fini8:
Unused. User definable.

.fini7:
Unused. User definable.

.fini6:
Unused for C programs, but used for destructors in C++ programs.

.fini5:
Unused. User definable.

.fini4:
Unused. User definable.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.6 Memory Sections 96

.fini3:
Unused. User definable.

.fini2:
Unused. User definable.

.fini1:
Unused. User definable.

.fini0:
Goes into an infinite loop after program termination and completion of anyexit()
code (execution of code in the .fini9 -> .fini1 sections).

7.6.8 Using Sections in Assembler Code

Example:

#include <avr/io.h>

.section .init1,"ax",@progbits
ldi r0, 0xff
out _SFR_IO_ADDR(PORTB), r0
out _SFR_IO_ADDR(DDRB), r0

Note:
The,"ax",@progbits tells the assembler that the section is allocatable (”a”),
executable (”x”) and contains data (”@progbits”). For more detailed information
on the .section directive, see the gas user manual.

7.6.9 Using Sections in C Code

Example:

#include <avr/io.h>

void my_init_portb (void) __attribute__ ((naked)) \
__attribute__ ((section (".init1")));

void
my_init_portb (void)
{

outb (PORTB, 0xff);
outb (DDRB, 0xff);

}

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.7 Installing the GNU Tool Chain 97

7.7 Installing the GNU Tool Chain

Note:
This discussion was taken directly from Rich Neswold’s document. (SeeAc-
knowledgments).

Note:
This discussion is Unix specific. [FIXME: troth/2002-08-13: we need a volunteer
to add windows specific notes to these instructions.]

This chapter shows how to build and install a complete development environment for
the AVR processors using the GNU toolset.

The default behaviour for most of these tools is to install every thing under the
/usr/local directory. In order to keep the AVR tools separate from the base
system, it is usually better to install everything into/usr/local/avr . If the
/usr/local/avr directory does not exist, you should create it before trying to
install anything. You will needroot access to install there. If you don’t have root
access to the system, you can alternatively install in your home directory, for exam-
ple, in$HOME/local/avr . Where you install is a completely arbitrary decision, but
should be consistent for all the tools.

You specify the installation directory by using the--prefix=dir option with the
configure script. It is important to install all the AVR tools in the same directory
or some of the tools will not work correctly. To ensure consistency and simplify the
discussion, we will use$PREFIX to refer to whatever directory you wish to install in.
You can set this as an environment variable if you wish as such (using a Bourne-like
shell):

$ PREFIX=$HOME/local/avr
$ export PREFIX

Note:
Be sure that you have yourPATHenvironment variable set to search the direc-
tory you install everything inbeforeyou start installing anything. For example, if
you use--prefix=$PREFIX , you must have$PREFIX/bin in your exported
PATH. As such:

$ PATH=$PATH:$PREFIX/bin
$ export PATH

Note:
The versions for the packages listed below are known to work together. If you mix
and match different versions, you may have problems.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.7 Installing the GNU Tool Chain 98

7.7.1 Required Tools

• GNU Binutils (2.14)

http://sources.redhat.com/binutils/

Installation

• GCC (3.3)

http://gcc.gnu.org/

Installation

• AVR Libc (20020816-cvs)

http://savannah.gnu.org/projects/avr-libc/

Installation

Note:
As of 2002-08-15, the versions mentioned above are still considered experimental
and must be obtained from cvs. Instructions for obtaining the latest cvs versions
are available at the URLs noted above. Significant changes have been made which
are not compatible with previous stable releases. These incompatilities should be
noted in the documentation.

7.7.2 Optional Tools

You can develop programs for AVR devices without the following tools. They may or
may not be of use for you.

• uisp (20020626)

http://savannah.gnu.org/projects/uisp/

Installation

• avrprog (2.1.0)

http://www.bsdhome.com/avrprog/

Installation

Usage Notes

• GDB (5.2.1)

http://sources.redhat.com/gdb/

Installation

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

http://sources.redhat.com/binutils/
http://gcc.gnu.org/
http://savannah.gnu.org/projects/avr-libc/
http://savannah.gnu.org/projects/uisp/
http://www.bsdhome.com/avrprog/
http://sources.redhat.com/gdb/

7.7 Installing the GNU Tool Chain 99

• Simulavr (0.1.0)

http://savannah.gnu.org/projects/simulavr/

Installation

• AVaRice (1.5)

http://avarice.sourceforge.net/

Installation

7.7.3 GNU Binutils for the AVR target

The binutils package provides all the low-level utilities needed in building and ma-
nipulating object files. Once installed, your environment will have an AVR assembler
(avr-as), linker (avr-ld), and librarian (avr-ar andavr-ranlib). In addi-
tion, you get tools which extract data from object files (avr-objcopy), dissassem-
ble object file information (avr-objdump), and strip information from object files
(avr-strip). Before we can build the C compiler, these tools need to be in place.

Download and unpack the source files:

$ bunzip2 -c binutils-<version>.tar.bz2 | tar xf -
$ cd binutils-<version>

Note:
Replace<version > with the version of the package you downloaded.

Note:
If you obtained a gzip compressed file (.gz), usegunzip instead ofbunzip2 .

It is usually a good idea to configure and buildbinutils in a subdirectory so as not
to pollute the source with the compiled files. This is recommended by thebinutils
developers.

$ mkdir obj-avr
$ cd obj-avr

The next step is to configure and build the tools. This is done by supplying arguments
to theconfigure script that enable the AVR-specific options.

$../configure --prefix=$PREFIX --target=avr --disable-nls

If you don’t specify the--prefix option, the tools will get installed in the
/usr/local hierarchy (i.e. the binaries will get installed in/usr/local/bin ,
the info pages get installed in/usr/local/info , etc.) Since these tools are chang-
ing frequently, It is preferrable to put them in a location that is easily removed.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

http://savannah.gnu.org/projects/simulavr/
http://avarice.sourceforge.net/

7.7 Installing the GNU Tool Chain 100

When configure is run, it generates a lot of messages while it determines what
is available on your operating system. When it finishes, it will have created several
Makefile s that are custom tailored to your platform. At this point, you can build the
project.

$ make

Note:
BSD users should note that the project’sMakefile uses GNUmake syntax.
This means FreeBSD users may need to build the tools by usinggmake.

If the tools compiled cleanly, you’re ready to install them. If you specified a destination
that isn’t owned by your account, you’ll needroot access to install them. To install:

$ make install

You should now have the programs from binutils installed into$PREFIX/bin . Don’t
forget toset your PATHenvironment variable before going to build avr-gcc.

7.7.4 GCC for the AVR target

Warning:
You must install avr-binutilsand make sure yourpath is setproperly before in-
stalling avr-gcc.

The steps to buildavr-gcc are essentially same as forbinutils:

$ bunzip2 -c gcc-<version>.tar.bz2 | tar xf -
$ cd gcc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr --enable-languages=c,c++ \

--disable-nls
$ make
$ make install

To save your self some download time, you can alternatively download only thegcc-
core- <version >.tar.bz2 andgcc-c++- <version >.tar.bz2 parts of
the gcc. Also, if you don’t need C++ support, you only need the core part and should
only enable the C language support.

Note:
Early versions of these tools did not support C++.

Note:
The stdc++ libs are not included with C++ for AVR due to the size limitations of
the devices.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.7 Installing the GNU Tool Chain 101

7.7.5 AVR Libc

Warning:
You must install avr-binutils, avr-gccand make sure yourpath is setproperly
before installing avr-libc.

Note:
If you have obtained the latest avr-libc from cvs, you will have to run thereconf
script before using either of the build methods described below.

