TERADATA CORPORATION

Teradata ADS Generator &
Fuzzy Logix DB Lytix™
Integration Guide

Teradata Partner Integration Lab
8/29/2014

Teradata ADS Generator, a product within the Teradata Warehouse Miner suite, can provide a front end
for Fuzzy Logix DB Lytix™ in-database library of advanced analytic components. This document provides
a tutorial on how to call and manage the different types of DB Lytix™ components from ADS Generator.

Table of Contents

N) o oo [¥ Lot T o U TP PP PP PPTPRTOPPRPORt 2
1.1, Variable Creation ANIYSISccuiii it e e e e 3
1.2, FUZZY LOGIX DB LYEIX ™ oottt sttt sa st se st s st s st s ss sttt en s ssesesssnas 4
1.3. Importing the ADS/Fuzzy LOGIX TULOIAl......ccuciiiiiiciiiece ettt et ere e re e s e 6
1.4. Adding Fuzzy Logix Documentation to the ADS Help MenU........ccccoeeeieciiieeciiiee e 10

2. Creating Variables by Executing DB Lytix™ Scalar and Aggregate UDF’s.........ccccccvveeieiiiieeeecvieeeeeneen. 11
D D 0 1 B RV 4D i or=1 =1 o U 1 T R 11
2.2, DB LytiXx™ AGEIregate UDF S ..o iiiiicciiieeciiee et ee e sttee et e et e e e s sata e e e ssabae e e ssataeeeenaaee e e nraeeean 15

3. Notes on FUNCLIONAI OVEIIGP .uvviiiiiiiiieiceee ettt et e st e e e e e e s s bte e e e sbeeeessntaeeesanes 20

4. Creating Variables From DB Lytix™ Table UDFS......ccuuiiiiciiiiiiiiieccireeecitee s srvree s ssire e s ssiree e ssvaee e 21

4.1. Calling DB Lytix™ Table UDF’s Using the Variable Creation Analysis Templates (With Query)..33

5. Calling Fuzzy Logix XSP’s from Variable Creation........ccccueeiieciiee ettt e e 35
5.1. Introduction to Variable Creation RUN UNItScocueeiieiiiiiiiiinieeeeee ettt 35
5.2. Introduction to Literals and Literal Parameters........ccouieiieeriieiniee ettt 37
5.3, DB LytiX™ XSP’S = THE BASICS..uutiiiiiiiiiiiiiiiieiiieeeeiiteeeesite e e este e e e saee e e ssbeeeessbeeeesabeeessnsseeesennsenas 41
5.4. DB Lytix™ Data Preparation XSSP S. ... e cieeeeciiee e eiteeessree e s ree e e saree e s s atee e s s araeesssbaeesennsenas 47
5.5. DB Lytix™ Data Mining / Model BUIldINg XSP’S......cc.uiiiuieeiieeciee ettt ettt ettt et evee s 58
5.6. DB Lytix™ Data Mining / Model SCOMNE XSP’S.....iiccuiiicieeeieeeetee et eeteeeeteeeeteeeereeeveeeerreeeveeenns 66

6. Bringing it all Together — Variables, Tables and RUN-UNitS........cccocvviiiiiiiiiiiiiiee e 72
6.1. Fuzzy Logix Logistic Regression Churn Model With Confusion Matrix StatisticS.......cccccecervveene 72

7. Remaining Analyses in the TULOIAl......cccciiiiiiiiee e e e e e s srre e e e 75

8. Using Run Units to Launch Excel and Visualize Fuzzy LOZiX RESUILSccvveeieciiiiieciieeeccieee e 76
8.1. Introduction to the Execute Program/Script RUN UNitc.ccoovveeiiiiieiieiiiee et 76

8.2. Fuzzy Logix Visualization EXamples Via EXCElccooiiiiiiiiei ettt 79

1. Introduction

Teradata ADS Generator, part of the Teradata Warehouse Miner family of products, was built to support
both comprehensive data profiling as well as analytic data generation for Teradata customers. Neither the
data profiling nor the analytic data set generation capabilities of the product require any movement of data
outside of the warehouse and utilize as much of the data as the analyst or data scientist requires. Results
and metadata are stored directly in the database while utilizing the parallel, scalable processing power of
the Teradata platforms to perform data intensive operations.

DB Lytix ", a product developed by Fuzzy Logix, offers scalable and robust high performance analytical
methods that are embedded seamlessly into database systems. The DB Lytix" library of statistical,
machine learning, and quantitative methods provide Teradata customers a rich set of in-database
components which fall into one of the following categories:

1) Mathematical Functions 2) Matrix Operations

3) Basic/Sparse Statistics 4) Date Functions

5) Fit Distributions 6) String Functions

7) Hypothesis Testing 8) Data Mining

9) Sim Univariate/Copula 10) Sampling Techniques
11) PDF/CDF/Inv CDF 12) Time Series Functions

Although there is some overlap in functionality between Teradata ADS Generator and DB Lytix ', the
combination of the two create an extremely powerful in-database predictive analytics platform providing
data profiling, data preparation, machine learning, multivariate statistics and predictive model deployment
capabilities for Teradata customers.

Recent changes made by the Teradata Applications Engineering group to the Teradata Warehouse Miner
family of products, allows the Teradata ADS Generator front-end to call the DB Lytix " database objects,
and manage them for production environments. Teradata Warehouse Miner or ADS Generator Version
05.03.05 is required for this integration. This document will describe the integration points between the
two products and does not attempt to replicate the information in either the Teradata ADS Generator or
Fuzzy Logix DB Lytix " user documentation. For more information on the capabilities of Teradata ADS
Generator, please refer to the following:

e Teradata Warehouse Miner User Guide - Volume 1 - Introduction and Profiling Release 5.3.5
(B035-2300-064A, June 2014)

e Teradata Warehouse Miner User Guide - Volume 2 - ADS Generation Release 5.3.5 (B035-2301-
064A, June 2014)

For a thorough description of all the functions available in the Fuzzy Logix DB Lytix" library, please
refer to the following:

e User Manual for DB Lytix" on Teradata Advanced Package v1.0.1

The Teradata ADS Generator & Fuzzy Logix DB Lytix " Integration Guide is meant to provide a
functional description on how each type of database object available within the Fuzzy Logix DB Lytix "
library is called from the Teradata ADS Generator User Interface. It also includes an example of one of
the Fuzzy Logix Excel Templates that is available for visualizing the results generated by their database
objects. A thorough description of all the Excel Templates in a use-case oriented format is available in
the following companion document:

e Teradata ADS Generator - User Guide for Integrating DB Lytix " and Excel (Aug 2014)
Note — As of this publication, additional integration features have been added to Teradata Warehouse
Miner and ADS Generator version 5.3.5.1. These features are documented within the Help system
available with the product, but not within the documents listed above.

1.1. Variable Creation Analysis

The Variable Creation analysis in Teradata ADS Generator makes possible the creation of variables as
columns in a table or view. It is also the integration point with Fuzzy Logix” DB Lytix . When using the
Variable Creation analysis, the end-user creates each new variable as an expression by selecting various
SQL keywords and operators as well as table/view and column names. Valid elements include:

1) Columns from one or more tables or views in one or more databases

2) Aggregation functions including MIN, MAX, SUM, AVG, COUNT, CORR,
COVAR_POP/SAMP, STDDEV_POP/SAMP, VAR_POP/SAMP, SKEW, KURTOSIS, etc.

3) Ordered analytical functions including Windowed AVG, COUNT, MAX, MIN, and SUM, along
with PERCENT_RANK, RANK, ROW NUMBER, etc.

4) Arithmetic operators including +, -, *, /, MOD, **

5) Arithmetic functions including ABS, EXP, LN, LOG, SQRT, RANDOM, WIDTH BUCKET,
etc.

6) Trigonometric functions including COS, SIN, TAN, ACOS, ASIN, ATAN, ATAN2

7) Hyperbolic functions including COSH, SINH, TANH, ACOSH, ASINH, ATANH

8) CASE expressions, both valued and searched types

9) Comparison operators including =, >, <, <>, <=, >=

10) Logical predicates including BETWEEN, NOT BETWEEN, IN, NOT IN, IS NULL, IS NOT
NULL, AND, OR, NOT, LIKE, NOT LIKE, ANY and ALL

11) Custom logical predicates AND ALL, OR ALL

12) NULL operators including NULLIF, COALESCE, NULLIFZERO, ZEROIFNULL

13) Built-in functions including CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP

14) Date/Time functions including ADD_MONTHS, EXTRACT, TEMPORAL_DATE,
TEMPORAL_TIMESTAMP

15) Custom Date/Time differences and elapsed time functions

16) Calendar fields based on a specified date column with all Teradata Calendar options.

17) String functions including CHARACTER_LENGTH, Concatenate (||), LOWER, POSITION,
SUBSTRING, TRIM, UPPER, etc.

18) Hash functions including HASHAMP, HASHBAKAMP, HASHBUCKET, and HASHROW

19) Miscellaneous other SQL constructs, including Asterisk(*), BYTES, CAST, Parentheses (),
Sample ID, SQL element list, etc.

20) Formulas of 1 (x), 2 (x,y), 3 (X,y,z) or any number (x1...xn) of variables

21) Free SQL Text Entry with optional arguments

22) Subqueries

23) User Defined Functions

24) User Defined Methods

25) References to other variables

26) Embedded Services User Defined Functions (more than 100)

27) Geospatial Methods

28) Geospatial System Functions

29) Table Functions

30) Table Operators

31) Run-Units

The Variable Creation function also allows the creation of various expert clauses, some with specialized
elements, including the following:

1) WHERE, HAVING and QUALIFY clauses

2) GROUP BY clause, including CUBE, ROLLUP and GROUPING SETS
3) ORDER BY clause

4) SAMPLE clause

5) TOP clause

6) WITH Recursive/Seed Query clauses

Any number of variables can be defined in a single Variable Creation function, provided they conform to
rules that allow them to be combined in the same table, and they do not exceed the maximum number of
columns allowed in a table by Teradata. Several variable properties are used in determining which
variables can be built in the same table. Some rules of combining variables in the same Variable Creation
function are given below.

» Variables derived in a single table must have the same aggregation type and level.

» A number of tables may be referenced by the variables defined in a single Variable Creation
function.

» Variables referenced by another variable must not be dimensioned.

» All the variables in a Variable Creation function share the same table level constraints.

» The user may request at any time that the intermediate table created by a Variable Creation
function be validated using the Teradata EXPLAIN feature.

The standard result options are available with the Variable Creation function, namely SELECT,
EXPLAIN SELECT, CREATE TABLE and CREATE VIEW. The choice depends primarily on whether
this analysis produces a final result or an intermediate result, and if so, whether the user wants to create a
permanent table or view for this intermediate result. If a permanent result is not desired, the Select option
can be used to view and verify results.

Within the ADS Variable Creation Analysis, the DB Lytix" library of UDF and XSP objects can serve
as an input variable, a Table input to the FROM clause or through a Run Unit as a Stored Procedure
CALL, or input query / subquery.

1.2. Fuzzy Logix DB Lytix "

The Fuzzy Logix DB Lytix " library of advanced analytic functions are embedded into the Teradata
database as a set of database objects in the form of User Defined Functions (UDF’s) and External Stored
Procedures (XSP’s) as follows:

1) Scalar UDF’s - for those analytics that require a single result / single row as an answer set.

2) Aggregate UDF’s - for those analytics that require single result of multiple aggregated rows as an
answer set.

3) Table UDF’s - for those analytics that require a table of results as an answer set.

4) XSP’s - for those analytics that create multiple results and/or iterate over the input data multiple
times. The XSP controls the iteration of the SQL executed, often with DB Lytix embedded
UDF’s in it.

DB Lytix " comes in a Basic and Advanced package, with Basic being a subset of Advanced. The DB
Lytix " Advanced Package consists of hundreds of advanced functions across the following categories and
can be deployed on Teradata 13.10, Teradata 14.00, and Teradata 14.10:

Category Functions
Cumulative Distribution Functions 40
Data Mining Functions 66
Date Functions 26
Fit Distributions 78
Hypothesis Testing Functions 33
Inverse Cumulative Distribution Functions 40
Mathematical Functions 23
Matrix Operation Functions 20
Probability Density Functions 40
Sampling Techniques Functions 5
Simulate Copula Functions 7
Simulate Univariate Functions 40
Sparse Statistics Functions 11
Statistical Functions 50
String Functions 14
Time Series Functions 6
Total 499

The combined ADS Generator/DB Lytix " integrated architecture is depicted below:

i al TERADATA E .
LT ADS Generator f

! %
Request Response

L

=) rarsing Engine | - | Parsing Engine

k 4

Message Passing Layer

] ! !

Elave | [EE] ave | (2 AMe |- [IE]AMP

Since there are almost 500 (and counting!) DB Lytix" functions within their library, it is not possible to
illustrate how each would be called and managed from Teradata ADS Generator. What follows is a
tutorial on how to call each type of DB Lytix" function, and how to use the Teradata ADS Generator’s
Variable Creation Analysis to manage their execution and interrogate the results of their in-database
analysis.

1.3. Importing the ADS/Fuzzy Logix Tutorial

For simplicity, this tutorial utilizes the well-known TWM Demonstration Data that is released with each
version of Teradata ADS Generator. Attached below is the supporting ADS Project “.bin” file that can be
imported into your Teradata ADS Generator environment:

Teradata ADS Demo Powered by Fuzzy Logix.bin

In order to import it, you must first create a user in your Teradata database named “fuzzy” with a
subordinate database named “fuzzylogix.” Then set up an ODBC DSN with the following properties:

ODBC Driver Setup for Teradata Database

Data Source
QK

MName: ADS/Fuzzy Demao
Cancel

Description:
Help
Teradata Server Info

Mame ar IP ADDRESS|
IP address

oL

Authentication
lUse Integrated Security
Mechanism: - |

Parameter: Change...

{

Usemame: fuzzy

Password: J—_—

Optional
Default Database: fuzzylogix

Accourt String: W

Session Character Set:
ASCI

L]

Connect the ADS front end to this DSN, and change your connection properties as follows:

Connection Properties
Databases

Source Databases:

fuzzylogix
fuzzy

g

| add || Bemove

Reszult Database:

fuzzylogix

Metadata Datsbase:

fuzzylogix

Statistical Test Database:

fuzzylogix

Publish Database:

fuzzylogix

Advertise Database: Always Advertise
fuzzylogix

[Ok J[Cancel J[Hep

Then execute the Import Wizard by selecting “Import...” from the File Menu:

3 Open @

Look in; ; TWM I <] ¥ £° G-
M Marne Date rr
e .| | Teradata ADS Demo Powered by Fuzzy Logix.bin 711720

Recent Places

Desktop

=

Librraries

P L
=g

Computer
A

Metwaork

1| 1] | 3

File name: Teradata ADS Demo Powered by Fuzzy Logie + Open

Fles of ype: [binfiles (*bin) -

Select the Teradata ADS Demo Powered by Fuzzy Logix bin file, and click Open:

Wizard

Import Wizard
Match Databases to Import from “Teradata ADS Demo Powered by Fuzzy Logix”

Pwzilable Databases Matched Databases
fuzzylogix fuzzylogix => ogix
fuzzy

New Name
[7] Use connection's Result Database for all output databases

[7] Merge with selected project < Back [Mext >] [Cancel] [Help]

If you have setup the DSN and the ADS Connection Properties as previously indicated, there is nothing
more to do than to click on the “Import” button. The “Teradata ADS Demo Powered by Fuzzy Logix”

Project should automatically come up as follows:

Project Explorer
----- [Fuzzy Logic Mathematics - Scalar UDF's
----- [Fuzzy Logic Statistics - Aogregate UDF's
----- il ADS Values Analysis
----- [Fuzzy Logix Values
----- > ADS Statistics Analysis
----- [Fuzzy Logix Statistics
----- [WithSeedluenyMadianMode
----- [Fuzzy Logix Median- Table UDFs
----- [Fuzzy Logix Mode- Table UDFs
----- [Fuzzy Logic ANOVA - Bdemal Stored Procedures
----- [Fuzzy Logix Data Preparation for Binomial Models
----- [Fuzzy Logic Logistic Regression Chum Madel Building
----- [Fuzzy Logix Logistic Regression Chum Model Scoring
----- [Fuzzy Logic Decision Tree Chum Maodel Building and Scoring
----- [Fuzzy Logix Data Preparation for Continuous Models
----- [Fuzzy Logic Linear Regression Revenue Estimation Model Building and Scoring
----- [Fuzzy Logic Logistic Regression Chum Madel With Confusion Matrbc Statistics

And you are done!

