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Quick Index of Selected Functions and Instructions 
NAME Description as used in test                                      Approx. Page 
%IF  Evaluate a conditional statement 126 
%L(i)  Returns the label of series i  98 
%S(L)  Returns series number corresponding to L   182 
BOXJENK  Estimates an ARIMA model   178 
BRANCH  Program execution jumps to a new location 133  
CDF  Cumulative density function     41 
COMPUTE Evaluates an expression   171 
CORRELATE Creates a correlogram 7 
CVMODEL  Covariance matrix modeling 75  
DECLARE  Creates a matrix   169 
ENTER  Manipulates items on supplemental cards   182 
ENTRIES  Number of entries to process on supplementary card  113 
EQUATION  Creates an equation  151 
EQV  Assigns labels to series  96 
ERRORS Creates forecast error variances and impulse responses  53 
ESTIMATE  Estimates a system of equations 48 
EWISE  Operates on elements of a matrix  177 
FORECAST Creates dynamic forecasts 60 
GRAPH   Creates a high-resolution graph  5 
GROUP  Combines equations into a system  62 
IMPULSE  Creates impulse response functions  67 
INFOBOX  Displays dialog box  145 
INQUIRE  Selects the starting and ending values of a series  211 
LABELS  Assigns labels to series  97 
LINREG Estimates a linear regression 6 
LOCAL  Creates local variables in a procedure 214 
MAKE  Creates a matrix from data 197 
MAXIMIZE  Finds the maximum of a function  33 
MENU  Displays a set of choices  233 
MESSAGEBOX  Displays a message  229 
NLLS  Nonlinear least squares 22 
NLPAR  Select convergence criteria  23 
NONLIN  Lists parameters for a nonlinear estimation 21 
QUERY  Prompts user to input variables  229 
RATIO  Performs a likelihood ratio test  51 
RESTRICT  Test linear restrictions 10 
ROBUSTERRORS  Corrects for heteroscedasticity  12 
SCRATCH  Creates consecutively numbered series  97 
SIMULATE  Creates a simulated series  151 
SUBFORMULAS  Used in creating formulas  46 
SUR  Seemingly unrelated regressions  61 
UNTIL  Conditional control of program execution  115 
USERMENU  Presents user with a list of choices  235 
WHILE  Conditional control of program execution  115 
Some instructions can perform multiple tasks. The descriptions refer to the task 
performed in the text. The pages are the locations containing the primary explanation or 
illustration.  



 

 

Chapter 1:  
Linear and Nonlinear Estimation∗  
  
This book is not for you if you are just getting familiar with RATS. Instead, it is designed to be 
helpful if you want to simplify the repetitive tasks you perform in most of your RATS sessions. 
Performing lag length tests, finding the best fitting ARMA model, finding the most appropriate 
set of regressors, and setting up and estimating a VAR can all be automated using RATS 
programming language. As such, you will not find a complete discussion of the RATS 
instruction set. It is assumed that you know how to enter your data into RATS and how to make 
the standard data transformations. If you are interested in learning about any particular RATS 
instruction, you can use RATS’ Help Menu or refer to the Reference Manual and User’s Guide. 
The emphasis here is on what I call RATS’ programming language. These are the instructions 
and options that enable you to write your own advanced programs and procedures and to work 
with vectors and matrices. The book is intended for applied econometricians conducting the type 
of research that is suitable for the professional journals. As I tell my students, to do state-of-the-
art research, it is often necessary to go “off the menu.” I’m being a bit facetious, but by the time 
a procedure is on the menu of an econometric software package, it’s not new. This book is 
especially for those of you who want to start the process of “going off the menu.”  
 
Of course, it will be impossible to illustrate even a small portion of the vast number of potential 
programs you can write. My intent is to give you the tools to write your own programs. Towards 
that end, I will discuss a number of the key instructions and options in RATS programming 
language and illustrate their use in some straightforward programs. I hope that the examples 
provided here will enable you to improve your programming technique. This book is definitely 
not an econometrics text. If you are like me, it is too difficult to learn econometrics and the 
programming tools at the same time. As such, I will try not to introduce any sophisticated 
econometric methods or techniques. Moreover, all of the examples will use a single data set 
MONEY_DEM.XLS and all examples are compatible with RATS 5.0. 
 
This chapter begins with a quick overview of some of the basic RATS instructions and options 
we will be using in the later chapters. It is intended to refresh your memory and to introduce the 
use of switches, options, choices and internal variables. It then shows how to estimate nonlinear 
models using nonlinear least squares (NLLS) and maximum likelihood techniques. 
 

                                                 
∗  Thomas Doan, Thomas Maycock and Mark Wohar made many helpful comments on the earlier 
versions of the manuscript. All errors that remain are my own.  
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1. The Data Set 

 
The file labeled MONEY_DEM.XLS contains quarterly values of seasonally adjusted U.S. 
nominal GDP, real GDP in 1996 dollars (RGDP), the money supply as measured by M2 and M3, 
and the 3-month and 1-year treasury bill rates for the period 1959:1 – 2001:1. Both interest rates 
are expressed as annual rates and the other variables are in billions of dollars. The data was 
obtained from the website of the Federal Reserve Bank of St. Louis 
(www.stls.frb.org/index.html) and saved in Excel format. If you open the file, you will see that 
the first eight observations are:1  
 
DATE GDP RGDP M2 M3 TB3mo TB1yr 
1959.1 496.10 2273.00 287.80 290.05 2.77 NA 
1959.2 509.20 2332.40 292.12 294.35 3.00 NA 
1959.3 510.20 2331.40 296.12 298.24 3.54 4.49 
1959.4 514.20 2339.10 297.14 299.10 4.23 4.74 
1960.1 527.90 2391.00 298.66 300.63 3.87 4.36 
1960.2 527.10 2379.20 301.11 303.23 2.99 3.65 
1960.3 529.90 2383.60 306.48 308.89 2.36 2.90 
1960.4 524.60 2352.90 310.93 313.66 2.31 2.81 
 
To help you understand the output from the sample programs, several conventions are used 
concerning typefaces: 
 

Boldface Within a sample program, a RATS instruction, set of instructions, 
or a procedure in boldface produces the subsequent sample 
output. Instructions and procedures not in boldface either produce 
no output or the output is not shown.  

 
Courier 10 point. RATS output is shown in Courier 10 point font. The output is 

either indented or contained in  
 
  

In addition, the Courier 10 point font is sometimes used to 
separate references to a particular program statement from the 
remainder of the text. 
 

Italics Many RATS instructions are used with parameters and options 
that you need to specify. The fields that you should specify are 
italicized. For example, the ALLOCATE instruction can be used 
to indicate the terminal date in a data set. Since you need to input 

                                                 
1 See the RATS User’s Guide for details about working with data sets that are not in an EXCEL 
format and with variables that are not quarterly.  

a highlighted box 
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the terminal value, the description of the instruction is written as: 
ALLOCATE date. 

 
UPPERCASE All text references to file names contained on the data disk are in 

UPPERCASE. In addition, textual references to the proper names 
of RATS instructions and procedures are all in upper case. RATS 
itself does not distinguish between UPPERCASE and lowercase 
characters. Within the sample programs, all names are in lower 
case.  