To build and install avr-libc:

$ gunzip -c avr-libc-<version>.tar.gz
$ cd avr-libc-<version>
$./doconf
$./domake
$ cd build
$ make install

Note:
Thedoconf script will automatically use the$PREFIX environment variable if
you have set and exported it.

Alternatively, you could do this (shown for consistency withbinutils andgcc) :

$ gunzip -c avr-libc-<version>.tar.gz | tar xf -
$ cd avr-libc-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

7.7.6 UISP

Uisp also uses theconfigure system, so to build and install:

$ gunzip -c uisp-<version>.tar.gz | tar xf -
$ cd uisp-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.7 Installing the GNU Tool Chain 102

7.7.7 Avrprog

Note:
This is currently a FreeBSD only program, although adaptation to other systems
should not be hard.

avrprog is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrprog
make install

Note:
Installation into the default location usually requires root permissions. However,
running the program only requires access permissions to the appropriateppi(4)
device.

7.7.8 GDB for the AVR target

Gdb also uses theconfigure system, so to build and install:

$ bunzip2 -c gdb-<version>.tar.bz2 | tar xf -
$ cd gdb-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX --target=avr
$ make
$ make install

Note:
If you are planning on usingavr-gdb , you will probably want to install either
simulavror avaricesince avr-gdb needs one of these to run as a a remote target.

7.7.9 Simulavr

Simulavr also uses theconfigure system, so to build and install:

$ gunzip -c simulavr-<version>.tar.gz | tar xf -
$ cd simulavr-<version>
$ mkdir obj-avr
$ cd obj-avr
$../configure --prefix=$PREFIX
$ make
$ make install

Note:
You might want to have already installedavr-binutils, avr-gccandavr-libc if you
want to have the test programs built in the simulavr source.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.8 Using the avrprog program 103

7.7.10 AVaRice

Note:
These install notes are specific to avarice-1.5.

You will have to editprog/avarice/Makefile for avarice in order to install into
a directory other than/usr/local/avr/bin . Edit the line which looks like this:

INSTALL_DIR = /usr/local/avr/bin

such thatINSTALL DIR is now set to whatever you decided on$PREFIX/bin to
be.

$ gunzip -c avarice-1.5.tar.gz | tar xf -
$ cd avarice-1.5/prog/avarice
$ make
$ make install

7.8 Using the avrprog program

Note:
This section was contributed by Brian Dean [bsd@bsdhome.com].

avrprog is a program that is used to update or read the flash and EEPROM memories
of Atmel AVR microcontrollers on FreeBSD Unix. It supports the Atmel serial pro-
gramming protocol using the PC’s parallel port and can upload either a raw binary file
or an Intel Hex format file. It can also be used in an interactive mode to individually
update EEPROM cells, fuse bits, and/or lock bits (if their access is supported by the
Atmel serial programming protocol.) The main flash instruction memory of the AVR
can also be programmed in interactive mode, however this is not very useful because
one can only turn bits off. The only way to turn flash bits on is to erase the entire
memory (usingavrprog ’s -e option).

avrprog is part of the FreeBSD ports system. To install it, simply do the following:

cd /usr/ports/devel/avrprog
make install

Once installed,avrprog can program processors using the contents of the .hex file
specified on the command line. In this example, the filemain.hex is burned into the
flash memory:

avrprog -p 2313 -e -m flash -i main.hex

avrprog: AVR device initialized and ready to accept instructions

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

mailto:bsd@bsdhome.com

7.8 Using the avrprog program 104

avrprog: Device signature = 0x1e9101

avrprog: erasing chip
avrprog: done.
avrprog: reading input file "main.hex"
avrprog: input file main.hex auto detected as Intel Hex

avrprog: writing flash:
1749 0x00
avrprog: 1750 bytes of flash written
avrprog: verifying flash memory against main.hex:
avrprog: reading on-chip flash data:
1749 0x00
avrprog: verifying ...
avrprog: 1750 bytes of flash verified

avrprog done. Thank you.

The -p 2313 option letsavrprog know that we are operating on an AT90S2313
chip. This option specifies the device id and is matched up with the device of the same
id in avrprog ’s configuration file (/usr/local/etc/avrprog.conf). To list
valid parts, specify the-v option. The-e option instructsavrprog to perform a
chip-erase before programming; this is almost always necessary before programming
the flash. The-m flash option indicates that we want to upload data into the flash
memory, while-i main.hex specifies the name of the input file.

The EEPROM is uploaded in the same way, the only difference is that you would use
-m eeprom instead of-m flash .

To use interactive mode, use the-t option:

avrprog -p 2313 -t
avrprog: AVR device initialized and ready to accept instructions
avrprog: Device signature = 0x1e9101
avrprog>

The ’?’ command displays a list of valid
commands:

avrprog> ?
>>> ?
Valid commands:

dump : dump memory : dump <memtype> <addr> <N-Bytes>
read : alias for dump
write : write memory : write <memtype> <addr> <b1> <b2> ... <bN>
erase : perform a chip erase
sig : display device signature bytes
part : display the current part information
send : send a raw command : send <b1> <b2> <b3> <b4>
help : help
? : help
quit : quit

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 105

Use the ’part’ command to display valid memory types for use with the
’dump’ and ’write’ commands.

avrprog>

7.9 Using the GNU tools

This is a short summary of the AVR-specific aspects of using the GNU tools. Normally,
the generic documentation of these tools is fairly large and maintained intexinfo
files. Command-line options are explained in detail in the manual page.

7.9.1 Options for the C compiler avr-gcc

7.9.1.1 Machine-specific options for the AVR The following machine-specific op-
tions are recognized by the C compiler frontend.

• -mmcu=architecture

Compile code forarchitecture. Currently known architectures are

avr1 Simple CPU core, only assembler
support

avr2 ”Classic” CPU core, up to 8 KB of
ROM

avr3 ”Classic” CPU core, more than 8
KB of ROM

avr4 ”Enhanced” CPU core, up to 8 KB
of ROM

avr5 ”Enhanced” CPU core, more than 8
KB of ROM

By default, code is generated for the avr2 architecture.

Note that when only using-mmcu=architecturebut no-mmcu=MCU type, in-
cluding the file<avr/io.h > cannot work since it cannot decide which de-
vice’s definitions to select.

• -mmcu=MCU type

The following MCU types are currently understood by avr-gcc. The table
matches them against the corresponding avr-gcc architecture name, and shows
the preprocessor symbol declared by the-mmcu option.

Architecture MCU name Macro
avr1 at90s1200 AVR AT90S1200
avr1 attiny11 AVR ATtiny11

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 106

Architecture MCU name Macro
avr1 attiny12 AVR ATtiny12
avr1 attiny15 AVR ATtiny15
avr1 attiny28 AVR ATtiny28
avr2 at90s2313 AVR AT90S2313
avr2 at90s2323 AVR AT90S2323
avr2 at90s2333 AVR AT90S2333
avr2 at90s2343 AVR AT90S2343
avr2 attiny22 AVR ATtiny22
avr2 attiny26 AVR ATtiny26
avr2 at90s4414 AVR AT90S4414
avr2 at90s4433 AVR AT90S4433
avr2 at90s4434 AVR AT90S4434
avr2 at90s8515 AVR AT90S8515
avr2 at90c8534 AVR AT90C8534
avr2 at90s8535 AVR AT90S8535
avr2 at86rf401 AVR AT86RF401
avr3 atmega103 AVR ATmega103
avr3 atmega603 AVR ATmega603
avr3 at43usb320 AVR AT43USB320
avr3 at43usb355 AVR AT43USB355
avr3 at76c711 AVR AT76C711
avr4 atmega8 AVR ATmega8
avr4 atmega8515 AVR ATmega8515
avr4 atmega8535 AVR ATmega8535
avr5 atmega16 AVR ATmega16
avr5 atmega161 AVR ATmega161
avr5 atmega162 AVR ATmega162
avr5 atmega163 AVR ATmega163
avr5 atmega169 AVR ATmega169
avr5 atmega32 AVR ATmega32
avr5 atmega323 AVR ATmega323
avr5 atmega64 AVR ATmega64
avr5 atmega128 AVR ATmega128
avr5 at94k AVR AT94K