NOTE - If you wish to attempt to map this tutorial to a different set of users and databases on Teradata,
please see Chapter 3, Using Teradata Warehouse Miner in the Teradata Warehouse Miner User Guide -
Volume 1 - Introduction and Profiling Release 5.3.5 document for instructions to do so. One word of
warning however — we have observed very obscure errors, including syntax errors, when attempting to
configure into a different environment. DB Lytix " utilizes all of Teradata’s extensibility features which
have very complex security requirements.

1.4. Adding Fuzzy Logix Documentation to the ADS Help Menu

For convenience, you can easily add documentation links to the Teradata Warehouse Miner or ADS
Generator Help Menu. This way pertinent documentation is readily available from the user interface,
without having to browse the web or your hard drive for it.

Upon installation, an XML file named “DocumentLinks.xml” is created within the Teradata Warehouse
Miner or ADS Generator installation folder (by default “C:\Program Files\Teradata\Teradata ADS
Generator 5.3.5” or “C:\Program Files\Teradata\Teradata Warehouse Miner 5.3.5”). The format of this
file is very simple:

<DocumentLinks>
<Product>
<Product release=""/>
<Product release="Name of Help Menu Documentation Category">
<Document name="Name of Document 1" link="Fully qualified file location or URL" />
<Document name="Name of Document 2" link="Fully qualified file location or URL" />
<Document/>
<Document name="Name of Document n" link="Fully qualified file location or URL" />
</Product>
</DocumentLinks>

By copying the XML between the <DocumentLinks> and </DocumentLinks> tags from above and
pasting it prior to the last line of XML (</DocumentLinks>) in the “DocumentsLinks.xml” file, you will
see the structure captured in the screen below.

3 Teradata ADS Generator o= =]
File View Project Tools Window
Bl @@ | % Contents & Index... A
What's New... r2 Project Explorer x|
Import Tutorial Projects..
View Analysis Template Instructions... v
View Teradata Documentation... v Teradata Database and Utilties - 15.00 v
S ——— Teradata Database and Utilties - 14.10 v
Teradata Database and Utilities - 14.00 v
Teradata Database and Utilties - 13.10 ,
Teradata Warchouse Miner - 5.3.5 »
Name of Help Menu Documentation Category v Name of Document 1
Name of Document 2
Name of Document n
Execution Status x
Analysis Status Message

So, for example, this document or the Fuzzy Logix DB Lytix " User’s Guide could be easily added to
ADS Generator’s Help Menu.

2. Creating Variables by Executing DB Lytix" Scalar and Aggregate UDFE’s

Although the capability to call either Scalar or Aggregate UDF’s is not new to the 05.03.05 release of
ADS Generator, we include it here for completeness of the tutorial. It is quite straight-forward to create
variables by executing Scalar or Aggregate UDEF’s.

2.1. DB Lytix " Scalar UDF’s

First let’s look at the Scalar UDF example. Here is what the finished analysis looks like (“Fuzzy Logix
Mathematics — Scalar UDF’s” Variable Creation analysis in the tutorial):

__ Fuzzy Logix Math - Scalar UDF's - Variable Creation
iraptvie- wip: .
| nPUT ¥ | OUTPUT » | RESULTS B |
varnables | dimensions | anchortable | lteml pammeters | analysic pamemeters | locking expert options
Columns/Values: S0L Elements: Variables Dimensions Tablez Run Units
Input Source: Aggregation EI’ Income Mew
- ® Ardthmetic i e M income
Calendar EI & Collar_Income Add
Databases: [~ ® Case i B~ User Defined Function (FLCOLLAR)
fuzzylogic - ® Comparison EI[:I Arguments
Tables: ® Date and Tim M income
O —— ® Embedded S¢ & Number {10000)
- - (- @ Geospatial - @ Number (50000)
— " 8 Literal Parame E‘ i W age
- bl # Logical EI" Gamma_Age
.::E—zz—ta - ® Ordered Analy E =3 [H_iler Defined Function (FLGAMMALN)

il [~ ® Period =[] Arguments
Bavyg coc t.. |5 ® String Functio I:I i M age el
Havg_ck_bal [@ Trigonometric
Mayg ck t.. L Table Functio
Bavg_ck_t... - @ Run Units E‘
Mavg_sv_bal [® Other
Mavg_sv_tr..
Bavg_sv_ir...

Heoo_rev
Becaect
e I T 3

First, we select two columns from the “twm_customer analysis” table — “income” and “age.” Then we
are going to execute two scalar UDF’s against those columns. The DB Lytix" function FLCOLLAR will
be called to find the “collar” value for “income” (limits the values of “income” to the specified range of
upper and lower bounds). Additionally, the FLGAMMALN function will be called to perform a
transformation of the column “age” into the natural logarithm of the gamma function. Here are the steps
to parameterize the analysis:

1) Select the “twm_customer analysis” table in the “Tables:” pull-down list.

2)

3)

Select the “age” and “income” columns as Variables by highlighting each in the “Columns:” list
and either:

a. Double clicking each,

b. Clicking on the > button, or

c. Dragging and dropping them to the Variables palette.
In the example, these columns have been aliased (Capitalized) by highlighting them with a single
click and hold (Windows style rename) and changing the name. Optionally, click on the
“Properties” button to do this within the Properties dialogue.

Select the FLCOLLAR function as follows:
a. Click on the + icon next to “Other” in the “SQL Elements” list. It will expand and show
the following elements:
= & Cther
----- ASC/DESC Order
..... Astersk

..... Cast

----- Expand Column Reference
----- Expression with Alias

----- Expression with Order By
- Fomula

----- MNew Varant Type

----- Parentheses

..... Qluotes

----- Sample 1D

----- SQL Element List

..... SaL Text

----- SQL Text with Arguments
----- SQL Text Function

----- IUzer Defined Method
----- Varable Reference

b. Select “User Defined Function” by double clicking on it, highlighting it and clicking on
the > button, or highlighting it and dragging and dropping it on the Variables palette.
This will bring up the following dialogue:

[Properties @

Database Name: fuzzylogix -

Function Mame: FLCallar -

Description

FLCOLLAR { i
X FLOAT
LB FLOAT
UB FLOAT

) = FLOAT

[] Aggregation Function Mumber of Arguments: 3
[C] Omit Database In Call

| ok || cancel || Mpply || Hel

Select the database where DB Lytix " is installed in the “Database Name” pull-down.
Once you do this, the “Function Name:” dialogue will be populated with the Scalar and
Aggregate UDF’s that reside in the selected database. It will also show the signature of
the function under the “Description” tab. Select FLCollar in the “Function Name:” pull-
down. The “Aggregation Function” check-box will be disabled since this is a scalar
function. By default, ADS Generator will fully qualify the UDF call by prepending it
with the database name it resides in. You can turn this default behavior off by enabling
the “Omit Database In Call” check-box. You may hit “OK” to save these selections and
close the dialogue, or “Apply” to save these selections and leave the dialogue up. Note
that this dialogue can be left up allowing you to parameterize additional Scalar and
Aggregate UDF calls.

4) Parameterize the call to the FLCOLLAR function as follows:

a.

b.

By default, the FLCollar UDF variable will look like:

&4
= . User Defined Function (FLCOLLAR)
i D J'!q-gumen‘ts

It is parameterized by dragging and dropping “income” from the “Columns” list and
dropping it into the “Arguments” folder. Optionally, you can highlight the “Arguments”
folder and then double click “income” from the “Columns:” list.

Next you need to specify the upper and lower bounds for the FLCollar function. You do
this by first clicking on the “+” icon next to “Literals” in the “SQL Elements” list. The
expanded list looks like the following:

..... Mull
----- MNumber

----- Period Date

----- Period Time

----- Period Timestamp
..... Stl'il‘lg

..... Time
----- Timestamp

Select the “Number” literal by highlighting/dragging and dropping or using the “>" icon
into the Arguments folder. The following dialogue opens when you do this:

[Properties @

-

Mumber; 0|

OK || Cancel || Apply || Helb

Enter “10000” in the “Number:” text box and click OK.
Repeat step c. for the value “50000”, or simply highlight the “Number 10000” argument,
press the “Ctrl” key on your keyboard and drag and drop it back into the “Arguments”
folder. This is a quick and dirty way to copy parameters that you should find useful.
“Variable1” will now look like this:
(=" W /ariable 1
. =~ ® User Defined Function (FLCOLLAR)
=] Arguments
- W income
- @ Number (10000)
fe. @ Number (50000)
In the example these variable has been given the name “Collar_Income” by highlighting
“Variable1” through a highlight and single click Window’s style rename, or by changing
the name in the “Properties” dialogue.

5) Select and parameterize the call to the FLGAMMALN function as follows:

a. Follow the instructions in 3) a. - 3) c. choosing FLGammaLN instead of FLCollar in 3) c.

b. It is parameterized by dragging and dropping “age” from the “Columns:” list and
dropping it into the “Arguments” folder. Optionally, you can highlight the “Arguments”
folder and then double click “age” from the “Columns:” list.

c. Since this is the only argument to FLGammaLN, the parameterization is complete.
Optionally, follow the instructions in 4) e. to rename “Variable2” to “Gamma_Age” to
match the tutorial.

Since this is a Scalar function, nothing additional is required. Simply execute the Variable Creation
Analysis by clicking on the “Run” button directly under the “Tools” menu item, or highlighting the
Variable Creation analysis in the “Project Explorer,” right-clicking and selecting “Run.”

Once the Status of the analysis execution is “Complete” in the “Execution Status” window, click on the
“Results>data” tab and you should see 747 rows returned with values for income, the collar value
(10000->50000) of income, the values of age, and the gamma natural logarithm transformation of age.
The SQL under “Results—>sql” tab should look like this:

SELECT
" twmVCO0"."income" AS "Income"
\"fuzzylogix"."FLCOLLAR"("_twmVCO0"."income", 10000, 50000) AS "Collar_Income"
;" twmVCO0"."age" AS "Age"
\"fuzzylogix"."FLGAMMALN"("_twmVCO0"."age") AS "Gamma_Age"
FROM "fuzzylogix"."twm_customer_analysis" AS "_twmVCQ"
ORDER BY "_twmVCO0"."cust_id"

SELECT
" twmVCO0"."income" AS "Income"
"fuzzylogix"."FLCOLLAR"("_twmVCO0"."income", 10000, 50000) AS "Collar_Income"
,"_twmVCO0"."age" AS "Age"
S"fuzzylogix"."FLGAMMALN"("_twmVCO0"."age") AS "Gamma_Age"
FROM "fuzzylogix"."twm_customer_analysis" AS "_twmVCOQ"
ORDER BY "_twmVCO0"."cust_id"

2.2. DB Lytix" Aggregate UDF’s

Next, we’ll look at the Aggregate UDF example. Here is what the finished analysis looks like (“Fuzzy
Logix Statistics — Aggregate UDF’s” Variable Creation analysis in the tutorial):

__| Fuzzy Logix Statistics - Aggregate UDF's - Variable Creation EIIEI
Fuzzy Loagix Statistics - Agoregate UDFs e '

| mPUT v | ouTPUT » | RESULTS & |

vanables dimensions anchor table teral parameaters | analysis pammeters locking expert options
Columns/Values: SGL Elements: Wariables Dimensions | Tables | Run Units
Input Source: Aggregation EI ’ State Mew
Arthmetic e gtate_code
- @ Calendar (= 4. Comelation_Income_Children Add
Databases: [~ @ Case ¢ B~ 0 User Defined Function (FLCORREL)
fuzzylogie - 8 Comparison EI[:I Arguments
Tables: @ Date and Timi B income
O ® Embedded S¢ i M nbr_children
- - - @ Geospatial = & Covarance_Income_Children
Columns: - W Literals E- # User Defined Function (FLCOVARF)
age .« G-o. Literal Parame E‘ EI[:l Arquments
- ® Logical - M income saL
.avg—cc—fa' - @ Ordered Analy E .. M nbr_children
avg_Ccc [... ® Period -
Mayg cc t.. (B # Sting Functio I:I
Havg_ck_bal [@ Trigonometric
Bavg_ck t. | | G- @ Table Functio
Bavg ck t.. - © Run Units E'
Mavg_sv_bal E- ® Other
Bavg_sv tr..
Bavg_sv ir...
Hec_rev
Becacct i
o 4 1 3

First, we select “state_code” column from the “twm_customer_analysis” table. For each state code,

we are going to execute two aggregate UDF’s; first the DB Lytix function FLCORREL will be called to
find the correlation value between two additional columns in the “twm_customer_analysis” table —
“income” and “nbr_children”. Then FLCOVARP function will be called to calculate the population
covariance of the same two columns. Here are the steps to parameterize the analysis:

1) Select the “twm_customer analysis” table in the “Tables:” pull-down list.

2) Select the “state_code” column as Variables by highlighting it in the “Columns:” list and either:
a. Double clicking it,
b. Clicking on the > button, or
c. Dragging and dropping it to the Variables palette.
In the example this column has been aliased to “State” by highlighting it with a single click and
hold (Windows style rename) and changing the name. Optionally, click on the “Properties”
button to do change the name within the Properties dialogue.

3) Select the FLCORREL function as follows:
a. Click on the + icon next to “Other” in the “SQL Elements” list. It will expand and show
the following elements:

B © Cther
----- ASC/DESC Order
----- Asterisk

..... Cast

----- Expand Column Reference
----- Expression with Alias

----- Expression with Order By
B~ Formula

----- MNew Varart Type

----- Parentheses

..... Cluctes

----- Sample 1D

----- SQL Blement List

..... SOl Ted

----- SQL Text with Arguments
----- SQL Test Function

..... Subquery

----- User Defined Function

----- User Defined Method

----- Wariable Reference

b. Select “User Defined Function” by double clicking on it, highlighting it and clicking on

the > button, or highlighting it and dragging and dropping it on the Variables palate. This
will bring up the following dialogue:

[Properties @ﬁ

Database Name: fuzzylogix -

Function Mame: FLCamel -

Description

FLCORREL ("
pX FLOAT
pY FLOAT

) = FLOAT

Aggregation Function Mumber of Arguments: 2
[C] Omit Database In Call

| ok || cancel || Mpply || Hel

Note that the “Aggregate Function” checkbox has been enabled as the front-end
recognizes this is an Aggregate UDF vs. Scalar UDF.

Select the database where DB Lytix " is installed in the “Database Name:” pull-down.
Once you do this, the “Function Name:” dialogue will be populated with the Scalar and

Aggregate UDEF’s that reside in the selected database. It will also show the signature of
the function under the “Description” tab. Select FLCorrel in the “Function Name” pull-
down. By default, ADS Generator will fully qualify the UDF call by prepending it with
the database name it resides in. You can turn this default behavior off by enabling the
“Omit Database In Call” check-box. You may hit “OK” to save these selections and
close the dialogue, or “Apply” to save these selections and leave the dialogue up. Note
that this dialogue can be left up allowing you to parameterize additional Scalar and
Aggregate UDF calls.

4) Parameterize the call to the FLCorrel function as follows:
a. By default, the FLCorrel UDF variable will look like:

= _ |User Defined Function (FLCORREL)

It is parameterized by dragging and dropping “income” and “nbr_children” from the
“Columns:” list and dropping it into the “Arguments” folder. Optionally, you can
highlight the “Arguments” folder and then double click “income” and then
“nbr_children” from the “Columns:” list or use the “>" icon.
“Variablel” will now look like this:
=
= |User Defined Function (FLCORREL)
= __| Arguments
E income
nbr_children

In the example these variable has been given the name “Correlation_Income_Children”
by highlighting “Variable1” through a highlight and single click Window’s style rename,
or by changing the name in the Properties dialogue.

5) Select and parameterize the call to the FLCOVARP function as follows:

a.
b.

C.

Follow the instructions in 3) a. - 3) c. choosing FLCovarP instead of FLCorrel in 3) c.
It takes the same parameters as FLCorrel, so follow parameterize it following the same
instructions in 4) b.

Optionally, follow the instructions in 4) e. to rename “Variable2” to
“Covariance_Income_Children” to match the tutorial.

6) Since this is an Aggregate function, one additional parameter is required. Click on the “analysis
parameters” tab to select the “Group by all non-aggregate columns” parameter:

7)

"

__| Fuzzy Logix Statistics - Aggregate UDF's - Variable Creation EI@
Fuzzy Logic Statistics - Aggregate UDF's :

| wpuT w | ouTPUT » | RESULTS » |
vanables | dimensiocns | anchortable | literal parmmeters | analysis pammeters | locking exper options
Basic Options | Temporal Qualfiers
Group By Style:

i) Group by ancher columns < @ Group by all non-aggregate columns > 71 User specified

Analysis Represents

@ Table (or derived table) () Subquery (not a derived table) () With seed query (7 With recursive query

Special Options
[7] Select Distinct [7] Include Embedded Services Database [7] Creates Score Table

Table Alias Prefix:. _twmVC

Analysis References

Depends on Analysis: -

By default, ADS will group by anchor column(s), which in this case is the primary index of the
“twm_customer analysis” table, “cust_id.” This option allows us to generate the SQL statement
grouping by “state _code.”