  
If you have the file in your a:\ drive, you can read in the data set using the following four lines 
contained in Program 1.1 in the file CHAPTER1.PRG: 
 
cal 1959 1 4 
all 2001:1 
open data a:\money_dem.xls  ;* Alter this line if the data set is not on drive a:\ 
data(org=obs,format=xls)  
 
Note that only the first three letters of the CALENDAR and ALLOCATE instructions have been 
used—in fact, any RATS instruction can be called using only the first three letters of its name. If 
you use the TABLE instruction, your output should be: 
 
table 

Series    Obs     Mean       Std Error    Minimum       Maximum 
DATE      169  1979.876331    12.232185  1959.100000  2001.100000 
GDP       169  3572.739053  2873.158128   496.100000 10243.600000 
RGDP      169  5142.364497  1950.840494  2273.000000  9439.900000 
M2        169  1904.835266  1399.706717   287.800000  5043.710000 
M3        169  2414.462229  1916.764710   290.053333  7260.136667 
TB3MO     169     5.915148     2.590483     2.303333    15.053333 
TB1YR     167     6.153872     2.393622     2.713333    14.380000 

 
Many of the examples presented will use the growth rates of M2, M3 and real GDP, the first 
differences of the 3-month and 1-year T-bill rates and the rate of inflation (as measured by the 
growth rate of the GDP deflator). You can create these six variables using: 
 
set dlrgdp = log(rgdp) - log(rgdp{1}) 
set dlm2 = log(m2) - log(m2{1}) 
set dlm3 = log(m3) - log(m3{1}) 
dif tb3mo / drs    ;* Note that / instructs RATS to use the default range 
dif tb1yr / drl    ;*  of the data. 
set price = gdp/rgdp 
set dlp = log(price) - log(price{1}) 
 
Notice that the logarithmic growth rate of a variable is preceded by dl, the suffixes s and l refer 
to the short-term and long-term interest rates, and that price (i.e. the GDP deflator) is computed 
as the ratio of nominal to real U.S. GDP. The logarithmic change in price (called dlp) is the 
quarterly inflation rate. We can create graphs of five of these series using: 
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spgraph(hea='Graphs of the Five Principal Series',$ 
  hfi=2,vfi=2,key=upleft) 
gra(hea='Panel 1: Time path of dlm3') 2 ; # dlm2; # dlm3 
gra(hea='Panel 2: Time path of dlrgdp') 1 ; # dlrgdp 
gra(hea='Panel 3: Time path of drs') 1 ; # drs 
gra(hea='Panel 4: Time path of dlp') 1 ; # dlp 
spgraph(done) 
 

Graphs of Five Principal Series
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Recall that the typical syntax of the GRAPH instruction is: 
 
graph(options)  number 
#  series  start  end 
 
where:  

number The number of series to graph. Here, the number 2 tells RATS that two 
series are to be graphed. The names of the series are indicated on the 
supplementary cards; there is one such card for each series.  

series The name of the series to graph. Remember, there is one supplementary 
card for each series.  

start end Range to plot. If omitted, RATS uses the current sample range. 
 
The graph created here illustrates only a few of the available options. The commonly used 
options are: 
 

HEADER =  A string of characters placed in quotes. 
 
KEY =        The location of the KEY. You can use KEY = [NONE]/ 

UPLEFT/UPRIGHT/LOLEFT/LORIGHT/ABOVE/BELOW/ 
LEFT/RIGHT. The default is NONE. 

 
DATES/ RATS will label the horizontal axis unless the NODATES option is  
  [NODATES] specified.  
 
STYLE = The default style is a line graph. The full set of styles is: STYLE= 

[LINE]/POLYGON/BAR/STACKEDBAR/OVERLAPBAR/ 
VERTICAL/STEP/SYMBOL  

 
PATTERNS/ By default, graphs use colors to distinguish series (if possible)  
  [NOPATTERNS]  and dashed lines and hatched patterns otherwise. PATTERNS forces the 

latter to be used. 
 
The program illustrates the use of the SPGRAPH instruction to place multiple graphs on a single 
page. The first time SPGRAPH is encountered, RATS is told to expect a total of four graphs. 
The layout is such that two will go in the horizontal field (HFIELD= ) and two in the vertical 
field (VFIELD= ). The option HEADER= produces Graphs of Five Principal Series as the 
header for the full page. The individual headers on the four GRAPH instructions produce the 
headers on the individual panels. The instruction SPGRAPH(DONE) instructs RATS to produce 
the output shown on the next page.  
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2. Linear Regression and Hypothesis Testing 

 
The LINREG instruction is the backbone of RATS and it is necessary to review its use. As such, 
suppose you want to estimate the first difference of the 3-month T-bill rate (i.e., drs) as the 
autoregressive process:  

 ∑
=

− ++=
7

1
10

i
ttit drsdrs εαα  

 
The next two lines of the program estimate the model over the entire sample period (less the 
seven usable observations lost as a result of the lags and the additional usable observation lost as 
a result of differencing) and save the residuals in a series called resids. 

 
linreg drs / resids 
# constant drs{1 to 7} 

Linear Regression - Estimation by Least Squares 
Dependent Variable DRS 
Quarterly Data From 1961:01 To 2001:01 
Usable Observations  161   Degrees of Freedom  153 
Centered R**2    0.284460   R Bar **2   0.251723 
Uncentered R**2  0.284720   T x R**2   45.840 
Mean of Dependent Variable   0.0155900621 
Std Error of Dependent Variable 0.8194146456 
Standard Error of Estimate      0.7088184693 
Sum of Squared Residuals       76.870814220 
Regression F(7,153)             8.6892 
Significance Level of F         0.00000001 
Durbin-Watson Statistic         1.956107 
 
  Variable           Coeff      Std Error    T-Stat     Signif 
***************************************************************************
* 
1. Constant        0.013585280 0.055912496    0.24297  0.80835102 
2. DRS{1}          0.361765228 0.079570494    4.54647  0.00001102 
3. DRS{2}         -0.419337490 0.084224961   -4.97878  0.00000171 
4. DRS{3}          0.393346293 0.089250834    4.40720  0.00001961 
5. DRS{4}         -0.185273449 0.093546517   -1.98055  0.04943488 
6. DRS{5}          0.201542364 0.089190935    2.25967  0.02525340 
7. DRS{6}         -0.096578440 0.084095745   -1.14843  0.25258165 
8. DRS{7}         -0.214686434 0.078991307   -2.71785  0.00732911 

 
Notice that the estimation begins in 1961:1; RATS automatically adjusts for the eight 
observations lost due to differencing and the use of seven lags. As such, there are 161 usable 
observations (169 – 8 = 161); given the five parameters estimated, there are 161 - 8 = 153 
degrees of freedom. Next, RATS reports four Goodness-of-Fit measures: centered R2, R-bar 
square (centered R2 adjusted for degrees of freedom), uncentered R2, and TR2 (number of 
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observations multiplied by the uncentered R2).2 The mean and standard error of drs over the 161 
observations used in the regression are reported to be 0.0155900621 and 0.8194146456, 
respectively. (Note: This will differ from the mean and standard error over all 168 observations.) 
These are followed by the standard error of the estimate (i.e., the square root of the sum of the 
squared regression residuals divided by the degrees of freedom) and the sum of squared 
residuals. The F-statistic and its significance level can be used to test the hypothesis that all 
coefficients in the regression (other than the constant) are zero. Here, the sample value of F for 
the joint test a1 = a2 = a3 = … = a7 = 0 is 8.6892. Given that there are 7 restrictions and 153 
degrees of freedom, this F-value is significant at the 0.00000001 level. The Durbin-Watson 
test for first-order serial correlation in the residuals is 1.956107 (2.0 is the theoretical value of 
this statistic in the absence of serial correlation).  
 
For each right-hand-side variable, the next portion of the output reports the coefficient estimate 
(Coeff), the standard error of the coefficient (Std Error), the t-statistic for the null hypothesis that 
the coefficient equals zero (T-Stat), and the marginal significance level of the t-test (Signif). For 
example, the coefficient of the first lag of drs is estimated to be 0.361765228 with a standard 
error equal to 0.079570494. The associated t-test for the null hypothesis α1 = 0 is 4.54647. If 
you use a t-table, you can verify that the significance level for this value of t is 0.00001102.  
 