• -morder1
• -morder2

Change the order of register assignment. The default is

r24, r25, r18, r19, r20, r21, r22, r23, r30, r31, r26, r27, r28, r29, r17, r16, r15,
r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 1 uses

r18, r19, r20, r21, r22, r23, r24, r25, r30, r31, r26, r27, r28, r29, r17, r16, r15,

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 107

r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r0, r1

Order 2 uses

r25, r24, r23, r22, r21, r20, r19, r18, r30, r31, r26, r27, r28, r29, r17, r16, r15,
r14, r13, r12, r11, r10, r9, r8, r7, r6, r5, r4, r3, r2, r1, r0

• -mint8

Assumeint to be an 8-bit integer. Note that this is not really supported by
avr-libc , so it should normally not be used. The default is to use 16-bit
integers.

• -mno-interrupts

Generates code that changes the stack pointer without disabling interrupts. Nor-
mally, the state of the status registerSREGis saved in a temporary register, in-
terrupts are disabled while changing the stack pointer, andSREGis restored.

• -mcall-prologues

Use subroutines for function prologue/epilogue. For complex functions that use
many registers (that needs to be saved/restored on function entry/exit), this saves
some space at the cost of a slightly increased execution time.

• -minit-stack= nnnn

Set the initial stack pointer tonnnn. By default, the stack pointer is initialized
to the symbol stack , which is set toRAMENDby the run-time initialization
code.

• -mtiny-stack

Change only the low 8 bits of the stack pointer.

• -mno-tablejump

Do not generate tablejump instructions. By default, jump tables can be used to
optimizeswitch statements. When turned off, sequences of compare state-
ments are used instead. Jump tables are usually faster to execute on average, but
in particular forswitch statements where most of the jumps would go to the
default label, they might waste a bit of flash memory.

• -mshort-calls

Userjmp/rcall (limited range) on>8K devices. Onavr2 andavr4 archi-
tectures (less than 8 KB or flash memory), this is always the case. Onavr3 and
avr5 architectures, calls and jumps to targets outside the current function will
by default usejmp/call instructions that can cover the entire address range,
but that require more flash ROM and execution time.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 108

• -mrtl

Dump the internal compilation result called ”RTL” into comments in the gener-
ated assembler code. Used for debugging avr-gcc.

• -msize

Dump the address, size, and relative cost of each statement into comments in the
generated assembler code. Used for debugging avr-gcc.

• -mdeb

Generate lots of debugging information tostderr .

7.9.1.2 Selected general compiler optionsThe following general gcc options
might be of some interest to AVR users.

• -On

Optimization leveln. Increasingn is meant to optimize more, an optimization
level of 0 means no optimization at all, which is the default if no-O option is
present. The special option-Os is meant to turn on all-O2 optimizations that
are not expected to increase code size.

Note that at-O3 , gcc attempts to inline all ”simple” functions. For the AVR
target, this will normally constitute a large pessimization due to the code in-
creasement. The only other optimization turned on with-O3 is -frename-
registers , which could rather be enabled manually instead.

A simple-O option is equivalent to-O1 .

Note also that turning off all optimizations will prevent some warnings from be-
ing issued since the generation of those warnings depends on code analysis steps
that are only performed when optimizing (unreachable code, unused variables).

See also theappropriate FAQ entryfor issues regarding debugging optimized
code.

• -Wa, assembler-options
• -Wl, linker-options

Pass the listed options to the assembler, or linker, respectively.

• -g

Generate debugging information that can be used by avr-gdb.

• -ffreestanding

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 109

Assume a ”freestanding” environment as per the C standard. This turns off au-
tomatic builtin functions (though they can still be reached by prepending-
builtin to the actual function name). It also makes the compiler not com-
plain whenmain() is declared with avoid return type which makes some
sense in a microcontroller environment where the application cannot meaning-
fully provide a return value to its environment (in most cases,main() won’t
even return anyway).

7.9.2 Options for the assembler avr-as

7.9.2.1 Machine-specific assembler options

• -mmcu=architecture
• -mmcu=MCU name

avr-as understands the same-mmcu= options asavr-gcc. By default, avr2 is as-
sumed, but this can be altered by using the appropriate .arch pseudo-instruction
inside the assembler source file.

• -mall-opcodes

Turns off opcode checking for the actual MCU type, and allows any possible
AVR opcode to be assembled.

• -mno-skip-bug

Don’t emit a warning when trying to skip a 2-word instruction with a
CPSE/SBIC/SBIS/SBRC/SBRS instruction. Early AVR devices suffered
from a hardware bug where these instructions could not be properly skipped.

• -mno-wrap

For RJMP/RCALL instructions, don’t allow the target address to wrap around
for devices that have more than 8 KB of memory.

• --gstabs

Generate .stabs debugging symbols for assembler source lines. This enables
avr-gdb to trace through assembler source files. This optionmust notbe used
when assembling sources that have been generated by the C compiler; these files
already contain the appropriate line number information from the C source files.

• -a[cdhlmns= file]

Turn on the assembler listing. The sub-options are:

– c omit false conditionals
– d omit debugging directives

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 110

– h include high-level source
– l include assembly
– minclude macro expansions
– n omit forms processing
– s include symbols
– =file set the name of the listing file

The various sub-options can be combined into a single-a option list; =file must
be the last one in that case.

7.9.2.2 Examples for assembler options passed through the C compilerRe-
member that assembler options can be passed from the C compiler frontend using-
Wa(seeabove), so in order to include the C source code into the assembler listing in
file foo.lst , when compilingfoo.c , the following compiler command-line can be
used:

$ avr-gcc -c -O foo.c -o foo.o -Wa,-ahls=foo.lst

In order to pass an assembler file through the C preprocessor first, and have the assem-
bler generate line number debugging information for it, the following command can be
used:

$ avr-gcc -c -x assembler-with-cpp -o foo.o foo.S -Wa,--gstabs

Note that on Unix systems that have case-distinguishing file systems, specifying a file
name with the suffix .S (upper-case letter S) will make the compiler automatically
assume-x assembler-with-cpp , while using .s would pass the file directly to
the assembler (no preprocessing done).

7.9.3 Controlling the linker avr-ld

7.9.3.1 Selected linker options While there are no machine-specific options for
avr-ld, a number of the standard options might be of interest to AVR users.

• -l name

Locate the archive library namedlib name.a , and use it to resolve currently
unresolved symbols from it. The library is searched along a path that con-
sists of builtin pathname entries that have been specified at compile time (e.
g. /usr/local/avr/lib on Unix systems), possibly extended by path-
name entries as specified by-L options (that must precede the-l options on
the command-line).

• -L path

Additional location to look for archive libraries requested by-l options.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.9 Using the GNU tools 111

• --defsym symbol=expr

Define a global symbolsymbolusingexpras the value.

• -M

Print a linker map tostdout .

• -Map mapfile

Print a linker map tomapfile.

• --cref

Output a cross reference table to the map file (in case-Map is also present), or
to stdout .

• --section-start sectionname=org

Start sectionsectionnameat absolute addressorg.