Now execute the Variable Creation Analysis by clicking on the “Run” button directly under the
“Tools” menu item, or highlighting the Variable Creation analysis in the “Project Explorer,”
right-clicking and selecting “Run.”

Once the Status of the analysis execution is “Complete” in the “Execution Status” window, click
on the “Results>data” tab and you should see 33 rows returned with all available values for
“state_code” along with the calculated correlation and population covariance of income and
number of children for each State. The SQL under “Results—>sql” tab should look like this:

SELECT
" twmVCO0"."state_code" AS "State"
S"fuzzylogix"."FLCORREL"("_twmVCO0"."income", "_twmVCO0"."nbr_children") AS
"Correlation_Income_Children"
S"fuzzylogix"."FLCOVARP"("_twmVCO0"."income", "_twmVCO0"."nbr_children") AS
"Covariance_Income_Children"
FROM "fuzzylogix"."twm_customer_analysis" AS "_twmVCO0"
GROUP BY 1
ORDER BY 1

3. Notes on Functional Overlap

The next four analyses in the “Teradata ADS Demo Powered by Fuzzy Logix” project illustrate some of
the functional overlap between the two products. Note that the two products are 99% complimentary and
even within an area of functional overlap, certain use cases will lend themselves to one solution or the
other — the end-user ultimately gets the best of both worlds. The areas that overlap are limited to the ADS
Generator Descriptive Statistics and some of the DB Lytix ~ Mathematical and Statistical Scalar or
Aggregate UDF’s. For those functions that do overlap, the difference in processing is that the ADS
Generator analysis allows you to process any or all columns within a table, whereas the DB Lytix
functions are called once per column.

The first example compares an ADS “Values” analysis (Descriptive Statistics - Values) to a set of DB
Lytix " Statistical Aggregate UDF’s. The ADS “Values” analysis provides a count of the number of
rows, rows with non-null values, rows with null values, rows with value 0, rows with a positive value,
rows with a negative value, and the number of rows containing blanks from a given table name and
column. It can optionally group by an additional column. In the example “ADS Values Analysis” shown
below, these calculations are given for five columns in the “twm_customer_analysis” table (“income”,
“age”, “years_with_bank”, “nbr_children”, “marital_status”), with “gender” given as the group by

b

column:

il ADS Values Analysis - Values

- date creats: & last time run
ADS Values Analysis date modifia 4 last complete run: 7)

| NPUT w | OuTPUT » | RESULTS B |

data selection analysis parmmeters | expertoptions

1) Select Input Source
| Table -

Selected Columns:

2) Select Columns From a Single Table

Awailable Databaszes: - fuzzylogic

fuzzylogix - =-E twm_customer_analysis
Lvailable Tables: i M age
bwm_customer_analysis - # income

.) marital_status
Ayvailable Columns: ™ nbr_children

Hage -
Bayg_cc_bal
Bayg_cc_tran_amt

L. M years_with_bank

Bayg_cc_tran_cnt
Bayg_chk_bal
Wayg_ck_tran_amt
Bayg_ck_tran_cnt e Group By Columns
Mayg_sv_bal 503 fuzzylogix

Havg_sv_tran_amt B-E twm_customer_analysis
- gender

m

=

“«{

Bavg_sv_tran_crt

Heoo rev

Becacct
city_name

Fuzzy Logix provides five different aggregate functions that provide the same functionality:

« FLCount - Aggregate function which returns the count of non-NULL values
» FLCountNeg - Aggregate function which returns the count of negative values
» FLCountNull - Aggregate function which returns the count of null values

» FLCountPos - Aggregate function which returns the count of positive values
« FLCountZero - Aggregate function which returns the count of values which are zero

Each aggregate function takes a single floating point number as an argument. Therefore you need to call
each function five times, for “income”, “age”, “years_with_bank”, “nbr_children”, and “marital_status”,
resulting in 25 UDF calls, as shown in the “Fuzzy Logix Values” Variable Creation analysis below:

Columns/Values:

Input Source:
Databases:
fuzzylogic -
Tables:

bwm_customer -

Columns: | Values

__| Fuzzy Logix Values - Variable Creation

Fuzzy Logix Values

dimensions

| wpuT v | outPuT » | RESULTS & |
vanables

anchor table

SQL Elements:

Hage
city_name
Bcust_id
first_name
gender
Nincome
last_name
marital_st ...
Name_pre...
Enbr_childr...
postal_co.
state_code
street_na...
Bstreet_nbr
Byears_wit...

Aggregation
Arithmetic
Calendar

- @ Caze

- @ Comparison

- @ Date and Tim
- @ Embedded Se
- @ Geospatial

- @ Literals

- @ Literal Parame
- @ Loagical

- @ Ordered Analy
- @ Period

- @ String Functio
- @ Trigonometric
Table Functio
Fun Units
Cther

e Rt Rl Reatcs Mo R R B R

4 1 | 3

(2] EI[][=]

last time run:
last complete mun;

date created: 4
date modified

lteral parameters | analysis pammeters | locking expert options
Yariables Dimensions ~ Tables Run Units
= 4 gender - Mew
P gender
= & IncomeCourt Add
= _ User Defined Function (FLCOUNT)
i M income
- & AgeCount
= _ User Defined Function (FLCOUNT)
=[] Argumertts
i M age
- & YearsCount m
= _ User Defined Function (FLCOUNT) _
“ W years_with_bark _
=~ & ChildCourt w
= _ User Defined Function (FLCOUMNT) _
=-_7 Arguments
b W nbr_children
- & Marital StatusCourt
= User Defined Function (FLCOUMNT)
&) Argumerts
= ¥ Cast (FLOAT)
o marital_status
= " IncomeCountMeg
= _ User Defined Function (FLCOUNTMNEG)
EI[:I Arguments
fee M income 1N

m | »

Similar overlapping functionality is illustrated by the “ADS Statistics Analysis” (Descriptive Statistics ->
Statistics) and the “Fuzzy Logix Statistics” Variable Creation analysis in the “Teradata ADS Demo
Powered by Fuzzy Logix” project, but not described here.

4. Creating Variables From DB Lytix" Table UDE’s

Next, we’ll look at a Table UDF example. The Table Functions within the DB Lytix " library utilize what
is known as the “With Seed Query” syntax. The SQL syntax looks as follows:

WITH "WithSeedQueryName" ("Parameter1”, “Parameter?2”, .., “ParameterN”) AS

SELECT
"_SeedQueryTable"."Parameter1" AS "Parameter1”
,"_SeedQueryTable"."Parameter2" AS "Parameter2"

,"_SeedQueryTable"."ParameterN" AS "ParameterN"
FROM "DBName"."TableName" AS "_SeedQueryTable"

)

SELECT
"TableFunction"."Output1" AS "Output1"
,"TableFunction"."Output2" AS "Output2"
"TableFunction"."OutputN" AS "OutputN"
FROM

TABLE("TableFunctionName"(CAST("WithSeedQueryName"."Parameter1" AS DataType),
CAST("WithSeedQueryName"."Parameter2" AS DataType),

CAST(“WithSe,ngueryName "."ParameterN" AS DataType))

HASH BY "WithSeedQueryName"."Parameter1”,
"WithSeedQueryName"."Parameter2",

"WithSeedQueryName"."ParameterN"

LOCAL ORDER BY "WithSeedQueryName"."Parameter1",
"WithSeedQueryName"."Parameter2",

"WitH"SeedQueryName"."ParameterN")

In order to create this type of query within Teradata ADS Generator, a feature known as “Analysis
References”, in which one Variable Creation Analysis (for the With Seed Query) is input to another
Variable Creation analysis (for the Table Function call and selection of the Table Function output
elements as Variables).

Note that during the collaboration between Teradata and Fuzzy Logix, it was determined that a
“Template” for Queries that select from a Table UDF and utilize the With Query syntax would be
extremely beneficial. This template is described in section 4.1, but it is still important to understand how
to do this manually. What follows is a description of how to setup the two Variable Creation analyses for
a With Query reading from a Table Function manually. Feel free to review section 4.1 first, before
returning back here.

The first step is to create the Variable Creation analysis that will represent the With Seed Query portion of
the generated query. Here is what the finished analysis looks like (“WithSeedQueryMedianMode”
Variable Creation analysis in the tutorial):

__ WithSeedQueryMedianMode - Variable Creation

WithSeedQueryMedianMode

| WPUT w | OUTPUT » | RESULTS |

vanables | dimensions | anchortable | litersl pammeters | analysis pammeters | locking expert options
ColumnsValues: SQOL Elements: \ariables Dimensions Tables Fun Units
Input Source: ﬂggrenghon = : female Mew
i A
- H H
ahie G- ® Calendar = & income Add
Databases: G- ® Case i W income
fuzzylogic - ® Comparisan
Tables: ® Date and Timi
[+ ® Embedded Se
twm_customer_al - ® Geospatial
Cotures o o s
- [® Literal Parame II‘
s :
Bavg_cc_bal G- @ Ordered Anal II‘
Mavg cc t... L)
avgeet. |=| | @ ® Sting Functio |:|
Bayvg_ck_bal ® Trigonometric
Mavg_ck_t... [Table Functio
Bayg_ck_t.. B~ © Run Units IE‘
Hayg_sv_bal - © Other
Mavg_sv_r..
Mayg_sv tr...
Heoo_rev
Hccacot 1 :
e « i p

First, we select the “female” column from the “twm_customer analysis” table. Then we select the
“income” column in the “twm_customer analysis” table. Next, you parameterize the analysis to only
generate SQL and not execute it. Finally, you parameterize the analysis to specify that it is a “With Seed
Query”. Here are the steps to parameterize the analysis:

1) Select the “twm_customer analysis” table in the “Tables:” pull-down list.

2) Select the “female” column as a Variable by highlighting it in the “Columns:” list and either:
a. Double clicking it,
b. Clicking on the > button, or
c. Dragging and dropping it to the Variables palette.
Next, select the “income” column as a Variable by following the directions above.

3) Next, click on the “analysis parameters” tab, and select the “With Seed Query” option as follows:

__ WithSeedQueryMedianMode - Variable Creation

WithSeedQueryMedianMaode
- |

anchaor table

| pUT ¥ | outPuT » | RESUL

vanables

dimensions

Basic Options | Temporal Qualiiers

Iteral parameters | analysis parmmetars locking expert options

Group By Shyle:

@ Group by ancher columns

Analysis Represents
i) Table (or derived table)

Special Options
[T] Select Distinct

Analysis References

) Group by all non-aggregate columns

() Subquery (not a derived table)

[] Include Embedded Services Database

1 User specified

@ with seed query

) with recursive query

[] Creates Score Table

Table Alias Prefix: _twm35Q

Depends on Analysis:

4) Next, click on the “anchor table” tab, and de-select the “cust_id” column as the default “Selected

Anchor Column” follows:

i1 With5eedQueryMedianMode - Vaniable Creation EI@
WithSeedQueryMedianMode & ' ;

| INPUT w | OuTPUT » | RESULTS » |

varables | dimensions | anchortable | ltersl pammeters | analysis pammeters | locking axper options

Anchor Table:
[fuzz)*lngb:.t'.\rrn_customer_anah'sis -] Aliases. .
Available Anchor Columns: Selected Anchor Columns:

™ ckacet I [v] b cust. id |

Beust_id F

Hfemale b EI

gender &

Join Paths: (Right-click on & Join Path to change its Join Type))

Join Steps for selected Join Path: (Right-click on a Join Step to change its Operator.)

Search or complex Join Conditions for selected Join Path: [Qualify column names

Highlight the “cust_id” column from the “Selected Anchor Columns:” list and click on the “de-
select” or backward arrow button. If this is not done, an ORDER BY clause will be automatically
generated which results in a syntax error for the WITH query clause.

5) Next, click on the “OUTPUT->storage” tab, and select the “Generate the SQL for this analysis
but do not Execute it” option as follows:

-

m WithSeedQueryMedianMode - Variable Creation

WithSeedQueryMedianMode

| mPuT » | outPuT ¥ | RESULTS & |

storage pnmary index | post processing

Storage Cptions:

[7] Use the Teradata EXPLAIN feature to display the execution path for this analysis.

[] Store the tabular output of this analysis in the database. Advertise Dutput

Advertize Mote:
Database Name: fuzzylogix

COutput Mame:

QOutput Type: Table

Stored Procedure:

Procedure Comment. | TWM : <Categary> : <Project>
Create output table using the FALLBACK keyword.
Create output table using the MULTISET keyword.

< Generate the SAL for this analysis, but do not execute it.

6) The next step is to create the Variable Creation analysis that will call the Table Function, and
select the elements returned from the table function as variables. Here is what the finished
analysis looks like (“Fuzzy Logix Median- Table UDF's” Variable Creation analysis in the
tutorial):

__ Fuzzy Logix Median- Table UDF's - Variable Creation EI@
Fuzzy Logix Median- Table UDFs A :

| mWpuT w | OuUTPUT » | RESULTS B |
vanables dimensions anchor table Iterzl parmmeaters | analysis parmetars locking expert options

ColumnsValues: SGL Elements: anables Dimensions ~ Tables Run Units
Input Source: Aggregation - ’ oGrouplD Mew
b || e [e]
[H-- ® Calendar = & oMedian Add
Function Tables: [@ Case i m oMedian
- ® Comparison
Columns: ® Date and Timi
[+ ® Embedded Se
8 Geospatial
[t W Litersl Parame |Z|
[l Ordered Analy |I|
[® Sting Functio |:|
[H-- ® Trigonometric
Table Functio
[© Run Units IE
- @ Other
F] il p

First, we change the Input Source of the analysis to “Analysis.” Then we select the
“WithSeedQueryMedianMode” analysis from the “Analyses:” pull-down list. This populates the
“Columns:” area with “female” and “income” — the variables generated by the
“WithSeedQueryMedianMode” analysis. Next, you change palette area from “Variables” to
“Tables” and select the “FLMEDIANUDT” DB Lytix " Table Function that will calculate the
median values of the data specified by the “With Seed Query.” The “FLMedianUDT” function is
parameterized per its signature, and the “HASH BY” and “LOCAL ORDER BY” options are
specified. Finally an expert option is specified to tell the analysis that it must generate the “With
Query Analysis,” and you are ready to execute the analysis! Here are the steps to parameterize
the analysis:

7) Change the Input Source of the analysis to “Analysis.”

8) Select the “WithSeedQueryMedianMode” analysis from the “Analyses:” pull-down list — the
“Columns:” area becomes populated with “female” and “income.”

9) Next, change the “Palette” area from “Variables” to “Tables.”
10) Select the “FLMEDIANUDT” function as follows:

a. Click on the + icon next to “Table Functions” in the “SQL Elements” list. It will expand
and show the following elements:

E- & Table Functions

-
&- Geospatial

&- Period

Regular Expression
& Sting

E- XML

b. Select “Table Function (any)” by either double clicking on it, highlighting it and Clicking
on the > button, or highlighting it and dragging and dropping it on the Tables palette.
This will bring up the following dialogue:

[Properties @

Database Name: fuzzyogix -

Function Mame: FLMediandt -

Description | Retum Columns | Order/Hash By | Gualfiers |

FLMEDIAMUDT { -
pGrouplD BIGINT
pValue FLOAT

)
RETURMS {oGrouplD BIGINT, aMedian FLOAT)

[C] Omit Database In Call Mumber of Arguments: 2

| ok || cancel || Apply || Hel

Select the database where DB Lytix " is installed in the “Database Name” pull-down.
Once you do this, the “Function Name:” dialogue will be populated with the Table
UDF’s that reside in the selected database. It will also show the signature of the function
under the “Description” tab. Select FLMedianUDT in the “Function Name” pull-down.
By default, ADS Generator will fully qualify the UDF call by prepending it with the
database name it resides in. You can turn this default behavior off by enabling the “Omit
Database In Call” check-box.

c. Click on the “Order/Hash By” tab and enter the following:

[Properties @

Database Name: fuzzylogix -

Function Mame: FLMediandt -

Local Order By List:
"With5SeedCQueryMedianMode" . "female”

Hash By List:
"With5SeedQueryMedianMode" . "female”

[] Omit Database In Call Mumber of Arguments: 2

OK || Cancel || pply || Help

Under the “Local Order By List:” enter “WithSeedQueryMedianMode”.”female.”
(NOTE - Include the double quotes around both object names). Enter the same under the
“Hash By List:” This will ensure that we correctly generate the median income values
for both Females (females = 1) and Males (females = 0). Click on “OK” or “Apply” and
begin to parameterize the FLMedianUDT table function within the Tables palette.

11) Parameterize the call to the FLMedianUDT function as follows:
a. By default, the FLMedianUDT Function Table will look like:

b.

