RATS Programming
L anguage

Walter Enders

Department of Economics, Finance & Legal Studies
University of Alabama

Tuscaloosa, AL 35487

wenders@cba.ua.edu

© 2003 Walter Enders. All Rights Reserved

Distributed by Estima (www.estima.com/enders).

This book is distributed free of charge, and is intended for personal, non-commercial use
only. You may view, print, or copy this document for your own personal use. You may
not modify, redistribute, republish, sell, or trandate this material without the express
permission of the copyright holder.

Table of Contents

Quick Index of Selected Functionsand I nstructions................. iv
Chapter 1: Linear and Nonlinear Estimationcccceevvevveiiiiinenenns 1
0 TC Y BT = = SRR 2
2. Linear Regression and HYpPOothesiS TESHINGeiiiiriiieiiiiie et 6
=10 == 10
3. TRELINREG OPLiONSeuvviiiiieeeieiiiieieeet e e e s s sttt e e e e e e s s st ee e e e e e s s saaaaeereaeeesasnnntaneeeaeeessnnsnnnnnneaeanan 12
3.1 USING SWITCN OPLIONS.ttteeeieeeie ittt ettt e e e e ettt e e e e e e s s bbbe e et e e e e e s e bt br e e e e e e e e s annnbreeeaaeeeas 13
s 110 0[S TP PPR R PPPPPP 14
3.2 USING ChOICE OPLIONS.eeeeeiieeeieaiitetet et e e e e ettt e et e e e s ettt e e e e e e s e bbbb e et e e e e e s aannbbe e e e e e e e e sannnbneeeeaeaeas 15
APt eee b e e e e e b e e e b e e e 15
3.3 Using Switches, Choices and Internal Variables.............oooiiiiiiiiiiiiii e 16
4. NONINEAN LEASE SQUAIES.......uteeeeeiiteete e ittt ettt e et ettt e sttt e sttt e e s bbbt e e s aabe e e e s aabb e e e s anbbeeesannneeens 21
4.1 Changing the CONVErgeNCE CrItEITaueieiieiiee ittt e e e s nnnneee s 23
X BIMPIES. et teeeeeeeeeeeeeeeeeeeeeeeeeheeeabeeeeeb e e b e e e b e e e e e b e e e e b ae e e e nnnres 24
4.2 Examples of NONIINEAr LEASE SQUAIES.......ceieeeiiiiiiiiiieiee e s e siiiieeeeeeeesssnnteseeeeeeesssnnnreneeseeeesesnnnsenneees 24
5. Maximum LiKelin0Od EStIMELIONcicuereirieiiie it e 32
= 1] SRS 34
6. GARCH MOGEIS ...ttt ettt et e s b e s et et e st e e e be e e snn e e s abneesnneeans 40
6.1 EXaMPIES Of GARCH PrOCESSES.tutetiiieeiiiiitit ittt e e ettt e e e e e sttt e e e e e s s bbb e e e e e e e e s abnbreeeeeaeeas 41
Chapter 22 VARsand Error-Correction Models..........cccoooevvevinnnnnee. 47
EXAMPIES: ..o 48
1. Hypothesis Testing and Model SEIECHION.cooiiiii i 51
0 T oY= o g1 oot T 1 o S 53
=10 == SR 53
2. Example: Estimation of a3-EqQUatiON VARuuiiiiiie o ee e e e e e e nnnrneee e e e 55
2] Folet i = (e 1= 1T | PP T T TP P PP PPPT PP 57
[NNOVALTON ACCOUNTING: .ttt e ettt ettt e e e e e sttt e e e e e e s e b e b e e e e e e e e s anbnbb e e e e e e e e sannnrnneeas 58
= 1S T o LS TP PPT PP 60
2L INEBI-VARS. ...ttt ettt ettt ket e e bt e e eh bt e bt e e kb e e eRbe e et ae e enbeeebe e e anbeeareeans 61
AP eaheeeeab e e s b e r e e e e 62
3. Error-CorreCtion MOGEIS.......coiiieiieiiiiieiee ettt e e e st e e e e e e s e e e e e e s s s nnnnnaeeeeeeeeas 64
4. SErUCtUral DECOMPOSITIONS.eeieiittieee ittt ettt sttt ettt e s bt e s bt e e e e s bbbt e e s asbs e e e s aabe e e e s sanneeesannneeens 69
4.1 Structural VARS With @ KNOWN G MEETTX ..eeveeeeiiiiiiiiiiie ettt e e ieeee e e e e e e e enneneeeeas 71
=110 == 71
5. The Sims-Bernanke DECOMPOSITION.uviiieiiiiiiieieeee e e iesite e e e e e s s st e e e e e e e s s e e e e e e e e s snnnnraneeeeeans 75
s 110 0= TP TP PPPR R PPPPPPI 75
6. The Blanchard-Quah DECOMPOSITIONccueeiiiiiiiiiiieie ettt e e e eeeeee e as 82
6.1 The TEChNICEl DELIIS.ceeiiiiiiee ittt e s e e e e s e e e snreee e e 83
AP eaheeeeab e e s b e r e e e e 85
6.2 Decomposing GDP, Real M2 and the INterest RAEccoiviieiiiiiiiee e 86
Chapter 3: LoopsOver Datesand SEries.......cooceevveveviiiieeeeiieeeeiieeeeens 89
D (o= S 1 1= (= £ TSR 90
1.2 0OMitting CALENDAR ..ottt ettt ettt se e s e e nnee e sne e nnneena 91
s 1101 0[S TP PPPR R PPPPPP 92
A 1=y SR 1010 o = E TP TP OPPTPPPTPN 94
s 1101 0[S TP PPPR R PPPPPP 94
Retrieving Labels and INteger NUMDEISocoiiiiiieiiiiiee e 98

. DO L00PS ...ttt e e e e er e e e e 99

3.1 DO Loops, SWItChES AN ChOICES.evieie i it e s e e s s s e e e e e s e r e e e e e s snnnrrneeeaeeean 100

TS 100 == 100
A I o [= 0o |1 1= £ 102

MOdifYiNg the Program............uuiiiiiiee et e s r e e e e e s e eeee e e e e e e e annne 103
3.3 LagLength TESISIN AV AR ...t e e e e e e e e s eeeeaeeeas 105
A, LOOPSTON DEIESeeeeeiuieeee ettt ettt ettt et s ekt e s skt e s e bt e e e s et e e e s b et e e e n et e e e nbre e e e annes 107
I 00 013 (o S] = PO PP PTPTPPP PP 109
6. THE DOFOR INSIIUCLION ...ttt ettt ettt e e e e e s et e et e e e e e e e e e aabb e e e e e e e e s annnbeeeeaaaaeas 110
6.2 DOFOR aNA ENTRIES......coitiiiiiiiiiiiiiie ettt e e e et e e e e e e s e st e e e e e e s s ssntaeeeeaeeessnsnnaneeaaeeess 113

JAZZING UP TNE PIOGIEIMcei ittt e ettt e et e e e snbne e e e e 114
7. Loops With Wl @nd UNLileeiiiiiiiiieice ettt 115

Frequently ASKEd QUESLIONS.cuiiieeiiiiiiiiiieee e e e s s st e et e e e s s st e e e e e e s s snstaeereaeeesennnnrnnneeaeeesannnnes 117
Chapter 4: IF Statementsand Monte Carlo Experiments................ 119

EXBIMPIES. ..ttt e b e ah e e e e b e e e e e e e s anreee e s e 120
L If-THEN-EISE BIOCKS ...ttt ettt e e e e e e e e e e e s e bbaaeeeaaaeeas 121

EXBIMPIES. ..ttt e b e b e e ah e e e b e e e et e e e e s abreee e s e 121
1.1 Sample Program: Lag LengthS AQaIN.coii ittt 123
2. ThE YOIF(X,Y,Z) FUNCHION. ... eeeiieitee ettt ettt e et e e s et e e s nnnn e e e s annneee s 126

B BIMPIES.eeeeteeeeeeeeeeeeeereeereeeeeeeeheeeeh e e bt e e e b b e e e e b b et e e s abbe e e e e abbeeeenne 126
3. Estimating a Threshold AULOIrErESSION..........c.eveiieiee e e e s ceite e e e e s s s e e e e e e s e e e e e e e e s snnnraeeeeaeeean 128
31 EStimating the THreshOldcoi o e e e e e e re e e e e s 130
Y =0] o AT PP OO PRP TR TOPPPP 133

110 L= TP PP PP TP OPPPPPPPPTTRTRIN 133
4.1 Sample Program USING BRANGCHoiiiiiiiit et 133
5 MONte Carlo EXPEITMENES.......ceiiiiiiiieiiieie ettt ettt et e e s st e e e s s e e e s snbn e e e s annneeens 136

EXBIMPIES. ..ttt h ek e e e ah e e e b e e e st e e e e e b e e e s e 137
5.1 A Simple Monte Carlo EXPEriMENt........c.ooiiiiiiiiiiie ittt 137
5.2 Downward BiaSin @an AR MOUEcoiiiiiiiiiiiiiie et e e e e eeaae e 139
5.3 Power Of the DICKeY-FUITEN TESE.....cciiuiiiieiieeee ettt snenee s 141

POWES OF tNE TESL ...ttt r e s e e nn e sne e nnne s 143
5.4 The ENders-Granger SEatiStiC.......cccuvvrriiieeiiiiciiiiiie e e e s cetter e e e e s s s r e e e e e s s s e e e e e e e s snnnnaneeaaeeen 146
5.5 Inferencein a CoiNtegrated SYStEM........cueii i ciriieiie e e e s et e e e s s s e e e e e e s s e e e e e e e s s nnnreneeeaeeean 149

B (=T = (0o =0 DTS TP PP ROPTPPPP 151
6. Antithetic Random Variables...........oooiiiii i 154
6.1 BiaSiN NLLS ESHIMELES.ceiitiiitiie ittt ettt ettt sttt st et e e sabe e sbe e e nbee e sneeesaneas 154
A =10l 6 [=To) o 1o o [P PP TPPPPR PP 158
7.1 Bootstrapping Regression COEffiCIENES.viieiiiiiieiiiiie ettt 160
7.2 The AR Coefficients of Real GDP GrOWLHcooiiiiiiiiiiieeie e 164
Chapter 5: Vector and Matrix Manipulations.............cccceeeveeeeevnnnnn. 168
1. Creating MatriCeS aNd VECIOISuuiieiiee e e e ittt e e e e s sttt e e e s e s st e e e e e e s s s st e e e e e e e e s snnnneneeaaeeean 168
I = o = OO PUPRPPRPRR 169

EXAIMPIES. ...ttt e e e e e ettt e e e e e e bbb e e e e e e e e e e bbb re e e e e e e e e annaae 170
L2 COMPUTE ...ttt ettt ettt ettt ekt sh et e eh bt e e a b e e ek e e e eh b e e et e e e abb e e sabe e e abbeesabeeennaeas 171

EXBIMPIES. ..ttt e b e b e e ah e e e b e e e et e e e e s abreee e s e 171
2. MALTTX OPEIBLIONS.teeeeeiiteeee e ettt e e sttt e e st e e skttt e e sk ee e e e s sbe et e skt e et e s b b e e e e s anb e e e e e anbe e e e s annne e e s annreeens 176
2.1 Operations on SUBCOMPONENES OF AIMBEIIXveeiuviiieeiiiiie et 176
2.2 Selecting ARMA COBffICIENTS.eiiiiiiiiie it s 178
2.3 Manipulating the OULPUL Of @V ARcoiii e e e e e e s seanareeeeaee s 179
3. Example: ENTER and SUpplementary Cards.........ccueeeieicuierreeeeeeisiinieeneeeeesssssnieeesesesssssnsnsnneseseses 182
3.1 Automating Model SEleCtioN INAVAR ... re e e e e 183
3.2 Creating aNear-VAR USING ENTER.......coi ittt a e 185

JAZZING UP ThE PrOgraMeieiiieie ettt e e et e e e e e et e e e e e e e e e nanbnnneeas 187

4. Example: Moving Average REPIeSENtAIiONSuveieiiieeeiiiiiieee e e e e ettt e e et e e e e e e e s aenneeeeeas 189

4.1 Impulse Responsesin aFirst-Order VARcooo ittt e e e e e e e e annnnanee s 195
5. Creating MatriceS from Y OUN D@ta........ceveeeiiiiiiiieiiee e i s ceiiiee e e e s s s e e e e e e s s e e e e e e e s snnnnneneeaaeee s 197
EXAIMPIES. ...ttt oottt e e e e ookt e e e e e e e e bbb e e e e e e e e e e bbb rr et e e e e e e annaae 197
5.1 Estimating the Regression COEffiCIENtS...........uuiiiiiiiei e 198
S (0L S TSP PPPRTTN 200
5.2 Hypothesis Testing in the Regression MOGE!coiiiiiiiiiieiie e 200
5.3 Creating SErieSfromM A IMELIIXeeeiiiiiiie ittt 203
Chapter 6: Writing Your Own Procedures..........ccceeeevvvvviieeeeeeennnnnn. 204
1. A Procedureto Display the AIC and SBCuuiiiieiii it e e e e e e e srnaaeee e e e 206
A LS T 0o IS AV I 5 @ o1 o S 207
2.1 Integer and ChOiCE OPLIONS.iiieetiietee ettt et e e e e et e e e e e e s e bbb e e e e e e e e s annreeeeaeaeeas 209
3. Passing SErES 0 @PrOCRAUNE.ueiiiiiei ettt e e e e e s eeeaaeeeas 211
4. Writing a Procedure to Test fOr UNIit ROOLS.........ccciiuiiieiiiiiie ittt 213
[N TR 214
4.1 Creating LOCal VaTalEScoiiiiiiiieiet ettt 214
A2 AAAING OPLIONS. ...ttt ittt ettt s ettt e s sk et e e aab et e e ab b et e e e bbbt e e e nbe e e e e nnbneeeeannes 215
5. Retrieving START and END €Ntry VAIUES........ccoiiuiiiiiiiiiie ittt 219
X BIMPIES.eeeeteeeeeeeeeeeeereeereeeeeeeeeeh e et e e ah bt e e e b b et e e s abbe e e e e abbeeeenne 220
5.1 Passing INformation DY AQArESSueeiiieeii e s e e e e e e s ee e e e e s 222
LA ® o[04 7= I = o R 223
110 L= TP PP PP TP OPPPPPPPPTTRTRIN 224
6. A Procedure for Computing Lag Lengths.............eeiiiiiiiiiiii e 226
7. INteraCting With PrOCEAUIES. ...ttt e e e ee e e e as 229
EXBIMPIES. ..ttt e b e b e e ah e e e b e e e et e e e e s abreee e s e 230
8. CrENG AIMEINU ..ottt et ek e b et e st e e s e s 233
[1010 L= UT PP OPPPPTPPPPRRN 233
8.1 Creating AUSERMENUcooiiiiiiiiiiiii ettt e e e e s aannee s 235
JAZZING UP thE PrOCEOUIE ...ttt ettt e et e et e e e nnns 237
9. An Interactive Procedure with Menu and USERMENU............ccoiiiiiiiienine e 239
JazZING UP thE PrOCEAUIE L.....eeeiei et e et e s e e e e e e s e e e e s e et e e e e e e e e e nnnreneeees 242
JAzZZING UP thE PrOCEAUIE 2.....eeeeee ettt e e e e s e e e e e e e s et e e e e e e e e e nnnreneeees 244
O 1= 0] o To [T o TP UPT RO PPPPPPRPTN 246
T L= PSPPI 248

Quick Index of Selected Functions and Instructions

NAME Description asused in test Approx. Page

%I F Evaluate a conditional statement 126
%L (i) Returns the label of seriesi 98
%S(L) Returns series number corresponding to L 182
BOXJENK Estimates an ARIMA model 178
BRANCH Program execution jumps to a new location 133
CDF Cumulative density function 41
COMPUTE Evaluates an expression 171
CORRELATE Creates a correlogram 7
CVMODEL Covariance matrix modeling 75
DECLARE Creates a matrix 169
ENTER Manipulates items on supplemental cards 182
ENTRIES Number of entriesto process on supplementary card 113
EQUATION Creates an equation 151
EQV Assigns labels to series 96
ERRORS Creates forecast error variances and impul se responses 53
ESTIMATE Estimates a system of equations 48
EWISE Operates on elements of a matrix 177
FORECAST Creates dynamic forecasts 60
GRAPH Creates a high-resolution graph 5
GROUP Combines equations into a system 62
IMPULSE Creates impul se response functions 67
INFOBOX Displays dialog box 145
INQUIRE Selects the starting and ending values of a series 211
LABELS Assigns labels to series 97
LINREG Estimates a linear regression 6
LOCAL Creates local variables in a procedure 214
MAKE Creates a matrix from data 197
MAXIMIZE Finds the maximum of afunction 33
MENU Displays a set of choices 233
MESSAGEBOX Displays a message 229
NLLS Nonlinear least squares 22
NLPAR Select convergence criteria 23
NONLIN Lists parameters for a nonlinear estimation 21
QUERY Prompts user to input variables 229
RATIO Performs alikelihood ratio test 51
RESTRICT Test linear restrictions 10
ROBUSTERRORS Corrects for heteroscedasticity 12
SCRATCH Creates consecutively numbered series 97
SIMULATE Creates a simulated series 151
SUBFORMULAS Used in creating formulas 46
SUR Seemingly unrelated regressions 61
UNTIL Conditional control of program execution 115
USERMENU Presents user with alist of choices 235
WHILE Conditional control of program execution 115

Some instructions can perform multiple tasks. The descriptions refer to the task
performed in the text. The pages are the locations containing the primary explanation or
illustration.

Chapter 1.
Linear and Nonlinear Estimation”

This book is not for you if you are just getting familiar with RATS. Instead, it is designed to be
helpful if you want to simplify the repetitive tasks you perform in most of your RATS sessions.
Performing lag length tests, finding the best fitting ARMA model, finding the most appropriate
set of regressors, and setting up and estimating a VAR can all be automated using RATS
programming language. As such, you will not find a complete discusson of the RATS
instruction set. It is assumed that you know how to enter your datainto RATS and how to make
the standard data transformations. If you are interested in learning about any particular RATS
instruction, you can use RATS Help Menu or refer to the Reference Manual and User’s Guide.
The emphasis here is on what | call RATS programming language. These are the instructions
and options that enable you to write your own advanced programs and procedures and to work
with vectors and matrices. The book is intended for applied econometricians conducting the type
of research that is suitable for the professional journals. As | tell my students, to do state-of-the-
art research, it is often necessary to go “off the menu.” I’'m being a bit facetious, but by the time
a procedure is on the menu of an econometric software package, it's not new. This book is
especially for those of you who want to start the process of “going off the menu.”

Of course, it will be impossible to illustrate even a small portion of the vast number of potential
programs you can write. My intent is to give you the tools to write your own programs. Towards
that end, | will discuss a number of the key instructions and options in RATS programming
language and illustrate their use in some straightforward programs. | hope that the examples
provided here will enable you to improve your programming technique. This book is definitely
not an econometrics text. If you are like me, it is too difficult to learn econometrics and the
programming tools at the same time. As such, | will try not to introduce any sophisticated
econometric methods or techniques. Moreover, al of the examples will use a single data set
MONEY_DEM.XLS and all examples are compatible with RATS 5.0.

This chapter begins with a quick overview of some of the basic RATS instructions and options
we will be using in the later chapters. It is intended to refresh your memory and to introduce the
use of switches, options, choices and internal variables. It then shows how to estimate nonlinear
models using nonlinear least squares (NLLS) and maximum likelihood techniques.

“Thomas Doan, Thomas Maycock and Mark Wohar made many helpful comments on the earlier
versions of the manuscript. All errors that remain are my own.

2 Walter Enders

1. The Data Set

The file labeled MONEY_DEM.XLS contains quarterly values of seasonally adjusted U.S.
nominal GDP, real GDP in 1996 dollars (RGDP), the money supply as measured by M2 and M3,
and the 3-month and 1-year treasury bill rates for the period 1959:1 — 2001:1. Both interest rates
are expressed as annual rates and the other variables are in billions of dollars. The data was
obtained from the website of the Federa Reserve Bank of St Louis
(www.stls.frb.org/index.html) and saved in Excel format. If you open the file, you will see that
the first eight observations are:*

DATE GDP RGDP M2 M3 TB3mo TBlyr
1959.1 496.10 2273.00 287.80 290.05 277 NA
1959.2 509.20 2332.40 292.12 294.35 3.00 NA
1959.3 510.20 2331.40 296.12 298.24 3.54 4.49
1959.4 514.20 2339.10 297.14 299.10 4.23 4.74
1960.1 527.90 2391.00 298.66 300.63 3.87 4.36
1960.2 527.10 2379.20 301.11 303.23 2.99 3.65
1960.3 529.90 2383.60 306.48 308.89 2.36 2.90
1960.4 524.60 2352.90 310.93 313.66 2.31 2.81

To help you understand the output from the sample programs, severa conventions are used
concerning typefaces:

Boldface Within a sample program, a RATS instruction, set of instructions,
or a procedure in boldface produces the subsequent sample
output. Instructions and procedures not in boldface either produce
no output or the output is not shown.

Courier 10 point. RATS output isshown in Couri er 10 poi nt font. Theoutputis

ether indented or contained in
a highlighted box

In addition, the Courier 10 point font iS sometimes used to
separate references to a particular program statement from the
remainder of the text.

Italics Many RATS instructions are used with parameters and options
that you need to specify. The fields that you should specify are
italicized. For example, the ALLOCATE instruction can be used
to indicate the terminal date in a data set. Since you need to input

! Seethe RATS User’s Guide for details about working with data sets that are not in an EXCEL
format and with variables that are not quarterly.

Linear and Nonlinear Estimation 3

the terminal value, the description of the instruction is written as:
ALLOCATE date.

UPPERCASE All text references to file names contained on the data disk are in
UPPERCASE. In addition, textual references to the proper names
of RATS instructions and procedures are al in upper case. RATS
itself does not distinguish between UPPERCASE and lowercase
characters. Within the sample programs, all names are in lower
case.

If you have the file in your a\ drive, you can read in the data set using the following four lines
contained in Program 1.1 in the file CHAPTER1.PRG:

cal 195914

al 2001:1

open data a'\money_dem.xlIs ;* Alter thisline if the data set is not on drive a:\
data(org=0obs,format=xIs)

Note that only the first three letters of the CALENDAR and ALLOCATE instructions have been
used—in fact, any RATS instruction can be called using only the first three letters of its name. If
you use the TABLE instruction, your output should be:

table

Series Cbs Mean Std Error M ni mum Maxi mum

DATE 169 1979. 876331 12. 232185 1959.100000 2001.100000
GDP 169 3572.739053 2873.158128 496. 100000 10243. 600000
RGDP 169 5142.364497 1950.840494 2273.000000 9439.900000
MR 169 1904.835266 1399.706717 287. 800000 5043.710000
M3 169 2414. 462229 1916.764710 290. 053333 7260. 136667
TB3MO 169 5.915148 2.590483 2.303333 15. 053333
TB1YR 167 6. 153872 2.393622 2.713333 14. 380000

Many of the examples presented will use the growth rates of M2, M3 and real GDP, the first
differences of the 3-month and 1-year T-hill rates and the rate of inflation (as measured by the
growth rate of the GDP deflator). Y ou can create these six variables using:

set dirgdp = log(rgdp) - log(rgdp{ 1})

set dim2 =log(m2) - log(m2{1})

set dim3 = log(m3) - log(m3{1})

dif tb3mo/ drs ;* Note that / instructs RATS to use the default range
dif tblyr / drl ;* of the data.

set price = gdp/rgdp

set dip = log(price) - log(price{ 1})

Notice that the logarithmic growth rate of avariableis preceded by dI, the suffixessand | refer
to the short-term and long-term interest rates, and that price (i.e. the GDP deflator) is computed
asthe ratio of nominal to real U.S. GDP. The logarithmic changein price (called dIp) isthe
quarterly inflation rate. We can create graphs of five of these series using:

4 Walter Enders

spgraph(hea='Graphs of the Five Principal Series,$

hfi=2,vfi=2,key=upleft)

gra(hea="Panel 1: Time path of dim3) 2 ; # dim2; # dim3

gra(hea="Panel 2: Time path of dirgdp’) 1 ; # dlirgdp
gra(hea='"Panel 3: Time path of drs) 1; #drs
gra(hea="Panel 4: Time path of dip’) 1 ; #dip

spgraph(done)

Graphs of Five Principal Series

Panel 1: Time path of dim2 and dim3

0.056
—— DLM2

— - DLM3

0.048 —

0.040 —|

0.032 —

0.024 —

0.016 —|

0.008 —

0.000

-0.008 T TP T T T T T T T T
1059 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Panel 2: Time path of dirgdp

0.04

0.03 —

| [0y e
I

-0.02 —

-0.03 T T T T T T T T T T T T T
1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Panel 3: Time path of drs

| snatt MAAA hoal N o
L aat

1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Panel 4: Time path of dIp

0.030

0.025 —

0.020

0.015 —

0.010

0.005 —

0.000

LS UL VAL L M L M A N S M L L UL S M S VU B DS MU R B AL
1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

Linear and Nonlinear Estimation 5

Recall that the typical syntax of the GRAPH instructionis.

graph(options) number
series start end

where:
number The number of series to graph. Here, the number 2 tells RATS that two
series are to be graphed. The names of the series are indicated on the
supplementary cards; there is one such card for each series.
series The name of the series to graph. Remember, there is one supplementary
card for each series.
start end Range to plot. If omitted, RATS uses the current sample range.

The graph created here illustrates only a few of the available options. The commonly used
options are:

HEADER = A string of characters placed in quotes.

KEY = The location of the KEY. You can use KEY = [NONE]/
UPLEFT/UPRIGHT/LOLEFT/LORIGHT/ABOVE/BELOWI/
LEFT/RIGHT. The default is NONE.

DATEY RATS will label the horizontal axis unlessthe NODATES option is
[NODATES] specified.

STYLE= The default style is a line graph. The full set of stylesis. STYLE=
[LINE]/POLY GON/BAR/STACKEDBAR/OVERLAPBAR/
VERTICAL/STEP/SYMBOL

PATTERNS By default, graphs use colors to distinguish series (if possible)
[NOPATTERNS] and dashed lines and hatched patterns otherwise. PATTERNS forces the
latter to be used.

The program illustrates the use of the SPGRAPH instruction to place multiple graphs on asingle
page. The first time SPGRAPH is encountered, RATS is told to expect a total of four graphs.
The layout is such that two will go in the horizontal field (HFIELD=) and two in the vertica
field (VFIELD=). The option HEADER= produces Graphs of Five Principal Series as the
header for the full page. The individual headers on the four GRAPH instructions produce the
headers on the individual panels. The instruction SPGRAPH(DONE) instructs RATS to produce
the output shown on the next page.

6 Walter Enders

2. Linear Regression and Hypothesis Testing

The LINREG instruction is the backbone of RATS and it is necessary to review its use. As such,
suppose you want to estimate the first difference of the 3-month T-bill rate (i.e., drs) as the

autoregressive process.

;
drs, =a, + Zai drs_, +&,

The next two lines of the program estimate the model over the entire sample period (less the
seven usable observations lost as a result of the lags and the additional usable observation lost as
aresult of differencing) and save the residualsin a series called resids.

linreg drs/resids
constant drs{1to 7}

Li near Regression - Estinmation by Least Squares
Dependent Vari abl e DRS
Quarterly Data From 1961: 01 To 2001: 01
Usabl e Cbservations 161 Degrees of Freedom 153
Centered R¥*2 0. 284460 R Bar **2 0.251723
Uncentered R**2 0.284720 T x R**2 45.840
Mean of Dependent Vari abl e 0. 0155900621
Std Error of Dependent Variable 0.8194146456
Standard Error of Estinmate 0. 7088184693
Sum of Squared Resi dual s 76.870814220
Regressi on F(7,153) 8. 6892
Si gni ficance Level of F 0. 00000001
Dur bi n- WAt son Statistic 1. 956107

Vari abl e Coef f Std Error T- St at Si gni f
*
1. Constant 0. 013585280 0.055912496 0.24297 0.80835102
2. DRS{1} 0. 361765228 0. 079570494 4.54647 0.00001102
3. DRS{2} - 0. 419337490 0.084224961 -4.97878 0.00000171
4. DRS{3} 0. 393346293 0. 089250834 4.40720 0.00001961
5. DRS{4} - 0. 185273449 0.093546517 -1.98055 0.04943488
6. DRS{5} 0. 201542364 0. 089190935 2.25967 0.02525340
7. DRS{6} -0. 096578440 0.084095745 -1.14843 0.25258165
8. DRS{7} -0.214686434 0.078991307 -2.71785 0.00732911

Notice that the estimation begins in

1961:1; RATS automatically adjusts for the eight

observations lost due to differencing and the use of seven lags. As such, there are 161 usable
observations (169 — 8 = 161); given the five parameters estimated, there are 161 - 8 = 153
degrees of freedom. Next, RATS reports four Goodness-of-Fit measures: centered R, R-bar
square (centered R? adjusted for degrees of freedom), uncentered R?, and TR® (number of

Linear and Nonlinear Estimation 7

observations multiplied by the uncentered R?).2 The mean and standard error of drs over the 161
observations used in the regression are reported to be 0. 0155900621 and 0.8194146456,
respectively. (Note: Thiswill differ from the mean and standard error over all 168 observations.)
These are followed by the standard error of the estimate (i.e., the square root of the sum of the
squared regression residuals divided by the degrees of freedom) and the sum of squared
residuals. The F-statistic and its significance level can be used to test the hypothesis that all
coefficients in the regression (other than the constant) are zero. Here, the sample value of F for
the joint test ay = ap = ag = ... = a7 = 0 is 8. 6892. Given that there are 7 restrictions and 153
degrees of freedom, this F-value is significant at the 0. 00000001 level. The Durbin-Watson
test for first-order seria correlation in the residuals is 1. 956107 (2.0 is the theoretical value of
this statistic in the absence of serial correlation).

For each right-hand-side variable, the next portion of the output reports the coefficient estimate
(Coeff), the standard error of the coefficient (Std Error), the t-statistic for the null hypothesis that
the coefficient equals zero (T-Stat), and the margina significance level of the t-test (Signif). For
example, the coefficient of the first lag of drsis estimated to be 0. 361765228 with a standard
error equal to 0. 079570494. The associated t-test for the null hypothesis a; = 0 is 4. 54647. If
you use at-table, you can verify that the significance level for thisvalue of tis0. 00001102.

It is aways important to determine whether there is any serial correlation in the regression
residuals. The CORRELATE instruction calculates the autocorrelations (and the partial
autocorrelations) of a specified series. The syntax and principal options are:

correlate(options) series start end

where:
series The series used to compute the correlations.
start end The range of entriesto use. The default is the entire series.
corrs Series used to save the autocorrelations (Optional).

The principal options are:

NUMBER= The number of autocorrelations to compute. The default is the integer
value of one-fourth the total number of observations.

PARTIAL= Series for the partial autocorrelations. If you omit this option, the PACF
will not be calcul ated.

QSTATS Use this option if you want the Ljung-Box Q-statistics.

SPAN= Use with gstats to set the width of the intervals tested. For example, with
guarterly data, you can set span = 4, to obtain Q(4), Q(8), Q(12), and so
forth.

In the example at hand, we can obtain the first twelve autocorrelations, partial autocorrelations
(and the associated Q-statistics) of the residuals with:

2 Let the dependent variable be denoted by y. Uncentered R? is 1 - (sum of squared regression
residuals)/(sum of squared vaues of y). Centered R? is 1 - (sum of squared regression
residuals)/(sum of squared deviations of y from the mean of y).

8 Walter Enders

cor (number=12, partial=partial,qstats,span=4) resids

Correl ati ons of Series RESIDS
Quarterly Data From 1959: 03 To 2001: 01
Aut ocorrel ati ons
1: 0.0154810 0.0029326 -0.0157832 -0.0125802 -0.0346243 0. 0536726
7. -0.0680555 0.1041120 -0.1047616 0.0499244 -0.1387784 0.0229181
Partial Autocorrel ations
1: 0.0154810 0.0026936 -0.0158741 -0.0121047 -0.0341736 0. 0546344
7: -0.0702982 0.1061879 -0.1110885 0.0575503 -0. 1455796 0. 0333431

Lj ung-Box Q Statistics

Q4) = 0.1125. Significance Level 0.99847633
Q8 = 3.5673. Significance Level 0.89390219
Q12) = 9.5558. Significance Level 0.65486726

All of the autocorrelation and partial autocorrelations are small and the Ljung-Box Q(4), Q(8)
and Q(12) statistics do not indicate the values are statistically significant. Moreover, the
individual t-statistics suggest that only one of the autocorrelation coefficientsis insignificant at
conventional significance levels. However, the lags of {drs} are correlated with each other so
that the individual t-statistics can be misleading. We might be concerned that the model is over-
parameterized since sum of coefficients as + 0 + 07 IS approximately zero. The EXCLUDE,
SUMMARIZE, TEST, and RESTRICT instructions alow you to perform hypothesis tests on
several coefficients at once. EXCLUDE isfollowed by a supplementary card listing the variables
to exclude from the most recently estimated regression. RATS produces the F-statistic and the
significance level for the null hypothesis that the coefficients of all excluded variables equal
zero. Consider the following two exclusion restrictions:

exclude

#drs{5to 7}
Nul I Hypothesis : The Follow ng Coefficients Are Zero
DRS Lag(s) 5to 7

F(3,153) = 7.69621 with Significance Level 0.00008002

exclude

constant drs{5to 7}
Nul | Hypothesis : The Followi ng Coefficients Are Zero
Const ant
DRS Lag(s) 5to 7
F(4,153) = 5.78538 with Significance Level 0.00023113

The first exclusion restriction tests the joint hypothesis as = o = a7 = 0 and the second tests the
joint hypothesis ap = 05 = 0g = 07 = 0. The results support those of the t-tests; both of these null
hypotheses can be rejected at conventiona significance levels. SUMMARIZE has the same
syntax as EXCLUDE but is used to test the null hypothesis that the sum of the coefficients
indicated on the supplementary card is equal to zero. In the following example, the value of t for
the null hypothesis as + ag + a7 = 0 is-0.88256.

Linear and Nonlinear Estimation 9

summarize
#drs{5to 7}
Sunmary of Linear Conbination of Coefficients
DRS Lag(s) 5to 7
Val ue -0.1097225
t-Statistic - 0. 88256
Standard Error 0.1243225
Signif Level 0. 3788566

EXCLUDE can only test whether a group of coefficients is jointly equal to zero. The TEST
instruction has a great deal more flexibility; it is able to test joint restrictions on particular values
of the coefficients. Suppose you have estimated a model and want to perform a significance test
of the joint hypothesis restricting the values of coefficients a;, q;, ... , and oy to equal ri, rj, ... ,
and ry, respectively. Formally:

oi=ri, a;j=1; .. and Ox= I

To perform the test, you first type TEST followed by two supplementary cards. The first
supplementary card lists the coefficients (by their number in the LINREG output list) that you
want to restrict and the second lists the restricted value of each. Suppose you want to restrict the
coefficients of the last three lags of drsto all be 0.1 (i.e., as = 0.1, ag = 0.1, and a7 = 0.1). To
test thisrestriction, use:

test
#678

#0.1010.1
F(3, 153) = 12. 20650 with Significance Level 0.00000033

RATS displays the F-value and the significance level of the joint test as = 0.1, ag=0.1, and a; =
0.1. If the restriction is binding, the value of F should be high and the significance level should
be low. Hence, we can be quite confident in regecting the restriction that each of the three
coefficients equals 0.1. To test the restriction that the constant equals zero and that as = 0.1, g =
0.1,and a7 =0.1, use:

10 Walter Enders

test
#1678

#0.0.10.101
F(4,153) = 9.16377 with Significance Level 0.00000116

RESTRICT is the most powerful of the hypothesis testing instructions. RESTRICT can test
multiple linear restrictions on the coefficients and estimate the restricted model. Although
RESTRICT is a bit difficult to use, it can perform the tasks of SUMMARIZE, EXCLUDE, and
TEST. Each restriction is entered in the form:

Biai + Bjaj + ..+ Bk=r

where: a; are the coefficients of the estimated model (i.e., each coefficient is referred
to by its assigned number).
Bi are weights you assign to each coefficient.
and: r represents the restricted value of the sum (which may be zero).

To implement the test, you type RESTRICT followed by the number of restrictions you want to
impose. Each restriction entails the use of two supplementary cards. The first lists the
coefficients to be restricted (by their number) and the second lists the values of the 3; and r.

Examples:
1. To test the restriction that the constant equals zero use:

restrict 1
#1
#10

The first line instructs RATS to prepare for one restriction. The second line is the
supplementary card indicating that coefficient 1 (i.e., the constant) is to be restricted. The
third line imposes the restriction 1.0*ap = 0.

2. Totest therestriction that a; = a3 (i.e., a1 - oz = 0), use:

restrict 1
#23
#1-10

Again, the first line instructs RATS to prepare for one restriction. The second line is the
supplementary card indicating that coefficients 2 and 3 are to be restricted. The third line
imposes the restriction 1.0*a; - 1.0a, = 0.

Linear and Nonlinear Estimation 11

3. If you reexamine the regression output, it seems as if a; + a, = 0, az + a4 = 0 and
05+ 0g = 0. To test these three restrictions use:

restrict 3
#23
#110
#45
#110
#56
#110

;* There are 3 restrictions and one set of supplemental cards
;* for each restriction

Note that RESTRICT can be used with the CREATE option to test and estimate the restricted
form of the regression. Moreover, whenever CREATE is used, you can save the regression
residuals simply by providing RATS with the name of the series in which to store the
residuals. In the example below, RATS displays the output of the restrictions from Example 3
above, and stores the regression residuas in the series resids. (NOTE: Only a portion of the
output is shown).

restrict(create) 3resids

#23
#110
#45
#110
#56
#110
F(3,153) = 2.25276 with Significance Level 0.08449735

Vari abl e Coef f Std Error T- St at Si gni f
kkhkkkkhkhkkhkkhhkkkhhhkhkkhhhkkhhhkhkhhhkkhhhkhhhhkkhhhkhkhhkkhhhkhkhhkkhhhkhkhhkk hkxkdhkk hxk,kk kxk*,k *x*k**x*x%
* k k%
1. Constant 0. 015301284 0.056541363 0.27062 0.78704020
2. DRS{1} 0. 386719181 0.068502626 5. 64532 0. 00000008
3. DRS{2} -0.386719181 0.068502626 -5.64532 0.00000008
4. DRS{ 3} 0.288370925 0.079736678 3.61654 0.00040262
5. DRS{4} -0.288370925 0.079736678 -3.61654 0.00040262
6. DRS{5} 0. 155835311 0.074036283 2.10485 0.03690688
7. DRS{6} -0. 155835311 0.074036283 -2.10485 0.03690688
8. DRS{7} - 0. 198914927 0.078523550 -2.53319 0.01229020

Notice that the F-statistic (with three degrees of freedom in the numerator and 153 in the
denominator) is 2.25276 with a significance level of 0.08449735. Hence, at the 5%
significance it is possible to rgject the null hypothesis and conclude that the restriction is
binding. At the 10% significance, we accept the null hypothesis.

12 Walter Enders

3. The LINREG Options

LINREG has many options that will be illustrated in the following chapters. The usual syntax of
LINREG s:

linreg(options) depvar start end residuals

list
where:
depvar The dependent variable.
start end The range to use in the regression. The default is the largest common
range of al variables in the regression.
residuals Series name for the residuals. Omit if you do not want to save the
regression residuals.
list Thelist of explanatory variables.

The most useful options for our purposes are:

DEFINE= You can name the equation by setting DEFINE equal to the name
you choose. Later, you can refer to the equation by its name.

[PRINT]/NOPRINT Print the regression output.
VCV/[NOVCV] Print the covariance/correlation matrix of the coefficients.
ENTRIES= Number of entries to use from the supplementary card [all].

Note that LINGEG also contains options for correcting standard errors and t-statistics for
hypothesis testing. The ROBUSTERRORS option computes a consi stent estimate of the
covariance matrix that corrects for heteroscedasticity as in White (1980). ROBUSTERRORS and
LAGS= can produce various types of Newey-West estimates of the coefficient matrix.

Moreover, SPREAD is used for weighted least squares and INSTRUMENTS is used for
instrumental variables. The appropriate use of these optionsis described in Chapter 5 of the
RATS User’s Guide.

LINREG creates a number of variables that you can use in subsequent computations. A partial
list of these variablesis:

%BETA The coefficient vector. The first coefficient estimated is %BETA(1), the
second %BETA(2), and so on. For example, in the output for dr above,
the constant is %BETA(L), the coefficient for dr{1} is %BETA(2), and
so forth.

%X X The (X'X)* matrix. Note that %XX(i,j) contains the estimated
covariance of coefficient i with coefficient j.

%TSTATS

%STDERRS
%NDF
%NOBS
%NREG
%RSS
%RSQUARED
%SEESQ
%DURBIN
%QSTAT
%QSIGNIF
%RHO

Linear and Nonlinear Estimation 13

The vector containing the t-stats for the coefficients. The first t-statistic
iIS%TSTATS(1), the second is %TSTATS(2), and so on.
Vector of coefficient standard errors.>

Degrees of freedom.

Number of observations.

Number of regressors.

Residua sum of sguares.

Centered R2.

Standard error of estimate squared.

Durbin-Watson statistic.

Ljung-Box Q-statistic.

Significance level of Q-statistic.

First-lag correlation coefficient of the residuals.

The internal variables can be called from anywhere in a RATS program (including a procedure).
Y ou need to be a bit careful since the internal variables are recalculated every time you estimate
aregression.

3.1 Using Switch Options

Y ou can see how to work with RATS options by re-estimating the unconstrained AR(7) model of
the change in the 3-month interest rate.

lin(robusterrors) drs
constant drs{1to 7}

Vari abl e Coef f Std Error T- St at Si gni f
khhkkkhhhkkkhhhkkhhhkhdhhhkhdhhhdhhhdhhddhdddhhhdhdddhhxddhdddhhxddhdxdddxddh*x*ddh*x*dk*x*d,*x***x*x%
*

1. Constant 0. 013585280 0. 052823866 0. 25718 0. 79703927
2. DRS{1} 0. 361765228 0.096834548 3. 73591 0.00018704
3. DRS{2} -0.419337490 0. 195669363 -2.14309 0.03210569
4. DRS{ 3} 0. 393346293 0. 123604815 3.18229 0.00146116
5. DRS{4} -0. 185273449 0.151116811 -1.22603 0.22018812
6. DRS{5} 0.201542364 0.112293295 1.79479 0.07268790
7. DRS{6} -0. 096578440 0.136399595 -0.70806 0.47891099
8. DRS{7} - 0. 214686434 0.092486533 -2.32127 0.02027215

Notice that the LINREG instruction now

uses the ROBUSTERRORS option to correct for

possible heteroscedasticity. Since ROBUSTERRORS corrects only the covariance matrix, the
point estimates of the coefficients are necessarily unchanged. If you compare these results to
those obtained earlier, you will see that the option had very little effect on standard errors and the
t-statistics.

% Note that some versions of the Reference Manual incorrectly refer to this as %STDERRORS.

14 Walter Enders

Notice that the ROBUSTERRORS option can be ON or OFF—you can enter
ROBUSTERRORS or NOROBUSTERRORS. Similarly, you can use ether PRINT or
NOPRINT for the regression output or VCV or NOVCV for displaying the covariance matrix. It
is helpful to think of these options as a switch. The option will be executed if the switch is ON
and will be bypassed if the switch is OFF. If neither choice isindicated in the options field of an
instruction, RATS will resort to the default value of that particular option. For all RATS
switching options, you can also turn on the switch by equating its value to 1, and turn off
the switch by equating its value to zero. This can be very useful in writing procedures (see
Chapter 6) sinceit issimple for the user to pass the appropriate switch value to the procedure.

Examples:
1. Sincethe PRINT option isthe LINREG default, all of the following have equivalent effects:

lindrs
lin(print) drs
lin(print=1) drs

comj=1 (wherej isan integer)
lin(print=j) drs

2. Since NOROBUSTERRORS is the LINREG default, all of the following have equivalent
effects:

lin(robusterrors) drs
lin(robusterrors=1) drs

comj=1 (wherej isan integer)
lin(robusterrors=j) drs

3. Since DATES isthe GRAPH default, all of the following have the same effect:
gra(nodates) 1
gra(dates=0) 1

com dates=0
graph(dates=dates)

Linear and Nonlinear Estimation 15

3.2 Using Choice Options

Notice that GRAPH has a number of options requiring you to make choices. For example, the
full set of choicesfor the location of the key is KEY = [none]/upleft/upright/loleft/
loright/above/below/Ieft/right. Similarly, STY LE = [line]/polygon/bar/stackbar/overlap/vertical/
step/symbol. For all RATS choice options, you can select the choice by itsinteger valuein
the choicelist.

Examples:

1. Since NONE is the default value and the first choice for KEY = and BAR is the third choice
for STYLE =, the following will al produce a bar graph without a key:

gra(style=bar) 1
gra(sty = 3) 1

comj=3
gra(key=1,sty=j) 1

2. Suppose you saved the residuals from a regression in a series caled resids. You can obtain
the first 12 autocorrelations in a series called corrs and the partial correlations in a series
called partial by using:
cor(number=12,partial=partial) resids/ cors

You can plot an overlapping bar graph of the ACF and PACF without dates, containing a
header called ACF and PACF, and akey at the bottom of the graph either of the following:

gra(nodates,sty=overlap,key=below,header="ACF and PACF') 2 ; # cors ; # partia

gra(nodates,sty=5,key=7,header="ACF and PACF) 2 ; # cors; # partial

16 Walter Enders

3.3 Using Switches, Choicesand Internal Variables

The best way to illustrate the use of switches, choices and internal variablesisto work with
another example. Economic theory suggests that long-term and short-term interest rates bear a
long-run equilibrium relationship. Suppose that we try to estimate this relationship using the
variables tb3mo and tblyr from the file MONEY _DEM.XLS As afirst step, we might want to
plot the two variables. Consider:*

gra(header="'3-month and 1-yr T-bill rates ,vlabel="annual percentagerate’, $
patter nskey=upleft) 2

#tblyr

#tb3mo

3-month and 1-yr T-bill rates

16
—— TBIYR

- = = TB3MO

12 —

annual percentage rate

NS RARARS SRR AR ERANA SN ANE RN NARS AR NN AR ERARN AR BAR S AR AN RARERARSRA
1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

It appears that both variables are non-stationary and there are periods of time during which they
move apart. Nevertheless, they do seem to bear a strong long-run relationship with each other.
We can estimate this relationship using:

lin tblyr / resids

* Note that a$ indicates that the instruction continues on the next line. The option VLABEL=
‘label” alows you to supply a header for the vertical axis.

Linear and Nonlinear Estimation 17

constant tbh3mo

Vari abl e Coef f Std Error T- St at Si gni f
EE I S S I b I I I e b I b I S S I I I I I I b I b I I I S I I S b I S I I e S I b I
*
1. Constant 0. 6980794657 0.0665742554 10. 48573 0. 00000000
2. TB3MO 0.9167216207 0.0102654419 89.30172 0.00000000

We can obtain the first 12 residual autocorrelations and partial autocorrelations using:
cor (number=12,partial=partial) resids/ cors

Correl ati ons of Series RESIDS

Quarterly Data From 1959: 03 To 2001: 01

Aut ocorrel ati ons
1: 0.6820700 0.3663894 0.2412555 0.1334900 -0.0091483 -0.1024514
7. -0.0096375 0.0551392 0.0106175 -0.0239909 0.0132915 0.0564374

Parti al Autocorrel ati ons
1: 0.6820700 -0.1848049 0.1378831 -0.1048575 -0.1085939 -0.0432259
7: 0.2198241 -0.0441826 -0.0550733 -0.0300141 0.0483862 0.0408635

Lj ung-Box Q Statistics
Q12) = 118. 3055. Significance Level 0.00000000

As expected, the residual autocorrelations seem to decay at a geometric rate. Notice that we used
the QSTATS option--this option produces the Ljung-Box Q-statistic for the null hypothesis that
al 12 autocorrelations are zero. Clearly, this null isrejected at any conventional significance
level. If we wanted additional Q-statistics, we could have also used the SPAN= option. For
example, if we wanted to produce the Q-statistics for lags, 4, 8, and 12, we could use:

cor(number=12,partial=partial ,qstats,span=4) resids/ cors

Since we are quite sure that the autocorrelations differ from zero, we dispense with this option.
Asindicated in the example above, we can graph the ACF and PACF using:

gra(nodates,number=0,sty=5,key=7,header="ACF and PACF' ,patterns=0) 2 $
#cors
partial

18 Walter Enders

ACF and PACF

1.0

08 —

0.6 —

04 —

02 —

0.0

0.2 T T T T T T T T T T T T T

‘ [] CORS | PARTIAL ‘

Notice that we used the PATTERNS option. The default value isNOPATTERNS (i.e., the
default isPATTERNS = 0). With this option OFF, your monitor will show the ACF in black and
the PACF in blue.

Sinceit is clear that the residuals decay over time, we can estimate the dynamic process. Take
thefirst difference of theresids and call the result dresids:

dif resids/ dresids

Now estimate the dynamic adjustment process as:”

p
dresids, = a,resids,_, + Zai dresids ; +¢,
1=1

If we can conclude that o is less than zero, we can conclude that the { resids} sequenceisa
convergent process. However, it is not straightforward to estimate the regression equation and
then test the null hypothesis ap = 0. One problem is that under the null hypothesis of no
equilibrium long-run relationship (i.e., under the null of no cointegration between the two rates),
we cannot use the usual t-statistics. Secondly, we do not know the appropriate lag length (p) to
use when estimating the regression equation.

The ACF suggests that we can look at a relatively short lag lengths athough the partial
autocorrelation coefficient at lag 7 appears to be significant. As such, it seems prudent to
estimate the regression equation using all lags through lag 8. One way to do this to enter the
following program instructions:

>The Engle-Granger test for cointegration requires that -2 < oo < 0. Note that an intercept is not
necessary since regression residuals necessarily have a mean of zero.

Linear and Nonlinear Estimation 19

dif resids/ dresids

lin(noprint) dresids 1961:4 *

#resids{ 1} dresids{1 to 8}

compute aic = %nobs* log(%orss) + 2* (%onreg)

compute shbc = %nobs* log(%orss) + (%onreg)* log(%onobs)
dis'T-stat’ %otstats(1) ‘'Theaic="aic"'and sbc ="sbc

Thefirst line creates the first difference of resids as the series dresids. The next two lines instruct
RATS to regress dresids; on resids.; and on dresids{1 to 8}. In order to ensure that all eight
regressions are estimated over the sample period, the start date on the LINREG instruction is
fixed at 1961:4. Since we are interested in only the t-statistic on resids.;, we suppress the output
using the NOPRINT option. Next, we calculate the Akaike Information Criterion (AIC) and the
Schwartz Bayesian Criterion (SBC) as:°

AIC = T In(residual sum of squares) + 2n
BC =T In(residual sum of squares) + nIn(T)

where: n = number of parameters estimated, including the intercept term (if any),
and T =number of usable observations.

We can use the internal variables constructed by LINREG to create AlIC and SBC since:

%nobs The number of usable observations in the previously estimated model
%rss Theresidual sum of squares in the previously estimated model
%nreg The number of regressorsin the previously estimated model

Since %TSTATS(1) contains the t-statistic for the coefficient on resids.;, the last line displays
this t-statistic the AIC and the SBC. Now, you could go back and rerun the routine after editing
the supplementary card for the LINREG instruction such that:

#resids{1} dresids{1to 7}

However, to preview some of the material in the next chapter, it is more efficient to use RATS
programming language. We can embed the routine in a DO loop:

® The formulas reported here and in the RATS User’s Manual are easily computable monctonic
transformations of the AIC and SBC. They will select the same model as the actual AIC and/or
BC.

20 Walter Enders

doi=18
lin(noprint) dresids 1961:4 *
#resids{1} dresids{1toi} << Note the modification{1to i}
compute aic = % nobs*log(%rss) + 2* (% nreg)
compute shc = % nobs*log(%rss) + (% nreg)*log(% nobs)
* Note the modification to the next line:
dis'Lags. i 'T-stat' %tstats(l) 'Theaic="aic' and shc="shc

end dol
Lags: 1 T-stat -5.79665 The aic = 362.90523 and sbc = 369. 03042
Lags: 2 T-stat -4.46711 The aic = 361.94474 and sbc = 371.13252
Lags: 3 T-stat -4,.64086 The aic = 362.25523 and sbc = 374.50561
Lags: 4 T-stat -4,83109 The aic = 362.34292 and sbc = 377.65590
Lags: 5 T-stat -4.63676 The aic = 364.11804 and sbc = 382.49361
Lags: 6 T-stat -3.38834 The aic = 358.41748 and sbc = 379. 85565
Lags: 7 T-stat -3.40155 The aic = 360.07214 and sbc = 384.57290
Lags: 8 T-stat -3.44382 The aic = 361.59437 and sbc = 389.15772

Now, each time RATS cycles through the LOOP, i increases from 1 to 8. Each time the
supplementary card in encountered, RATS estimates the regression using a lags 1 through i and
displays the results. Regardless of whether we use the 6-lag model selected by the AIC or the 1-
lag model selected by the SBC, the t-dtatistic is sufficiently negative that we reject the null
hypothesis o equals zero. As such, we conclude that the two interest rates are cointegrated.

Linear and Nonlinear Estimation 21

4. Nonlinear Least Squares

Given that many economic variables display asymmetric adjustment, nonlinear estimation
methods have become quite popular. RATS allows you to perform nonlinear estimations in a
number of ways. We will focus on nonlinear least squares and maximum likelihood estimation.
Suppose that you want to estimate the following model using nonlinear least squares:

W= c1th3 + &

Since the disturbance term is additive, you cannot simply take the log of each side and estimate
the equation using OLS.” However, nonlinear least squares allows you to estimate a and [
without transforming the variables. In RATS, you use the following structure to estimate a model
using nonlinear least squares:

NONLIN list of parameters to be estimated
FRML formula name the equation to be estimated
COMPUTE initial guesses for the parameters

NLL S(FRML=formula name) dependent variable

For the example at hand, you could use:

nonlin alpha beta

frml equation_1 y = apha*x**beta
comapha= 1.0, beta=0.5
nlis(frml = equation_1) y

The first instruction informs RATS that two parameters, named alpha and beta, are to be
estimated. The FRML instruction sets up a formula named equation_1, the form of the equation
isy = alpha*x**beta. The COMPUTE instruction provides the initial guesses for alpha and
beta. The last line instructs RATS to use nonlinear least squares (NLLS) to estimate the seriesy
using the formula previously defined as equation_1. In fact, al nonlinear least squares
estimations use this four-step procedure. Specifically:

Step 1. Specify the parameter set to be estimated using the NONLIN instruction. The syntax for
NONLIN is:

NONLIN parameter list

In most instances, the parameter list will be a simple list of the coefficients to be estimated.
You can aso include equality constraints such asa == b or a + b = =1.0 (note the double

" If the model had the form y; = axe; where {&} is log-normal, it would be appropriate to
estimate the regression in logs using LINREG.

22 Walter Enders
equal sign) or weak inequality constraints of the form b.ge.0 or b.le.0. In some instances, you
might find it helpful to use a previously defined VECTOR for the parameter list.

Step 2. The formula needs to be specified. This is accomplished using the FRML instruction.
The syntax for FRML is:

FRML (options) formulaname depvar = function(t)

where:

formula name = the name you choose to give to the formula
depvar = dependent variable

function(t) = the function to be estimated

In the example above, equation_1 is the name of the formula to be estimated, y is the

dependent variable and the equation to be estimated is: alpha*x**beta. It would also be

possible to omit the depvar field and use: FRML equation_1 = alpha* x** beta.

The most useful options for nonlinear least squares estimate are:

LASTREG/[NOLASTREG] Converts the last regression estimated into aformula.

EQUATION=equation to convert Converts the indicated linear equation to a formula
(Use only after estimating the equation).

Step 3. RATS requires initial guesses for the parameters to be estimated. This is accomplished
using COMPUTE.

Step 4. Instruct RATS to estimate the FRML using the NLL S instruction. The syntax is:

NL L S(frml=formulaname, other options) depvar start end residuals coeffs

where:

depvar Dependent variable used on the FRML instruction.
start end Range to estimate.

residuals Series to store the residuals (Optional).

coeffs Seriesto store the estimated coefficients (Optional).