• -Tbss org
• -Tdata org
• -Ttext org

Start thebss , data , or text section atorg, respectively.

• -T scriptfile

Use scriptfile as the linker script, replacing the default linker script. De-
fault linker scripts are stored in a system-specific location (e. g. under
/usr/local/avr/lib/ldscripts on Unix systems), and consist of the
AVR architecture name (avr2 through avr5) with the suffix .x appended. They
describe how the variousmemory sectionswill be linked together.

7.9.3.2 Passing linker options from the C compiler By default, all unknown non-
option arguments on the avr-gcc command-line (i. e., all filename arguments that don’t
have a suffix that is handled by avr-gcc) are passed straight to the linker. Thus, all files
ending in .o (object files) and .a (object libraries) are provided to the linker.

System libraries are usually not passed by their explicit filename but rather using the
-l option which uses an abbreviated form of the archive filename (see above). avr-
libc ships two system libraries,libc.a , and libm.a . While the standard library
libc.a will always be searched for unresolved references when the linker is started
using the C compiler frontend (i. e., there’s always at least one implied-lc option),
the mathematics librarylibm.a needs to be explicitly requested using-lm . See also
theentry in the FAQexplaining this.

Conventionally, Makefiles use themake macroLDLIBS to keep track of-l (and
possibly-L) options that should only be appended to the C compiler command-line

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 112

when linking the final binary. In contrast, the macroLDFLAGSis used to store other
command-line options to the C compiler that should be passed as options during the
linking stage. The difference is that options are placed early on the command-line,
while libraries are put at the end since they are to be used to resolve global symbols
that are still unresolved at this point.

Specific linker flags can be passed from the C compiler command-line using the-
Wl compiler option, seeabove. This option requires that there be no spaces in the
appended linker option, while some of the linker options above (like-Map or --
defsym) would require a space. In these situations, the space can be replaced by an
equal sign as well. For example, the following command-line can be used to compile
foo.c into an executable, and also produce a link map that contains a cross-reference
list in the filefoo.map :

$ avr-gcc -O -o foo.out -Wl,-Map=foo.map -Wl,--cref foo.c

Alternatively, a comma as a placeholder will be replaced by a space before passing the
option to the linker. So for a device with external SRAM, the following command-line
would cause the linker to place the data segment at address 0x2000 in the SRAM:

$ avr-gcc -mmcu=atmega128 -o foo.out -Wl,-Tdata,0x802000

See the explanation of thedata sectionfor why 0x800000 needs to be added to the ac-
tual value. Note that unless a-minit-stack option has been given when compiling
the C source file that contains the functionmain() , the stack will still remain in inter-
nal RAM, through the symbol stack that is provided by the run-time startup code.
This is probably a good idea anyway (since internal RAM access is faster), and even
required for some early devices that had hardware bugs preventing them from using
a stack in external RAM. Note also that the heap formalloc() will still be placed
after all the variables in the data section, so in this situation, no stack/heap collision
can occur.

7.10 A simple project

At this point, you should have the GNU tools configured, built, and installed on your
system. In this chapter, we present a simple example of using the GNU tools in an AVR
project. After reading this chapter, you should have a better feel as to how the tools are
used and how aMakefile can be configured.

7.10.1 The Project

This project will use the pulse-width modulator (PWM) to ramp an LED on and off
every two seconds. An AT90S2313 processor will be used as the controller. The circuit

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 113

for this demonstration is shown in theschematic diagram. If you have a development
kit, you should be able to use it, rather than build the circuit, for this project.

IC1

1

10
20

5

4

19
18
17
16
15
14
13
12

11
9
8
7
6
3
2

AT90S2313P
(RXD)PD0
(TXD)PD1

(INT0)PD2
(INT1)PD3
(T0)PD4
(T1)PD5
(ICP)PD6

(AIN0)PB0
(AIN1)PB1

PB2
(OCI)PB3

PB4

(MISO)PB6
(SCK)PB7

RESET

XTAL2

XTAL1

VCC
GND

(MOSI)PB5

Q
1

4
m
h
z

GND

GND

.
1
u
f

C
4

VCC

R1

20K

.
0
1
u
f

C
3

18pf

C2

18pf

C1
*

See note [7]

R2
LED5MM
D1

GND

Figure 4: Schematic of circuit for demo project

The source code is given indemo.c. For the sake of this example, create a file called
demo.c containing this source code. Some of the more important parts of the code
are:

Note [1]:
ThePWMis being used in 10-bit mode, so we need a 16-bit variable to remember
the current value.

Note [2]:
SIGNAL() is a macro that marks the function as an interrupt routine. In this case,
the function will get called when the timer overflows. Setting up interrupts is
explained in greater detail inInterrupts and Signals.

Note [3]:
This section determines the new value of thePWM.

Note [4]:
Here’s where the newly computed value is loaded into thePWMregister. Since
we are in an interrupt routine, it is safe to use a 16-bit assignment to the register.
Outside of an interrupt, the assignment should only be performed with interrupts
disabled if there’s a chance that an interrupt routine could also access this register
(or another register that usesTEMP), see the appropriateFAQ entry.

Note [5]:
This routine gets called after a reset. It initializes thePWMand enables interrupts.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 114

Note [6]:
The main loop of the program does nothing – all the work is done by the interrupt
routine! If this was a real product, we’d probably put aSLEEPinstruction in this
loop to conserve power.

Note [7]:
Early AVR devices saturate their outputs at rather low currents when sourcing cur-
rent, so the LED can be connected directly, the resulting current through the LED
will be about 15 mA. For modern parts (at least for the ATmega 128), however
Atmel has drastically increased the IO source capability, so when operating at 5
V Vcc, R2 is needed. Its value should be about 150 Ohms. When operating the
circuit at 3 V, it can still be omitted though.

7.10.2 The Source Code

/*
* --
* "THE BEER-WARE LICENSE" (Revision 42):
* <joerg@FreeBSD.ORG> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Joerg Wunsch
* --
*
* Simple AVR demonstration. Controls a LED that can be directly
* connected from OC1/OC1A to GND. The brightness of the LED is
* controlled with the PWM. After each period of the PWM, the PWM
* value is either incremented or decremented, that’s all.
*
* $Id: demo.c,v 1.1 2002/09/30 18:16:07 troth Exp $
*/

#include <inttypes.h>
#include <avr/io.h>
#include <avr/interrupt.h>
#include <avr/signal.h>

#if defined(__AVR_AT90S2313__)
define OC1 PB3
define OCR OCR1
define DDROC DDRB
#elif defined(__AVR_AT90S2333__) || defined(__AVR_AT90S4433__)
define OC1 PB1
define DDROC DDRB
define OCR OCR1
#elif defined(__AVR_AT90S4414__) || defined(__AVR_AT90S8515__) || \

defined(__AVR_AT90S4434__) || defined(__AVR_AT90S8535__) || \
defined(__AVR_ATmega163__)

define OC1 PD5
define DDROC DDRD
define OCR OCR1A
#else
error "Don’t know what kind of MCU you are compiling for"

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 115

#endif

#if defined(COM11)
define XCOM11 COM11
#elif defined(COM1A1)
define XCOM11 COM1A1
#else
error "need either COM1A1 or COM11"
#endif

enum { UP, DOWN };

volatile uint16_t pwm; /* Note [1] */
volatile uint8_t direction;

SIGNAL (SIG_OVERFLOW1) /* Note [2] */
{

switch (direction) /* Note [3] */
{

case UP:
if (++pwm == 1023)

direction = DOWN;
break;

case DOWN:
if (--pwm == 0)

direction = UP;
break;