It is always important to determine whether there is any serial correlation in the regression 
residuals. The CORRELATE instruction calculates the autocorrelations (and the partial 
autocorrelations) of a specified series. The syntax and principal options are: 
 
correlate(options)  series  start  end 
 
where:  

series  The series used to compute the correlations. 
start end The range of entries to use. The default is the entire series. 
corrs Series used to save the autocorrelations (Optional). 

 
The principal options are:  

NUMBER=  The number of autocorrelations to compute. The default is the integer 
value of one-fourth the total number of observations.  

PARTIAL= Series for the partial autocorrelations. If you omit this option, the PACF 
will not be calculated. 

QSTATS Use this option if you want the Ljung-Box Q-statistics. 
SPAN= Use with qstats to set the width of the intervals tested. For example, with 

quarterly data, you can set span = 4, to obtain Q(4), Q(8), Q(12), and so 
forth. 

 
In the example at hand, we can obtain the first twelve autocorrelations, partial autocorrelations 
(and the associated Q-statistics) of the residuals with: 

                                                 
2 Let the dependent variable be denoted by y. Uncentered R2 is 1 - (sum of squared regression 
residuals)/(sum of squared values of y). Centered R2 is 1 - (sum of squared regression 
residuals)/(sum of squared deviations of y from the mean of y).  
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cor(number=12,partial=partial,qstats,span=4) resids 
 

Correlations of Series RESIDS 
Quarterly Data From 1959:03 To 2001:01 
Autocorrelations 
   1:  0.0154810 0.0029326 -0.0157832 -0.0125802 -0.0346243 0.0536726 
   7: -0.0680555 0.1041120 -0.1047616  0.0499244 -0.1387784 0.0229181 
Partial Autocorrelations 
   1:  0.0154810 0.0026936 -0.0158741 -0.0121047 -0.0341736 0.0546344 
   7: -0.0702982 0.1061879 -0.1110885  0.0575503 -0.1455796 0.0333431 
 
Ljung-Box Q-Statistics 
Q(4)  =     0.1125. Significance Level 0.99847633 
Q(8)  =     3.5673. Significance Level 0.89390219 
Q(12) =     9.5558. Significance Level 0.65486726 

 
All of the autocorrelation and partial autocorrelations are small and the Ljung-Box Q(4), Q(8) 
and Q(12) statistics do not indicate the values are statistically significant. Moreover, the 
individual t-statistics suggest that only one of the autocorrelation coefficients is insignificant at 
conventional significance levels. However, the lags of {drs} are correlated with each other so 
that the individual t-statistics can be misleading. We might be concerned that the model is over-
parameterized since sum of coefficients α5 + α6 + α7 is approximately zero. The EXCLUDE, 
SUMMARIZE, TEST, and RESTRICT instructions allow you to perform hypothesis tests on 
several coefficients at once. EXCLUDE is followed by a supplementary card listing the variables 
to exclude from the most recently estimated regression. RATS produces the F-statistic and the 
significance level for the null hypothesis that the coefficients of all excluded variables equal 
zero. Consider the following two exclusion restrictions:  

exclude 
# drs{5 to 7} 

Null Hypothesis : The Following Coefficients Are Zero 
DRS        Lag(s) 5 to 7 
F(3,153)=   7.69621 with Significance Level 0.00008002 

 

exclude 
# constant drs{5 to 7} 

Null Hypothesis : The Following Coefficients Are Zero 
Constant 
DRS        Lag(s) 5 to 7 
F(4,153)=   5.78538 with Significance Level 0.00023113 

 
The first exclusion restriction tests the joint hypothesis α5 = α6 = α7 = 0 and the second tests the 
joint hypothesis α0 = α5 = α6 = α7 = 0. The results support those of the t-tests; both of these null 
hypotheses can be rejected at conventional significance levels. SUMMARIZE has the same 
syntax as EXCLUDE but is used to test the null hypothesis that the sum of the coefficients 
indicated on the supplementary card is equal to zero. In the following example, the value of t for 
the null hypothesis α5 + α6 + α7 = 0 is -0.88256. 
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summarize 
# drs{5 to 7} 
  
 Summary of Linear Combination of Coefficients 

DRS      Lag(s) 5 to 7  
Value          -0.1097225      
t-Statistic    -0.88256 
Standard Error  0.1243225      
Signif Level    0.3788566 

 
EXCLUDE can only test whether a group of coefficients is jointly equal to zero. The TEST 
instruction has a great deal more flexibility; it is able to test joint restrictions on particular values 
of the coefficients. Suppose you have estimated a model and want to perform a significance test 
of the joint hypothesis restricting the values of coefficients αi, αj, ... , and αk to equal ri, rj, ... , 
and rk, respectively. Formally:  
 
αi = ri,   αj = rj   ...   and   αk = rk. 
 
 To perform the test, you first type TEST followed by two supplementary cards. The first 
supplementary card lists the coefficients (by their number in the LINREG output list) that you 
want to restrict and the second lists the restricted value of each. Suppose you want to restrict the 
coefficients of the last three lags of drs to all be 0.1 (i.e., α5 = 0.1, α6 = 0.1, and α7 = 0.1). To 
test this restriction, use:  
 
test 
# 6 7 8 
# 0.1 0.1 0.1 

F(3,153)=   12.20650 with Significance Level 0.00000033 

 
RATS displays the F-value and the significance level of the joint test α5 = 0.1, α6 = 0.1, and α7 = 
0.1. If the restriction is binding, the value of F should be high and the significance level should 
be low. Hence, we can be quite confident in rejecting the restriction that each of the three 
coefficients equals 0.1. To test the restriction that the constant equals zero and that α5 = 0.1, α6 = 
0.1, and α7 = 0.1, use: 
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test 
# 1 6 7 8 
# 0. 0.1 0.1 0.1 

F(4,153)=   9.16377 with Significance Level 0.00000116 

 
RESTRICT is the most powerful of the hypothesis testing instructions. RESTRICT can test 
multiple linear restrictions on the coefficients and estimate the restricted model. Although 
RESTRICT is a bit difficult to use, it can perform the tasks of SUMMARIZE, EXCLUDE, and 
TEST. Each restriction is entered in the form: 
 
 βiαi + βjαj + ... + βkαk = r 

 
where:   αi are the coefficients of the estimated model (i.e., each coefficient is referred 

to by its assigned number). 
   βi are weights you assign to each coefficient. 
and:  r represents the restricted value of the sum (which may be zero). 
 
To implement the test, you type RESTRICT followed by the number of restrictions you want to 
impose. Each restriction entails the use of two supplementary cards. The first lists the 
coefficients to be restricted (by their number) and the second lists the values of the βi and r. 
 

Examples: 
1. To test the restriction that the constant equals zero use: 

 
restrict 1 
# 1 
# 1 0 

 
The first line instructs RATS to prepare for one restriction. The second line is the 
supplementary card indicating that coefficient 1 (i.e., the constant) is to be restricted. The 
third line imposes the restriction 1.0*α0 = 0. 