EIEI Function Table1
= _ Table Function (FLMEDIANUDT)
tee 7] Arguments

It is parameterized by dragging and dropping “female” and “income” from the
“Columns:” list and dropping them into the “Arguments” folder. Optionally, you can
highlight the “Arguments” folder and then double click “female” and then “income” from
the “Columns:” list or use the “>"" icon.

Next, you must explicitly cast the arguments to the exact type specified by the table
functions signature. In this case, “female” is cast to “BIGINT” and “income” to
“FLOAT”. In order to do this, click on the “+” icon next to “Other” in the “SQL
Elements” list. It will expand and show the following elements:

=- ® Other
----- ASC/DESC Order
----- Astersh

----- Expand Column Reference
----- Expression with Alias

----- Expression with Order By
- Fomula

----- Mew Varant Type

----- Parentheses

----- Quotes

----- Sample D

----- SQL Blement List

----- SQL Text

----- SOL Ted with Arguments
----- SQL Text Function

----- Subguery

----- IUser Defined Function
----- IUser Defined Method

----- Variable Reference

Select “Cast” by dragging and dropping it on top of the “female” and “income”
arguments, or individually highlighting the “female” and “income” arguments, and
double-clicking “Cast” or using the “>” button. This action will bring up the following

dialogue:

[Properties @

Data Type: | FLOAT v]

-

Data Type andlor Attributes:

Resulting SGL:
CAST(... AS FLOAT)

oK || cCancel || Apply || Hel

Select “BIGINT” in the “Data Type:” pull-down for “female” and “FLOAT” for income.
d. “Function Table1” will now look like this:

(== Function Table1

=~ @ Table Function (FLMEDIANUDT)
EID Arguments
S~ © Cast (BIGINT)
‘.. M female
=} ® Cast (FLOAT)
e W income

In the example these Function Table has been given the name “IncomeMedian” by
highlighting “Function Tablel” through a highlight and single click Window’s style
rename, or by changing the name in the Properties dialogue.

12) In the tutorial example provided, an additional Function Table has been added and
parameterized to call the “FLModeUDT” Table UDF. Follow the instructions as specified
above for “FLMedianUDT” to add and parameterize that function, if desired, as its arguments
are the exact same. Note, however, that only one Table Function can be selected from within
a single query. For this reason, an additional Variable Creation analysis called “Fuzzy Logix
Mode - Table UDF's” has been added to the tutorial project to calculate the modal value for
income for both males and females.

13) Next, click on the “expert option” tab, and specify the “With Query Analysis (any column)”
option as follows:

-

__| Fuzzy Logix Median- Table UDF's - Variable Creation

Fuzzy Logix Median- Table UDF's

| wPuUT ¥ | ouTPUT » | RESULTS B |

vanables | dimensions | anchortable | lterml pammeters | analysis pammeters | locking expert options
Columns/Values: SQL Elements:
Input Source: - Aggregation = & Whers Clause
O o G o
- H H
alysis B ® Calendar = ” Having Clause
Analyses: # Case {empty)
WithSeedGQueryh - ® Comparsan " Qualfy Clause
Extract SGQL From: - ® Date and Tim: (empty)
- [+- ® Embedded Se =) Group By Clause
| - H B
WithSeedGueny - @ Geospatil (empty)
Columns: G- ® Literals - % Order By Clauss
- ® Literal Parame III : (empty)
- ® Logical Sample Clause m
Nincome ® Ordered Anahy III {empty) _
® Period =3 ", Top Clause m
[+~ ® String Functio IZI P (empty)
[~ ® Trigonometric - . With (Recursive) Clause
[~ & Other - With (Recursive) Guery
[#- © Other - Expert B[:I With Guery Analyses (any column)
i W WithSeedQuenMedianMode
Expand On Clause
(empty)
Ll n | 3

a. First, expand “Other — Expert Options” in the SQL Elements list by clicking on the “+”
icon. It will expand and show the following elements:

= @ Other - Expert

----- ASC/DESC Order
----- Expand On

..... Group By

----- Group By Cube
----- Graup By Rallup
----- Group By Grouping Sets
----- Grouping Set

..... Order By

..... Sample

..... Subquery

----- With (Recursive) Group

Select “With (Recursive) Query” by dragging and dropping it under “With Recursive
Clause” in the Expert Options palette or highlighting the “(empty)” argument under
“With Recursive Clause”, and double-clicking “With (Recursive) Query” or using the
“>” putton.

b. Next, drag and drop (or use any of the other selection mechanisms described thus far)
either the “female” or “income” variables from the “Columns:” list to the “With Query
Analysis (any column)” folder. This will populate the folder with the
“WithSeedQueryMedianMode” analysis, telling this variable creation to use it as its seed
query as follows:

— With (Recursive) Clause
. B~ @ With (Recursive) Query
=17 With Query Analyses (any column)
L With5SeedQuenyMedianMode

14) The final step is selecting the return values from the table function as variables within the
Variable Creation analysis. The process for this is as follows:

a. First, change the Input Source of the analysis to “Function Table.”

b. Select the “IncomeMedian” Function Table from the “Function Table:” pull-down list —
the “Columns:” area becomes populated with “0GrouplD” and “oMedian” — the return
values of the call to the FLMedianUDT table function.

c. Select the “0GrouplD” column and the “oMedian” columns as Variables by highlighting
them in the “Columns:” list and either:

i. Double clicking them individually, or
ii. Clicking on the > button, or
iii. Dragging and dropping them to the Variables palette.

15) Now execute the Variable Creation Analysis by clicking on the “Play” button directly under
the “Tools” menu item, or highlighting the Variable Creation analysis in the “Project
Explorer,” right-clicking and selecting “Run.” Notice that the front-end gives you a visual
clue that the analysis being executed references another analysis in the project by highlighting
and italicizing the analysis that is referenced:

LT With SeedGuenMedianMode

W] oo Log liion- Tbie UDFS

Note also that the referenced analysis is executed first, followed by the analysis you are
executing. Once the execution status of both analyses is “Complete” in the “Execution Status”
window, click on the “Results—>data” tab and you should see 2 rows returned with the median
values for income for females (0GrouplD = 1) and males (oGrouplD = 0). The SQL under
“Results—>sql” tab should look like this:

WITH "WithSeedQueryMedianMode" ("female”, "income") AS
(SELECT
" twmSQOQ"."female" AS "female"
,"_twmSQO0"."income" AS "income"
FROM "fuzzylogix"."twm_customer_analysis" AS "_twmSQ0"

)
SELECT
"_twmVCO0"."oGrouplD" AS "oGrouplD"
;" twmVCO0"."oMedian" AS "oMedian"
FROM
TABLE("fuzzylogix"."FLMEDIANUDT"(CAST("WithSeedQueryMedianMode"."female" AS BIGINT),
CAST("WithSeedQueryMedianMode"."income" AS FLOAT))
HASH BY "WithSeedQueryMedianMode"."female"
LOCAL ORDER BY "WithSeedQueryMedianMode"."female")
AS"_twmVCO0"

4.1. Calling DB Lytix" Table UDF’s Using the Variable Creation Analysis Templates (With Query)

During the collaboration between the ADS engineering team and Fuzzy Logix, several enhancements
were made. One key enhancement was in the area of specifying and parameterizing queries that used the
“With Query” syntax. The ADS engineering team introduced the concept of an Analysis Template when
creating a new Variable Creation Analysis. There are templates available for:

Derived Tables
Subqueries

With Queries
Recursive Queries
Recursive View
Union

The With Query Analysis Template can be specified in the Add New Analysis—> Variable Creation
dialogue as follows:

Add New Analysis ==
Categories: Analyses:
IS ADS = == ;
|51 Descriptive Statistics
(B Matrix Functions Build ADS Refresh Variable Wariable
IEl Miscellaneous Analysis Creation Transformation
|Z1 Publish
|Zl Reorganization
IEl Scoring
Analysis name: Wariable Creation
Analysis template: [{mme) "]
{none)
Queny with Derived Table
Query with Subgque
e —— 0k] [G
Recursive Gueny

Recursive View
|Union of Queries

When you select the “With Query” Analysis template, two Variable Creation analyses are created,
one each for the With Query (named “--AnalysisName (WITH)”’) and the Table Function Query.
They are parameterized in the manner described above with the “With Query” analysis Output
parameters set to “Generate SQL only” and its analysis parameters set to “With Query” along with
a template of data selected. The Variable Creation analysis is also parameterized with the Expert
Option “With Recursive Clause” set, and a template of data selected through a Variable Reference
to the “With Query” analysis. You also get the instructions for completing the template as follows:

With Query Template Instructions =]

In With Queny analysis ‘—Varable Creation1 [WITH] :
1) Remowve ¥77 Varable and add variables and options in the usual manner.
In Base analysis “Varable Creation1”:

2) Remove 777 Varable.

m

3} Reselect "Bxract SGL From" selection at left to view availabe columns in Derved MWITH table.
4) Create varnables using Derved WITH table columns and others.

5) On "anchor table™ tab:
(@) Select Anchor Table (and deselect Anchor Columns if Order By not desired).
(b) Use Wizard to set Join Steps or Aght-click on Join Path to set Join Type.

&) f additional With Queries are desired, modify the "expert options" as follows:
(@) Drag a new With (Recursive) Query element into the With (Recursive) Queries folder.
[b) Create varation of With Guery analysis already created and view in Analysis Input Source.
() Drag amy column from the new analysis into the With Queny Anahyses folder.
(d) Make use of the new analysis output columns in the base analysis Varables, etc.

Example from “Supplemental Tutorals - Advanced ADS' (see Help menu—Import Tutoral Projects): _

7] Word \Wrap

For purposes of the tutorial, step 4) equates to following the instructions in steps 9-11 and 14-15 in
section 4. Step 5) and 6) do not apply to this Fuzzy Logix tutorial. The template does the rest for
you!

5. Calling Fuzzy Logix XSP’s from Variable Creation

The DB Lytix " External Stored Procedures (XSP’s) are called as pre-processing elements of a Variable
Creation analysis known as “Run Units”. Before describing the examples provided in the tutorial, a brief
description of Run Units and Literal Parameters is given below.

5.1. Introduction to Variable Creation Run Units

The term Run Unit represents one of the following “execution” SQL elements:

+ Call Stored Procedure

» Execute Macro

» Execute Program/Script

» SQL Text with Arguments

Run Units have a category of their own in the SQL Elements tree, from which each of the Run Units
elements may be dragged or selected onto the Run Units palette. When a Variable Creation analysis is
executed, any Run Units defined on the Run Units tab are first executed in the order of appearance (unless
they are marked “Skip”), and then if Variables are defined on the Variables tab, a query or sub-query is
built or defined in the typical manner as described above.

When you expand the Run Unit category of the SQL Elements tree, you see the following:

B

----- Call Stored Procedure (any)
..... Execute Macro (any)

----- Execute Program./Script (any)
..... S0L Text with Anguments

#- Geospatial Procedures

#- JSOM Procedures

- XML Procedures

For purposes of the ADS/DB Lytix"" integration, the important run units are:

+ Call Stored Procedure (any) — execute the DB Lytix" XSP’s, utilizing literal parameters to pass
along resulting analysis ID’s and/or volatile table names.

+ SQL Text with Arguments — query to DB Lytix " system tables populated via call to the XSP’s
using the analysis ID’s, or query/persist the volatile tables created by a call

» Execute Program/Script (any) — execute Excel-based macros for visualizing the results of a DB
Lytix" XSP call.

As previously stated, Run Units are executed as pre-processing elements of the Variable Creation
analysis, which means they are executed first when the Variable Creation analysis is executed.
Optionally, Run Units have the following additional properties when you right-click on one:

Aggregation 2
Arithrnetic 3
Compariscn L
Literals r
Logical 2
Other 2

Expand All Modes
Collapse All Nodes

Switch Input To This Column

Switch Table Te Current Input 2
Run Unit Options Execute this Run Unit
Apply Dimensions to Variables Generate Arguments
sqL Skip On/Off
Properties Skip Al
T — Skip Mone
= -

Execute this Run Unit

A Run Unit may be executed by itself by using this option. Note that this option executes the
analysis but inhibits other processing so that only this Run Unit is executed. It may not be used
when the analysis or any of its Run Units is executing.

» Generate Arguments
This option is available only when the Run Unit is of Call Stored Procedure or Execute Macro
type and the Arguments folder under the Run Unit is empty. For Stored Procedures, Input
arguments consist of Literal elements of the appropriate type (string, number, date etc.), while
Input-Output and Output arguments consist of Literal Parameter elements of the appropriate type
so that they may receive the final value of the argument after execution. Generated Macro
arguments always consist of Literal elements of the appropriate type. (For more information
about the use of Literal Parameter SQL elements in Call Stored Procedure Run Units, refer to the
description of the Call Stored Procedure SQL Element.

» Skip On/Off
This option toggles the selected Run Units Skip status on or off. (If on, the Run Unit name is
preceded by “[Skip]™.)

« Skip All
This option marks all Run Units as [Skip].

» Skip None
This option removes any [Skip] status present on all Run Units.

For a very detailed description of Run Units, please refer to “Chapter 2 — Analytic Data Sets” in:

» Teradata Warehouse Miner User Guide - Volume 2 - ADS Generation Release 5.3.5 (B035-2301-
064A, June 2014)

In specific the following sections:

e Variable Creation - INPUT - Variables = SQL Elements - Run Units, and
« Variable Creation = INPUT - Variables = Run Units

5.2. Introduction to Literals and Literal Parameters

Typically the arguments to the DB Lytix " XSP’s are either String (characters with single quotes around
them in their entirety — single quotes within the string are escaped), Text (ungquoted character), Null or
Number “Literals” or String, Text, Number and Parameter Reference “Literal Parameters.” Valid values
of each include:

..... Date . Date

----- Interval - Number

----- Mull - String

----- Number - Teat

----- Period Date -~ Time

----- Period Time - Timestamp
----- Period Timestamp - Target Date
----- String - Parameter Reference
..... Test

..... Time

----- Timestamp

Literals are hard-coded and can only be changed manually. Literal Parameters are dynamic and can
change with each execution of the Variable Creation analysis or Run Units. Literal Parameters can be
shared within a given analysis, or shared globally throughout a project by using the “Parameter
Reference” type. Literal Parameters are what allows ADS Generator to manage the execution of and
communication between the various DB Lytix" XSP’s, and SQL Statements that query either result tables
(passing a volatile table name created by the XSP in a Literal Parameter) or the Fuzzy Logix System
Tables (passing an analysis ID created by the XSP in a Literal Parameter), where analytic modeling
results and statistics are stored.

Properties of String, Text and Number Literals are simply text boxes where hard-coded literal values can
be either typed in, or dragged and dropped in some cases. Properties of Literal Parameters include:

Properties @

-

Farameter. <MNewParameters - |
MName: MyNewParameted
Description: Making a Parameter to pass to other DBLytix
functions!
SOL Text: Result Table

Maote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the “literal parameters™ tab.)

oK || Cancel || Apply || Hep |

By default, when adding a Literal Value of any kind, ADS attempts to create a new one (with a
specification of “<NewParameter>" in the “Parameter:” pull-down). You provide a Name of the Literal
Parameter, an optional Description, and the initial value of the String, Number, or in the case above SQL
Text (“ResultTable”). This new Parameter “MyNewParameter” can be used now as an IN, OUT or
INOUT parameter of an XSP call, in a SQL Text with Arguments Run Unit, or anywhere else within the
Variable Creation Analysis. It can also be used in other analyses within your project by assigning it to a
Parameter Reference.

As Literal Parameters are created within the Variable Creation analysis, they can be viewed under the
“literal parameters” table under INPUT as follows:

-

| Variable Creationl - Variable Creation

Variable Creation

| mPuT w | oumPUT

Select a value for Target Date below and it will be used wherever Target Date appears in the analysis.

Target Date: 7/10/2014 B~

Add, Remove or set Properties for the Literal Parameters below and they will be used wherever they
appesar in the analysis.

Literal Parameters: [can be edited in place)

varables | dimensions | anchortable | ltersl pammeters | analysis pammeters | locking exper options

Name: Add

LiterglMumber |MNumeric 10 This is a Literal Number parameter!

LiteralString String DefaultString This is a Literal String parameter! Remove

Literal Text Text DiefaulfText This is a Literal Text parameter! -
Sort

4 T r

In this case three Literal Parameters have been created for each of the types used for the calls to DB

Lytix"" functions. You can add more here, remove one or more, sort or view/change them.

Once Literal Parameters have been created within the Variable Creation analysis, you can assign them

directly to an argument within a Run Unit as follows:

I

Properties @

Parameter: [Lttaa]TEﬂ "]

<MewParameter:
Literal Text |

Description: Thig iz a Literal Text parameter!