}

OCR = pwm; /* Note [4] */
}

void
ioinit (void) /* Note [5] */
{

/* tmr1 is 10-bit PWM */
TCCR1A = _BV (PWM10) | _BV (PWM11) | _BV (XCOM11);

/* tmr1 running on full MCU clock */
TCCR1B = _BV (CS10);

/* set PWM value to 0 */
OCR = 0;

/* enable OC1 and PB2 as output */
DDROC = _BV (OC1);

timer_enable_int (_BV (TOIE1));

/* enable interrupts */
sei ();

}

int

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 116

main (void)
{

ioinit ();

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [6] */
;

return (0);
}

7.10.3 Compiling and Linking

This first thing that needs to be done is compile the source. When compiling, the
compiler needs to know the processor type so the-mmcu option is specified. The-
Os option will tell the compiler to optimize the code for efficient space usage (at the
possible expense of code execution speed). The-g is used to embed debug info. The
debug info is useful for disassemblies and doesn’t end up in the .hex files, so I usually
specify it. Finally, the-c tells the compiler to compile and stop – don’t link. This
demo is small enough that we could compile and link in one step. However, real-world
projects will have several modules and will typically need to break up the building of
the project into several compiles and one link.

$ avr-gcc -g -Os -mmcu=at90s2333 -c demo.c

The compilation will create ademo.o file. Next we link it into a binary called
demo.elf .

$ avr-gcc -g -mmcu=at90s2333 -o demo.elf demo.o

It is important to specify the MCU type when linking. The compiler uses the-mmcu
option to choose start-up files and run-time libraries that get linked together. If this
option isn’t specified, the compiler defaults to the 8515 processor environment, which
is most certainly what you didn’t want.

7.10.4 Examining the Object File

Now we have a binary file. Can we do anything useful with it (besides put it into the
processor?) The GNU Binutils suite is made up of many useful tools for manipulating
object files that get generated. One tool isavr-objdump , which takes information
from the object file and displays it in many useful ways. Typing the command by itself
will cause it to list out its options.

For instance, to get a feel of the application’s size, the-h option can be used. The
output of this option shows how much space is used in each of the\sections (the .stab

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 117

and .stabstr sections hold the debugging information and won’t make it into the
ROM file).

An even more useful option is-S . This option disassembles the binary file and inter-
sperses the source code in the output! This method is much better, in my opinion, than
using the-S with the compiler because this listing includes routines from the libraries
and the vector table contents. Also, all the ”fix-ups” have been satisfied. In other words,
the listing generated by this option reflects the actual code that the processor will run.

$ avr-objdump -h -S demo.elf > demo.lst

Here’s the output as saved in thedemo.lst file:

demo.elf: file format elf32-avr

Sections:
Idx Name Size VMA LMA File off Algn

0 .text 000000ca 00000000 00000000 00000094 2**0
CONTENTS, ALLOC, LOAD, READONLY, CODE

1 .data 00000000 00800060 000000ca 0000015e 2**0
CONTENTS, ALLOC, LOAD, DATA

2 .bss 00000003 00800060 00800060 0000015e 2**0
ALLOC

3 .noinit 00000000 00800063 00800063 0000015e 2**0
CONTENTS

4 .eeprom 00000000 00810000 00810000 0000015e 2**0
CONTENTS

5 .stab 0000066c 00000000 00000000 00000160 2**2
CONTENTS, READONLY, DEBUGGING

6 .stabstr 00000630 00000000 00000000 000007cc 2**0
CONTENTS, READONLY, DEBUGGING

Disassembly of section .text:

00000000 <__vectors>:
0: 0a c0 rjmp .+20 ; 0x16
2: 62 c0 rjmp .+196 ; 0xc8
4: 61 c0 rjmp .+194 ; 0xc8
6: 60 c0 rjmp .+192 ; 0xc8
8: 5f c0 rjmp .+190 ; 0xc8
a: 0a c0 rjmp .+20 ; 0x20
c: 5d c0 rjmp .+186 ; 0xc8
e: 5c c0 rjmp .+184 ; 0xc8

10: 5b c0 rjmp .+182 ; 0xc8
12: 5a c0 rjmp .+180 ; 0xc8
14: 59 c0 rjmp .+178 ; 0xc8

00000016 <__ctors_end>:
16: 11 24 eor r1, r1
18: 1f be out 0x3f, r1 ; 63
1a: cf ed ldi r28, 0xDF ; 223
1c: cd bf out 0x3d, r28 ; 61
1e: 4e c0 rjmp .+156 ; 0xbc

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 118

00000020 <__vector_5>:
volatile uint16_t pwm; /* Note [1] */
volatile uint8_t direction;

SIGNAL (SIG_OVERFLOW1) /* Note [2] */
{

20: 1f 92 push r1
22: 0f 92 push r0
24: 0f b6 in r0, 0x3f ; 63
26: 0f 92 push r0
28: 11 24 eor r1, r1
2a: 2f 93 push r18
2c: 8f 93 push r24
2e: 9f 93 push r25

switch (direction) /* Note [3] */
30: 80 91 60 00 lds r24, 0x0060
34: 99 27 eor r25, r25
36: 00 97 sbiw r24, 0x00 ; 0
38: a1 f0 breq .+40 ; 0x62
3a: 01 97 sbiw r24, 0x01 ; 1
3c: 29 f5 brne .+74 ; 0x88

{
case UP:

if (++pwm == 1023)
direction = DOWN;

break;

case DOWN:
if (--pwm == 0)

3e: 80 91 61 00 lds r24, 0x0061
42: 90 91 62 00 lds r25, 0x0062
46: 01 97 sbiw r24, 0x01 ; 1
48: 90 93 62 00 sts 0x0062, r25
4c: 80 93 61 00 sts 0x0061, r24
50: 80 91 61 00 lds r24, 0x0061
54: 90 91 62 00 lds r25, 0x0062
58: 89 2b or r24, r25
5a: b1 f4 brne .+44 ; 0x88

direction = UP;
5c: 10 92 60 00 sts 0x0060, r1
60: 13 c0 rjmp .+38 ; 0x88
62: 80 91 61 00 lds r24, 0x0061
66: 90 91 62 00 lds r25, 0x0062
6a: 01 96 adiw r24, 0x01 ; 1
6c: 90 93 62 00 sts 0x0062, r25
70: 80 93 61 00 sts 0x0061, r24
74: 80 91 61 00 lds r24, 0x0061
78: 90 91 62 00 lds r25, 0x0062
7c: 8f 5f subi r24, 0xFF ; 255
7e: 93 40 sbci r25, 0x03 ; 3
80: 19 f4 brne .+6 ; 0x88
82: 81 e0 ldi r24, 0x01 ; 1
84: 80 93 60 00 sts 0x0060, r24

break;
}

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 119

OCR = pwm; /* Note [4] */
88: 80 91 61 00 lds r24, 0x0061
8c: 90 91 62 00 lds r25, 0x0062
90: 9b bd out 0x2b, r25 ; 43
92: 8a bd out 0x2a, r24 ; 42

}
94: 9f 91 pop r25
96: 8f 91 pop r24
98: 2f 91 pop r18
9a: 0f 90 pop r0
9c: 0f be out 0x3f, r0 ; 63
9e: 0f 90 pop r0
a0: 1f 90 pop r1
a2: 18 95 reti