 
2. To test the restriction that α1 = α2 (i.e., α1 - α2 = 0), use: 
 

restrict 1 
# 2 3 
# 1 -1  0 

 
Again, the first line instructs RATS to prepare for one restriction. The second line is the 
supplementary card indicating that coefficients 2 and 3 are to be restricted. The third line 
imposes the restriction 1.0*α1 - 1.0α2 = 0. 
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3. If you reexamine the regression output, it seems as if α1 + α2 = 0, α3 + α4 = 0 and  
α5 + α6 = 0. To test these three restrictions use: 

 
restrict 3  ;* There are 3 restrictions and one set of supplemental cards 
# 2 3    ;* for each restriction 
# 1 1 0 
# 4 5 
# 1 1 0 
# 5 6 
# 1 1 0 

   
Note that RESTRICT can be used with the CREATE option to test and estimate the restricted 
form of the regression. Moreover, whenever CREATE is used, you can save the regression 
residuals simply by providing RATS with the name of the series in which to store the 
residuals. In the example below, RATS displays the output of the restrictions from Example 3 
above, and stores the regression residuals in the series resids. (NOTE: Only a portion of the 
output is shown). 

 
restrict(create) 3 resids 
# 2 3  
# 1 1 0 
# 4 5 
# 1 1 0 
# 5 6 
# 1 1 0 
 
F(3,153)=   2.25276 with Significance Level 0.08449735 
 
  Variable           Coeff        Std Error     T-Stat    Signif 
***************************************************************************
**** 
1. Constant         0.015301284  0.056541363    0.27062  0.78704020 
2. DRS{1}           0.386719181  0.068502626    5.64532  0.00000008 
3. DRS{2}          -0.386719181  0.068502626   -5.64532  0.00000008 
4. DRS{3}           0.288370925  0.079736678    3.61654  0.00040262 
5. DRS{4}          -0.288370925  0.079736678   -3.61654  0.00040262 
6. DRS{5}           0.155835311  0.074036283    2.10485  0.03690688 
7. DRS{6}          -0.155835311  0.074036283   -2.10485  0.03690688 
8. DRS{7}          -0.198914927  0.078523550   -2.53319  0.01229020 

 
Notice that the F-statistic (with three degrees of freedom in the numerator and 153 in the 
denominator) is 2.25276 with a significance level of 0.08449735. Hence, at the 5% 
significance it is possible to reject the null hypothesis and conclude that the restriction is 
binding. At the 10% significance, we accept the null hypothesis. 
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3. The LINREG Options 

 
LINREG has many options that will be illustrated in the following chapters. The usual syntax of 
LINREG is: 
 
linreg(options)  depvar  start  end  residuals 
#  list 

 
where: 

depvar  The dependent variable. 
start end The range to use in the regression. The default is the largest common 

range of all variables in the regression. 
residuals Series name for the residuals. Omit if you do not want to save the 

regression residuals.  
list The list of explanatory variables. 

 
The most useful options for our purposes are: 
 

DEFINE=     You can name the equation by setting DEFINE equal to the name 
you choose. Later, you can refer to the equation by its name.  

 
[PRINT]/NOPRINT Print the regression output.  
 
VCV/[NOVCV] Print the covariance/correlation matrix of the coefficients. 
 
ENTRIES=   Number of entries to use from the supplementary card [all]. 

 
Note that LINGEG also contains options for correcting standard errors and t-statistics for 
hypothesis testing. The ROBUSTERRORS option computes a consistent estimate of the 
covariance matrix that corrects for heteroscedasticity as in White (1980). ROBUSTERRORS and 
LAGS= can produce various types of Newey-West estimates of the coefficient matrix. 
Moreover, SPREAD is used for weighted least squares and INSTRUMENTS is used for 
instrumental variables. The appropriate use of these options is described in Chapter 5 of the 
RATS User’s Guide.  
 
LINREG creates a number of variables that you can use in subsequent computations. A partial 
list of these variables is: 
 

%BETA The coefficient vector. The first coefficient estimated is %BETA(1), the 
second %BETA(2), and so on. For example, in the output for dr above, 
the constant is %BETA(1), the coefficient for dr{1} is %BETA(2), and 
so forth.  

%XX     The (X´X)-1 matrix. Note that %XX(i,j) contains the estimated 
covariance of coefficient i with coefficient j.  
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%TSTATS  The vector containing the t-stats for the coefficients. The first t-statistic 
is %TSTATS(1), the second is %TSTATS(2), and so on.  

%STDERRS Vector of coefficient standard errors.3 
%NDF  Degrees of freedom. 
%NOBS Number of observations. 
%NREG  Number of regressors. 
%RSS Residual sum of squares. 
%RSQUARED  Centered R2. 
%SEESQ Standard error of estimate squared. 
%DURBIN Durbin-Watson statistic. 
%QSTAT Ljung-Box Q-statistic. 
%QSIGNIF  Significance level of Q-statistic. 
%RHO  First-lag correlation coefficient of the residuals. 

 
The internal variables can be called from anywhere in a RATS program (including a procedure). 
You need to be a bit careful since the internal variables are recalculated every time you estimate 
a regression.  
 

3.1 Using Switch Options 

 
You can see how to work with RATS options by re-estimating the unconstrained AR(7) model of 
the change in the 3-month interest rate.  
 
lin(robusterrors) drs 
# constant drs{1 to 7} 
 

  Variable            Coeff      Std Error     T-Stat   Signif 
***************************************************************************
* 
1. Constant         0.013585280 0.052823866    0.25718 0.79703927 
2. DRS{1}           0.361765228 0.096834548    3.73591 0.00018704 
3. DRS{2}          -0.419337490 0.195669363   -2.14309 0.03210569 
4. DRS{3}           0.393346293 0.123604815    3.18229 0.00146116 
5. DRS{4}          -0.185273449 0.151116811   -1.22603 0.22018812 
6. DRS{5}           0.201542364 0.112293295    1.79479 0.07268790 
7. DRS{6}          -0.096578440 0.136399595   -0.70806 0.47891099 
8. DRS{7}          -0.214686434 0.092486533   -2.32127 0.02027215 

 
Notice that the LINREG instruction now uses the ROBUSTERRORS option to correct for 
possible heteroscedasticity. Since ROBUSTERRORS corrects only the covariance matrix, the 
point estimates of the coefficients are necessarily unchanged. If you compare these results to 
those obtained earlier, you will see that the option had very little effect on standard errors and the 
t-statistics.  
 

                                                 
3 Note that some versions of the Reference Manual incorrectly refer to this as %STDERRORS. 
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Notice that the ROBUSTERRORS option can be ON or OFF—you can enter 
ROBUSTERRORS or NOROBUSTERRORS. Similarly, you can use either PRINT or 
NOPRINT for the regression output or VCV or NOVCV for displaying the covariance matrix. It 
is helpful to think of these options as a switch. The option will be executed if the switch is ON 
and will be bypassed if the switch is OFF. If neither choice is indicated in the options field of an 
instruction, RATS will resort to the default value of that particular option. For all RATS 
switching options, you can also turn on the switch by equating its value to 1, and turn off 
the switch by equating its value to zero. This can be very useful in writing procedures (see 
Chapter 6) since it is simple for the user to pass the appropriate switch value to the procedure.  

Examples: 
1. Since the PRINT option is the LINREG default, all of the following have equivalent effects:  
 

lin drs 
 
lin(print) drs 
 
lin(print=1) drs 
 
com j = 1   (where j is an integer) 
lin(print=j) drs 

 
2. Since NOROBUSTERRORS is the LINREG default, all of the following have equivalent 

effects: 
 

lin(robusterrors) drs 
 
lin(robusterrors=1) drs 
 
com j = 1   (where j is an integer) 
lin(robusterrors=j) drs 

 
3. Since DATES is the GRAPH default, all of the following have the same effect: 
 

gra(nodates) 1 
 
gra(dates=0) 1 
 
com dates = 0 
graph(dates=dates) 
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3.2 Using Choice Options 

 
Notice that GRAPH has a number of options requiring you to make choices. For example, the 
full set of choices for the location of the key is KEY = [none]/upleft/upright/loleft/ 
loright/above/below/left/right. Similarly, STYLE = [line]/polygon/bar/stackbar/overlap/vertical/ 
step/symbol. For all RATS choice options, you can select the choice by its integer value in 
the choice list. 
 