The principal options are:

METHOD = [GAUSS|/SIMPLEX/GENETIC. GAUSS requires a twice
differentia function. USE SIMPLEX if you have convergence
problems. It is possible to use SIMPLEX or GENETIC to refine the
initial guesses before using GAUSS.

ITERATIONS= Maximum number of iterations to use.

Linear and Nonlinear Estimation 23

ROBUSTERRORS/ Asin LINREG, this option calculates a
[NOROBUST] consistent estimate of the covariance matrix.

Note that NLLS defines most of the same internal variables as LINREG including %RSS,
%BETA, %TSTATS and %NOBS. Moreover, NLLS defines the internal variable
%CONVERGED. Note that %CONVERGED = 1 if the estimation converged and otherwise
isequal to 0.

4.1 Changing the Convergence Criteria

Numerical optimization algorithms use iteration routines that cannot guarantee precise solutions
for the estimated coefficients. Various types of ‘hill-climbing’ methods are used to find the
parameter values that maximize a function or minimize the sum of squared residuals. If the
partial derivatives of the function are near zero for awide range of parameter values, RATS may
not be able to converge to the optimum point. Moreover, you should also be cautious of results
indicating that convergence takes place in one iteration; the resulting parameter values and
associated t-statistics are often unreliable. NLPAR allows you to select the various criteria RATS
uses to determine when (and if) the solution converges. As such, the NLPAR instruction allows
you to control the precision of your answers. There are three principal options for NLPAR; the
syntax is:

nlpar (options)

CRITERION= In the default mode, CRITERION=COEFFICIENTS. Here, convergence
is determined using the change in the numerical value of the coefficients
between iterations. Setting CRITERION= VALUE means that
convergence is determined using the change in the value of the function
being maximized.

CVCRIT= Converge is assumed to occur if the change in the COEFFICIENTS or
VALUE isless than the number specified. The default is 0.00001.

SUBITERATIONS=Subiteration limit [30]. Limits the number of new coefficient vectors
examined once a direction has been chosen. You should increase the
limit only if requested by RATS.

Note: CVCRIT and SUBITERATIONS are options for the NLLS and MAXIMIZE instructions.
Unlike NLPAR, the convergence criterion is atered for this estimation only.

24 \Walter Enders

Examples:
1. nlpar(cvcrit=0.0001)

Setting CVCRIT=0.0001 means that RATS will continue to search for the values of the
coefficients that minimize the sum of squared residuals until the change in the coefficients
between iterations is not more than 0.0001.

2. nlls(frml=equation_1, cvcrit=0.0001) y

RATS will continue to search for the values of the coefficients that minimize the sum of
squared residuals until the change in the coefficients between iterations is not more than
0.0001. Unlike example 1, the convergence criterion is 0.0001 for this estimation only. The
instruction nlpar(cvcrit=0.0001) changes the default criterion for all subsequent estimations.

3. nlpar(criterion=value,cvcrit=0.0000001)
Setting CVCRIT=0.0000001 and CRITERION=VALUE means that RATS will continue to

search for the values of the coefficients that minimize the sum of squared residuals until the
change between iterations is |ess than 0.0000001.

4.2 Examples of Nonlinear Least Squares

1. The FRML instruction can include lagged dependent variables. For example, to estimate
yi= 0 y®, + &, you can use:

nonlin alpha beta

frml equation_1y = alpha*y{ 1} **beta
comapha= 1.0, beta=0.5

nlls(frml = equation_1) y

2. The NONLIN instruction allows you to impose restrictions on the parameters. To estimate
Y, SO X X7 X +€,, your first two instructions should be:

nonlin apha alphal apha2 alpha3
frml y = alpha* (x1**alphal)* (x2* * alpha2)* x3* * alpha3

To ensure a; = a, modify the NONLIN instruction such that:
nonlin alpha aphal alpha2 alpha3 alphal==alpha2

To ensure that alpha2 in not negative, use:

Linear and Nonlinear Estimation 25

nonlin alpha aphal alpha2 alpha3 alpha2>=0.
or:

nonlin alpha aphal alpha2 alpha3 alpha2.ge.O.

. Suppose you are having difficulty estimating y: = o y”, + &. If NLLS does not converge, you

can increase the number of iterations from the default value of 40, provide better initial
guesses, use NLPAR or use an aternative estimation method. A useful way to obtain
satisfactory initial guesses is to use the simplex or genetic estimation method for a few
iterations and then switch to the GAUSS method. To apply this technique to the equation
from example 1, use:

nonlin alpha beta

frml equation_1y = alpha*y{ 1} **beta
comapha= 1.0, beta=0.5

nlls(frml = equation_1,method=simplex,iters=5) y
nlls(frml = equation_1) y

The first NLLS instruction uses the simplex method to perform the estimation and the second
uses these results asinitial guesses.

. Time-series forecasters often estimate a nonlinear series using a quadratic or cubic trend.
Alternatively, the series can be ‘linearized with a logarithmic or a square-root
transformation. The appropriately transformed series can then be estimated with a linear time
trend. The issue is to compare the ‘fit’ of the various models. The first four lines of Program
1.2 on the file CHAPTERL.PRG read in the data sst MONEY_DEM.XLS. If you plot the
series rgdp, you will notice that the trend appears to be nonlinear. The next four instructions
of the program plot the time paths of log(rgdpy) and (rgdpy)®>:

log rgdp / Irgdp ; * Log transformation

sgrt rgdp / rgdp_rt ; * Square root transformation
gra(overlay=line, header="Linearized RGDP?, key=below, patterns) 2
lrgdp; # rgdp_rt

26 Walter Enders

Linearized RGDP?
9.2 100

9.0 —

8.8 —

8.6 —

8.0 —

7.8 —

7.6 T T T T T T T T e T e T T T T 40
1959 1963 1967 1971 1975 1979 1983 1987 1991 1995 1999

‘ D LRGDP -— - RGDP_RT ‘

Each series seems to be linear; as such, the most appropriate transformation may not be clear.
Hence, you might try estimating rgdp; using the following three forms:

rgdp; = 0o + astime + astime® ;* Quadratic trend
Irgdp; = 0 + atime ;* Log transformation
rgdp_rt; = ap + astime ;* Square root transformation

A problem arises in comparing the three estimates since each uses a different dependent
variable. Instead, it is possible to estimate the last two equations in the form:®

rgdp, =exp(a, +a,time) +e ;* Exponential trend
and:

rgdp, = (a, +a.time)’ + & * Squared trend
Y ou can estimate the quadratic specification using:

settime=t; set t2 = t*t

® The squared trend model is equivalent to rgdp = a2 + 20 g time+a time? +¢ . Infact, thisisa
guadratic trend with only two free coefficients.

Linear and Nonlinear Estimation 27

lin(noprint) rgdp; # constant time t2

compute aic = %nobs* log(%orss) + 2* (%onreg)

compute sbc = %nobs* log(%orss) + (Yonreg)*og(%onobs)
dis'Theaic="aic' and sbc="sbc

The aic = 2596. 41409 and sbc = 2605. 80379

To estimate the exponential specification, use the following four instructions:

nonlin a0 al

frml model_2 rgdp = exp(a0 + al*time)
comal0=1.,al=0.1
nlis(frml=model_2) rgdp

Vari able Coeff Std Error T- St at Si gni f
kkkkkhkkhkhkkhkhkkkhkhkkhkhkhkhkhkhkkhkhhkhkhkhkhkkkkhkhhkhkhkhkhkkkkhkkhk khkhkhkkkkkk k k kikkkkk*x*%
1. A0 7.8099164840 0.0064018809 1219.94092 0.00000000
2. A1 0.0078135227 0.0000509728 153.28810 0.00000000

compute aic = %nobs* log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%erss) + (Yonreg)*log(%onobs)
dis'Theaic="aic' and shc="sbc

The aic = 2566. 27519 and sbc = 2572. 53499

As such, the both the AIC and SBC select the exponential specification over the quadratic
specification. The sguare root specification can be estimated using:

nonlin a0 al

frml model_3 rgdp = (a0 + al*time)** 2
comald=1.,al=0.1
nlls(frml=model_3) rgdp

compute aic = %nobs* log(%orss) + 2* (%onreg)
compute shc = %nobs* log(%orss) + (Yonreg)*1og(%onobs)
dis'Theaic="aic' and sbc="sbc

The aic = 2649.14346 and sbc = 2655. 40326
Note that the AIC and SBC rate this model as the one with the poorest fit.

5. The Logistic Smooth Transition Autoregressive (LSTAR) Model: The LSTAR model
generalizes the standard autoregressive model to allow for a varying degree of autoregressive
decay. In its simplest form, the LSTAR model can be represented by:®

® To allow the threshold T to be something other than zero, use: 6= B+ exp[y(y,_, ~ r)]g_l

28 Walter Enders

p p
Y =0+ A 0By +) BYis) *&
1=1 1=1

where: 8 =[1+ exp (-yyt_l)]"and y > 0 is a scale parameter.

In the limit, asy — 0 or o, the LSTAR model becomes an AR(p) model since each value of ¢
isconstant. AS Y1 — - o, # —» 0 s0 that the behavior of y;isgiven by 0g + d1yi1 + ... + OpYip
+&. Similarly, asyt1 —» + o, # - 1 s0 that the behavior of y; isgiven by (g + Bo) + (01 + B1)
Ye1 + ...+ (0p + Bp) Yep + & For intermediate values of y, the degree of autoregressive decay
depends on the value of y;.1.

Y ou can see the effects of y using Program 1.3 on the file CHAPTERL1.PRG. Since we are not
interested in using calendar dates, we omit the CAL instruction. The first instruction sets the
default length of a series to 101 entries. The second instruction creates the series y; since t
runs from 1 to 101, y runs from —5.0 to +5.0. Each of the next four SET instructions creates a
series representing 6 as afunction of yy; for y=0.5, 1, 2.0 and 5.0.

al 101

sety =-5.1+0.1*t

set thetal = (1 + exp(-0.5*y))**-1
set theta? = (1 + exp(-y))**-1

set theta3 = (1 + exp(-2*y))**-1
set thetad = (1 + exp(-5*y))**-1

The remainder of the program creates a scatter diagram of the various functions of 6. Note
that y acts as a smoothness parameter; for y; near zero, movements in y; have small effects on
6 whenyissmall.

comlabels=||'0.5", 1.0, '2.0', '5.0," ||
scatter (header ='Effects of Gamma on
Theta',style=lines,patter ns klabels=labels,key=below, $
viabel="THETA' ,hlabel="GAMMA") 4
#ythetal ; #ytheta2 ; #y theta3; #y thetad

Linear and Nonlinear Estimation 29

Effects of Gamma on Theta

THETA

Now, use Program 1.4 to read in MONEY_DEM.XLS. Form the logarithmic change in M3
and call the resulting series dim3:

set dim3 = log(m3) - log(m3{1})
Next, estimate dim3; as an AR(1) process and obtain the AIC and SBC using:

lin dim3/resids; # constant dim3{1}

Vari abl e Coef f Std Error T- St at Si gni f

R I S b S b O S kS S R kS O R O o S R S R R

1. Const ant 0. 0030875133 0.0009012005 3.42600 0.00077312
2. DLMB{1} 0. 8436040010 0.0424922667 19.85312 0.00000000

compute aic = %nobs* log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%erss) + (Yonreg)*1og(%onobs)
dis'Theaic="aic' and shc="sbc

The aic = -908. 23350 and sbhc = -901. 99752

Diagnostic checking of the residuals reveals no evidence of any significant autocorrelations.
However, as correlation coefficients are measures of linear association, it is possible that
money supply growth displays nonlinear adjustment. As such, we might want to estimate
dim3; as the following LSTAR model:

dimg, =a, +a,dm_, +— Lot AAM
T+ exp(-yding ;)

30 Walter Enders

Consider the following instructions:

nonlin a0 al b0 b1 gamma gamma.ge.O.

frml Istar dim3 = a0 + al*dim3{ 1} + (b0 + b1*dIm3{ 1})/(1+exp(-gamma* (dim3{1})))
lin(noprint) dim3 ; # constant dim3{ 1}

com a0 = %beta(1), al = %beta(2), b0 = 1., bl = 1., gamma = 500.

The NONLIN instruction indicates that we want to estimate the five parameters a0, al, b0, bl
and gamma. Moreover, the value of gamma is constrained to be greater or equal to zero. The
FRML instruction creates the desired formula and assigns it the name Istar. Next, we need the
initial guesses. The LINREG instruction estimates dim3; as an AR(1) model. The COMPUTE
instruction uses these estimates to obtain the initial guesses for a0 and al. The initial guesses
for b0 and bl were obtained by trial-and-error. The NLLS instruction below instructs RATS
to estimate dim3; using the formula named Istar.

nlis(frml=lstar) dim3/resids

Dependent Vari abl e DLMB

Vari abl e Coef f Std Error T- St at Si gni f
khkhkkkhkhhkkhkhhkkkhhhkhhhhkkhhhkhhhhkkhhhkhdhhkkddhhxkrdhkddhdxkrdhkdhxkrdhxkkdhkxk*d*x*x%%
1. A0 -0. 0026210 0.0031396 -0.83479 0.40506392

2. Al -1. 6729950 0.6362132 -2.62961 0.00937179

3. BO 0. 0094409 0. 0054145 1.74363 0.08312034

4. Bl 2.3815524 0.6026591 3.95174 0.00011560

5. GAMVA 240. 2373406 65.4646481 3.66973 0. 00032915

compute aic = %nobs*log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%erss) + (Yonreg)*1og(%onobs)
dis'Theaic="aic' and shc="sbc

The aic = -909. 99076 and sbc = -894. 40079

The model appears satisfactory. The estimated values of al, bl and gamma are significant at
conventional levels and the estimated value of b0 has a prob-value of 0. 083. If you examine
the autocorrelations of the residuals using CORRELATE, you will find that they are all
insignificant at conventional levels. Moreover, in a linear AR(1) model, we require that the
absolute value of the autoregressive coefficient be less than unity in absolute value. Here, the
maximum and minimum values of dim3; are -0.00538 and 0.03858, respectively. As such, the
autoregressive coefficient a; + B1/(1+exp(-yyw1)) has arange of -0.90542 to 0.76053.

The AIC selects the LSTAR model while the SBC selects the linear AR(1) model. Since a0 is
not significant at conventional levels, we can re-estimate the model without this intercept
term. Hence, modify the first two lines of the estimation procedure so as to eliminate a0:

nonlin al b0 b1 gamma gamma.ge.O.
frml Istar dim3 = al*dim3{ 1} + (b0 + b1*dIim3{1})/(1+exp(-gamma* (dim3{ 1})))

Linear and Nonlinear Estimation 31

Now the NLLS estimation instruction yields:

nlis(frml=lstar) dim3

Vari abl e Coef f Std Error T- St at Si gni f
EE S I b b I S I I I I I I b I S I I I I I S b I I I I I b b I I S I
1. Al -1.3256892 0.5077631 -2.61084 0.00987429
2. BO 0. 0053999 0.0014724 3. 66727 0.00033150
3. Bl 2.0864844 0.5009183 4.16532 0.00005029
4. GAMMA 256. 7862707 61.7734749 4.15690 0.00005199

compute aic = %nobs* log(%orss) + 2* (%onreg)

compute shbc = %nobs* log(%orss) + (Yonreg)*1og(%onobs)
dis Theaic="aic'and shc =" sbc

Theaic= -911.59844 and shc = -899.12647

All of the coefficients are significant at conventional levels. As measured by the AIC and
BC, there is little to choose between the alternative LSTAR models. Moreover, the SBC
continues to select the AR(1) model. As such, there is only mild evidence that dim3; displays
LSTAR adjustment.

32 Walter Enders

5. Maximum Likelihood Estimation

Suppose you wanted to estimate:
Vi = Px + & &~N(O, 0%

Of course, the most straightforward technique is to use OLS. However, you could obtain the
maximum likelihood maximum likelihood estimate of B and 62 using the following instructions:

NONLIN b var
FRML | =-log(var) - (y - b*x)**2/var

COMPUTE b =initial guess, var = initial guess
MAXIMIZE L

Notice that the steps to perform maximum likelihood estimation are very similar to those for
nonlinear least squares. To obtain maximum likelihood estimates:

Step 1. Specify the parameters to be estimated on a NONLIN instruction.

In the example above, the NONLIN instruction prepares RATS to estimate the parameters b
and var. (Since RATS cannot process Greek characters, b and var are used to denote 3 and
0%, respectively.)

Step 2. Define the likelihood (or support) for observation t using a FRML statement.
In the example above, if we are willing to assume that the values of {&} are assumed to be

normally distributed random variables that are independent of each other, the log likelihood
of observationtis:

A, = ~(1/2)In(21) - (/2)In &7 —?iz(yt —Bx)?

.
The values of 3 and var that maximize Z A, areidentical to those maximizing:
t=1

T T
_ 2 _ _ 2
TIno' =55 (v =Ax)
Hence, it is appropriate to use: FRML L = -log(var) - (y - b*x)**2/var

Step 3. Set theinitial values of the parameters using the COMPUTE command.

Step 4. Use the MAXIMIZE instruction to maximize the formula defined in Step 2.

Linear and Nonlinear Estimation 33

The MAXIMIZE instruction is the key to performing any maximum likelihood estimation.
Suppose your data set contains T observations of the variables y; and x; and you have used the
FRML instruction to define the function:

L =f(yt, Xt B)

where: x; and [3 can be vectors (and x; can represent a lagged value of y;).

MAXIMIZE is able to find the value(s) of B that solve:

max S f(y,.x: B)
2

The syntax and principa options of MAXIMIZE are:

maximize(options) frml start end funcval

where:
frml A previously defined formula
start end The range of the series to use in the estimation
funcval (Optional) The series name for the computed values of f(y:, x;; B)

The key options for our purposes are:

METHOD=

ITERATIONS=

ROBUSTERRORS
[NOROBUST]

CVCRIT =

TRACE/[NOTRACE]

RATS s able to use any one of four different algorithms to find the
maximum: BFGS, BHHH, GENETIC or SIMPLEX.

The upper limit of the number of iterations used in the
maximization.

Computes a consistent estimate of the covariance matrix that
corrects for heteroscadesticity.

Convergence limit [0.00001]. Also note that NLPAR affects the
MAXIMIZE instruction.

Prints the intermediate results including the values of the estimated
coefficients and function values. This is useful for tracking
convergence problems.

MAXIMIZE produces a number of internal variables including %BETA, %TSTATS, %NOBS,
%NREG, and %CONVERGED. In addition, the internal variable %FUNCVAL is equal to final
value of the function being maximized.

Note: You can use TEST and RESTRICT with the BFGS and BHHH options. Coefficients are
numbered by their position in the NONLIN statement.

34 Walter Enders

Examples™®
1. To estimate the model y; = ax® + & use:

NONLIN ab var

FRML L = -log(var) - (y - & x**beta)** 2/var
COMPUTE a = guess, b = guess, var = guess
MAXIMIZE L

2. Maximum Likelihood Estimates of the LSTAR Model: In constructing your model, it is often
helpful to define the log likelihood function using several FRML statements instead of one
complicated expression. To illustrate the procedure, recall that in the previous section, we
estimated dim3; as LSTAR mode!:

B, + BdIm3_,
I+exp(-ydim3)

dm3, =a, +a,dm3_, +

We can prepare to obtain the maximum likelihood estimates using the three instructions
below. Notice that the NONLIN instruction is identical to the one we used for the NLLS
estimation. As before, y is restricted to be positive. However, there is no need to restrict var;
the form of the log likelihood function is such that RATS will not find a negative value for
var. The first FRML instruction creates the formula expression; note that expression is used
in the second FRML instruction. In either case, you can obtain the desired formulafor the log
likelihood. However, breaking down a complicated formula into several smaller expressions
isauseful way to prevent errorsin your programs

nonlin a0 al b0 b1l gammavar gamma.ge.O.
frml expression = a0 + al*dim3{ 1} + (b0 + b1*dIm3{ 1})/(1+exp(-gamma* (dim3{1})))
frml Istar = -log(var) - (dIm3 - expression)** 2/var

Next, alinear regression is estimated. The estimated intercept and slope coefficients are used
as the initial guesses for a0 and al. Unlike NLLS, we also need an initial guess for the
estimated variance var. The LINREG instruction creates the internal variable %SEESQ equal
to the standard error of estimate squared. This value is used as the initial guess for var. | had
difficulty finding a solution using the BFGS method. As such, two different MAXIMIZE
instructions are used. The first maximize instruction uses the SIMPLEX method to find the
maximum likelihood estimates of a0 al b0 bl gamma var. The second MAXIMIZE
instruction uses these estimates asitsinitial guesses.

lin(noprint) dim3 ; # constant dim3{ 1}

com a0 = %beta(1), al = %beta(2), b0 = 1., bl = 1., gamma= 500. , var = %seesq
maximize(iters=20,method=simplex) Istar

maximize Istar

19 All of the examplesin the remainder of this chapter arein Program 1.4 of thefile
CHAPTERL.PRG.

Linear and Nonlinear Estimation 35

MAXI M ZE - Estimation by Sinplex
Quarterly Data From 1959: 01 To 2001: 01
Usabl e Observati ons 167

Total Observations 169 Ski pped/ M ssi ng 2
Function Val ue 1603. 41185675
Vari abl e Coef f
kkkkhkkhkhkhkhkhkhkhhkhhkhkhkhkhkkhhhhkhk khkhkkkkkk k k kikk*x*x*x*%
1. A0 0. 00277148
2. Al 0. 19562779
3. BO 0. 00035734
4., B1 0. 64739304
5. GAMVA 349. 87711434
6. VAR 0. 00002487

MAXI M ZE - Estimation by BFGS

Conver gence in 36 lterations. Final criterion was 0.0000000 < 0.0000100
Quarterly Data From 1959: 01 To 2001: 01

Usabl e Cbservati ons 167

Total Observations 169 Ski pped/ M ssi ng 2
Function Val ue 1607. 69576372
Vari abl e Coef f Std Error T- St at Si gni f

kkhkkkkhhkkhkkhhkkkhhhkkhkhhkkhhhkhkhhhkkhhhkhhhhkkhhhkhhhhkkhhhkhdhkkhhhxkddhkkdhdxk,dxkkdhk*x*k,kxk**x*%
1. A0 - 0. 0026446 0. 0032940 -0.80285 0.42206111
2. Al -1.6780205 0. 6332808 -2.64973 0.00805571
3. BO 0. 0094796 0. 0058559 1.61881 0.10548832
4 Bl 2.3860318 0. 5841316 4.08475 0.00004412

The estimated coefficients and their associated t-statistics are very similar to those obtained
from NLLS. Notice that we also have an estimate of the variance equal to 0. 0000243.

3. Maximum Likelihood Estimation of Moving Average Processes: It is straightforward to use
maximum likelihood estimation to estimate a model with unobserved components. Consider
the simple MA(1) model:*

Vi = € + Ba1€ea1

Since the {&} sequence is unobserved, it is not possible to use LINREG or NLLS to estimate
the process. To estimate 31 using maximum likelihood techniques, it is necessary to construct
aformula of the form g = y; - B1&.1. However, the following is an illegal statement because &
isdefined in terms of its own lagged value (a nonresolvable recursive expression):

frml e=y—bl*e{1}

! The RATS instruction BOXJENK isthe most useful way to estimate standard ARMA(p, q)
models. The aim of this exampleisto illustrate the use of a SUBFORMULA on the FRML
instruction.

36 Walter Enders

The way to circumvent this problem is to create a “placeholder” series using the SET
instruction. Then, define the desired formulain terms of the placeholder series. Finaly, use a
SUBFORMULA to equate the placeholder and the desired series. For example, a simple way
to create the formulafor the MA(1) processis:

set temp=0.0

nonlin bl var

frml e =y — b1*temp{ 1}

frml L = (temp =€), -log(var) - e**2/var

The SET instruction generates the placeholder series temp containing all zeros. The first
FRML instruction defines the desired relationship such that e is equal to y; — bitemp{1}. The
second FRML statement uses the SUBFORMULA to equate temp with e (so that & = y; —
b,e.1) and creates the log likelihood L. The way to conceptualize the process is to suppose
you knew 3 and var and wanted to construct the log likelihood function:

N = —i ﬁog(vaf) +(yt _ﬁlgt—l)zlvara

One way to construct the sum would be to loop over the following three instructions
beginning with t = 2:

& = Y - Batemprs
temp; = &
L. = - log(var) — (&)*var

The first time through the loop, t = 2 so that €, =y, - Batemp,, temp, = €, and L, = -log(var) -
(e2)%var. The next time through the loop, t = 3 and €3 = y3 - Bitemp, = ys - P12, Hence, temps
= gz and L3 = - log(var) — (g3)?/var. Continuing through t = T, yields the values L, Ls, ... L.
The sum of these values yields the desired log likelihood function A.

To illustrate the procedure, recall that the change in the 3-month interest rate (drs) was
estimated as an AR(7) process. It turns out that a more parsimonious representation of the
seriesis:

drs; = aidrs.; + a7drs.7 + € + Bi€es

This ARMA model can be estimated using the six instructions listed below. The SET
instruction is used to create the series temp containing all zeros. The NONLIN instruction
prepares RATS to estimate al, a7, b; and var. The first FRML instruction creates the desired
formula such that & is equal to drs — aydrs.; — azdrs.7 — bytempe;. The second FRML
statement uses a SUBFORMULA to equate temp with e (so that the ‘next time through the
loop’ temp; = &) and creates the formula L = - log(var) — €*/var. When you use a placeholder,
you need to properly specify the start end dates on the MAXIMIZE instruction. In the case at
hand, one usable observation is lost as a result of differencing and another seven usable

Linear and Nonlinear Estimation 37

observations are lost as a result of the term drs.7. Since eight usable observations are lost, the
maximization must begin in period 9. If you omit the start end dates, or begin with a starting
date lessthan 9, you will obtain the error message:

SR10. Missing Vaues And/Or SMPL Options Leave No Usable Data Points

set temp = 0.

nonlin al a7 bl var

frml e=drs- al*drs{ 1} - ar*drs{ 7} — b1*temp{1}
frml L = (temp=e), -log(var) - (e)**2/var
comal=04,a7=-3,bl=.5 var=1.

max L 9*

MAXI M ZE - Estimation by BFGS

Conver gence in 14 lterations. Final criterion was 0.0000025 < 0.0000100
Quarterly Data From 1961: 01 To 2001: 01

Usabl e Cbservati ons 161

Functi on Val ue -46. 71000012

Vari abl e Coef f Std Error T- St at Si gni f
khkkkhkkhkhkhkhkhkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhhhhhkhkhkhhkhhhhhkhkhkhhkkhhkkhkhk k khkkkkkkk ki khkk*x*x*x*x*%
1. Al -0.337729340 0.071464518 -4,72583 0.00000229
2. A7 -0. 352966296 0.051912480 -6.79926 0.00000000
3. Bl 0. 817502905 0.044594888 18.33176 0. 00000000
4. VAR 0. 491705037 0.038656437 12. 71987 0. 00000000

The same technique is used for estimating a higher-order MA(Q) process. Suppose you wanted
to estimate the spread as:

drs = a1drs.q + 070rs.7 + & + Pi€ea + Pokr2

Now, the NONLIN instruction contains the coefficient b2. The first FRML instruction uses
temp{ 1} and temp{2} as placeholders for e.; and e.,. The second FRML instruction creates
the desired log likelihood and the COMPUTE instruction provides the initial guesses. Notice
that the start date can remain at 9 since no usable observations are lost from the MA terms.

set temp = 0.

nonlin al a7 bl b2 var

frml e=drs- al*drs{ 1} - a7*drs{ 7} - b1*temp{1} - b2*temp{ 2}
frml L = (temp=e), -log(var) - (e)**2/var
comal=04,a7=-3,bl=.5Db2=0.3 var =1

max L 9*

4. A Bilinear(1,1) Model of the Money Supply: Given that dim3; seems to exhibit nonlinear
behavior, it might be desirable to estimate an alternative nonlinear specification. The bilinear
model generalizes the standard ARMA(p, g) model by allowing for an interaction among the
AR and MA terms. Consider the following bilinear(1,1) specification for dim3;:

38 Walter Enders

dim3; = adim3.q + & + Bi€r1 + CrdiMBea€rs

The bilinear specification is away to allow for nonlinear adjustment. In a period with &.; = 0,
the autoregressive coefficient is a; and the moving average coefficient is 3;. However, the
presence of the interaction term c;dlm3;.1€.; means that the degree of autoregressive decay
and the coefficients of the moving average will change over time. To estimate the bilinear
model, you can use:

set temp = 0.

nonlin al bl cl var

frml e =dIm3 - al*dim3{ 1} - b1*temp{1} - c1*dim3{ 1} *temp{ 1}
frml L = (temp=e), -log(var) - (e)** 2/var

Since the bilinear specification contains an MA term, it is necessary to use the placeholder
temp. The NONLIN instruction prepares RATS to estimate the four parameters al, b1, c1 and
var. The first FRML instruction creates the formula g as dim3; - a1dIm3;.1 - B1€.1 - C:dim3;.1€e.
1. The second FRML instruction usesa SUBFORMULA to equate temp; and & and to create
the log likelihood function. The following COMPUTE instruction provides the initial guesses.
For this example, the BFGS method does not work well unless the initial guesses are quite
good. As such, theinitial guesses are refined using the SIMPLEX method and the final
estimates are reported using the default BFGS method. Notice that the maximization begins
with observation three (one usable observation islost as aresult of differencing and another is
lost as aresult to the term dim3y.,).

comal=.8,bl1=0,c1=0.1, var=0.01
max(method=simplex,iters=4) L 3 *
max L 3*

MAXI M ZE - Estimation by BFGS

Conver gence in 32 Iterations. Final criterion was 0.0000095 < 0.0000100
Quarterly Data From 1959: 03 To 2001: 01

Usabl e Observati ons 167

Functi on Val ue 1590. 80067422

Vari abl e Coef f Std Error T- St at Si gni f
1. Al 0.976977877 0.013236303 73.81048 0.00000000
2. Bl -0. 273500979 0.134326080 -2.03610 0.04174058
3. 9. 121528605 5.860399296 1.55647 0.11959666
4. VAR 0. 000026837 0. 000002077 12. 92295 0. 00000000

Y ou can see that the bilinear coefficient c1 is not significant at conventional levels. As such,
it does not appear that the bilateral model is a satisfactory representation of the {dim3;}
sequence. One word of caution is in order since it appears that 3; is significant at the 5%
level. However, it does not follow that dim3; follows an ARMA(1,1) process. Since dim3;.1€t.1
is correlated with €1 the individual t-statistics can be misleading. In fact, if you eliminate the

Linear and Nonlinear Estimation 39

bilinear coefficient c; and estimate dim3; as a pure ARMA(1,1) model, the MA(1) coefficient is
insignificant. To illustrate the point, consider:

set temp = 0.

nonlin al bl var

frml e = dIim3 - al*dim3{ 1} - b1*temp{ 1}
frml L = (temp=e), -log(var) - (e)** 2/var
comal=.8,bl=0,var=0.01
max(method=simplex,iters=4) L 3 *

max L 3*

Vari abl e Coef f Std Error T- St at Si gni f
khkhkkkhkhhkkhkhhkkkhhhkhkhhhkkhdhhhkhhhkkhhhhkdhkkhhhxhdhdkkddxhdhdkkddxhkdhdkddxhkdhx*k*dx*k**x*x%
1. A1 0.9799 0. 0125 78.12362 0.00000000
2. Bl - 0. 0965 0. 0653 -1.47713 0.13964074

3. VAR 2.7033e-05 2.0527e-06 13. 16948 0. 00000000

40 Walter Enders

6. GARCH Models

Suppose you want to estimate a simple regression model with an ARCH(1) error process:

Vi = Bo + B + &

where: €, =v,\/a, +ag?, andv~WN(0, 1).

Since v; is white-noise, Ew.1& = 0 and Er.1€” = hy = 0o + a162, . Hence, the desired formula for
the log likelihood of y; can be written in the form:

- log(hy) —log(&’)/hy

The autocorrelation function of the residuas is not satisfactory for detecting ARCH errors.
Correlations measure linear association and ARCH errors manifest themselves in the
autocorrelations of the sguared residuals. The Lagrange Multiplier (LM) test for ARCH
disturbances has been proposed by Engle (1982). After you have estimated the most appropriate
model for y;, save the residuals. Suppose you have estimated the model:

liny / resids ; # constant x

Then obtain the square of the residuals and regress these squared residuals on a constant and on
n lagged values of the squared residuals. For example, if n= 4:

set r2 = resids**2
linr2
constant r2{ 1 to 4}

If there are no ARCH or GARCH effects, this regression will have little explanatory power so
that the coefficient of determination (i.e., the usual Re-statistic) will be quite low. With a sample
of T residuals, under the null hypothesis of no ARCH errors, the test statistic TR? converges to a
x? distribution with n degrees of freedom. If TR is sufficiently large, rejection of the null
hypothesis is equivalent to rejecting the null hypothesis of no GARCH errors. On the other hand,
if TR is sufficiently low, it is possible to conclude that there are no ARCH effects,

Since LINREG creates the internal variables %NOBS (i.e., T) and %RSQUARED (R?), you can
easily compute TR and the significance of trsq as y*with 4 degrees of freedom with:

compute trsg = %nobs* %rsquared
cdf chisgr trsq 4

Here, the CDF instruction calculates the marginal significance of trsq using a x° distribution with
4 degrees of freedom. The syntax for CDF is:

Linear and Nonlinear Estimation 41

CDF distribution statistic degreel degree2

where:
distribution The desired F, t, X* or normal distribution is selected using: FTEST,
TTEST, CHISQ, or NORMAL.
statistic The value of the test statistic.
degreel Degrees of freedom for TTEST and CHISQ or numerator degrees of
freedom for FTEST.
degree2 Denominator degrees of freedom for FTEST.

The six instructions below can be used to estimate a regression with ARCH(1) errors. The
NONLIN instruction indicates that the four parameters a0, al, bO and bl are to be estimated.
The three FRML instructions create the appropriate log likelihood. The first FRML instruction
defines g asy: - b0 - b1x. The second defines the conditional variance h as an ARCH(1) process.
The third uses the definitions of e and h to define the log likelihood function L. The MAXIMIZE
command instructs RATS to find the maximum likelihood estimates of a0, al, b0 and b1.

nonlin a0 al b0 bl

frml e=y —b0 - b1*x

frml h=a0 + al*e(t-1)**2
frml L = - log(h) - log(e**2)/h
cominitial guesses

max L 2*

6.1 Examples of GARCH Processes

1. An ARCH Model of the Spread: If you continue to enter the instructions on Program 1.4, you
can form the difference between the 1-year rate and the 3-month rate as:

set spread = thlyr - tb3mo
It appears that an AR(3) model of the spread is quite reasonable. Consider:

lin spread / resids; # constant spread{1 to 3}

Vari abl e Coef f Std Error T- St at Si gni f
khkhkkkhkhhkkhkkhhkhkkhhhhkhhhkkhhhhkkhhhkhdhhkhhhkhdhhkkhhhxkhdhhkkhdhdxkhkdhhkkddxkhkdhdxkddxhdhx*xk,dx***x*%x
1. Constant 0. 047619130 0.024652597 1.93161 0.05517527
2. SPREAD{ 1} 0. 890042258 0.078014946 11. 40861 0. 00000000
3. SPREAI{ 2} -0.318602488 0.101791701 -3.12995 0.00207856
4. SPREAD{ 3} 0.161545395 0.077536269 2.08348 0.03879731

The individual autocorrelations and Ljung-Box Q-statistics of the residuals indicate that there
is no seria correlation in the residual series. The first twelve autocorrelations and the
associated Q-statistics can be obtained from:

42 Walter Enders

cor (number=12,span=4,gstats) resids

Correl ati ons of Series RESIDS

Quarterly Data From 1959: 03 To 2001: 01

Aut ocorrel ati ons
1: 0.0177090 -0.0072871 0.0877679 -0.0372146 0.0197141 -0.1939013
7. -0.0416785 0.0473398 -0.0010301 -0.0979544 -0.1078251 0.0908990

Lj ung-Box Q Statistics

Q4) = 1.6279. Significance Level 0.80377726
Q 8) = 8.9906. Significance Level 0.34309102
Q12) = 14. 3235. Significance Level 0.28052925

Nevertheless, ARCH errors manifest themselves in the autocorrelations of the squared
residuals. Y ou can form the squared residuals and perform the Lagrange multiplier test using:

set r2 = resids**2
linr2; #constant r2{1to 3}

Vari abl e Coef f Std Error T- St at Signif
khkkhkkhkhkhkhkkhkkhkhkhkhhhkhkhhkhhhhhkhkhkhhkhhhhhkhkhkhhhhhhhk khkhkhkhhhhhkhkhkhkkkkkk k k khkkkkk k k%%
1. Constant 0. 046242482 0. 018049071 2.56204 0.01132890
2. R2{1} 0.217038776 0. 078030863 2.78145 0.00606210
3. R2{2} -0. 025838287 0. 079861347 -0.32354 0.74670932
4. R2{3} 0. 159631091 0. 077999507 2. 04657 0.04233716

To test the restriction that the coefficients for the 3-lagged values of r2 all equal zero, use:

compute trsg = %nobs* %orsquared
cdf chisgr trsg 3

Chi - Squar ed(3) = 11.981860 with Significance Level 0.00744556

Since we reject the null hypothesis of no ARCH errors, we can try to estimate the spread using
the following specification:

spread: = 0o + o Spread:.; + ospread;., + azspread:.s + &

g =Vb, +he?, +he?, +he?,
and v ~ WN(0, 1).

As such Eug = 0 and E_&’ = h =h, +be’, +be’, +be?,. The NONLIN instruction
prepares RATS to estimate the six parameters a0, al, a2, a3, b0, bl, b2, and b3. Since the

coefficients in h; cannot be negative, b0, b1, b2, and b3 are constrained to be non-negative.*?
The first FRML creates e as spread; - a0 - al*spread:.; - a2*spread;., - a3*spread..s. The

121t any of these coefficientsis zero, it becomes possible to estimate a negative value for the
conditional variance.

Linear and Nonlinear Estimation 43

second FRML creates the ARCH(3) model for the conditional variance and the third creates
the log likelihood.

nonlin a0 al a2 a3 b0 b1 b2 b3 b0.ge.0. b1.ge.0. b2.ge.0. b3.ge.O.
frml e = spread - a0 - al* spread{ 1} - a2* spread{ 2} - a3* spread{ 3}
frml h=b0 + bl*e{1}**2 + b2*e{ 2} **2 + b3*e{ 3} ** 2

frml L = -log(h) - (e)**2/h

A linear regression (without ARCH errors) is used to obtain the initial guesses for a0, al, a2,
a3 and b0. Theinitial guesses are refined using the SIMPLEX method and the final estimates
are reported using the default BFGS method. Notice that we do not need to specify the start
end dates here. The maximization begins with observation nine (three usable observations are
lost as aresult of the term spread:.s, another three are lost as a result of the term e.3, and two
are missing since tblyr beginsin period 3.).

lin(noprint) spread ; # constant spread{ 1 to 3}

com a0 = %beta(1), al = %beta(2), a2 = %beta(3), a3 = %beta(4) , $
b0 = %seesq, b1 = 0.2, b2=0.2,b3=0.2
max(method=simplex,iters=4) L

max(iters=200) L

MAXI M ZE - Estimation by BFGS

Conver gence in 26 lterations. Final criterion was 0.0000058 < 0.0000100
Quarterly Data From 1959: 01 To 2001: 01

Usabl e Cbservati ons 161

Total Observations 169 Ski pped/ M ssi ng 8
Functi on Val ue 317. 68938352
Vari abl e Coef f Std Error T- St at Si gni f

kkhkhkkkhhhkkhkkhhkkkhhhkhkhhhkkhhhkhkhhhkkhhhkhkhhkkhhhxkhdhhkkhdhhxkhkdhkk dhxkhkdhkk dxkdhx*kk,hdx***x*x%
1. A0 0. 057038155 0.014792370 3.85592 0.00011530
2. Al 0. 793283630 0.066602420 11. 91073 0. 00000000
3. A2 -0.144647372 0.085452808 -1.69272 0.09050946
4. A3 0.100323333 0.052534251 1.90967 0.05617510
5. BO 0. 022879390 0.003589145 6.37461 0.00000000
6. Bl 0.203326143 0.119328231 1.70392 0.08839543
7. B2 0.102314211 0.081292747 1.25859 0.20817858
8. B3 0. 446546881 0.112246500 3.97827 0.00006942

2. The ARCH-M modedl: Engle, Lilien, and Robbins (1987) developed the ARCH in Mean
(ARCH-M) model to allow the conditional variance of an asset’s return to affect the expected
return. The idea is that an increase in risk (as measured by an increase in the conditional
volatility of the asset’ s returns) should increase the expected reward for holding the asset. If r;
is the one-period excess return from holding the asset and h; the conditional volatility, they
estimate a model in the form:

re=Po+ Pih; + &

44 Walter Enders

hy=00+0:(0.4e2, +0.3¢>,+0.2e’,+0.1¢?2,

The appropriate FRML instructions to estimate this model are:

frmle=r-b0-bl*h
frml h = 00 + a1 *(0.4%e {1} %2 + 0.3%£{2} **2 + 0.2%£ {3} **2 + 0.1 *e {4} *¥*2)

The first statement defines & asri - Bo - Bih:. If B1 is positive, increases in risk (as measured
by hy) increase the expected return. The second statement defines the conditional variance.

3. An IGARCH Model of the Spread: The specification for the spread; used above required four
coefficients to estimate the conditional variance h;. A more parsimonious specification is the
GARCH(1, 1) mode!:

spread; = 0o + o Spread:.; + ospread;., + azspread:.s + &
h =b, +be’, +ch

Notice that it is not possible to define h; using a FRML statement. As in the case of a MA
model, the following is an illegal statement because h; is defined in terms of its own lagged
value:

frml h=b0 + bl*e{1}**2 + c1*h{ 1}

The appropriate solution is to use a placeholder for h{1}. As such, the SET statement
initializes the series temp to be zero. NONLIN prepares RATS to estimate the parameters a0,
al, a2, a3, b0, bl, and c1. The NONLIN instruction restricts b0, b1 and cl to be positive. The
first FRML instruction creates e as the AR(3) model of the spread. The second FRML
instruction creates the conditional variance as: h; = b0 + b1*e{ 1} **2 + c1*temp{ 1}. The third
FRML statement uses a SUBFORMULA to equate temp; with h; and to define the log
likelihood L.

set temp = 0.

nonlin a0 al a2 a3 b0 bl c1 b0.ge.0. b1.ge.0. c1.ge.0.

frml e = spread - a0 - al* spread{ 1} - a2* spread{ 2} - a3* spread{ 3}
frml h=b0 + b1*e{ 1} **2 + c1*temp{ 1}

frml L = (temp = h), -log(temp) - (€)** 2/temp

After initializing the parameters with the LINREG and COMPUTE instructions, the first
MAXIMIZE instruction refines the initial guesses with the SIMPLEX method. The second
obtains the final estimates using to BFGS method:

lin(noprint) spread ; # constant spread{ 1 to 3}

com a0 = %beta(1), al = %beta(2) , a2 = %beta(3), a3 = %beta(4) , b0 = %seesq, $
bl1=0.2, c1=05

max(method=simplex,iters=5) L 7 *

Linear and Nonlinear Estimation 45

max(iters=200) L 7*

MAXI M ZE - Estimation by BFGS

Convergence in 26 lterations. Final criterion was 0.0000017 < 0.0000100
Quarterly Data From 1960: 03 To 2001: 01

Usabl e Cbservati ons 163

Functi on Val ue 332. 16269201
Vari abl e Coef f Std Error T- St at Si gni f

R S I S S b b S I I I S S b S I R O S b I S S b S S b
1. A0 0. 047084962 0.013313562 3.53662 0.00040529
2. Al 0.881755754 0.055770333 15. 81048 0. 00000000
3. A2 -0.242706983 0.075485128 -3.21530 0.00130310
4. A3 0.133517900 0.055961728 2.38588 0.01703837
5. BO 0. 001382754 0.000804149 1.71952 0.08551898
6. Bl 0.204112593 0.040165933 5.08173 0. 00000037
7. Cl 0. 806864043 0.028403811 28.40689 0.00000000

Notice that the estimated values of bl and c1 are such that their sum exceeds unity. It is
possible to estimate an IGARCH(1,1) model by restricting bl + ¢1 = 1. The only modification
needed is to replace the NONLIN instruction above with:
nonlin a0 al a2 a3 b0 bl c1 b0.ge.0. b1.ge.0. c1.ge.0. bl+cl.eq.1.

If you re-estimate the model you will find:

max(iters=200) L 7*

MAXI M ZE - Estimation by BFGS

Conver gence in 25 lterations. Final criterion was 0.0000027 < 0.0000100
Quarterly Data From 1960: 03 To 2001: 01

Usabl e Cbservati ons 163

Functi on Val ue 332. 09657868
Vari abl e Coef f Std Error T- St at Si gni f

kkkhkkhkhkhkhkhkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhhhhhhkhkhkhkhhhhkhkhkhkhkhkkhhkhkhk khkkkkkk k k k kk*x*x*x%
1. A0 0. 047285026 0.013536155 3.49324 0.00047720
2. Al 0. 880737529 0.056049098 15. 71368 0. 00000000
3. A2 -0.243572528 0.075258624 -3.23647 0.00121017
4. A3 0. 136373691 0.053798145 2.53491 0.01124748
5. BO 0. 001590978 0.000591367 2.69034 0.00713794
6. Bl 0. 193993102 0.029293592 6. 62237 0.00000000
7. Cl 0. 806006898 0.029293592 27.51479 0. 00000000

4. An ARMA(1,1)-IGARCH(1,1) Model of the Spread: As a final example for this section,
suppose you want to estimate the spread as an ARMA(1,1) model with IGARCH(1,1) errors:

spread; = O + aspreadks + & + P

46 Walter Enders

h =k, +he’, +ch,

Now it is necessary to use two placeholders; one for e.; and another for h.;. In the program
below, templ is the placeholder in the equation for & = spread; - ap - a;Spread:.; - Ber1. AS
such, the first FRML instruction creates e as spread; - a0 - al*spread{ 1} - beta*templ{1}.
Similarly, the second FRML instruction uses the placeholder temp2 to create the conditional
variance as h = b0 + bl*e{1}**2 + cl*temp2{1}. The third FRML instruction uses two
SUBFORMULAS; the first equates templ; with e and the second equates temp2; with h.

set templ = 0. ; set temp2 = 0.

nonlin a0 al betabO bl c1 b0.ge.0. bl.ge.0. cl.ge.0. bl+cl==1.
frml e = spread - a0 - al*spread{ 1} - beta*templ{ 1}

frml h=Db0 + b1*e{ 1} **2 + c1*temp2{ 1}

frml L = (templ = e), (temp2 = h), -log(temp2) - (templ)**2/h

The next two instructions are used to initialize the parameters. For now, it is sufficient to note
that the BOX (constant,ar=1,ma=1,noprint) spread instruction estimates an ARMA (1,1) model
of the spread without GARCH errors. The initial guesses for a0, al, beta and bO are taken
from this ARMA(1,1) moddl. Finally, the MAXIMIZE instructions are used to obtain the
maximum likelihood estimates.

box(constant,ar=1,ma=1,noprint) spread

com a0 = %beta(1), al = Y%beta(2) , beta = Y%beta(3), b0 = %seesq, b1 =0.2, c1=0.5
max(method=simplex,iters=5) L 7 *

max(iters=200) L 7*

MAXIM ZE - Estimation by BFGS

Convergence in 31 Iterations. Final criterion was 0.0000050 < 0.0000100
Quarterly Data From 1960: 03 To 2001: 01

Usabl e Cbservati ons 163

Function Val ue 330. 04737868
Vari abl e Coef f Std Error T- St at Si gni f

kkhkkkkhkhkkhkkhhkkkhhhkhkhhhkkhhhkhhhhkkhhhkhhhhkkhdhrhkhhhkkhdhxkhkhhdxk dxhkdhdxk dx,kdhx*x*,d x*k**x*%
1. A0 0. 0673437939 0. 0205030899 3.28457 0.00102139
2. Al 0. 6930927974 0. 0663996430 10. 43820 0. 00000000
3. BETA 0.2087641734 0.0987429689 2.11422 0.03449664
4. BO 0. 0015160176 0. 0006060467 2.50149 0.01236732
5. Bl 0.1927189124 0.0318551475 6. 04985 0. 00000000
6. Cl 0.8072810876 0.0318551475 25. 34225 0.00000000

Chapter 2:
VARs and Error-Correction Models

A vector autoregression (VAR) is a multivariate generalization of the single-equation
autoregressive model. In the two-variable case, we can let the time path of the {y;} be affected by
current and past redlizations of the {z} sequence and let the time path of the {z} sequence be
affected by current and past realizations of the {y:;} sequence. Consider the following 2-variable
1-lag VAR in standard form:

Ye=a,ta Yy, tayaite,
aZ=ayta,y, tansite,

It is assumed that ej; and ex are serialy uncorrelated but the covariance Ee; ey heed not be zero.
If the variances and covariance are time-invariant, we can write the variance/covariance matrix
as.

_ Wy ol
2= 0
[Oa O

where: Var(e;) = aij and Cov(ey,ex) = 612 = 621.

Note that the right-hand-sides of the VAR equations contain only pre-determined variables.
Since the error terms are serialy uncorrelated with constant variances, each equation in the
system can be estimated using OLS. Moreover, OL S estimates are consistent and asymptotically
efficient. Even though the errors are correlated across equations, estimation using seemingly
unrelated regressions (SUR) does not add to the efficiency of the estimation procedure since both
regressions have identical right-hand-side variables.

If one or more of the equations is constrained so as to have different right-hand-side variables
than the others (including the possibility of differing lag lengths), the system is called a near-
VAR. A near-VAR can be estimated using RATS SUR instruction. In this case, SUR improves
the efficiency of the estimates.

Preparing RATS to perform a VAR analysis consists of the following two steps:*®

Step 1: After making the necessary data transformations, you must define the equations to use in
the VAR. Typically, you will use the following five instructions to set up aVAR:

3 Don't let the saying ‘Y ou can’t teach an old dog new tricks' apply to you. Users of RATS 4.3
and earlier will find that all of their VAR programs are compatible with version 5.0. However, to
take advantage of some of the new featuresin RATS, you must use the MODEL =modelname
OPTION with the SY STEM instruction.

48 Walter Enders

SY STEM(MODEL =modelname)

VARIABLES list of dependent variables

LAGS 1to lag length

DETERMINISTIC list of deterministic (constant, seasonals) and exogenous variables
END(SY STEM)

Step 2: You instruct RATS to estimate the system using ESTIMATE. The typical form of the
ESTIMATE instruction is:

ESTIMATE(OUTSIGMA=V,residuas=resids,other options) start end
For an n-equation VAR, the OPTION RESIDUALS = resids creates n series of residuals. The
residuals from the first equation are stored in the series called resids (1), the residuals from

the second equation are stored in the series called resids(2), and so forth.

Other Options:
OUTSIGMA=matrix Computes and saves the covariance matrix of the residuals.

NOPRINT Suppresses printing of the OL S estimation of each equation.
NOFTESTS Suppresses printing the results of al Granger causality tests.
SIGMA Displays (but does not save) the covariance matrix of the residuals.

Use both OUTSIGMA= and SIGMA if you want to compute, save,
and print the variance/covariance matrix.

COEFFICIENTS=coef Creates a matrix of the coefficients. Column i contains the
coefficients of the i-th equation.

Note that RATS 5.0 recognizes the older form of the ESTIMATE instruction. As such, you
can still use:

ESTIMATE(OUTSIGMA=V, other options) start end residuals
where: residualsisthefirst seriesin ablock of series used to store the residuals.

Examples:

It is straightforward to set up and estimate the following 2-variable 1-lagVAR as a MODEL
called examplel:

Ye=a,ta Y, tayaite,
Z=ayta,y,) tanziite,

The first instruction below prepares RATS to create a system of equations with the name
examplel. The VARIABLES instruction names the two variables in the system and the LAGS
instruction indicates that one lag of each is to be included in the model. The DETERMINISTIC
instruction informs RATS to include a constant term in each regression equation. END closes the
system and ESTIMATE produces the coefficient estimates and the F-statistics for the Granger-
causality tests. The option RESIDUAL S=resids instructs RATS to save the residuals from the y;

VARs and Error Correction Models 49

eguation in a series called resids(1l) and the residuals from the z equation in a series caled
resids(2).

system(model =exampl el)

vary z
lags 1

det constant

end(system)

estimate(residual s=resids)

Modification of the SY STEM-END(SY STEM) block is straightforward. If you want to:

1. Include 4 lags of y; and z in each equation, replace the LAGS instruction with:
lags1to 4

2. Includelags 1, 2, 3, 4, and 8 of y; and z in each equation, replace the LAGS instruction with:
lags1lto4 8

3. Include an exogenous variable w such that the VAR is:

Ye=a,tagy, tapZ T asWt aidWg + €
Z=a,ta,y,, taxZ +axnWtaxW +e,

replace line 4 with:
det constant w{ 0 to 1}
4. Estimate a 3 variable VAR using y, z and w, replace the VARIABLES instructions with:
vary zw
5. Include quarterly seasonal dummy variables so that the system becomes:
Yi=2a,,+ buD1+bioDy + bisDs+a, Y, , +a,z1te,
z=a,,+ bpD1+ bpD2 + bsDs+a,y, | +anzate,
First, create the seasonal dummy variables using:
seasonal dummy
Next, modify the DET instruction such that:

det constant dummy{ -1 to -3}

50 Walter Enders

In some instances, you might want to create centered seasonal dummy variables. Centered
seasonal dummies are normalized to have a mean of zero. For example, instead of taking on
thevalues 0, 0, 0 and 1, a centered seasonal dummy variable for quarterly data has the values
-0.25, -0.25, -0.25 and 0.75. Centered seasonal dummy variables are useful in situations, such
as unit root tests, where you do not want to shift the magnitude of the intercept term. To
estimate the VAR with centered seasonal dummy variables use:

seasonal (centered) dummy
det constant dummy{-1 to -3}

VARs and Error Correction Models 51

1. Hypothesis Testing and M odel Selection

Most hypothesis tests in a VAR involve cross-equation restrictions. The RATIO instruction can

easily perform such tests. Let 2, and 2, be the variance/covariance matrices of the unrestricted
and restricted systems, respectively. Form the test statistic L.:

L = (T-c)(log |Z/]) - log |Zy])

where: || and || are the determinants of 2, and Z;, c is the maximum number of regressors
contained in the longest equation of either VAR system and T is the number of usable
observations.

L can be compared to a)(2 distribution with degrees of freedom equal to the number of
restrictions in the system. If L exceeds this critical value, regject the null hypothesis that the
restriction is not binding (i.e., conclude that the restriction is binding). The usua form of the
RATIO instruction is:

ratio(degrees=df, mcorr=c, other options) start end
series containing the residuals from the unrestricted system
series containing the residuals fromthe restricted system

The first supplemental card lists the series containing the residuals from the unrestricted system
and the second supplemental card lists the series containing the residuals from the restricted

system. RATS uses these lists to construct |, | and |-

where:
start end The range over which the test is to be performed.
degrees=dfc The number of degrees of freedom (equal to the number of restrictionsin
the system).
mcorr=c Sims’ small sample correction for likelihood ratio tests (i.e., the value of

c). Set mcorr equal to the largest number of parameters estimated in any
one of the equations (usually equal to the number of parameters
estimated in each of the unrestricted equations).

The other principal option, NOPRINT, suppresses the printing of the covariance matrices and the
marginal significance level of the test. It is possible to obtain the marginal significance level with
the instruction:

display %signif

The likelihood ratio test is based on asymptotic theory that may not be very useful in the small
samples available to time-series econometricians. Moreover, the likelihood ratio test is only

52 Walter Enders

applicable when one model is a restricted version of the other. Alternative test criteria are the
multivariate generalizations of the AIC and SBC:

AIC=Tlog[Z| + 2N
SBC =T log|Z| + N log(T)

where || = determinant of the variance/covariance matrix of the residuals and N = total number
of parameters estimated in all equations. Thus, if each equation in an n-variable VAR has p lags
and an intercept, N = n?p+n (each of the n equations has np lagged regressors and an intercept).