000000a4 <ioinit>:

void
ioinit (void) /* Note [5] */
{

/* tmr1 is 10-bit PWM */
TCCR1A = _BV (PWM10) | _BV (PWM11) | _BV (XCOM11);

a4: 83 e8 ldi r24, 0x83 ; 131
a6: 8f bd out 0x2f, r24 ; 47

/* tmr1 running on full MCU clock */
TCCR1B = _BV (CS10);

a8: 81 e0 ldi r24, 0x01 ; 1
aa: 8e bd out 0x2e, r24 ; 46

/* set PWM value to 0 */
OCR = 0;

ac: 1b bc out 0x2b, r1 ; 43
ae: 1a bc out 0x2a, r1 ; 42

/* enable OC1 and PB2 as output */
DDROC = _BV (OC1);

b0: 88 e0 ldi r24, 0x08 ; 8
b2: 87 bb out 0x17, r24 ; 23

extern inline void timer_enable_int (unsigned char ints)
{
#ifdef TIMSK

outb(TIMSK, ints);
b4: 80 e8 ldi r24, 0x80 ; 128
b6: 89 bf out 0x39, r24 ; 57

timer_enable_int (_BV (TOIE1));

/* enable interrupts */
sei ();

b8: 78 94 sei
}

ba: 08 95 ret

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 120

000000bc <main>:

int
main (void)
{

bc: cf ed ldi r28, 0xDF ; 223
be: d0 e0 ldi r29, 0x00 ; 0
c0: de bf out 0x3e, r29 ; 62
c2: cd bf out 0x3d, r28 ; 61

ioinit ();
c4: ef df rcall .-34 ; 0xa4

/* loop forever, the interrupts are doing the rest */

for (;;) /* Note [6] */
c6: ff cf rjmp .-2 ; 0xc6

000000c8 <__bad_interrupt>:
c8: 9b cf rjmp .-202 ; 0x0

7.10.5 Linker Map Files

avr-objdump is very useful, but sometimes it’s necessary to see information about
the link that can only be generated by the linker. A map file contains this information.
A map file is useful for monitoring the sizes of your code and data. It also shows where
modules are loaded and which modules were loaded from libraries. It is yet another
view of your application. To get a map file, I usually add-Wl,-Map,demo.map to
my link command. Relink the application using the following command to generate
demo.map (a portion of which is shown below).

$ avr-gcc -g -mmcu=at90s2313 -Wl,-Map,demo.map -o demo.elf demo.o

Some points of interest in thedemo.map file are:

.rela.plt
*(.rela.plt)

.text 0x00000000 0xca
*(.vectors)
.vectors 0x00000000 0x16 ../../../obj-i386-redhat-linux-gnu/crt1/crts2313.o

0x00000000 __vectors
0x00000000 __vector_default
0x00000016 __ctors_start = .

The .text segment (where program instructions are stored) starts at location 0x0.

*(.fini2)
*(.fini1)

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 121

*(.fini0)
0x000000ca _etext = .

.data 0x00800060 0x0 load address 0x000000ca
0x00800060 PROVIDE (__data_start, .)

*(.data)
(.gnu.linkonce.d)

0x00800060 . = ALIGN (0x2)
0x00800060 _edata = .
0x00800060 PROVIDE (__data_end, .)

.bss 0x00800060 0x3
0x00800060 PROVIDE (__bss_start, .)

*(.bss)
*(COMMON)
COMMON 0x00800060 0x3 demo.o

0x0 (size before relaxing)
0x00800060 direction
0x00800061 pwm
0x00800063 PROVIDE (__bss_end, .)
0x000000ca __data_load_start = LOADADDR (.data)
0x000000ca __data_load_end = (__data_load_start + SIZEOF (.data))

.noinit 0x00800063 0x0
0x00800063 PROVIDE (__noinit_start, .)

(.noinit)
0x00800063 PROVIDE (__noinit_end, .)
0x00800063 _end = .
0x00800063 PROVIDE (__heap_start, .)

.eeprom 0x00810000 0x0 load address 0x000000ca
(.eeprom)

0x00810000 __eeprom_end = .

The last address in the .text segment is location0xf2 (denoted byetext), so the
instructions use up 242 bytes of FLASH.

The .data segment (where initialized static variables are stored) starts at location
0x60 , which is the first address after the register bank on a 2313 processor.

The next available address in the .data segment is also location0x60 , so the appli-
cation has no initialized data.

The .bss segment (where uninitialized data is stored) starts at location0x60 .

The next available address in the .bss segment is location 0x63, so the application
uses 3 bytes of uninitialized data.

The .eeprom segment (where EEPROM variables are stored) starts at location 0x0.

The next available address in the .eeprom segment is also location 0x0, so there aren’t
any EEPROM variables.

7.10.6 Intel Hex Files

We have a binary of the application, but how do we get it into the processor? Most
(if not all) programmers will not accept a GNU executable as an input file, so we need

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 122

to do a little more processing. The next step is to extract portions of the binary and
save the information into .hex files. The GNU utility that does this is calledavr-
objcopy .

The ROM contents can be pulled from our project’s binary and put into the file
demo.hex using the following command:

$ avr-objcopy -j .text -j .data -O ihex demo.elf demo.hex

The resultingdemo.hex file contains:

:100000000AC062C061C060C05FC00AC05DC05CC0A1
:100010005BC05AC059C011241FBECFEDCDBF4EC02A
:100020001F920F920FB60F9211242F938F939F93CD
:100030008091600099270097A1F0019729F58091A0
:10004000610090916200019790936200809361003B
:100050008091610090916200892BB1F41092600050
:1000600013C08091610090916200019690936200AC
:100070008093610080916100909162008F5F934056
:1000800019F481E08093600080916100909162009A
:100090009BBD8ABD9F918F912F910F900FBE0F90A6
:1000A0001F90189583E88FBD81E08EBD1BBC1ABCE4
:1000B00088E087BB80E889BF78940895CFEDD0E0D1
:0A00C000DEBFCDBFEFDFFFCF9BCF07
:00000001FF

The -j option indicates that we want the information from the .text and .data
segment extracted. If we specify the EEPROM segment, we can generate a .hex file
that can be used to program the EEPROM:

$ avr-objcopy -j .eeprom -O ihex demo.elf demo_eeprom.hex

The resultingdemo eeprom.hex file contains:

:00000001FF

which is an empty .hex file (which is expected, since we didn’t define any EEPROM
variables).

7.10.7 Make Build the Project

Rather than type these commands over and over, they can all be placed in a make file.
To build the demo project usingmake, save the following in a file calledMakefile .

Note:
ThisMakefile can only be used as input for the GNU version ofmake.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.10 A simple project 123

PRG = demo
OBJ = demo.o
MCU_TARGET = at90s2313
OPTIMIZE = -O2

DEFS =
LIBS =

You should not have to change anything below here.

CC = avr-gcc

Override is only needed by avr-lib build system.

override CFLAGS = -g -Wall $(OPTIMIZE) -mmcu=$(MCU_TARGET) $(DEFS)
override LDFLAGS = -Wl,-Map,$(PRG).map

OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump

all: $(PRG).elf lst text eeprom

$(PRG).elf: $(OBJ)
$(CC) $(CFLAGS) $(LDFLAGS) -o $@ $ˆ $(LIBS)

clean:
rm -rf *.o $(PRG).elf *.eps *.png *.pdf *.bak
rm -rf *.lst *.map $(EXTRA_CLEAN_FILES)

lst: $(PRG).lst

%.lst: %.elf
$(OBJDUMP) -h -S $< > $@

Rules for building the .text rom images

text: hex bin srec

hex: $(PRG).hex
bin: $(PRG).bin
srec: $(PRG).srec

%.hex: %.elf
$(OBJCOPY) -j .text -j .data -O ihex $< $@

%.srec: %.elf
$(OBJCOPY) -j .text -j .data -O srec $< $@

%.bin: %.elf
$(OBJCOPY) -j .text -j .data -O binary $< $@

Rules for building the .eeprom rom images

eeprom: ehex ebin esrec

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.11 Deprecated List 124

ehex: $(PRG)_eeprom.hex
ebin: $(PRG)_eeprom.bin
esrec: $(PRG)_eeprom.srec

%_eeprom.hex: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O ihex $< $@

%_eeprom.srec: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O srec $< $@

%_eeprom.bin: %.elf
$(OBJCOPY) -j .eeprom --change-section-lma .eeprom=0 -O binary $< $@

Every thing below here is used by avr-libc’s build system and can be ignored
by the casual user.