Examples: 
1. Since NONE is the default value and the first choice for KEY = and BAR is the third choice 

for STYLE = , the following will all produce a bar graph without a key: 
 

gra(style=bar) 1 
 
gra(sty = 3) 1 
 
com j = 3 
gra(key=1,sty=j) 1 

 
2. Suppose you saved the residuals from a regression in a series called resids. You can obtain 

the first 12 autocorrelations in a series called corrs and the partial correlations in a series 
called partial by using: 

 
cor(number=12,partial=partial) resids / cors 

 
You can plot an overlapping bar graph of the ACF and PACF without dates, containing a 
header called ACF and PACF, and a key at the bottom of the graph either of the following: 

 
gra(nodates,sty=overlap,key=below,header='ACF and PACF') 2 ; # cors ; # partial 
 
gra(nodates,sty=5,key=7,header='ACF and PACF') 2 ; # cors ; # partial 
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3.3 Using Switches, Choices and Internal Variables 

 
The best way to illustrate the use of switches, choices and internal variables is to work with 
another example. Economic theory suggests that long-term and short-term interest rates bear a 
long-run equilibrium relationship. Suppose that we try to estimate this relationship using the 
variables tb3mo and tb1yr from the file MONEY_DEM.XLS As a first step, we might want to 
plot the two variables. Consider:4 
 
gra(header='3-month and 1-yr T-bill rates',vlabel='annual percentage rate', $ 
 patterns,key=upleft) 2 
# tb1yr 
# tb3mo 
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It appears that both variables are non-stationary and there are periods of time during which they 
move apart. Nevertheless, they do seem to bear a strong long-run relationship with each other. 
We can estimate this relationship using: 
 
lin tb1yr / resids 

                                                 
4 Note that a $ indicates that the instruction continues on the next line. The option VLABEL= 
‘label’ allows you to supply a header for the vertical axis.  
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# constant tb3mo 
  Variable           Coeff         Std Error      T-Stat   Signif 
***************************************************************************
* 
1. Constant         0.6980794657  0.0665742554   10.48573 0.00000000 
2. TB3MO            0.9167216207  0.0102654419   89.30172 0.00000000 

 
We can obtain the first 12 residual autocorrelations and partial autocorrelations using: 
cor(number=12,partial=partial) resids / cors 
 

Correlations of Series RESIDS 
Quarterly Data From 1959:03 To 2001:01 
Autocorrelations 
   1:  0.6820700  0.3663894  0.2412555  0.1334900 -0.0091483 -0.1024514 
   7: -0.0096375  0.0551392  0.0106175 -0.0239909  0.0132915  0.0564374 
 
Partial Autocorrelations 
   1: 0.6820700 -0.1848049  0.1378831 -0.1048575 -0.1085939 -0.0432259 
   7: 0.2198241 -0.0441826 -0.0550733 -0.0300141  0.0483862  0.0408635 
 
Ljung-Box Q-Statistics 
Q(12) =    118.3055. Significance Level 0.00000000 

 
As expected, the residual autocorrelations seem to decay at a geometric rate. Notice that we used 
the QSTATS option--this option produces the Ljung-Box Q-statistic for the null hypothesis that 
all 12 autocorrelations are zero. Clearly, this null is rejected at any conventional significance 
level. If we wanted additional Q-statistics, we could have also used the SPAN= option. For 
example, if we wanted to produce the Q-statistics for lags, 4, 8, and 12, we could use: 
 
cor(number=12,partial=partial,qstats,span=4) resids / cors 
 
Since we are quite sure that the autocorrelations differ from zero, we dispense with this option. 
As indicated in the example above, we can graph the ACF and PACF using: 
 
gra(nodates,number=0,sty=5,key=7,header='ACF and PACF',patterns=0) 2 $ 
# cors  
#  partial 
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Notice that we used the PATTERNS option. The default value is NOPATTERNS (i.e., the 
default is PATTERNS = 0). With this option OFF, your monitor will show the ACF in black and 
the PACF in blue. 
 
Since it is clear that the residuals decay over time, we can estimate the dynamic process. Take 
the first difference of the resids and call the result dresids:  
 
dif resids / dresids 
 
Now estimate the dynamic adjustment process as:5 
 

 ∑
=

−− ++=
p

i
tititt dresidsresidsdresids

1
10 εαα  

If we can conclude that α0 is less than zero, we can conclude that the {resids} sequence is a 
convergent process. However, it is not straightforward to estimate the regression equation and 
then test the null hypothesis α0 = 0. One problem is that under the null hypothesis of no 
equilibrium long-run relationship (i.e., under the null of no cointegration between the two rates), 
we cannot use the usual t-statistics. Secondly, we do not know the appropriate lag length (p) to 
use when estimating the regression equation.   
 
The ACF suggests that we can look at a relatively short lag lengths although the partial 
autocorrelation coefficient at lag 7 appears to be significant. As such, it seems prudent to 
estimate the regression equation using all lags through lag 8. One way to do this to enter the 
following program instructions: 
 
                                                 
5The Engle-Granger test for cointegration requires that -2 < α0 < 0. Note that an intercept is not 
necessary since regression residuals necessarily have a mean of zero.  



    Linear and Nonlinear Estimation 19 

 

dif resids / dresids 
lin(noprint) dresids 1961:4 * 
# resids{1} dresids{1 to 8} 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'T-stat' %tstats(1) 'The aic = ' aic ' and sbc = ' sbc 
 
The first line creates the first difference of resids as the series dresids. The next two lines instruct 
RATS to regress dresidst on residst-1 and on dresids{1 to 8}. In order to ensure that all eight 
regressions are estimated over the sample period, the start date on the LINREG instruction is 
fixed at 1961:4. Since we are interested in only the t-statistic on residst-1, we suppress the output 
using the NOPRINT option. Next, we calculate the Akaike Information Criterion (AIC) and the 
Schwartz Bayesian Criterion (SBC) as:6 
 
AIC = T ln(residual sum of squares) + 2n 
SBC = T ln(residual sum of squares) + n ln(T) 
 
where:  n = number of parameters estimated, including the intercept term (if any),  
and  T = number of usable observations.  
 
We can use the internal variables constructed by LINREG to create AIC and SBC since: 
 

%nobs  The number of usable observations in the previously estimated model 
%rss The residual sum of squares in the previously estimated model 
%nreg  The number of regressors in the previously estimated model 

 
Since %TSTATS(1) contains the t-statistic for the coefficient on residst-1, the last line displays 
this t-statistic, the AIC and the SBC. Now, you could go back and rerun the routine after editing 
the supplementary card for the LINREG instruction such that: 
 
# resids{1} dresids{1 to 7} 
 
However, to preview some of the material in the next chapter, it is more efficient to use RATS 
programming language. We can embed the routine in a DO loop: 
 

                                                 
6 The formulas reported here and in the RATS User’s Manual are easily computable monotonic 
transformations of the AIC and SBC. They will select the same model as the actual AIC and/or 
SBC. 
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do i = 1,8 
 lin(noprint) dresids 1961:4 * 
 # resids{1} dresids{1 to i}       << Note the modification {1 to i} 
 compute aic = %nobs*log(%rss) + 2*(%nreg) 
 compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 *  Note the modification to the next line: 
 dis 'Lags: ' i 'T-stat' %tstats(1) 'The aic = ' aic ' and sbc = ' sbc    
end do I 
 