SQL Text: Default Tesxt

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

OK || Cancel || pply || Help

Drag and drop a new Literal Parameter as an argument to a Run Unit. By default, you will see
“<NewParameter>" in the “Parameter:” pull-down. If you pull down the list, you will see all of the
created Literal Parameters of that same type (in this case Literal Text Parameters) — select the Literal
Parameter needed for this Run Unit and it is now permanently linked to any analysis that uses this same
Literal Parameter. If one analysis changes the value of this Literal Parameter, the change is reflected
globally within the same Variable Creation analysis.

In order to make a Literal Parameter global within the entire project, use the “Parameter Reference”
Literal Parameter type:

’Properties @
Analysis: [‘u’aﬁable Creation 1 *]
Farameter: [T]
LiteralMumber
Literal String ‘
Literal Text
OK || Cancel || Apply || Help

Select the Analysis where the Literal Parameter that you want to reference is defined, in the “Analysis:”
pull-down. The “Parameter:” pull-down list is then populated with all the Literal Parameters defined
within the analysis. Select the appropriated Literal Parameter and it will be synchronized with all the
other analyses that both define or reference it.

5.3. DB Lytix" XSP’s - The Basics

First, we will start with an example of an XSP that works against a typical relational table (or “Wide”
table as Fuzzy Logix refers to them). One such example is “FLAnova2Way” which performs two-way
analysis of variance (ANOVA). Here is what the finished analysis looks like (“Fuzzy Logix ANOVA -
External Stored Procedures” Variable Creation analysis in the tutorial):

| PuT w | outPuT » | RESULTS > |
varables | dimensions

Columns/Values: SGEL Elements:

anchor table

Agagregation
Arithmetic

- @ Calendar

- W Case

- @ Comparison

- @ Date and Timy
- @ Embedded 5S¢
- @ Geospatial

- @ Literals

- @ Literal Parame
- @ Logical

- @ Ordered Anaby
- @ Period

- @ String Functio
- @ Trigonometric
Table Functio
Fun Units
Other

Input Source:
Databases:
fuzzylogic -
Tables:

-

Columns: | Values

__| Fuzzy Logix ANOVA - Bxternal Stored Procedures - Variable Creation

Fuzzy Logix ANOVA - BExtemal Stored Procedure

literzl parmmeaters

2] EI[-][=]

analysis pammeters | locking

Variables Dimensions =~ Tables Run Units

exper options

=~E Fuzzy Logix Anova
= Stored Procedure Call (FLAnova2Way)
=17 Arguments
- @ [IN- TableMame] String fwm_custar
- @ [IN- ValueColMame] String (income)
- B [IN- Grp1Col] String (gender)
- B [IN- Grp2Col] String {marital_status)
- @ Null
- B [IN- GroupBy] String female)
- [IN- TableQutput] Number (1)
- @ [OUT- Result Table] Text Parameter
=-E Check Anova Results
- © SOL Text fselect * from fuzzy....)
EI[:l Arguments
fer @ Text Parameter (Result Table=A4641

4 1 2

Delete

a

Properties

First, a Run Unit (Call Stored Procedure (any)) is added to the Run Unit palette and parameterized to
execute the DB Lytix " FLAnova2Way XSP. Then, another Run Unit (SQL Text with Arguments) is
added to the Run Unit palette utilizing the OUT Parameter from the XSP call as an argument to the SQL
query to view the results generated. Here are the steps to parameterize the analysis:

1) Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and show

the following elements:

Sl @ Run Units

----- Execute Macro (any)

----- Execute Programs/Script (@ry)
----- SOL Teat with Arguments

- Geospatial Procedures

- JSOMN Procedures

[XML Procedures

Select “Call Stored Procedure (any)” by dragging and dropping it on to the Run Units palette or
highlighting it, and double-clicking or using the “>" button. This action will bring up the

following dialogue:

[Properties @

Database Name: fuzzylogix -
Procedure Name: FLAnova2Way -
Description | Expert Options

FLAnowva2\Way | -

IN TableName VARCHAR(256)
N ValueColName VARCHAR(100)
_IN Gmp1Col VARCHAR(100)
IN Gmp2Col VARCHAR(100)
IN WhereClause VARCHAR(512)
JIN GroupBy VARCHAR(256)
JIN TableOutput EYTEINT
.OUT ResuttTable VARCHAR(256)

m

Generate Arguments Mumber of Arguments: 8
[C] Omit Database In Call

| ok || cancel || Apply || Help

Select the database where DB Lytix " is installed in the “Database Name:” pull-down. Once you
do this, the “Procedure Name” pull-down will be populated with the Stored Procedures that reside
in the selected database. It will also show the signature of the function under the “Description”
tab. Select FLAnova2Way in the “Procedure Name:” pull-down to view the signature. By
default, ADS Generator will fully qualify the UDF call by prepending it with the database name it
resides in. You can turn this default behavior off by enabling the “Omit Database In Call” check-
box.

2) Click the “Generate Arguments” checkbox and hit OK or Apply. This option will create a
template of the arguments required to call the FLAnova2Way XSP as follows:
= Run Unit1
= © Stored Procedure Call (FLAnova2Way)
=] Anguments
----- @ [IN- TableMame] String
----- ® [IN- ValueColMame] String
----- @ [IN- Grp1Col] String
----- ® [IN- Grp2Caol] String
----- ® [IN- WhereClause] String
----- ® [IN- GroupBy] String
----- ® [IN- TableQutput] Number {0}
----- ® [OUT- Result Table] String Parameter (Runlnit 1_Result Table

Note that this is truly a template, providing a starting point for parameterizing the XSP call.
Next, start entering values for each of the arguments. Do this by highlighting the first argument
(“TableName”) and hitting the “Properties” button, or double clicking on it:

3)

Properties @

String Literal: customer anahysis

OK || Cancel || Apply || Help

Enter the table name “twm_customer_analysis” and click on Apply, or simply click on the next
argument to enter the next String Literal. Repeat for the remaining literal values:
“ValColName” = income

* “GrplCol” = gender

e “Grp2Col” = marital status

* “WhereByClause” = Null (i.e. drag and drop a Literal Value “Null” on top of

argument)

e “GroupBy” = female

e “TableOutput” =1
Note that the last XSP argument, the OUT parameter, has been specified as a “String Parameter.”
This is because the XSP returns a dynamically generated volatile table name or analysis identifier
as its OUT parameter (since “TableOutput” is set to 1, it will be a volatile table in this case). This
needs to be a Literal Parameter so we can use it in subsequent Run Units to query or persist the
volatile table.

By default, ADS Generator constructs the argument list such that OUT XSP parameters of type
VARCHAR(n) are always generated as type a “String Parameter.” In the case when the XSP is
generating a volatile table, you need to change this to a “Text Parameter,” S0 it is not quoted and
can be used within a SQL query. To do this simply drag and drop a “Text” Literal Parameter on
top of the existing String Parameter (“[Out — ResultTable]” in the example above) and create a
new Text Literal Parameter using the instructions given above. In the example given, the name of
the Text Literal Parameter created was also “ResultTable.”

Next, create another Run Unit, this time of type “SQL Text with Arguments” in order to query
the result set created by the call to FLAnova2Way, using the “ResultTable” literal parameter set
by the previous Run Unit:
a. Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and
show the following elements:

=~ © Run Units

----- Call Stored Procedure (@ny)
----- Bxecute Macro {any)

----- BExecute Program/Script {zny)
u
Geospatial Procedures

JSON Procedures

XML Procedures

Select “SQL Text with Arguments” by dragging and dropping it on to the Run Units palette
or highlighting it, and double-clicking or using the “>” button. This action will bring up the
following dialogue:

[Properties @
SOL Text: \word Wrap
| ok || cancel || Mpply || Hep

Type in “select * from fuzzy.<P1>" (the database name is the user name/containing database
as this is a volatile table). <P1> is used as a placeholder for the first literal parameter that
will be specified as described below.

b. Next, drag and drop a “Text” Literal Parameter into the Arguments folder of the Run
Unit. This will bring up the following dialogue:

4)

5)

[Properties @

Parameter. |Resuit Table v
<MewParameter:

Name: Resutt Table |

Description:

SQL Text:

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

| ok || cancel || Apply || Hel

Select “ResultTable” from the “Parameter:” pull-down list. This Literal Parameter maps to
the value of <P1> in the SQL Text. Multiple Literal Parameters can be referenced as <P2>,
<P3>, ..., <Pn). Initially this Run Unit will look like this:

&=

= _ SGL Text with Arguments
=[] Arguments
i @ Text Parameter (Result Table=)

Optionally, you can change the name of the Run Units by highlighting them with a single click
and hold (Windows style rename) and changing the name. Optionally, highlight the Run Unit
and click on the “Properties” button to do this within the Properties dialogue. Run Unitl was
renamed to “Fuzzy Logix Anova” and Run Unit2 was renamed to “Check Anova Results” in the
example provided.

Now execute the Variable Creation Analysis by clicking on the “Run” button directly under the
“Tools” menu item, or highlighting the Variable Creation analysis in the “Project Explorer,”
right-clicking and selecting “Run.” Alternately, since there are only Run Units within this
particular Variable Creation Analysis, the individual Run Units can be executed by right clicking
on them and selecting the “Execute this Run Unit” option.

As each Run Unit executes, the Run Unit name will be proceeded by “[Executing].” Note that as
soon as the Run Unit that calls FLAnova2Way completes, its Text Literal Parameter is set to the
return value of the XSP OUT argument. This is automatically reflected in the SQL Text Run
Unit. In the example the value is “<AnalysisID>_Anova2Way.”

Once the execution is “Complete” in the “Execution Status” window, click on the
“Results—>data” tab and you should see 2 result sets — the first being the OUT argument of the
XSP and the second is the results of the SQL Text query - the results of the FLAnova2Way XSP

(see the Hypothesis Tests & FLAnova2Way section in the User Manual for DB Lytix " on
Teradata Advanced Package v1.0.1 for a complete description of the results generated).

5.4. DB Lytix" Data Preparation XSP’s

Next we will see an example of an XSP that prepares a typical relational table or tables (or “Wide” table
as Fuzzy Logix refers to them) into a form required by the DB Lytix" Data Mining Functions (or “Deep”
tables as Fuzzy Logix refers to them). The most comprehensive way of performing this data pivoting
operation is to use the DB Lytix = “FLRegrDataPrep” XSP and then analyze the results. Here is what one
of finished example analyses looks like (“Fuzzy Logic Data Preparation for Binomial Models” Variable
Creation analysis in the tutorial):

"

__| Fuzzy Logix Data Preparation for Binomial Modele - Variable Creation

date moddied: 7111 PR
| iPUT w | outPuT » | RESULTS & |
varables | dimensions | anchortable | literal parmmeters | analysis pammeters | locking expert options
Columns/Values: SGL Elements: Vanables Cimensicns ~ Tables | Run Units
Input Source: Aggregation EI Drop Deep Table - New
Puilbinelic = SQL Teal (DROP TABLE =<F1:2)
M ® Calendar EII:I Arguments
Databases: - ® Case ‘.. ® Text Parameter (DeepTableMamr
fuzzylogic - ® Comparison =B Data Prep and Pivoting
Tables: ITI ® Date and Tim =n ' Stored Procedure Call (FLRegrDataPrep
[H- ® Embedded Se -] Arguments
T - ®Geospatal | [i ® [IN- InWide Tables] Sting fwm_
Columns: | Values ®ljeals | | e ® [IN- Obs|DCol] String (cust_id)
® |iteral Parame] | ¢ B @ [IN- DepCol] String (ccacct)
[~ @ Logical = @ Quotes
- @ Ordered Analy i ® Text Parameter (DeepTable
G- ®Pefiod | | i e & [IN- OutObs| DCol] Sting {ObsID
- ® Sting Functio] | e # [IN- OutVarl DCol] String (VarlD) Delete
® Tiigonoelic| - | 0 & & [IN- OulValueCul] Sbrirgy {Yarvah
Table Functio] L—1 | & e ® [IN- Cat ToDumrmy] Mumber (0)
Rum Umits [[,] | ¢ e @ [IN- PedformMorm] Number () |E
- © Other

----- 8 [IN- MakeNataSparea] Momhber |
----- ® [IN- MinStdDev] Mumber ()
----- ¥ [IN- MaxComel] Mumber (0)
----- ® [IN- Train] Mumber (0)
= & Quotes

Lo @ Text (avo_cc_bal, avg_cc_d
----- ® Pull

2] ElE

SAL
----- ® [IN- PerformVarReduc] Mumber

[® [OUT- OulAnalysis1D] Sting Pary
=1-E Check Prep Mapping Table
B & SGL Texdt (SELECT * FROM fzzlRe)
B[:l Arguments
i @ Sting Parameter (PrepAnahysiall|
=B Sample Deep Table
- » SGL Text (SELECT VarlD, courtf,..)
=) Arquments i

l 1] | 3 4 | 1 | 3

First, a Run Unit (SQL Text with Arguments) is added to the Run Unit palette to DROP a table created by
the second Run Unit. This Run Unit (Call Stored Procedure (any)) is added to the Run Unit palette and
parameterized to call the FLRegrDataPrep XSP. Finally, two other Run Units (SQL Text with
Arguments) are added to the Run Unit palette utilizing the OUT Parameter from the XSP call as an
argument to the SQL query to view results. Here are the steps to parameterize the analysis:

1) Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and show
the following elements:

= ® Run Units

----- Call Stored Procedure (@my)
----- BExecute Macro (@ny)

----- BExecute Program./Script (ary)

G- (Geospatial Procedures

- JSOM Procedures
- XML Procedures

Select “SQL Text with Arguments” by dragging and dropping it on to the Run Units palette or
highlighting it, and double-clicking or using the “>" button. This action will bring up the
following dialogue:

[Properties @
SGL Text: ‘wlord \wrap
p
OK || Cancel || Apply || Help

In this case, we are going to use a Static Literal Parameter. It is convenient to do so as this same
parameter will be used in several other Run Units. Drag and Drop a Text Literal Parameter on to
the SQL Text with Arguments folder as follows:

g "

Properties @

Parameter: <Mew Parameter> -]
Name: DeepTable Name

Description:

SQL Text: TWM_Customer_Deep

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

OK || Cancel || Apply || Help

Type in “DeepTableName” in the “Name:” text box. Note that TWM_Customer_Deep is the
table created by the next Run Unit and queried in subsequent Run Units.

Next create another Run Unit — this time “Call Stored Procedure (any)” — by dragging and
dropping it on to the Run Units palette or highlighting it, and double-clicking or using the “>”
button. This action will bring up the following dialogue:

ra 4

Properties @

Database Name: fuzzylogix -
Procedure Name: FLRegrDataPrep -
Description | Expert Options

FLRegrDataPrep (-~

IN InWideTables VARCHAR(2048)
.IN ObsIDCol VARCHAR(100)
.IN DepCol VARCHAR(100)

_IN OutDeepTable VARCHAR(100)
(N OutObsIDCol VARCHAR(100)
JIN OutVariDCol VARCHAR(100)
JIN OutValueCol VARCHAR(100)
JIN CatToDummy BYTEINT

m

Generate Arguments Mumber of Arguments: 15
[] Omit Database In Call

0K || Cancel || Apply || Helbp

3)

Select the database where DB Lytix is installed in the “Database Name:” pull-down. Once you
do this, the “Procedure Name:” pull-down will be populated with the Stored Procedures that
reside in the selected database. It will also show the signature of the function under the
“Description” tab. Select FLRegrDataPrep in the “Procedure Name:” pull-down to view the
signature. By default, ADS Generator will fully qualify the UDF call by prepending it with the
database name it resides in. You can turn this default behavior off by enabling the “Omit
Database In Call” check-box.

Click the “Generate Arguments” checkbox and hit OK or Apply. This option will create a
template of the arguments required to call the FLRegrDataPrep XSP as follows:

o=
- # Stored Procedure Call (FLRegrDataPrep)
-] Anguments
----- # [IN- In'Wide Tables] String
----- & [IN- ObsIDCol] String
----- @ [IN- DepCol] String
----- # [IN- OutDeep Table] String
----- & [IN- OutObs|DCol] String
----- @ [IN- OutVarlDCol] String
----- @ [IN- OutValueCol] Sting
----- @ [IN- Cat ToDummy] Mumber (0)
----- @ [IN- PedformMorm] Mumber ()
----- @ [IN- PeformVarReduc] Mumber {0}
----- # [IN- MakeDataSparse] Mumber ()
----- @ [IN- MinStdDev] Mumber ()
----- # [IN- MaxComel] Mumber (0)
----- @ [IN- Train] Mumber ()
----- @ [IN- BExcludeColz] String
----- ® [IN- ClassSpec] String
----- & [IN- WhereClause] String
----- # [IN- InAnalysis|D] String
----- @ [OUT- OutAnalysisID] Sting Parameter (RunUnit1_Out,

Next, start entering values for each of the arguments. Do this by highlighting the first argument
(“InWideTables”) and hitting the “Properties” button, or double clicking on it:

[Properties @

String Literal:

OK || Cancel || Apply || Help

Enter “twm_customer analysis” and hit Apply, or simply click on the next argument to enter the
next String Literal. Repeat for the remaining literal values:

s “ObsldCol” = cust _id
* “DepCol” = ccacct
» For the “OutDeepTable” argument, , you can do either of the following:
a. Specify explicitly the DeepTableName parameter value as "OutDeepTable" =
TWM_Customer_Deep, or
b. Replace the default generated String Literal with a Text Literal by dragging and
dropping a Text Literal Parameter on top of “[IN — OutDeepTable] String.” Then
Select “DeepTableName” in the “Parameter:” pull-down when the following
dialogue is brought up:

[Properties @

Farameter: Deep TableName -]
Description:
SQL Text: TWM_Customer_Deep

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

OK || Cancel || Apply || Help

Since this argument needs to be a quoted as it is passed to the XSP as VARCHAR, and
Text Literals are not quoted, use SQL Element Other->Quotes by dragging and dropping
it on to the populated Text Literal as follows:

i @ Text Parameter (DeepTableMame=TWM_Cu..)