FIG2DEV = fig2dev
EXTRA_CLEAN_FILES = *.hex *.bin *.srec

dox: eps png pdf

eps: $(PRG).eps
png: $(PRG).png
pdf: $(PRG).pdf

%.eps: %.fig
$(FIG2DEV) -L eps $< $@

%.pdf: %.fig
$(FIG2DEV) -L pdf $< $@

%.png: %.fig
$(FIG2DEV) -L png $< $@

7.11 Deprecated List

Global eeprom rb(addr) Useeepromreadbyte()in new programs.

Global eeprom rw(addr) Useeepromreadword() in new programs.

Global eeprom wb(addr, val) Useeepromwrite byte()in new programs.

Global outp(val, sfr) For backwards compatibility only. This macro will eventually
be removed.

Global inp(sfr) For backwards compatibility only. This macro will eventually be
removed.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

7.11 Deprecated List 125

Global BV(bit) For backwards compatibility only. This macro will eventually be
removed.

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

Index
$PATH,97
$PREFIX,97
–prefix,97
BV

avr sfr, 54
EEGET

avr eeprom,5
EEPUT

avr eeprom,5
comparfn t

avr stdlib,33
elpm inline

avr pgmspace,8
malloc heapend

avr stdlib,40
malloc heapstart

avr stdlib,40
malloc margin

avr stdlib,40

abort
avr stdlib,33

abs
avr stdlib,33

acos
avr math,18

Additional notes from <avr/sfr -
defs.h>, 11

asin
avr math,18

atan
avr math,18

atan2
avr math,19

atoi
avr stdlib,33

atol
avr stdlib,33

AVR device-specific IO definitions,6
avr eeprom

EEGET,5
EEPUT,5

eepromis ready,5

eepromrb, 5
eepromreadblock,6
eepromreadbyte,6
eepromreadword,6
eepromrw, 5
eepromwb, 5
eepromwrite byte,6

avr errno
EDOM, 16
ERANGE,16

avr interrupts
cli, 51
enableexternalint, 52
INTERRUPT,51
sei,51
SIGNAL, 51
timer enableint, 52

avr math
acos,18
asin,18
atan,18
atan2,19
ceil, 19
cos,19
cosh,19
exp,19
fabs,19
floor, 19
fmod,19
frexp,19
inverse,20
ldexp,20
log, 20
log10,20
M PI, 18
M SQRT2,18
modf,20
pow,20
sin,20
sinh,21
sqrt,21
square,21

INDEX 127

tan,21
tanh,21

avr pgmspace
elpm inline, 8

memcpyP,8
PGM P,8
PGM VOID P,8
PSTR,8
strcasecmpP,8
strcatP,9
strcmpP,9
strcpyP,9
strlenP,9
strncasecmpP,10
strncmpP,10
strncpyP,10

avr sfr
BV, 54

bit is clear,54
bit is set,54
BV, 54
cbi, 55
inb, 55
inp, 55
inw, 55
loop until bit is clear,55
loop until bit is set,55
outb,56
outp,56
outw,56
sbi,56

avr sleep
set sleepmode,13
sleepmode,13
SLEEPMODE ADC, 13
SLEEPMODE EXT -

STANDBY, 13
SLEEPMODE IDLE, 13
SLEEPMODE PWR DOWN,

13
SLEEPMODE PWR SAVE, 13
SLEEPMODE STANDBY, 13

avr stdio
EOF,26
fclose,27
fdevopen,27

FILE, 26
fprintf, 27
fprintf P,27
fputc,27
printf, 27
printf P,28
putc,26
putchar,26
snprintf,28
snprintf P,28
sprintf,28
sprintf P,28
stderr,26
stdin,26
stdout,26
vfprintf, 28

avr stdlib
comparfn t, 33
malloc heapend,40
malloc heapstart,40
malloc margin,40

abort,33
abs,33
atoi,33
atol,33
bsearch,34
calloc,34
div, 34
DTOSTRALWAYS SIGN,32
DTOSTRPLUS SIGN,32
DTOSTRUPPERCASE,32
dtostre,34
dtostrf,35
exit, 35
free,35
itoa,35
labs,35
ldiv, 36
ltoa,36
malloc,36
qsort,36
rand,36
RAND MAX, 33
rand r, 37
random,37
RANDOM MAX, 33

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

INDEX 128

randomr, 37
srand,37
srandom,37
strtod,37
strtol,38
strtoul,38
ultoa,39
utoa,39

avr string
memccpy,41
memchr,41
memcmp,41
memcpy,42
memmove,42
memset,42
strcasecmp,42
strcat,43
strchr,43
strcmp,43
strcpy,43
strlcat,44
strlcpy,44
strlen,44
strlwr, 44
strncasecmp,45
strncat,45
strncmp,45
strncpy,45
strnlen,46
strrchr,46
strrev,46
strstr,46
strupr,47

avrprog, usage,102

bit is clear
avr sfr, 54

bit is set
avr sfr, 54

bsearch
avr stdlib,34

BV
avr sfr, 54

calloc
avr stdlib,34

cbi
avr sfr, 55

ceil
avr math,19

Character Operations,13
cli

avr interrupts,51
cos

avr math,19
cosh

avr math,19
ctype

isalnum,14
isalpha,14
isascii,14
isblank,14
iscntrl,15
isdigit, 15
isgraph,15
islower,15
isprint,15
ispunct,15
isspace,15
isupper,15
isxdigit, 15
toascii,15
tolower,16
toupper,16

disassembling,116
div

avr stdlib,34
div t, 57
DTOSTRALWAYS SIGN

avr stdlib,32
DTOSTRPLUS SIGN

avr stdlib,32
DTOSTRUPPERCASE

avr stdlib,32
dtostre

avr stdlib,34
dtostrf

avr stdlib,35

EDOM
avr errno,16

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

INDEX 129

EEPROM handling,4
eepromis ready

avr eeprom,5
eepromrb

avr eeprom,5
eepromreadblock

avr eeprom,6
eepromreadbyte

avr eeprom,6
eepromreadword

avr eeprom,6
eepromrw

avr eeprom,5
eepromwb

avr eeprom,5
eepromwrite byte

avr eeprom,6
enableexternalint

avr interrupts,52
EOF

avr stdio,26
ERANGE

avr errno,16
exit

avr stdlib,35
exp

avr math,19

fabs
avr math,19

FAQ, 62
fclose

avr stdio,27
fdevopen

avr stdio,27
FILE

avr stdio,26
floor

avr math,19
fmod

avr math,19
fprintf

avr stdio,27
fprintf P

avr stdio,27
fputc

avr stdio,27
free

avr stdlib,35
frexp

avr math,19

General utilities,31

inb
avr sfr, 55

inp
avr sfr, 55

installation,96
installation, avarice,102
installation, avr-libc,100
installation, avrprog,101
installation, binutils,98
installation, gcc,99
Installation, gdb,101
installation, simulavr,102
installation, uisp,101
Integer Types,17
INTERRUPT