Lags: 1 T-stat   -5.79665 The aic =  362.90523 and sbc =  369.03042 
Lags: 2 T-stat   -4.46711 The aic =  361.94474 and sbc =  371.13252 
Lags: 3 T-stat   -4.64086 The aic =  362.25523 and sbc =  374.50561 
Lags: 4 T-stat   -4.83109 The aic =  362.34292 and sbc =  377.65590 
Lags: 5 T-stat   -4.63676 The aic =  364.11804 and sbc =  382.49361 
Lags: 6 T-stat   -3.38834 The aic =  358.41748 and sbc =  379.85565 
Lags: 7 T-stat   -3.40155 The aic =  360.07214 and sbc =  384.57290 
Lags: 8 T-stat   -3.44382 The aic =  361.59437 and sbc =  389.15772 

 
Now, each time RATS cycles through the LOOP, i increases from 1 to 8. Each time the 
supplementary card in encountered, RATS estimates the regression using a lags 1 through i and 
displays the results. Regardless of whether we use the 6-lag model selected by the AIC or the 1-
lag model selected by the SBC, the t-statistic is sufficiently negative that we reject the null 
hypothesis α0 equals zero. As such, we conclude that the two interest rates are cointegrated.  
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4. Nonlinear Least Squares 

 
Given that many economic variables display asymmetric adjustment, nonlinear estimation 
methods have become quite popular. RATS allows you to perform nonlinear estimations in a 
number of ways. We will focus on nonlinear least squares and maximum likelihood estimation. 
Suppose that you want to estimate the following model using nonlinear least squares: 
 
 yt = αxt

β + εt 

 
Since the disturbance term is additive, you cannot simply take the log of each side and estimate 
the equation using OLS.7 However, nonlinear least squares allows you to estimate α and β 
without transforming the variables. In RATS, you use the following structure to estimate a model 
using nonlinear least squares: 
 
NONLIN  list of parameters to be estimated 
FRML  formula name the equation to be estimated 
COMPUTE  initial guesses for the parameters 
NLLS(FRML=formula name)  dependent variable 
 
For the example at hand, you could use:  
 
nonlin alpha beta 
frml equation_1  y  = alpha*x**beta 
com alpha = 1.0 , beta = 0.5 
nlls(frml = equation_1)  y  
 
The first instruction informs RATS that two parameters, named alpha and beta, are to be 
estimated. The FRML instruction sets up a formula named equation_1, the form of the equation 
is y = alpha*x**beta. The COMPUTE instruction provides the initial guesses for alpha and 
beta. The last line instructs RATS to use nonlinear least squares (NLLS) to estimate the series y 
using the formula previously defined as equation_1. In fact, all nonlinear least squares 
estimations use this four-step procedure. Specifically: 
 
Step 1. Specify the parameter set to be estimated using the NONLIN instruction. The syntax for 

NONLIN is: 
 

NONLIN parameter list 
 

In most instances, the parameter list will be a simple list of the coefficients to be estimated. 
You can also include equality constraints such as a = = b or a + b = =1.0 (note the double 

                                                 
7 If the model had the form yt = αxt

βεt where {εt} is log-normal, it would be appropriate to 
estimate the regression in logs using LINREG.  
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equal sign) or weak inequality constraints of the form b.ge.0 or b.le.0. In some instances, you 
might find it helpful to use a previously defined VECTOR for the parameter list.  

 
Step 2. The formula needs to be specified. This is accomplished using the FRML instruction. 

The syntax for FRML is: 
 

FRML(options)  formulaname   depvar  =  function(t) 
 
where:  
formula name  = the name you choose to give to the formula 
depvar = dependent variable 
function(t)  = the function to be estimated 
 
In the example above, equation_1 is the name of the formula to be estimated, y is the 
dependent variable and the equation to be estimated is: alpha*x**beta. It would also be 
possible to omit the depvar field and use: FRML equation_1 = alpha*x**beta.  
 
The most useful options for nonlinear least squares estimate are: 
 
LASTREG/[NOLASTREG] Converts the last regression estimated into a formula. 
EQUATION=equation to convert Converts the indicated linear equation to a formula. 

(Use only after estimating the equation). 
  
Step 3. RATS requires initial guesses for the parameters to be estimated. This is accomplished 

using COMPUTE.  
 
Step 4. Instruct RATS to estimate the FRML using the NLLS instruction. The syntax is: 
 

NLLS(frml=formulaname, other options)  depvar   start  end   residuals  coeffs 
 
where:   
depvar Dependent variable used on the FRML instruction. 
start end Range to estimate. 
residuals  Series to store the residuals (Optional). 
coeffs Series to store the estimated coefficients (Optional). 
 
The principal options are: 

 
METHOD = [GAUSS]/SIMPLEX/GENETIC. GAUSS requires a twice 

differential function. USE SIMPLEX if you have convergence 
problems. It is possible to use SIMPLEX or GENETIC to refine the 
initial guesses before using GAUSS. 

 
ITERATIONS=  Maximum number of iterations to use. 
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ROBUSTERRORS/ As in LINREG, this option calculates a 
  [NOROBUST] consistent estimate of the covariance matrix. 

 
Note that NLLS defines most of the same internal variables as LINREG including %RSS, 
%BETA, %TSTATS and %NOBS. Moreover, NLLS defines the internal variable 
%CONVERGED. Note that %CONVERGED = 1 if the estimation converged and otherwise 
is equal to 0.  

 

4.1 Changing the Convergence Criteria 

 
Numerical optimization algorithms use iteration routines that cannot guarantee precise solutions 
for the estimated coefficients. Various types of ‘hill-climbing’ methods are used to find the 
parameter values that maximize a function or minimize the sum of squared residuals. If the 
partial derivatives of the function are near zero for a wide range of parameter values, RATS may 
not be able to converge to the optimum point. Moreover, you should also be cautious of results 
indicating that convergence takes place in one iteration; the resulting parameter values and 
associated t-statistics are often unreliable. NLPAR allows you to select the various criteria RATS 
uses to determine when (and if) the solution converges. As such, the NLPAR instruction allows 
you to control the precision of your answers. There are three principal options for NLPAR; the 
syntax is:  
 
nlpar(options) 
 

CRITERION=  In the default mode, CRITERION=COEFFICIENTS. Here, convergence 
is determined using the change in the numerical value of the coefficients 
between iterations. Setting CRITERION= VALUE means that 
convergence is determined using the change in the value of the function 
being maximized. 

 
CVCRIT= Converge is assumed to occur if the change in the COEFFICIENTS or 

VALUE is less than the number specified. The default is 0.00001. 
 
SUBITERATIONS=Subiteration limit [30]. Limits the number of new coefficient vectors 

examined once a direction has been chosen. You should increase the 
limit only if requested by RATS. 

 
Note: CVCRIT and SUBITERATIONS are options for the NLLS and MAXIMIZE instructions. 
Unlike NLPAR, the convergence criterion is altered for this estimation only. 
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Examples:  
1.  nlpar(cvcrit=0.0001) 
 

Setting CVCRIT=0.0001 means that RATS will continue to search for the values of the 
coefficients that minimize the sum of squared residuals until the change in the coefficients 
between iterations is not more than 0.0001.  

 
2.  nlls(frml=equation_1, cvcrit=0.0001) y 
 

RATS will continue to search for the values of the coefficients that minimize the sum of 
squared residuals until the change in the coefficients between iterations is not more than 
0.0001. Unlike example 1, the convergence criterion is 0.0001 for this estimation only. The 
instruction nlpar(cvcrit=0.0001) changes the default criterion for all subsequent estimations.  

   
3.  nlpar(criterion=value,cvcrit=0.0000001) 
 

Setting CVCRIT=0.0000001 and CRITERION=VALUE means that RATS will continue to 
search for the values of the coefficients that minimize the sum of squared residuals until the 
change between iterations is less than 0.0000001. 