Note that for aVAR, ESTIMATE creates the following variables:

%NOBS Number of usable observations
%L OGDET Log determinant of the estimate of X
%SIGMA Covariance matrix of residuals

When you use the OUTSIGMA= option on the ESTIMATE statement, RATS computes the
covariance matrix of the residuals. Y ou can fetch the logarithmic determinant of this covariance
matrix using %LOGDET. The following three statements will compute and display the
multivariate versions of the AIC and SBC, respectively:

compute aic = %nobs* %logdet + 2*N
compute sbc = %nobs* %logdet + N*1og(%nobs)
dis‘aic=" aic‘sbc="sbc

where: you must set N to equal the number of parameters estimated in the system.

VARs and Error Correction Models 53

1.1 Innovation Accounting

The variance decomposition and impulse response functions are easily obtained using the
ERRORS instruction. To obtain the impulse responses and variance decompositions using a
Choleski decomposition use:

errors(IMPULSES,MODEL=modelname) equations steps name

where:
modelname The name of the model, as defined on the SY STEM instruction
equations Number of equationsin the VAR.
steps The forecast horizon and the number of impul se responses.
name The name of the covariance matrix used on the ESTIMATE instruction.

If you exclude IMPULSES, RATS calculates and prints only the variance decompositions. Note
that the IMPUL SE instruction (discussed below) gives you more control over calculation and
display of the impulse response functions.

Examples:

1. The sample program used in Section 2 below estimates a 3-equation 12-lag VAR using the
variables dirgdp, dirm2 and drs. The first two instructions create the growth rate of the real
value of the money supply as measured by M2. The SY STEM instruction creates a MODEL
called chap2. The VARIABLES command instructs RATS to create a 3-variable VAR using
dirgdp, dirm2 and drs. Note that 12 lags of each variable and a constant are to be included in
each equation.

set Irm2 = log(m2/price) ;* Createsthelog of the ‘real’ value of m2
dif Irm2/ dirm2 ;* Creates the first-difference of Irm2

system(model=chap?2)
var dirgdp dirm2 drs
lags1to 12

det constant
end(system)

ESTIMATE produces the estimates of the three equations and the F-statistics for the Granger-
causality tests. The variance/covariance of the residuals is saved as the matrix v. The
ERRORS instruction produces forecast error variances (from 1-step ahead through 24-step
ahead horizons) and impulse responses for each of the three variables in the system. The
ordering of the Choleski decomposition is that used on the VARIABLES instruction. Hence,
the errors statement below uses the ordering dirgdp — dirm2 - drs.

54 Walter Enders

estimate(outsigma=v)
errors(impul ses,model=chap2) 324 v

2. Suppose that the VARIABLES instruction in the example above was replaced with:
var drsdirm2 dirgdp
The forecast error variances (from 1-step ahead through 12-step ahead horizons) will be
displayed for each of the three variables in the system. Now the errors(model=chap2) 3 12 V

statement uses the ordering drs — dirm2 — dirgdp. (Note that IMPULSE allows you to
experiment with different orderings without having to re-estimate the model).

VARs and Error Correction Models 55

2. Example: Estimation of a 3-Equation VAR

Program 2.1 in the file CHAPTER2.PRG contains all of the instructions in the sample program
discussed below. Suppose you want to estimate a VAR using the three variables dipgdp, dirm2
and drs. After reading in the data set MONEY_DEM.XLS and constructing the variables, set up
the VAR system with 12 lags of each variable using:

system(model=chap2)
var dirgdp dirm2 drs
lags 1 to 12

det constant
end(system)

Next, estimate the system using:
estimate(noprint,residual s=resids12)

Notice that we used the NOPRINT option—a three variable VAR with twelve lags produces a
substantial amount of output. Since we are not sure if we actualy want the 12-lag model, we
suppress the output. The residuals are saved in the vector of series residsl2; resids12(1) contains
the residuals from the first regression, residsl2(2) contains the residuals from the second
regression and resids12(3) contains the residuals from the third regression.

The next three lines are used to compute and display the multivariate AIC and SBC. Notice that
N = 37*3 since there are thirty-seven estimated coefficients in each of the three equations of the
system.

compute aic = %nobs* %logdet + 2*(37* 3)
compute sbc = %nobs* %logdet + 37* 3* |og(%onobs)
dis'aic=" aic'sbc="shc

aic = - 3198. 00556 sbc = - 2859. 47155

In order to perform alag-length test, we re-estimate the system using only 8 lags. Notice that we
restrict the estimation to begin in 1962:2 so that both systems are estimated over the same
sample period. The residuals are saved in the vector resids8. Hence:

14 The function %EQNSIZE(number) returns the number of regressors in equation number and
%EQNSIZE(O) returns the number of regressors the most recently estimated equation. Since
equations 1, 2 and 3 each contain the same number of regressions, an alternative is to use:
compute aic = %nobs* %logdet + 2* 3* %oeqnsize(1).

56 Walter Enders

system(model=chap2)

var dirgdp dlrm2 drs

lags1to 8

det constant

end(system)

estimate(noprint,residual s=resids8) 1962:2 *

compute aic = %nobs* %logdet + 2* (25* 3)
compute sbc = %nobs* %logdet + 25* 3*1og(%nobs)
dis'aic=" aic'sbc="sbc

aic = -3197.47118 sbc = - 2968. 73198

The AIC selects the 12-lag model whereas the SBC selects the 8-lag model. We can aso
determine lag-length using a likelihood ratio test. Under the null hypothesis, we can restrict lags
9 - 12 of all coefficients in all three equations to be zero. If this restriction is binding, we reject
the null hypothesis. Consider the following set of instructions:™

ratio(degr ees=4* 3* 3,mcorr=37) 1962:2 *
#resdsl2
#resids8

Covari ance\ Correl ati on Matrices

RESI DS12(1) RESI DS12(2) RESI DS12(3)
RESI DS12(1) 0.00004258409 0. 2427449755 0.2104634745
RESI DS12(2) 0.00000843189 0. 00002833363 -0.2239885437
RESI DS12(3) 0.00075612185 -0.00065639951 0. 30309775570

RESI DS8(1) RESI DS8(2) RESI DS8(3)
RESI DS8(1) 0.00004674920 0.1932339871 0. 2567983642
RESI DS8(2) 0.00000726876 0.00003026766 -0.2174072492
RESI DS8(3) 0.00112342275 -0.00076529225 0.40938101386

Log Determinants are -21.923113 -21.458149
Chi - Squar ed(36) = 55.330714 with Significance Level 0.02068921

The RATIO instruction uses DEGREES=4* 3*3 since the 8-lag model eliminates four lags of
three variables in each of the three equations. MCORR = 37 since there are 37 coefficientsin the
unrestricted equations of the system. The elements along the principal diagona of the

1> Note that resids12 contains the series resids12(1), resids12(2) and resids12(3) and that resids8
contains the series resids3(1), resids8(2) and resids3(3). Thus, it is sufficient to use resids12 on
the first supplementary card and resids8 on the second supplementary card. The identical output
is obtained using:

ratio(degrees=4* 3* 3,mcorr=37) 1962:2 *
#resids12(1) resids12(2) resids12(3)
resids8(1) resids8(2) resids3(3)

VARs and Error Correction Models 57

Covariance\Correlation Matrices are the autocovariances of the residuals. For example, in the
12-lag model, the variance of the residuals from the drs equation is 0. 30309775570. The
residua covariances are in the lower portion of the matrices (i.e., below the diagonal) and the
residual correlations are in the upper portion of the matrices. The log determinants of the
unrestricted and restricted models are - 21. 923113 and - 21. 458149, respectively. Given the

calculated value of)(2 = 55.330714, the restriction is binding at the 5% (but not the 1%)
significance level. Thus, the AIC and likelihood ratio test both select the 12-lag model.

Block Exogeneity:

We can perform a block exogeneity test to determine whether lags of drs enter the equations for
dirgdp and dirm2. The nameis a bit misleading; | prefer to use the term *block exclusion’ test. If
lags of drs can be excluded from both the dirgdp and dirm2 equations, we can model these two
variables using a simple 2-variable VAR. The way to perform the test is to estimate a VAR with
the lags of drs and a second without the lags. Consider:

system(model =unrestricted)

var dirgdp dirm2

lags1to 12

det constant drs{ 1 to 12}
end(system)
estimate(noprint,residual ssunrest)

system(model =restricted)

var dirgdp dlirm2

lags1to 12

det constant

end(system)
estimate(noprint,residual s=rest)

The first block of instructions estimates a VAR for dirgdp and dirm2 that includes the 12 lags of
drs. Even though drsis not deterministic, the DETERMINISTIC instruction alows you include
deterministic regressors and variables that are not estimated within the system. The residuals of
this unrestricted VAR are saved in unrest. The second block of instructions estimates a 2-
variable VAR without the lags of drs and saves the residuals in rest. The likelihood ratio test has
24 degrees of freedom (12 lags of drs are excluded from each equation) and mcorr = 37 (each
regression in the unrestricted model has 37 regressors).

ratio(degr ees=24,mcorr=37)
#unrest ; #rest

Log Determ nants are -20.596224 -20.059977
Chi - Squar ed(24) = 63.813364 with Significance Level 0.00001814

58 Walter Enders

The restriction is clearly binding. Since the lags of drs should be included in the dirgdp and
dirm2 equations (so that drsis not block exogenous), we need to return to the 3-variable VAR.
Y ou can confirm that the multivariate AIC and SBC aso indicate that drsis not block exogenous.

I nnovation Accounting:

To obtain the variance decompositions and impulse responses, it is necessary to re-estimate the
system in order to save the variance/covariance matrix. Use the OUTSIGMA= option on the
ESTIMATE instruction to save the covariance matrix as V.

system(model=chap?2)
var dlrgdp dirm2drs
lags1to 12

det constant
end(system)
estimate(outsigma=v)

F- Tests, Dependent Vari abl e DLRGDP

Vari abl e F-Statistic Si gni f
DLRGDP 1.3277 0. 2078223
DLRM 2.1065 0. 0193254
DRS 3. 3135 0. 0002667
F- Tests, Dependent Vari able DLRWR

Vari abl e F-Statistic Si gni f
DLRGDP 0. 8990 0. 5494694
DLRM 8. 5958 0. 0000000
DRS 3.9210 0. 0000285
F- Tests, Dependent Vari abl e DRS

Vari abl e F-Statistic Si gni f
DLRGDP 5. 4620 0. 0000001
DLRM2 2. 3067 0. 0097938
DRS 8. 0504 0. 0000000

The ESTIMATE instruction will produce the equivalent output of three OLS regression
estimates for each of the three equations in the system. To save a considerable amount of space,
the output box above reports only the Granger-causality tests. At conventional significance
levels, dirm2 and drs Granger-cause dirgdp, dirgdp does not Granger-cause dirm2 and all
variables Granger-cause drs.

It is straightforward to obtain the impul se responses using the ERRORS instruction. As indicated
above, we can obtain the impulse responses and variance decompositions using the ordering
dirgdp — dirm2 — drswith the following set of instructions:*®

16 Although RATS produces the impulse responses for periods 1 through 24, only the first three
impulses are shown here. RATS displays the variance decompositions for al forecast horizons
through 24; we display only the 1-step, 8-step, 12-step and 24-step ahead forecast error
variances,

VARs and Error Correction Models 59

errors(impulsesmodel=chap2) 324 v

As shown on the next page, a one standard deviation shock to dirgdp (approximately equal to
0. 00653 units) induces a contemporaneous increase in dirm2 by 0.00129 units and a
contemporaneous increase in drs by 0. 11587 units. After one period, dirgdp is still 0. 00093
units above its initial value, while dirm2 and drs are 0. 00058 and 0.21130 units away from
their initial values. On the other hand, a one standard deviation shock to dirm2 (equal to 0. 00516
units) has no contemporaneous effect on dirgdp but induces a contemporaneous decrease of
-0.15611 units on drs. After one period, dirgdp = 0. 00069, dirm2 = 0.00430 and drs =
-0.10718. Given the ordering of the Choleski decomposition, a one standard deviation drs
shock (equal to 0. 51507) has no contemporaneous effect on the other variables in the system.
After one period, dirgdp = 0. 00144, dirm2= -0.00221 anddrs= 0. 20055.

Responses to Shock in DLRGDP

Entry DLRCGDP DLRwVR DRS
1 0. 006525648724 0.001292115488 0.115869223380
2 0. 000928019134 0. 000576615555 0.211296040285
3 0.000473985466 -0.000059458005 0.088298485503

Responses to Shock in DLRWR

Entry DLRCGDP DLRwVR DRS
1 0. 000000000000 0. 005163725798 -0. 156111296557
2 0. 000686946710 0.004308977026 -0.107180122895
3 0.001613299752 0.002441287281 0.047996790185

Responses to Shock in DRS

Entry DLRGDP DLRM2 DRS
1 0.000000000000 0.000000000000 0.515074112975
2 0.001437493942 -0.002210813500 0.200554826822
3 -0.001143540867 -0.001410062827 -0.132047370809

Deconposition of Variance for Series DLRGDP

Step Std Error DLRGDP DLRWR DRS
1 0.006525649 100. 000 0. 000 0. 000
8 0.008207901 69. 424 15. 408 15. 168
12 0. 008465552 66. 607 16. 607 16. 785
24 0.008657572 65. 424 16. 476 18. 100

Deconposition of Variance for Series DLRW

Step Std Error DLRGDP DLRW2 DRS

1 0.005322934 5. 893 94. 107 0. 000

8 0.008874702 2.823 82. 859 14. 318

12 0.009251525 5.115 78. 899 15. 986

24 0.009627022 6. 524 74. 715 18. 761
Deconposition of Variance for Series DRS

Step Std Error DLRGDP DLRW2 DRS

1 0.550543146 4. 429 8. 041 87.530

8 0.692450601 15. 569 9. 827 74. 604

12 0.793836231 28.501 11. 750 59. 749
24 0.824410351 31. 368 12. 064 56. 567

60 Walter Enders

The variance decompositions suggest a rich interaction among the variables, particularly at the
longer forecast horizons. For example, dirgdp explains all of its 1-step ahead forecast error
variance, but dirm2 and drs explain 15. 408 and 15. 168 percent of the 8-step ahead forecast
error variance in dirgdp, respectively.

Extensions
1. If you want to reverse the ordering of the variables such that drs - dirm2 - dlrgdp use:

system(model=chap?2)

var drsdirm2 dirgdp

lags 1 to 12

det constant

end(system)

estimate(outsigma=v)

errors(impul ses,model=chap2) 3 24 v

2. You can produce multivariate forecasts using the FORECAST instruction. The most useful
form of the instructionis:

FORECAST (model=modelname, results=forecasts) * steps start

where:
modelname The model name used on the SY STEM instruction.
results=forecasts Creates the series forecasts(l), ... , forecasts(n) which contain the
forecasts of the n variables in the system
steps Number of periodsto forecast.
start First period to forecast.

The following FORECAST instruction uses the VAR model chap2 to produce 12 out-of-
sampl e forecasts beginning with 2001:2.

forecast(model=chap2,results=fores) * 12 2001:2

pri/fores

ENTRY FORES(1) FORES(2) FORES(3)
2001: 02 0.007005058389 0.018494401728 -0. 194920330700
2001: 03 0.012225055977 0.015287643122 0.242193105882
2001: 04 0.011144421777 0.015551352314 -0. 624105358190
2002: 01 0.010444864257 0.015556006874 -0.017371770409
2002: 02 0.016462341748 0.014234534497 0.382157540684
2002: 03 0.013156260294 0.012041121844 -0.184462465867
2002: 04 0.011033652617 0.013449326547 0.446338917263
etc.

The 12 forecasts for dirgdp;, dirm2; and drs are contained in the series fores(1), fores(2) and
fores(3), respectively.

VARs and Error Correction Models 61

2.1 Near-VARs

In a near-VAR, the right-hand sides of the equations in the system are not identical. Examples
include:

i. Different lag lengths: Vi = a11(1) Y1 + @11(2)Yi2 + @1221 + €1
Z = axnyr1 + axpzig t ey

ii. The{z} seriesdoes not Granger-cause {yi}: Vi = aq1Ye1 + €x
Z = anYr1 + Az t €y

iii. A third variable {w} affectsonly {z}: Vi = @11Ye1 + &a2Z1 t+
Z = axyr1 T apzi1 + apWg +
€t

Since the equations have different right-hand-side variables, the efficiency of the estimates can
be improved using Seemingly Unrelated Regressions. Use the following method to estimate a
near-VAR using RATS SUR instruction.

Step 1: You must define the equations to use in the near-VAR. The simplest way to set up your
equationsis using the DEFINE= option of the LINREG instruction.

Examples:
1. To set up thefirst near-VAR system above, use:

linreg(define=equationl) y
#y{1to 2} z{1}
linreg(define=equation2) z
#y{1} A1}

2. To set up the third near-VAR system above, use:

linreg(define=equationl) y
#y{1} 1}
linreg(define=equation2) z
#y{1} {1} w

Step 2: Use the SUR instruction to estimate the system. The typical syntax of SUR is:

SUR(OUTSIGMA=V) equations start end
equation

where:
equations The number of equationsin the system you want to estimate.
start end The range of entriesto use.

62 Walter Enders

There is one supplementary card for each equation in the system. The information on each
supplementary card contains the equation name used for the DEFINE= option on LINREG
instruction.

SUR creates the variables: %X X = covariance matrix of coefficients, %NOBS = number of
observations, %NREG = number of regressors, %L OGDET = log determinant of the estimate
of ~ and %SIGMA = final estimate of .

Step 3: To create amodel, GROUP the equations and provide a model name:
GROUP modelname equationl equation?2 ...

Step 4: AsinaVAR, obtain the impulse responses and variance decompositions with:
ERRORS(IMPUL SES,MODEL=modelname) equations steps name
Similarly, the forecasts can be obtained with:

FORECAST(MODEL=modelname, RESUL TS=forecasts) * steps start

Example

The 12-lag VAR for dlrgdp, dirm2 and drsindicated that it was possible to eliminate dirgdp{1 to
12} from the dirgdp and dirm2 equations. To impose these restrictions, set up the following three
equations. Note that eql regresses dirgdp; on 12 lags of dirm2 and drs, eg2 regresses dirm2; on
12 lags of dirm2 and drs, and eq3 regresses drs; on 12 lags of all three variables.

lin(define=eql) dIrgdp ; # constant dirm2{ 1 to 12} drs{1to 12}
lin(define=eg2) dirm2 ; # constant dirm2{1 to 12} drs{1to 12}
lin(define=eg3) drs; # constant dirgdp{ 1 to 12} dirm2{1to 12} drs{1to 12}

Next, estimate the system of equations (saving the covariance matrix of the residuals) using:

sur(outsigma=v) 3
#eql,; #eg2; #eq3

Since SUR creates %NOBS and %LOGDET we can display the multivariate AIC and SBC

using:

compute aic = %nobs* %logdet + 2* (2* 25+37)
compute shc = %nobs* %logdet + (2* 25+37)* log(%onobs)
dis'aic=" aic'sbc="shc

aic = -3217.51381 sbc = -2952.17634

VARs and Error Correction Models 63

Note that there are 25 regressors in the first two equations and 37 regressors in the third
equation. If you compare these values of multivariate AIC and SBC to those from the 3-variable
VAR, you will find that the near-VAR has the better fit.

Now GROUP these three equations into a model called chap2_sur. You can obtain 24 impulse
responses and 1-step to 24-step ahead forecast error variances from a Choleski decomposition of
v using (For brevity, only a partial list of the impulsesis shown):

group chap2_sur eql eg2 eq3
errors(impulses,model=chap2_sur) 324 v

Responses to Shock in DLRGDP

Entry DLRGDP DLRM2 DRS
1 0.006850793364 0.001122502049 0.126303901431
2 0.000558731002 0.000268039828 0.222089855433
3 0.000366973202 -0.000599073730 0.089690963848

Responses to Shock in DLRWR

Entry DLRGDP DLRM2 DRS
1 0.000000000000 0.005388227762 -0.160730936792
2 0.000713637578 0.004584256661 -0.113798715256
3 0.001465609436 0.002529968390 0.045146339746

Responses to Shock in DRS

Entry DL RGDP DLRWR DRS
1 0.000000000000 0.000000000000 0.515144919333
2 0.001322010498 -0.002214755409 0.198307071178
3 -0.001325937131 -0.001076247253 -0. 148405838091

At this point, you could produce 12 out-of-sample forecasts beginning with 2001:2 with:

FORECAST (model=chap2_sur,results=fores) * 12 2001:2

64 Walter Enders

3. Error-Correction Models

RATS works abit differently if you want to estimate an error-correction model. In Chapter 1, we
established a long-run relationship between the 1-year and 3-month T-bill rates. Recall that the
estimated long-run relationship is:
tblyr; = 0. 6980794657 + 0. 9167216207 th3mo;
As such, we might want to estimate an error-correction model of the form:
drlt = Glo[tblyrt.l - 0.6980794657 - 0.9167216207 tb3m_1] + All(l_)dr|t.1 + A12(L)drst.1 + e
drs = ao[tblyri.q - 0.6980794657 - 0.9167216207 th3moy.1] + Axi(L)drliq + Axp(L)drs.; + ex
where: Ajj(L) are polynomialsin the lag operator L.
The steps in setting up the VAR including the error-correction term are a bit different.
Step 1: Estimate the long-run equilibrium relationship, using the DEFINE= option on the
LINREG instruction. This step alows you to pass the estimated coefficients from LINREG to

the VAR system. Thus, in the interest rate example, we can use:

lin(define=spread) tblyr / resids
constant tbh3mo

Step 2: Set up the VAR system using the MODEL= option on the SYSTEM instruction.
Moreover, in the SY STEM-END(SY STEM) block, include the instruction:

ECT name

where: name comes from the LINREG(DEFINE=name) instruction used to estimate the long-
run equilibrium relationship.

Thus, in the interest-rate example, if you want to estimate a model with 5-lagged changesin
each series, use:'’

71t you do your own hypothesis testing, you will find that a 6-lag specification seems quite
reasonable.

VARs and Error Correction Models 65

system(model =term)

var thlyr tb3mo

lags1to 6

det constant

ect spread << NOTE: We used DEFINE = spread on the LINREG instruction.
end(system)

NOTICE THAT WE SET UP THE MODEL IN LEVELS, NOT IN FIRST DIFFERENCES.
RATS will report the resultsin first differences along with the error-correction term. Since we
want 5 lagsin the first differences, we use 6 lags of the level.

Step 3: Enter the appropriate ESTIMATE instruction. For the interest rate example, we can use:

estimate(outsigma=s,residuals=resid)

Dependent Vari able TB1YR

Vari abl e Coef f Std Error T- St at Si gni f
kkhkkhkkhkhkhkhkhkkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhhhhhhkhkhkhkhhhhhkhkhkhkhkhhhkhkhkhkhkhkkkkkhkhkhk khkkkkkkk k * k,**x*%
1 D TB1YR(1) -0. 003371434 0. 256767615 -0. 01313 0.98954030
2 D TB1YR(2) -0.544498028 0.251691768 -2.16335 0.03200757
3 D TB1YR(3) -0.243383900 0.244713790 -0.99457 0.32145878
4. D _TB1YR(4) 0. 076416728 0.223004947 0. 34267 0.73230059
5. D_TB1YR(5) -0.446724622 0.220182611 -2.02888 0.04413868
6 D TB3MX 1) 0.294864692 0.231514842 1.27363 0.20465261
7 D _TB3MX 2) 0.144076253 0.227888340 0. 63222 0.52814921
8 D_TB3MX 3) 0. 492870264 0.222328127 2.21686 0.02805167
9. D_TB3MX 4) -0.159091114 0.201743992 -0.78858 0.43153218
10. D _TB3MJ(5) 0.512723191 0. 198144931 2.58762 0.01055885
11. Const ant 0. 002972876 0.051042727 0. 05824 0.95362828
12. EC1{1} -0. 098335589 0.230405391 -0.42679 0.67010686

Dependent Vari abl e TB3MO

Vari abl e Coef f Std Error T- St at Si gni f
kkkkhkkhkhkhkhhkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhkkkkhkhkhk khkkkkkk k * k,*k*x*%
1 D TB1YR(1) -0.290217816 0.280102775 -1.03611 0.30172315
2 D TB1YR(2) -0. 578900068 0.274565632 -2.10842 0.03656203
3 D TB1YR(3) -0.409504186 0.266953492 -1.53399 0.12701934
4. D _TB1YR(4) -0. 084036114 0.243271740 -0.34544 0.73021920
5. D_TB1YR(5) -0.467464611 0.240192909 -1.94620 0.05339312
6 D _TB3MX 1) 0. 637950862 0.252555018 2.52599 0.01251551
7 D _TB3MX 2) 0. 073016809 0.248598938 0.29371 0.76936005
8 D _TB3MX 3) 0. 742308339 0.242533410 3. 06064 0.00259335
9. D_TB3MX 4) -0. 085007689 0.220078579 -0.38626 0.69982004
10. D _TB3MJ(5) 0. 653078711 0.216152434 3.02138 0.00293320
11. Constant 0. 006499189 0.055681513 0.11672 0.90722864
12. EC1{1} -0.566413670 0.251344739 -2.25353 0.02559250

66 Walter Enders

Step 4. To obtain the impulse responses and variance decompositions, use the instruction
ERRORS(IMPUL SES,MODEL =model).

For the interest rate example, we can use:

errors(impulsesmodel=term) 224 s

Responses to Shock in TBLlYR
Entry TB1YR TB3MO
1 0.6427986990792 0. 6577227963055
2 0.8384894480559 0.9133375666545
3 0.6580803688211 0.6962100440500

Responses to Shock in TB3MO

Entry TB1YR TB3MO
1 0.000000000000 0.243115941739
2 0.049770290069 0.271975555534
3 0.073515992403 0.180662886845

Deconposition of Variance for Series TB1lYR

Step Std Error TB1YR TB3MO

1 0.642798699 100. 000 0. 000

8 2.185202713 98. 828 1.172

12 2.799388183 99. 125 0. 875

24 4.042565038 99. 100 0. 900
Deconposi tion of Variance for Series TB3MO

Step Std Error TB1YR TB3MO

1 0.701216541 87.979 12. 021

8 2.463471405 95. 601 4. 399

12 3.139985944 97. 004 2.996

24 4.463361225 98. 009 1.991

As in the previous example, RATS produces the impulse responses for periods 1 through 24,
only the first three impulses are shown here. RATS displays the variance decompositions for all
forecast horizons through 24; we display only the 1-step, 8-step, 12-step and 24-step ahead
forecast error variances.

To create graphs of the impulse responses, it is helpful to know a bit about matrices. Chapter 5
considers the construction and manipulation of matricesin great detail. For now it is sufficient to
know that it is necessary to create a 2 x 2 matrix of series to hold the response functions (there
are two sets of responses for each of the two variables). This is accomplished by using the
DECLARE instruction to create the 2 x 2 rectangular matrix impul ses.

declare rectangular[series] impulses(2,2)

In most circumstances, it is also necessary to create a matrix of labels. A graph that labels the
variables IMPULSES(2,1) or IMPULSES(2,2) isnot very helpful.

com implabels= || '1 year','3 month'||

VARs and Error Correction Models 67

The impulse responses are created by the IMPUL SE instruction. If we use the MODEL = option,
the form of the IMPUL SE instruction the we need is:

impulse(MODEL =model name,RESUL TS=matrix) equations steps shock to name

where:
model name= The model name used on the STSTEM instruction.
equations Number of equationsin the system. Use * with the MODEL = option.
matrix = Name of the matrix used to store the impulses.
steps The forecast horizon and the number of impul se responses.
shock to The component to be shocked. Use * with the MODEL = option.
name The name of the covariance matrix used on the ESTIMATE instruction.

To create 24 impul ses from the model term that are stored in the matrix impulses, use:
impul se(model =term,result=impul ses,noprint) * 24 * s

The first * is a placeholder for the number of equations and the second tells RATS to shock all
equations. The responses of tblyr and tb3mo to innovations in tblyr are stored in impulses(1,1)
and impulses(2,1), respectively. The response of thlyr and th3mo to innovations in tb3mo are
storedlgn impulses(1,2) and impulses(2,2), respectively. The following two graphs were created
using:

sparaph(hfields=2,vfi=1,header ="l mpulse Response Functions')
graph(header="Shocksto the One Year Rate' key=upright, number =0, $
patter ns,klabelssimplabels) 2
#impulses(1,1) ; #impulses(2,1)
graph(header="Shocksto the 3-month Rate' ,key=upright,number=0, $
patterns, klabels =implabels) 2
#impulses(1,2) ; #impulses(2,2)
spgraph(done)

'8 Note that the impulses are not scaled since all are in the same units,

68 Walter Enders

Impulse Response Functions

Shocks to the 3-Month Rate

Notice that both graphs use the KLABELS = option. This option instructs RATS to use the
vector implabels to label each of the series. The first element in implabels is 1 year and the
second is 3 month. As such, the series on the first supplemental card is labeled 1 year and the
series on the second supplemental card is labeled th3mo.

The programn MONTEVAR.PRG allows you to place confidence bands around your impulse
response functions. The program is distributed with RATS so that it should in the same directory
as RATS itself. Now that you know how to work with VARS, it should be trivial for you to
modify MONTEVAR.PRG so as obtain confidence intervals for the impul se responses.

VARs and Error Correction Models 69

4. Structural Decompositions

A Choleski decomposition is not the only way to obtain the impulse responses. In fact, it is
straightforward to show that the impulse response function is not identified unless additional
restrictions are imposed on the VAR system. The Choleski decomposition is only one way to
impose the necessary number of identifying restrictions. Consider a 2-variable model:

%= A0Y +Y a)7. 4

2= a,(0)y. +) a,(i)z, +e,
Eil

1=1

The impulse response function is obtained using the moving average representation:

%= Bu)e + Y b +e,
2= Y bu()er + Y balde,. +e,

The issue is that the regression residuals {ey;} and {ex} are linear combinations of the pure
innovationsin y; and z. If we call these pure innovations €;; and €, we have:

€1t = Ju1€1t + J12€2t
€t = go1€1¢ + g€t

or.
& = Gg

The nature of the system is such that the pure innovations are serialy uncorrelated and
orthogonal to each other. Nevertheless, a pure innovation in y; will have a contemporaneous
effect on z if g1 # 0 and a pure innovation in z; will have a contemporaneous effect on y; if gi» #
0. Even though €3; and € are serially uncorrelated, their effects have some persistence since the

values of a(i) are not all equal to zero. If we let var(ey) = o and var(ex) = o7, it follows that:

[(b? 0O
Eewex=2, =0 1 0
00 o;0

The problem is to identify the unobserved values of €;; and €, from the regression residuals ey
and ex. If we knew the four values gi1, 012 913 and 914 we could obtain all of the structural shocks
for the regression residuals. Of course, we do have some information about the values of the gj;.
Consider the variance/covariance matrix of the regression residuals:

70 Walter Enders

We know the four elements of this matrix—in fact, you can display the elements of the matrix
using DISPLAY %SIGMA. Asin the earlier sections of this chapter, denote the elements of Z as
Gij:

Z = Eb-ll 012

O
[l
(Oxn Ox[]

Although the values of the g; are unknown and €;; and €x are unobserved, we know that e = Ge;.
Hence, it must be the case that:

Eee' = EGee/G!
Since Eee' = X and Egg;' = %, it follows that:

(o,, 0,0
0 1 12D: G:G'
(Pa O

where: 3. isthe diagonal matrix (defined above) consisting of var(ex) = o/ and var(ex) = 7. If
it is assumed that o2= ¢2= 1, we can write:™®

W, 0p0_U0 9,°+0,° 9u0y * 01,050
2 920 Mu9xt 01292 9212 + 9222 O

Since the four values of oj; are known, it would appear that there are four equations to determine
the four unknown values 911, 912, gz and gz,. However, the symmetry of the system is such that
021 = 012 SO that there are only three independent equations to determine the four elements of G.
The Choleski decomposition adds an additional restriction. If the pure shock to z is to have no
contemporaneous effect on y;, it must be the case that gi» = 0. Similarly, if the pure shock to y; is
to have no contemporaneous effect on z, it must be the case that g,; = 0. In either case, thereisa
fourth equation that can be used to solve for the other three values of the G matrix.

To generalize the argument to an n-th order VAR systems, we have:
> =GG

where: 2~ and G are n X n matrices. Using the same logic, it is possible to show that it is
necessary to impose (n’— n)/2 additional restrictions on G to identify completely identify the

19 This normalization assumption isinnocuous because it simply scales the magnitudes of g1,
012, 013 and Qs

VARs and Error Correction Models 71

system. Regardless of the size of the system, the Choleski decomposition is recursive in that it
sets:

O, O 0O

O

G= %21 92 0 0
O..0

O

ggnl O - O

Since each element above the principle diagonal is zero, there is exactly the number of
restrictions needed to identify al of the remaining elements of G. However, many other
possibilities exist.

RATS alows you to select the form of the G matrix so that you can impose a far richer set of
restrictions on the G matrix. Moreover, it is possible to impose overidentifying restrictions so
that you can test hypotheses concerning the restrictions. Suppose we normalize the elements on
the principle diagonal to be unity. To keep the notation simple, suppose we let the G matrix be:

D l ng " gln D

G:SJH 1 . 92%
..0
B G - 10

There are two cases to consider. In the first case, you completely specify al of the numerical
values of the g;. In such circumstances, you simply create the G matrix and enter the appropriate
values for al of the gj. In the second case, you fix at least (n? = n)/2 elements of G. However,
since the remaining values of the gj; are free parameters, they need to be estimated from the data.
This second case is the most typical and forms the basis of the Sims-Bernanke and Blanchard-
Quah decompositions. Nevertheless, we begin with simple case where G is known.

4.1 Structural VARswith a Known G Matrix

It is straightforward to perform a structural decomposition when G is known. Chapter 5 describes
how to work with matricesin RATS. For now, it is sufficient to know that you can use the
COMPUTE to construct the matrix G and enter the desired numerical values for the g;. Then use
the DECOM P=G option on the ERRORS or IMPUL SE instruction. Since you are not performing
a decomposition using the covariance matrix from the ESTIMATE instruction, do not specify the
covariance matrix in the name field of the ERRORS of IMPUL SE instruction.

Examples

1. In the error-correcting model of the term-structure relationship, variance decomposition and
impulse responses were obtained using a Choleski decomposition. Moreover, 24 impulse
responses were obtained and stored in the matrix impulses using:

72 Walter Enders

impulse(model =term,result=impulses) * 24 * s

Recall that the first few impulses from the model are:

Responses to Shock in TB1lYR
Entry TB1YR TB3MO
1 0.6427986990792 0.6577227963055
2 0.8384894480559 0.9133375666545
3 0.6580803688211 0.6962100440500

Responses to Shock in TB3MO
Entry TB1YR TB3MO
1 0.000000000000 0.243115941739
2 0.049770290069 0.271975555534
3 0.073515992403 0.180662886845

Instead, suppose you want to force the regression residua from the tblyr equation to be
identical to the pure innovation in tblyr and the regression residual from the tb3mo equation
to be identical to the pure innovation in tb3mo. This is equivalent to setting gi2 = g1 = 0.
Consider:

(e,0_0 0de

A B

To equate ey with €1 and e with €y use:
comg=]|1,0.[0., 1|
To obtain 24 impulses using g as opposed to the Choleski decomposition use:

impulse(model=ter m,resultssimpulses,decomp=g) * 24 *

Entry TB1YR TB3MO
1 1.0000000000000 0.0000000000000
2 1.0949641548808 0.2761958544234
3 0.7143622610318 0. 3227246002156

Responses to Shock in TB3MO
Entry TB1YR TB3MO
1 0.000000000000 1.000000000000
2 0.204718331973 1.118707204423
3 0.302390669558 0.743114110710

For comparison purposes, only the first three impulse responses are shown. Now, an
innovation to tblyr has no contemporaneous effect on tb3mo. Also note that an innovation in

th3mo has a 1-unit effect on tb3mo. This follows since G is normalized such thato? and o?
both equal unity.

VARs and Error Correction Models 73

2. Recall that the long-run equilibrium relationship between the two interest rates is such that:
tblyr; = 0.6980794657 + 0.9167216207 tb3moy
so that:
A tblyr, = 0.9167216207 Atb3mo
or: drl;=0.9167216207 drs
For illustration purposes, suppose we wanted to impose a similar restriction on the
innovations. In particular, suppose we wanted to let innovations in tb3mo; be unaffected by
innovations in tblyr; but we wanted innovations in th3mo; to change the contemporaneous

value of tblyr; by 0.9167216207 units. Since the residuas from the tblyr; and tb3mo;
equations are the { ey} and { ex} sequence respectively:

(e,0 1 0.91.[0&[]

A6 1 Hed

Now a pure shock to thlyr; (i.e., an €;; shock) affects the contemporaneous value of thlyr; but
not tb3mo;. A pure shock to tbh3mo; (i.e., an €x shock) has a 1-unit effect on tb3mo; and a
0.9167216207-unit effect on tblyr;.. To obtain the impulse responses using this G matrix,
recall that we estimated the long-run relationship using:

lin(define=spread) tblyr / resids
constant tbh3mo

Immediately after this LINREG instruction insert the line:
com x = %beta(2)

Now the variable x contains the desired slope coefficient. After estimating the error-correction
model, construct G using:

comg=|10,x|0.,2.0]|
To obtain 24 impulses using this G matrix use:

impulse(model=ter m,r esultssimpulses,decomp=g) * 24 *

74 \Walter Enders

Responses to Shock in TBLlYR
Entry TB1YR
1 1.0000000000000
2 1.0949641548808
3 0.7143622610318

Responses to Shock in TB3MO
Entry TB1YR
1 0.9167216207369
2 1.2084956466838
3 0.9572619992845

oNeoNe]

[N S

TB3MO

. 0000000000000
. 2761958544234
. 3227246002156

TB3MO

. 0000000000000
. 3719019157307
. 0389627292717

VARs and Error Correction Models 75

5. The Sims-Ber nanke Decomposition

Suppose that you want to fix at least (n” — n)/2, but not all, of the elements of G. RATS allows
you to estimate an exactly identified or an over-identified structural VAR. The procedure to
obtain a Sims-Bernanke decomposition consists of the following four steps:

Step 1: Use NONLIN to enumerate the elements of G that you want to estimate. Thislist of free
parameters informs RATS of the names of the parameters that will be estimated.

Step 2. DECLARE a FORMULA containing a rectangular matrix and use the formula to
construct the G matrix. Note that you need to provide RATS with an initial guess for each
free parameter to be estimated.

Step 3: Use the CVMODEL instruction to estimate the G matrix. The standard syntax you will
useis:

CVMODEL (factor=output matrix, other options) %sigma frml

where:

output matrix is the name of the matrix used to store the estimate of G. Thiswill be the
matrix you use to obtain the impulse responses on the IMPULSES
instruction.

%sigma is the variance/covariance matrix obtained from estimating the VAR
(i.e,, %sigma=%)

frml isthe FORMULA you created in Step 2.

and other optionsinclude:

iters= maximum number of iterations to use in the nonlinear estimation

method= [BFGS]/SIMPLEX/GENETIC. The BFGS agorithm can be quite
sensitive to the initial guess. However, only the BFGS estimation
method can display standard errors and t-statistics.

Step 4: Now that G has been created, you can use the ERRORS or IMPULSES instruction to
obtain the impul se responses.

Examples

1. In the estimation of the term-structure relationship, we used the IMPULSES instruction to
obtain the impulse responses from a Choleski decomposition of the variance/covariance
matrix s. It is instructive to use the methodology described in Steps 1 to 4 above to perform
the same decomposition. Hence, we want G to have the form:

01 0O
G=
U 1

76 Walter Enders

where: gy is afree parameter to be estimated from the data.
Consider the following instructions:

nonlin g21

dec frml[rect] g_form

frml g_form=||1.,0.|g21, 1. |
comg21=0.01

The NONLIN instruction informs RATS that we want to estimate a single parameter called
g21. The next instruction DECLARES the FORMULA g_form.

The third instruction is used to specify the form of g form. Unlike our previous examples,
there is a free parameter. Since this parameter is estimated using non-linear estimation
methods, we need to provide RATS with an initial value. In the example, the value 0.01 is
used. Next, we use CVMODEL to perform the estimation:

cvmodel (factor=g) % sigma g_form

Covari ance Mbdel - Estimation by BFGS

Conver gence in 5 Iterations. Final criterion was 0.0000039 < 0.0000100
Qbservati ons 167

Log Li kel i hood 309. 97546215

Log Li kelihood Unrestricted 309. 97546215

Vari abl e Coef f Std Error T- St at Si gni f

EE I b R b I I e I I I b b I S I b I I I I I I S R I I I I b I R b b I S b b I I o I

1. @1 -1.023217373 0.029267200 -34.96123 0.00000000

Notice that the estimation converged in only five iterations. If an estimation does not
converge, you can increase the number of iterations from the default value of 40, provide
better initial guesses, or use an alternative estimation method. A useful way to obtain
satisfactory initial guesses is to use the simplex or genetic estimation method for a few
iterations and then switch to the BFGS method. Consider:

cvmodel (factor=g,iters=4,method=simplex) %sigmag_form
cvmodel (factor=g) %sigmag_form

Also note that the reported value of g21 is estimated to be more than 34 standard deviations
from zero. To interpret this estimate, recall that RATS estimates the matrix G such that G*G'
= %sigma. You can display G using:

VARs and Error Correction Models 77

disg
0. 64280 0. 00000
0. 65772 0.24312

For comparison purposes, you can display the variance/covariance matrix using:

dis%sigma:

0.41319
0.42278 0.49170

Standardizing G such that the diagonal elements are unity yields:

O

E,.o;a.. 1H

Finally, you can obtain the impul se responses with the instruction:

impulse(model=ter m,resultssimpulses,decomp=g) * 24 *

Responses to Shock in TB1YR
Entry TB1YR TB3MO
1 0.6427986990792 0. 6577227963170
2 0.8384894480582 0.9133375666674
3 0.6580803688245 0.6962100440585

Responses to Shock in TB3MO
Entry TB1YR TB3MO
1 0.000000000000 0.243115941753
2 0.049770290072 0.271975555549
3 0.073515992407 0.180662886855

Hence, the impulse responses are identical to those obtained using the instruction:
impulse(model=term,result=impulses) * 24 * s
2. In the 3-variable VAR with dirgdp, dirm2 and drs, we obtained impul se responses using:

system(model=chap2)
var dirgdp dlrm2 drs
lags1to 12

det constant
end(system)
estimate(outsigma=v)

errors(impul ses,model=chap2) 324 v

78 Walter Enders

Now suppose we want the contemporaneous rel ationshi ps among the variables to be:

Bt = Eyt
€nt = U218yt + U31€rt + Emt
€t = Ent

where: g, e and e, are the regression residual from the dirgdp;, dirm2; and drs; equations,
and &y, €y and &;¢ are the pure shocks (i.e., the structural innovations) to dlrgdp, dirm2; and
drs, respectively.

The economic interpretation is that the ‘ unforecastable’ change in the log of real M2 (i.e., e)
is due to the pure shocks in dlrgdp;, drs; and dirm2;. Hence, we have imposed a standard
money demand function on the contemporaneous relationship among the three variables.
Moreover, the ‘unforecastable’ portions of dirgdp: and drs (i.e., e and &) are due only to
their own pure shocks. We can model these contemporaneous relationships as:

®,0 01 0 00,0

$,070% 1 G Fag
®E B0 0 15E,E

Notice that we have an over-identified system in that we have restricted four elements of G to
be zero.® To perform this alternative decomposition, use the following instructions:

nonlin g21 g23

dec frml[rect] g form

frml g_foom=|/1.,0.,0.|g21, 1.,923|0.,0.,1. ||
comg2l=-2,0923=0.3

cvmodel (factor=g) %sigmag_form

The NONLIN instruction informs RATS that we want to estimate the parameters g1 and gps.
The next instruction DECLARES the FORMULA g _form. The third instruction is used to
specify the form of g form. The fourth instruction provides initial guesses for the two
parameters. Next, we use CVMODEL to perform the estimation:

cvmodel (factor=g) %sigma g_form

0 Since n = 3, exact identification entails (n* — n)/2 = 3 restrictions.

VARs and Error Correction Models 79

Covari ance Mbdel - Estimation by BFGS
Convergence in 12 Iterations. Final criterion was 0.0000000 < 0.0000100
Observati ons 156

Log Li kel i hood 1706. 46892511

Log Li kelihood Unrestricted 1710. 00278213

Chi - Squar ed(1) 7.06771404

Si gni fi cance Level 0. 00784853

Vari abl e Coef f Std Error T- St at Si gni f
khhkkkhhhkkhhhhkkhhhkhdhhkkhdhhhdhhddhhdhdxkddhddhdxddhddhdxddhddhdxddhx*kdh*x*d*x**dh*x***x*%%
1. &1 -0.247417925 0. 062562114 -3.95476 0. 00007661

2. &3 0. 002782858 0. 000749196 3.71446 0. 00020364

Notice that RATS displays the log likelihood of the restricted and the unrestricted models.
Hence, we might want to relax one of the four restrictions since the difference between the
log likelihoods is significant at the 0. 00784853 level. Nevertheless, we can obtain the
impul se responses using:

impulse(model=chap2,decomp=g) * 24 *

Responses to Shock in DLRGDP
Entry DLRGDP DLRM2 DRS
1 0.006525648724 0.001614562466 0.000000000000
2 0.000674747862 0.001301182781 0.163282831262
3 0.000810331530 0.000383503057 0.118501396316

Responses to Shock in DLRWR
Entry DLRGDP DLRM2 DRS
1 0.000000000000 0.004941736423 0.000000000000
2 0.001074367700 0.003482474955 -0.044400414535
3 0.001212253497 0.001927339570 0.007632342684

Responses to Shock in DRS
Entry DL RGDP DLRWR DRS
1 0.000000000000 -0.001532083485 0.550543146080
2 0.001203397095 -0.003442724093 0.228130866164
3 -0.001598121579 -0.002104694466 -0.143506667217

To graph the impulse responses, we need to create a matrix to hold the nine series (there are
three responses to each of the three shocks). The next two instructions creates a 3 x 3 matrix
called impulses. Be aware that each element of impulses is a series. The RESULT= option
informs RATS to store the nine impulse responses in impulses. Note that impulses(1,1)
contains the responses of dirgdp: to an €, shock and impulses(3,1) contains the responses of
dirgdp; to an & shock.

declare rectangular[series] impulses(3,3)
impul se(model =chap2,result=impul ses,decomp=g) * 24 *

Since the variables have different units, it is useful to plot the standardized responses. Note
that the first entry of impulses(1,1) contains the standard deviation of dirgdp, first entry of

80 Walter Enders

impulses(2,2) contains the standard deviation of dlrm2; and the first entry of impulses(3,3)
contains the standard deviation of drs. Hence, we can standardize the responses of each
variable to an & shock using:

setrl 112 =impulses(1,3)/impulses(1,1)(1)
set r2 112 = impulses(2,3)/ impulses(2,2)(1)
set r3 1 12 = impulses(3,3)/impulses(3,3)(1)

We can graph the three series using:

com implabels = || 'dirgdp’,'dirm2’, 'drs||

GRAPH(HEADER="Responsesto an Interest Rate Shock',KEY =upright,patterns, $
number =1, klabelssimplabels,vlabel='standard deviations') 3

#rl;,#r2; #r3

Responses to an Interest Rate Shock
1.00 ‘

S dirgdp
- == dim2

025 — \ SN
’

standard deviations
1
/

-0.75 T T T T T T T T T T T T

Hence, a one-standard deviation innovation in the 3-month T-bill rate is predicted to reduce
real money balances and (after the second period) real GDP. Even though these results seem
plausible, one caution is in order. Nonlinear estimations of a likelihood function may find a
local not a global maximum. It is always wise to repeat the estimations using various initial
guesses of the parameters to be estimated. In working through this example, | tried a number
of initial guesses. It turns out that initial guesses very near zero lead to an unsatisfactory
result. Consider the output from using initial guesses g,; = 0.02 and g3 = 0.01:

comg2l=.02,923=0.1
cvmodel(factor=g) % sigma g_form

VARs and Error Correction Models 81

Covari ance Mbdel - Estimation by BFGS

Convergence in 3 lterations. Final criterion was 0.0000000 < 0.0000100
Qbservati ons 156

Log Li kel i hood 1696. 18382404

Log Li kelihood Unrestricted 1710. 00278213

Chi - Squar ed(1) 27.63791617

Si gni fi cance Level 1. 46283041e- 07

Vari abl e Coef f Std Error T- St at Si gni f
khhkkkhhhkkhhhhkkhhhkhdhhhkhhhkhdhhkdhhkhdhdkdhhxkhdhdkdhhxddhddhdxddhddhdxkddh*ddh*x*dk*x*k *x***x*x%%
1. &1 0. 0431096354 0. 0000000000 0. 00000 0. 00000000
2. &3 0. 0022092447 0.0007865452 2.80880 0.00497272

Notice that the routine did converge. However, the standard error and t-statistic of gz; are both
shown to be zero. Moreover, the log likelihood of the restricted model is smaller than that for
initial guesses gx1 = -.2, g3 = 0.3. | experimented with a wide range of initial guesses, and
usually obtained the first set of estimations. Hence, it seems reasonable to conclude that initial
guesses near zero lead to alocal, not a global, maximum.

82 Walter Enders

6. The Blanchar d-Quah Decomposition

Blanchard and Quah (1989) provide an alternative way to obtain a structura identification. Let
{y:} be a difference-stationary series and let {z} be stationary. Ignoring any deterministic
regressors, we can estimate a 2-variable VAR of the form:

p p
By, =y 2By +3 ax()z, +e,
P p
2= an(AY +) a7 +e,

In order to use the Blanchard-Quah technique, both variables must be in a stationary form. Since
{yi} is1(1), we use the first-difference of the series. If, in your own work, you find {z} is aso
[(1), useitsfirst-difference in the VAR.

In contrast to the Sims-Bernanke procedure, Blanchard and Quah do not directly associate the
structural variables {e1;} and {ex} with pure shocksto {y} and {z}. Instead, the {y;} and {z}
sequences are the endogenous variables and the {1} and {ex} Sequences represent what an
economic theorist would call the exogenous variables. The structural variables are assumed to be
uncorrelated with each other and to have unit variances.

Although the structural variables are unobserved, they are related to the regression residual s by:

OexO_ 09y 9y, g1

Bem Hz Egzl gzz% £2tH

Changesin g will have no long-run effect on the {y;} sequenceif:

%2 EF_ Zaﬂ(k)é-l_ gzgialz(k) =0

This long-run restriction provides the extra piece of information that allows us to identify the
four elements G matrix. Given the relationship between the regression residuals and the
structural variables, it follows that:

var(ey) = (gu)* + (912)°
var(ey) = (021)” + (922)°
cov(eie) = 011021 + G21022

where: the time subscripts have been omitted since Ay; and z are assumed to be covariance
stationary.

VARs and Error Correction Models 83

Estimation of the VAR provides you with var(e;), var(e;), cov(e;e;) and the coefficient sums 1 -

2ay(k) and 2a;»(k). Hence there are four equations that allow you to solve for the four
unknowns g1, gi2, g1 and ge. Once the G matrix is identified, it is possible to obtain the
impulse responses and variance decompositions using the ERRORS and IMPULSES
instructions.

6.1 The Technical Details

In the n-variable case, (n? — n)/2 restrictions are needed for the exact identification of G. RATS
contains a very simple mechanism that allows you to impose (n? — n)/2 long-run restrictions. Let
X, & and & be the n x 1 vectors of variables, regression residuals and structural shocks,
respectively. The estimated VAR has the form:

Xt = A(L) X¢.1 + &
or.
1-AL) L) =&

where: A(L) = n x n matrix with elements A;(L) and A;(L) is p-th order polynomial in the lag
operator L.

Given that the variables in x, are stationary, we know there exists a moving average
representation of the form:

Xt = C(L)_l &
=C(L) ' Gg

where: C(L) is (1 — A(L) L) and G is the n x n matrix relating the regression residuals and the
structural shocks.

Now let the variables in x; be arranged such that only €;; has along-run effect on xy;, only €;; and
€2 have along-run effect on Xz, only €3¢ €2 and €3 have along-run effect on x3; and so on. Notice
that there are exactly (n? — n)/2 such restrictions. Since the coefficient sums are obtained from
C(1)* G, these restrictions translate into the assumption that each element above the principle
diagonal in C(1)™" G be zero.* The key point to note is that we can impose these restrictions on
C(1)™ G from a Choleski decomposition of C(1)™* GG' (C(1)™)'.

2L |f we evaluate Ayi(L) = an(0) + an(D)L + ann(2)L? + a (3L + ... at L = 1, we obtain the
coefficient sum Zay(K).

84 Walter Enders

Given the relationship between the regression residuals and the structural variables, it follows
that:

Eae' = GG

Yet, Eeg’ is precisely the variance/covariance matrix of the regression residuals that we have
called . Thus, to obtain C(1)* G, we need only to obtain the Choleski decomposition of C(1)™
> (C(D)Y.

Once the VAR has been estimated, you can obtain the desired matrix using:

COMPUTE C = %VARLAGSUMS

COMPUTE S1 = %MQFORM (%SIGMA, TR(INV(C)))
COMPUTE S2 = %DECOMP(S1)

COMPUTE G = C*S2

To explain, when you use the ESTIMATE instruction RATS creates the matrix
%VARLAGSUMS containing the n x n matrix of the appropriate sums of the lag coefficients.
Hence, the first COMPUTE instruction creates a matrix C corresponding to the matrix C(1) in
the discussion above. The function %M QFORM (X, Y) creates a matrix equal to Y XY for Y, xn
and X, x m. INV(C) creates C* and TR(INV(C)) creates the transpose of C*. Hence, the second

instruction creates (C*)'Z(C™)". The function %DECOMP(S1) creates the matrix 2 equal to
Choleski decomposition of (C')ZC* = C'G. Multiplication by C yields the factorization
containing the desired form of G. At this point it is possible to obtain the impulse responses and

variance decompositions using the DECOMP=G option on an ERRORS or IMPULSES
instruction.

VARs and Error Correction Models 85

Example

The 3-variable VAR with dirgdp;, dirm2; and drs is in the appropriate form since all of the
variables appear to be difference stationary. Although there is strong evidence that a 12-lag
model is appropriate, it is instructive to estimate the system using only 1-lag. The goal here isto
illustrate the creation of the desired matrices and coefficient sums; these sums are trivial to
calculate in a 1-lag model. As such, re-estimate the 3-variable VAR using the following
instructions:

system(model=chap2)

var dirgdp dirm2 drs

lags 1

det constant

end(system)
estimate(outsigma=v,noftests)

VAR/ System - Estimati on by Least Squares
Dependent Vari abl e DLRGDP

Vari abl e Coef f Std Error T- St at Si gni f
R R b S S R S I I S b S S R b I S b b S S b S R b
1. DLRGDP{1} 0.1006658743 0.0783973356 1.28405 0.20092557
2. DLRwR{1} 0. 3655350277 0.0719395585 5.08114 0.00000101
3. DRS{1} 0. 0015984145 0.0008299146 1.92600 0.05582371
4. Constant 0. 0047686768 0.0009110037 5.23453 0. 00000050
Dependent Vari abl e DLRWR

Vari abl e Coef f Std Error T- St at Si gni f
khhkkkhhhkkhhhhkkhhhkhhhhkhhhkhdhhhkdhhkhdhdkdhhxhdhhkdhhxddhddhdxddhddhdxddh*ddh*x*dk*x*hk*x***x*x%%
1. DLRGDP{1} 0. 060434793 0. 061966497 0. 97528 0. 33084820
2. DLRwR{1} 0. 629182216 0. 056862167 11. 06504 0. 00000000
3. DRS{1} -0. 003657927 0. 000655978 -5. 57630 0. 00000010
4. Constant 0. 002338028 0. 000720072 3. 24694 0. 00141302
Dependent Vari abl e DRS

Vari abl e Coef f Std Error T- St at Si gni f
EE I b S I S S I I I b I b S I I e I I I I I I S I b I I I b b b I I e S b S b I I b b b b I
1. DLRGDP{1} 12. 09953383 7.74975243 1.56128 0. 12037364
2. DLRMR{1} 7.98709105 7.11138667 1.12314 0. 26300908
3. DRS{1} 0. 15367238 0. 08203892 1.87316 0. 06281438
4. Constant -0. 15426829 0. 09005476 -1.71305 0. 08858167

The ESTIMATE instruction creates the 3 x 3 matrix %VARLAGSUMS. We can display this
matrix using:

dis %varlagsums
0. 89933 - 0. 36554 -0. 00160
-0. 06043 0.37082 0. 00366
-12.09953 -7.98709 0. 84633

86 Walter Enders

Notice that the coefficient on dirgdp:.; in the first equation [i.e., a;1(1)] equals 0. 1006658743
and the first element of %varlagsums is 0. 89933. Hence, %varlagsums(1, 1) = 1 — a;i(1).
Similarly %varlagsums(2, 2) and %varlagsums(3, 3) correspond to 1 — ax(1) and 1 — ags(1),
respectively. The off-diagonal elements %varlagsums(i , j) equal — a;(1).