avr interrupts,51
Interrupts and Signals,47
inverse

avr math,20
inw

avr sfr, 55
isalnum

ctype,14
isalpha

ctype,14
isascii

ctype,14
isblank

ctype,14
iscntrl

ctype,15
isdigit

ctype,15
isgraph

ctype,15
islower

ctype,15
isprint

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

INDEX 130

ctype,15
ispunct

ctype,15
isspace

ctype,15
isupper

ctype,15
isxdigit

ctype,15
itoa

avr stdlib,35

labs
avr stdlib,35

ldexp
avr math,20

ldiv
avr stdlib,36

ldiv t, 57
log

avr math,20
log10

avr math,20
longjmp

setjmp,22
loop until bit is clear

avr sfr, 55
loop until bit is set

avr sfr, 55
ltoa

avr stdlib,36

M PI
avr math,18

M SQRT2
avr math,18

malloc
avr stdlib,36

Mathematics,17
memccpy

avr string,41
memchr

avr string,41
memcmp

avr string,41
memcpy

avr string,42
memcpyP

avr pgmspace,8
memmove

avr string,42
memset

avr string,42
modf

avr math,20

outb
avr sfr, 56

outp
avr sfr, 56

outw
avr sfr, 56

PGM P
avr pgmspace,8

PGM VOID P
avr pgmspace,8

pow
avr math,20

Power Management and Sleep Modes,
12

printf
avr stdio,27

printf P
avr stdio,28

Program Space String Utilities,7
PSTR

avr pgmspace,8
putc

avr stdio,26
putchar

avr stdio,26

qsort
avr stdlib,36

rand
avr stdlib,36

RAND MAX
avr stdlib,33

rand r
avr stdlib,37

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

INDEX 131

random
avr stdlib,37

RANDOM MAX
avr stdlib,33

randomr
avr stdlib,37

sbi
avr sfr, 56

sei
avr interrupts,51

set sleepmode
avr sleep,13

setjmp
longjmp,22
setjmp,23

Setjmp and Longjmp,21
SIGNAL

avr interrupts,51
sin

avr math,20
sinh

avr math,21
sleepmode

avr sleep,13
SLEEPMODE ADC

avr sleep,13
SLEEPMODE EXT STANDBY

avr sleep,13
SLEEPMODE IDLE

avr sleep,13
SLEEPMODE PWR DOWN

avr sleep,13
SLEEPMODE PWR SAVE

avr sleep,13
SLEEPMODE STANDBY

avr sleep,13
snprintf

avr stdio,28
snprintf P

avr stdio,28
Special function registers,52
sprintf

avr stdio,28
sprintf P

avr stdio,28

sqrt
avr math,21

square
avr math,21

srand
avr stdlib,37

srandom
avr stdlib,37

Standard IO facilities,23
stderr

avr stdio,26
stdin

avr stdio,26
stdout

avr stdio,26
strcasecmp

avr string,42
strcasecmpP

avr pgmspace,8
strcat

avr string,43
strcatP

avr pgmspace,9
strchr

avr string,43
strcmp

avr string,43
strcmpP

avr pgmspace,9
strcpy

avr string,43
strcpyP

avr pgmspace,9
Strings,40
strlcat

avr string,44
strlcpy

avr string,44
strlen

avr string,44
strlenP

avr pgmspace,9
strlwr

avr string,44
strncasecmp

avr string,45

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

INDEX 132

strncasecmpP
avr pgmspace,10

strncat
avr string,45

strncmp
avr string,45

strncmpP
avr pgmspace,10

strncpy
avr string,45

strncpyP
avr pgmspace,10

strnlen
avr string,46

strrchr
avr string,46

strrev
avr string,46

strstr
avr string,46

strtod
avr stdlib,37

strtol
avr stdlib,38

strtoul
avr stdlib,38

strupr
avr string,47

supported devices,1
System Errors (errno),16

tan
avr math,21

tanh
avr math,21

timer enableint
avr interrupts,52

toascii
ctype,15

tolower
ctype,16

tools, optional,98
tools, required,97
toupper

ctype,16

ultoa
avr stdlib,39

utoa
avr stdlib,39

vfprintf
avr stdio,28

Generated on Mon Dec 9 22:14:31 2002 for avr-libc by Doxygen

	AVR Libc
	Supported Devices

	avr-libc Module Index
	avr-libc Modules

	avr-libc Data Structure Index
	avr-libc Data Structures

	avr-libc Page Index
	avr-libc Related Pages

	avr-libc Module Documentation
	EEPROM handling
	Detailed Description
	Define Documentation
	Function Documentation

	AVR device-specific IO definitions
	Program Space String Utilities
	Detailed Description
	Define Documentation
	Function Documentation

	Additional notes from <avr/sfr_defs.h>
	Power Management and Sleep Modes
	Detailed Description
	Define Documentation
	Function Documentation

	Character Operations
	Detailed Description
	Function Documentation

	System Errors (errno)
	Detailed Description
	Define Documentation

	Integer Types
	Detailed Description

	Mathematics
	Detailed Description
	Define Documentation
	Function Documentation

	Setjmp and Longjmp
	Detailed Description
	Function Documentation

	Standard IO facilities
	Detailed Description
	Define Documentation
	Function Documentation

	General utilities
	Detailed Description
	Define Documentation
	Typedef Documentation
	Function Documentation
	Variable Documentation

	Strings
	Detailed Description
	Function Documentation

	Interrupts and Signals
	Detailed Description
	Define Documentation
	Function Documentation

	Special function registers
	Detailed Description
	Define Documentation

	avr-libc Data Structure Documentation
	div_t Struct Reference
	Detailed Description

	ldiv_t Struct Reference
	Detailed Description

	avr-libc Page Documentation
	Acknowledgments
	avr-libc and assembler programs
	Introduction
	Invoking the compiler
	Example program

	Frequently Asked Questions
	FAQ Index
	My program doesn't recognize a variable updated within an interrupt routine
	I get `¨undefined reference to...`¨ for functions like `¨sin()`¨
	How to permanently bind a variable to a register?
	How to modify MCUCR or WDTCR early?
	What is all this _BV() stuff about?
	Can I use C++ on the AVR?
	Shouldn't I initialize all my variables?
	Why do some 16-bit timer registers sometimes get trashed?
	How do I use a #define'd constant in an asm statement?
	Why does the PC randomly jump around when single-stepping through my program in avr-gdb?
	How do I trace an assembler file in avr-gdb?
	How do I pass an IO port as a parameter to a function?
	What registers are used by the C compiler?
	How do I put an array of strings completely in ROM?
	How to use external RAM?

	Inline Asm
	GCC asm Statement
	Assembler Code
	Input and Output Operands
	Clobbers
	Assembler Macros
	C Stub Functions
	C Names Used in Assembler Code
	Links

	Using malloc()
	Introduction
	Internal vs. external RAM
	Tunables for malloc()
	Implementation details

	Memory Sections
	The .text Section
	The .data Section
	The .bss Section
	The .eeprom Section
	The .noinit Section
	The .initN Sections
	The .finiN Sections
	Using Sections in Assembler Code
	Using Sections in C Code

	Installing the GNU Tool Chain
	Required Tools
	Optional Tools
	GNU Binutils for the AVR target
	GCC for the AVR target
	AVR Libc
	UISP
	Avrprog
	GDB for the AVR target
	Simulavr
	AVaRice

	Using the avrprog program
	Using the GNU tools
	Options for the C compiler avr-gcc
	Options for the assembler avr-as
	Controlling the linker avr-ld

	A simple project
	The Project
	The Source Code
	Compiling and Linking
	Examining the Object File
	Linker Map Files
	Intel Hex Files
	Make Build the Project

	Deprecated List