 

4.2 Examples of Nonlinear Least Squares 

 
1. The FRML instruction can include lagged dependent variables. For example, to estimate  

yt = α 1tyβ
−  + εt, you can use: 

 
nonlin alpha beta 
frml equation_1 y = alpha*y{1}**beta 
com alpha = 1.0 , beta = 0.5 
nlls(frml = equation_1) y  

 
2.  The NONLIN instruction allows you to impose restrictions on the parameters. To estimate 

31 2
1 2 3t t t t ty x x xαα αα ε= + , your first two instructions should be: 

 
nonlin alpha alpha1 alpha2 alpha3 
frml y = alpha*(x1**alpha1)*(x2**alpha2)*x3**alpha3 
 
To ensure α1 = α2 modify the NONLIN instruction such that: 
 
nonlin alpha alpha1 alpha2 alpha3 alpha1==alpha2 
 
To ensure that alpha2 in not negative, use: 
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nonlin alpha alpha1 alpha2 alpha3 alpha2>=0. 
 
or: 
 
nonlin alpha alpha1 alpha2 alpha3 alpha2.ge.0. 

 
3.  Suppose you are having difficulty estimating yt = α 1tyβ

− + εt. If NLLS does not converge, you 

can increase the number of iterations from the default value of 40, provide better initial 
guesses, use NLPAR or use an alternative estimation method. A useful way to obtain 
satisfactory initial guesses is to use the simplex or genetic estimation method for a few 
iterations and then switch to the GAUSS method. To apply this technique to the equation 
from example 1, use: 
  
nonlin alpha beta 
frml equation_1 y = alpha*y{1}**beta 
com alpha = 1.0 , beta = 0.5 
nlls(frml = equation_1,method=simplex,iters=5) y  
nlls(frml = equation_1) y 
 
The first NLLS instruction uses the simplex method to perform the estimation and the second 
uses these results as initial guesses.  

 
4. Time-series forecasters often estimate a nonlinear series using a quadratic or cubic trend. 

Alternatively, the series can be ‘linearized’ with a logarithmic or a square-root 
transformation. The appropriately transformed series can then be estimated with a linear time 
trend. The issue is to compare the ‘fit’ of the various models. The first four lines of Program 
1.2 on the file CHAPTER1.PRG read in the data set MONEY_DEM.XLS. If you plot the 
series rgdp, you will notice that the trend appears to be nonlinear. The next four instructions 
of the program plot the time paths of log(rgdpt) and (rgdpt)

0.5: 
 
log rgdp / lrgdp  ; * Log transformation 
sqrt rgdp / rgdp_rt  ; * Square root transformation 
gra(overlay=line, header='Linearized RGDP?', key=below, patterns) 2 
# lrgdp; # rgdp_rt 
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Each series seems to be linear; as such, the most appropriate transformation may not be clear. 
Hence, you might try estimating rgdpt using the following three forms:  
 
rgdpt = α0 + α1time + α2time2  ;* Quadratic trend 
lrgdpt = α0 + α1time   ;* Log transformation 
rgdp_rtt = α0 + α1time  ;* Square root transformation 
 
A problem arises in comparing the three estimates since each uses a different dependent 
variable. Instead, it is possible to estimate the last two equations in the form:8 
 
 0 1exp( )t trgdp time eα α= + +  ;* Exponential trend 

 
and:  
 
 2

0 1( )trgdp timeα α= + + et  ;* Squared trend  

  
You can estimate the quadratic specification using: 
 
set time = t ; set t2 = t*t 

                                                 
8 The squared trend model is equivalent to rgdpt = 2 2 2

0 0 1 12 ttime timeα α α α ε+ + + . In fact, this is a 

quadratic trend with only two free coefficients.  



    Linear and Nonlinear Estimation 27 

 

lin(noprint) rgdp; # constant time t2 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
 
The aic =   2596.41409 and sbc =   2605.80379 

 
To estimate the exponential specification, use the following four instructions: 
  
nonlin a0 a1  
frml model_2 rgdp = exp(a0 + a1*time) 
com a0 = 1. , a1 = 0.1 
nlls(frml=model_2) rgdp 
 
  Variable   Coeff       Std Error      T-Stat       Signif 
************************************************************ 
1. A0     7.8099164840  0.0064018809  1219.94092  0.00000000 
2. A1     0.0078135227  0.0000509728   153.28810  0.00000000 

 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
 
The aic =   2566.27519 and sbc =   2572.53499 

 
As such, the both the AIC and SBC select the exponential specification over the quadratic 
specification. The square root specification can be estimated using: 
 
nonlin a0 a1  
frml model_3 rgdp = (a0 + a1*time)**2 
com a0 = 1. , a1 = 0.1 
nlls(frml=model_3) rgdp 
 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
 
The aic =   2649.14346 and sbc =   2655.40326 

 
Note that the AIC and SBC rate this model as the one with the poorest fit.  

 
5. The Logistic Smooth Transition Autoregressive (LSTAR) Model: The LSTAR model 

generalizes the standard autoregressive model to allow for a varying degree of autoregressive 
decay. In its simplest form, the LSTAR model can be represented by:9 

 

                                                 
9 To allow the threshold τ to be something other than zero, use: [ ] 1

11 exp ( )t= + yθ γ τ
−

− −   
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where: ( ) 1

1[1 exp ]t= + - y  θ γ −
− ����������������	�
����
�����
�� 

  
In the limit, as γ → 0 or ∞, the LSTAR model becomes an AR(p) model since each value of � 
is constant. As yt-1 → - ∞, � → 0 so that the behavior of yt is given by α0 + α1yt-1 + … + αpyt-p 
+ εt. Similarly, as yt-1 → + ∞, ��→ 1 so that the behavior of yt is given by (α0 + β0) + (α1 + β1) 

yt-1 + … + (αp + βp) yt-p + εt. For intermediate values of γ, the degree of autoregressive decay 
depends on the value of yt-1. 
 
You can see the effects of γ using Program 1.3 on the file CHAPTER1.PRG. Since we are not 
interested in using calendar dates, we omit the CAL instruction. The first instruction sets the 
default length of a series to 101 entries. The second instruction creates the series y; since t 
runs from 1 to 101, y runs from –5.0 to +5.0. Each of the next four SET instructions creates a 
series representing � as a function of γyt for γ = 0.5, 1, 2.0 and 5.0.  
 
all 101 
set y = -5.1 + 0.1*t 
set theta1 = (1 + exp(-0.5*y))**-1 
set theta2 = (1 + exp(-y))**-1 
set theta3 = (1 + exp(-2*y))**-1 
set theta4 = (1 + exp(-5*y))**-1 
 
The remainder of the program creates a scatter diagram of the various functions of ���Note 
that γ acts as a smoothness parameter; for yt near zero, movements in yt have small effects on 
� when γ is small.  
 
com labels = || ' 0.5' , '1.0', '2.0', '5.0,' || 
scatter(header='Effects of Gamma on 
Theta',style=lines,patterns,klabels=labels,key=below, $ 
  vlabel='THETA',hlabel='GAMMA') 4 
# y theta1 ; # y theta2 ; # y theta3 ; # y theta4 
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Now, use Program 1.4 to read in MONEY_DEM.XLS. Form the logarithmic change in M3 
and call the resulting series dlm3: 
 
set dlm3 = log(m3) - log(m3{1}) 
 
Next, estimate dlm3t as an AR(1) process and obtain the AIC and SBC using: 
 
lin dlm3 / resids ; # constant dlm3{1}  
 
 Variable        Coeff        Std Error     T-Stat    Signif 
************************************************************* 
1. Constant   0.0030875133  0.0009012005   3.42600  0.00077312 
2. DLM3{1}    0.8436040010  0.0424922667  19.85312  0.00000000 

 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
 
The aic =   -908.23350 and sbc =   -901.99752 
 
Diagnostic checking of the residuals reveals no evidence of any significant autocorrelations. 
However, as correlation coefficients are measures of linear association, it is possible that 
money supply growth displays nonlinear adjustment. As such, we might want to estimate 
dlm3t as the following LSTAR model: 
 

0 1 1
0 1 1

1

3 3
1 exp( )

t
t t t

t

dlm3
dlm dlm

dlm3

β βα α ε
γ

−
−

−

+= + + +
+ −
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Consider the following instructions: 
 
nonlin a0 a1 b0 b1 gamma gamma.ge.0. 
frml lstar dlm3 = a0 + a1*dlm3{1} + ( b0 + b1*dlm3{1})/(1+exp(-gamma*(dlm3{1}))) 
lin(noprint) dlm3 ; # constant dlm3{1} 
com a0 = %beta(1), a1 = %beta(2), b0 = 1. , b1 = 1., gamma = 500. 
 