Next, create the matrices C, sl and s2 using the following three instructions:
comc = %VARLAGSUMS

com sl = %MQFORM (%SIGMA, TR(INV(c)))

com s2 = %DECOMP(S1)

Notice that s2 corresponds to C(1) *G—we want each element above the principle diagonal to be
zero. We can display this matrix using:

diss2
0.01222 0. 00000 0. 00000
0.01210 0.01518 0. 00000
0.18724 -0. 51647 0. 63922

Next, we can compute and display G using:

comg=C*S2; disg

0. 00626 -0.00472 - 0. 00102
0. 00443 0. 00374 0. 00234
- 0. 08599 - 0. 55838 0. 54099

The impul ses responses can be obtained using:

impul ses(decomp=g,model =chap2) * 24 *

6.2 Decomposing GDP, Real M2 and the Interest Rate

The neoclassical macroeconomic model suggests that aggregate demand shocks can have short-
run, but not long-run, effects on economic real variables. As such, the Blanchard-Quah
decomposition is ideally suited for analyzing the effects of various shocks on key
macroeconomic variables. Let &, &n and gy represent a fiscal policy shock, a monetary policy
shock and a productivity shock, respectively. In terms of our 3-variable VAR, we might suppose
that fiscal shocks and monetary shocks have no long-run effects on real GDP. Thus, we have two
of the requisite three restrictions. To obtain a third restriction, it might be argued that fiscal
shocks have no long-run effect on real money balances.

VARs and Error Correction Models 87

The relationship among the regression residuals and the structural shocksis:

e,0 Oy O gl3|:||}m O
0_ o O
t[]~ [P 92 923D mt[]

BH Ba 9% 9:0H«H

Now, restricting the elements of G such that C(1)'G has al elements above the principal
diagonal equal to zero, is identical to assuming that monetary and fiscal policy shocks have no
long-run effect on the {dirgdp:} sequence and that fiscal shocks have no long-run effect on the
{dirm2;} sequence. Estimate the 3-variable VAR using all 12 lags.

Y ou can create the appropriately restricted G matrix using:

compute g=%varl agsums* %decomp(%emagform(%sigma,tr(inv(%varlagsums))))

As in earlier programs, the impulse responses will be saved in a 3 x 3 matrix called impulses.
The next two lines instruct RATS to create this matrix and to obtain the impul se responses using

the decomposition of G:

declare rectangular|series] impulses(3,3)
impulses(model=chap?2,r esult=impulses,decomp=g) * 24 *

Responses to Shock in DLRGDP
Entry DLRCGDP DLRwVR DRS
1 0. 003010662081 0.004756093316 -0.263743931599
2 0. 000447294073 0. 004559080262 -0.063402066434
3 0.001943388494 0.002463374844 0.128481679716

Responses to Shock in DLRWR
Entry DLRGDP DLRM2 DRS
1 -0.003711849678 0.002312008411 0.137086248729
2 0.000701092521 0.000947945412 -0.068523721029
3 0.000027167701 0.000666465186 -0.097559696296

Responses to Shock in DRS
Entry DLRGDP DLRM2 DRS
1 0.004443216973 0.000606481672 0.463405065412
2 0.001645570241 -0.001450397016 0.296041401790
3 -0.000597985872 -0.001199710195 - 0. 038876550562

Since we normalized the shocks to have unit-variances, the interpretation of the absolute
magnitudes of the impulse responses is unclear. We can scale the responses of each variable in
terms of standard deviations. The scaled responsesto afiscal policy shock are obtained using:

set r7 112 = impulses(1,3)/%sigma(1,1)**.5
set r8 1 12 = impulses(2,3)/%sigma(2,2)**.5
set r9 1 12 = impulses(3,3)/%sigma(3,3)**.5

88 Walter Enders

A graph of the scaled responses is obtained from:

com implabels = || 'dirgdp’,'dlrm2’, 'drs||

graph(header ='Responsesto a Fiscal Shock', key=upright, number=1, $

klabelssimplabels,patterns) 3
#r7;,#r8; #r9

Initialy, the fiscal shock acts to increase dirgdp:;, however, by the third quarter dirgdp; is
negative. By construction, the cumulated change in dirgdp; zero. Smilarly, the fiscal shock is
estimated to create a sharp increase in the short-term interest rate. Note that drs is positive for
the first two quarters. Thereafter, drs seems to fluctuate around zero so that the cumulated
change in the 3-month t-bill rate is positive. This is possible since we did not impose any

restriction concerning the effect of the fiscal shock on drs.

Responses to a Fiscal Shock

0.90

\
054 — \

0.18 — \

dirgdp
dirm2
drs

0.00

\
-0.18 —| \ - N
\

-0.36 T T T T T T T T

Chapter 3:
Loops Over Dates and Series

Try thislittle program:#

al 10
scratch 1
setl1=5
pri/1

Notice that the program does not use the RATS CALENDAR Instruction. Instead, line 1
instructs RATS to set the default length of a series to 10—by default, any series will have 10
observations. The second instruction instructs to create one series. The third line instructs RATS
to set 1 equal to 5. This may seem nonsensical at first, and | will explain the meaning in more
detail below. However, since RATS does not display an error message, it must somehow set 1
equal to 5. Perhaps, you can figure out the dilemma by entering line 4 (line 4 instructs RATS to
PRINT over the default range). Y our output should look like:

ENTRY No Label (1)

OO0, WNE
o1 0101010101

tc.

Now you can make sense of the program. There is a series—called 1—that has a length of 10.
Each value of the series (i.e., entries 1 through 10) is equal to the number 5. The point is that the
series called 1 does not have alabel likey, gdp or inflation. It is series number “1” becauseit is
the first series that has been created. Similarly, the entries of the series are not dates like 99:2 or
2001:3. Instead of using dates, RATS numbers each value 1 through 10.

Y ou might want to think of series 1 as a 10 x 1 vector.?® Each element in the vector has the value
of 5. The point is not that RATS can represent a series name by a number and a calendar date by
a number. Instead, RATS aways represents a series by a number. This is true regardless of
whether or not you attach a name or label to the series. You are allowed to attach a label to a
series for convenience. Similarly, RATS aways represents each calendar date by a number. You
are adlowed to attach a date label like 99:2 or 2001:3 for your own convenience. This is true
regardless of whether or not you use the CALENDAR instruction.

22 For your convenience, the programs illustrated in this section can all be found on the file
labeled CHAPTER3_1.PRG.

23 As explained when we discuss matrices, within RATS Programming Language, thereisa
difference between a series and a declared vector.

90 Walter Enders

1. DatesasIntegers

In case you skipped over the last two chapters, note that the file labeled MONEY _DEM.XLS
contains a number of variablesin Excel format. If you open the file labeled CHAPTER3_1.PRG,
you will find Program 3.2; open the file and read in the data set by entering the following four
lines:

cal 195914

all 2001:1

open data a:\money_dem.xIs ;* Modify thislineif your datais not on drive a:\
data(org=obs,format=xIs)

Next, print out the four values of real GDP (rgdp) from 1959:1 through 1959:4 using:

pri 1959:1 1959:4 rgdp
ENTRY RGDP
1959: 01 2273.0
1959: 02 2332.4
1959: 03 2331.4
1959: 04 2339.1

Now try using:

pri(nodates) / rgdp
ENTRY RGDP
1 2273.0
2 2332. 4
3 2331. 4
4 2339.1
165 9191. 8
166 9318.9
167 9369.5
168 9393.7
169 9439. 9

Thus, rdgp is one-dimensional array containing 169 observations or entries. As you can see,
entry 1 is equivalent to 1959:1, entry 2 is equivalent to 1959:2, ... and 2001:1 is entry 169. In
fact, you can substitute the integers for the date labels whenever you find it convenient. For
example, you can obtain first four values using:

pri 14 rgdp
ENTRY RGDP
1959: 01 2273.0
1959: 02 2332.4
1959: 03 2331. 4
1959: 04 2339.1

If you do not want the date |abels use:

pri(nodates) 1 4 rgdp

ENTRY
1

2
3
4

RGDP

2273.0
2332. 4
2331. 4
2339.1

Loops over Dates and Series 91

What about the series tblyr? Recall from Chapter 1, that the first two observations for this series
were NA (or missing). In the language of econometricians, tblyr contains only 167 observations.
Nevertheless, in RATS Programming Language, tblyr contains the same number of entries (i.e.,
169) as al of the other seriesin the data set. Entries 1 and 2 are ssmply recorded as NA. If you

PRINT entries 1 to 4 and entries 165 to 169 you will obtain:

print(nodates) 1 4 tblyr

ENTRY
1

2
3
4

TB1YR
NA
NA
4.493333333333
4.740000000000

print(nodates) 165 169 tblyr

ENTRY
165
166
167
168
169

TB1YR
5. 816666666667
5. 856666666667
5. 803333333333
5. 630000000000
4.416666666667

Thus, you can refer to value of the 1-year T-bill rate in 2001:1 using either tblyr(2000:1) or
tblyr(169). You can DISPLAY the equivalent specifications if you enter:

distblyr(2001:1) tblyr(169)

4.41667

4.41667

1.1 Omitting CALENDAR

Given that al of the seriesin MONEY_DEM.XLS all have 169 entries, you could read in the

data set using:

all 169

open data amoney_dem.xIs
data(org=obs,format=xIs)

92 Walter Enders

In fact, if you want to refer to entries only by number, rather than by date label, you never use
the CALENDAR instruction. However, you would not be able to use date labels. Thus, using
CALENDAR gives you the choice of using date labels or entry values. You cannot use date
labelsif you omit CALENDAR.

Examples:

1. Date arithmetic: Since 2001:1 = 169, it follows that 2001:1-8 =161 is equivaent to 1999:1.
Hence, to print the last two years of the rgdp series you can use:

pri 2001:1-8 * rgdp

Note that RATS will perform the date arithmetic 2001:1-8 if you do not use spaces adjacent to
the minus sign.

2. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the first 100
observations:

set dirgdp = log(rgdp) — log(rgdp{ 1})
lindlrgdp * 100
constant dirgdp{ 1}

The first line creates the logarithmic change of rgdp. The second line prepares RATS to
estimate a regression with dirgdp as the dependent variable such that the last sample point is
observation 100 (Note: A second observation will be lost as a result of the lagged change).
The asterisk instructs RATS to use the default value for the start entry.

3. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the last 100
observations and save the residualsin the seriesresids:

lin dirgdp 2001:1-99 * resids
constant dirgdp{ 1}

Now line 2 instructs RATS to estimate the regression using the start date beginning at 100
observations from the end of the data set. Note that if you want RATS to perform the date
arithmetic 2001:1-100, you cannot put a space on either side of the minus sign. Also note that
you will get precisely the same output using:

lin dirgdp 69 * resids
constant dirgdp{ 1}

The reason that the two are equivalent is that there are 169 observations for rgdp. Observation
69 isidentical to 2001:1-100. If you take the time to count, you can verify that both of these
entries are equivalent to 1976:1. Fortunately, you never have to actually count the number that
is equivalent to a particular date label. In fact, RATS provides a number of instructions that
are helpful for using date manipulation. The two most useful ones are:

Loops over Dates and Series 93

%CAL(YEAR,PERIOD) = The entry number PERIOD of YEAR.
%DATELABEL(T) = The date string (e.g., 1991:3) corresponding to the entry value.

. To find the date label of the observation 100 periods before 2001:1 use:
dis %DATELABEL (2001:1-100)

Your output will be: 1976: 01. (Note: In performing date arithmetic, RATS does not allow
you use spaces inside the %DATELABEL function; hence, in the instruction above, you
cannot place a space on either side of the minus sign). Y ou can also use %DATELABEL with
any integer value. For example, if you insist on putting spaces next to the minus sign, you can
use:

comi =2001:1-100
dis %DATELABEL (i)

Similarly, dis %cal(1976,1) yields:

69

94 Walter Enders

2. SeriesasIntegers

Just as each calendar date has an associated entry value, each series has its own sequence
number. If continue to use Program 3.2 and type TABLE, you will see:

Series Qbs Mean Std Error M ni mum Maxi mum

DATE 169 1979. 876331 12. 232185 1959. 100000 2001. 100000
GDP 169 3572. 739053 2873. 158128 496. 100000 10243.600000
RGDP 169 5142. 364497 1950. 840494 2273. 000000 9439. 900000
MR 169 1904. 835266 1399. 706717 287. 800000 5043. 710000
\Y¢] 169 2414, 462229 1916. 764710 290. 053333 7260. 136667
TB3IMO 169 5.915148 2.590483 2.303333 15. 053333
TB1YR 167 6. 153872 2.393622 2.713333 14. 380000
DLRGDP 168 0. 008475 0. 008960 - 0. 020598 0. 037804
RESI DS 101 0. 000000 0. 007737 -0.027190 0. 031366

Notice that the series in MONEY_DEM.XLS are in order, followed by the dirgdp series you
created. The series numbers are such that date is series 1, gdp is series 2, rgdp is series 3. The
series dirgdp created with the SET instruction, is series 8. Asyou create additional series, RATS
stores each consecutively. Thus, the series resids created by the LINREG instruction is series 9.

As discussed above, you can just use the series number instead of its label. Anywhere RATS
expects a series name, you can simply use the sequence number. Y ou do need to make sure that
you reference sequence numbers as integers and not floating point numbers.

Thus, you can print out the first values of rgdp using:

pril43
Recall that the syntax for the PRINT instruction is PRINT start end serieslist. Thus, pri 14 3

instructs RATS to print, from entry 1 through 4, the values of series 3. If you follow the logic,
you know that it is possible to print the first four values of rgdp and dirgdp using:

pril438
ENTRY RGDP DLRGDP
1959: 01 2273.0 NA
1959: 02 2332. 4 0. 025797235495
1959: 03 2331. 4 -0. 000428834862
1959: 04 2339.1 0. 003297294498

Care must be taken if a series is on the right-hand side of a FRML, SET or COM instruction
since RATS will interpret the integer as ascalar. In fact, whenever it is ambiguous, you can force
RATS to use the series instead of an integer if you use: [series|number.

Examples:
1. To print the last two years of the rgdp series you can use:

pri 2001-7* 3

Loops over Dates and Series 95

2. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the first 100
observations:

set 8 = log(rgdp) — log(rgdp{ 1})
[in8* 100
constant 8{ 1}

As before, the first line creates the logarithmic change of rgdp. However, there is no label
attached to the series—it is just referred to as “8”. The second line prepares RATS to estimate
a regression with series 8 as the dependent variable such that the last sample point is
observation 100. The third line instructs RATS to include a constant and the lagged value of
series 8 in the regression.

3. sety =1og(2) versus set y = log([series]|2)

The first instruction sets each entry of y equal to the natural log of 2; hence, al values of y are
0.69315. The second statement sets each entry of y equal to the natural log of the
corresponding entry of series 2. Suppose that the first four entries of series2 are 1, 4, 2 and 6.
The second statement sets the first four values of y to be: 0, 1.38629, 0.69315 and 1.79176.

4. Suppose that the seriesy is the second series in RATS memory. All of the following create
the growth rate of y:

set gy = log(y) - log(y{1})
set gy = log([series]2) - log(([series]2){ 1})

set gy =10g(2{0}) - log(2{1})

The first instruction creates gy as the log of the current value of y less the lag of the previous
period’'s log of y. The second instruction uses square brackets to distinguish between the
number 2 and series number 2. Notice that it is necessary to use the construction
log(([series]|2){ 1}); log([series|2{ 1}) creates an error message. The third instruction is correct
because the use of lag notation ensures that there is no ambiguity in the meaning of 2{ 0} and
2{1}. However, log(2) - log(2{ 1}) would not produce the desired effect.

5. The very first program in this chapter contained the line set 1 = 5. This set al entries of series
1 equal to the number 5.

2.1 Creating Numbered Series and Labels

Since RATS allows you work with a series using its label or its integer value, you will want to

become familiar with creating numbered series, assigning alabel to a series, fetching the integer
value of aseriesfromitslabel, and fetching the label of a series fromitsinteger value.

96 Walter Enders

In principal, you do not need to assign alabel to a series. However, labels make it easier to
remember recall the various stepsin your program and to interpret your output. One way to
create seriesisto use ALLOCATE instruction with the optional seriesfield. Consider the first
fivelines of Program 3.3 on thefile labeled CHAPTER3_1.PRG:

cal 195914

al 42001:1 ;* <<< Notethat line 2 ismodified
open data a:\money_dem.xIs

data(org=obs,format=xIs)

tab

Series Cbs Mean Std Error M ni mum Maxi mum
No Label (1) 0

No Label (2) 0

No Label (3) 0

No Label (4) 0

DATE 169 1979. 8763314 12. 2321846 1959. 1000000 2001. 1000000
GDOP 169 3572.7390533 2873.1581276 496. 1000000 10243. 6000000
RGDP 169 5142.3644970 1950. 8404937 2273.0000000 9439.9000000
TB3MO 169 5.9151479 2.5904835 2.3033333 15. 0533333
TB1YR 167 6. 1538723 2.3936222 2.7133333 14. 3800000

Asin al the other programs considered, line 2 sets the default series length to 2001:1. However,
the value 4 in the seriesfield instructs RATS to create a block of series numbered 1 to 4. Notice
that the integer values assigned to the seven series contained on MONEY _DEM.XLS now begin
with 5 and end with 11. At this point in the program, series 1 through 4 have no label. Y ou can
assign a name to each using the EQV instruction. The syntax of EQV (for EquiValance) is:

EQV integer values of series
list of names for series

For exzample, we can assign series 1, 2, 3 and 4 the names residsl, resids2, resids3, and resids4
using:

eqvlto4
residsl resids? resids3 resids4

After entering these two lines, a table instruction produces the names of the four series:

tab/1to4

24 Notice there are no commas between the labels and there is no # symbol on the list of labels.

Loops over Dates and Series 97

Series b Mean Std Error M ni mum Maxi mum
RES| DS1
RES| DS2
RES| DS3

RESI DS4

[oNeoNeoNa N

Y ou can use the names created with EQV for input and for output. An alternative is to assign a
label to a series, using the LABEL Sinstruction. The syntax for LABELS is:

labelslist of series numbers
#'labels for the series (each label in quotation marks)

Hence, to assign the labels residsl, resids2, resids3, and resids4 to series 1 through 4 use:

labels1to 4
#residsl’ ‘resids?’ ‘resids3’ ‘resid4’

Notice that each label is enclosed in single or double quotation marks and that you use the #
symbol to begin the supplementary card for LABELS. There is an important distinction between
EQV and LABELS. EQV produces a name that can be used for manipulations within a program.
However, EQV cannot be used within a compiled section of a program. LABELS attaches an
output label to a series that RATS displays when printing a series or writing a series to a data
file. However, you cannot manipulate the series using its output label. The main reason to use an
output label is to display strings that cannot be created with the SET or EQV instructions (e.g.,
spaces or amix of upper case and lower case |etters).

The SCRATCH instruction provides an alternative way to create consecutively numbered series.
Unlike ALLOCATE, the SCRATCH instruction assigns series numbers beginning with the
highest unused integer value. Since tblyr is assigned the integer value of 11, any new series
created by SCRATCH will begin with the integer value of 12. The simplest way to create series
from SCRATCH isto use:

scratch number start end scr_no

where:
number The number of seriesto create
start end The range of entries to allocate to the series
scr_no An integer variable equal to the number of existing series prior to the

execution of SCRATCH. Hence, scr_no + 1 contains the integer value of
the first series created by SCRATCH.

The next line of Program 3.3 creates two additional series and uses b to hold the value of scr_no.
The TABLE instruction shows the order of the series in RATS memory. Since b = 11, the
summary statistics for tblyr and the two newly created series are displayed. At this point, the
EQV or LABELS instructions can be used to assign labels to the two new series. Note that any
additional series created will begin with integer number 14.

98 Walter Enders

scratch2/b

tab/btob+2
Series Cbs Mean Std Error M ni mum Maxi mum
TB1YR 167 6.1538722555 2.3936221961 2.7133333333 14. 3800000000

No Label (12) O
No Label (13) O

Retrieving Labelsand Integer Numbers

The simplest way to retrieve the integer value assigned to a series is to use the COMPUTE
instruction.®® Y ou COMPUTE an integer value to be equal to the name of a series:

com integer = series name.
For example, to display the integer value assigned to rgdp use:

com num = rgdp
disnum

At first, this instruction makes no sense since num is a number and rgdp is a series (recall that
COMPUTE is not used to set entire series). Since RATS expects a humber on the right hand
side, it will equate num with the series number assigned to rgdp. Thus, after entering dis num in
Program 3.3, you will seethe integer 7 displayed on the screen.

The function %L (number) returns the LABEL attached to the specified variable. Hence:

dis %l(7)
RGDP

dis %l (rdgp)
RGDP

Also note that you can use com a$ = %l(7) to assign the string ‘RGDP’ to the string variable a$.
Once a$ has been computed, it can be manipulated using the various string handling instruction
provided with RATS.

% The function %s(label) also returns the series number whose name is label. Be sure to include
the label in single or double quotation marks. To display the series number associated with rdgp
use: comii = %s(‘rgdp’) ; disii

Loops over Dates and Series 99

3. Do L oops

The DO loop is avery simple way to automate many of your repetitive programming tasks. The
usua structure of aDO loop is:

doi=1,n
program statements
enddoi

The structure is such that RATS will perform all program statements within the DO loop exactly
n times. The first time the program statements are executed, the counter i contains the integer
value 1. On reaching the end of the loop, the counter i isincremented by 1 (i.e., i =2). If i isless
than or equal to n, the block of program statements is executed again. On reaching the end of the
loop, the value of i is incremented by 1, compared to n, and if i < n, the loop is executed once
more. After the n-th loop i = n+1 and the instruction following the loop is executed. Consider the
example:

doi=15
disi
enddoi
1

2

3

4

5

More generally, you can use:
do integer = n1, n2, increment
program statements
end do integer
where: nl1, n2 and increment are integers. To understand how the loop performs consider

doi=152

Here, i beginsat 1 and isincremented by 2 every time the loop is completed. After three loops, i
= 6 so that the loop is not performed afourth time.

doi=6,-3, -2
Herei begins at 6 and is decreased by 2 every time the loop is completed. At the end of the first

loop, i = 4 and the loop is completed a second time. At the end of the 5th loop, i = -4 so the loop
isnot completed a sixth time.

100 Walter Enders

3.1 DO L oops, Switches and Choices

Since al Switch and Choice options have an integer representation, they can be selected by the
index of aDO loop. Consider the following:

Examples:

1. doi=01
lin(robusterrors=i) drs
constant drs{ 1 to 7}
enddoi

In Chapter 1, the change in the short-term interest rate (drs) was estimated as an AR(7) with
and without the ROBUSTERRORS option. The program segment estimates an AR(7) model
with and without ROBUSTERRORS. Recall that ROBUSTERRORS is OFF when its value
equals 0 and is ON when its value equals 1.

2. Any RATS instruction containing supplementary cards in a regression format allows you to
use the ENTRIES option. The syntax for the optioniis:

entries = number of entries to process

For example, the instructions below will produce three regression equations. The first will
regress y on a constant, the second will regressy on a constant and x, and the third will regress
y on a constant x and z.%°

doi=13
lin(entries=i) y
constant X z

enddoi

3. The RATS procedure BJDENT.SRC will display the autocorrelation and partial
autocorrelation functions for the series you specify. After compiling the procedure, the syntax
to EXECUTE the procedure is:
execute bjident(options) series start end

or, if you use @ as a shortcut for EXE,

%6 Y ou need to be a bit careful since any object you include on the supplementary card (except #,
$ or a space) is counted as an entry. Thus, dirgdp{ 1} is counted as four entries: dirgdp, {, 1, and
}. Similarly, dirgdp{ 1 to p} iscounted as 6 entries: dirgdp, {, 1, to, and p}.

Loops over Dates and Series 101

@bjident(options) series start end

where:

start end The range of the seriesto use for constructing the
autocorrelations and partial autocorrelations

The most useful options are:

DIFF= Maximum regular differencings0]
SDIFFS= Maximum seasonal differencings[0]
TRANS=[NONE]/LOG/ROOT Transformation to apply to data
[GRAPH]/NOGRAPH Do High-resolution graphs?
SPAN= Seasonal span

Since TRANS has three choices, you can obtain the ACF and PACF of a seriesy, thelog of y
and the square root of y using:

doi=13
@bjident(trans=i) y
enddoi
Similarly, you can obtain the ACF and PACF of y and itsfirst and second differences using:
doi=0,2; @bjident(diff =i);enddoi

Y ou can also manipulate the start or end entry. For example, to obtain the ACF and PACF of
y using observations 1 though 100, 150 and 200, use:

doi =100,200,50 ; @bjidenty * i ; end do i

102 Walter Enders

3.2LagLength Tests

Now scroll down Program 3.3, and form the growth rate of real GDP using:

set dirgdp = log(rgdp) — log(rgdp{ 1})

Instead of estimating the series as an AR(1), suppose that we want to ascertain the number of
lags to use in an AR(p) representation. Suppose that you believe that the maximum possible lag
lengthis 12.

dop=112

lin dirgdp

constant dirgdp{ 1 to p}
end dop

RATS will estimate the regression exactly 12 times. The first time through the loop, p = 1 so that
RATS estimates an AR(1) modé (i.e., lags{1 to p} issimply lag 1). The second time through the
loop, p = 2 so that RATS includes lags 1 and 2 in the autoregression. Each time through the loop,
pisincreased by 1; hence, the number of lags used in the autoregression isincreased by 1.

As it stands, the routine has a number of flaws. First, if we want to perform lag length tests, we
need to estimate each autoregression over the same sample period. Since one usable observation
is lost for each lag included in the model, we can estimate all of the autoregressions over the
same sample period by modifying the LINREG instruction such that:

lindirgdp 14 *

Now all autoregressions begin with observation 14 (since one usable observation is lost by taking
first-differences and 12 are lost when estimating the AR(12) regression). The second flaw is that
we get too much output. Oftentimes, you will want to calculate the aic or sbc from each equation
and then to examine the output of the model with the smallest aic and/or sbc. For each
regression, you can compute and display the aic and sbc using:

compute aic = %nobs*log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%erss) + (Yonreg)*log(%onobs)

It is also common to determine a lag length based on the outcome of t-tests. This methodol ogy
picks the lag length such that the t-statistic for the last lag is significant at some pre-specified
level. Given the presence of an intercept, each regression will have p+1 coefficients and the t-
statistic for the last lag can be obtained from %TSTATS(p+1).

dis‘Lags’ p‘AlIC="aic'SBC=" sbc‘t =" %tstats(p+1)

Hence, we can put these instructions in the loop and use the NOPRINT option in LINREG to
obtain:

Loops over Dates and Series 103

dop=112

lin(noprint) dirgdp 14 *

constant dirgdp{ 1 to p}

compute aic = %nobs* log(%orss) + 2* (%onreg)

compute sbc = %nobs* log(%erss) + (Yonreg)*1og(%onobs)

dis'Lags: 'p'AlIC ="aic'and SBC ="sbc 't =" #HH#.##H Yotstats(p+1)
end dop

Lags: 1 AIC= -703.21209 SBC= -697.11238t= = 3.79455
Lags:2 AIC= -704.98313SBC= -695.83356t= 1.93483
Lags: 3 AIC= -703.03417SBC= -690.8347/5t= -0.22304

Lags: 11 AIC= -693.50814 SBC= -656.90987t= -0.38318
Lags: 12AIC= -695.48673 SBC= -655.83860t= -1.92196

Here the AIC selects the model with two lags while the SBC selects the model with one lag. In
this example, the choice is unclear since t-statistic on lag 2 has a prob-value that is dlightly
greater than 0.05. At this point, a careful researcher would subject the models to additional
diagnostic checks.

Modifying the Program

The idea of looping over lags is easily extended to selecting the order p and q of an ARMA
model. The remaining portion of Program 3.3 illustrates the process of fitting an ARMA(p, q)
model to the change in the 1-year T-bill rate. The first line creates drl as the first difference of
tblyr. Then two DO loops are created. The program loops over all values of p and g from 0 to 4
so that a total of 25 ARMA models are estimated. Inside the DO loops, the BOXJENK
instruction estimates an ARMA model (without an intercept) using the current values of p and g.
The start date for all models isfixed at 1960:4 in order to ensure that all equations are estimated
over the same sample period (Note: The first two observations of tblyr are NA , one observation
is lost be differencing and four more are lost due to the four autoregressive lags). For each
model, the value of p and g the AIC and SBC are displayed.

dif tblyr / drl
dop=04
dog=04
box(ar=p,ma=q,noprint) drl 1960:4 *
compute aic = %nobs* log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%orss) + (%onreg)* log(%onobs)
dis 'Order 'pq'Theaic="aic'and shc ="sbc
end do q
enddop

104 Walter Enders

Order 0 O The aic = 718. 76274 and sbc = 718. 76274
Order 0 1 The aic = 708. 79596 and sbc = 711. 88356
Oder 0 2 The aic = 700. 19711 and sbc = 706. 37230
Order 0 3 The aic = 702.19589 and sbc = 711. 45868
Oder 0 4 The aic = 696. 65415 and sbc = 709. 00454
Oder 1 0 The aic = 716. 09728 and sbc = 719. 18488
Oder 1 1 The aic = 703. 94238 and sbc = 710. 11758
Oder 1 2 The aic = 702.19348 and sbc = 711. 45627
Oder 1 3 The aic = 703. 75461 and sbc = 716. 10500
Oder 1 4 The aic = 696. 61767 and sbc = 712. 05565
Order 2 0 The aic = 705. 59455 and sbc = 711. 76974
Order 2 1 The aic = 699. 89149 and sbc = 709. 15428
Oder 2 2 The aic = 701. 02566 and sbc = 713. 37604
Oder 2 3 The aic = 701. 05749 and sbc = 716. 49547
Oder 2 4 The aic = 697. 58720 and sbc = 716. 11277
Order 3 0 The aic = 698. 58881 and sbc = 707. 85160
Order 3 1 The aic = 700. 04901 and sbc = 712. 39940
Oder 3 2 The aic = 701. 86138 and sbc = 717. 29936
Order 3 3 The aic = 701. 71606 and sbc = 720. 24163
Order 3 4 The aic = 699. 19451 and sbc = 720. 80769
Order 4 0 The aic = 700. 27063 and sbc = 712. 62102
Oder 4 1 The aic = 702. 03769 and sbc = 717. 47568
Oder 4 2 The aic = 703. 86137 and sbc = 722. 38695
Order 4 3 The aic = 703.53608 and sbc = 725. 14926
Order 4 4 The aic = 699. 36336 and sbc = 724. 06413

The AIC selects an ARMA(1, 4) model and the SBC selects an ARMA(O, 2) [i.e., the SBC
selects an MA(2) specification].?” The final instruction in the program estimates an MA(2) model
over the full sample period.

box(ma=2) drl

Box-Jenkins - Estimation by Gauss- Newt on

Convergence in 16 Iterations. Final criterion was 0. 0000062 <
0. 0000100

Dependent Vari abl e DRL

Quarterly Data From 1959: 04 To 2001: 01

Vari abl e Coef f Std Error T- St at Si gni f
kkkkhkkhkhkhkhkhkhkhhhhhkhkhkhkhkhhhhhhkhkhkhkhhhhkhkhkhkhkhkhhhhkhkhkhkhkhkhhhkhk k khkhkkkkkk k k k kkk*x*x*x%
1. MA{1} 0.293888856 0.076814701 3.82595 0.00018490
2. MA[2} -0.220139206 0.076854845 -2.86435 0.00472551

" RATS uses the Gauss-Newton algorithm to estimate coefficients of an ARMA model. The
default number of iterations for the BOXJENK instruction is 40. Thus, if you use this type of
automated procedure to select the order of an ARMA model, you must check to ensure that the
estimation process converged. Line 2 of the printed output for the MA(2) indicates that the
process converged in 16 iterations.

Loops over Dates and Series 105

3.3LagLength TestsinaVAR

We can use asimilar procedure to perform lag length testsin aVAR. In Chapter 2, we performed
some likelihood ratio tests to determine the lag length in a VAR using the variables dlrgdp,
dirm2 and drs. It is possible to automate the procedure using a DO loop. Since the data are
guarterly, it seems plausible to perform leg length tests for lags 16 versus 12, 12 versus 8, and 8
versus 4. The following instruction can be found in Program 3.4 on the file labeled
CHAPTER3_2.PRG. The program reads in the data set and creates the three variables dlrgdp,
dirm2 and drs. The next instruction creates a DO |loop such that the variable lags runs from 16 to
8in steps of minus4 (i.e., lagswill equal 16, 12 and 8):

dolags=16,8,-4

Next, the SY STEM-END(SY STEM) block sets up the three variable VAR using a lag length of
1tolags.

system(model =chap3)
varsdirgdp dirm2 drs
lags 1 to lags

det constant
end(system)

The ESTIMATE instruction below is the key to the program. The system is estimated beginning
with observation 1959:2+lags since one observation is lost as a result of differencing and lags
observations are lost by incorporating the lagged variables. The residuals are stored in
unrestrict—unrestrict(1) contains the residuals from the dirgdp equation, unrestrict(2) contains
the residuals from the dirm2 equation and unrestrict(3) contains the residuals from the drs
equation. The following two statements calculate the AIC and SBC for the unrestricted model.
Note that there are 3*lags + 1 coefficients in each of the three equations.

estimate(resids=unrestrict,noprint) 1959:2+lags *
com aic_u = %nobs* %logdet + 2* (3*lags+1)*3
com sbc_u = %nobs* %l ogdet + log(%onobs)* (3* lags+1)* 3

The second SY STEM-END(SY STEM) block shown below estimates the VAR using four fewer
lags (i.e., lags-4). Y ou should be careful not to leave any spaces on either side of the plus sign.
This restricted system is estimated over the same sample period as the unrestricted system
(1959:2+lags *) and the residual series are saved in restrict. The AIC and the SBC for the
restricted model are calculated and denoted by aic_r and sbc_r, respectively. Notice that there are
(3*(lags-4)+1)* 3 estimated coefficients in the system (each of the three equations contains lags-4
lags of each variable plus an intercept).

106 Walter Enders

system(model=chap3)

varsdirgdp dirm2 drs

lags 1 to lags-4

det constant

end(system)

estimate(resids=restrict,noprint) 1959:2+lags *

com aic_r = %nobs* %logdet + 2* (3* (lags-4)+1)* 3

com sbc_r = %nobs* %l ogdet + log(%onobs)* (3* (lags-4)+1)* 3

We display the AIC and SBC for the unrestricted and restricted systems using:

dis'Lags=" lags'aic u="aic_ u'sbc u="sbc u
dis'Lags=" lags-4'aic_ r="aic_r'sbc r="sbc r

Notice that there are 36 (3*4* 3) restrictions—four lags of three variables in three equations and
each unrestricted equation contains 3*lags + 1 parameters. Hence, the next four instructions
calculate and display the significance level for the test. The final line ends the DO loop, the
counter lagsis decreased by four and the process continues for the next value of lags.

ratio(degrees=3* 4* 3,mcorr=3* lags+1,noprint) 1959:2+lags *

unrestrict

restrict

dis'Significance level ="' %signif ; dis' '

end do
Lags = 16 aic r = - 3080. 45335 shc = -2635. 94291
Lags = 12 aic = -3108. 63138 shc = -2772.98064
Si gni ficance |evel = 0.76164
Lags = 12 aic_r = - 3198. 00556 sbc = -2859. 47155
Lags = 8 aic = -3197.47118 shc = -2968. 73198
Significance |l evel = 0. 02069
Lags = 8 aic_r = - 3289. 27609 sbc = - 3058. 63806
Lags = 4 aic = - 3276. 50688 sbc = -3156. 57511
Significance |l evel = 3.87731e- 04

Thus, at conventional significance levels, the restriction from 16 to 12 lags is not binding.
However, restricting the system from 12 to 8 lags has a prob-value of 0. 02069 and further
restriction the system from 8 to 4 lags has a prob-value of 3. 87731e-04. The multivariate AIC
and SBC both select the 12-lag model over the 16-lag model. However, in the other two cases
the AIC selects the model with the long lag and the SBC sel ects the model with the short lag.

Loops over Dates and Series 107

4. Loopsfor Dates

As suggested by the last program, one important use of a DO loop is to perform a set of RATS
instructions such that the start and/or end date is altered each time through the loop. Since dates
have an equivalent integer representation, it is simple to use date manipulations in the loop.

Suppose that you wanted to compare the 1-step ahead mean sguare prediction errors for an
AR(1) and an AR(2) model of dirgdp. One way to do thisis to estimate each model over the first
100 observations and then obtain the 1-step ahead forecast for each. Since the value of dirgdp for
period 101 is known, it is possible to obtain the squared prediction error for the AR(1) and the
AR(2) specifications. Next, estimate each model over the first 101 observations and obtain the
squared 1-step ahead prediction error for period 102. Repeat the entire process up through
observations 168 (so that you have the 1-step ahead prediction error for period 169) and compare
the means of the sum of the squared prediction errors. Continue to scroll down Program 3.4 and
enter the following instructions:

setf arl=0.

setf ar2=0.

doi =100,168
lin(noprint,define=arl) dirgdp 3 i; # constant dirgdp{ 1}
forecast 1 1
#alf arl
lin(noprint,define=ar2) dirgdp 3 i; # constant dirgdp{ 1 to 2}
forecast 1 1
#a2f a2

enddoi

Lines 1 and 2 initialize the two seriesf_arl and f_ar2; these series are used to store the forecasts
from the two models. The third line instructs RATS to execute the DO loop 69 times beginning
with i = 100 and terminating after i = 168. Within each loop, RATS estimates an AR(1) model of
dirgdp over the sample period 3 through i. Lines 5 and 6 instruct RATS to make a 1-step ahead
forecast for period i+1 and store the forecast in f_arl. Lines 7 - 9 repeat the procedure for the
AR(2) specification and stores the forecast in f_ar2. After the 69 loops are completed, f_arl and
f_ar2 each contain the 69 1-step ahead forecasts.

The remainder of the program is straightforward. The first two lines shown below calculate the
squared prediction errors from the AR(1) and the AR(2)—each prediction error is the difference
between the actual and forecasted values of dlrgdp. Lines 3 and 4 calculate and display the mean
sguare prediction error for the AR(1) and lines 5 and 6 calculate and display the mean sgquare
prediction error for the AR(2).

set pe 1101 169 = (dirgdp —f_arl)**2

set pe 2101 169 = (dirgdp —f_ar2)**2
sta(noprint) pe_1

dis*The MSPE from the AR(1) is: * %mean

108 Walter Enders

sta(noprint) pe_2
dis‘The MSPE from the AR(2) is: * %mean

The MSPE fromthe AR(1) is: 2.44821e- 05
The MSPE fromthe AR(2) is: 2.31782e- 05

A Small Quiz: Now take a little quiz. Some might recommend eliminating an initial observation
every time through the loop. In this way, you would estimate a model with 98 observations each
time through the loop.

How would you rewrite the DO loop to perform this task?

Answer: Rewrite the LINREG instructions such that the initial observation increases by 1 each
time through the loop. The two LINREG instructions should be:

lin(noprint,define=arl) dirgdp i-97 i; # constant dirgdp{ 1}
lin(noprint,define=ar2) dirgdp i-97 i; # constant dirgdp{ 1 to 2}

Now, the first time through the loop, the initial observation is 3 (i.e., 3 = 100 — 97) and the last
observation is 100. The second time through the loop, the initial observation is 4 and the last
observation is 101. Continuing through i = 168 yields an entry value of 71 for the initia
observation and 168 for the last observation. Thus, each regression has 97 usable observations.

Question two of the quiz concerns the use of date notation in a DO loop. Since the use of date
notation is equivalent to the use of integers, it is possible to use date notation for the indices of
the DO loop. In MONEY_DEM.XLS, observation 100 is equivalent to date 1988:1 and
observation 168 is 2004:1. How could you rewrite lines 3 — 10 of the program above using date
labels?

Answer:

doi =1988:1,2004:1
lin(noprint,define=arl) dirgdp 1959:3 i; # constant dirgdp{ 1}
forecast 11
#alf arl
lin(noprint,define=ar2) dirgdp 1959:3 i; # constant dirgdp{ 1 to 2}
forecast 1 1
#a2f a2

enddoi

set pe_11988:2 2001:1 = (dirgdp —f_ar1)**2

set pe 2 1988:2 2001:1 = (dirgdp —f_ar2)**2

Loops over Dates and Series 109

5. Loopsfor Series

One of the most powerful features of RATS is that it allows you to perform a DO loop such that
the index refers to a series. Here is a routine to create the growth rates of the variables in
MONEY_DEM.XLS. Recall that gdp is [series]2, rgdp is [series]3, m2 is [series|4, m3 is
[series]5, TB3mo is [series|6 and TB1yr is [series|7. The first part of Program 3.5 reads in the
data set MONEY _DEM.XLS, but does not create the variable dirgdp. Instead, we can create the
growth rate of each seriesusing a DO loop. Consider:

scratch 6/ scr_no
doi=16

set scr_no+i =log((i+1){0}) - log((i+1){ 1})
enddoi

Thefirst line of the routine creates six new series. The series numbers begin at 8 (since atotal of
7 series reside in memory) and run through 13. The variable scr_no contains the integer value 7.
Notice that the indices of the DO loop range from 1 through 6. The first time through the loop i =
1 so that series 8 (8 = scr_no + 1) is set equal to the log of series 2 minus the log of series 2
lagged one period. The next time through the loop, | = 2 so that series 9 is set equal to the log of
series 3 minus the log of series 3 lagged one period. In this fashion, series 8 — 13 contain the
logarithmic changes of gdp, rgdp, m2, m3, tb3mo and tblyr, respectively.

Now we can jazz up the program a bit. We know that we can read the label assigned to a series
using: %L (variable). We can also assign a label to a variable. In fact, we can make our routine
more user-friendly by assigning labels to series 8 through 13. Each label will begin with ‘dl” and
end with the name of the original series being changed (e.g., dirgdp for the change in the log of
rdgp). As discussed in Section 2.1, we cannot use EQV in a loop, so we will want to use
LABELS here. Now consider the following modification of our program:

doi=16
set scr_no+i =1log((i+1){0}) - log((i+1){ 1})
labels scr_no+i ; #'DL'+%l(i+1)

enddoi

tab / scr_no+1 to scr_no+6

Series Cbs Mean Std Error M ni mum Maxi mum
DLGDP 168 0.018022 0. 009419 - 0. 010052 0. 057029
DLRGDP 168 0. 008475 0. 008960 -0. 020598 0. 037804
DLRWR 168 0. 017045 0. 008553 -0. 002633 0. 053028
DLMB 168 0. 019167 0. 009285 - 0. 005379 0. 038578
DLTB3MO 168 0. 003286 0. 109786 - 0. 332247 0. 396932
DLTB1YR 166 - 0. 000104 0. 102851 - 0. 329450 0. 288489

Note that LABELS does not allow you to refer to a series by its label. For example, you will
obtain an error message if you type TABLE / dirgdp.

110 Walter Enders

6. The DOFOR Instruction

The DO instruction forces a particular relationship between subsequent values of the index. The
index of a DO instruction must be an integer and the index is increased by the same amount from
one loop to the next. However, there are many instances in which we do not want one value of
the index to bear any precise relationship to the adjacent values. In such circumstances, DOFOR
is particularly helpful.

Program 3.6 illustrates a simple way to create multiple graphs on a page. After reading in
MONEY_DEM.XLS, the program creates the logarithmic changes in real gdp, the gdp deflator
and m3 and the difference in the 3-month T-bill rate (drs) using:

set dirgdp = log(rgdp) - log(rgdp{ 1})
set dm3 =log(m3) - log(m3{1})

dif tb3mo / drs

set price = gdp/rgdp

set dip = log(price) - log(price{ 1})

The SPGRAPH instruction below indicates that we want to create a Special Graph with the
header Graphs of Four Principal Series. The graphs are to be arranged into two horizontal fields
and two vertica fields.

spgraph(hea='Graph of Four Principal Series,hfi=2,vfi=2)

We want to loop over the series dim3 dirgdp dr and dip. Since the series numbers bear no
particular relationship to each other, it is simplest to use a DOFOR loop. However, we need to
use a counter j to indicate how many loops have been completed. Before entering the DOFOR
loop, the value of j isinitialized to zero and is increased by one every pass through the DOFOR
loop. The first time through the loop, i equals the integer representing the seriesdm3 and j = 1.
Consider:

comj=0
dofor i =dim3 dirgdp drsdip
comj=j+1

The next instruction below creates the header Panel 1: Time path of dm3. To understand, note
that the variable called header is necessarily a string variable. The string is equal to ‘Panel’ plus
the value of j (=1) plusthe string ‘ Time Path of” plus the label of dim3 (i.e., the label of seriesi).
The GRAPH instruction creates a graph of series i using the header created in the previous
COMPUTE instruction. After the first pass, i becomes the integer value of dlirgdp and j = 2.
Next, the header Panel 2: Time Path of dirgdp is created and the GRAPH instruction creates a
graph of series dlrgdp using this header. The process continues until i has taken on the values
corresponding to dr and dip. The final instruction SPGRAPH(done) displays the output.

Loops over Datesand Series 111

com header ='Panel ' +] +": Time Path of ' + %l(i)
gra(hea= header) 1 ; #i

enddoi
spgraph(done)
Graphs of Four Principal Series
oo Panel 1: Time Path of DLM3 . Panel 3: Time Path of DRS
oL ananyl MAM\ﬂ i Al M o
T WUV\/U vw ATl
000 Vf\vt\\r =
Panel 2: Time Path of DLRGDP 0% Panel 4: Time Path of DLP

\\
99

6.1 DOFOR and Loopsfor Series

In Program 3.5, we created the logarithmic change of series 2 through 7 and stored the results in
series 8 through 13. It is quite possible that you do not want to create a variable in the form Aln
x; for every variable in our data set (this is especially true if a series has one or more negative
values). Suppose that you wanted to create only the logarithmic changes in real gdp (series 3),
m2 (series 4) and th3mo (series 6). Program 3.7 illustrates how you can perform this task using
the DOFOR instruction:

112 Walter Enders

scratch 3/ scr_no

dofor i = rgdp m2 tb3mo
comj=j+1
set scr_no+j =1og(i{0}) - log(i{ 1})
labels scr_no+j ; #'DL'+%il(i)

end dofor

table/ scr_no+1scr_no+2 scr_no+3

Series Cbs Mean Std Error M ni mum Maxi mum

DLRGDP 168 0.0084752669 0.0089595106 -0.0205982814 0.0378040869
DLMR 168 0.0170454250 0.0085532148 -0.0026327924 0.0530276961
DLTB3MO 168 0.0032859057 0.1097860047 -0.3322470533 0.3969315930

Now, only three series are ‘created from scraich’ beginning with scr_no+1. The first time
through the loop, i is the integer value of rdgp (i.e., i = 3) and j = 1. The SET instruction creates
series 8 (note the scr_no+1 = 8) as the logarithmic change in rgdp (series 3.) The second time
through the loop, j is incremented by 1 and series 9 is created as the logarithmic change in M2.
Similarly, the last time through the loop, series 10 is created as the logarithmic change in tb3mo.

Onefinal way to improve the program is to use the %S(L) function. As mentioned earlier, %S(L)
returns the series number corresponding to the label L. Y ou can verify that rgdp is the third series
in RATS memory by entering the instructions:

com a=%s('rgdp’) ; disa
3

A very useful feature of %S(L) isthat it will create a series with the name L if it does not already
exist. Suppose you have read in MONEY_DEM.XLS. An alternative way to create the
logarithmic changes in rgdp, m2 and tb3mo is:

dofor i = rgdp m2 tb3mo
set %s('dl'+%l(i)) = log(i{ 0}) - log(i{ 1})
end dofor

The key to understanding the program is recall that %l(i) is a string equal to the label of seriesi.
Hence 'dl’ + %l (i) refersto the label dl plusthe label of seriesi. The first time through the loop, i
= 3. Since the label dirgdp does not exist, %s('dl'+%l(i)) creates a series with the name dirgdp as
the logarithmic change in series i. The second time through the loop, i is equal to the integer
value of m2 and %l(i) is the string ‘m2’. Since there is no series named dim2, %s('dl'+%l(i))
creates this series as the logarithmic change in m2. Similarly, the third time through the loop, the
logarithmic change in tb3mo is created. Unlike the LABELS instruction, the names creates by
%S(label) can be used for input and for output.

Loops over Datesand Series 113

6.2 DOFOR and ENTRIES

In Section 3.1, it was indicated that any RATS instruction containing supplementary cards in a
regression format allows you to use the ENTRIES option. However, any object you include on
the supplementary card (except #, $ or a space) is counted as an entry. Thus, dirgdp{1} is
counted as four entries: dirgdp, {, 1, and }. Similarly, dlrgdp{1 to p} is counted as 6 entries:
dirgdp, {, 1, to, and p}.

Suppose you want to determine whether the contemporaneous and lagged growth rate of M3
(dim3) affected the growth rate of real GDP. You want to include contemporaneous money
growth and the possibility that lags 1 to 4 of money growth are important. Since it is unclear
whether the AR(1) or AR(2) model for dirgdp: is most appropriate, you might want to estimate
all your equations using both lag lengths. Y ou could read in MONEY _DEM.XLS and construct
dirgdp; and dim3; as follows:

set dirgdp = log(rgdp) - log(rgdp{ 1})
set dim3 = log(m3) - log(m3{1})

Then you could estimate six regressions using the following supplementary cards.

constant dirgdp{ 1}

constant dirgdp{ 1 to 2}

constant dirgdp{ 1} dim3

constant dirgdp{ 1 to 2} dim3

constant dirgdp{ 1} dim3 dim3{ 1 to 4}

constant dirgdp{ 1 to 2} dim3 dim3{1 to 4}

Alternatively, you could use the following set of instructions contained in Program 3.8:

dofori=7814
dop=12
lin(noprint,entries=i) dirgdp 6 *
constant dirgdp{ 1 to p} dim3 dim3{1 to 4}
compute aic = %nobs*log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%erss) + (Yonreg)*og(%onobs)
dis Theaic="aic"'and sbc ="sbc
end do p
end dofor i

The first time through the DOFOR loop, i = 7 so that the ENTRIES option reads the const ant
and dlirgdp{1 to p} entries on the supplementary card. Hence, inside the DO loop as p
changes from 1 to 2, the pure AR(1) and AR(2) are estimated. Next i = 8, so that ENTRIES
option reads the constant dirgdp{1 to p} and dl n8 entries on the supplementary card.
Again, two regressions are estimated using one and two lags of dirgdp. Finaly, i = 14 so that the

114 Walter Enders

ENTRIES option reads the const ant, dl rgdp{1 to p}, din8 and din8{1 to 4} entrieson

the supplementary card. If you run the program, your output should be:

The
The
The
The
The
The

aic
aic
aic
aic
aic
aic

-725.43529 and sbc
-727.49692 and sbhc
-728.35931 and shc
-729.80200 and sbc
-724,17933 and sbc
-725.39124 and sbc

-719.
-718.
-719.
-717.
-702.
- 700.

23556
19732
05971
40253
48027
59230

The SBC selects the model with only one lag of dirgdp:.. However, if you estimate the model
selected by the AIC, your output will ook like:

constant dirgdp{1to 2} dim3

Coef f Std Error

T- St at

Signi f

EE R R I R I S I R S R R I I R I R R I R R S R R R I I R I R I R I I S R O

lindlrgdp 6 *
Vari abl e
1. Constant
2. DLRGDP{1}
3. DLRGDP{2}
4 DLMB

0. 0023202979 0.0016286184
0. 2347026242 0.0766291214
0. 1412306952 0. 0766582885
0. 1475857849 0. 0715417775

Jazzing Up the Program

The problem with ENTRIES is that we have to count the number of entries to use from the
supplementary card. As illustrated above, this can be tricky when you use braces { }. However,
RATS alows you to replace the individual entries on a supplemental card with a vector. You use
the ENTER instruction to manipulate the items in the vector. By changing the contents of the
vector, you modify the information on the supplementary card. The first few examples in the
chapter on matrices (Chapter 5) cover this technique in great detail.

1. 42470
3. 06284
1.84234
2.06293

0. 15619062
0. 00257298
0. 06727619
0. 04073517

Loops over Dates and Series 115

7. Loopswith While and Until

The DO loop is appropriate if you know exactly how many loops you want to make. However,
there are circumstances in which the number of repetitions is unclear. For example, a common
way to select the alag length in an AR(p) model is to estimate the autoregression equation using
the largest value of p deemed reasonable. If the t-statistic on the coefficient for lag p is
insignificant at some pre-specified level, estimate an AR(p-1) and repeat the process until the last
lag is statistically significant. If you used a DO loop, it would be necessary to estimate every
autoregression from p to 1. A more efficient procedure is to stop the process once a significant
lag isfound. The syntax for aWHILE block is:

while condition {
block of statements executed as long as condition is “true’

end while ;* (omit if the WHILE block is nested inside another compiled section)
The syntax for an UNTIL block is:

until condition {
block of statements executed as long as condition is “true’

end until ;* (omit if the WHILE block is nested inside another compiled section)

The remaining portion of Program 3.8 uses the WHILE instruction to perform the type of lag
length test discussed above. Suppose that we want to fit an AR(p) model for drl with no more
than 12 lags and that we want the t-statistic for the last coefficient to be significant at the 5%
level. The COMPUTE instruction initializes the variable lags to be 13. This counter will be
decreased by 1 each time through the WHILE loop. The variable sign is used to store the
significance level of the t-statistic for the coefficient for drl(lags). COMPUTE initializes the
variable sign to be 0.5 (Note: sign can be initialized to be any real number greater than 0.05). As
long as sign exceeds 0.05, RATS will loop through the WHILE-END WHILE block below:

comlags=13,sign=.5
whilesign > 0.05 {
comlags=lags- 1
lin(noprint) drl
constant drl{ 1 to lags}
exclude(noprint) ; # drl{lags}
com sign = %signif
dis'Significance of lag' lags '="sign
}

end while

116 Walter Enders

Significance of lag 12 = 0. 92989
Significance of lag 11 = 0. 60897
Significance of lag 10 = 0. 62405
Significance of lag 9 = 0. 32442
Significance of lag 8 = 0.43783
Significance of lag 7 = 0. 01255

The first time through the loop, the variable sign is compared to 0.05. Since sign exceeds 0.05
(i.e., since the condition sign > 0.05 is true) all of the instructions within the block are executed.
Hence, lags is decreased from 13 to 12 and drl is estimated as an AR(12). EXCLUDE
calculates, but does not display, the value of the F-statistic for the exclusion restriction that the
coefficient on drli.;> = 0. Of course, with only one restriction, an F-test is equivalent to a t-test.
Note that EXCLUDE creates the internal variable %SIGNIF containing the significance level of
the restriction. The key instruction is COMPUTE sign = %signif. The variable sign is equated to
the significance level of the restriction. If at the end of any loop sign < 0.05, the WHILE-END
loop is terminated. Notice that sign exceeds 0.05 for lags 12 through 8 so that looping over the
instructions within the WHILE-END block continues. However, in the AR(7) model, the
significance level of the coefficient on dir; is less than 0.05 and RATS exits the loop (i.e., the
condition sign > 0.05 is not true). The next two lines produce the AR(7) model:

lindrl
constant drl{1 to lags}

Vari abl e Coef f Std Error T- St at Si gni f
kkhkhkkkhkhhkkhkkhhkkkhhhhkhhhkkhhhhkhhhkkhdhhhkhhdkkhdhxhdhhkkhdrxhdhdxkddxhkdhdxkddxkdh*xk,dx*k,*x*%x
1. Constant 0. 007234002 0.053259079 0.13583 0.89213923
2. DRL{1} 0.281822834 0.080465922 3.50239 0.00060674
3. DRL{2} -0. 343129641 0.083606666 -4.10409 0.00006620
4. DRL{3} 0.274614957 0.088185213 3.11407 0.00220824
5. DRL{4} -0. 035831951 0.090593547 -0.39552 0.69301422
6. DRL{5} 0. 016548074 0.087971257 0.18811 0.85104475
7. DRL{6} -0. 030787141 0.083329087 -0.36946 0.71229913
8. DRL{7} -0.202414362 0.080118649 -2.52643 0.01255294

Jazzing Up the Program

The program can be made much more useful by incorporating it into a DOFOR loop. Y ou can
allow DOFOR to loop over each series. Within each of these loops, the WHILE-END block
determines the lag length. The remaining portion of Program 3.8 constructs the variable dip. The
counter i in the DOFOR instruction loops over each for these five variables. Within the DOFOR
loop, the WHILE-END block determines the lag length for seriesi. At the end of each WHILE
loop, the label of seriesi and the lag length is displayed. If you want the AR(p) model for each
series, remove the comment label (i.e., remove *) from the final LINREG instruction.

set price = gdp/rgdp

set dip = log(price) - log(price{ 1})

dofor i = dlrgdp dim3 drsdrl dip
comlags=13,sign=.5
whilesign > 0.05 {
comlags=lags- 1

Loops over Datesand Series 117

lin(noprint) i
constant i{ 1 to lags}
exclude(noprint) ; # i{ lags}
com sign = %signif
} ;* Notethat END WHILE isremoved since we are in acompiled section
dis %olabel ([series]i) ‘Lag length = lags
* lini ; # constant i{ 1 to lags}
end dofor

DLRGDP Lag length = 1
DLMB Lag length = 1

DRS Lag | ength 1
DRL Lag length

1
7
DLP Lag | ength 3

Frequently Asked Questions
1. What would happen if condition was never true?