Continue parameterizing the remainder of the arguments as follows:

* “OutObsldCol” = Obsld

* “OutVarldCol” = Varld

* “OutValueCol” = VarValue

* “CatToDummy” =0

* “PerformNorm” =0

* “PerformVarReduc” =0

» “MakeDataSparse” = 0

* “MinStdDev” =0

+ “MaxCorrel” =0

* “Train”=0

» For the “ExcludeCols” argument, replace the default generated String Literal with a
Text Literal by dragging and dropping a Text Literal Value on top of “[IN —
ExcludeCols] String.” Then from the “Columns/Values:” area, select
“twm_customer_analysis” in the “Table:” pull-down list and highlight the following
columns (multi-highlight using CTRL-Click):

avg_cc_bal,

avg_cc_tran_amt,

avg_cc_tran_cnt,

cc_rev,

city_name,

P00 o

f. gender,
g. marital_status,
h. state code

Then drag and drop these columns on top of the “[IN — ExcludeCols] Text” argument.
This populates the Text Literal Properties Dialogue box as follows:

[Properties @

SOL Text:

| ok || cancel || Apply || Hel

Since this argument needs to be a list of quoted columns, and Text Literals are not
guoted, use SQL Element Other—->Quotes by dragging and dropping it on to the populated
Text Literal as follows:

o
i Lo @ [IN- BxcludeCols] Test avg_cc_bal, avg_cc t..)

Set the next three IN arguments to Null by dragging and dropping a Literal Null value on
top of:

* “ClassSpec” = Null
* “WhereClause” = Null
* “InAnalysisID” = Null

Note that the last XSP argument, the OUT parameter, has been specified as a “String
Parameter.” In this case, we want it to be a quoted String Parameter as it is an Analysis
Identifier that will be used within a WHERE clause in subsequent SQL Text Run Units.
In this example, a new String Parameter has been created with the name
“PrepAnalysisID” as follows:

I

Properties @

Parameter: [<MNewParameter: ~]
Mame: Prep Anahysis|D|
Description:

String Literal:

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

OK || Cancel || Apply || Help

4) Next, create another Run Unit, this time of type “SQL Text with Arguments” in order to query
the DB Lytix System tables, populated by the call to FLRegrDataPrep. Do this by dragging and
dropping the “SQL Text with Arguments” Run Unit on to the Run Units palette or highlighting it,
and double-clicking or using the “>" button. This action will bring up the following dialogue:

Properties @

SOL Text: word Wrap

SELECT = FROM fzzIRearDataPrepMap -
WHERE AnalysisID = <P 1
CRDER BY Fina,_WarlD

i

-

oK || Cancel || Apply || Helb

For this Run Unit, the literal parameter being used is the OUT parameter from the
FLRegrDataPrep call, “PrepAnalysisID.” Drag and drop a String Literal Parameter in this Run
Units argument folder as follows:

i "

Properties

Parameter:

PrepAnalysisiD -
<MewParameter:
PrepAnabysisI D |

Description:

String Literal:

Mate: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the "literal parameters” tab.)

OK || Cancel || ey || Help

And Select “PrepAnalysisID” in the “Parameter:” pull-down.

Finally, create another Run Unit, this time of type “SQL Text with Arguments” in order to query
the resulting “Deep Table” created by the call to FLRegrDataPrep. Do this by dragging and
dropping the “SQL Text with Arguments” Run Unit on to the Run Units palette or highlighting it,
and double-clicking or using the “>" button. This action will bring up the following dialogue:

-

Properties -'

SOL Text: \word Wrap
SELECT VarlD, count(™) FROM <P 1=

o

OK || Cancel || pply || Hep

6)

For this Run Unit, the literal parameter being used is the static Text Literal parameter created in
the first Run Unit, “DeepTableName.” Drag and drop a Text Literal Parameter in this Run Units
argument folder as follows:

[Properties @
Parameter: [Deep TableMName x]

<MewParameter:
DeepTableName |

Description:

SOL Text:

Mote: If the parameter value or description above 1s changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the "literal parameters” tab.)

OK || Cancel || Apply || Help

And Select “DeepTableName” in the “Parameter:” pull-down.

Now execute the Variable Creation Analysis by clicking on the “Run” button directly under the
“Tools” menu item, or highlighting the Variable Creation analysis in the “Project Explorer,”
right-clicking and selecting “Run.” Alternately, since there are only Run Units within this
particular Variable Creation Analysis, the individual Run Units can be executed by right clicking
on them and selecting the “Execute this Run Unit” option.

As each Run Unit executes, the name will be proceeded by “[Executing].” Note that although the
Text Literal Parameter is statically set to “TWM_Customer Deep”, as soon as the Run Unit that
calls FLRegrDataPrep is executed, its Text Literal Parameter is set to the return value of the XSP
OUT argument. This is automatically reflected in the SQL Text Run Unit that queries the
FLRegrDataPrep system and result tables. These analysis identifiers are randomly generated
numbers, preceded by the letter “A” - “<Axxxxxx>.”

Once the execution is “Complete” in the “Execution Status” window, click on the
“Results—>data” tab and you should see 3 result sets — the first being the OUT argument of the
XSP and the second two the results of querying the system table and the deep table as follows:

Check Prep Mapping Table Run Unit

ANALYSISID | =~ | COLUMN NAME " | Final VarID

2209629 | ccacct -1

2209629 | INTERCEPT 0

2209629 " | age 1
2209629 " | avg ck bal 2
A209629 B avg ck tran amt B 3
2A209629 " | avg ck tran cnt | © 4
2209629 | avg sv bal 5
A209629 " | avg sv tran amt | 6
2A209629 " | avg sv tran cnt | 7
2209629 | ckacct 8
2209629 | female 9
2209629 " | income 10
2209629 " | married 11
2209629 " | nbr children 12
A209629 " | separated B 13
2209629 | single 14
A209629 " | svacct 15
2209629 | years with bank | 16

Sample Deep Table Run Unit

VarID Count (*)
-1 747
0 747
1 747
2 747
3 747
4 747
5 747
6 747
7 747
8 747
9 747
10 747
11 747
12 747
13 747
14 747
15 747
16 747

This is shown here to illustrate that you will often have to join the information from the
fzzIRegrDataPrep system table with tables subsequently generated by other Data Mining XSP’s

because DB Lytix " will refer to “VarID’s” instead of actual column names as shown in the query
of the Deep Table “TWM_Customer Deep.”

See the Data Mining = FLRegrDataPrep section in the User Manual for DB Lytix" on Teradata
Advanced Package v1.0.1 for a complete description of the system table and results generated.

5.5. DB Lytix" Data Mining / Model Building XSP’s

Next we will see an example of an XSP that builds a model from the “Deep” table that was created by the
previous Variable Creation analysis. As the first example, we will build a customer churn model based
upon this data utilizing the FLLogRegr DB Lytix "~ XSP. Then we will query the two system tables
generated by FLLogRegr and view the coefficients and statistics generated. Here is what one of finished
example analyses looks like (“Fuzzy Logix Logistic Regression Churn Model Building” Variable
Creation analysis in the tutorial):

-

_| Fuzzy Logix Logistic Regression Churn Model Building - Variable Creation

date modifies

| WPUT ¥ | OUTPUT » | RESULTS |

- @ String Functio
- @ Trigonometric

Table Functio
Fun Units

(2] E[=][=]

=1~ Arguments
i ® Sting Parameter (LogitAnalysis|D=A
‘.. ® Parameter Reference (PrepAnalysis
|'_—'|E CQuery Stats

Properties

vanables | dimensions | anchortable | litersl pammeters | analysis pammeters | locking expert options
Columns/Values: SQL Elements: Variablez Dimensions Tablezs | Fun Units

Input Source: Aggregation EIE FL Logistic Regression Mew

Arthmetic = : Stored Procedure Call (FLLoaRear)

[#-- ® Calendar 2-C7 Arguments

Databases: G- ® Case - @ [IN- TableMame] String (TWM_Cust

fuzzylogix - & Comparison - [IN- Obs|DCal] String (ObsID)

Tables: ® Date and Tim -~ B [IN- VarlDCaol] String (VarlD)

[® Embedded Se - @ [IN- NumValCol] String (VarValue)
v & Geospatial -~ W [IN- Maxherations] Number (10}

Columns: | Valuss [H-- & Literals - W [IN- pThreshold] Mumber (0.1} -
® Litersl Parame - @ [IN- Note] Sting (Fuzzy Logix Logist
® Logical - B [QUT- Analysis|D] String Parameter saL
[H-- ® Ordered Anah, =-E Query Cosfficients
® Period - = SGL Text (SELECT a.COEFFID, ..

..
..

Cither

[} | 3

= 1 SQL Text (SELECT = FROM fzzllo ..}
EI[:l Arguments
i @ String Parameter (LogitAnahysis| D=4

E] 1 | 3

EEI

Here are the steps to parameterize the analysis:

the following elements:

1) Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and show

- ® Run Units

----- Execute Macro (@my)

----- Execute Program./Script (@my)
----- SO Teat with Arguments

[+~ (Geospatial Procedures

[J50M Procedures

- XML Procedures

Select “Call Stored Procedure (any)” by dragging and dropping it on to the Run Units palette or
highlighting it, and double-clicking or using the “>" button. This action will bring up the
following dialogue:

[Properties @

Database Name: fuzzylogix -

-

Procedure Name: FLLogRegr -

Description | Expert Options

FLLogReqr { -
IN TableMame VARCHAR{100)

.IN ObslDCol VARCHAR(100)

N VarlDCal VARCHAR({100)

AN NumValCol VARCHAR{100)

. IN Maxherations INTEGER

.IN pThreshold FLOAT

.IN Note VARCHAR(Z55) 4

LOUT AnahysislD VARCHAR(GS)

m

Generate Arguments Mumber of Arguments: g
[] Omit Database In Call

| ok || Cancel || Apply || Hep

Select the database where DB Lytix " is installed in the “Database Name:” pull-down. Once you
do this, the “Procedure Name” pull-down will be populated with the Stored Procedures that reside
in the selected database. It will also show the signature of the function under the “Description”
tab. Select FLLogRegr in the “Procedure Name:” pull-down to view the signature. By default,
ADS Generator will fully qualify the UDF call by prepending it with the database name it resides
in. You can turn this default behavior off by enabling the “Omit Database In Call” check-box.

2) Click the “Generate Arguments” checkbox and hit OK or Apply. This option will create a
template of the arguments required to call the FLLogRegr XSP as follows:

=-E Run Unit1
-
=] Arguments
----- @ [IN- TableMame] String
----- # [IN- ObsIDCol] String
----- @ [IN- YarlDCol] String
----- @ [IN- NumValCol] String
----- @ [IN- Maxherations] Mumber (0}
----- @ [IN- pThreshold] Mumber (0)
----- @ [IN- Note] String
----- ® [OUT- Analysiz|D] Sting Parameter (Runlnit1_Anahysis(D1=)

Next, start entering values for each of the arguments. Do this by highlighting the first argument
(“TableName”) and hitting the “Properties” button, or double clicking on it:

[Properties @

String Literal:

-

OK || Cancel || Apply || Help

Enter “TWM_Customer Deep” and click on Apply, or simply click on the next argument to

enter the next String Literal. Repeat for the remaining literal values:
e “ObsIdCol” = Obsld

“VarldCol” = Varld

* “NumValCol” = VarValue

* “Maxlterations” = 10

* “pThreshold”=0.1

* “Note” = Fuzzy Logix Logistic Regression Churn Model

* Note that the last XSP argument, the OUT parameter, has been specified as a “String
Parameter.” This is because the XSP returns an analysis identifier as its OUT
parameter. Once again, this needs to be a Literal Parameter so we can use it in
subsequent Run Units to query the data generated in the system tables, and to score the
resulting model. Create a new String Literal Parameter called “LogitAnalysisID” as
follows:

i "

Properties @

Parameter: | <NewParameter> -
Mame: ogit Analysi
Description:

String Literal:

Mate: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the "literal parameters” tab.)

0K || Cancel || Apply || Helbp

Click on OK or Apply to create the Literal Parameter.

3) Next, create another Run Unit, this time of type “SQL Text with Arguments” in order to query
the system tables populated by the call to FLLogRegr, using the “LogitAnalysisID” literal
parameter set by the previous Run Unit as well as the “PrepAnalysisID” literal parameter set in
the previous Variable Creation analysis:

a. Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and
show the following elements:

= * Run Units

----- Call Stored Procedurs (any)
----- Execute Macro (any)

----- Execute Program./Script (@ny)

- (Geospatial Procedures

- JSON Procedures

- XML Procedures

Select “SQL Text with Arguments” by dragging and dropping it on to the Run Units
palette or highlighting it, and double-clicking or using the “>" button. This action will
bring up the following dialogue:

ﬁi

waord Wrap

FS
a
a.CHISq,

FROM fzzlLogRegrCoeffs a,
fzzlRegrDataPrepMap b

DRDER BY 1-

| ok || cancel || Apply || Hel

Type in the above query and hit OK or Apply. Next, add two literal parameters to this Run
Unit. Notice that P1 (the first literal parameter in the folder) corresponds to the FLLogRegr
system table, while P2 corresponds to the FLRegrDataPrep system table from the previous
Variable Creation analysis:

b. Add a String Literal Parameter to the “SQL Text with Arguments” folder:

ﬁ

Farameter: i i -

Logit Anahysis|D |

Description:

String Literal:

Mate: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the "literal parameters” tab.)

OK || Cancel || ey || Help

Select “LogitAnalysisID” from the “Parameter:” pull-down list and click on OK or
Apply.

c. Since the next parameter was created by a different Variable Creation analysis, a
“Parameter Reference” needs to be used. Add a Parameter Reference Literal Parameter
to the “SQL Text with Arguments” folder:

[Properties @
Analysis: [Fuzz'_.r Logix Data Preparation for Binomial Models v]
Parameter: [PrepAnalysis|D -]
OK || Cancel || pply || Help

Specify “Fuzzy Logix Data Preparation for Binomial Models” in the “Analysis:” pull-
down list, and “PrepAnalysisID” in the “Parameter:” pull-down list.

4) Next create another “SQL Text with Arguments” Run Unit following the same instructions as
above. This Run Unit will query the other system tables populated by the call to FLLogRegr,
using the “LogitAnalysisID” literal parameter:

a. This action will bring up the following dialogue:

Properties E

SQAL Text: waord Wrap

FS

oK || cCancel || Apply || Hel

Type in the above query and hit OK or Apply.

b. Next, add a literal parameter to this Run Unit that corresponds to the FLLogRegr OUT
literal parameter.

Properties E

Parameter:

Description:

String Literal:

Mote: If the parameter value or description above 1s changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the "literal parameters” tab.)

ok || Cancel || Apply || Hel

Select “LogitAnalysisID” from the “Parameter:” pull-down list and click on OK or
Apply.

5) Now execute the Variable Creation Analysis by clicking on the “Run” button directly under the
“Tools” menu item, or highlighting the Variable Creation analysis in the “Project Explorer,”
right-clicking and selecting “Run.” Alternately, since there are only Run Units within this
particular Variable Creation Analysis, the individual Run Units can be executed by right clicking
on them and selecting the “Execute this Run Unit” option.

As each Run Unit executes, the name will be proceeded by “[Executing].” Note that the
Parameter Reference should already to set to the same value as the Literal Parameter from the
FLRegrDataPrep Run Unit, and that the String Literal Parameter set in the XSP OUT argument is
automatically reflected in the String Literal Parameter in the SQL Text with Arguments Run
Units.