Answer: Big problems! One possibility is that looping continues indefinitely until you click
the HALT icon on RATS Menu Bar. The other possibility is that you produce an error that
causes (1) RATS stop execution and display an error message or (2) an inadvertent condition
that is true. For example, suppose you used the program above on a series that behaves as a
white noise process (so that none of the lags is significant at the 5% level). Hence, looping
will continue until lags equals zero. At this point, the program regresses the series on itself so
that the resulting F-statistic is necessarily significant at the 5% level (R? will be 1). Here,
dumb luck yields the correct lag length of zero. Since you can’t count on being this lucky all
of the time, it isimportant to be careful that you do not get caught in an infinite loop or aloop
that produces an error.

2. What is the difference between WHILE and UNTIL?

Answer: The WHILE instruction checks to determine if condition is true at the beginning of a
loop (i.e., when WHILE condition is encountered). The UNTIL instruction checks at the end
of the loop (i.e., when END UNTIL or the closing brace } is encountered). Thus, the UNTIL
block of instructions is always executed at least once.

If PROGRAM 5 had used UNTIL instead of WHILE, the first three lines could have been:
dofor i = dlrgdp dim3 drsdrl dip

comlags= 13
until sign<0.05 { ;* Note the reversed inequality

The first time UNTIL is encountered, sign is not defined (so the condition sign < 0.05 is not
true). The program continues until a significance level less than 0.05 is encountered.

118 Walter Enders

3. What other conditions are allowed in the WHILE and UNTIL instructions?

Answer: As detailed in the very beginning of the next chapter, any of the standard conditional
relationships are alowed including < > (i.e., not equal) and = = (i.e,, equality) as well as
compound conditions created with . AND. and .OR.

Chapter 4.
IF Statements and Monte Carlo Experiments

There are many instances in which we want to perform a set of instructions only if a particular
condition is met. For example, in the last chapter, we used the WHILE instruction to reduce the
order of an AR(p) model if the last coefficient was not significant at the 5% level. The process
continued until a significant lag was found. At that point, the program produced the output of the
final autoregressive model. In fact, RATS enables you to control the flow of a program using
many types of conditional statements.

Suppose that A and B are two numbers of the same type (rea, integer, ...). RATS is able to
check the following conditions involving the standard relational operators:

equality: A== or A.EQ.B
not equal A<>B or A.NE.B
greater than A>B or A.GE.B
less than A<B or ALTB
greater or equal to A>=B or A.GE.B
less than or equal to A<=B or A.LEB

Moreover, RATS can create compound conditional statements that use AND, NOT and OR:

A.AND.B
A.NOT.B
A.OR.B

The ssimplest way to use relational operators iswith the IF instruction. The basic syntax of IF is:

IF condition
instruction to be executed if the condition is true

where: condition is any of the relational conditions listed above and instruction is any valid
RATS instruction.

If the specified condition is met, RATS will execute the next instruction. If the condition is not
met, the next instruction will be skipped. For example, consider the following instructions:

ifx==
dis‘The value of x equals 2’
end if

This set of instructions will display ‘ The value of x equals 2' only when the value of x equals 2.
Y ou need to be careful about the use of the double equal sign since you are not equating x with
the value of 2. If, by mistake, you type IF x = 2, RATS will not interpret this as any of the

120 Walter Enders

relational statements above. Instead, the equals sign will cause RATS set the value of x equal to
2; since the condition is TRUE, the message always be displayed.

Note that you do not use the END IF statement if you are within a compiled section of a RATS
program. For example, an |IF statement within a DO loop or within a RATS procedure does not
need the END |F statement. Otherwise, you should include the END IF instruction.

Examples

1. dot=2,2000:4
if %ovalid(x(t))==0; com x(t) = 0.5(x(t-1) + x(t+1))
enddot

| do not recommend it, but suppose you want to ‘fix’ the missing values in your data set by
averaging. The %valid() function returns zero if the argument is a missing value. If the data
runs from periods 1 through 2001:1, this routine will replace a missing value of x(t) with the
average of the two adjacent values. (Example 3 in the Section %IF(x,y,2) below, discusses a
faster way to perform the averaging).

2. sta(noprint,fractiles) drs
if Y%ominimum > 0.
log drs/ Idrs
if Yominimum.le.0
dis‘'l CAN ONLY TAKE THE LOG OF POSITIVE NUMBERS

The STATISTICS instruction with the FRACTILES option stores the smallest value of drsin
the internal variable %ominimum. If the smallest value of drs exceeds zero, RATS forms the
new series Idrs as the log of drs. If the smallest value of drsis negative or zero, RATS will

display awarning message.

3. if %converged <> 1; dis‘Model did not converge
A number of RATS instructions including NLLS and MAXIMIZE produce the internal
variable %converged. Note that %converged = 1 if the nonlinear estimation converged within
the allowable number of iterations and is equal to zero otherwise. Here, the warning message
Model did not converge is displayed if the previous nonlinear estimation did not converge.

4. if %converged ==0; dis‘Model did not converge

The program will display Model did not converge if convergence is not obtained. However,
the following contains a serious mistake:

if %converged = 0 ; dis‘Model did not converge’

| F Statements and Monte Carlo Experiments 121

The program will never display Model did not converge since the equal sign (instead of a
double equal sign) was used. In my own programs, | try to avoid this possible source of error
and use .EQ. instead of = =.

1. If-Then-Else Blocks

If you want to execute a block of statements when a condition is met, simply include them in
braces as illustrated below:

IFx==0{
program statements

}
END IF (omit the END when the IF occursinside a compiled sections)

All of the program statement in braces will be executed if the value of x is equal to zero.
Otherwise, the entire set of statements will be ignored. If you have a single instruction (with or
without supplementary cards) you can place them on the same line as the IF statement. Consider:

ifi.ged;liny; #constant y{1toi}

The IF block will estimate an AR(i) model so long as the value of i is greater than or equal to 4.
If i islessthan 4, the regression will not be estimated.

Examples

1. if lags.gt.0 {
dis‘Thelag lengthis lags
lin(noprint) y ; # constant y{ 1 to lags}
com aic = %nobs*log(%orss) + 2* (Yonreg)
dis‘Theaicis aic

}

If the value of lags is greater than zero, the routine will display ‘The lag length is’ lags.
Moreover, an AR(p) model (with p = lags) will be estimated and the value of the AIC will be
calculated and displayed.

2. Consider the following routine to determine the optimal lag length for an AR process for
dirgdp. The first time through the DO loop, p = 1 and an AR(1) model is estimated. The
resulting AIC is compared to aic_min. On this first loop, p = 1, so that thelag lengthp = 1is
stored in the variable p_opt and the value of the AIC replaces aic_min. The next time through
the loop, an AR(2) model is estimated and the AIC for this model is compared to aic_min.
After the DO loop is complete, p_opt contains the lag length of the best fitting model and
aic_min contains the AIC for that model.

122 Walter Enders

dop=112
lin(noprint) dirgdp 13 *
constant dirgdp{ 1 to p}
compute aic = %nobs* log(%orss) + 2* (%onreg)
if p.eg.l.or.aic<aic_min{
comp opt=p
comaic_min=aic
}
enddop

The EL SE Block
If the condition for the IF Block fails, you may want the RATS to execute an aternative set of
statements. The syntax is:

If condition {
program statements
}
Else {
Alternate program statements

}
End if

The first set of statements will be executed if the condition is true, otherwise the alternate set of
program statements will be executed. Again, you do not need the braces for a single statement.
Y ou should not use the END IF instruction if you are within a compiled section of a program.

EL SE IF Blocks

Oftentimes in your programming, you will encounter a situation where there is not an either/or
choice. You might have a number of possible states and want to execute different sets of
instructions for each possible state. In such circumstances, you can use ELSE IF blocks—each
consists of a set of instructions that is executed if the appropriate condition is met. The typical
structure of acomplex IF instructionis:

IF condition 1 {
first set of statements
}

Elseif condition 2 {
second set of statements

}

Else{
|ast set of statements
}

Endif (if not within acompiled program segment)

| F Statements and Monte Carlo Experiments 123

Note: RATS performs the first IF or ELSE IF condition that is true. If all are false, RATS will
perform ELSE (if present).

Nested | F Statements
It is possible to nest | F statements. Consider the following example. If condition 1 and condition
2 hold, then statement 1 is executed. Statement 2 is executed if condition 1 does not hold.

if condition 1 {
if condition 2 ; statement 1

}

else ; statement 2

With the appropriate use of braces{ } you can write programs with many conditional statements
embedded within others. If you want to use nested IF statements, you should refer to the RATS
Reference Manual. My experience indicates that it is best to avoid nested IF statements since
they are very difficult to debug. It is always possible to program precisely the same conditional
statements without nested | F statements using the relational .OR. and .AND. conditions.

1.1 Sample Program: Lag Lengths Again

Reconsider the problem of using the AIC to select the lag length for an autoregressive model of
dirgdp;. After reading in the data set MONEY_DEM.XLS, Program 4.1 on the file labeled
PROGRAM4.PRG constructs the variables dirgdp, drs and dirm2. Since these should be familiar
to you, we can jump to the next part of the program:

lin(noprint) dirgdp 14 * ; # constant
com aic_min = %nobs*log(%rss) + 2* %nreg, p_opt =0
dop=112
lin(noprint) dirgdp 14 *
constant dirgdp{ 1 to p}
compute aic = %nobs*log(%orss) + 2* (%onreg)
if aic<aic_ min{
comp_opt=p
comaic_min=aic
}
enddop

As discussed in Example 2 above, the variable aic_min will be used to contain the smallest value
of the AIC and the integer p_opt will be used to contain the value of p yielding the lowest AIC.
However, to allow for the case where the optimal lag length is zero, the initial values of aic_min
and p_opt are obtained from regressing dirgdp; on a constant. In the second line of the program,
the variables aic_ min and p hold the AIC and lag length for this regression. The first time

124 Walter Enders

through the loop, p = 1 and the AR(1) model will be estimated. The value of the resulting AIC
will be compared to aic_min—if the calculated AIC is less than aic_min, the two instructions in
brackets will be executed.

If the optimal lag is zero, the condition on the IF instruction below is true. As such, RATS
displays the message: An AR model is inappropriate. The autocorrelations are. The COR
instruction then produces the first twelve autocorrelations of dlrgdp; and the associated Q-
statistics. If p_opt is greater than zero, the ELSE block is executed. Hence, the autoregression
using p_opt lags is displayed along with the value of the AIC and p_opt. END IF instruction is
used since the IF-EL SE block is not within a compiled section of the program.

if popt==0{
dis*An AR model isinappropriate. The autocorrelations are’
cor(number=12,span=4,gstats) dirgdp
}
else{
lindlrgdp / resids
constant dirgdp{ 1 to p_opt}
compute aic = %nobs* log(%orss) + 2* (%onreg)
dis‘Theaicwith’ p_opt ‘lagsis aic
}

end if

If you run the program, your output will be:

Vari abl e Coef f Std Error T- St at Si gni f
EE R b I b R I I b S R I I S I S R I I I I S R I I I L b R I
1. Constant 0. 0051566068 0.0010217954 5. 04661 0.00000119
2. DLRGDP{1} 0. 2508977521 0.0769801061 3.25925 0.00135976
3. DLRGDF{ 2} 0. 1362250820 0.0762100846 1.78749 0.07571568
The aic with 2 lags is -732. 28752

Jazzing Up the Program

1. You might want to use a routine such as this in a number of your programs. However, you
might not aways want to use a maximum possible lag length of 12. To generalize the
program, you can create a variable called max_lag and a variable called diffs right before the
DO p = 1,12 instruction. Max_lag contains the maximum lag length you are willing to
consider and the value of diffs equals 1 if the variable has been differenced. You will also
need to modify the DO instruction such that the index p runs through max_lag. Hence, if you
want to consider amaximum of 16 lags using a variable that has been differenced once, use:

com max_lag = 16, diffs=1
dop=1max_lag
lin(noprint) dirgdp max_lag+diffs+1 *

| F Statements and Monte Carlo Experiments 125

These instructions cause RATS to use a maximum of 16 lags. Since the variable has been
differenced once (diffs = 1), the estimation for al 16 regressions will begin with observation
18.

. You can easily modify the program so that it can be used with any variable. Simply replace
every occurrence of dirgdp with the symbol x. For example, the first portion of the program
will become:

com max_lag =16, diffs=1
lin(noprint) x max_lag+diffst+1 * ; # constant
com aic_min = %nobs*log(%rss) + 2* %nreg, p_opt =0
dop=1max_lag
lin(noprint) x max_lag+diffs+1 *
constant x{ 1 to p}
compute aic = %nobs* log(%orss) + 2* (%onreg)
if aic<aic_min{
comp_opt=p
comaic_min=aic
}
enddop

If you eliminate the END IF instruction, you can use the routine to find the optimal lag length
of dirgdpy, dirm2; and drs; using:

dofor x = dirgdp dlrm2 drs
The modified program
End DOFOR

The complete program is on the final portion of Program 4.1.

126 Walter Enders

2. The %1F(x,y,z) Function

There is a second type of conditional statement that is especialy useful when working with a
series. Consider:

% | F(condition,y,z)

This function returns y if the condition is true and returns z if the condition is false. Note that v,
and z can be REAL or INTEGER.

Examples:
1. comx = %if(i.ge.5,1.0,-1.0)

Here the %I F() function is used with areal variable x. The value of x will be 1.0 if i is greater
than or equal to 5 and will be—-1.0if i islessthan 5.

2. set dummy = %if(t.ge.1992:1,1,0)

In conjunction with SET, the %IF() function works on each entry of a series. Here, each
value of DUMMY isequal to 1 for t > 1992:1 and is equal to zero otherwise. Thus, in contrast
to example 1, the SET command applies the %l F() function operates to the entire series. In
fact, this single statement works just like the following DO loop:

set dummy =0
dot=1,2001:1

if t.ge. 1992:1 ; com dummy(t) = 1
enddoi

Although both yield the identical values for dummy, there is one major difference. The actual
DO loop works many times slower than the SET with %I F(). The following two programs
both create a dummy variable equal to zero for observations 1 to 249 and equal to one for
observations 250 through 500. In order to ascertain the differential speed of the DO loop
versus the implied DO loop if the SET with %IF(), each program performs this task 10000
times. Program 1 took 1 minute and 18 seconds to run, while Program 2 took only 12 seconds.

Program 1 Program 2
all 500 all 500
set dummy =0 set dummy =0
doi =1,10000 doi =1,10000
dot=1,500 set dummy = %if(t.ge.250,1,0)
if t.ge.250; com dummy(t) = 1 enddoi
enddot
enddoi

* 1 minute 18 seconds * 12 seconds

| F Statements and Monte Carlo Experiments 127

The point is to avoid DO loops if possible since they are slow. The implied DO loop of the
%I F() instruction used in conjunction with SET is an efficient programming technique.

. Reconsider the example where we ‘fixed' a missing value by averaging:
dot =2,2000:4

if %valid(x(t)) ==0; comx(t) = 0.5(x(t-1) + x(t+1))
enddot

The following is much faster:
set x 2 2000:4 = %if(Yovalid(x) , x, (x{1} + x{-1})/2)

. It is possible to SET entry i of one series based on the value of a corresponding value of a
second series. Consider:

SET plus= %if(resids{1}< 0, 1, 0)

The series plusis equal to 1 if the lagged value of resids is negative, and is 0 when the lagged
resids is greater than or equal to zero. To better understand the output of the %IF() function,
suppose that resids contains the residuals from an AR(2) model. As such, the first two entries
of resids are missing since two usable observations are lost in estimating the AR(2).

ENTRY RESI DS PLUS
NA
NA
. 41281771461
. 11837667346
. 20035497963
. 67954385844
. 80353550741
-0. 78068210129
. 18970179911
. 97092277920

QUOWoO~NOUA~,WNE
1 1

OFRPONOOWO

OFrRPO0OO0OO0OFrR,PFrPOO0OO0o

[

In RATS, al series begin with entry 1. The first entry of plus[i.e., plus(1)] is zero since the
previous entry of resids is undefined (i.e., it is not true that resids for period 0 is negative).
Both plus(2) and plus(3) are equal to zero since the first two entries of resids are NA (hence,
they are NOT positive). Since resids(3) and resids(4) are both negative, the fourth and fifth
entries of plus are set equal to 1. The same logic prevails throughout; plus(10) equals zero
since resids(9) is positive.

In essence, the single statement above replaces the more complex (and much slower):
set plus=0
dot=2,N
if resids(t) < 0; com plus(t-1) = 1
enddot

128 Walter Enders

3. Estimating a Threshold Autoregression

The threshold autoregressive (TAR) model has become popular in that it allows for different
degrees of autoregressive decay. Consider a two-regime version of the threshold autoregressive
(TAR) model developed by Tong (1983):

O P] O P U
Ye=lgaot Zath—i Ot @-1)gB.+ Z BiYei O+ &
L =1 [l L =1]

where: y; is the series of interest, the a;, and (3; are coefficients to be estimated, 1 is the value of
the threshold, p isthe order of the TAR model and I; is the Heaviside indicator function:

_Mify, =1

| =
00 if y, <7

t

The nature of the system is that there are two states of the world. In the one state of the world,
i1 exceeds the value of the threshold T so that It = 1 and (1 - I;) = 0. As such, y; follows the
autoregressive process: oo + Zaiywi. Similarly, in the low state, y:.; fals short of the threshold T,
sothat It =0, (1-1;) =1 and y; follows the autoregressive process: o + Z[iywi. In a sense, there
are two attractors or potential “equilibrium” values. In the ‘high’ state, the system is drawn
toward ao/(1-Za;) and in the ‘low’ state, the system is drawn toward [¢/(1-Z[3)). Moreover, the
degree of autoregressive decay will differ across the two states if for any value of i, a; # 3i. The
key feature of the TAR model is that a sufficiently large €; shock can cause the system to switch
between states.

PROGRAM 4.3 in the file CHAPTER4_1.PRG illustrates the estimation of a TAR model for the
{dirgdp:} series. Asusual, the first five lines of the program read in the data set and construct the
variable dlpgdp using:

set dirgdp = log(rgdp) — log(rgdp{ 1})

First, suppose that we want the value of the threshold 1 to equal zero. This might be the case if
we were certain the positive real GDP growth behaved differently from negative growth. We
have already determined that it is reasonable to use alag length of 2. Hence, we need to construct
anumber of variables. First, we can construct the indicator function using:

set plus = %if(dlrgdp{ 1} >= 0,1,0)
Note first that we denote the indicator |; by a variable called plus—we cannot use the symbol i

(sincei isareserved integer variable) to represent a series. For each possible entry in the data set,
the SET instruction compares dirgdp:.; to the value 0. IF dprgdp:.; is greater than zero, the value

| F Statements and Monte Carlo Experiments 129

of plus isequal to 1, otherwise plus is zero. Y ou can see how the program works by printing the
first 10 values of plus and dlrgdp.

pri 110dlrgdp plus

ENTRY DLRGDP PLUS
1959: 01 NA 0
1959: 02 0. 025797235495 0
1959: 03 -0.000428834862 1
1959: 04 0. 003297294498 0
1960: 01 0. 021945448475 1
1960: 02 -0.004947391752 1
1960: 03 0. 001847653167 0
1960: 04 -0.012963339986 1
1961: 01 0. 005763460460 0
1961: 02 0. 018546572263 1

Note that plus(1959:1) is zero since dirgdp(1958:1) is not in the data set. Since this value was not
positive, plus(1959:1) is set equal to zero. Similarly, the initial value of dirgdp is NA (we lost an
observation by differencing); since dirgdp(1959:1) is not positive, plus(1959:1) is set equal to
zero. However, dirgdp(1959:2) is positive. As such, plus(1959:3) is set equal to 1. Continuing
through the observations, you can verify that plus is 1 when dirgdp.; is positive.

Next we create (1-1) as the series minus using:
set minus =1 - plus

Now we can create the variables: I*dirgdp.1, I¢*dlirgdpee, (1-1)*dirgdp.: and 1¢*dirgdp:.».
Consider:

set y1 plus = plus*dirgdp{ 1}
set y2_plus = plus*dirgdp{ 2}
set y1 minus = minus*dirgdp{ 1}
set y2_minus = minus*dirgdp{ 2}

Now we can estimate the regression using:

lin dlrgdp

#plusyl plusy2 plusminusyl minusy2_minus

Vari abl e Coef f Std Error T- St at Si gni f

EE R b I S I S I b S S R b I b b S S b S S S
1. PLUS 0. 005600681 0.001464144 3.82523 0.00018693
2. YL1_PLUS 0.192048274 0.108292518 1.77342 0.07806129
3. Y2_PLUS 0.174427730 0.086316981 2.02078 0.04497008
4. M NUS 0. 003903606 0.003147715 1.24014 0.21673934
5. YIL_MNUS 0.146629915 0.338184772 0.43358 0.66517798
6. Y2_MNUS -0.010018863 0.165657994 -0.06048 0.95184946

130 Walter Enders

At this point, you might want to pare down the number of coefficients since a number have t-
statistics that are quite low. Nevertheless, our goal here is to illustrate programming techniques,
not to obtain the best fitting TAR model for real GDP.

3.1 Estimating the Threshold

One problem with the above model is that the threshold may not be zero. When t is unknown,
Chan (1993) shows how to obtain a super-consistent estimate of the threshold parameter. For a
TAR model, the procedure is to order the observations from smallest to largest such that:

yi<y<yl<y

For each vaue of y, let T = Y, set the Heaviside indicator according to this potential threshold
and estimate a TAR model. The regression equation with the smallest residual sum of sguares
contains the consistent estimate of the threshold. In practice, the highest and lowest 15% of the
{y} values are excluded from the grid search so as to ensure an adequate number of observations
on each side of the threshold. We can conduct this procedure using the following program
segment. Consider:

compute low = 1959:2 + fix(.15* %nobs) , high = 2001:1 - fix(.15* %nobs)

This first instruction creates two variables; low is equal to the integer corresponding to the 15%
of the observations following 1959:2 and high is equal to the integer corresponding to the last
observation less 15% of the total number of observations. The first instruction below creates a
variable rss_test that will be used to hold the residual sum of squares for the best fitting model.
This value is initially set to be higher than any possible value of the estimated residual sum of
squares. The second instruction creates the series that will hold the calculated residual sum of
sguares from each regression estimated.

compute rss_test = 1000000.0
setrss=0.

Next, we need to create a series for the ordered values of dirgdp. The first instruction below
creates the series thresh_test that will hold the potential thresholds. Initially this series is SET
equal to dirgdp. The ORDER instruction orders the series from lowest to highest. Thresh_test
now contains the ordered values of dirgdp.

set thresh_test = dirgdp
order thresh_test

Now we can use each value of thresh_test as a potential threshold. We begin by equating thresh
with the very first value of thresh_test.

compute thresh = thresh_test(low)

| F Statements and Monte Carlo Experiments 131

Next, we begin the loop. For each value of i running from low to high, we take the associated
value of thresh test and use it as a potential threshold. Inside the DO loop, the program creates
the series plus, minus, y1 plus, y2 plus, y1_minus, y2_minus and estimates a TAR model. The
residual sum of sguares is compared to rss test. If the resulting residual sum of squares exceeds
this value, two instructions in brackets are not executed, the value of i is incremented by 1 and
the loop is repeated. However, if %orss is lower than rss test (i.e,, if the residual sum of squares
from the current regression is lower than any from the prior regressions) the bracketed
instructions are executed. The value of rss test is replaced by the value of %rss and the value of
thresh is equated to the thresh test (i.e., current value of the test threshold). Once the loop is
completed, thresh will hold the value of the threshold that yields the lowest residual sum of
sguares.

doi =low,high
set plus = %if(dirgdp{ 1} <thresh_test(i),0,1)
set minus =1 - plus
set y1 plus = plus*dirgdp{ 1}
set y2_plus = plus*dirgdp{ 2}
set yl minus = minus* dirgdp{ 1}
set y2_minus = minus* dirgdp{ 2}

lin(noprint) dirgdp
#plusyl plusy2 plusminusyl minusy2 minus

com rss(i) = %orss
if %rss<rss test{
compute rss_test = %rss
compute thresh = thresh_test(i)
}

enddoi

Once the program loop exits the loop, we can display the consistent estimate of the threshold if
we Use:

dis'We havefound the attr actor'
dis' Threshold ="' thresh

We have found the attractor
Threshol d = 0.01724

Finally, we can estimate the TAR model with the consistent estimate of the threshold using:

set plus = %if(dirgdp{ 1} <thresh,0,1)
set minus =1 - plus

set y1 plus = plus*dirgdp{ 1}

set y2 plus = plus*dirgdp{ 2}

132 Walter Enders

set y1 minus = minus* dirgdp{ 1}
set y2_minus = minus* dirgdp{ 2}

lin dirgdp

#plusyl plusy2 plusminusyl minusy2 minus

Vari abl e Coef f Std Error T- St at Si gni f
EE I I S I S I I I I b I S I I b I I I b b I b R I I I b b S I I b S I b b I I I b L
1. PLUS 0. 022981605 0.009875828 2.32706 0.02121556
2. Y1_PLUS -0. 443888007 0.406708488 -1.09142 0.27673082
3. Y2_PLUS -0. 036693896 0.208404259 -0. 17607 0.86046101
4. MNUS 0.005019041 0.001047997 4.78918 0.00000379
5. Y1_M NUS 0. 237965600 0.104676378 2.27335 0.02433550
6. Y2_MNUS 0.142325595 0.083235738 1.70991 0.08922107

Note that the series rss holds the residual sum of squares associated with each regression. The
pattern of these values can be seen for every potential threshold value if we create a scatter
diagram using:

scatter (Header="Residual Sums of Squares',style=lines,hlabel="Threshold") 1
thresh_test rsslow high

Residual Sums of Squares

0.01170

0.01165 —

0.01160 —

0.01155 —

0.01150 —

0.01145 . . .
0.000 0.005 0.010 0.015 0.020
Threshold

It is the case that the threshold of 0. 01724 does result in the lowest residual sum of squares.
However, it is clear from the scatter diagram that there is a sharp local minimum around 0.0025.
This suggests that there may be two thresholds implying the existence of a low, medium and
high state.

| F Statements and Monte Carlo Experiments 133

4. Branching

IF-THEN-ELSE blocks allow you to have some control over the flow of your program. It is
possible to have a set of instructions executed or completely skipped depending on a set of
criteria that you specify. Nevertheless, program execution necessarily resumes with the first
instruction following END IF. Note that in the example estimating the threshold model, RATS
always displays “We have found the attractor.”

Another flexible way to control the execution of your program is the BRANCH instruction.
BRANCH enables you to jump to the particular point in your program that you specify. You can
jump out of an IF-THEN-ELSE block, BRANCH back to some key instruction, or to jump to
amost any other point in the program. The key rules are that you cannot jump back to the
ALLOCATE instruction, into the middle of a nested block such as a DO loop or an IF-THEN-
EL SE block.

Otherwise, there are only two rules about branching. The first is that BRANCH works only
within a compiled section of a program. Second, to use BRANCH you must first label the point
in the program where you want to branch to. You label this point by beginning that line with a
colon and then immediately supplying the label. Consider the following three labels:

Examples:

:100

- jump_here

: exit
Any one of these three labels is a legitimate jump point—Ilabels can be line numbers, multiple
words or aword that conveys information about the execution of the program. The unconditional
jump to label is performed by the instruction:

BRANCH label

4.1 Sample Program Using BRANCH

Suppose that you want to generate an AR(1) process for a series with 100 observations. In
particular, suppose you want to generate arandom-walk model in the form:

Yt=VYe1 t &
where: g isani.d.d. random number with mean zero and variance equal to unity.

For each series you generate, you want to estimate an equation in the form:

134 Walter Enders

Vi = Bo + Piye1 + &

Your goal is to save the estimate of [3; and repeat the entire process 1000 times. Your aim is to
obtain information about the distribution of the estimated values of ;. A program that will
perform thistask is:

all 100

sety =0.

set beta 1 1000 = 0.

doi=1,1000
sety 2* =y{1} + %ran(1)
lin(noprint) y ; # constant y{ 1}
com beta(i) = %obeta(2)

end do

table/ beta

The first line of Program 4.4 sets the default length of all series to 100. The second line
initializes all 100 values of {y;} to equal zero. The estimated values of 3; will be stored in the
series called beta. The third line initializes all 1000 values of beta to be zero. Theinitialization is
necessary since RATS cannot create a series using COMPUTE. Instead, you create the series
with SET so that later instructions can manipulate the individual entries of the series. Thereis a
second interesting feature of the SET instruction. Although the default length for beta is 100,
SET allows us to override this default by specifying the START and END values. The first
instruction in the DO loop below generates a simulated random walk—the current value of y is
equal to the previous value plus a random error term drawn from anormal distribution with mean
zero and variance equal to 1. The second line in the loop estimates the model and the third
equates the i-th value of the series beta with the estimated value of (3;. On exiting the loop, the
TABLE instruction displays the sample statistics on the series beta.

If you run the program, your output will look something like:

Series Obs Mean Std Error M ni num Maxi mum
BETA 1000 0.94693484752 0.04471912585 0. 70122076370 1.04215477194

Note your output will be a bit different from mine in that your computer probably used different
‘random numbers than mine to generate the 1000 random-walk sequences. An issue that may
arise concerns the use of random numbers in the program. We might want to ensure that the
random numbers selected by RATS actually appear to be random. Towards this end, we can
modify the routine as follows:

| F Statements and Monte Carlo Experiments 135

doi =1,1000

‘redraw

set epsilon = %ran(1)
cor(number=4,qstats,noprint) epsilon
if %signif <0.005 ; branch redraw

sety 2* =y{1} + epsilon

lin(noprint) y ; # constant y{ 1}

com beta(i) = %obeta(2)

end do

Now the first instruction inside the loop is a label called :REDRAW. The program will jump
back to this point and redraw a new set of ‘random-numbers' if the current series does not appear
to be random. The second instruction in the loop fills the series epsilon with 100 pseudo-random
numbers. The next line obtains the first four autocorrelations of the epsilon series. The
CORRELATE instruction creates the internal variable %signif that holds the significance level
of the for the null hypothesis that these first four autocorrelations are all equal to zero. In the next
line, we compare this significance level to 0.005. If the significance level for the Ljung-Box
Q(4)-statistic is less than 0.001, the program jumps back to :REDRAW. Whenever such a jump
occurs, RATS draws anew set of pseudo-random numbers,

136 Walter Enders

5 Monte Carlo Experiments

A Monte Carlo experiment attempts to replicate an actual data generating process (DGP) using
experimental means. You can use RATS to generate one or more series that characterize those
produced by the actual data generating process in all key respects. A Monte Carlo experiment
will generate a random sample of size T and the parameters and/or sample statistics of interest
are calculated. This process in repeated N times (where N is a large number) so that the
distribution of the desired parameters and/or sample statistics can be tabulated. These empirical
distributions are used as estimates of the actual distributions. In fact, the previous Sample
Program was a Monte Carlo experiment that can answer the following question: If the {yi}
sequence is actually arandom walk, what is the sampling distribution of the OLS estimate of (3;?
Notice that the sample mean of the estimated values of (; (0. 94693484752) is below the true
value of unity and that the minimum value (0. 70122076370) is further away from unity than the
maximum value (1. 04215477194) .

Asit turns out, Dickey and Fuller (1979) show that it is quite correct to infer that the estimate of
1 is biased to be below unity. We will examine the Dickey-Fuller distribution in detail in two of
the sample programs below. For now, suffice it to say that the use of the Monte Carlo method is
justified by the Law of Large Numbers and various forms of the Central Limit Theorem.
Consider the simplest case where v; is an identically and independently distributed (i.i.d.) random
number with mean p and variance 62, i.e.,

Vi ~ (4, 0°)
Consider the sample mean using T observations:

V:(llT)ivi

t=1

Asthe sample size T grows sufficiently large:

a EV)-p
b. E(\T_IJ)Z Ed GZ/T
c. the distribution of V' approaches a normal distribution with mean p and variance */T.

Hence, the Monte Carlo mean (V) is an unbiased estimate of the population mean with a
variance of 6%/T. Note that V is normally distributed around the true mean p when T is large.
The sample variance is an unbiased estimate of the population variance. Dividing the sample
variance by T yields an unbiased estimate of the variance of the sample mean around the true
mean. The point is that population means can be estimated using means of simple random
samples—the accuracy is decreasing in 0%/T so that the greater T, the greater the accuracy. (Note

| F Statements and Monte Carlo Experiments 137

that it is difficult to obtain a high degree of accuracy for the standard deviation since it is a
function of T2 not T™).

When the distribution for v; is more complicated, it is often not possible to obtain results in the
form of a, b, and c. Moreover, it is often difficult to derive the properties of the distribution of
the sample mean for the sample sizes typically used in econometric studies. Thisis when Monte
Carlo analysisis most valuable.

There are two RATS functions that are especially useful for generating random numbers:

%RAN(X) A random draw from a Normal (0, x) distribution
%UNIFORM(L ,H) A random draw from a uniform distribution ranging from lower
bound L to upper bound H.
Examples

1. set x = %ran(1)

This instruction equates each value of x with an i.i.d. random number drawn from a normal
distribution with a mean of zero and a standard deviation equal to unity.

2. set x = %uniform(-1,1)

This instruction equates each value of x with an i.i.d. random number drawn from a uniform
distribution with alower bound of —1 and an upper bound of 1.

3.Sety =6+ %ran(1)
sety 2* =3+ 0.5y{1} + sqrt(0.75)* %ran(1)

Y ou might use these two statements to generate an AR(1) sequence withameanof 6[i.e, 6=
3/(1 — 0.5)], an autoregressive parameter of 0.5 and a long-run variance of 1.0. The first
statement initializes the series to equal the long-run mean plus a normally distributed random
number with a variance equal to unity. The second equates the entries (beginning with entry
2) equal to the desired AR(1) process such that the unconditional variance of they is unity.

5.1 A Simple Monte Carlo Experiment

A Modified Coin Tossing Problem: Suppose you toss a coin and a tetrahedron. For the coin, you
get 1 point for a ‘tail’ and 2 points for a ‘head.” The faces of the tetrahedron are labeled 1
through 4. For the tetrahedron, you get the number of points shown on the downward face. Y our
total score equals the number of points received for the coin and the tetrahedron. Of course, it is
impossible to have a score of zero or 1. It is straightforward to calculate that the probabilities of
scores 3, 4, and 5 equal 0.25 while the probabilities of scores 2 and 6 equal 0.125.

138 Walter Enders

It is possible to simulate aroll of the coin and tetrahedron on the computer. Since the probability
of a‘head’ is 0.5, we can use the following program statement:

compute coin = %if(%uniform(0,1) > .5,2,1)

The instruction equates the variable coin with 2 if a uniformly drawn random number over the
interval [O, 1] exceeds 0.5. If the value of %uniform(0,1) is less than or equal to 0.5, the value
of coin is 1. In this way, a ‘head’ is equal to 2 while a ‘tail’ is equal to 1. Similarly, we can
simulate the toss of the tetrahedron.

com tet = fix(%uniform(1.0,5.0))

The first line equates x with a integer value of uniformly distributed random number over the
interval [1, 5]. Note that FIX transforms a floating point number to an integer. As such, if the
random number is between 1 and 2, the value of tet is the integer 1. Similarly, if the number is
between 4 and 5, the value of tet is the integer 4. Thus, the probabilities that tet will equal 1, 2, 3
or 4 are all equal to 0.25.

We can obtain the total score using:
com score = coin + tet; dis score

To this point, we have done nothing but replicate the possible outcome of the game. However, it
is simple to modify our program to replicate the game 1000 times. We can then calculate the
proportion of instances in which we get scores of 2, 3, 4, 5, and 6. If the Monte Carlo method
works, these sample proportions should come close to the true probabilities.

We will use the series num to hold the number of timesweroll al, 2, 3, 4, 5 and 6 (Of course,
the number of times a 1 is obtained will be zero). For example num(4) will equal the number of
times a score of 4 is obtained. Consider the instructions from Program 4.5 on the file labeled
CHAPTER4 _1.PRG.

al 6
setnum=20
doj=1,1000
compute coin = fix(%if(%uniform(-1,1) > 0,2,1))
com tet = fix(%uniform(1.0,5.0))
compute num(coin+tet) = num(coin+tet) + 1 ;* add 1 to sum(total # faces)
end doj
print / num

The ALLOCATE instruction sets the default series length equal to 6—we need only six entries
to hold the series num. Line 2 initializes all entries of num to equal zero. The DO loop indicates
that the lines 4 through 6 will be performed 1000 times. Line 4 is the simulated coin toss and line
5 is the simulated tetrahedron toss. To understand line 6, recall that coin + tet is equal to the
score. Thus, line 6 increments the appropriate entry of score by 1. For example, if coin + tet = 5,

| F Statements and Monte Carlo Experiments 139

line 6 adds 1 to the value stored in num(5). Once we exit the loop, the values of num are printed
to the screen. If you run the program yourself, you will obtain something like:

ENTRY SUM

0
129
262
241
252
116

OO WNBE

A score of 1 was never observed, a 2 was observed 12.9% of the time, a 3 was observed 26.2%
of the time, and so on. In fact, the sample proportions are reasonably close to the true
probabilities. If you increase the number of simulated rolls, you should obtain output that is
closer to the true probabilities.

Of course, your answers will be somewhat different from mine. Your computer will not draw
precisely the same random numbers as mine. However, this can be an undesirable feature of a
program. Suppose we are debugging a program or want to perform a sensitivity analysis such
that we want to use precisely the same random numbers from one computer run to the next. This
can be done by seeding RATS' random number generator in the identical fashion from one run to
the next. The instruction that doesthisis:

SEED Integer

If you include SEED 2001 immediately after the allocate statement, you should get the same
output as that shown above.

5.2 Downward Biasin an AR Model

It iswell known that the OL S estimates of afirst-order autoregressive process are biased towards
zero. The size of the bias increases as the magnitude of the autoregressive coefficient increases
from zero to unity. Consider the following autoregressive model:

Yt = 0o + O1yr1 + &

It is possible to write a simple program to measure the size of the bias and to see how it is
affected by the magnitude of a,. Towards this end, we could perform the following tasks:

Step 1: Generate a seriesin the form of the AR(1) model using avalue of a; = 0.2.

Step 2: Estimate the series using OL S and calcul ate the discrepancy between the estimated value
of a; and 0.2.

140 Walter Enders

Step 3: Repeat Steps 1 and 2 atotal of 1000 times. Display the average value of the discrepancy.
Step 4: Repeat Steps 1 to 3 using alternative values of a.
Consider the first three lines of Program 4.6 in the file CHAPTER4_1:

all 100
set discrep 1 1000 = 0.
sety =0.

Since the program uses only simulated data, we do not include a CALENDAR instruction. The
ALLOCATE instruction sets the default length of any series we create equal to 100. For each
value of a;, we will store the 1000 discrepancies between the actual and estimated values in the
series called discrep. The third instruction initializes all 100 observations in the simulated {y:}
sequence to be zero.

Now we have to decide which values of a; to include. It might make sense to include 0.5 (since
it is midway between 0. and 1.0) and two values near 1.0—say 0.9 and 0.99. Finally, we might
want to include 0.0 for comparison purposes. Consider the next two instructions:

com aphal = 0.
dofor alphal =.2.5.9.990.

The DOFOR instruction acts in away that is smilar to the DO instruction. Notice, however, that
the index is not an integer and does not increase in any precise way from one loop to the next (In
fact, for the last iteration, the index decreases from 0.99 to 0.) .The instruction, com aphal = 0.
IS necessary since we need to initialize the index to be a real number. Otherwise, RATS would
have expected a list of integers for alphal. Note that we could have used any real number (e.g.,
com alphal = -.5) for the initialization.

The next instruction reseeds the random number generator each time a; takes on a new value.
This way, the random numbers do not change as the values of the various values for a; change.
Thefirst instruction inside the DO i loop, generates y; as the current value of a; multiplied by i1
plus an i.i.d. normally distributed random number with mean zero and variance equal to 1. Since
we are interested only in the discrepancy between the actual and estimated values of a; the
output is suppressed. Thelast linein the DO i loop equates entry i of discrep with the difference
between the actual and estimated values of ai. On exiting the DO i loop, discrep will contain
1000 values of the discrepancy.

seed 2001

doi=1,1000
sety 2* =aphal*y{1} + %ran(l)
lin(noprint) y ; # constant y{ 1}
com discrep(i) = aphal - %beta(2)

endi

| F Statements and Monte Carlo Experiments 141

The sample statistics of discrep, including the mean, are displayed using the TABLE instruction.
If you want, you can display many interesting sample statistics using the command:
statistics(fractiles) discrep. The final instruction closes the DOFOR loop. As such, a; changes
from 0.2, t0 0.5, t0 0.9, to 0.99 and finally to 0.0.

table / discrep

end dofor
Series Cbs Mean Std Error M ni mum Maxi mum
DI SCREP 1000 0.0166418436 0.0972591579 -0.2935443023 0.3218321838
DI SCREP 1000 0.0267019830 0.0905765140 -0.2170420309 0.3415792684
DI SCREP 1000 0.0443060778 0.0615724835 -0.0715945104 0.3328153050
DI SCREP 1000 0.0556321214 0.0456496779 -0.0321881468 0.2691217328
DI SCREP 1000 0.0103641243 0.0974089395 -0. 3157692119 0. 2998128902

Y ou can see that the mean value of discrep increases as a; increases. The smallest mean value of
the discrepancy (i.e., 0. 0103641243) occurs for a; = 0. Why didn’t this number turn out to be
exactly zero—doesn’'t this show a bit of an ‘upward bias in the discrepancy? The answer
involves the fact that we used only 1000 replications of the AR(1) process. In many Monte Carlo
experiments, 100,000 replications are used in order to get a more precise estimate of the true
sampling distribution.

5.3 Power of the Dickey-Fuller Test

The last example used the first-order AR(1) process.
Yt =0p+ O1yt1 + &
where: {€} isgenerated from awhite noise process.

In spite of the downward bias in the estimate of a;, most applied econometricians would still use a
standard t-test to determine whether a; is significantly different from zero. The bias is only large
when a3 is large. The situation is quite different if we want to test the hypothesis o= 1. Now,
under the null hypothesis, the {y;} sequence is anon-stationary process. As such, it isinappropriate
to use classical statistical methods to estimate and perform significance tests on the coefficient a.
Dickey and Fuller (1979) used Monte Carlo methods to obtain the appropriate critical values to test
for the presence of a unit root. The following program produces results that mimic their T,
distribution.

The logic of the method is identical to that for the AR(1) process used in the previous example.
The difference is that we will generate random-walk sequences instead of mean-reverting
autoregressive processes. The ALLOCATE instruction in Program 4.7 of the file labeled
CHAPTER4_1.PRG, usesasample size of 100. Line 2 initializes a series called tstat—this series
will hold all of the t-statistics generated in the Monte Carlo experiment. Notice that we will
perform the experiment 10000 times and will have 10000 t-statistics. As such we want tstat to

142 Walter Enders

have a length of 10000. Line 3 initializes the y sequence to zero and sets the first entry equal to a
normal distributed random number with a mean of zero and standard deviation of unity. Lines 5
—9 are performed 10000 times. Line 5 generates a sequence that mimics the random-walk:

Ve= Y1t &

Line 6 takes the first-difference of the sequence and calls the result dy. The usual form of the
Dickey-Fuller test isto estimate the AR(1) equation in the form:

Ay; =0g + PYr1 + &

As such, lines 7 and 8 estimate dy on a constant and y{1}. Since p = a; - 1, we want to know
whether it is possible to reject the null hypothesis p = 0. The sampling distribution of the t-
statistic for the null hypothesis p = 0 is stored as entry i of tstat. Once the 10000 replications of
this Monte Carlo experiment are completed, statistics(fractiles) tstat produces the distribution of
the t-statistics.

all 100
set tstat 1 10000 = 0.
sety = 0.0 ; compute y(1) = %ran(1)

doi = 1,10000
sety 2100 = y{1} + %ran(1)
diff y / dy
linreg(noprint) dy * 100
constant y{ 1}
compute tstat(i) = %otstats(2)
enddoi
statistics(fractiles) tstat

Statistics on Series TSTAT
Cbservati ons 10000

Sanpl e Mean -1.5411735979 Vari ance 0. 725122
Standard Error 0.8515412362 SE of Sanpl e Mean 0. 008515
t-Statistic -180. 98637 Signif Level (Mean=0) 0.00000000
Skewness 0. 19591 Signif Level (Sk=0) 0. 00000000
Kurtosis 0. 35386 Signif Level (Ku=0) 0. 00000000
Jar que- Ber a 116. 14118 Signif Level (JB=0) 0. 00000000
M ni mum -4.8214558640 Maxi mum 2.3794080538
01-%le -3.4919869782 99-% l e 0. 6158486194

05-% 1l e -2.8861478731 95-% 1| e - 0. 0669050993

10-% 1l e -2.5748048837 90-% 1l e -0. 4212769335

25-% 1l e -2.0988978255 75-% 1 e -1.0183779154

Medi an -1. 5835459078

Y our output will look a bit different from mine since we have not used the same SEED integer.
Notice that 90% of the t-statistics exceeded -2.57, 95% exceeded -2.88 and 99% exceeded -3.49.

| F Statements and Monte Carlo Experiments 143

If you look at the Dickey-Fuller table, you will see that the at the 10%, 5% and 1% significance
levels are-2.58, -2.89 and -3.51, respectively.

Thus, suppose you had a sample with 100 observations and estimated the series in question as an
AR(1) process. If it turned out that the estimated value of p = -.05 (so that the estimated value of
o1 = 0.95) with a standard error of 0.02, could you regject the null hypothesis p = 0? The answer
isno! Although the estimate p is 2.5 standard deviations away from unity, it is not permissible to

use atraditional t-statistic. Instead, the Monte Carlo results show that when the true value of p =
0 (i.e.,, a; = 1 so that the true data generating process is a random-walk), we would obtain a t-
statistic that exceeds - 2. 5748048837 (i.e., isless than - 2. 5748048837 in absolute value) more
than 90% of the time. As such, at the 1%, 5% and 10% significance levels, we cannot reject the
null hypothesis p = 0.

Power of the Test

Now that we know critical values for the Dickey-Fuller test, it is instructive to show how to
ascertain its power. Since the Dickey-Fuller confidence intervals exceed those for the usual t-
test, it is to be expected that the power of the Dickey-Fuller test is low. Program 4.8 on the file
labeled CHAPTER4 1 illustrates a way to determine how often the Dickey-Fuller test regjects a
false null hypothesis. To be more specific, given that the true data generating process is such that
p<0(i.e, aj < 1), the program calculates the probability of rejecting the false null hypothesis p
= 0 and accepting the correct aternative hypothesis p < 0. The first two lines of the program set
the default sample size of any series to 200 and seed the random number generator.

al 200
seed 237

Suppose we want to determine the power of the Dickey-Fuller test for various values of a; close
to unity. The program uses the four values: a; = 0.8, 0.9, 0.95 and 0.99. DOFOR will loop over
real values if the index has been defined as a real number. This is accomplished using com
aplhal = 0.0. The first time through the DOFOR loop, alphal = 0.8 and rho = -.2. The next line
below initializes the variables hits10, hits5 and hitsl to equal zero; we will use these variables to
hold the number of times the Dickey-Fuller test correctly rejects the null hypothesis of a unit-
root at the 10%, 5% and 1% significance levels, respectively. The fifth line below initializes the
{yi} sequence to equal its unconditional mean value of zero with avariance of 1.0.

com alphal = 0.0
dofor aphal = 0.80 0.90 0.95 0.99
comrho = aphal - 1.0

compute hits10 = hits5 = hits1 =0
set y = %ran(1)

The DO |j loop prepares RATS to do 10,000 Monte Carlo replications. Within each loop, the {yi}
sequence is constructed as an AR(1) process with i.i.d. normally distributed errors. (Note that the
value of alphal is determined by the number of times the program has completed the DOFOR

144 Walter Enders

loop). As constructed, the variance of the {y;} sequence is 1.0. If you take the variance of each
side of the SET instruction you obtain var(y) = (a1)?var(y.1) + [1 - (a1)?]. Hence, var(y,) =
var(y.1) = 1.

doj = 1,10000
sety 2* = alphal*y{1} + sqrt(1-alphal**2)*%ran(1)

The next instruction creates the first-difference of {y;} and calls the resulting series { dy:}. Next,
dy; is regressed on a constant and y:.;. Notice that we use only the last 99 observations of the
simulated {dy;} sequence for the regression. This technique is used to eliminate the problem of
choosing the initial condition for the {y;} sequence. Since we do not want to impose any
particular initial condition on the simulated sequence, we generate 200 values for {y;} and use
only the last 100. Since we lose one additional observation by differencing, the regression uses
99 observations so as to replicate a data set containing 100 observations. The t-statistic for the
estimated value of a is stored in the variable df.

dif y/dy
linreg(noprint) dy 102 *
constant y{ 1}
compute df = %tstats(2)

The three IF statements below compare the calculated t-statistic to the Dickey-Fuller critical
values.® If the t-statistic is less than -2.58, the null hypothesis of p = 0 is rejected at the 10%
significance level. Thus, if df < -2.58 the value of hits10 is increased by one. Similarly, if df < -
2.89, hitsb isincreased by one and if df < -3.51, hitsl isincreased by one. After the 10,000 DO j
loops, we can use these three numbers to indicate the number of times that the test correctly
rejected the null hypothesis of a unit-root.

if df <-2.58; compute hits10 = hits10 + 1

if df <-2.89; compute hits5 = hits5 + 1

if df <-3.51; compute hitsl = hitsl + 1
enddoj

The last section of the program displays the key output; for each value of p, hitsl0, hits5 and
hitsl are shown.

display ' rho ="rho

display' 10% 5% 1%

display ###H#H# hits10 ##HH#H hitsh #HHH## hitsl
display* '

end dofor

%8 The values used are those reported in Dickey and Fuller (1979), not those obtained in Program
4.7 above.

| F Statements and Monte Carlo Experiments 145

rho = - 0. 20000
10% 5% 1%
9601 8730 5131
rho = -0. 10000
10% 5% 1%
5206 3256 865
rho = - 0. 05000
10% 5% 1%
2350 1272 269
rho = -0. 01000
10% 5% 1%

1154 561 109

When p = -0.2, the test does reasonably well—at the 5% significance level, the false null
hypothesis of a unit-root is rejected in 87.30% of the Monte Carlo replications. However, when p
= -0.05, the probability of correctly rejecting the null hypothesis of a unit-root is estimated to be
only 12.72%.

Jazzing Up the Program

A Monte Carlo analysis can take a very long time to execute. We could, for example, run the
program for a number of sample sizes and for additional values of alphal. Y our computer screen
can remain blank for a very long time before you see any output. You have probably noticed an
INFOBOX that quickly appears and disappears when you read in a data set. Similarly, it is
possible to ‘keep track’ of the number of iterations completed by using the INFOBOX
instruction. It is necessary to use INFOBOX three times in the program; once to DEFINE the
box, a second time to update or MODIFY the box and a third time to REMOVE the box. The
syntax for INFOBOX is:

INFOBOX(ACTION=, other options) 'messagestring'

where:
ACTION = DEFINE/[MODIFY]/REMOVE

With ACTION = DEFINE, the key options are:

PROGRESS/[NOPROG] This option determines whether the box will include a progress bar.
You must specify values for LOWER and UPPER when you use

PROGRESS.
LOWER = Integer value for the lower bound.
UPPER = Integer value for the upper bound.

With ACTION = MODIFY, use the option:

CURRENT = The current integer value for the progress bar

146 Walter Enders
Thus, to keep track of the number of iterations over j that have been completed, immediately
before the instruction DO j = 1,10000, include:
infobox(action=define,progress,|ower=1,upper=10000) 'Replications Completed'
Immediately after the instruction DO j = 1,10000, include:
infobox(current=j)
Immediately after the instruction END DO j, include:
infobox(action=remove)
If you now run the program you should see something that looks like:

i Progress Box

FReplication:z Completed

020%

5.4 The Enders-Granger Statistic

In addition to shamelessly promoting my own work, the following program illustrates the use of
several other BRANCHING and IF statements within a Monte Carlo study. In Enders and
Granger (1998), we generalized the Dickey-Fuller methodology to consider the null hypothesis
of a unit-root against the alternative hypothesis of a threshold autoregressive (TAR) model. The
simple version TAR mode is:

Ay = 1ip1yra + (L=)payea + &

1if >0
where: 1, :E e
0oif y., <0

The basic ideais that autoregressive decay might not be symmetric. If y;.1 <0, the indicator
function I; = 0, so that: Ay; = poye1 + & and if yi.1 = 0, |t = 1 so that Ay = p1ye1 + &. Notice that if
p1 = P2 =0, the process is arandom walk. However, asin the Dickey-Fuller test, it is not possible

| F Statements and Monte Carlo Experiments 147

to use aclassical F-statistic to test the null hypothesis p; = p2 = 0. Instead, the following program
can be used to accomplish the following tasks:

1. Generate arandom-walk sequence.

2. Estimate the sequence as a threshold autoregressive model.

3. BRANCH if the ssmulated sequence does not cross the threshold
4. Calculate the sample F-statistic for the null hypothesis p; = p, = 0.
5. Obtain the distribution of the sample F-statistics.

There is one technical task that must be done. It is necessary to ensure that there are a sufficient
number of observations on each side of the threshold to estimate the TAR model. One way to
check is immediately after task 3. If either of the t-statistics for p; or p, is zero (or undefined),
the simulated series needs to be eiminated from the study. Thus, after estimating the TAR
model, we check to see is the absolute value of the product of the two t-statistics is less than
0.0000001. If so, we branch to step 1 to obtain a replacement series. Program 4.9 of the file
CHAPTER4_2.PRG contains the program that we used to calcul ate the Monte Carlo values.

The first four lines perform some bookkeeping tasks. The default length of a seriesis 200. Also,
the random number generator is seeded and the series f is initialized with 50000 values of zero.
The sample values of the F-statistic for the null hypothesis p; = p, = 0 will be stored inf. Line 4
initializes the value of the{y;} sequenceto zero.

all 200

seed 2001

set f 1 50000 = 0.
sety =0.

The next line of the program begins the DO loop and the following line is labeled reset. The
program jumps back to this line if the simulated series does not cross the threshold (i.e., the
program will BRANCH to reset if the two t-statistics are too small.

doj = 1,50000
reset

Task 1 is performed by the next three lines of the program. The next two lines in the program
simulate a random-walk sequence of 200 observations. The third instruction takes the first-
difference of the ssimulated series.