Once the execution is “Complete” in the “Execution Status” window, click on the
“Results>data” tab and you should see 3 result sets — the first being the OUT argument of the
XSP (DB Lytix " Analysis Identifier) and the second two the results of querying the system tables
populated by the XSP call:

Query Coefficients Run Unit

COEFFID COLUMN NAME COEFFVALUE STDERR CHISQ PVALUE
0 | INTERCEPT -0.47868 | 0.686937 0.48557 0.48591
1| age -0.00763 | 0.008153 | 0.874717 | 0.349653
2 | avg ck bal -0.00021 | 0.000134 | 2.373669 | 0.123397
3 | avg _ck tran amt 0.00299 [0.002232 | 1.794506 | 0.180378
4 | avg ck tran cnt -0.03162 | 0.010777 | 8.608375 | 0.003346
5 | avg sv bal 0.002983 | 0.000537 | 30.82613 | 2.82E-08
6 | avg sv tran amt 0.030995 | 0.003809 | 66.20402 | 4.44E-16
7 | avg sv tran cnt -1.19806 | 0.212373 | 31.82416 | 1.69E-08
8 | ckacct 0.404663 | 0.250355 | 2.612611 | 0.106017
9 | female 0.059657 | 0.241319 | 0.061113 | 0.804745
10 | income -1.54E-05 | 9.70E-06 | 2.523791 | 0.112141
11 | married -0.66981 | 0.447473 | 2.240633 | 0.134426
12 | nbr children -0.22261 | 0.157462 | 1.998628 | 0.157442
13 | separated 0.459813 | 0.579787 | 0.628963 | 0.427736
14 | single -0.59572 | 0.544805 | 1.195637 | 0.274196
15 | svacct 0.24019 | 0.356367 0.45427 | 0.500314
16 | years with bank -0.09249 0.04577 | 4.083411 [0.043306

This shows how we were able to join the information from the fzzIRegrDataPrep system table
generated by another Variable Creation Analysis with the fzzlLogRegr coefficients system table

to view actual column names as opposed to internal Variable Identifiers.

Query Stats Run Unit
ANALYSISID A200216
MODELID 1
NUMOFVARS 16

ITERATIONS 8
CONCORDANT 133116
DISCORDANT 6057
TIED 327
TOTALPAIRS 139500
GINICOEFF 0.910817
CSTATISTIC 0.955409
GAMMA 0.912957
HIGHESTPVALUE 0.804745
EVENTS 375
NONEVENTS 372
NUMOFOBS 747
FALSEPOSITIVE 231
FALSENEGATIVE 1

See the Data Mining = FLLogRegr section in the User Manual for DB Lytix" on Teradata
Advanced Package v1.0.1 for a complete description of the system table and results generated.

5.6. DB Lytix Data Mining / Model Scoring XSP’s

Next we will see an example of an XSP that scores the model created by the previous Variable Creation
analysis — additionally, a sample of the scored dataset is taken. Here is what one of finished example
analyses looks like (“Fuzzy Logix Logistic Regression Churn Model Scoring” Variable Creation analysis

in the tutorial):

-

| mPUT w | OUTPUT » | RESULTS » |
vanables dimensions

Columns/Values: SGEL Elements:

anchor table

Aggregation
Arithmetic
Calendar

- W Case

- @ Comparison

- @ Date and Timi
- @ Embedded Se
- @ Geospatial

- W Literals

- @ Literal Parame
- @ Logical

- @ Ordered Anah
- @ Period

- @ String Functio
- @ Trigonometric
Table Functio
Run Units
Other

Input Source:

Databaszes:
fuzzylogix -
Tables:

Columns: | Values

_| Fuzzy Logix Logistic Regression Churn Model Scoring - Variable Creation

1 Logix Logistic Regression Chum Model Scoring

Iteral parameters

“ariables

last time run

date modifies last complete run

analysic parameters | locking

Dimensions = Tables Run Units

expert options

=

&

2] B[]

=-E FL Logistic Scoring

Stored Procedure Call (FLLogRegrScore)

B[:I Arguments

- @ [IN- TableMName] String (TWM_Cust
- @ [IN- ObslDCal] String {ObsID)
- @ [IN-VarlDCol] String (WarlD)
- @ [IN-ValCal] String (Varyalue)
- @ Null
- @ Parameter Reference (LoaitAnalysis
- @ [IN- TableQutput] Mumber (1)
8 [OUT-OutTable] Text Parameter (F

=E Sample Scored Table

SQL Text (select *from <P1=s..)

B[:I Arguments

i @ Text Parameter (FLLogt Score=A77

4

[TI] | I

New

Delete

Properties

Here are the steps to parameterize the analysis:

1) Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand and show
the following elements:

= © Run Units

----- Bxecute Macro (any)

----- Execute Program/Script (@my)
----- SGL Teat with Arguments

- (Geospatial Procedures

- J50M Procedures

[¥ML Procedures

Select “Call Stored Procedure (any)” by dragging and dropping it on to the Run Units palette or
highlighting it, and double-clicking or using the “>" button. This action will bring up the
following dialogue:

[Properties @

Database Name: fuzzylogix -
Procedure Name: FLLogRegrScore -
Description | Expert Options

FLLogRegrScore (-~

IN TableMame VARCHAR(Z5E)
AN ObsIDCol VARCHAR(100)
LN VarlDCal VARCHAR(100)
. IN - ValCol VARCHAR(100)
AN WhereClause VARCHAR(256)
. IN Regrfnahy=iz|D VARCHAR(100)
.IN - TableOutput BYTEINT _ 5
LOUT OutTable VARCHAR{Z5E)

m

Generate Arguments Mumber of Arguments: g
[] Omit Database In Call

| ok || cancel || ey || Hep

Select the database where DB Lytix is installed in the “Database Name:” pull-down. Once you
do this, the “Procedure Name” pull-down will be populated with the Stored Procedures that reside
in the selected database. It will also show the signature of the function under the “Description”
tab. Select FLLogRegrScore in the “Procedure Name:” pull-down to view the signature. By
default, ADS Generator will fully qualify the UDF call by prepending it with the database name it
resides in. You can turn this default behavior off by enabling the “Omit Database In Call” check-
box.

2) Click the “Generate Arguments” checkbox and hit OK or Apply. This option will create a
template of the arguments required to call the FLLogRegrScore XSP as follows:

=Be=0 Run Unit1
= Stored Procedure Call (FLLogRearScore)
=1 Arguments
----- ® [IN- TableMame] String
----- # [IN- ObslDCal] Sting
----- @ [IN- VarlDCol] String
----- @ [IN- ValCal] String
----- & [IN- WhereClause] String
----- ® [IN- RegrAnalysis|D] String
----- # [IN- TableOutput] Mumber (0)
----- ® [OUT- OutTable] Sting Parameter (FunUnit1_Out TableZ=)

Next, start entering values for each of the arguments. Do this by highlighting the first argument
(“TableName”) and hitting the “Properties” button, or double clicking on it:

[Properties @

String Literal:

-

OK || Cancel || Apply || Help

Enter “TWM_Customer_ Deep” and click on Apply, or simply click on the next argument to
enter the next String Literal. Repeat for the remaining literal values:
* “ObsldCol” = Obsld
* “VarldCol” = Varld
* “NumValCol” = VarValue
* “WhereClause” = *’ (or drag a Literal Null value on top as in the tutorial)
* “TableOutput” =1
* “RegrAnalysisID” is the OUT argument from the call to FLLogRegr, which was captured
in a String Literal Parameter named “LogitAnalysisID* in the previous Variable Creation
analysis. Change the default generated String Literal with a Parameter Reference Literal
Parameter as follows:

I

Properties @

Analysis: [Fuzz'_.r Logix Logistic Regression Chum Model Buil T]
Parameter: [LogitAnalysis|D 2]
OK || Cancel || Apply || Help

Once again, note that the last XSP argument, the OUT parameter, has been specified as a
“String Parameter.” Since we have parameterized this XSP to return a dynamically
generated volatile table name as its OUT parameter (since “TableOutput” is set to 1), this
a “Text”

’) and create

needs to be changed to a “Text Parameter.” To do this simply drag and drop

Literal Parameter on top of the existing String Parameter (“[Out — OutTable]’
a new Text Literal Parameter using the instructions given above. In the example given,

the name of the Text Literal Parameter created was also “FLLogitScore.”

g

Properties @

Parameter: <NewParameter: h]
Mame: FLLogitScore|

Description:

SGL Text:

Maote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove a
parameter, use the options on the “literal parameters™ tab.)

oK || cCancel || Apply || Help

o

Click on OK or Apply to create the Literal Parameter.

3) Next, create another Run Unit, this time of type “SQL Text with Arguments” in order to
query the scored table populated by the call to FLLogRegrScore, using the “FLLogitScore”
literal parameter set by the previous Run Unit:

a. Click on the “+” icon next to “Run Units” in the “SQL Elements” list. It will expand
and show the following elements:

= ® Run Units

----- Call Stored Procedurs (any)
----- Execute Macro (any)

----- Execute Program./Script (@ny)

- (Geospatial Procedures

- JSON Procedures

- *¥ML Procedures

Select “SQL Text with Arguments” by dragging and dropping it on to the Run Units
palette or highlighting it, and double-clicking or using the ‘> button. This action
will bring up the following dialogue:

i

Properties

SQL Text:

\word Wrap

=l Lz i

-ur"# =

-~

-

=

|| Cancel ||

Apply | | Help

Type in the above query and hit OK or Apply. Next, add a literal parameter to this

Run Unit.

Add a Text Literal Parameter to the “SQL Text with Arguments” folder:

[Properties @
Parameter: [FLLogitScore -]

<MewParameter:
FLLogit Scare |

Description:

SQL Text:

Mote: If the parameter value or description above is changed, all
occurences of the parameter will be changed. (To rename or remove 3
parameter, use the options on the “literal parameters™ tab.)

OK || Cancel || Apply || Help

Select “FLLogitScore” from the “Parameter:” pull-down list and click on OK or
Apply.

4) Now execute the Variable Creation Analysis by clicking on the “Run” button directly under the
“Tools” menu item, or highlighting the Variable Creation analysis in the “Project Explorer,”
right-clicking and selecting “Run.” Alternately, since there are only Run Units within this
particular Variable Creation Analysis, the individual Run Units can be executed by right clicking
on them and selecting the “Execute this Run Unit” option.

As each Run Unit executes, the name will be proceeded by “[Executing].” Note that the
Parameter Reference should already to set to the same value as the Literal Parameter from the
FLLogRegr Run Unit, and that the Text Literal Parameter set in the FLLogRegrScore XSP OUT
argument is automatically reflected in the Text Literal Parameter in the SQL Text with
Arguments Run Units.

Once the execution is “Complete” in the “Execution Status” window, click on the
“Results—>data” tab and you should see 2 result sets — the first being the OUT argument of the
XSP (DB Lytix " Scored volatile table name) and the second the result of sampling the scored
table:

Sample Scored Table Run Unit

ObsID Y

1362654 | 0.991008

1362610 | 0.088947

1363214 | 0.018272

1363486 | 0.104522

1363026 | 0.042755

1363353 0.09518

1363042) 0.149811

See the Data Mining = FLLogRegrScore section in the User Manual for DB Lytix " on Teradata
Advanced Package v1.0.1 for a complete description of the system table and results generated.

6. Bringing it all Together — VVariables, Tables and Run-Units

The next Variable Creation Analysis builds upon a combination of the “Fuzzy Logix Logistic Regression
Churn Model Building” and “Fuzzy Logix Logistic Regression Churn Model Scoring” Variable Creation
Analysis by illustrating the creation of Variables and the use of Function Tables along with the execution

of Run Units.

6.1. Fuzzy Logix Logistic Regression Churn Model With Confusion Matrix Statistics

For brevity, we will not describe the model building, scoring and supporting Run Units. After the
regression model is scored, there are two additional “SQL Text with Arguments” Run Units that drop and
create a table based upon the scored data as follows:

[Properties @

SOL Text: ‘wiord ‘Wrap
REATE TABLE FL logit Confusion_Table Input AS -

SELECT a.0bslD as ObslD,
CASE WHEM a.Y = .5 THEM 0 ELSE 1 END AS Predict,

FROM =P1: a, twm_customer_analysis b
WHERE a.0bsID =b cust_id

) WITH DATA PRIMARY INDEX {ObsID);

| ok || cancel || Apply || Hep |

The table created by this Run Unit (“FL_Logit Confusion_Table Input”) joins the original data
(prior to FLRegrDataPrep) with the “Actual” model training values in it to the predicted values in the
scored table using 0.5 as the threshold for a successful prediction. This table is then used to create a
SQL Text Function Table:

i

ion Chum Made! With Confusion Matrix Statistics

| wPUT w | ouTPUT » | RESULTS » |
vanables

Columns/Values:

Input Source:

Function Table -

Function Tables:

dimensions

SOL Elements:

anchor table

literal parmmetars

__| Fuzzy Logix Logistic Regression Churn Model With Confusion Matrix Statistics - Variable Creation

date modified

Wariables Dimensions

analysizs parameters

last time mun:
last complate mun:

expertoptions

Run Units

String Functions
Trigonometric
Table Functions
Fun Units

-~

Bﬁ ConfusionMatric

SQL Text (SELECT FLTruePos(a.P.)

-

onfusio - Other Properties
- ASC/DESC

Asterisk 0 0
= E“::s ‘wiord Wrap

mEP . Cast SELECT FLTruePos(a.Predict, a Actual) AS TP, -
HTH Expand Col FLTrueMegla.Predict, a.Actual) AS TN,
mTP) and L0\ Fl FalsePos(a Predict, a.Actual) AS FF,
: Expression FLFalseMeala.Predict, a.Actual) AS FN
Expression FROM FL_Logit_Confusion_Table_Input a
Formula

MNew Variant
Parentheses
Guotes
Sample 1D
SQL Element
SOL Text wit -
SOL Text Ful
Subguerny

. | laer Nefined
4« [|

Columns:

SGL Text:

ok || cancel || Moy || Hep |

You do this by clicking on the “Tables” palette, dragging and dropping “SQL Text” object (SQL
Elements—> Other->SQL Text) unto the palette, and entering the query as above. Note that we are
using a trick here by calling the DB Lytix ~ Confusion Matrix preparation functions:

» FLTruePos (TP above): Actual value = Predicted value = 1

» FLTrueNeg (TN above): Actual value = Predicted value =0

» FLFalsePos (FP above): Actual value = 0 and Predicted value = 1
» FLFalseNeg (FN above): Actual value = 1 and Predicted value = 0

This “Table” will then be used by changing the Variable Creation analysis “Input Source:” to
“Function Table,” the “Function Tables:” drop down list to “ConfusionMatrix,” and parameterizing
the DB Lytix " Confusion Matrix UDF’s as follows:

__| Fuzzy Logix Logistic Regression Churn Model With Confusion Matrix Statistics - Variable Creation

ion Chum Model With Confusion Matrix Statistics

date created: 4

date mao last complete

| iwPUT ¥ | outPuT » | RESULTS & |

vanables | dimensiens | anchertable | lteral pammeters | analysis parametars | locking expert options
Columns/Values: SGL Elements: Wariables | Dimensions = Tables = Fun Units
Input Source: [~ Aggregation = ’ Sensitivity - Mew
[F —tion Tabl v] - @ Arthmetic (=~ @ User Defined Function (FLTRUEPOSRATE)
unction 130l [H- @ Calendar =[] Argumerts Ldd
Function Tables: ® Case L. mTP
Corfusion izt Comparson omTN 1
Columns: # Date and Time i WP
. [+~ ® Embedded Services L. mFN
mFp Geospatial - 4. FalsePosRate i
Literals =+ ® User Defined Function (FLFALSEPQOSRATE)
WTN Literal Parameters =7 Arguments
mTP Logical E . TP
gica
- @ Ordered Analytical - BTN
Period II‘ -~ B FP -
W String Functions -~ B FN
Trigonometric E = & Specificity
Table Functions =) User Defined Function (FLTRUENEGRATE)
i Run Units = Angumerts
[~ ® Other IE‘ - mTP
- mTN Redo
- B FP
-~ BFN
- 4 FalssNegRate
i =0 llser Defined Functinn (F1 FAI SENFGRATFY ™
4 [3

Each of the four columns returned by the “ConfusionMatrix” Function Table are dragged and
dropped as parameters to the following Confusion Matrix Performance Measures:

FLTruePosRate

FLFalsePosRate

FLTrueNegRate

FLFalseNegRate

FLAccuracy

FLPosPredVal

FLNegPredVal

Scalar function that calculates the sensitivity or the true positive rate from the
confusion matrix. It measures the proportion of actual positives which are
correctly identified.

Scalar function that calculates false positive rate from the confusion matrix. It
measures the proportion of actual positives which are incorrectly identified.

Scalar function that calculates the specificity or the true negative rate from the
confusion matrix. It measures the proportion of actual negatives which are
correctly identified.