* TASK 1. COMPUTE they series
sety 2200 = y{1} + %ran(1)
diff y 2 200 dy

Next, the %IF instruction is used to set the indicator—called plus—to equal zero if i is
negative and to equal 1 otherwise. The second and third instructions shown below create zplus
(the indicator multiplied by the lagged value y:.1) and zminus (one minus the indicator multiplied
by the lagged value y:.,).

148 Walter Enders

* TASK 2: Estimate the TAR Model
set plus = %if(y{ 1} <0,0,1)

set zplus = plusty{ 1}

set zminus = (1-plus)*y{ 1}

In the two instructions below, RATS estimates the TAR model using only observations 102
through 200. Thus, as in the previous program, this mimics a data set with 100 total observations.

linreg(noprint) dy 102 200
zplus zminus

The next two instructions are used to check the two t-statistics to see if they are both different
from zero. If the product of the two is sufficiently close to zero, the program branches back to the
line labeled :reset. Hence, if the two t-statistics are sufficiently low, the program branches back
to the point where a new sequence is generated.

* TASK 3
compute t1 = %tstats(1), t2 = %tstats(2)
if abs(t1*t2) < 0.0000001

branch reset

If the program does not BRANCH to reset, the next three lines of the program obtain the sample
F-value for the null hypothesis p; = p2 = 0. The last line within the loop stores this sample F-
value as entry j of the seriesf. At the end of 50,000 replications, the program exitsthe END DO |
loop. The STATISTICS instruction with the FRACTILES option produces the output shown
below. Be aware that the program takes along time to complete the 50000 replications.

* TASK 4: Calculate the Sample F-statistic
exclude(noprint)
zplus zminus
compute f(j) = %cdstat
end doj

* TASK 5
statistics(fractiles) f

| F Statements and Monte Carlo Experiments 149

Statistics on Series F
bservati ons 50000
Sanpl e Mean 1. 6524588263 Vari ance 1. 378597
Standard Error 1.1741364996 SE of Sanpl e Mean 0. 005251
t-Statistic 314. 70023 Signif Level (Mean=0) 0.00000000
Skewness 1. 73656 Signif Level (Sk=0) 0. 00000000
Kurtosis 5. 01475 Signif Level (Ku=0) 0. 00000000
Jar que- Ber a 77521. 44422 Signif Level (JB=0) 0. 00000000
M ni mum 0. 0013651902 Maxi nmum 14. 4743025649
01-%l e 0. 1977081049 99-%l e 5. 6967829958

| 05-% 1 e 0. 3681509883 95-%l e 3. 9233591336
10-% 1l e 0. 5025774653 90-%l e 3.1857908038
25-%l e 0. 8187794721 75-% 1l e 2.1691250789
Medi an 1. 3579015615

Suppose that you estimated a series as a threshold process:
Ay = 1ipaye1 + (1 —)Py + &

Lif >0
where: |, :E P Y
0oif y,, <0

If the sample F-statistic of the null hypothesis p; = p2 = 0 was 3.5, you would be able to reject
the null hypothesis at the 10% significance level but not the 5% level. Y ou can modify the
program by (i) including an INFOBOX, (ii) obtaining the critical values for additional sample
sizes, and (iii) obtaining the critical values when Chan’s (1993) method (see Section 3.1 in this
chapter) is used to estimate the threshold.

5.5 Inferencein a Cointegrated System

This is one of my favorite programs. It illustrates a number of RATS advanced features and the
folly of using traditional distribution theory to perform hypothesis tests on a cointegrating vector.
Suppose that x; and y; are two non-stationary time-series variables that are cointegrated of order
1. The error-correction representation of the systemiis:

Ve = Ye1 - 01 Bo+ Ye1 - BrXer] + Aw(L)Aya + Ara(L) A1 + €y
Xe = X1 + O Bo + Vi1 - BaXer] + Aot(L)Aye1 + Axo(L)AXe.1 + €
It is assumed that e;; and ex are serially uncorrelated but the covariance Eey; e, need not be zero.

As in Chapter 2, if the variances and covariance are time-invariant, we can write the
variance/covariance matrix as:

150 Walter Enders

Z — ém-ll UlZD

O
(O O]
where: Var(ey) = g;; and Cov(ey,ex) = 612 = 621.

The nature of the system is such that {y;} and {x;} are unit-root processes that are linked by the
cointegrating vector Bo + i1 - B1X-1. SUppose you estimate the regression equation:

Y = By + B +e
Stock (1987) proves that the OLS estimates of the coefficient of a cointegrating vector converge
faster than similar estimates for stationary variables. As such, it is inappropriate to use standard

t-statistics and confidence intervals to perform inference on f,. The following Monte Carlo
experiment illustrates the problem:

Step 1. Generate {x} and {y;} as a cointegrated system. For simplicity, we will generate the

series without an intercept in the cointegrating vector and with al values of A;j(L) = 0. Hence, the
simulated mode! is:

Ve = Ye1 - A1 Vi1 - BiXea] + €
Xt = Xe1 + 02 Vi1 - BaXea] + €x

Step 2. Estimate the cointegrating vector:
Y= By + B+

and use the t-distribution to form a 95% confidence interval around ﬁl. The point of the exercise

is to determine how well (or poorly) the t-distribution works for cointegrated variables. If this
confidence interval includes the actual value of 3; used in STEP 1, add 1 to the variable success.
If the t-distribution is appropriate, success should be increased in 95% of the Monte Carlo
replications.

Also, store the value of Bl so that it can be compared to the actual value of 3;.

Step 3. Repeat the experiment 2000 times and examine the variable success.
Step 4. Repeat Steps 1 — 3 for different values of a4, 0, B; and the elements of 2.
The program relies on the EQUATION and the SIMULATE instructions. If you are familiar with

these instructions, you can skip the remainder of this section. As used in the program, the syntax
for the EQUATION instruction is:?®

2 |f you have an equation with no AR or MA terms omit these fields and the MORE option.

| F Statements and Monte Carlo Experiments 151

EQUATION(COEFFS=coeffs,other options) equation depvar ARlags MAlags
list of explanatory variables

where:

equation Equation name.

depvar Dependent variable.

ARlags Number of AR lags

MAlags Number of AR lags

coeffs Vector of coefficient values assigned to the constant, AR terms, MA

terms, and explanatory variables, respectively.

Other Principal Options
CONSTANT Include a constant in the equation (CONSTANT isthe default for
INOCONSTANT ARMA models).
MORE/[NOMORE] For ARMA equations, MORE indicates that other explanatory
variables are on a supplementary card.
VARIANCE= Value for the variance of the residual series.

SIMULATE creates a Monte Carlo replication of amodel using normally distributed error terms.
The syntax used in the program is:

simulate(model=modelname,results=results) * number start V

where:

number The number of observationsin the simulated model

start The start date for the first entry.

Vv The variance/covariance matrix of the residuals.

results The simulated values of the first equation are stored in results(1), the
simulated values of the second equation are stored in results(2), and so
on.

The Program

The first four instructions of Program 4.10 on the file CHAPTER4_2.PRG set the default size of
a series to 150 entries, SEED the random number generator, and initialize the y and x series to
equal zero. The COMPUTE instruction sets3; = 1.0and a; = a, = 0.1.

alocate 150

seed 2002

sety=0.0

set x = 0.

com betal = 1.0, alphal = 0.1, alpha2 = 0.1

equation(noconstant,more,coeffs=|| 1.-alphal, aphal*betal |[) eqly ; # y{1} x{1}
equation(noconstant,more,coeffs=|| 1.-alpha2* betal, apha2 |[) eg2 x ; # x{1} y{1}

152 Walter Enders

The first EQUATION instruction creates an equation in the form:
Yi=(1-ag)yer + 01frxer + €y

Notice that NOCONSTANT is used. Hence, the value of (1 - a;) is assigned to the AR(1)
coefficient and the value of a1f3; is assigned to the coefficient for x.;. [Note: MORE indicates
that an explanatory variable appears on a supplementary card]. The VARIANCE= option is not
used. Similarly, the second EQUATION instruction creates an equation of the form:

Xt = (1 - aPB1)%e1 + OoYe1 + €x
GROUP creates a model called unit using the equations egl and eg2. The firss COMPUTE
instruction creates the symmetric matrix v; the elements of v represent the elements of Z. Here,
011 = 02 = 1 and 012 = 021 = 0. The second COMPUTE instruction initializes the variable
success to be zero and the SET instruction initializes the 2000 entries of the series betahat to be
zero; betahat is used to store the estimated values of 3;.

group unit eql eg2

com [symmetric]v =] 1.0,0.0| 0.0, 1.0||
com success = 0.

set betahat 1 2000 = 0.

The instructions within the DO i loop are performed 2000 times. SIMULATE creates a Monte
Carlo replication of the model unit using the error structure specified by v. The smulated series
contain 149 observations and begin with entry 2. Note that ssms(1) contains the simulated valued
of {y} and sims(2) contains the ssmulated values of {x}. The LINREG instruction estimates a
regression of sims(1) on a constant and sims(2). Only the last 100 observations are used to avoid
any problems concerning the initia conditions used for y; and x;. COMPUTE stores the
estimated value of (3 in betahat(i).

doi =1,2000
sim(model=unit,results=sims) * 149 2 v
lin(noprint) sims(1) 51 * ; # constant sims(2)
com betahat(i) = %beta(2)
if betal.gt.%beta(2)-1.96* %stderrs(2).and. betal.le.%beta(2)+1.96* %ostderrs(2)
COM SUCCESS = success+1
dis betal-1.96* %stderrs(2) betal+1.96* %ostderrs(2) success
enddoi

The IF instruction needs a bit of explanation. Recall that %STDERRS(2) holds the standard error
of %BETA(2). Hence, %beta(2) — 1.96*%STDERRS(2) is the lower bound of the 95%
confidence interval constructed wusing the t-distribution. Similarly, %beta(2) +
1.96*%STDERRS(2) is the upper bound of the confidence interval. If the actual value [3;
exceeds the lower bound and is less than the upper bound, (3; is within the confidence interval.
Thus, if the condition is TRUE, successisincreased by 1. The DISPLAY instruction displays the
lower and the upper bound for each replication along with the current value of success.

| F Statements and Monte Carlo Experiments 153

After the loop is completed, the summary STATISTICS for betahat are displayed along with the
percentage of instances in which [3; fell within the confidence interval.

sta(fractiles) betahat
dis'The percentage of successesis:' success/20.

Statistics on Series BETAHAT
Cbservati ons 2000

Sanpl e Mean 0. 6271085179 Vari ance 0. 070829
Standard Error 0.2661369878 SE of Sanpl e Mean 0. 005951
t-Statistic 105. 37861 Signif Level (Mean=0) 0.00000000
Skewness -0. 46258 Signif Level (Sk=0) 0. 00000000
Kurtosis 0. 07801 Signif Level (Ku=0) 0. 47716964
Jar que- Ber a 71.83512 Signif Level (JB=0) 0. 00000000
M ni mum - 0. 3874254319 Maxi mum 1.3107230084
01-%l e -0. 0732848428 99-% 1l e 1.1432856243
05-% 1l e 0. 1554922902 95-% 1l e 1. 0196162470
10-% 1l e 0.2617774667 90-% 1l e 0. 9400523351
25-%l e 0. 4552469550 75-% 1 e 0. 8244537550
Medi an 0. 6507239420

The percentage of successes is: 16. 85000

Notice that 16.8% of the confidence intervals contained the true value of (3;. Moreover, the
average value was 0. 6271085179 whereas the actual value was 1.0. Clearly, it isinappropriate to

use the usual confidence intervals for Bl. Now, if you rerun the program using (3; = 0.5, you will
obtain:

The percentage of successes is: 33. 30000

Hence, the level of (3, affects the accuracy of the 95% confidence interval. Moreover, the value
of the elements of X are also important. If you replace the elements of v with com [symmetric]v
=|1.,-5]|-5., 1 ||, youwill obtain:

The percentage of successes is: 56. 95000

154 Walter Enders

6. Antithetic Random Variables

A complete Monte Carlo experiment involves many replications and a substantial amount of
computer time. It is typical to obtain a sampling distribution over a number of different
parameter values and sample sizes. In the Enders-Granger (1998) example discussed above, we
examined various types of TAR models using sample sizes ranging from 50 to 1000 with
100,000 Monte Carlo replications for each; | would turn on my computer, go to lunch and hope it
would be done when | returned. The problem is the critica values will change from one
replication to the next; we wanted to use a number of replications such that the critical values
stabilized in the second decimal place. One technique for reducing the sampling variance
inherent in a Monte Carlo study (and reduce the number of replications) is to use ‘antithetic’
random numbers.

The basic idea is to pool two different unbiased estimates of the parameters of interest so as to
obtain an estimate with a small variance. Suppose that a(1) and a(2) are the two different
estimates of the parameter a from replications 1 and 2. Consider the pooled estimator, a , that is
the simple average of the two:

a=05a(l)+a(2)]
Thevarianceof a is:
var(a) =0.25{ var[a(1)] +var[a(2)] +2cov[a(l),a(2)]}

If the two estimates have a negative covariance, the pooled estimator will have a far smaller
variance than those from the two independent draws. The problem is to find away to ensure that
the estimates have a negative covariance (i.e., are antithetic). In certain circumstances, the
solution is remarkably simple—use the same set of numbers with the sign reversed for the
second replication. Intuitively, if the first replication gives an estimate of a that is too high, the
second should give an estimate that is too low.

6.1 Biasin NLLS Estimates

Antithetic random variables can be quite effective when working with nonlinear models. The
sample program illustrated below replicates the results of a Monte Carlo experiment reported in
Davidson and MacKinnon (1993). The issue is to find the bias, if any, of the exponent a in the
nonlinear regression mode!:

Ye=BX +&

| F Statements and Monte Carlo Experiments 155

Davidson and MacKinnon (1993) use a sample size of 50 with a single set of the {x} sequence
drawn from a uniform distribution on the interval [5, 15] using parameter values3 = 1, a = 0.5
and g; drawn from an i.i.d. standardized normal distribution. The program will use the following
four instructions to set up the nonlinear estimation:

NONLIN alpha beta

FRML montey = beta*x**a pha
COM alpha= 0.48, beta=0.98
NLL S(frml=monte,noprint) y

Program 4.11 of the file labeled CHAPTER4 2 performs the Monte Carlo experiment without
using antithetic variates. The first three lines define the default size of a series to equal 50, seed
the random number generator, and create the 50 entries of the sequence {x} as random draws
from a uniform distribution on the interval [5, 15]. The next two lines initialize 1000 values of
alpha_hat and beta_hat to zero. These two series will be used to store the estimates of a and 3,
respectively.

all 50

seed 2001

set X = %uniform(5,15)
set alpha_hat 1 1000 = 0.
set beta_hat 1 1000 = 0.

The next three instructions prepare RATS to perform a nonlinear estimation of the model and
provide initial guesses of a and . The statements within the DO loop will be performed 1000
times. The 50 values of y; are created as x> plus an i.i.d. disturbance drawn from a standardized
Normal distribution. The NLL S instruction actually perform the estimation.

NONLIN alpha beta
FRML montey = beta*x**a pha
COM apha=0.48, beta=0.98

doi=1,1000
sety =x**0.5 + %ran(1)
NLLS(frml=monte,noprint) y

The next instruction stores the estimated value of a in the i-th entry of alpha hat and the
estimated value of B as the i-th entry of beta hat. On exiting the DO loop, the TABLE
instruction is used to provide the summary statistics for alpha_hat and beta_hat.

com apha_hat(i) = alpha, beta_hat(i) = beta
enddoi
table/ alpha_hat beta hat

156 Walter Enders

Series Obs Mean Std Error M ni num Maxi mum
ALPHA HAT 1000 0.50061759618 0.14924811080 0. 00760025999 1.00199740576
BETA HAT 1000 1.06013032231 0.37423173774 0. 30586651854 2. 97669650556

Thefirst half of the sampleis quite similar to the second half of the sample. Consider:

table* 500 alpha_hat beta hat

Series Obs Mean Std Error M ni num Maxi mum
ALPHA HAT 500 0.50526653814 0.14860337610 0. 00760025999 0.93395005105
BETA HAT 500 1.04927811557 0.38210832158 0. 33895348276 2. 97669650556

table 501 * alpha_hat beta_hat

Series Cbs Mean Std Error M ni mum Maxi mum
ALPHA HAT 500 0.49596865421 0.14989449989 0.07604389005 1.00199740576
BETA HAT 500 1.07098252906 0. 36624672687 0.30586651854 2. 74200765785

Notice the mean values of the estimates are quite close to their true values. However, the
standard errors of alpha_hat and beta_hat are very large.

Results with Antithetic Variables. The remaining portion of the program takes advantage of
antithetic random numbers. The next two instructions create the series alpha_bar and beta_bar;
these two series will hold the averaged estimates of a and f.

set alpha_bar 1 500 = 0.
set beta_bar 1 500 = 0.

Again, the next three instructions prepare RATS to perform a nonlinear estimation of the model
and provideinitial guesses of a and .

nonlin alpha beta
frml monte y = beta* x**alpha
com apha=0.48, beta=0.98

Next, two DO loops are created. The instructions within the DO i loop are executed 500 times.
The series eps will contain 50 i.i.d. draws from a standardized normal distribution. The next
portion of the program is the critical part:

doi =1,500
set eps = %ran(1)
doj=0,1
sety =x**0.5 + (1-)*eps- j*eps
nlls(frml=monte,noprint) y

Each time through the DO j loop, v: is set equal to x> = (1-j)*eps - j*eps. The first time through
the DO loop, j = 0 so that:

| F Statements and Monte Carlo Experiments 157

Y= %"+&
The second time through the DO j loop, j = 1 so that:
YE Xto.s - &

The NLLS instruction estimates the nonlinear equation using the formula previously defined as
monte. Next, the values of alpha bar(i) and beta bar(i) are updated—50% of the estimated
value of alpha is added to alpha_bar(i) and 50% of the estimated value of beta is added to
beta_bar(i). At the end of the DO loop, entry i of each of these series contains the desired pooled
estimate. After the process is performed 500 times, the DO i loop is completed. The TABLE
instruction is used to obtain the distribution of alpha_bar and beta_bar.

com apha_bar(i) = alpha_bar(i) + 0.5*apha
com beta bar(i) = beta_bar(i) + 0.5* beta
end doj
enddoi
tab / alpha_bar beta bar

Series Cbs Mean Std Error M ni mum Maxi mum
ALPHA BAR 500 0.50192972485 0.00880740910 0.45061006127 0. 56465375430
BETA BAR 500 1.05368592894 0. 07719055534 0.99439278963 1. 65755600806

The mean values are quite similar to those of alpha_hat and beta hat. However, the standard
errors of alpha_bar and beta_bar are about 17 times and 5 times smaller than those of alpha_hat
and beta_hat, respectively.

158 Walter Enders

7. Bootstrapping

Programming for bootstrapping is similar to that for a Monte Carlo experiment. However, there
is an essential difference. In a Monte Carlo study, you generate the random variables from a
given distribution such as the Normal. The bootstrap takes a different approach—the random
variables are drawn from their observed distribution. Thisis quite useful if you are working with
data that is not Normally distributed. In essence, the bootstrap uses the plug-in principle—the
observed distribution of the random variables is the best estimate of their actual distribution.

The idea of the bootstrap was developed in Efron (1979). Suppose you have a data set of size T
and want to estimate the mean p and the standard deviation of the mean o,,.. The key point made
by Efron is that the observed data set is a random sample of size T drawn from the actual
probability distribution generating the data. As such, the empirical distribution function is
defined to be the discrete distribution that places a probability of 1/T on each of the observed
values. It is the empirical distribution function—and not some pre-specified distribution such as
the Normal—that is used to generate the random variables. The bootstrap sample is a random
sample of size T drawn with replacement from the observed data putting a probability of 1/T on
each of the observed values. Once the bootstrap sample has been drawn, it is possible to estimate

the mean of the bootstrap sample. Call this estimate using the first bootstrap sampley; . If N
bootstrap samples are drawn, there are N bootstrap estimates of i that we denote by (i, through
Uy, - The bootstrap estimate of g, is the standard deviation of the{ 1/} sequence.

To be more specific, suppose that we have the following 10 values of x;:

t 1 2 3 4 5 6 7 8 9 10
x 08 35 05 17 70 06 13 20 18 -05

The sample mean is 1.87 and the standard deviation is 2.098. Next, we will draw 100 bootstrap
samples in order to estimate the standard deviation of the mean. Each bootstrap sample consists
of 10 randomly selected values of x; drawn with replacement—each of the 10 values listed above
is drawn with a probability of 0.1. It might seem that this resampling repeatedly selects the same
sample. However, by sampling with replacement, some elements of x; will appear more than
once in the bootstrap sample. The first three bootstrap samples might be:

t 1 2 3 4 5 6 7 8 9 10 i
Xli 35 17 -05 05 18 20 17 06 06 70 1.89
X -05 06 06 08 1.7 70 18 35 18 08 181

*

X3 05 06 70 13 13 70 13 18 35 06 249

where: x; denotes bootstrap samplei.

| F Statements and Monte Carlo Experiments 159

Notice that 0.6 and 1.7 appear twice in the first bootstrap sample, 0.6, 0.8 and 1.8 appear twicein
the second and that 1.3 appears three times in the third bootstrap sample. As such, the sample
means are not identical. For 100 such bootstrap samples, the standard deviation of the 100 values
of ;" isthe estimate of the standard deviation of the mean o,. Theagorithmis asfollows:

1. Select N = 100 bootstrap samples each consisting of 10 data points (N should be between 25
and 200 for estimating standard errors).

2. Evaluate the parameter of interest (l;") for each bootstrap sample.

3. Estimate the standard deviation of the mean by the sample standard deviation of the N
replications.

Efron (1979) shows that such bootstrap estimates converge to the population standard deviation
as N goes to infinity. Program 4.12 will estimate the standard deviation of the mean using the
bootstrap. The first two instructions set the default size of a series to 10 and seed the random
number generator. The third line generates x;. Note that x; is not quite normally distributed since
fix(10*%ran(2)) generates the integer value of 10 times an i.i.d. normally distributed random
number with a standard deviation of 2. Dividing this result by 10 and adding 2 yields the x; series
listed above: 0.8, 3.5. 0.5, 1.7, 7.0. 0.6, 1.3, 2.0, 1.8 and -0.5. The series mean is created; the 100

entries of mean will hold the bootstrap mean values ;. through g, .

al 10

seed 2002

set x = 2+fix(10* %ran(2))/10.
set mean 1 100 = 0.

The instructions in the DO loop will be performed 100 times. A seriesy of length 10 is created.
Note that fix(%uniform(1,11)) draws the integer value of a uniformly distributed random variable
on the interval (1, 11). Thus, fix(%uniform(1,11)) will be one of the integers from 1 to 10 each
selected with a probability of 0.1. Suppose these integers happen to be 2, 1, 5, 6, 10, 10, 4, 5, 7,
and 2. The values of y will be such that y(1) = x(2), y(2) = x(2), y(3) = x(5), ... , Y(10) = x(2).
Hence, y is a bootstrap sample--it consists of randomly selected values of x drawn with
replacement (the probability of selecting any particular value is 0.1). The STATISTICS
instruction generates the mean of y and this value is stored in entry i of mean. At the end of the
DO loop, mean contains the 100 bootstrap means. The standard deviation of these means is
obtained using the TABLE instruction.

doi=1,100
set y = x(fix(%uniform(1,11)))
sta(noprint) y ; com mean(i) = %omean
enddoi
table/ mean

Series Obs Mean Std Error M ni num Maxi mum
MEAN 100 1.90330000000 0.61347998082 0. 78000000000 4.31000000000

160 Walter Enders

Thus, the bootstrap estimate of the standard deviation of the mean is about 0. 61348. Notice
this is quite similar to the standard deviation of x (= 2.098) divided by the square root of the
number of observations (2.098/10**.5 = 0.663) .

7.1 Bootstrapping Regression Coefficients

Suppose you have a data set with T observations and want to estimate the effects of variable x on
variable y. Towards this end, you might estimate the linear regression:

Vi = Bo + P + &

Although the properties of the estimators are well-known, you might not be confident using
standard t-tests if the estimated residuals do not appear to be normally distributed. One way to

estimate the sample properties of BO and ﬁl is to use the method of Bootstrapped Residuals.®
After estimating the model, you perform the following steps:

Step 1: Calculate theresiduals as: & =y - B,- B

Step 2: Generate a bootstrap sample of the error terms e containing the elements €, 6, .,
e, . Use the bootstrap sample to calculate a bootstrapped y series (called y'). For each value of
i running from 1to T, caculate y; as:

yr= ﬁo+[§1xi+ el*

Note that the estimated values of the coefficients are treated as fixed. Moreover, the values of
x; are treated as fixed quantities so that they remain the same in the bootstrap sample.

Step 3. Use the bootstrap sample to estimate new values of 3o and (3, calling the resulting values
B, and B, .

Step 4. Repeat Steps 2 and 3 many times and calculate the sample statistics for the estimated
values 3, and B, using the sample propertiesof B; and ;.

Of coursg, it is possible to apply the identical procedure to a nonlinear regression model as well.
Program 4.13 of the file CHAPTER4 2.PRG finds bootstrap confidence intervals for the
nonlinear regression model discussed in conjunction with antithetic variates:

Vi = Bth + &

% The alternative method is to bootstrap the paired (y;, x) combinations.

| F Statements and Monte Carlo Experiments 161

Instead of using two actual series from MONEY_DEM.XLS, the program uses artificially
generated data for {x} and {yi}. As such, we will know how the two series data are actually
generated and the true values of a and . As in Program 6, the first two lines set the default
length of a series to 50, seed the random number generator and generate the {x} and {yi}
sequences. Hence, the true parameter valuesaref3 =1 and a = 0.5.

all 50

seed 2001

set x = %uniform(5,15)
sety = x**0.5 + %ran(1)

The trick to understanding the program is to pretend that we do not know the actual data
generating process. The next four lines of the program use the NONLIN-NLLS block to estimate
o and B. Note that the NLL S instruction saves the residuals in series e. The estimated values of a

and 3 (i.e, @ and ,é) are saved as alpha_hat and beta_hat.

nonlin alpha beta

frml monte y = beta*x**alpha
com apha= 0.48, beta=0.98
nlis(frml=monte) y / e

Vari abl e Coef f Std Error T- St at Signif
khkkhkkhkhkhkhkhkhkhhhhhkhkhkhkhkhhhhhkhkhkhhkhhhhhkhkhkhkkhhkhkhk khkhkkkkkkhk k k khkkkxkk k k%%
1. ALPHA 0. 4194759184 0. 1538968309 2.72570 0.00892917
2. BETA 1.1695671363 0.4194023378 2.78865 0.00756525

The parameter estimates are reasonable. Note that stopping at this point would require usto use a
normal approximation to obtain a confidence interval for the coefficients. For a 90% confidence
interval, 1.64 standard deviations on either side of alpha gives us an interval of 0.16709 to
0.67187, and two standard deviations on either side of beta gives us an interval of 0.48175 to
1.85739.

Thus, Step 1 has been completed. In preparation for Step 2, the series alpha_star and beta_star
areinitialized to contain 1000 entries.

com apha_hat = %beta(1) , beta hat = %beta(2)
set alpha_star 1 1000 = 0.
set beta star 1 1000 = 0.

The first instruction inside the DO loop constructs the bootstrap sample of the residuas e _star
(note that the BOOT instruction can also be useful for these situations). The series e star will
consist of 50 values drawn from the regression residuals e. Each value of e star is a random
draw with replacement from e. Note that each element of e has a 1/50 chance of being selected
since fix(%uniform(1,51)) generates an integer on the interval (1, 50). The next instruction uses
the bootstrap residuals to construct the bootstrap y series (y). Notice that the coefficient values

162 Walter Enders

used in the construction are those originally estimated from the data. Moreover, the values of x;
have not been modified or resampled. Thus, Step 2 is completed.

doi =1,1000
set e_star = e(fix(%uniform(1,51)))
sety star = beta hat*x**apha hat + e _star

Step 3 requires us to use the bootstrapped y_star sequence to obtain new coefficient estimates.
Thisis accomplished in the four instructions in the NONLIN-NLLS block below. The coefficient
estimatesfor o” and " are stored in entry i of alpha_star and beta_star, respectively.

On exiting the DO loop, these two series will each contain 1000 values of bootstrapped
coefficients. The sample properties of these coefficients are obtained using the STATISTICS
instruction with the FRACTILES option.

nonlin alpha beta
frml montey_star = beta*x**alpha
com apha = apha_hat, beta = beta_hat
nlls(frml=monte,noprint) y_star
com alpha_star(i) = %beta(l) , beta star(i) = %beta(2)
enddoi
sta(fractiles) alpha_star

Statistics on Series ALPHA STAR
bservati ons 1000

Sanpl e Mean 0. 4179067424 Vari ance 0. 023137
Standard Error 0.1521082297 SE of Sanpl e Mean 0. 004810
M ni num - 0. 0878398657 Maxi mum 1. 0489024933
01-%le 0. 0706360305 99-%l e 0. 8022149869
05-%le 0.1715603199 95-%l e 0. 6706139537

10-% 1l e 0. 2215775497 90-%l e 0. 6020511077

25-%l e 0. 3161065322 75-%l e 0. 5150522575

Medi an 0.4178528143

sta(fractiles) beta_star

Statistics on Series BETA STAR
bservati ons 1000

Sanpl e Mean 1. 24610274529 Vari ance 0. 198084
Standard Error 0.44506578336 SE of Sanpl e Mean 0.014074
M ni num 0.26104747424 Maxi mum 3. 85257134145
01-% 1l e 0. 48336068574 99-% 1l e 2.59363073397
05-% 1l e 0. 64414171297 95-% 1l e 2. 08050680611
10-% 1l e 0. 75625461184 90-%l e 1.84697927718
25-%l e 0.94211587333 75-% 1l e 1. 48805437120
1

Medi an . 17862968423

| F Statements and Monte Carlo Experiments 163

We can use the distribution for alpha_star to form a symmetric 90% confidence interval for o .
Since 5% of the values lie below 0. 1715603199 and 5% lie above 0. 6706139537, the 90%
confidence is the range 0. 1715603199 to 0. 6706139537. Similarly, 90% confidence interval
for ,@using the bootstrap distribution is 0. 64414171297 to 2.08050680611. Notice that this
confidence interval is much wider than that obtained using the normal approximation.

164 Walter Enders

7.2 The AR Coefficients of Real GDP Growth

Step 2 needs to be modified for a time series model due to the presence of lagged dependent
variables. As such, the bootstrap y is constructed in a slightly different manner. Consider the
simple AR(1) mode!:

Vi = Bo + Biye1 + &

Asin Step 2, we can construct a bootstrap sample of the error terms e containing the elements
e, €, .., €. Now, the bootstrap y sequence using this sample of error terms. In particular,

given the estimates of B and B; and an initial condition for y; , the remaining values of the y
sequence can be constructed using:

yi* = ﬁAo + BAlyi—l +e
For higher order AR(p) models, initial conditions for y; through y, are needed. Typically, these
values are selected by random draws from the{y;} sequence.*

Program 4.14 uses this method to bootstrap the coefficients of an AR(2) model of the dirgdp in
the form:

dirgdp: = Bo + B1dlirgdp:1 + B2dirgdp:.2 + &

The issue is that the coefficient of dirgdp:.. has a significance level of 0.0756. However, since
the residuals are not normally distributed, it might be wise to use the bootstrap to obtain

confidence intervals forﬁz. The first six lines of Progran 4.14 read in the data set
MONEY_DEM.XLS, seed the random number generator with 2001 and estimate the model:

lin dlrgdp /resids
#dIrgdp{1to 2} constant

3L A second, although less common, bootstrapping technique used in time series models is called
“Moving Blocks.” For an AR(p) process, select alength L that islonger than p; L is the length of
the block. To construct the bootstrap y~ series, randomly select a group of L adjacent data points
to represent the first L observations of the bootstrap sample. In total, you need to select T/L of
these samples to form a bootstrap sample with T observations. The idea of selecting a block isto
preserve the time-dependence of the data. However, observations more than L apart will be

nearly independent. Use this bootstrap sample to estimate the bootstrap coefficients 3, and f3; .

| F Statements and Monte Carlo Experiments 165

Vari abl e Coef f Std Error T- St at Si gni f
kkhkhkkkhhhkkhkkhhkkhhhkhhhhkkhhhkhkhhhkkhhhkhdhhkkhhhxkhdhhkdhdxkrdhrhkdhdxkddhhkdhdxkddxkdhxk,dxk**x*%x
1. DLRGDP{1} 0. 2508977521 0.0769801061 3.25925 0.00135976
2. DLRGDP{ 2} 0. 1362250820 0.0762100846 1.78749 0.07571568
3. Const ant 0. 0051566068 0.0010217954 5. 04661 0.00000119

The next two instructions do some bookkeeping. The first line below stores the estimates
B,, B,and B,in the variables betal hat, beta2_hat and betaO_hat, respectively. The second line

stores the standard error and t-statistic of ﬁz in the variables se_2 and t2, respectively.

com betal hat = %beta(1), beta?2 hat = %beta(2) , beta0 _hat = %beta(3)
com se_2 = %STDERRS(2), t2 = %tstats(2)

If we use the normal approximation, we can obtain the lower (1) and upper (u) limits of the 90%,
95% and 99% confidence intervals for 3,using:

dis'Normal Approximation’

com | = beta2 hat - 1.644*se 2, u =beta2 hat + 1.644*se 2; dis' 90% " |
com | =beta2 hat - 1.96*se 2, u=beta2 hat + 1.96*se 2; dis' 95% ' | h
com | =beta2 hat - 257*se 2, u=beta2 hat + 257*se 2; dis' 99% ' | h

h

Nor mal Approxi mation

90% 0. 01094 0. 26151
95% -0. 01315 0. 28560
99% - 0. 05963 0. 33208

In order to seeif the residuals appear normal, we can use the STATISTICS instruction:

staresids

Statistics on Series RESIDS
Quarterly Data From 1959: 04 To 2001: 01
Observati ons 166

Sanpl e Mean 0. 00000000000 Vari ance 7.095529e- 05
Standard Error 0.00842349604 SE of Sanpl e Mean 0. 000654
t-Statistic 0. 00000 Signif Level (Mean=0) 1.00000000
Skewness 0. 05245 Signif Level (Sk=0) 0. 78455071
Kurtosis 1. 40625 Signif Level (Ku=0) 0. 00029372
Jar que- Ber a 13. 75405 Signif Level (JB=0) 0. 00103121

Although the residuals do not appear to be skewed, there is excess kurtosis and the Jarque-Bera
test clearly rgects normality. In preparation for the construction of bootstrap confidence
intervals, a bit more bookkeeping is necessary. The integer boot_num, containing the number of
replications, is set equal to 1000. If you want to alter the number of replications simply change
this single program statement. The next instruction creates the series beta2 star; the 1000
bootstrap estimates of B, (i.e., the values of B,) will be stored in this series. The third instruction

creates the values of they sequence.

166 Walter Enders

com boot_num = 1000
set beta2_star 1 boot num=0
sety star =0.

The instructions in the DO loop will be executed 1000 times. The first instruction in the loop
randomly selects an integer in the range 1959:2 to 2001:1. The value of ii serves as a randomly
selected entry value. The COM instruction uses this value to equate the first two values of y_star

(i.e, y, and y,) with two consecutive values of dirgdp. Next, the bootstrapped € series is

created from residuals of the AR(2) model. Each valuee , €, ... , € is arandom draw with

replacement from resids. Note that each element of resids has a 1/166 chance of being selected
since fix(%uniform(1959:4,2001:1+1)) generates integers on the interval (4, 169).

do k = 1,boot_num
comii = fix(%uniform(1959:2,2001:1))
comy_star(1) = dirgdp(ii), y_star(2) = dirgdp(ii+1)
set e_star = resids(fix(%ouniform(1959:4,2001:1+1)))

The first instruction below creates the series y_star for entries 1959:4 through 2001:1 using the
bootstrapped residuals e_star. As such, the first two entries of y_star remain the values SET by

the first instruction inside the DO loop. Notice that the estimated values of Bl, ﬁz and ﬁo are used
in the construction of y_star. The second instruction below uses the bootstrap sample to estimate
B, , B,and B,. Thevaueof B,isstored asthei-th entry of beta2_star:

sety star 3* =betal hat*y star{1} + beta2 hat*y star{2} + beta0 hat + e_star
lin(noprint) y_star ; #y_star{1to 2} constant
compute beta2_star(k) = %beta(2)

end do k

At this point, beta2 star contains the 1000 values of B,. We can use the STATISTICS
instruction to obtain the FRACTILES of beta2_star:

sta(fractiles) beta2_star

Statistics on Series BETA2_STAR

M ni mum -0. 1559817399 Maxi mum 0. 3371048578
01-%l e - 0. 0558588474 99-% | e 0. 2886134655
05-% | e -0. 0113366577 95-% | e 0. 2431975939
10-% 1l e 0.0172751868 90-% | e 0.2141146300
25-% 1l e 0. 0661351327 75-% | e 0. 1684400633
Medi an 0.1204672933

From the output, it is clear that a symmetric 90% confidence interval includes zero--the lower
and upper boundaries are -0.0113366577 and 0.2431975939, respectively. This suggests that we
can exclude the second lag of dirgdp. The FRACTILES option may not provide all of the
information you would like concerning the distribution of beta2 star. One way to obtain

| F Statements and Monte Carlo Experiments 167

whatever set of FRACTILES you want is to order beta2_star from the smallest to the largest
value:

order beta2 star

Now the 50-th value (5% of 1000 replications) and the 950-th (95% of 1000) can be used to
obtain the lower and upper bounds of a 90% confidence interval. Similarly, the same logic can be
used to construct 95% and 99% confidence intervals. The following four instructions produce
these three confidence intervals:*

dis'Confidenceintervalsfor beta?'

dis' 10% ' beta2_star (fix(.05*boot_num)) beta2_ star (fix(.95*boot_num))
dis' 5% ' beta2 star(fix(.025*boot_num)) beta2 star (fix(.975* boot_num))
dis' 1% ' beta2_star (fix(.005*boot_num)) beta2 star (fix(.995* boot_num))

Confidence intervals for beta2

10% - 0. 01137 0. 24317
5% -0.03765 0. 25895
1% -0. 09205 0. 3096

%2 An aternative way to construct confidence intervalsit to use the bootstrapped t-statistics for

the null hypothesis 3, = 3,. Program 4.14a (not discussed here) shows how to construct
confidence intervals using the “Bootstrapped T-Statistics.”

Chapter 5:
Vector and Matrix Manipulations

Although RATS is not intended to be a matrix programming language, it has evolved to the point
where you can use it to perform very complicated econometric tasks entirely in matrix notation.
In fact, you can create various vectors and matrices from your data set. For example, you can
create a 'Y vector, an X matrix and obtain the ordinary least squares (OLS) coefficient estimates
from (X'X)X'Y. I will show you how to do that, and more, in the section entitled Making
Matrices from Your Data. However, most RATS users will not want their programs to consist
entirely of matrix manipulations. One of the strengths of RATS is that you can use vectors and
matrices to complement the existing instruction set. Programming in a pure matrix language can
be cumbersome; it isalot easier to let RATS perform some of the matrix manipulations for you.
For example, the LINREG instruction creates the coefficient vector (%beta) and the (X'X)™
matrix. You can call and manipulate both of these matrices without having to construct them
yourself. Similarly, many RATS instructions accept a vector or a matrix as inputs. In essence,
you pass information to the instructions using matrices. In fact, there are so many RATS
instructions that utilize or create matrices that advanced RATS programmers often incorporate
some matrix manipulations into their overall program.

1. Creating Matricesand Vectors

In traditional matrix algebra, the elements of a matrix are numbers. RATS alows you to be much
more flexible. Not only can the elements of a matrix be real numbers, complex numbers or
integers, they can also be strings, labels or series. Be aware that many RATS instructions have
options allow you to create matrices. For example, the ESTIMATE instruction discussed in
Chapter 2 can have the form:

ESTIMATE(OUTSIGMA=V,res dua s=resids,coefficients=coef)

where:
OUTSIGMA= Computes and saves the covariance matrix of the residuals.
COEFFICIENTS=coef Creates a matrix of the coefficients. Column i contains the
coefficients of the i-th equation.
RESIDUAL S=resids Creates a vector of series. The residuals from the first equation are
stored in the series called resids(1), the residuals from the second
equation are stored in the series called resids(2), and so forth.

Also, you can create vectors and matrices in RATS using the DECLARE, COMPUTE and
MAKE instructions. The main use of each is:

DECLARE The most general instruction for creating matrices.
COMPUTE Useful for creating small matrices or vectors.
MAKE Creates amatrix (or vector) from data series.

Vector and Matrix Manipulations 169

Whenever you create a matrix using the DECLARE instruction, you need to inform RATS about
three features of the matrix. First, you can create different types of matrices. The types will
usually be:

rectangular: anr x ¢ matrix wherer = # rows and ¢ = # columns
vector: aone dimensional array
symmetric: asymmetricr X r matrix

Second, you need to DIMENSION the matrix by indicating the number of rows and columns it
contains. You can DIMENSION the matrix directly on the DECLARE instruction or on a DIM
instruction.® It is useful to know that matrices can be redimensioned within any program.
However, you cannot DECLARE a matrix as a different data type. For example, if A is a vector
of integers, you cannot DECLARE A to be a vector of real numbers or a RECTANGULAR
matrix of integers. Third, you need to instruct RATS concerning the type of information
contained in the matrix. A matrix might contain one or more series or a set of integers, rea
numbers or string variables.

1.1 Declare

DECLARE is the most genera instruction for creating a matrix. DECLARE allows you to
completely specify the type of the matrix (i.e., rectangular, vector or symmetric) along with its
dimension and the contents of the elements. The syntax for DECLARE is:

DECLARE matrix type list of names

where:

matrix type Will usually be rectangular, vector, or symmetric. By default, the
elements are real numbers. You indicate other element types by the use
of brackets []. The most typical element types are INTEGER, SERIES,
LABELS or STRING.

list of names The names of the matrices you wish to create. Note that you can include

the DIMENSION in parentheses.

It isimportant to note that within a compiled procedure, you cannot dimension a matrix on the
DECLARE instruction. Instead, you must use a separate DIMENSION statement.

% Within a procedure, you cannot DECLARE and DIMENSION amatrix on the same
instruction. See Chapter 6 for details on writing your own procedures.

170 Walter Enders

Examples
1. To create avector x that can hold 100 real numbers, you can use:

declare vector x(100)
or:

declare vector x
dim x(100)

NOTE: Within a procedure, you must use the second set of instructions.

2. To create a vector x that can hold 100 integers and a vector y that can hold 50 integers, you
can use:

declare vector[integer] x(100) y(50)
or:

declare vector[integer] X y
dim x(100) y(50)

3. To create a vector x that can hold 10 series, you can use:
declare vector[series] x(10)

4. To create a vector x that can hold 100 real numbers and a 10 x 20 matrix b containing real
numbers, you can use:

dec vector x(100)
dec rectangular b(10,20)

or:
dec vector x
dec rectangular B

dim x(100) B(10,20)

Note: You can include different types of matrices on a DIMENSION instruction but not on a
DECLARE instruction.

Vector and Matrix Manipulations 171

1.2 COMPUTE

In many ways, you create and manipulate matrices just as scalars. You PRINT a series but you
DISPLAY (or WRITE) a scalar and a matrix. Similarly, you manipulate a series using SET but
you can manipulate scalars and matrices using COMPUTE. In fact, the simplest way to create
and manipulate matrices is with the COMPUTE instruction. COMPUTE allows you to implicitly
DECLARE and DIMENSION a matrix so that there is no need to have an explicit DECLARE
instruction. Moreover, COMPUTE also alows you to completely specify the data type. There are
two rules you need to know when using compute:

1. COMPUTE createsa RECTANGULAR matrix if you do not specify vector or symmetric. You
can specify (i.e., explicitly DECLARE) the type of the matrix using braces|].

2. COMPUTE determines the type of the elements (e.g., integer, real, string) from the
expression you enter.®

Examples

1. coma=||'dirgdp’, 'dim3', 'drs ||
disa

dl rgdp dl nB drs

The COMPUTE instruction creates a 1 x 3 RECTANGULAR matrix containing the string
variables dirgdp, dim3 and drs. You can refer to each element by its position in the matrix.
For example:

disa(1,2)
dl n8

Suppose that the residuals from a VAR using dirgdp, dim3 and drs are stored in series 1, 2,
and 3. Y ou could graph each of the residuals series using:

doi=1.3
graph(header="Residuals from '+a(1,i)) 1 ; #i
end do

The headers of the graphs would be: Residuals from dirgdp, Residuals from dim3 and
Residualsfromdrs.

% Note that if you use brackets to explicitly create a vector or symmetric matrix, you should also
specify the datatype (i.e., integer, string, series, ...). For example: [vector[string]]

172 Walter Enders

2. The syntax of the supplementary card in LINREG is:
list of explanatory variables

The list of explanatory variables can include labels and/or series numbers. Suppose that you
want to regress the log of M2 (Im2) on a constant, the log of RGDP (Irgdp), the log of the
GDP deflator (Ip) and a short-term interest rate. Program 5.1 in the file CHAPTERS5.PRG
reads in the seven series from the data set MONEY_DEM.XLS and creates these variables. If
you enter the TABLE instruction, you will see that tb3mo is series 6, tblyr isseries 7, Irgdp is
series 8, Im2 is series 9, and Ip is series 10. All of the following produce the identical
regression output:

lin Im2
constant Irgdp Ip tb3mo

lin Im2
#08106 ;* NOTE: Oisequivaent to constant. If you type: pri / O you get const ant

coma=]0,8,10,6||
lin Im2
#a

You could embed this routine in a DOFOR loop to obtain a regression of Im2 on each of the
short-term interest rates:

dofor i = tb3mo tblyr
coma=]|0,8,10,i |

lin Im2
#a
end do for
The first time though the loop, i = 6 and the regressor list uses th3mo. The second time

through the loop, i = 6 and the regressor list usestblyr.
3. Program 4.1 also illustrates the difference between different data types, Consider:

com names = || 'rgdp', 'th3mo’ ||
dis names(1, 2)
t b3nmo

The 1 x 2 rectangular matrix names consists of the string variables rgdp and tb3mo.
DISPLAY element a(1, 2) produces the string t b3nmo. PRINT operates on one or more series.
Assuch, if you try to PRINT names or an element of names, you will get an error message:

pri / names
SX22. Expected Type SERIES, Got RECTANGULAR(STRI NG I nstead
>>>> pri / names<<<<

Vector and Matrix Manipulations 173

Now create a 1 x 2 rectangular matrix b that contains the series numbers of series rgdp and
tb3mo.

com b = || rgdp, tb3mo ||

pri/b

ENTRY RGDP TB3MD

1959: 01 2273.0 2.773333333333
1959: 02 2332. 4 3. 000000000000
2000: 04 9393. 7 6. 016666666667
2001: 01 9439. 9 4. 816666666667
pri / b(1, 2)

ENTRY TB3MO

1959: 01 2.773333333333
1959: 02 3. 000000000000
1959: 03 3. 540000000000

2000: 03 6. 016666666667
2000: 04 6. 016666666667
2001: 01 4.816666666667

Because b consists of ainteger for which there are corresponding series, you can PRINT b or
an element of b. If you wanted to DISPLAY the second ENTRY of tb3mo [i.e. entry
tb3mo(1959:02)] you could enter:

disb(1, 2)(2)

3. 00000

Finally, create the VECTOR c consisting of the strings rgdp and tb3mo. Note that we needed
to use [vector[string]] c. The default for COMPUTE is RECTANGULAR and the default for
VECTOR is REAL. The double bracket [vector[string]] overrides both of these defaults. We
can display either the entire vector or a single element of the vector. Note that a VECTOR
uses only a single subscript.

com [vector[string]] ¢ = || 'rgdp’, 'tb3mo' ||
disc
rgdp tb3no

disc(2)
t b3nmo

.comd=]10,2|3,4,e=]12]

disde
1. 00000 2. 00000
3. 00000 4. 00000

12

174 Walter Enders

A single COMPUTE instruction can be used to create several matrices and/or vectors. Here, a
isa2x 2 matrix of real numbers and b isa 1 x 2 rectangular matrix of integers. Note that
COM [vect] b=|| 1, 2 || creates avector of real numbers
coma=|1.0,2|3,4|, [vect[integer]] b= 1, 2|
If you are going to explicitly declare the type of matrix and the type of data on the COMPUTE
instruction, it might be simpler to use the DECLARE instruction. Nevertheless, the next
several examples might prove instructive.

5. com[vect] x =] 1.0,4.0,-3.9, 2.0 ||

Since [vect] is specified, the COMPUTE instruction creates the vector x consisting of four real
numbers. Since the default for a matrix argument isa RECTANGULAR matrix,

comy = 1.0,4.0,-3.9, 2.0 ||
createsa 1 x 4 rectangular matrix of real numbers.

The difference is that a matrix has double subscripts that reference the row and column while
avector has a single subscript. For example, you reference the value 4.0 in each using:

disx(2) y(1,2)
4. 00000 4. 00000

6. The following instruction creates the 1 x 4 RECTANGULAR matrix inum consisting of four
integers:

cominum=|1,4,-3,2 ||

In contrast:

com [vect] inum=|1,4,-3,2 ||

creates a vector of real numbers since the default data type for vector is real numbers.
com [vect[integer]] inum=| 1, 4,-3, 2 ||

creates a vector of integers since both types are specified. Note the appropriate use of double
brackets: vect[integer] must be enclosed in brackets.

7. You can use COMPUTE in association with previously defined variables. Consider:
comill=1,i12=2,i13=3,i14=4

com [rect[integer]] inum = ||i11, i12]i13, i14||
disinum

Vector and Matrix Manipulations 175

1 2

3 4
Note that once the data type is made explicit, you must take care not to use a different type. If
you let j13 equal 3.9, and enter:

comjl1=1,j12=2,j13=39,j14=4
com [rect[integer]] inum = ||j11, j12 | j13, j24||

SX22. Expected Type | NTEGER, Got REAL Instead
>>>> 12 | 13, j14]|<<<<

176 Walter Enders

2. Matrix Operations

Suppose that A and B are conformable matrices. The following are just some of the matrix
operations you are allowed to perform:

COMC=A+B(orA-B) Addition and subtraction

COM C=A*B Multiplication A and B

TR(A) Transpose of A

INV(A) Inverse of A

%DECOMP(A) Choleski decomposition (of SYMMETRIC only)
%KRONEKER(A,B) Kroneker product of A and B.

%CORR(A,B) Correlation of A and B

%DET(A) Determinant

%DOT(A,B) Dot product

%DIAG(A) n x n diagonal matrix froman (nx 1) or (1 x n)
%SOLVE(A,B) Solves the problem Ax = B, where A is an NxN array of

known values, B is an Nx1 array of known values, and X is
an Nx1 array of unknowns. The function returns x as an
Nx1 RECTANGULAR array.

In addition to the usual conformability restrictions, you need to be sure that the matrices contain
the same type of variables. For example, if Aisa 2 x 2 matrix of real numbersand 11l isa2 x 2
identity matrix of integers, A*11isnot permissible.

2.1 Operations on Subcomponents of a Matrix

One way to manipulate an element is through the COMPUTE instruction. Consider the following
examples:

1. coma(1,5)=3.0

Here the COMPUTE instruction equates the element in the first row of the fifth column of the
matrix A with the real number 3.0.

2. comx =a(1,5)
Here the COMPUTE instruction equates the variable x with the element in the first row of the
fifth of the matrix A.

Sometimes there is a particular relationship among the elements of a matrix. Y ou can exploit this
relationship using the EWISE instruction. To use EWISE, you must dimension the matrix. For a
vector, EWISE contains an implied DO loop. Consider:

Vector and Matrix Manipulations 177

EWISE a(i) =formulaini

Suppose you wanted to construct a vector of integers running from 1 to 10. One way to do this
would be to:

declare vector[integer] a(10)
doi=1,10
coma(i) =i
enddoi
12345678910

The first time through the loop i = 1 and RATS performs the operation COM a(1) = 1. The
second time through the loop i = 2 and RATS performs the operation COM a(2) = 2. This
procedure continues through i = 10. A more efficient way to perform the same task isto use:

declare vector[integer] a(10)
ewisea(i) =i

Here EWISE sets element a(1) = 1, element a(2) = 2, The index i runs from 1 though the
dimension of the array.

For RECTANGULAR and SYMMETRIC arrays, EWISE is equivalent to the use of multiple DO
loops. Consider:

EWISE a(i,j) = formulaini and j
Here, EWISE sets element (i,j) according to the specified formula. For example:

declare rect[integer] ix(3,3)

ewiseix(i,j) =i—j
disix

0-1 -2

1 0 -1

2 1 0

Note that you do not need to be too careful about the fact that i and j are integers while the
elements of the matrix ix might be real. Consider:

178 Walter Enders

declarerect[redl] ix(3,3)

ewiseix(i,j) =i —j

disix
0. 00000 -1. 00000 -2. 00000
1. 00000 0. 00000 -1. 0000
2. 00000 1. 00000 0. 00000

2.2 Selecting ARM A Coefficients

The BOXJENK instruction also allows you to use vectors to input information. The syntax and
principal options of the BOXJENK instruction are:

boxjenk(options) depvar start end residuals

where:
depvar The dependent variable
start end The range to use in the estimation.
residuals The name of the seriesto call the residuals.

The important options for our purposes are:

CONSTANT Y ou must specify constant if you want to include an
/[[NOCONSTANT] intercept.

AR= List of autoregressive coefficients. [Default = 0]

MA= List of moving-average coefficients. [Default = 0]

Thus, the program line below will estimate the model y; = ag + apye1 + azyi2 + & + Bigrr + Pocrz
over the sample period 3 through 100 (since two observations are lost due to the 2 AR
coefficients) and saves the residualsin a series called resids.

box(constant,ar=2,ma=2) y 3 100 resids

It is important to know that the options ar = p and ma = ¢ include AR coefficients for lags 1
through p and MA coefficients 1 through g. In contrast, you can use ar = || list || and ma = || list ||
to include only those coefficients enumerated in list. For example, ar = 4 calls for the inclusion
of autoregressive coefficients a;, ap, as, and ay. Instead, ar = ||1, 4]| calls for the inclusion of
autoregressive coefficients a; and a4 but not a, or ag. Thus, to estimate the model y; = ap + aryi1
+ QYo + & + Poero + Para USE

box(constant,ar=2,ma=||2, 4]||) y 3 100 resids
What you are doing is entering a vector of integers (i.e., the vector [2, 4]) into the instruction.

This method works well if the vector list is short. Since you are creating a vector, you must type
each integer value that you want to include. Hence, you cannot enter: ma = || 1 to 4, 5|

Vector and Matrix Manipulations 179

Moreover, if you embed the instruction in a procedure, you want to give the user the flexibility to
input any possible parameter set. The way to avoid this problem is to use the method shown
below to create your own integer vector. Although it is not especially efficient to use three lines
of code instead of one, you could estimate the model above using:

declare vector[integer] mas
commas=|| 2 4
box(constant,ar=2,ma=mas) y 3 100 resids

In other circumstances, the method can be particularly useful. A friend of mine working with
energy-price tick data wanted to estimate an MA model with coefficients at lags 1 - 60, 120, 180
and 240. A simple way to create the vector is:

declare vector[integer] mas(63)

ewise mas(i) =i

com mas(61) = 120, mas(62) = 180, mas(63) = 240
box(constant,ar=2,ma=mas) y 3 100 resids

Here, you declare the vector mas and fill the vector with the coefficient values you want in the
estimation. The EWISE instruction fills al 63 entries with integer values running from 1 to 63.
The COMPUTE instruction corrects entries 61, 62 and 63 such that they equal 120, 180 and 240,
respectively. The final instruction estimates a model with 2 autoregressive coefficients and the
63 moving average coefficients—the MA terms at lags 1-60, 120, 180 and 240.