Scalar function that calculates false negative rate from the confusion matrix. It
measures the proportion of actual negatives which are incorrectly identified.

Scalar function that calculates the accuracy of predictions from the confusion
matrix. It is the proportion of the total number of predictions that were correct.

Scalar function that calculates the positive predictive value or precision rate. It
measures the proportion of actual positives which are correctly identified.

Scalar function that calculates the negative predictive value or precision rate. It
measures the proportion of actual negatives which are correctly identified.

FLFalseDiscRate Scalar function that calculates the false discovery rate . It measures the
proportion of false positives to the total number of positives.

FLMatthewsCorr Scalar function that calculates the Matthews correlation coefficient. It measures
the proportion of false positives to the total number of positives.

FLF1Score Scalar function that calculates the F1Score. It can be used as a single measure of
performance of the confusion matrix.

7. Remaining Analyses in the Tutorial

There are three remaining analyses showcasing the ADS/Fuzzy Logix integration:

» Fuzzy Logix Decision Tree Churn Model Building and Scoring

» Fuzzy Logix Data Preparation for Continuous Models

» Fuzzy Logix Linear Regression Revenue Estimation Model Building and Scoring
What follows is a brief description of each:

Fuzzy Logix Decision Tree Churn Model Building and Scoring

This analysis is very similar to a combination of the “Fuzzy Logix Logistic Regression Churn Model
Building” and “Fuzzy Logix Logistic Regression Churn Model Scoring.” In the first Run Unit,
FLDecisionTree is called to build a Decision Tree model. Then a SQL Text with Arguments Run
Unit is used to query the FLDecisionTree system table, fzzIDecisionTree. Note that a much more
complex recursive query would be required to export the rules within the table into a readable format.

Next, the resulting decision tree model is scored with a Run Unit that calls the FLDecisionTreeScore
XSP, and a sample of the scored is data queried with the final Run Unit.

Fuzzy Logix Data Preparation for Continuous Models

This analysis is akin to the “Fuzzy Logix Data Preparation for Binomial Models”, with the exception
being it creates a new “Deep” table (“TWM_Customer Deep2”) and it specifies a numeric dependent
variable for the purposes of building a linear model in a subsequent Run Unit.

Fuzzy Logix Linear Regression Revenue Estimation Model Building and Scoring

This analysis is very similar to a combination of the “Fuzzy Logix Logistic Regression Churn Model
Building” and “Fuzzy Logix Logistic Regression Churn Model Scoring,” except that it estimates a
continuous value as opposed to predicting a binomial value. In the first Run Unit, FLLinRegr is
called to build a Linear Regression model. Then two SQL Text with Arguments Run Units are used
to query the FLLinRegr system tables, fzzlILinRegrCoeffs and fzzILinRegrStats.

Next, the resulting regression model is scored with a Run Unit that calls the FLLinRegrScore XSP,
and a sample of the scored data is queried with the final Run Unit.

Fuzzy Logix K-Means Visualization in Excel

See Section 8 for an overview of the Execute Program/Script Run Unit, a description of this analysis,
and Fuzzy Logix Excel templates in general.

8. Using Run Units to Launch Excel and Visualize Fuzzy L ogix Results

A third type of Run Unit provides a mechanism for visualizing the results of Fuzzy Logix analyses’
through Excel Templates. Fuzzy Logix will provide thorough documentation on all the templates
available through an appendix in their User Guide. What follows is a brief description of the Execute
Program/Script Run Unit, and some examples of available templates.

8.1. Introduction to the Execute Program/Script Run Unit

A program or script may be executed using an Execute Program/Script Run Unit, which executes the
program as if from a DOS standard command line, with optional command line arguments and with
redirected standard input, output and error messages. Although this can be any command including the
invocation of scripting languages such as R, Python, Perl and Ruby, for purposes of the integration, we
will focus on Excel.

Note that an Execute Program/Script Run Unit utilizes substitution parameters in a manner similar to a
SQL Text with Arguments SQL element, replacing <P1> with the first expression in the Substitution
Parameters folder, <P2> for the second, etc.

When you drag and drop this type of Run Unit onto the Run Units Pallet, the following properties screen
is displayed:

Properties @

Program

Program File: [] Fun in detached process (don't wait)
Full Path:
Warking Directary:
Prgumerts:
Std In | Std Out | Std Eror

©) Read Script from File Edit

(@ Enter Script as Text

Execution Status

Run Unit1 Set [| FExitCode [|

Stop: | | [ResetResults |

[ok || cancel || mpply || Hebp
The fields on this dialog are described below:
Program File This is the name of the program file to be executed, for example “excel.exe”.

Run in detached process (don’t wait)

Check-box to provide a DOS shell around the executable so that the ADS front-
end does not hang waiting upon the process specified by the executable to
terminate.

Full Path This is the program name and full directory path, for example “C:\Program
Files\Microsoft Office\Office14\EXCEL.EXE”. This can be obtained using the
Browse button, and in some cases the Registry button, as described below. (Note
that this field is not required if the Program File is located in a directory
contained in the user’s Path environment variable.)

Working Directory Specify to the file being executed what the Working Directory should be. The
Working Directory is folder where the Program File reads or writes to without
giving a fully qualified name — in other words, that’s where it is going to look for
or create a file.

Arguments Command line arguments, if any, should be specified here. These arguments can
be Substitution Parameters of the form <Pn> (where 'n' is a number from 1 to 'n’)

Registry

Browse

Env Vars

Std In tab

and are matched up with SQL Elements contained in the folder immediately
beneath the "Program/Script Execution™ Run Unit node.

Additionally the user can specify a Project Attachment filename as an argument
simply by enclosing the name of the Project Attachment within '<' and ">' signs.
(For example, the Project Attachment MyFile.txt would be represented as
<MyFile.txt>.) When the program or script is executed, the name enclosed in
‘<...>’ is converted to the fully qualified file name (i.e. the path plus the Project
Attachment name).

Additionally, a special placeholder for the data source name that the application
is currently logged into is allowed. Named <DSN>, it is replaced in the
previously listed fields with the current data source name. Note that if the data
source name contains spaces, the user should most likely enclose the placeholder
in double quotes like this: “<DSN>".

This button searches the client Registry for the Program File entered above.
(Note that in order for the search to be successful, an entry for the Program File
must exist in the registry area "Software\Microsoft\Windows\CurrentVersion\App
Paths\", which may not be true.)

This button presents the standard dialog for locating a file. Once located, the full
file path is placed in the Full Path text box.

This button presents a dialog for adding/removing Environment Variables as
follows:

Environment Yariables @
Enter values for existing environment variables or enter new
varables and values as desired.
Name Value Add
Remaove
| ok || cancel || Mpply || Hel

Read Script From File If this option is selected, program/script commands are taken from a file.

Browse
Edit

The Browse button can be used to locate the script command file above.
The Edit button can be used to alter the script command file specified, or
to extract the script and place it in the Enter Script as Text field for
additional changes.

Enter Script as Text

Std Out tab
Save To File

Append

Browse
Output

Std Error tab
Save To File

Append

Browse

Error Messages

Execution group box area
Run Unit Name

Message

Save and Run button

Status area
Start

Stop
Exit Code

Reset Results

Script commands can be entered or copied here as an alternative to
reading the script from a file. This may be useful for script development
and for storing the script with the analysis.

If this option is selected, the program’s Standard Output is written to a file
with the specified full name and path.

If checked, this option saves Standard Output to the end of an existing
file, retaining the file’s previous content.

The Browse button can be used to locate a file for Standard Output.

This read-only text area displays the Standard Output data from executing
the program/script. This data is saved with the analysis.

If this option is selected, Standard Error data is written to a file with this
full name and path.

If checked, this option saves Standard Error data to the end of a file,
retaining the file’s previous content.

The Browse button can be used to locate the path of the file that Standard
Error is being written to.

This read-only text area displays the Standard Error data from executing
the program/script. This data is saved with the analysis.

This is the name of the Run Unit whose properties are displayed.

This indicates a status of Complete or Cancelled or an error message, if
any.

Selecting this button saves the contents of the Properties dialog and runs
the program. This is not enabled if the analysis or an individual Run Unit
is already executing. When execution completes, status information is
returned along with Standard Output and Standard Error data. If it is
necessary to cancel the execution of the script, use the Stop button on the
application tool bar.

This is the start time of the last run.

This is the stop time of the last run.

This is the exit code of the run: 0 for success or another value for error.
This button clears the Status and Execution fields, along with Standard
Out and Standard Error data.

8.2. Fuzzy Logix Visualization Examples via Excel

The final analysis in the project illustrates the use of the Execute Program/Script Run Unit to invoke
Microsoft Excel to visualize the results of a Fuzzy Logix K-Means Clustering models. Fuzzy Logix has
plans to release many Microsoft Excel visualization templates, documentation for which will be provided
by Fuzzy Logix. The goal here is to describe what one such analysis looks like:

__| Fuzzy Logix K-Means Visualtization in Excel - Variable Creation E@

Fuzzy Logix K-Means Visualtization in Bxcel

| PUT w | outPUT » | RESULTS » |

vanables | dimensions | anchortable | lteral parmmeters | analysis pammeters | locking expen options
Columns/Values: SQL Elements: Variables Dimensicns =~ Tables | Run Units
Input Source: Aggregation BE Change Databasze = Mew
Asithmetic =) SQL Text (DATABASE <P1=)
anie s G- ® Calendar EI[:I Arguments
Databases: [~ ® Case e @ Text Parameter (Database=fuzzy
fuzzylog: - ® Comparison E—ZIEI Drop Deep Table
Tahles: ® Date and Timi = % 50L Text (DROF TABLE <P1><P22]) | _
- ® Embedded Se EID Arguments 1
[+~ ® Geospatial o+ @ Text Parameter (Database=fuzz
Columns: | Values - ® Lierals i @ Text Parameter (KMeansDeepT: m
® Literal Parame II' =B Buid K-Means Data Mods! _
[+~ ® Logical =~ © Stored Procedure Call (FLWidsToDesp)| m
G- ® Ordered Anahy II' =7 Arguments _
[~ ® Period - @ [IN- In'WideTable] String fwm_c m
- ® String Functio |:| - ® [IN-Obs|DCal] String (cust_id) | Propertes |
& Trigonometric - @ [IN-Out DeepTable] Text Parami
[~ & Table Functio - B [IN- OutObel DCol] String (ObsID
o Ranlnts [] - # [IN-OutVarlDCol] String {VarlD)
- 0 Other . @ [IN- OutValueCol] String (WVarlWah
= © Quotes
i @ Text (age, avo_cc_tran_ami
- @ MNull
- @ Mull 57
< I | 3 4 1 | 3

Each Run Unit is described in detail below:

e Change Database

This SQL Text Run Unit simply changes the current database to the location of the data that will
be processed by the Fuzzy Logix K-Means function. It utilizes a Text Literal Parameter for the
database name, which is used by subsequent Run Units, including the Run Unit that calls
Microsoft Excel:

2=

=~ @ SGL Text (DATABASE <P1x;)

EI[:l Arguments
i @ Text Parameter (Database=fuzzdogix)

e Drop Deep Table

This SQL Text Run Unit drops the deep table created in the next step. If this is not done, an error
is returned by the Fuzzy Logix FLWideToDeep XSP. The “Database” Text Literal parameter is
used as well as an additional Text Literal that represents the table to be dropped (also used below
in the Run Unit that calls FLWideToDeep):

(=R Drop Desp Table
. B} © SOL Text (DROP TABLE <P13.<P25)
EI[:I Arguments
----- ® Text Parameter (Database=fuzzylogi)
fe @ Text Parameter (KMeansDeepTable=KMea...)

Build K-Means Data Model

The next Run Unit calls the FLWideToDeep XSP to create the input data for the K-Means
modeling algorithm. It utilized the same Text Literal Parameter for the table to create
(KMeansDeepTable) as above, as well as a String Literal Parameter for the OUT argument:

e
= Stored Procedure Call (FLWideToDeep)
=+ Arguments
----- @ [IN- In'WideTable] String fwm_customer_analysis)
----- @ [IN- Obs|DCol] String (cust_id)
----- @ [IM- OutDeepTable] Text Parameter (KMeanzDeep Table=KMea
----- & [IN- OutObs|DCel] String (ObsID)
----- @ [IN- OutVarlDCol] String (WarlD)
----- ® [IN- OutValueCol] Sting (Warvalue)
= ® Quotes
L. @ Text (age, avg_cc_tran_amt..)
----- & Mull
----- & Mull
----- & [OUT- OutAnalysisID] Sting Parameter (Build K-MeansDataMode

The function is parameterized as follows:

- InWideTable = twm_customer_analysis

- ObsldCol = cust_id

- OutDeepTable = KMeansDeepTable Text Literal parameter

- OutObsIDCol = ObsID

- OutVarIDCol = VarlD

- OutValueCol = VarValue

- ExcludeCols = (all columns but avg_cc_bal, avg_ck_bal, avg_sv_bal in Quotes)
- ClassSpec = NULL

- WhereClause = NULL

- OutAnalysisID = String Literal Parameter to be set upon execution.

K-Means

The next Run Unit calls the FLKMeans XSP to create the clustering model algorithm. It utilizes
the data created in the Run Unit above as well as Numeric Literal Parameters for the Number of
Clusters and the Number of Iterations, both of which are required by the Microsoft Excel Run
Unit. It also uses a String Literal Parameter for the OUT argument:

o
= Stored Procedure Call (FLEMeans)
-] Anguments
----- ® [IN- TableName] String (KMeansData)
----- ® [IN- Obs|DColName] String (Obsld)
----- ® [IN- VarlDCalMame] String (VarlD)
----- ® [IN- ValueCaolMame] String (Varvalue)
----- ® [IN- WhereClause] String
----- ® [IN- Clusters] Numeric Parameter (NumberOfClusters=3)
----- ® [IN- kerations] Mumeric Paremeter (NumberOf terations=10)
----- ® [IN- Hypothesis] Mumber (2)
----- ® [IN- Mote] String
----- ® [OUT- Analysis|D] String Parameter (RunUnit1_AnalysisiD1..)

The function is parameterized as follows:

- TableName = KMeansData

- ObsldColName = Obsld

- VarIDColName = VarlD

- ValueColName = VarValue

- WhereClause = NULL

- Clusters = Numeric Literal Parameter = 3

- lterations = Numeric Literal Parameter = 10

- Hypothesis = 2

- Note = NULL

- AnalysisID = String Literal Parameter to be set upon execution.

e Excel Bridge

The final Run Unit calls Microsoft Excel, passing the required information needed for graphing
the results:

cR=
5 © Execute Program/Script (EXCEL EXE)
EI[:| Substitution Parameters
----- ® 5String Parameter (RunUnit1_AnahysisID1..)
----- ® MNumeric Parameter (MumberCf terations=10)
t.. @ Text Parameter (Database=fuzzylogix)

Three Literal Parameters are passed to Microsoft Excel then used as arguments to the excel.exe
command line:

- K-Mean Analysis ID (RunUnitl_AnalysisiD1)
- NumberOflterations = 10
- Database = fuzzylogix

The Run Unit is parameterized as follows:

(]

Properties

Program

Program File: EXCEL EXE Fun in detached process (don't wait) W
Full Path: C:\Program Files"\Microsoft Office\Office 14\EXCEL EXE [Browse |
Warking Directary: | Browse |
Arguments: <KMeans ddsmz /e/<P1x/<DSN=/<P2:/<P 3> Env Vars...
Execution Status

Excel Bridge Start; Exit Code: D

| Saveand Run | Stop: [21209PM | [ResetResults |

[ok || cancel || mpply || Hebp

- Program File: EXCEL.EXE

- Run in detached process (don’t wait): Enabled

- Full Path: C:\Program Files\Microsoft Office\Officel4\EXCEL.EXE
- <KMeans.xIsm> /e/<P1>/<DSN>/<P2>/<P3>

Where:

1) <KMeans.xIsm> = Attachment name

2) /e = Embedded mode (do no bring up splash screen)

3) <P1> = Analysis ID of K-Means

4) <DSN> = Datasource Name ADS is currently connected to
5) <P2> = Number of iterations (10)

6) <P3> = Database name where results are (fuzzylogix)

Due to the random nature of centroid initialization, the results of K-Means clustering may vary. Note
that because this is being run in a detached process, the analysis has an “Execution Complete” status
in ADS Generator. Also note it may take some time for Microsoft Excel to connect to the DSN, and

read the data required for the graphics from Teradata. Here is an illustrative screen shot of the K-
Means visualization:

Fast Analytics with Big Dala

Statistics of Analysis/Data K-Means Clustering

Number Of Clusters 3
MNumber Of Observations 1494
Time Taken (In Seconds) 5

Number Of lterations 10

Cluster X Y Count %
1 -1,736 661 752 50.3%
2 -569 588 718 48.1%

3 - 2,051 2,456 24 1.6%