2.3 Manipulating the Output of aVAR

In Chapter 2, we were able to create a 3-variable VAR using:

system(model=chap2)
var dirgdp dirm2 drs
lags 1 to 12

det constant
end(system)

The necessary instructions to set up the VAR are repeated in Program 5.2. The next statement
instructs RATS to estimate the VAR, and create the variance/covariance matrix v. The regression
residuals are stored in the series resids(1), resids(2) and resids(3) and the coefficients are stored
in the matrix ca.

estimate(sigma,outsigma=v,residual s=resids,coeffs=ca)
Note that caisa37 x 3RECTANGULAR matrix. You can view the coefficients using:

disca

180 Walter Enders

0. 04961 0. 02504 27. 24470
- 0. 02046 0. 06033 6. 04229
-0. 16255 0. 05159 -12. 42336

0.12126 -0. 07211 9.71846
- 0. 15415 0. 00161 -2.79501

Element ca(1,1) is the regression coefficient of dipgdp on its own first lag and element ca(37, 2)
isthe intercept in the dirm2 equation. Similarly, PRINT the residuals using:

pri* 16 resids
ENTRY RESI DS(1) RESI DS(2) RESI DS(3)
1962: 02 -0.004738155830 0.004968068719 -0. 651980315507
1962: 03 -0.001610217811 0.000793836267 -0. 117657508925
1962: 04 -0.010007743363 0.005422212237 0.101551774645

Notice that the residual series begin with 1962:02 since one usable observation is lost by
differencing and twelve are lost by using lags in the regression equations. The PRINT instruction
caused RATS to print three series. resids(1), resids(2) and resids(3). In essence, resids is a vector
containing three series. You can print any one of the three series using resids(i). For example,
you can print the residuals from the second regression equation using:

pri* 16 resids(2)

ENTRY RESI DS(2)
1962: 02 0.004968068719
1962: 03 0.000793836267
1962: 04 0.005422212237

Thus, 0.004968068719 is the first defined entry of the series called resids(2) and
0. 000793836267 is the second defined entry of the same series. You can reference the
individual elements as follows:

disresids(2)(14)
0. 00497

Next, we want to decompose the variance/covariance matrix using a Choleski decomposition.
Y ou can display the variance/covariance matrix v and the Choleski decomposition of v using:

disv
4.25841e- 05
8.43189e-06 2. 83336e-05
7.56122e-04 -6.56400e-04 0. 30310

dis % decomp(v)
0. 00653 0. 00000 0. 00000
0. 00129 0. 00516 0. 00000
0.11587 -0. 15611 0. 51507

Vector and Matrix Manipulations 181

Hence:
v=B*B'
where: B = %decomp(Vv)

To obtain impulse responses, it is desirable to use the transpose of this matrix. Y ou can compute
the matrix G as the transpose of %decomp(v) with:

com g = tr(%decomp(s))

dis'Decomposed Matrix' g
Deconposed Matri x

0. 00653 0. 00129 0.11587
0. 00000 0. 00516 -0. 15611
0. 00000 0. 00000 0. 51507

You can obtain the autocorrelations of the residuals using the DO loop below. The first time
through the loop, i = 1 so that the autocorrelations of resids(1) are displayed.

doi=13
cor(gstats,span=4) resids(i)
end do

Sections 4 through 6 of Chapter 2 contain a number of examples involving structural VARS. In a
structural VAR, you model the individual elements of the matrix g.

182 Walter Enders

3. Example: ENTER and Supplementary Cards

RATS allows you to replace the individual entries on a supplemental card with avector. You use
the ENTER instruction to manipulate the items in the vector. By changing the contents of the
vector, it is easy to add, subtract or (in almost any reasonable way) modify the information on
the supplementary card.

You first have to create the vector that will hold the information. If we are going to modify the
various series listed on the card, it is necessary to create a vector of integers (Recall that series

car3‘15be referenced by their labels or integers). The syntax of ENTER needed to perform this task
is:

ENTER(varying) vector
variables for vector

Use the VARYING option since the length of the vector will vary as you add or delete variables.
We will return to the issue of automating model selection in a VAR in Sections 3.1 and 3.2
below. Before considering the full VAR system, suppose you want to estimate the three
regression equations:

dirgdp; = ap + Agz(L)dIrgdpr.1 + &
dirgdp; = ap + Ag(L)dIrgdpe.1 + Ago(L)dirm2;., + &
dirgdp; = 0o + Ana(L)dIrgdpe1 + Asp(L)dirm2;. + Ags(L)drs.q + &

The next instruction in Program 5.2 is used to DECLARE the integer vector reglist. This vector
will hold the list of regressors we want to place on the supplementary card. The second line
above places ‘ constant’ in the vector reglist.

dec vector[integer] reglist
compute reglist = || constant ||

dofor i = dlrgdp dirm2 drs
enter(varying) reglist
#reglisti{1to 12}
lin dirgdp
reglist

end dofor i

The first time through the DOFOR loop, i = the integer assigned to the series dirgdp. Hence,
dirgdp{1 to 12} is added to reglist. Notice that the supplementary card on the ENTER
instruction also contains reglist. This is because we want the new list of regressors to include

% ENTER can also be used when passing information to a procedure. Here, we consider only the
use of ENTER to create avariablelist.

Vector and Matrix Manipulations 183

everything in the previous list (i.e., a constant) and the variable we are adding to the list. Next, |
= the integer assigned to dirm2 and a new list is created. The new vector reglist contains
everything in the previous list (i.e., a constant and dirgdp{1 to 12}) and dirm2{1 to 12}. In this
way the program estimates the regression equations.

If you do not want a constant in any of the regressions, you can replace the first line of the
routine with:

dec vector[integer] reglist(0)

Now reglist has been dimensioned such that it contains no entries.

3.1 Automating Model Selectionin a VAR

You can use ENTER to modify the list of deterministic variables in a VAR. Suppose that we
want to determine whether to include seasonal dummy variables in the 3-variable 12-lag VAR.
We want a routine that will make three loops. In the first loop, the system is estimated without
the seasonal dummies and the seasonal dummies are used in the second loop. The VAR output is
not displayed at this stage. In the third loop, the program estimates the ‘best fitting’ of the two
models and displays the output. The first line of the program creates a seasonal dummy variable
that is 1 in the 4-th quarter of each year and zero in al other quarters. The next instruction of
PROGRAM?2 on the file CHAPTERS5.PRG initializes a switch called print that is OFF (i.e., = 0)
in the first two loops and is ON (i.e,, = 1) in the third loop. It aso initializes the variable
aic_min—this variable will be used to hold the aic for the ‘ best-fitting’ model.

Sea seasons
com print =0 , aic_min = 100000000.

Next, we create two vectors; one will hold the deterministic regressors we want to keep in the
VAR (perm_det) and the other holds the current regressor list (temp_det). These two integer
vectors areinitialized to hold only a constant.

dec vector[integer] temp_det perm_det
com temp_det = [|constant||
com perm_det = ||constant||

Next we begin the three DO loops. On the first loop, i = 1 and the bracketed conditional
statement is ignored. Hence, the only deterministic regressor is the constant. On the second loop,
i = 2 and three seasonal dummy variables are added to the list of temporary variables. On the
third loop, i = 3 and the first set of conditional statements is ignored but the PRINT switch is
turned ON.

doi=13
ifi==2{
enter(varying) temp_det

184 Walter Enders

perm_det seasons{ 1 to 3}
}

ifi==3;comprint=1

Next the VAR system is estimated. On the first loop, only the constant is included in the
deterministic regressors. On the second loop, the list will include the seasonal dummy variables.

system1to 3
varsdirgdp dirm2 drs
lags1to 12

det temp_det
end(system)
estimate(print=print)

After the system is estimated, the multivariate AIC is computed. The function
%eqnsize(equation) returns the number of regressors in the specified equation. To obtain the
number of coefficients estimated in the system, find the number of regressorsin equation 1 (i.e.,
the first equation in the system) and multiply by 3. If the resulting value of the AIC is less than
aic_min, the list of permanent regressors is equated to the current regressor list and aic_min is
replaced by the current AlC. Otherwise these two instructions are skipped.

com aic = %nobs* %logdet + 2* (Y%oeqnsize(1))* 3; disaic
if aic<ac_min{

enter(varying) perm_det

temp_det

comaic_min=aic

}

Next, the temporary list is replaced by the permanent list and the loop is completed.

enter(varying) temp_det
perm_det
end do

If you run the program, you will find that the model without the seasonal dummy variables is
selected.

Vector and Matrix Manipulations 185

3.2 Creating a Near-VAR Using ENTER

Suppose that we want to forecast a series {y;} using lagged values of a number of
macroeconomic variables. One way to determine which variables to include in the forecasting
equation is to use Granger-causality tests. Suppose that we have determined that a four-lag
model is most appropriate and that a tentative forecasting equation for y; is:

Yt = Oo + Qu1yt-1 + QuoYr2 + Q1gyi-3 + QuaYra + Q21X + QX2 + QaXi3 + AoaXea + ... T &
where: {x;} isone of the seriesthat we might want to include in our final forecasting equation.

Since there is likely to be a fair amount of correlation among the regressors, it is standard to rely
on F-tests to determine whether or not to include a series in the forecasting equation. It is said
that {x} Granger-causes{y;} if it is possible to reject the null hypothesis:

Qr=ap=apz=ax»=0

Hence, if we cannot reject this null hypothesis, we exclude all values of {x;} from the forecasting
equation. Of course, we can also determine if {y;} Granger-causesitself by testing the null
hypothesis a;; = a;2 = a;3 = a14 = 0. One way to proceed is to estimate avery general forecasting
equation using all variablesin the data set and then to eliminate variables based on Granger-
causality tests. The other way is to begin with only an intercept and sequentially add variables
keeping only those that pass the causality test. The purpose of this section isto illustrate the use
of the ENTER instruction, not to determine which of the two methods is best. As such, we will
use the second method to obtain a forecasting equation for the logarithmic change in M3.

Asin the previous section, it is necessary to keep track of two regressor lists. The first—called
reglist—holds only the variables that we want to keep for the final forecasting equation. These
are the variables that have aready passed the Granger-causality test. The second—called
templist—holds the variables in reglist plus the variable that is currently under consideration for
inclusion. Only if this variable passes the causality test will it be added to reglist.

The final section of Program 5.2 creates the variables dim3 and dIp and the two integer vectors
templist and reglist.

dec vector[integer] templist reglist
compute templist=||constant]||
compute reglist=||constant||

Next, the program loops over the series dirgdp, dim3, drs and dip. The DOFOR instruction
below uses the fact that RATS allows you to refer to a series by its name or by its number. The
first time through the loop, templist and reglist contain only the constant term. The ENTER
instruction creates templist as the constant (i.e., the contents of reglist) plus the first four lags of
dirgdp. Next, the LINREG instruction estimates a regression of dim3; on the contents of templist.

186 Walter Enders

dofor i = dlrgdp dim3 drsdip
enter(varying) templist
#reglisti{1to 4}
lin(noprint) dim3
templist

The EXCLUDE instruction is used to perform the F-test that the coefficients on the four lags of
dirgdp; are statistically significant from zero. If the null hypothesis that the coefficients are
jointly equal to zero is significant at the 5% level, the bracketed instructions are executed. The
bracketed ENTER instruction adds lags 1 to 4 of dipgdp: to reglist. If the null hypothesis cannot
be rejected, the bracketed ENTER instruction is skipped so that the lagged values of dipgdp; are
not added to reglist.

exclude(noprint)

#i{1to 4}

if %signif <.05 {
enter(varying) reglist
#reglisti{1to 4}

}

Next, templist is updated such that the regressors in templist are identical to that in reglist. Asit
turns out, the null hypothesis cannot be rejected so that we conclude that the {dIrgdp:} sequence
does not Granger-cause dim3;. At the end of the DOFOR loop, reglist contains only the constant.

enter(varying) templist
reglist
end dofor i

On completing the first pass through the DOFOR loop i = dim3 [To be more precise, the entire
process is repeated for i = the integer corresponding to series number of dim3]. As such, four
lags of dim3; are added to templist and a regression of dim3; on its own four lags and a constant
is estimated. The entire process discussed above is repeated for dm3; and subsequently for dr;
and dip:. It turns out that only the lags of dim3; help to forecast the current value of dim3;. On
completing the four loops, the final two instructions below estimate a regression containing only
those variables passing the Granger-causality test.

lin dim3
reglist

If you execute the program, your output will be:

Vari abl e Coef f Std Error T- St at Si gni f
EE IR I S I I I I I I I I b b I I b I I I I I b I b S b I I I I I S b S S I b I I I I b b I 4
1. Constant 0. 002906841 0.000993077 2.92711 0.00392329
2. DLMB{1} 0. 824726885 0.080688781 10. 22108 0. 00000000
3. DLMB{2} 0. 004028644 0.104551220 0. 03853 0.96931127
4. DLMB{3} -0. 079967942 0.104224480 -0.76727 0.44406097
5. DLMB{4} 0.109141754 0.079475991 1.37327 0.17160277

Vector and Matrix Manipulations 187

Jazzing Up the Program

It is straightforward to modify the program to use each of the four variables as the dependent
variable in the regression equation. Thus, the final output will be afour-variable near-VAR in the
sense that only the variables that are “causal” remain in the system. Towards this end, we will let
theindex j loop over dirgdp, dim3, drs and dip. Consider:

dec vector[integer] templist reglist

dofor j = dlrgdp, dim3, drsand dIp
compute templist=||constant]||
compute reglist=||constant||

Now, each time through the DOFOR j loop, templist and reglist will be initialized to contain only
aconstant. There are only three other required modifications to the program. As indicated below,
the two LINREG instructions are changed to indicate that the dependent variable in the
regression is seriesj. The final linein the program closed the DOFOR j loop.

dofor i = dlrgdp dim3 drsdip
enter(varying) templist
#reglisti{1to 4}
lin(noprint) j
templist

;* NOTE the changein thisline

exclude(noprint)
#i{1to 4}

if %signif <.05{
enter(varying) reglist
#reglisti{1to 4}

}

188 Walter Enders

enter(varying) templist

reglist
end dofor i
linj :* NOTE the change in thisline
reglist
end dofor | :* NOTE the addition of thisline

If you execute the program, you will obtain four regression equations. Instead of reproducing a
rather large amount of output, simply note that:

Equation Causal Variables
dirgdp dirgdp, drs
dim3 dim3

drs dirgdp, drs, dip

dip dirgdp, dim3, drs, dip

Vector and Matrix Manipulations 189

4. Example: Moving Average Representations

Suppose that we have an ARMA(p,q) model and want to calculate the coefficients of its infinite-
order moving average representation. Specifically, suppose that we are working with the mode!:

Vi = 0o+ O1Yr1 + OoYeo + ... + OpYip + &+ Bi€ra + ... + Be€iq

As long as the equation is invertible, it is possible to express the {y;} sequence in terms of the
{&} sequence as.

Y=t i(plgt—i
i=0

One way to obtain the values of the { @} sequence is to use the Method of Undetermined
Coefficients. It should be clear that ¢ = ao/(1 - 01 - 02 - ... - ap) and that ¢ = 1. However,
finding the remaining values of the { g} sequence can be complicated. In particular, the formulas
for the coefficients are given by:

w=1
@ =B+ @a
@ = B2+ @O + @a>

@ = Bs+ @i+ @Os + @03

Thus, with knowledge of the {a;} and {[3;} the values of the various { @} can be found by
iteration using the formula:

i
) :[3J.+Zork(pj_k forj=1,2,3,...,24
=1
We want the program to contain the following steps:

1. Allow the user to enter any number of autoregressive coefficients and/or moving average
coefficients.

2. Calculate the ¢ iteratively using the formula above.

3. Create abar graph of the first 24 values of the{ @} sequence.

190 Walter Enders

There are many ways to perform these three tasks; the program developed below is designed to
illustrate matrix manipulations. Consider the first five lines of Program 5.3 on the file
CHAPTERS.PRG:

compute number = 24
al number

comapha=]|1.1,-.4,.2 ||
com beta= |-.7, .3|

The first two lines set the default length of any series to 24. You can change the value of
“number” to obtain asmaller or larger number of impulse responses.

The third and fourth lines create the vectors alpha and beta. The two vectors hold the
coefficients of the ARMA model. Here you can enter as many or as few values for a; and 3 as
desired. In the example, a1 = 1.1, a, = -0.4, a3 = 0.2, 31 = -.7 and 32 = 0.3. Hence, these first
four lines have accomplished task 1. However, we did not DECLARE either alpha or beta to be
vectors—refer to the individual elements of each as alpha(1,1), alpha(1,2), alpha(1,3), beta(1,1)
and beta(1,2).

Now we need to do some bookkeeping. Our first bookkeeping task isto compute values of p and
g, i.e., the dimensions of the alpha and beta vectors. The function %cols(A) returns the number
of columnsin matrix A. Hence, we can obtain p and q using:

compute p = %cols(alpha)
compute g = %ocol s(beta)

Unless otherwise specified, creation of aliteral vector using COMPUTE causes RATS to create
arow vector. Hence, alpha has 1 row and 3 columns while beta has 1 row and 2 columns.

Next, we need to set up a vector—that we call phi—to hold the twenty-four values of the { @} .
However, thereis a small problem in that a vector cannot have an element zero. Thus, we cannot
use the notation @, @ ... because we cannot have an element of a vector designated as phi(0).
Instead, we need to store the first value of @ in phi(1), the second value in phi(2), Thus,
phi(1) will equa 1, phi(2) will equal B; + aiphi(1), In essence, we need to create the phi
vector such that phi(1) = @, phi(2) = @, ... Hence, we will replace the usual formula for
cal culating impul se responses with:

p=1
j
@0.,=B+ Zak(pjﬂ_k forj=1,2,3,...,23
=1
We can DECLARE the phi vector to contain 24 elements and initialize the first value phi(1) = 1
using:

Vector and Matrix Manipulations 191

dec vect phi(number)
com phi(1) = 1.

We cannot directly use the formula above since ay is undefined for k > p and f3; is undefined for |
> . The final bookkeeping task concerns treatment of these values. One straightforward method
isto define two new vectors of dimension 24. We can let the first p elements of vector A hold the
elements of alpha and set the remaining values to zero. Similarly, we can let the first g elements
of vector B hold the elements of beta and set the remaining values to zero.

dec vect a(number) b(number)

com a= %const(0.) , b = %const(0.)
ewise a(i) = %if(i<=p, apha(1,i), 0.0)
ewise b(i) = %if(i<=q ,beta(1,i), 0.0)

Hence, the DECLARE instruction in the program segment above creates the vectors A and B and
sets the dimension of each to 24. COMPUTE uses the %CONST(x) instruction to set all values
of A and B to equal the constant zero.* Next, looping over p, equates the first p values of A with
the corresponding elements of alpha. Similarly, looping over q sets the first g elements of B
equal to the corresponding elements of beta. Finally, we can write a routine that calculates the
remaining values of phi.

doj = 1,number-1

com phi(j+1) = b(j)

dok =1, ; comphi(j+1) = phi(j+1) + phi(j+1-k)*a(k) ; end do k
end doj

The first loop initializes phi(j+1) equal to B;. Each time through the inner loop (i.e., for each
value of k), ok@+1-« IS added to phi(j+1). Exiting thisinner loop yields the desired sum:

j

(pj+1 = Bj + Zak j+1-k

1

This processis repeated for each value of j up to and including j = 23.

The last task is to create a bar graph of the phi sequence. Since phi is a vector, it cannot be
graphed directly. However, we can convert phi into a series called response and graph response

using:

set response = phi(t)
gra(style=bar,header="Impul se Responses) 1 ; # response

If you run the program as shown, your output will be:

%Y ou cannot use com a = 0; this instruction would cause A to equal the number O.
%CONSTANT sets each element of A to zero.

192 Walter Enders

Impulse Responses
2.00

175 —

125 —

1.00 —

050 —

025 —

0.00 —

Jazzing Up the Program

It is likely that you might want to find the impulse responses to an ARMA(p,) model that you
estimated using the BOXJENK instruction. BOXJENK estimates a model and stores the
resulting coefficients in a vector caled %BETA. The first element of %BETA is always the
constant (if any), then the AR(p) coefficients and finally the MA(Q) coefficients. We need to
make the following modifications to the program:

1. Program 5.4 illustrates the process by estimating drs from the data set MONEY _DEM.XLS.
Consider:

cal 195914

all 2001:1

open data a\money_dem.xls
data(org=obs,format=xIs)

dif tb3mo/ drs

com number = 24

The first five lines instruct RATS to read the data set and create the variable drs. The sixth line

indicates that we want 24 impulse responses. If you use the Box-Jenkins methodology, you can
convince yourself that a plausible model for the {drs} sequenceis:

drs = apdrs., + 070rs.7 + & + P1€ea1 + Pars

Nevertheless, in order to illustrate some vector manipulations, we will estimate this model
including an intercept. We can estimate the model with:

Vector and Matrix Manipulations 193

comar = [|2,7]|
com ma= ||1,3]|
box(constant,ar=ar,ma=ma) drs

Variable Coeff Std Error T- St at Si gni f
1. CONSTANT 0.012981373 0.053771900 0.24142 0.80955008
2. AR(2} -0.268737166 0.076271837 -3.52341 0.00055917
3. AR(7} -0.335461768 0.073223473 -4.58134 0.00000940
4. MA{1} 0. 385063544 0.078041223 4.93410 0.00000205
5. MA{3} 0. 183914603 0.074495456 2.46880 0.01463518

Formulating the model in this form makes our programming problem a bit more complicated
than estimating an ARMA(7,3) model. The first autoregressive coefficient estimated is a, and the
second is a;. Similarly, the first MA coefficient estimated in 3; and the second is 33. In fact, the
five estimated coefficients are contained in the vector %BETA. Note that %BETA has only 5
elements: %BETA(1) = 0.012981373, %BETA(2) = -0.268737166, %BETA(3) =

0. 335461768, Y%BETA(4) = 0.385063544 and %BETA(5) = 0.183914603. We need to
transfer these five values to the appropriate elements of the A and B matrices in the formula used
to calculate phi.

The next two instructions use the variable p to store the number of AR coefficients and g to store
the number of MA coefficients. The third instruction sets up an indicator called flag equal to the
number of coefficients estimated minus (p + (). Note that %BETA is a column vector so that
%ROWS(%BETA) indicates the total number of coefficients estimated. Thus, flag equals 1 if
there is an intercept (since the number of coefficients estimated will exceed p + g by 1) and is
zero if no intercept is present. If this was the only time you were going to use the program, this
step would be unnecessary. However, you might want to use the same routine for other
estimations that might not include an intercept. As such, it becomes convenient to allow the
program to determine whether of not an intercept was included in the estimation.

compute p = %cols(ar)

compute g = %cols(ma)

com flag = %rows(%beta) - p -q

Asinthe origina program above, the next two instructions fill the vectors A and B with zeroes.

dec vect a(number) b(number)
com a = %const(0.) , b = %const(0.)

Now we need to transfer the values of %BETA(2) to A(2), %BETA(3) to A(7), %BETA(4) to
B(1) and %BETA(5) to B(3). One way to do this would be to use:

com a(2) = %beta(2), a(7) = Ybeta(3), b(1) = %beta(4) and b(3) = %beta(5).
However, a more general way to do thisisto recal that the first element of AR is the integer 2,

the second element of AR isthe integer 7, the first element of MA isthe integer 1 and the second
element of MA isthe integer 3. Hence, we can write:

194 Walter Enders

doi=1,p; coma(ar(1,i)) = %beta(i+flag) ; end do i
doi=1,q; comb(ma(l,i)) = %beta(i+p+flag) ; end doi

Since flag = 1, the first loop equates A(2) with %BETA(2) and A(7) with %BETA(3) and the
second loop equates B(1) with %BETA(4) and B(3) with %BETA(5). The key point to note is
that this set of instructions will work for any pattern of ARMA coefficients. The next six lines of
code are identical to that of the program above:

dec vect phi(number)
com phi(1) = 1.

doj = 1,number-1

com phi(j+1) = b(j)

dok =1, ;comphi(j+1) = phi(j+1) + phi(j+1-k)*a(k) ; end do k
end doj

The remainder of the program is unchanged:

set response = phi(t)
gra(nodates,style=bar ,Header =" mpulse Responses) 1 ; # response

Impulse Responses
1.0

0.8 —

0.6 —

0.4 —

0.0 —

-0.2 —

0.4 -— [— T
2 4 6 8 10 12 14 16 18 20 22 24

Vector and Matrix Manipulations 195

4.1 Impulse Responsesin a First-Order VAR

Suppose you estimated adlrgdp, dirm2; and drs as afirst-order VAR using:*’
estimate(sigma,outsigma=v,residual s=resids,coeffs=ca)

Y ou could obtain the impul se responses using:

errors(impul ses,model=modelname) 3 24 v

or

impulse(model=modelname) 3 24 * V

An alternative way to obtain the identical answersisto use RATS matrix instructions.

The matrix ca contains the slope coefficients and the intercept terms. Since the impulse
responses represent deviations from equilibrium, you will want to create a new matrix, called A,
containing only the slope coefficients. Consider the next three instructions:

dec rect a(3,3)

ewise a(i,j) = ca(i,j)

dis’A="a

The DECLARE instruction creates A as a 3 x 3 rectangular matrix. The EWISE instruction
equates each element of A with the corresponding element of ca. The third instruction allows you
to view the newly created matrix A. Next, create a matrix to contain the impulse responses. We

will create an 8 x 3 matrix called imp to hold the eight impulse responses of a shock to the first
variable on the time path of the three variables in the system:

dec rect imp(8,3)

Thus, imp(4,2) will contain the impulse response of a shock to dirgdp: on the value of dim2...
Next, we create the impulse responses themselves. Since we consider only a first-order VAR,
after the first period, the system evolves as:

imp; = imp..1a

where: the 1 x 3 vector imp; are the impulse responses of (dlrgdp; dim dr;) to a real gdp shock
and A isthe coefficient matrix created above.

37 Although the 12-order VAR is more appropriate, the example hereis intended to be
illustrative.

196 Walter Enders

ewiseimp(i,j) = g(1,j)
doi=28
com c = tr(%xrow(imp,i-1))*a
doj=1,3; comimp(i,j) = c(1) ; end do |
enddoi
di's HH HHAHHHHE T R mp

The logic of the program is to initialize the impulses with a 1-unit shock to dlirgdp. Within the
first loop, ¢ is computed as the transposed value of the i-1 row of imp (i.e., the impulses for
period i-1) multiplied by the coefficient matrix a. Then the current value of imp for real gdp,
money and interest rates are computed as the associated value of the 1 x 3 vector c. Displaying
imp yields identical answers to the ERRORS(impulses) instruction.

Vector and Matrix Manipulations 197

5. Creating Matricesfrom Your Data

If you are going to use matrix manipulations on your data set, it is important to realize that
RATS does not treat a series in the same way as a vector. For example, a vector is a one-
dimensional array such that the elements have subscripts that run from 1 to N. In order to
manipulate the vector, each element needs to be defined. Unlike a vector, you can manipulate a
series even if it has ranges that are undefined or NA. The key point is that RATS treats the two
differently: to perform any matrix manipulations on your data set, you need to create vectors
from your series. You can also create a RECTANGULAR matrix of series such that you can
refer to each element by its row and column. In a RECTANGULAR matrix, columns represent
variables and rows represent observations. Thus, element i,j is the element in the i-th row of the
j-th column. Similarly, element i,j is the i-th observation of variable|.

Y ou can create matrices from series using the MAKE instruction. The syntax is:

MAKE array start end numobs numvars
#list of variables

numobs: INTEGER used by RATS to return the number of observations (i.e., the
number of rows)
numvars: INTEGER used by RATS to return the number of variables (i.e., the
number of columns)
Options;
EQUATION= equation supplying variables
LASTREG: use regressors from last regression.

NOTE: Omit the supplementary card with either of the above.
TRANS: set up the transpose of the observation array

Examples

For all of the examples below, read in the data set MONEY_DEM.XLS and create dirgdp using
PROGRAM 5 of CHAPTERS.PRG. Next, estimate dirdgp as an AR(2) process using:

lin dirgdp / resids
constant dirgdp{1to 2}
Vari abl e Coef f Std Error T- St at Signif

khkkhkhkhkhhhkhhhhhhhhhhhhhhdhhhdhhhhdhhhdhhhhhhdhhhdhhhdhhhdhhddhrdrdrrdrx*x

1. Constant 0. 0051566068 0.0010217954 5.04661 0.00000119
2. DLRGDP{ 1} 0. 2508977521 0.0769801061 3.25925 0.00135976
3. DLRGDP{ 2} 0. 1362250820 0.0762100846 1.78749 0.07571568

Now we can perform the identical estimation using matrices. First, we can make the matrix x
containing the regressors from the AR(2) using:
make(lastreg) x 4 2001:1

198 Walter Enders

Unlike a series, you can show the contents of a matrix using the DISPLAY instruction. If you
DISPLAY x, you will seethat thefirst 5 rows of matrix x are:

dis x
1.00000 -4.28835e-04 0.02580
1.00000 0.00330 - 4. 28835e- 04
1.00000 0.02195 0. 00330
1.00000 -0.00495 0. 02195
1.00000 0.00185 -0. 00495

Y ou can see that the first column consists of al 1's, the second column contains dirgdp{ 1} and
the second column contains dirgdp{2}. Y ou can display any particular element of x by referring
to itsrow and column. For example:

disx(2,3)
- 4. 28835e- 04

Next, create the matrix y containing the dependent variable (i.e., the contemporaneous values of
dirgdp). Care needs to be taken about the conformability of the x and y matrices. It is necessary
to begin with observation 4 since one usable observation islost by using first differences and two
more are lost as aresult of estimating amodel with two lags. Hence:

makey 4 2001:1
#dirgdp

If you enter DISPLAY y, you will seethat the first five rows are:

disy
0. 00330
0. 02195
- 0. 00495
0.00185
-0. 01296

Y ou can display the individual elements of y by referring to their row and column. For example:

disy(3,1)
-0. 00495

5.1 Estimating the Regression Coefficients

We want to compute and display the matrix of coefficients as: (x'x)*Xy. Consider the following
program statements:

com xx = tr(x)*x
com XX_inv = inv(xx)

Vector and Matrix Manipulations 199

com xy = tr(x)*y
com beta = xx_inv*xy
disbeta

0. 00516

0. 25090

0. 13623

We could have written all of the above in one step. However, it is instructive to consider each of
the program statements. The first line creates xx as xX'x. The second line takes the inverse (xx)™*
and the third creates X'y. The fourth line creates B as (Xx)xy and the fifth displays B. Here is
how you could have written all of the above in the single step:

disinv(tr(x)*x)*tr(x)*y

Next, call y, the predicted value of y;. The matrix X(X'X) X' is often called the projection matrix P
since:

and B= (xX)"'Xy
Moreover, since the error term e = y; - Y, , it follows that:

a=Yt- ¥.=(—P)%t = My
We can calculate the projection matrix P as:
com p = X*Xx_inv*tr(x)

Students of econometrics will recall that P is idempotent (By definition, the square matrix A is
idempotent if A*A = A). You can verify that P isidempotent using:

comtest =p*p- p; distest

Since P has the dimensions 166 x 166, you will see a tremendous amount of output displayed to
the screen. Nevertheless, all of the values of test are approximately equal to zero. Although, each
value should be exactly equal to zero, rounding errors are present. As another exercise, you
might recall that the rank of an idempotent matrix equals the trace of the matrix. Y ou can display
the trace of P using:

dis %trace(p)
3. 00000

Y ou can use the projection matrix to obtain the predicted values of y; and the error terms using:

200 Walter Enders

comy_hat =p*y ; disy_hat
come=y-y hat;dise

If you display e and print resids, you should obtain exactly the same results. Additionally, you
can obtain the orthogonal complement (M) of P by forming:

M=I1-P.

Notice that M is another useful way to calculate the residuals. Since:
a=¥- Y,

it follows that:
&= Yi—Py:= (I -P)y: = My,

We can calculate M using:

com m = %identity(166) — P

Exercises:

1. Verify that %identity(166) is an identity matrix with 166 rows and columns.
dis %identity(166)

2. Verify that M and P are orthogonal by entering:
dism*p

3. Verify that M isidempotent by entering:

comtest =m*m-m; distest

5.2 Hypothesis Testing in the Regression M odel

We can calculate the variance of the residuals (i.e., the squared standard error of the estimate) as.
6% =€eel(T -3
comvV = %scalar(tr(e)*e)/163 ; disv

* An aternative isto use com v = %dot(e, €)/163
dis %osgrt(v)

Vector and Matrix Manipulations 201

Note that we need to covert the 1 x 1 matrix tr(e)*e into a scalar before dividing by the scalar
value 163. Alternatively, we could use %dot(e, €) to produce the inner product. If you compare
the answer to that from the regression model, you should find the same answer. Next, we can
find the standard errors of the coefficients using that fact that:

var() = var(e)* (X'X)*

com v_beta = %scalar(v)*xx_inv

disv_beta

dis%sgrt(v_beta(1,1)) % sqrt(v_beta(2,2)) % sgrt(v_beta(3,3))
0. 00102
0. 07698
0. 07621

Notice that these are the same as the standard errors of the coefficients that we obtained using the
LINREG instruction. Typically, we estimate regressions in order to perform a Wald test on the
regression coefficients. The simplest way to perform such a test is to use an EXCLUDE or

RESTRICT instruction. However, to further illustrate matrix manipulations, consider a set of
linear restrictions of the form:

RB =c
where: R=qgx k

[= estimated coefficients
C = constants

and q = number of restrictions, and k = number of estimated parameters. The F-statistic is:
F(aT-K) = (c- RB)TRXX)'R'] ™ (c- RB)/(d?)

Now consider the null hypothesis that the intercept term is zero. We can write this restriction as:

B, 0
L o o) B0
EAS
comq=1
comR=|1.,0.,0.[
comc=| 0.

comf = tr(c - R*beta)*inv(r*xx_inv*tr(r))*(c - r*beta)
com f1 = %scalar(f)/(g*Vv) ; disfl

We can obtain the t-statistic for the null hypothesis using:

202 Walter Enders

dis%sqrt(f1)
5. 04661

Y ou can easily verify this value as the same as that obtained using the LINREG instruction. We
can test the more complicated hypothesis: 3; = 3, = 0 using:

0 1 OEBOS_ 00
b o 4B T R

2

comn=2
comR=|0.,1.,0.|0,0., 1|
comc=|0.]|0.|
comf = tr(c - R*beta)*inv(r*xx_inv*tr(r))*(c - r*beta)
com f1 = %scalar (f)/(2*v) ; disfl
9.17622

We obtain precisely the same value using LINREG ad EXCLUDE. Consider:

exclude
#dlrgdp{1 2}

Nul | Hypothesis : The Foll owi ng Coefficients Are Zero
DLRGDP Lag(s) 1 to 2
F(2,163) = 9.17622 with Significance Level 0.00016735

Vector and Matrix Manipulations 203

5.3 Creating Seriesfrom a Matrix

There are some instructions that operate only on series. As such, you may want to create a series
from a vector or several series from matrix. For example, suppose that you want to crate a graph
of the regression residuals contained in the 166 x 1 vector e. Since GRAPH requires a series, we
need to DECLARE a series that can be used to hold the residuas. The first instruction creates the
vector errors containing a single series. The second instruction sets each element of errors(l)
equal to the corresponding element of e. The PRINT instruction allows you to compare the
difference between the errors(1) and the resids series:

dec vector[series] errors(1)
set errors(1) = e(t,1)
pri 15errors(l) resids

ENTRY ERRORS(1) RESI DS
1959: 01 -0.005265949134 NA

1959: 02 0. 016019975946 NA

1959: 03 -0.016059236473 NA

1959: 04 -0.005057184696 -0.005265949134
1960: 01 -0.017909559980 0.016019975946

Notice that the first three entries of resids are NA; one observation was lost because we used the
first difference of dirgdp and two more were lost because we used two AR coefficients in the
LINREG instruction. Notice that the first entry of errors(1) corresponds to fourth entry of resids.
To explain, note that x was constructed with no missing observations. Hence, first element of e
[i.e., &1,1)] contains the difference between y; and y,. Except for the two-period shift, the

resids and errors(l) series are identical.

Chapter 6:
Writing Your Own Procedures

In RATS, a procedure is a set of instructions that resides ‘outside’ of the program itself. In
writing a procedure, you are effectively writing your own RATS instruction along with options,
supplementary cards and choices concerning the series and variables to use. It is clear why you
might want to write a procedure. Suppose that there is a particular task involving a set of
instructions that you frequently invoke. It would be desirable if you could ssimply type a few
keystrokes that instructed RATS to perform this more complicated set of instructions. In this
way you could automate your task within any particular program. More importantly, by writing a
procedure you can ‘call up’ this set of instructions in a number of programs. Since the procedure
residesin afile, you can send the file to your co-author, students or post it on your website. You
might think of a procedure as a‘macro’ in WORD. Older programmers, like myself, might want
to think of a procedure as an external function in FORTRAN. Now, the advantage is that you can
customize RATS by writing (or downloading) a procedure.

RATS comes with a number of useful procedures and you can download many more from the
Estima website (www.estima.com). Even if you do not want to write your own procedures from
scratch, the material in this chapter should be useful to the advanced RATS user. It is often quite
simple to edit existing procedures to tailor them to your needs. In order to use a procedure, it
must be complied. The syntax for compiling a procedure stored on an external fileis:

source name (The sole option is noecho.)

If you use the noecho option, you will not see anything displayed on the screen after compiling
the procedure. If you omit noecho, you will see each line of the ‘source code’ preceded by the
location in memory where the beginning of the code resides. This is useful for two reasons. If
you need to debug a procedure, knowing the location in computer memory can be useful. Also,
the fact that you get to see each line of the procedure alows you to see the instructions and
comments contained in the procedure. Good programmers will include a set of comments in the
procedure (usually at the beginning) that describe the proper use of the procedure.

If you are an experienced RATS user, you certainly have used procedures many times. You
know that a procedure needs to be compiled only once within any program. Once it has been
compiled, the procedure can be used any number of times. In Chapter 2, we discussed the
procedure BJDENT.SRC. Recall that you can use the procedure to construct the
autocorrelations and partial autocorrelations of a series using:

Writing Your Own Procedures 205

@bjident(options) series start end
where:
start end The range of the series to use for constructing the autocorrelations and
partial autocorrelations

Some of the options for the procedure are:

DIFF = Maximum regular differencings[0].
TRANS = [NONE]/LOG/ROQOT Transformation to apply to data
[GRAPH]/NOGRAPH Do High-resolution graphs?

The key point to note is that the procedure allows you to make a number of important choices.
You choose the series to use along with the start and end dates. Moreover, the procedure
contains three different types of options. The DIFF = option uses an integer value, the TRANS =
option is an OPTION CHOICE alowing you to select a particular type of data transformation
and GRAPH/NOGRAPH is a SWITCH option. A good portion of this chapter will develop the
syntax allowing you to pass information concerning series names, entries and options to a
procedure. All of the procedures developed here are avalable on the file labeled
CHAPTERG6.PRG

206 Walter Enders

1. A Procedureto Display the AIC and SBC

Itislikely that your RATS sessions require you to calculate and display the aic and sbc a number
of times. After estimating a regression equation, you need to enter the following three lines:

compute aic = %nobs* log(%orss) + 2* (%onreg)
compute shbc = %nobs* log(%orss) + (Yonreg)*log(%onobs)
display 'aic="aic'bic="sbc

Once you have typed the three lines, you never need to type them again. Instead of retyping, you
probably scroll upward in your program and re-execute the three lines. However, this can be a bit
of ahasde, and, if you are like me, you might even lose your place in a complicated program. A
simple way to avoid thisis to write a procedure containing the lines that you want to execute.

Every procedure should begin and end with its own name. For example, you can write a
procedure called BIC as the following five lines:

procedure bic
compute aic = %nobs*log(%orss) + 2* (%onreg)
compute bic = %nobs* log(%rss) + (%enreg)* log(%onobs)
display 'aic="aic'bic="sbc

end bic

If you write the procedure in RATS, you can just save the procedure in a separate file
somewhere on your hard drive. | save al of my procedures in the same directory containing
RATS32S.EXE. If you write the procedure using WORD or some other word processing
program, be sure to save the program in ASCII (i.e., *.txt) format). Good programming style
dictates that similar files al have the same extension. As such, most RATS programmers use the
extension *.SRC to indicate a file containing source code. Say that the five lines are saved as
c:\winrats\bic.src.

To compile the procedure use:

source c:\winrats\bic.src

or, if you do not want the source code and location numbers displayed to the screen, use
source(noecho) c:\winrats\bic.src

Once you have estimated a regression, you can obtain the aic and shc by simply typing:

@bic

Writing Your Own Procedures 207

2. Using SWITCH Options

The procedure BIC.SRC is quite ssmple since we did not need to pass any information to the
procedure. Unlike BJDENT.SRC, the procedure BIC.SRC contains al of the necessary
information to compute the aic and the sbc. The RATS instruction LINREG (or BOXJENK)
creates the regression variables %nobs, %rss and %nreg. These are the only three pieces of
information needed to create the aic and sbc. Since al are stored internaly in RATS, we do not
need to ‘send’ or pass them to the procedure. However, the most useful procedures perform far
more complicated tasks on variables, matrices, and/or entire series (or set of series). Since a
procedure is external to RATS, we need a mechanism to pass information from RATS to the
procedure itself.

Asdiscussed in Chapter 1, anumber of RATS instructions, such as LINREG, have SWITCH and
CHOICE options. It is straightforward to include such options within your own procedure.
Recall that a SWITCH option allows only two choices: ON or OFF. For all RATS switching
options, you can turn on the switch by equating its value to 1 and turn off the switch by
equating itsvalueto 0. The appropriate syntax to include a SWITCH option in a procedureis:
OPTION SWITCH option name default value (Note: The default value must be O or 1)
If you turn back to Section 3.1 of Chapter 1, you will see that LINREG has a SWITCH option
named PRINT. Since PRINT = 1 is the default, all of the following will cause the regression
output to be displayed:

lindrs; # constant drs{ 1 to 7}

lin(print) drs; # constant drs{ 1 to 7}

lin(print=1) drs; # constant drs{ 1 to 7}

comii=1
lin(print=ii) drs; # constant drs{ 1 to 7}

Similarly, all of the following will suppress printing the regression outpuit:
lin(noprint) drs; # constant drs{ 1 to 7}
lin(print=0) drs; # constant drs{ 1 to 7}

comii=0
lin(print=ii) drs; # constant drs{ 1 to 7}

208 Walter Enders

We can illustrate the use of a SWITCH option in a procedure by returning to BIC.SRC. Note that
a number of authors calculate the values of the aic and the sbc using the following two
formulas:®

T T
aic’ :Tln§q2E+2k ~TInT and sbe' =TIn§eﬁE+ KIn(T) =T In(T)
=1 =1

It is simple to modify BIC.SRC to allow us to select the desired form. The modified procedure
shown below uses OPTION SWITCH with the name altform; notice that the default value of
altformis 0. The IF-EL SE block uses altform to determine which form to calculate and display.
If altform = 0, the procedure will calculate and display the aic and the sbc as in our original
procedure. Otherwise, the procedure will calculate and display aic’ and sbc’.

procedure bic

option switch altform 0
if dtform==0{
compute aic = %nobs* log(%orss) + 2* (%onreg)
compute sbc = %nobs* log(%orss) + (Yonreg)*1og(%onobs)
display ‘ aic="aic'bic="sbc
}

else{
com aic = %nobs*log(%rss) + 2* (%nreg) - Yonobs* log(%onobs)
com sbc = %nobs*log(%rss) + (%nreg)* log(%enobs) - %enobs* og(%onobs)
display “aic’ =" aic“bic’ =" shc
}

end bic

Suppose you have just estimated drs using: LIN drs ; # constant drs{1 to 7}. Since the default
value of altformis 0, all of the following will cause the procedure to display the aic and sbc in
logarithmic form:

@bic

@bic(noaltform)
@bic(atform=0)

comii = 0; @bic(altform=ii)

Similarly, all of the following will display the alternate form of the aic and sbc:

@bic(atform=1) [Since altform =1, the EL SE Block is executed]
@bic(atform) [Turns ON the altform OPTION]
@bic(atform=2) [Since altform # 0, the EL SE portion of the procedure is executed)].

% Note that aic and aic’ will necessarily select the same model since aic is a monotonic
transformation of aic’. Similarly sbc and sbc’ will select the same model.

Writing Your Own Procedures 209

2.1 Integer and Choice Options

Oftentimes you will want something more complicated than an ON/OFF switch. At times, it will
be convenient to pass a particular number to the procedure. For example, BJIDENT.SRC allows
you to obtain the ACF and the PACF using first-differences of the data using DIFF = 1.
Similarly, BJDENT.SRC adlows you to select a logarithmic transformation of the data
transformation using TRANS=log.

The syntax for an integer choice (such as the number of lags to use in the ACF and PACF) is:
OPTION INTEGER option name default value
To alow for anon-numerical set of choices (such as TRANS = log) use:

OPTION CHOICE option name default number list of choices

Examples

1. Suppose you want your procedure to estimate the series y as an AR(p) model where p is
selected by the user. Since the number of lagsis an integer, use the INTEGER option. To set
the default number of lags equal to 1 use:

OPTION INTEGER lags 1

You should protect the user from inadvertently entering lags=0. Somewhere in your
procedure, you could use the following set of instructions:

if lags.ge.0 {
liny ; # constant y{ 1 to lags}

}

2. Suppose you want the user to determine whether to graph seriesy in levels, first differences,
or in logarithmic first differences. If you want the default to be such that the series is
displayed in levels, you can use:

OPTION CHOICE trans 1 levels diff growth

Y our procedure should contain instructions that are similar to:

210 Walter Enders

if trans.eq.1{
gral;y

}

if trans.eq.2 {
dify/dy;gral;#dy

}

if trans.eq.3 {
logy/ly;difly/dly
gral;dly

}

If the option trans is left unspecified or set equal to 1, the routine will produce a graph of y. If
the user sets trans=2, the time path of the first difference of y will be shown and if the user
sets trans=3, the time path of the growth rate of y will be shown.

Writing Your Own Procedures 211

3. Passing Seriesto a Procedure

Usualy you will want a procedure to perform one or more operations on a series. As an
experienced RATS user, you will have passed a series along with its start and end dates to a
procedure. For example, we can use BJDENT.SRC to construct the ACF and the PACF for the
series digdp over the sample period 1959:1 through 1985:4 using:

@bjident dirgdp * 1985:4

In essence, you are passing the sample values of the series Igdp along with the integer values of
the start and end dates to the procedure. There must be a way for the procedure to ‘recognize’
the type of information it is being sent. This is done by listing all of the parameters (series,
integer values and matrices) that can be passed on the first line of the procedure. If you actually
open BJDENT.SRC, you will seethat the first thirteen lines are:

proc bjident series start end
type series series
type integer start end

option integer diff 0

option integer sdiff O

option choice trans 1 none log root
option switch graph 1

option integer span

local integer nbeg nend spanl i |

local series corrs partials

local series transfrm diffed upper lower
local integer number

inquire(series=series) nbeg>>start nend>>end

Asin BIC.SRC, thefirst line names the procedure. However, the first line also contains the three
parameters SERIES, START and END. The second line declares that SERIES is a series. The
third line declares START and END to be integers. This illustrates the general organization of a
procedure. The first set of instructions classifies the parameters being passed by the procedure.
Next, the various options used in the procedure are enumerated. Note that the number of
differences (DIFF=), seasonal differences (SDIFF=), and the seasonal span (SPAN=) are dll
INTEGER OPTIONS. The form of the data transformations (TRANS=) is a CHOICE OPTION
and whether or not to display a graph is a SWITCH OPTION. The third set of instructions
indicates whether or not the variables will be local (defined only within the procedure) or global
(accessible throughout the main program and procedures). Fourth, you might want to inquire
about the nature of the series being passed to the procedure—it is especially useful to obtain the

212 Walter Enders

starting and ending entries. Finally come the set of instructions you want the procedure to
perform. The general structure of any procedureis:

PROCEDURE procedure name list of parameters
TY PE instructions
OPTION instructions
LOCAL instructions
INQUIRE instructions
set of instructions to be performed
END procedure name

The procedure is executed by @procedure name list of parameters. Note that the order of the
parameter list must match that used within the procedure.

Writing Your Own Procedures 213

4. Writing a Procedureto Test for Unit Roots

We will illustrate the process by writing a procedure called UNIT.SRC that will perform an
augmented Dickey-Fuller test. The final procedure will be similar to that in DFUNIT.SRC that
comes with RATS. However, by writing such a procedure from scratch, it will be possible to
illustrate the structure and key instructions of any procedure. We begin simply. At first, the
procedure will only estimate a model of the form:

Ay = Bo + PYr1 + P1lyea + &

The entire regression output will not be displayed. Instead, the procedure will only display the
estimate of p and the t-statistic for the null hypothesis p = 0.

After compiling, the procedure can be invoked using @unit series. For example, you can use to
procedure to test for a unit root in the variable Irgdp using:

@unit lrgdp
We begin by writing UNIT.SRC as:

procedure unit y

type seriesy

setdy =y -y{1}

lin(noprint) dy

#y{1} dy{1} constant

dis The estimate of rho =" %beta(1)

dis'the t-statistic for the null hypothesisrho =0 is' %tstats(1)
end unit

The interpretation of lines 1 and 8 is straightforward; these are simply the starting and ending
lines of the procedure. In line 1, we inform RATS that we will pass a parameter to UNIT.SRC.

Line 2 needs a bit of explanation. In general, you will want to pass series, integers, real variables,
matrices, etc., to the procedure. RATS needs a mechanism by which to determine the type of
parameter that is being passed. Line 2 indicates that the parameter we pass (i.e., y) is a series.
Thisisdone using the TY PE instruction. The syntax is:

TYPE datatype parameter list

where:

data type can be any RATS date type such as SERIES, INTEGER, REAL,
SYMMETRIC, ...

parameter list isthelist of parameters you which to declare as this particular date type.

214 Walter Enders

Notes:
1. Useone TYPE instruction for each data type.

2. The TYPE instructions should begin in line 2 of a procedure (i.e., immediately after the
PROC name parameter list instruction).

3. We cannot include dy on a TY PE instruction since we do not pass this series to the procedure.
Instead, dy is created within the procedure.

If you are not familiar with programming, it might seem troublesome that we want to pass |gdp
to the procedure, but the procedure seems to use only the series denoted by y. Actualy, y is only
a placeholder—it will accept any seriesthat is passed to it.

Line 3 creates the first-difference of y and the regression is estimated in lines4 and 5. Line 7
displays the point estimate of p and line 8 displays the t-statistic for the null hypothesis p = 0.
Thus, if we use @unit Irgdp, we will obtain the estimate of p, the t-statistic for the null p= 0 for
the equation:

Alrgdp: = Bo + plrgdpr.1 + B1Alrgdpe1 + &

The procedure seems to work as intended. However, there is a potential problem that needs to be
addressed. Just because a procedure works within your particular program does not mean it will
work in al possible programs. Suppose that you posted a copy of UNIT.SRC on your class
webpage and one of your students had a data set that included a variable called dy. Every time
she invoked UNIT.SRC, the procedure would write over her variable. In order to separate
variables used in the main body of a program from those used in a procedure, RATS allows you
to designate variables used in a procedure as local variables.

4.1 Creating Local Variables

Unless otherwise stated, all variables in RATS can be used in the main program or in a
procedure. Thus, by default, all variables are global. If you modify a variable within a procedure,
it will be modified when control returns to the main body of the program. In many
circumstances, this can be desirable. In fact, you might want a procedure to perform a particular
transformation on a variable and then return control to the main program. Other times, you might
create a variable within a procedure that is already named within the main body of the program.
Thus, the procedure would overwrite the values of the variable. A local variable is one that is
used only in the procedure that defines it. Thus, changing the value of alocal variable changes
its value only within the procedure.

There is another reason to use local variables. Suppose a procedure includes a series that is not
defined as a local series. If you attempt to compile the procedure prior to the ALLOCATE
instruction, RATS will display the error message:

Writing Your Own Procedures 215

SR1. ALLOCATE Instruction Needed Before Series or Equations Can Be Used

The point is that RATS will have no way of knowing the length of the series appearing in the
procedure. By declaring the variable as a local variable, the procedure can be compiled before
the ALLOCATE instruction is encountered.

To define avariable aslocal, use:

LOCAL SERIES series name

or

LOCAL INTEGER name

Thus, we want to include the following line in UNIT.SRC

LOCAL SERIES dy

The precedence of statementsis that DECL ARE instructions should precede TY PE, LOCAL and
OPTION instructions. All of these must precede the executable instructions. Hence, we want the
first three lines of UNIT.SRC to be:

procedure unit y

type seriesy

local seriesdy

Notice that we do not need to definey as alocal variable sincey is a parameter (i.e., the symbol y
acts only as a placeholder).

4.2 Adding Options

To turn UNIT.SRC into a procedure that you might want to use in your own research, we need to
make three changes to the basic program. The user should be able to select the deterministic
regressors to include in the model, select the lag length to use in the augmented form of the
Dickey-Fuller test, and to choose whether to display a graph of the residuals.

The Choice of Lag L ength
Since the number of lagsis an integer, we need to make only two modifications to the procedure:

1. Include the instruction: OPTION INTEGER LAGS 1.
2. Replace the supplementary card in the LINREG instructions with:

y{1} dy{1tolags} constant

216 Walter Enders

Since the default value of LAGS is 1, if you use @unit lrgdp or @unit(lags=1) Irgdp, you
estimate a regression only one lag of Alrgdp. If you invoke the procedure using @unit(lags=4)
Irgdp, you estimate a regression with four lags of Alrgdp.

The Choice of Deterministic Regressors
The selection of the deterministic regressors is a clearly a CHOICE option; the deterministic
regressors can be NONE, CONSTANT or TREND (i.e., constant plus trend). As such, we need
to make four modifications to the program:

1. Include theinstruction: OPTION CHOICE DET 2 NONE INTERCEPT TREND

Notice that default value of DET is 2. If you use @unit(det=none) Irgdp, the value of
DET will be 1, @unit Irgdp or @unit(det=intercept) Irgdp the value of DET will be 2, and
@unit(det=trend) Irgdp the value of DET will equal 3.

2. In order to create the time trend, we need to include the instruction:
settime=t

3. Since the procedure creates the series time, we should include this in the list of local series
using: LOCAL SERIES dy time.

4. We need to include a set of |F statements to select the regressors:

If det.eq.1; lin(noprint) dy ; # y{1} dy{1 to lags}
If det.eq.2 ; lin(noprint) dy ; #y{1} dy{1tolags} constant
If det.eq.3; lin(noprint) dy ; # y{1} dy{1tolags} constant time

The Choiceto Display a Graph of the Residuals
We can use a SWITCH OPTION to alow the user to turn ON or OFF a display of the graph.
We need to make the following modifications to the procedure:

1. Include the instruction OPTION SWITCH graph 0

As formulated, the default the value of GRAPH is zero. In order to turn the option on (i.e., in
order to set GRAPH = 1), we can use:

@unit(graph) Irgdp

@unit(graph=1) Irgdp

2. We need to save the residuals from the selected regression equation. Hence, we modify our IF
instructions such that the residuals are saved in the series called resids:

If det.eg.1; lin(noprint) dy / resids ; # y{ 1} dy{1 to lags}
If det.eq.2 ; lin(noprint) dy / resids; # y{1} dy{1 tolags} constant
If det.eq.3; lin(noprint) dy / resids; # y{ 1} dy{1 tolags} constant time

Writing Your Own Procedures 217

3. We obtain the ACF of resids using:
cor(noprint,number=24) resids/ corrs

4. If GRQPH = 1, we create a time series plot of the residuals and the ACF of the residuals
using:

cor(noprint,number=24) resids / corrs
if graph==1{
spgraph(hfields=1,vfields=2,header="RESIDUAL ANALY SIS)
gra(header="Time Path of the Residuals) 1 ; # resids
gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header="Residual ACF’) 1
corrs
spgraph(done)
}

5. Notice that the procedure creates the series corrs and resids. We want to include these newly
created serieson the list of local seriesusing:

local series dy resids corrstime
The complete procedureis listed below:

procedure unit y
type seriesy

option switch graph 0

option integer lags 1

option choice det 2 none intercept trend

local series dy resids corrstime

setdy =y -y{1}

settime=t

if det.eq.1; lin(noprint) dy / resids ; # y{1} dy{1 to lags}

if det.eg.2 ; lin(noprint) dy / resids ; # y{ 1} dy{1 tolags} constant

if det.eq.3; lin(noprint) dy / resids ; # y{1} dy{1to lags} constant time

dis The estimate of Rho =" %beta(1)

dis 'The t-statistic for the null hypothesis Rho = 0 is ' %tstats(1)
cor(noprint,number=24) resids/ corrs

if graph==1{

spgraph(hfields=1,vfields=2,header="Residual Analysis)

% At this point in the construction of the procedure, you might want to place the COR instruction
inside of the IF block. As such, the correlations would be computed only if the GRAPH optionis
selected. However, when we extend the program in later sections we will want to place COR
outside of the IF block.

218 Walter Enders

gra(header="Time Path’) 1 ; # resids
gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header="Residual ACF') 1 ; # corrs
spgraph(done)

}

end unit

Writing Your Own Procedures 219

5. Retrieving START and END entry values

If you pass a series to a procedure, you might not want the procedure to operate on the entire
range of entries. The INQUIRE instruction is specifically designed to allow the user to select the
starting and ending values of any series passed to a procedure. It is important to note that
procedures are often designed to work with a variety of data sets. As such, it is most useful to
write procedures that use integers, as opposed to dates, to represent the entries of a series. You
can use the INQUIRE instruction to obtain the defined range of a series as follows:

INQUIRE (SERIES = series name) valuel value2
After execution, valuel will contain the starting entry value of series name and value2 will

contain the ending entry vaue. To illustrate, suppose you read in the data set
MONEY_DEM.XLS and enter the following TABLE instruction:

table/ rgdp tblyr
Series Qbs Mean Std Error M ni mum Maxi mum
RGDP 169 5142. 36449704 1950. 84049366 2273. 00000000 9439. 90000000
TB1YR 167 6. 15387226 2.39362220 2.71333333 14. 38000000

Both series are quarterly running from 1959:1 to 2001:1; as such, 1959:1 isentry 1 and 2001:1 is
entry 169. Recall that the first two values of tblyr are NA. Next, enter:

inquire(series=rgdp) v1v2
inq(series=tblyr) v3v4
disviv2v3v4

1 169 3 169

Hence, v1 and v2 contain the first and last entries of rgdp, respectively. However, tblyr(1) and
tblyr(2) are NA; as such, v3 = 3 and v4 = 169.

Y ou can also use INQUIRE with the SEASONAL option to obtain the seasonal frequency of the
data. The following instruction returns the seasonal frequency in the variable value:

INQUIRE(SEASONAL) value

Since we used CALENDAR to instruct RATS that MONEY _DEM.XLS contains quarterly data,
we can store the seasonal frequency in the variable v using:

220 Walter Enders

ing(seasonal) v; disv

4

It is unlikely that you will ever need to use INQUIRE outside of a procedure. In fact, the more
useful form of INQUIRE is:

INQUIRE(SERIES = seriesname) vl >>start v2 >>end
where: start and end are the start and end integer values supplied by the user when the procedure

is executed. The expressions >>start and >>end instruct RATS to equate v1 with start and to
equate v2 with end if explicit values are given by the user.

Examples:
BJ DENT.SRC contains the instruction:

i nqui re(seri es=series) nbeg>>start nend>>end

1. @bjident rgdp 1959:1 2001:1
Here start = 1 and end = 2001:1. Similarly, nbeg = 1 and nend = 161. If the user does not
provide the values start and end, nbeg and nend will automatically default to the first and last
dates for which the seriesis defined.

2. @bjident rgdp * 2001:1

Here start is ‘undefined’ so nbeg becomes the first defined value and nend is 169. Since, the
first entry for rgdpis 1, nbeg = 1.

3. @bjident tblyr 1959:1 1999:1

Now start = 1 and end = 161 so that nbeg = 1 and nend = 161. Since the first entry of tblyr is
3, RATS uses entries 3 through 161 to form the autocorrelations.

Suppose you want the user of your procedure to supply a series along with the start and end
dates. The typical format will be:

@procname series start end

Y our procedure should have the following structure:

Writing Your Own Procedures 221

procedure procname seriesname start end
type series seriesname

type integer start end

option instructions

local instructions

inquire (series = series) vl>>start v2>>end

As in the previous examples, the PROCEDURE instruction contains the name of the procedure
(procname) along with alist of all of the parameters what will be passed to the procedure. Here,
we pass a series (seriesname) and the start and end entries. The second instruction declares
seriesname to be a SERIES and the third declares start and end to be integers. The fourth
instruction equates v1 and v2 with the start and end values selected by the user. If the user does
not provide the values start and end, v1 and v2 will automatically default to the first and last
dates for which the seriesis defined.

To dter UNIT.SRC such that we can pass starting and ending dates, we need to make the
following five modifications to the procedure:

1. Weneed to list all parameters passed to the procedure. Since we pass start and end values, the
first line of the UNIT.SRC should be:

procedure unit y start end

2. We need to instruct RATS that start and end are integers. Thisis done using:
type integer start end

3. We need to use the INQUIRE instruction to store the start and end values in the variables vl
and v2. Note that INQUIRE is an executable instruction; it should be placed after all TYPE,
OPTION, and LOCAL instructions.

inquire(series=y) vi>>start v2>>end

4. UNIT.SRC creates the two integer variables vl and v2. We can declare then as LOCAL
variables using:

local integer v1v2

5. Modify the LINREG, GRAPH and CORRS instructions such that v1 and v2 are used as the
starting and ending entries:

if det.eg.1; lin(noprint) dy vl v2resids; # y{1} dy{1to lags}
if det.eg.2 ; lin(noprint) dy v1v2 resids; #y{1} dy{1 tolags} constant
if det.eg.3; lin(noprint) dy v1v2 resids; # y{1} dy{1tolags} constant time

222 \Walter Enders

The graph and autocorrel ations can be obtained from:

gra(header="Time Path’) 1 ; # resids * v2
cor(noprint,number=24) resids * v2 corrs

The source code for the first nine lines of the procedureis:

procedure unit y start end

type seriesy

type integer start end

option switch graph 0

option integer lags 1

option choice det 2 none intercept trend
local seriesdy resids corrs time

local integer v1v2

inquire(series=y) vi>>start v2>>end

Now, the procedure can be quite useful. For example, open the file CHAPTERG6.PRG and read in
the data set using Program 6.1. As the program illustrates, you can embed the UNIT.SRC in a
DO loop so that you that you perform augmented Dickey-Fuller tests on tbhlyr using lags 1
through 12:

doi=1,12; @unit(lags=i) tblyr ; end doi

The estimate of rho with 1 lags = - 0. 06280
The t-statistic for the null hypothesis rho =0 is -2.49752
The estimate of rho with 2 lags = -0. 04931
The t-statistic for the null hypothesis rho =0 is -1.98906
The estimate of rho with 11 lags = - 0. 05338
The t-statistic for the null hypothesis rho =0 is -2.00540
The estimate of rho with 12 lags = - 0. 05416
The t-statistic for the null hypothesis rho =0 is -2.00671

5.1 Passing Information by Address

To this point, we have thought in terms of passing information to a procedure. However, in many
circumstances you will want to pass a variable from a procedure to the main program. Thisis not
particularly difficult if you are working with a global variable; a globa variable is accessible
from any point in RATS. Of course, if you sent the procedure to someone else, that person would
need to know how you named the variable in question. It would be most convenient if you

Writing Your Own Procedures 223

allowed the user to fetch the variable in question using any name she selected. The way to do
this is to pass the information by address (not by name). This is done by placing an asterisk *
immediately preceding the variable name on the TY PE instruction. Suppose, for example, that
you wanted to pass the residual autocorrelations created by CORR back to the main program. To
illustrate, suppose we modify UNIT.SRC by removing corrs from the list of LOCAL series.
Once you invoke the procedure using @unit tblyr, you can print the ACF of the regression
residuals by entering the instruction: print / corrs. The two potential problems with this method
are: (1) the user needs to know the name of the series containing the correlations and (2) you
might not want the name corrs to refer to a global variable. A way to rectify this problem is to
modify the PROCEDURE, TY PE SERIES and LOCAL SERIES instructions such that:

procedure unit y start end corrs Add corrsto the parameter list

type seriesy *corrs Define corrs to be a series that can be passed back to
the main program.

local seriesdy residstime Remove corrs as from the list of LOCAL series.

No other instructions need to be modified or added. Now, you can invoke the procedure and
print the ACF of the residuals using:

@unit series start end name for the correlations

Note that the user can select any valid series name for the correlations; corrsis smply a
placeholder for the name specified by the user. For example, the following three instructions all
yield the identical output:

@unit tblyr 3 169 corrs; pri / corrs

@unit tblyr 1 2000:1 zz ; pri / zz

@unit tblyr / x ; pri / x

5.2 Optional Fields

Notice that the following three instructions produce quite different results:*

@unit tblyr
The estimate of rho with 1 lags = - 0. 05355
The t-statistic for the null hypothesis rho = 0 is -2.31170

@unit(graph) tblyr / corrs
The estimate of rho with 1 Jlags = - 0. 05355
The t-statistic for the null hypothesis rho =0 is -2.31170

“0 The version of UNIT.SRC distributed with this book contains the ‘fix' described below.
Hence, it will not produce the error message.

224 \Walter Enders

@unit(graph) tblyr
The estimate of rho with 1 lags = - 0. 05355
The t-statistic for the null hypothesis rho =0 is -2.31170

SX22. Expected Type SERIES, Got Function I|nstead
The Error Cccurred At Location 1060 of UNIT

The reason is that the field for the correlations (i.e., name for the correlations) must be specified
if agraph of the ACF isto be displayed. Recall that the GRAPH instruction uses:

gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header="Residual ACF') 1, # corrs

Hence, the graph cannot be created unless a name for the field is specified by the user. The way
to fix the problem is to use one series to pass the correlations and another series on the COR
instruction. Consider the following modifications to the procedure:

1. LOCAL SERIES dy resids xx time

A variable xx is defined to be alocal series. This serieswill hold the correlations.

2. cor(noprint,number=24) resids v1 v2 xx
if %defined(corrs) ; set corrs 1 25 = xx

The autocorrelations of resids are now stored in the series xx. Note that the RATS function
%DEFINED(name) returns the status of a procedure parameter or option called name. Here, if
the field for corrsis specified by the user, %defined = 1 and the SET instruction is performed.
If the field is not specified, %defined = 0 and the SET instruction is not performed. No error
message is created since the series corrsis used only when the field is specified by the user.

3. gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header="Residual ACF') 1; # xx
If the GRAPH option is selected, a graph of xx is produced.

Examples:
1. Suppose you want to perform three unit root tests on tblyr. The first does not have any

deterministic regressors, the second has an intercept, and the third has an intercept and a
trend. Use:
do det = 1,3 ; @unit(det=det,lags=7) tblyr ; end do det

The procedure produces the desired result since the first time through the loop, det = 1, the
second time det = 2, and the third time det = 3.

2. To perform the test with an intercept in the equations for tblyr and tb3mo use:

dofor j = tblyr tb3mo ; @unit(lags=7) j ; end dofor

Writing Your Own Procedures 225

3. @unit(lags=7,graph) tblyr 1980:1 * corrs

A unit root test containing an intercept and seven lagged values of tblyr is performed. A
graph of the residuals is displayed and the autocorrelations of the residuals are returned in the
series corrs. Note that the test is performed beginning with 1980:1. The results for the t-test
are identical to those obtained from:

dif tblyr / drl
lindrl 1980:1 * ; # constant tblyr{ 1} drl{1to 7}

226 Walter Enders

6. A Procedurefor Computing Lag L engths

Anyone working with time-series data routinely selects the optimal lag length to use in an
autoregressive model. It is straightforward to write a procedure to automate this process. The
procedure below, called LAGLENGTH.SRC, estimates a number of AR(p) models and reports
the one selected as ‘best’ by the SBC. The procedure is executed using:

@laglength(option) y start end laglength

where:
y Series to estimate as an AR(p) model
start and end The range to use in the estimation. Note that one observation will be lost
for each lag.
laglength (Optional) If laglength is specified, the procedure returns the integer

value of the lag selected by the SBC.

The sole option for the procedureis:
MAXLAG = Maximum number of lagsto use in the lag length test.

In the first line below, the PROCEDURE instruction contains the name of the procedure and a
parameter list containing y, start end, laglength. The next two lines define the TY PE of these
parameters. Line 2 indicatesthat y is a series and line 3 indicates that start, end and laglength are
all integers. Notice the asterisk preceding laglength. If thisfield is specified by the user,
laglength will return the integer value of the optimal lag to the main body of the program.

procedure laglength y start end laglength
type seriesy
type integer start end * laglength

The next section of a procedure should contain the OPTIONS. Here, there is a single option
called MAXLAG with a default value equal to 1. The user can use the option maxlag = p to select
the maximum value of p to use in the estimated models autoregressive models.

option integer maxlag 1

The third section of procedure declares the LOCAL variables. Here, v1, v2, bestlag and i are all
declared aslocal integers and shc, sbemin are local real numbers.*:

local integer v1 v2 bestlag i
local real sbc shcmin

“! Note that LAGLENGTH.SRC does not create any series; as such, we do not define any local
series. The seriesy is not created by the procedure; y is just a placeholder for the series passed to
LAGLENGTH.SRC by the user.

Writing Your Own Procedures 227

In any procedure, the executable instructions follow the declaration of the local variables. The
first executable instruction is INQUIRE. The integers v1 and v2 will contain the start and end
dates selected by the user. The next three lines initialize several key variables. The LINREG
regresses y on a constant, calculates the SBC (called sbcmin) for this regression and computes
bestlag = 0. In essence, the procedure estimates and cal culates the SBC for an AR(0) model.

inq(series=y) vl>>start v2>>end

lin(noprint) y vl+maxlag v2
constant
compute sbcmin = %nobs* log(%erss) + (%onreg)* log(%onobs) , bestlag = 0

The next section of the procedure estimates an AR(p) model for lag length running from 1 to
maxlag. Notice that all estimations are performed over the same sample period; the start date for
each isvl+maglag and the end date is v2. The first time through the DO loop, i = 1 and an AR(1)
model is estimated. The value of the SBC is compared to that of the AR(0), if the AR(1) has the
smaller SBC, bestlag is equated to i and sbcmin is replaced by sbe. Thus, if the AR(1) provides a
better fit than the AR(0), bestlag = 1 and sbcmin contains the SBC of the AR(1). The next time
through the loop, i = 2. The SBC from the AR(2) is compared to that of the previously selected
best fitting model. If the AR(2) fits better than the model indicated by bestlag, the value of
bestlag is set equal to 2. On exiting the loop, bestlag contains the lag length of the model
providing the best fit.

doi =1 maxlag
lin(noprint) y vl+maxlag v2
constant y{1to i}
compute shbc = %nobs* log(%orss) + (Yonreg)*1og(%onobs)
if shc < sbemin ; compute bestlag =i, sbemin = sbe
enddoi

If bestlag = 0, the regression is not estimated and the procedure displays: DO NOT USE LAGS.
If bestlag is greater than zero [i.e, if any of the AR(p) models fit better than the AR(0)], the
AR(bestlag) model is estimated and the output is displayed. Notice that the sample period runs
from v1+bestlag to v2.

if bestlag.EQ.O ; dis'DO NOT USE LAGS
if bestlag.GT.0
liny vl+bestlag v2 ; # constant y{ 1 to bestlag}

228 Walter Enders

If the user specifies laglength, the procedure returns the value of bestlag. Consider:

if %defined(laglength) ; com laglength = bestlag
end laglength

Writing Your Own Procedures 229

7. Interacting With Procedures

RATS contains a number of instructions that allow you to interact with a procedure. The most
straightforward of these instructions is MESSAGEBOX. You can use MESSAGEBOX to halt
the execution of the procedure and display an *Alert’ that contains a message. Execution of the
procedure will resume when the user enters the appropriate button. The most commonly used
syntax for MESSAGEBOX is:

messagebox(status=value,style=style) "Your Message'

where:
STATUS = value The integer variable value will set equal to a particular number
corresponding to the button selected by the user.
STYLE=[ALERT] DisplaysaMESSAGEBOX that will look like the following:
Alert
Your Meszage
STYLE = YESNO Halts execution of the program and sets value = 1 if YES is

selected and value = 0 if NO is selected.

STYLE=OKCANCEL Halts execution of the program and sets value = 1 if OK is selected
and value= 0 if CANCEL is selected.

STYLE=YNCANCEL Halts execution of the program and sets value = 1 if YES is
selected, value = 0 if NO is selected and value = -1 if CANCEL is
selected.

In most instances, you will use a SWITCH or CHOICE OPTION to alow the user to make a
selection. The advantage of MESSAGEBOX is that it alows the user to make a choice in the
midst of the execution of the procedure.

The QUERY instruction works in asimilar fashion. QUERY halts the execution of the procedure
and prompts the user to to input the values for a list of variables. The most commonly used
syntax is:

query(prompt="Your message') variablelist

230 Walter Enders

where:
variable list The list of variables whose values are input by the user. The individual
variables can be any combination of integer, real, string, or label
variables.

Note that QUERY uses a dialog box similar to that shown above. The user’s response is entered
such that each value is separated by commas or spaces. Notice that QUERY does not display a
separate line for each value to be entered. As such, | recommend using a separate QUERY
instruction for each value to be input. Also, the TY PE of variable to be input (e.g., real, string,
or integer) must be specified prior to the QUERY instruction. COMPUTE or DECLARE, for
example, can be used to determine the variable TY PE.

Examples

1. Suppose you reach the end of LAGLENGTH.SRC and see the message: DO NOT USE
LAGS. You might be concerned that the SBC selected a model that was too parsimonious.
You could insert a MESSAGEBOX to prompt the user for further instructions. Consider the
following modifications to the procedure:

a) if bestlag.EQ.O ; mes(style=alert) ‘DO NOT USE LAGS

This modification will inform the user of the problem by halting execution of the procedure
and display an ALERT.

b) if bestlag.EQ.0{
mes(style=Y ESNO,status=status) ‘ Do you want to enter the lag length?
if status.eq.1 ; query(prompt="Enter the lag length’) bestlag
}

The procedure will display a MESSAGEBOX with YES and NO buttons along with the
message: Do you want to enter the lag length? If the Y ES button is selected, the user will see
the prompt: Enter the lag length. The variable integer variable bestlag is set equal to the value
input by the user.

2. You can add the following two linesto LAGLENGTH.SRC:

messagebox(style=yesno,status=status) 'Do you want to run a unit root test?
if status.eq.1; @unit(lags=bestlag-1) y v1v2

If you position the two lines after the IF %DEFINED(laglength) instruction, the variable
bestlag contains the lag length selected by the SBC. The MESSAGEBOX instruction prompts
the user with the question: Do you want to run a unit root test? If the YES button in the
MESSAGEBOX is selected, the variable status = 1. Since the condition on the IF instruction
is TRUE, LAGLENGTH.SRC calls UNIT.SRC. Hence, UNIT.SRC performs a unit root test
on the variable y over the sample period v1 to v2 using the lag length contained in bestlag. If
the NO button is selected, status = 0 and the unit root test is not performed.

Writing Your Own Procedures 231

Read in the data set MONEY_DEM.XLS and compile the procedures UNIT.SRC and
LAGLENGTH.SRC. It is important to compile the procedures in this order: If procedure A
makes reference to procedure B, B must be compiled before A. Now enter the following
instruction and select the Y ES button:

@laglength(maxlag=8) tblyr

Vari abl e Coef f Std Error T- St at Si gni f

EE I b I I I I I I I b I S S I I I I b R I I I I I b I b I I I I b I b A
1. Constant 0. 327483556 0. 148546781 2.20458 0.02892885
2. TBlYR{1} 1.259723680 0.077483059 16. 25805 0. 00000000
3. TBlYR{2} -0. 608960910 0.119220538 -5.10785 0.00000093
4. TBlYR{3} 0. 552438699 0. 119096075 4.63860 0.00000731
5. TBlYR{4} - 0. 255732154 0.077249623 -3.31046 0.00115404
Wth 3 lags, the estimate of rho = - 0. 05253

The t-statistic for the null hypothesis rho =0 is -2.33526

LAGLENGTH.SRC selects a lag-length of 4; if you selected the YES button, you see the output
from UNIT.SRC such that the augmented Dickey-Fuller test contains (bestlags — 1) lags. If you
want to include these two procedures in your research, you could make several small
modifications.

a) Notice that LAGLENGTH.SRC displays regression output with 4 lags and UNIT.SRC
displays “Wth 3 lags, the estimate of rho =. You can modify LAGLENGTH.SRC
such that it displays the message: I n the augmented Dickey-Fuller test. The output
will look like:

In the augnented Dickey-Fuller test
Wth 3 lags, the estimate of rho = - 0. 05253
The t-statistic for the null hypothesis rho =0 is -2.33526

b) It isimportant that the user compile UNIT.SRC prior to compiling LAGLENGTH.SRC. One
way to ensure this is done correctly is to include both procedures on a single file in the
desired order. Save the file using a descriptive name and the extension *.SRC. When the user
compiles the file, al of the procedures will be compiled in the appropriate order. For
example, you might you have a single file structured as follows:

232 Walter Enders

procedure unit y start end corrs_save
type seriesy *corrs_save
type integer start end

other program statements
end unit

procedure laglength y start end laglength
type seriesy

type integer start end *laglength

other program statements

end laglength

Writing Your Own Procedures 233

8. CreatingaMenu

RATS alows you to present the user with menu of choices in one of two ways. The first presents
the user with a box listing the choices. After the user selects a choice from the list, a specified
block of instructions can be performed. The typical syntax for the MENU block is:

MENU ‘Message to Display’

CHOICE ‘Name of First Choice
Instruction block for first choice

CHOICE ‘Name of Second Choice
Instruction block for second choice

END MENU

Example

The following procedure, called TRANSFORM, uses the MENU instruction to prompt the user
for a particular type of data transformation. After compiling TRANSFORM.SRC, the procedure is
executed using:

@transform series

The user will see adialog box that 1ooks something like:

Uszer Menu |

Select the Transformation

&+ Logarithmic
" First Difference
i~ Growth Rate

Cancel |

Once the desired transformation is selected, the procedure will create a graph of the transformed
series. The label of the transformed series will be the series label appended with an L for the
logarithmic transformation, D for the first-difference, or G for the growth rate. Notice that the
TYPE instruction listed below declares the parameter y to be a series. The instructions in the
MENU—END MENU block create the dialog box shown above.

234 Walter Enders

procedure transform y
type seriesy

menu 'Select the Transformation

choice 'Logarithmic'
{
sta(noprint,fractiles) y
if Y%ominimum > 0. {
coma$="L"'+ %label(y)
set %s(a$) = log(y)
}
if %ominimum.le.0
mes(style=alert) "I CAN TAKE THE LOG OF POSITIVE NUMBERS ONLY"

}

choice 'First Difference’
{

com a$ ='D' + %label(y)
set %s(a$) =y - y{ 1}

}

choice 'Growth Rate'

{

coma$ ="G' + %label(y)
set %os(a$) = y/y{1} -1

}

end menu
graph(header="Time Path of ' + a$) 1 ; # %s(a$)

end transform

If Logarithmic is selected, a simple check is performed before the routine attempts to create the
log of series. The STATISTICS instruction is used to obtain the minimum value of the series. If
thisvalue is negative, an ALERT is displayed informing the user that it is not possible to obtain
the log of a negative number. Only if the smallest value of seriesis positive will the procedure
create the new series. The label attached to the newly created seriesisL + serieslabel. Similarly,
if First Differenceis selected, the instructions in the second CHOICE block are executed. The
first difference of seriesis created with the label D + series|abel.

Thefinal instruction creates the graph of the transformed series. Notice that the choice Growth
Rate does not check for the possibility of values that equal zero. If any value of series does equal
zero, the associated entry value for the transformed series will be NA. The next two lines of
Program 6.1 compile the procedure and EXECUTE the procedure using rgdp:

Writing Your Own Procedures 235

source(noecho) c:\winrats\transform.src
@transform rgdp

Select Growth Rate and use the instruction:

table/

Seri es Obs Mean Std Error M ni num Maxi mum
DATE 169 1979. 876331 12. 232185 1959. 100000 2001. 100000
GOP 169 3572. 739053 2873.158128 496. 100000 10243. 600000
RGDP 169 5142. 364497 1950. 840494 2273. 000000 9439. 900000
we 169 1904. 835266 1399. 706717 287. 800000 5043. 710000
M3 169 2414. 462229 1916. 764710 290. 053333 7260. 136667
TB3MO 169 5.915148 2.590483 2.303333 15. 053333
TB1YR 167 6. 153872 2.393622 2.713333 14. 380000
GRGDP 168 0. 008551 0. 009027 -0. 020388 0. 038528

Notice that the series GRGDP has been created. Since this variable has not been declared as a
LOCAL SERIES, it is accessible from the main body of the program.

8.1 Creatinga USERMENU

A second way to create an interactive procedure is to use the USERMENU instruction.
USERMENU allows you to add a user-defined menu to the RATS menu bar. The user clicks on
the pull-down menu and the list of choices appears. Once a USERMENU is activated, it controls
the flow of the program until a selection is made. Typicaly, you will use the USERMENU
instruction at least three times within a procedure.** The first use is to DEFINE the structure of
the menu, the second causes the menu to appear on the menubar and the third isto REMOVE the
menul.

Thetypical syntax to DEFINE the structure a USERMENU is:
user menu(action=define title="Title') 1>>'string 1’ 2>>'string 2’ ... n>>'string n’

The ACTION=DEFINE option is used to create a pull-down menu to the right of the RATS Help
menu with the title determined by the string Title. The choices on the USERMENU appear as
string 1, string 2, ... through string n. The menu does not actually appear on the menubar until
the simple instruction USERMENU is encountered. The user can now select one of the choices.
Once a choice is selected, the variable %MENUCHOICE is set equal to integer value of the
selection. At this point, a series of |F instructions can be used to control program execution.

Finally, the menu is removed using:

“2 The next section discusses how to turn on and off choices using the ENABLE option.

236 Walter Enders

USERMENU(action=remove)

It is possible to rewrite the procedure TRANSFORM so that it uses the USERMENU instruction
instead of the MENU instruction. Consider the modified procedure called TRANSFORM_USER.
The procedure is executed using:

@transform_user series

As in the original procedure, the user passes a series to the procedure; the TYPE instruction
defines this parameter as a series. The first USERMENU instruction defines a menu with the title
Transform. Clicking on this pull-down menu will revea the three choices Logarithmic, First
Difference, and Growth Rate. Notice that the instruction is completely contained on a single
program statement; the use of the $ sign as a continuation is simply to make the program easier
to read.

procedure transform_user y
type seriesy

usermenu(action=define title="Transform") $
1>>'Logarithmic' $

2>>'First Difference’ $

3>>'Growth Rate'

The menu does not appear untii USERMENU with the (default) option ACTION=RUN is
encountered. If the user selects Logarithmic, %emenuchoice=1 and the instructions in the first IF
block are executed. Again, there is a check that prevents the user from trying to take the log of a
number that is not positive.

usermenu

if Y%omenuchoice.eq.1 {
sta(noprint,fractiles) y
if %ominimum > 0. {
coma$="L' + %label(y)
set %s(a$) = log(y)

if Yominimum.le.0
mes(style=alert) "I CAN ONLY TAKE THE LOG OF POSITIVE NUMBERS'
}

The integer variable %omenuchoice equals 2 if the user selects First Difference and equals 3 if the
user selects Growth Rate. After the appropriate | F block is completed, a graph of the transformed
series is created. The instruction USERMENU(action=REMOVE), removes the menu from the
menubar. In order to make another transform or to transform another variable, it is necessary to
execute the procedure a second time.

Writing Your Own Procedures 237

if %emenuchoice.eq.2 {
com a$ ="'D' + %label (y)
}Set %s(a$) =y - y{1}

if %emenuchoice.eq.3 {
com a$ ="G' + %label (y)
set %s(a$) = yly{1} - 1

}

graph(header="Time Path of ' + a$) 1 ; # %s(a$)
usermenu(action=remove)
end transform_user

Jazzing up the Procedure

To alow severa transformations on the same variable, it is possible to use a LOOP. Place the
LOOP instruction immediately preceding USERMENU and an END LOORP instruction before
USERMENU(action=remove). Of coursg, it is necessary to have a way to break out of the loop.
This is easily accomplished by adding a fourth menu choice and a fourth IF block. The key
changes to the procedure are:

usermenu(action=definetitte="Transform") $
1>>'L ogarithmic' $
2>>'First Difference' $

3>>'Growth Rate' $;* New continuation sign
4>>'Done’ ;* New choice

loop :* Begin loop here
usermenu

THE ORIGINAL INSTRUCTION SET BELONGSHERE
if Y%omenuchoice.eq.4 ; break ;* If Done is selected, terminate the loop
graph(header="Time Path of ' + a$) 1 ; # %s(a$)
end loop
usermenu(action=remove)
end transform_user

Program 6.1 compiles and EXECUTES the procedure using:

source(noecho) c:\winrats\transform_user.src
@transform_user rgdp

238 Walter Enders

Notice the new selection on the Menu bar entitled Transform. You can select the desired
transformation from the menu. Note that you cannot execute any other instructions until you
select ‘Done.’

Writing Your Own Procedures 239

9. An Interactive Procedurewith Menu and USERM ENU

This section will illustrate a smple program that uses both the MENU and the USERMENU
instructions. The procedure alows the user to estimate a regression equation with seasonal
dummy variables and a nonlinear time trend of the form:

Vi=apt atime + aztimez + agtime3+ biD1+ Do+ ... + bs1Ds1+ &
where: D; through Ds 1 are seasonal dummy variables and sis the seasonal span of the series.

The USERMENU instruction allows the user to select the dependent variable. The MENU
instruction is used to create a dialog box that allows the user to enter the degree of the
polynomial. After the procedure is executed, RATS creates a menu called Trends on the
menubar. If the user clicks the mouse on this Trends menu, a list of three potential selections
appears: Select a Variable to Estimate, Estimate the Trend, and Done. The flow of the program
isasfollows:

1. If the user chooses Select a Variable to Estimate, alist of al of the seriesin RATS memory is
displayed. Once the selection is made, a graph of the time path of the series is displayed.
Initialy, the user is not allowed to select Estimate the Variable. The program requires the user
to choose Select a Variable to Estimate before the selection Estimate the Variable is enabled.

2. Once a variable has been selected, the user is allowed to select any of the three choices from
the Trends menu. Hence, it is possible to select an alternative variable by returning to Select a
Variable to Estimate, estimate the selected variable with Estimate the Variable or to exit the
procedure with Done.

3. If the user selects Estimate the Variable, another menu appears. However, this second menu is
actualy adialog box with ‘buttons' that allow the user to select one of four choices. The user
can select whether to estimate the series without a trend, with a linear trend, with a quadratic
trend or with a cubic trend. Whichever choice is made, the program displays the regression
output and shows a graph of the actual and the fitted values of the series.

The program consists of two separate procedures with the names ESTIMATE and SEASONS.
SEASONS creates the USERMENU called Trends. No parameters are passed to SEASONS and
the procedure contains no OPTIONS, CHOICES or SWITCHES. As such, the first instruction
defines a LOCAL INTEGER variable called depvar. Depvar is the integer value corresponding
to the series selected by the user (i.e., the dependent variable in the regression equation). The
first USERMENU instruction defines the menu Trends and creates the three possible selections.
The second USERMENU instruction illustrates the use of the ACTION = MODIFY option.
Notice that choice 2 is not enabled; the user will not be able to select Estimate the Trend until
RATS encounters a USERMENU instruction enabling choice 2.

240 Walter Enders

procedure seasons

local integer depvar
usermenu(action=definetitte="Trends) $
1>>'Select a Variable to Estimate' $
2>>'Estimate the Trend' $

3>>'Done'

usermenu(action=modify,enable=no) 2

If the user chooses Select a Variable to Estimate, menuchoice = 1 so that the instructions in the
first IF block are executed. The SELECT (series) depvar instruction presents the user a list of all
series in memory. The integer value corresponding to the selected series is assigned to depvar
and the label of depvar is stored in the string variable a$. The remaining instructions in the first
IF-block create a graph of depvar and enable the choice Estimate the Trend.

loop

usermenu

if Y%omenuchoice.eq.1 {
select(series) depvar
compute a$ = %l (depvar)
gra(header= '"Time Path of ' + a$) 1
depvar
usermenu(action=modify,enable=yes) 2

}

If the user selects Estimate the Trend, SEASONS invokes the procedure ESTIMATE. This
second procedure interacts with the user to request information concerning the type of time trend
to estimate. Once ESTIMATE has completed its functions, program control returns to LOOP-
ENDLOORP block. The instructions within this block are continually executed until the BREAK
instruction is encountered. As long as the user does not select DONE (i.e, as long as
%menuchoice does not equal 3), the user can continually select variables and estimate regression
equations. Once BREAK is encountered, the program exits the loop and the USERMENU is
removed from the menubar.

if Y%emenuchoice.eq.2
@estimate depvar
if %emenuchoice.eq.3
break
end loop
usermenu(action=remove)

end seasons
The procedure ESTIMATE is invoked from SEASONS. Hence, it is necessary to compile

ESTIMATE before SEASONS. Since SEASONS passes the parameter depvar to ESTIMATE, it
is necessary to declare depvar as a series. The program needs to create variables for the linear,

Writing Your Own Procedures 241

guadratic and cubic time trends and for the fitted values from the regression. The next instruction
declarestime, t2, t3 and fitted to be local series.

proc estimate depvar
type series depvar
local seriestimet2 t3 fitted

The next instruction creates an integer vector (called reglist) that will hold the variables to be
used in the regression equation. The second instruction below uses COMPUTE to include a
constant in the list of regressors. The linear, quadratic and cubic time trends are created by the
subsequent SET instructions.

dec vector[int] reglist
compute reglist=||constant||
settime=t;sett2 =t*t; sett3 =t*t*t

The MENU instruction below creates a dialog box with the title Select the Degree of the
Polynomial. The user will be presented with four choicesin a dialog box that looks like:

Uszer Menu |

Select the degree of the Polynomial

&+ NO trend

" Linear trend
" Quadratic trend
" Cubic trend

Cancel |

The selection will affect the string variable b$ and the vector reglist. For example, if NO Time
Trend is selected, b$ = ‘No Time Trend' and the vector reglist is unaltered (hence, reglist
contains only the constant). Instead, if Cubic Trend is selected, b$ = ‘Cubic Time Trend’ and
reglist contains a constant, time, t2, and t3.

242 \Walter Enders

menu 'Sel ect the degree of the Polynomial’
choice'NO trend
com b$ ='No Time Trend'
choice' Linear trend'
{
enter(varying) reglist ; # reglist time
com b$ ='Linear Time Trend'

}
choice' Quadratic trend'

{
enter(varying) reglist ; # reglist time t2
com b$ = 'Quadratic Time Trend'

}

choice' Cubic trend

{

enter(varying) reglist ; # reglist time t2 t3
com b$ = 'Cubic Time Trend'

}

end menu

Next, the linear regression is estimated using the depvar as the dependent variable and the
variables in reglist as the independent variables. The PRJ instruction is used to create a series of
the fitted values. The final three instructions obtain the label assigned to depvar, and create a
graph of the series and the fitted values from the regression. On completion of the graph, control
passes back to the LOOP—ENDL OOP block in the procedure SEASONS.

lin depvar ;# reglist
prj fitted

compute a$ = %l (depvar)
gra(header="Trend Estimate of ' + a$,subheader=b$,key = below,patterns, $
klabel=||'Fitted','Actual’||) 2 ; # fitted ; # depvar

end estimate

Jazzing up the Procedure 1

The procedure is called SEASONS because we are going to modify it to allow for seasonal
dummy variables. If the seasonal span of the datais s, the procedure will estimate a model of the
form:

Vi = @+ atime + atime® + agtime®+ byD1 + boDy + ... + be1Dss + .
The first step is to add the choice Estimate the Trend and Seasonals to the USERMENU. The

procedure will set the variables_ = 0 if the user selects Estimate the Trend and will sets =1 if
the user selects Estimate the Trend and Seasonals. As such, the modified procedure adds s to

Writing Your Own Procedures 243

the list of local integer variables. Moreover, note that the third choice on the USERMENU is
Estimate the Trend and Seasonals and that Done has been moved to the fourth position.

procedure seasons

local integer depvar s
usermenu(action=definetitle="Trends) $
1>>'Select aVariable to Estimate' $
2>>'Estimate the Trend' $

3>>'Estimate the Trend and Seasonals' $
4>>'Done'

We do not want to ENABLE either of the Estimate choices unless the user has chosen Select a
Variable to Estimate. As such, the following two lines are used to prevent the user from selecting
choice 2 or choice 3.

usermenu(action=modify,enable=no) 2
usermenu(action=modify,enable=no) 3

Next, it is necessary to modify the statements that are executed with each %MENUCHOICE.
Consider the program segment below. If Select a Variable to Estimate is selected,
%MENUCHOICE=1. The two USERMENU instructions enable the Estimate the Trend and the
Estimate the Trend and Seasonals choices.

If the user selects Estimate the Trend (YoMENUCHOICE =2), s = 0, and if the user selects
Estimate the Trend and Seasonals (%MENUCHOICE =3), s = 1. Both of these choices pass
depvar and the value of s _to the procedure ESTIMATE. If Done is selected, %MENUCHOICE
= 4 and the procedure exits the LOOP.

loop
usermenu
if Y%omenuchoice.eq.1 {

Original Instructions

usermenu(action=modify,enable=yes) 2
usermenu(action=modify,enable=yes) 3
}
if %emenuchoice.eq.2 {
coms =0
@estimate depvar s_
}
if %emenuchoice.eq.3 {
coms =1
@estimate depvar s_
}

244 \Walter Enders

if %omenuchoice.eq.4
break
end loop

It is also necessary to modify ESTIMATE. Note that s_is included on the parameter list and is
defined as an integer.** Moreover, span is a local integer that will be set equal to the seasonal
span of the data (i.e., span = 4 for quarterly data, 12 for monthly data, The seasona spanis
determined on the CALENDAR instruction).

proc estimate depvar s_ * s_isincluded on the parameter list

typeinteger s * s _isaninteger

type series depvar

local integer span ;* Span is an integer representing the seasonal span of the data

local seriestimet2 t3 fitted

dec vector[int] reglist
compute reglist=||constant||

The following IF-block is added to the procedure. If the user selected Estimate the Trend, s =0
so that this new section of the procedure is bypassed. If the user selected Estimate the Trend and
Seasonals, s = 1. As such, the procedure uses the INQUIRE instruction to obtain the seasonal
span. Next, a seasonal dummy variable called seasons is created. The current value of seasons
plus span-2 leads are added to the regressor list. For example, if span = 4, there will be three
seasonal dummy variables in addition to the intercept. The remaining portions of the
ESTIMATE procedure are unaltered.

if s .eq.1{

inquire(seasonal) span

Seasons seasons

enter(varying) reglist ; # reglist seasons{ O to -span+2}

Jazzing up the Procedure 2

It is straightforward to modify the procedure so that it incorporates the features of
TRANSFORM. The source code below indicates the necessary modifications of SEASONS.
Notice that a new choice called Transform a Variable has been added to the USERMENU
instruction. As such, Estimate the Trend moves to choice 3 and Estimate the Trend and
Seasonals moves to choice 4. As such, it is necessary to change the instructions using the
ENABLE = option to reflect the new position.

usermenu(action=define titte="Trends) $
1>>'Transform aVariable' $ * New Choice
2>>'Select a Variable to Estimate’ $

3 Another possible way to write the procedureisto uses_asan OPTION in ESTIMATE.

Writing Your Own Procedures 245

3>>'Estimate the Trend' $
4>>'Estimate the Trend and Seasonals $

5>>'Done
usermenu(action=modify,enable=no) 3 ;* Estimate the Trend is choice 3
usermenu(action=modify,enable=no) 4 ;* Estimate the Trend and Seasonalsis choice 4

If Transform a Variable is selected, %MENUCHOICE = 1 and the user is presented with a list
of variables. Selection of the variable invokes the procedure TRANSFORM. Once the graph of
the transformed variable is displayed, program control returns to the LOOP block of instructions.
The user can make another transformation, Select a Variable to Estimate, or exit the procedure
by selecting Done. Given the new positions for the menu choices, only the remaining IF
%MENUCHOICE instructions need be modified. Consider:

loop

usermenu

if %omenuchoice.eq.1 {
select(series) depvar
@transform depvar

}

if Yomenuchoice.eq. 2 { ;* Select a Variable to Estimate is now choice 2
select(series) depvar
compute a$ = %l (depvar)
gra(header= "Time Path of ' + a$) 1
depvar
usermenu(action=modify,enable=yes) 3 ;* Enable Estimate the Trend
usermenu(action=modify,enable=yes) 4 ;* Enable Estimate the Trend and Seasonals
}
if %omenuchoice.eq.3 { ;* Estimate the Trend is choice 3
coms =0
@estimate depvar s_
}
if %omenuchoice.eq.4 { ;* Estimate the Trend and Seasonals
coms =1
@estimate depvar s_
}

246 Walter Enders

if %emenuchoice.eq.5 ;* Doneisnow choice 5
break

end loop
usermenubreak(action=remove)
end seasons

Cleaning up

| have used SEASONS.SRC in one portion of my undergraduate forecasting class. The
experience taught me the importance of anticipating every possible choice a user can make. My
recommendation for debugging the procedure is to experiment with various combinations of
choices that might seem implausible to you. For example, SEASONS.SRC will catch a mistaken
attempt to take the log of a series containing negative numbers. However, this might not deter
someone from trying to take the growth rate of the same series. If you ‘fool around’ with the
procedure, you will discover the glitch. One way to remedy the problem is to modify
TRANSFORM.SRC such that portion that calculates the growth rate requires all entries to be
positive.** To make the change, you do not have to do much more than copy the instructions
from the logarithm choice and paste them into the * Growth Rate’ section:

choice 'Growth Rate
{
sta(noprint,fractiles) y
if Yominimum > 0. {
coma$ ="G' + %label(y)
set %s(a$) = yly{1} - 1
}
if %ominimum.le.0
mes(style=alert) "I CANNOT PERFORM THE DESIRED TRANSFORMATION"
}

A user might also select “CANCEL” when selecting a variable to transform or estimate. In no
other series has been selected previously, SEASONS.SRC will attempt transform (or estimate) a
constant. To clean up the program, you can use the STATUS option on the two SELECT
instructions. The option STATUS=INTEGER returns the integer value O if the user clicks the
“Cancel” button and a 1 if the user clicks the “OK” button. Thus, in the segment below,
TRANSFORM.SRC iscalled only if the user clicks the“OK” button:

if Y%omenuchoice.eq.1 {
sel ect(series,status=cancel) depvar
if cancel.eq.1
@transform depvar

“4 Of course, you could modify the procedure to allow all entries to be negative.

Writing Your Own Procedures 247

The file SEASONS.SRC includes a similar check in case the user cancels the choice Salect a

Variable to Estimate. Program 6.2 in the file CHAPTERG6.PRG EXECUTES the procedure
using:

source(noecho) c:\winrats\seasons.src
@seasons

248 Walter Enders

Index

Akaike information criterion...........c.ccoceeeevenen. 19
ARIMA MOEIS ..o iv
automating model selectionccocvvevvenene 182
Blanchard-Quah decomposition........... 71, 82, 86
BOXJENK iv, 35, 103, 104, 178, 192, 207
Box-Jenkins methodologyc..c..... 104, 192
BRANCH.......cccoeivveercee iv, 133, 147, 148
CDF e iv, 40, 41
CHOICE OptionS.......cccceereeieienienie e 207

Choleski decomposition.... 53, 59, 63, 69, 70, 71,
72,75, 83, 84, 176, 180

CoiNtegrationcccceveeereeeeieeceeeseesee e 249

COMPUTEcccourvnne. iv, 21, 22, 30, 32, 34, 37,
38, 44, 71, 84, 98, 110, 115, 116, 134, 147,
151, 152, 168, 171, 173, 174, 176, 179, 190,
191, 230, 241

CORRELATE......ccooeveireeeesienns iv, 7, 30, 135
CVMODEL.....ccovvvrireieeseeeeien, iv, 75, 76, 78
DECLARE........ccccc..... iv, 66, 75, 168, 169, 170,
171, 174, 182, 190, 191, 195, 203, 215, 230
Dickey-Fuller tests.........cccvvvrvernen. 136, 141, 142,
143, 144, 146, 213, 215, 222, 231
differencing.....6, 36, 38, 103, 105, 129, 144, 180
DIMENSION.......ccoovvvirrririeieees 169, 170, 171
DISPLAY 70,91, 152, 171, 172, 173, 198
D@ I 19, 99, 100, 103, 105, 106,

107, 108, 109, 110, 111, 113, 115, 116, 120,
121, 124, 125, 126, 127, 131, 133, 134, 138,
140, 141, 143, 144, 146, 147, 148, 152, 155,
156, 157, 159, 161, 162, 166, 172, 176, 177,
181, 182, 183, 185, 186, 187, 222, 227, 230

DOFOR......ocetreriersieeeiens 110, 111, 113, 1186,
125, 140, 141, 143, 172, 182, 185, 186, 187
Downward Biascoevererenenieeierenee 139
ENABLE......cocoiiierieeeie 235, 243, 244
Engle-Granger procedure..........ccocevevenereennns 18
ENTER......cccveenee. iv, 114, 182, 183, 185, 186
ENTRIES........cccecvveeeen. iv, 12,100, 113, 114
EQUATION............... iv, 22,150, 151, 152, 197
EQV Instruction...........ccoeeveveennne iv, 96, 97, 109
Error-correction models............... 64, 65, 73, 149
ERRORS........cccovevrerieesiens iv, 53, 58, 62, 66,

71,75, 83, 84, 196, 203
ESTIMATE......coeiverienne iv, 48, 52, 53, 58, 65,
67, 71, 84, 85, 105, 168, 239, 240, 243, 244
EWISE ... iv, 176, 177, 179, 195
EXCLUDE................ 8,9, 10, 116, 186, 201, 202
EXECUTE. ..ot 100, 234
FORECASTcooeveeeveeee e iv, 60, 62, 63
FRML oo 21,22, 24, 30, 32, 33,

34, 35, 36, 37, 38, 41, 42, 44, 46, 94, 155
Generalized ARCH (GARCH) 40, 41, 44, 46

Granger CAUSAILYcoveeervereeerireereeeeseeeees 48

GRAPH. ...t iv, 5, 14, 15, 80, 101,
110, 203, 205, 216, 217, 221, 224
GROUP......ccoiriiiinereeee iv, 62, 63, 152
HeteroskedastiCitycovvirenrenieicierrieen 249
IF iv, 119, 120, 121,

122, 123, 124, 125, 126, 127, 128, 133, 144,
146, 147, 152, 208, 216, 217, 230, 235, 236,
237, 240, 244, 245

IGARCH ...ttt 44, 45
impulse response function............... iv, 53, 68, 69
IMPULSES.......ccccooveininnae 53, 62, 66, 75, 83, 84
INFErENCEcvveere s 149, 249
INFOBOX.....oriieiiirreineniereeseeeenens iv, 145, 149
INQUIRE.......... iv, 212, 219, 220, 221, 227, 244
INTEGER OPLioNccoeveeiiriineiniereeic e 209
101G = ok L= 235
LABELS......cooooiireeee iv, 97, 109, 112, 169
lag length tests........ooeiveienenccie 1, 102, 105
likelihood ratio testS.......ccoveveerereriereenens 51, 105
LINREG.......ccocveuenne. iv, 6,9, 12,13, 14, 19, 21,

23, 30, 34, 35, 40, 44, 61, 62, 64, 65, 73, 94,
102, 108, 116, 152, 168, 172, 185, 187, 201,
202, 203, 207, 215, 221, 227

LOCAL ..ccoveeeeveeeee e, iv, 212, 215, 216, 221,
223, 224, 226, 235, 239

local variables.........coeveeeeeevccieene, iv, 214, 227

LOOP....covveeeeenn. 20, 237, 240, 242, 243, 245

LSTARmModd 27,28, 29,30, 31,34

MAKE.....co e iv, 168, 197

MAXIMIZE................. iv, 23, 32, 33, 34, 35, 36,
37, 38, 41, 43, 44, 45, 46, 120

MENU.....cooo i iv, 233, 236, 239, 241

MESSAGEBOXccooveieievviecees iv, 229, 230

Monte Carlo methods.................... 119, 136, 137,

138, 141, 142, 143, 145, 146, 147, 150, 151,
152, 154, 155, 158

NLLS...ccooeeeeeeeee iv, 1, 21, 22, 23, 25, 30, 31,
34, 35, 120, 154, 155, 157, 161, 162
NLPAR ... iv, 23, 25, 33
NONLIN.......... iv, 21, 24, 30, 32, 33, 34, 36, 37,
38, 41, 42, 44, 45, 75, 76, 78, 155, 161, 162
OPTION.......coooietieeeieieeeiean, 47, 48, 205, 207,
208, 209, 211, 212, 215, 216, 221, 229, 244
ORDER.......coieeeee sttt 130
POWES ..o 141, 143
Procedures.........cccveveevevesesn e 204, 229
Q-StatistiCS ..ovvvverveeise e 7,17, 41,124
QUERY ..o iv, 229, 230
RATIO e iv, 51, 56
REQresSioN.......cccvveveeneresiereeenens 6, 160, 198, 200
RESTRICT......ccoveeeeveeeeeee. iv, 8, 10, 11, 33, 201
ROBUSTERRORS.....Iv, 12, 13, 14, 23, 33, 100
Schwartz Bayesian Criterion...........cccoeeeevenene 19

SCRATCH .ot iv, 97
SEED ..ttt 139, 142, 151
SIMULATE ..o, iv, 150, 151, 152
SPGRAPH ...t 5,110
Structural VARS. ... 71
SUBFORMULA ... 35, 36, 38, 44
SUMMARIZE ... 8, 10
SUR e iv, 47, 61, 62
SYSTEM.....ooovveeee. 47, 48, 49, 53, 60, 64, 105
TEST e 8,9, 10, 33

Unit root tests

Indx 249

Dickey-Fuller 136, 141,
142, 143, 144, 146, 213, 215, 222, 231
UNTIL oo iv, 115, 117, 118
USERMENUcoooevveirieiicrecienins iv, 235, 236,
237, 239, 240, 242, 243, 244
Vector autoregression (VAR) 1, 35, 37,

38, 39, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58,
60, 61, 62, 63, 64, 69, 70, 75, 77, 82, 83, 84,
85, 86, 87, 105, 171, 179, 181, 182, 183, 184,
185, 187, 195

250 Walter Enders

References

Bernanke, B. (1986). “Alternative Explanations of Money-Income Correlation.” Carnegie-Rochester
Conference Series on Public Policy 25, pp. 49 — 100.

Blanchard, O. and D. Quah (1989) "The Dynamic Effects of Aggregate Demand and Supply
Disturbances." American Economic Review 79, pp. 655-673.

Chan, K.S. (1993). “Consistent and Limiting Distribution of the Least Squares Estimator of a
Threshold Autoregressive Model.” Annals of Statistics, pp. 520 - 533.

Davidson, R. and J. G. MacKinnon (1993). Estimation and Inference in Econometrics. (Oxford
University Press: Oxford).

Dickey, D. A. and W. A. Fuller (1979). "Distribution of the Estimates for Autoregressive time Series
With aUnit Root." Journal of the American Statistical Association 74, pp. 427-431.

Efron, B. (1979). “Bootstrap Methods: Another Look at the Jackknife.” Annals of Statistics 7, pp. 1 —
26.

Enders, W. and CW.J. Granger (1998). “Unit-Root Tests and Asymmetric Adjustment With an
Example Using the Term Structure of Interest Rates.” Journal of Business and Economic
Satistics 16, pp. 304-11.

Engle, R. (1982). "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of
United Kingdom Inflation." Econometrica 50, pp. 987-1007.

Engle R., D. Lilien, and R. Robbins (1987). "Estimating Time Varying Risk Premium in the Term
Structure: The ARCH-M Model. Econometrica 55, pp. 391 - 407.

Engle, R. and C.W.J. Granger (1987). “Cointegration and Error Correction: Representation,
Estimation and Testing”, Econometrica 55, pp. 251-76.

Sims, C. (1986). “Are Forecasting Models Usable for Policy Analysis.” Federal Reserve Bank of
Minneapolis Quarterly Review, pp. 3 - 16.

Stock, J. (1987). “Asymptotic Properties of Least-Squares Estimators of Cointegrating Vectors.”
Econometrica 55, pp. 1035 — 56.

Terdsvirta, T. and H. M. Anderson (1992). “Characterizing Nonlinearities in Business Cycles using
Smooth Transition Autoregressive Models.” Journal of Applied Econometrics 7, pp. S119 -
S139.

Tong, Howell (1983). Threshold Models in Non-Linear Time Series Analysis. (Springer-Verlag: New
Y ork).

White, H. (1980). “A Heteroskedasticity-Consistent Covariance Matrix Estimator and Direct Test for
Heteroskedasticity.” Econometrica 48, pp. 817-838.

	RATS Programming Language
	Table of Contents
	Quick Function/Instruction Index
	1: Linear, Nonlinear Estimation
	1.1 The Data Set
	1.2 Linear Regression, Hypothesis Testing
	1.3 The LINREG Options
	1.3.1 Using Switch Options
	1.3.2 Using Choice Options
	1.3.3 Using Switches, Choices, and Internal Variables

	1.4 Nonlinear Least Squares
	1.4.1 Changing Convergence Criteria
	1.4.2 Examples

	1.5 Maximum Likelihood Estimation
	1.6 GARCH Models
	1.6.1 Examples

	2: VARs and Error-Correction Models
	2.1 Hypothesis Testing and Model Selection
	2.1.1 Innovation Accounting

	2.2 Example: 3-equation VAR
	2.2.1 Near-VARs

	2.3 Error-Correction Models
	2.4 Structural Decompositions
	2.4.1 Structural VARs, Known G Matrix

	2.5 Sims-Bernanke Decomposition
	2.6: Blanchard-Quah Decomposition
	2.6.1 Technical Details
	2.6.2 Decomposing GDP, Real M2, Interest Rate

	3: Loops Over Dates and Series
	3.1 Dates as Integers
	3.1.1 Omitting CALENDAR

	3.2 Series as Integers
	3.3 Do Loops
	3.3.1 DO Loops, Switches and Choices
	3.3.2 Lag Length Tests
	3.3.3 Lag Length Tests in a VAR

	3.4 Loops for Dates
	3.5 Loops for Series
	3.6 The DOFOR Instruction
	3.6.1 DOFOR and Loops for Series
	3.6.2 DOFOR and ENTRIES

	3.7 Loops with WHILE and UNTIL

	4: IF Statements and Monte Carlo Experiments
	4.1 If-Then-Else Blocks
	4.1.1 Sample Program

	4.2 The %IF(x,y,z) Function
	4.3 Estimating a Threshold Autoregression
	4.3.1 Estimating the Threshold
	4.4 Branching
	4.4.1 Sample Program

	4.5 Monte Carlo Experiments
	4.5.1 A Simple Monte Carlo Experiment
	4.5.2 Downward Bias in an AR Model
	4.5.3 Power of the Dickey-Fuller Test
	4.5.4 The Enders-Granger Statistic
	4.5.5 Inference in a Cointegrated System

	4.6 Antithetic Random Variables
	4.6.1 Bias in NLLS Estimates

	4.7 Bootstrapping
	4.7.1 Bootstrapping Regression Coefficients
	4.7.2 The AR Coefficients of Real GDP Growth

	5: Vector and Matrix Manipulations
	5.1 Creating Matrices and Vectors
	5.1.1 Declare
	5.1.2 COMPUTE

	5.2 Matrix Operations
	5.2.1 Operations on Subcomponents of a Matrix
	5.2.2 Selecting ARMA Coefficients
	5.2.3 Manipulating VAR Output

	5.3 Example: ENTER and Supplementary Cards
	5.3.1 Automating VAR Model Selection
	5.3.2 Creating a Near-VAR Using ENTER

	5.4 Example: Moving Average Representations
	5.4.1 Impulse Responses in a First-Order VAR

	5.5 Creating Matrices from Your Data
	5.5.1 Estimating Regression Coefficients
	5.5.2 Hypothesis Testing in the Regression Model
	5.5.3 Creating Series from a Matrix

	6: Writing Your Own Procedures
	6.1 A Procedure for AIC and SBC
	6.2 Using SWITCH Options
	6.2.1 Integer and Choice Options

	6.3 Passing Series to a Procedure
	6.4 Writing a Procedure to Test for Unit Roots
	6.4.1 Creating Local Variables
	6.4.2 Adding Options

	6.5 Retrieving START and END Entry Values
	6.5.1 Passing Information by Address
	6.5.2 Optional Fields

	6.6 Procedure for Computing Lag Lengths
	6.7 Interacting with Procedures
	6.8 Creating a Menu
	6.8.1 Creating a USERMENU
	6.9 An Interactive Procedure with MENU and USERMENU

	Index
	References