The NONLIN instruction indicates that we want to estimate the five parameters a0, a1, b0, b1 
and gamma. Moreover, the value of gamma is constrained to be greater or equal to zero. The 
FRML instruction creates the desired formula and assigns it the name lstar. Next, we need the 
initial guesses. The LINREG instruction estimates dlm3t as an AR(1) model. The COMPUTE 
instruction uses these estimates to obtain the initial guesses for a0 and a1. The initial guesses 
for b0 and b1 were obtained by trial-and-error. The NLLS instruction below instructs RATS 
to estimate dlm3t using the formula named lstar. 
 
nlls(frml=lstar) dlm3 / resids 
 
Dependent Variable DLM3 
Variable      Coeff      Std Error    T-Stat     Signif 
************************************************************** 
1. A0       -0.0026210   0.0031396   -0.83479  0.40506392 
2. A1       -1.6729950   0.6362132   -2.62961  0.00937179 
3. B0        0.0094409   0.0054145    1.74363  0.08312034 
4. B1        2.3815524   0.6026591    3.95174  0.00011560 
5. GAMMA   240.2373406  65.4646481    3.66973  0.00032915 

 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
 
The aic =   -909.99076 and sbc =   -894.40079 

 
The model appears satisfactory. The estimated values of a1, b1 and gamma are significant at 
conventional levels and the estimated value of b0 has a prob-value of 0.083. If you examine 
the autocorrelations of the residuals using CORRELATE, you will find that they are all 
insignificant at conventional levels. Moreover, in a linear AR(1) model, we require that the 
absolute value of the autoregressive coefficient be less than unity in absolute value. Here, the 
maximum and minimum values of dlm3t are -0.00538 and 0.03858, respectively. As such, the 
autoregressive coefficient α1 + β1/(1+exp(-γyt-1)) has a range of -0.90542 to 0.76053.  
 
The AIC selects the LSTAR model while the SBC selects the linear AR(1) model. Since a0 is 
not significant at conventional levels, we can re-estimate the model without this intercept 
term. Hence, modify the first two lines of the estimation procedure so as to eliminate a0: 
 
nonlin a1 b0 b1 gamma gamma.ge.0. 
frml lstar dlm3 = a1*dlm3{1} + ( b0 + b1*dlm3{1})/(1+exp(-gamma*(dlm3{1}))) 
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Now the NLLS estimation instruction yields: 
 
nlls(frml=lstar) dlm3 
 
  Variable      Coeff    Std Error     T-Stat   Signif 
************************************************************** 
1. A1        -1.3256892  0.5077631   -2.61084  0.00987429 
2. B0         0.0053999  0.0014724    3.66727  0.00033150 
3. B1         2.0864844  0.5009183    4.16532  0.00005029 
4. GAMMA    256.7862707  61.7734749   4.15690  0.00005199 
 

compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
dis 'The aic = ' aic ' and sbc = ' sbc 
The aic =   -911.59844 and sbc =   -899.12647 
 
All of the coefficients are significant at conventional levels. As measured by the AIC and 
SBC, there is little to choose between the alternative LSTAR models. Moreover, the SBC 
continues to select the AR(1) model. As such, there is only mild evidence that dlm3t displays 
LSTAR adjustment.  
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5. Maximum Likelihood Estimation 

 
Suppose you wanted to estimate: 
 
yt = βxt + εt ;  εt ~ N(0, σ2)  
 
Of course, the most straightforward technique is to use OLS. However, you could obtain the 
maximum likelihood maximum likelihood estimate of β and σ2 using the following instructions: 
 
NONLIN b var 
FRML l = -log(var) - (y - b*x)**2/var 
COMPUTE b = initial guess, var = initial guess 
MAXIMIZE L 
 
Notice that the steps to perform maximum likelihood estimation are very similar to those for 
nonlinear least squares. To obtain maximum likelihood estimates:  
 
Step 1. Specify the parameters to be estimated on a NONLIN instruction.  
 

In the example above, the NONLIN instruction prepares RATS to estimate the parameters b 
and var. (Since RATS cannot process Greek characters, b and var are used to denote β and 
σ2, respectively.) 

 
Step 2. Define the likelihood (or support) for observation t using a FRML statement.  
 

In the example above, if we are willing to assume that the values of {εt} are assumed to be 
normally distributed random variables that are independent of each other, the log likelihood 
of observation t is: 
 

2 2
2

1
(1/ 2) ln( 2 ) (1/ 2) ln ( )

2t tt           xyπ σ β
σ

Λ = − − − −  
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1
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T
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T
  T       xyσ β

σ =

− − −∑  

Hence, it is appropriate to use: FRML L = -log(var) - (y - b*x)**2/var 
 

 
Step 3. Set the initial values of the parameters using the COMPUTE command. 
 
Step 4. Use the MAXIMIZE instruction to maximize the formula defined in Step 2.  
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The MAXIMIZE instruction is the key to performing any maximum likelihood estimation. 
Suppose your data set contains T observations of the variables yt and xt and you have used the 
FRML instruction to define the function: 
  
 L = f(yt , xt; β) 
 
where: xt and β can be vectors (and xt can represent a lagged value of yt).  
 
MAXIMIZE������
����������������
������������������
��� 
 

 max ( )
T

tt
t=1

 f   ,  ;  y x β
β
∑  

 
The syntax and principal options of MAXIMIZE are: 
 
maximize(options)  frml  start  end  funcval 
 
where:  

frml   A previously defined formula 
start end The range of the series to use in the estimation 
funcval (Optional)  The series name for the computed values of f(yt, xt; β) 

 
The key options for our purposes are: 
 

METHOD= RATS is able to use any one of four different algorithms to find the 
maximum: BFGS, BHHH, GENETIC or SIMPLEX. 

 
ITERATIONS= The upper limit of the number of iterations used in the 

maximization. 
 
ROBUSTERRORS Computes a consistent estimate of the covariance matrix that  
   [NOROBUST] corrects for heteroscadesticity. 
 
CVCRIT = Convergence limit [0.00001]. Also note that NLPAR affects the 

MAXIMIZE instruction.  
 
TRACE/[NOTRACE] Prints the intermediate results including the values of the estimated 

coefficients and function values. This is useful for tracking 
convergence problems. 

  
MAXIMIZE produces a number of internal variables including %BETA, %TSTATS, %NOBS, 
%NREG, and %CONVERGED. In addition, the internal variable %FUNCVAL is equal to final 
value of the function being maximized. 
 
Note: You can use TEST and RESTRICT with the BFGS and BHHH options. Coefficients are 
numbered by their position in the NONLIN statement. 
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Examples10 
1. To estimate the model yt = αxt

β + εt use: 
 

NONLIN a b var 
FRML L = -log(var) - (y - a*x**beta)**2/var 
COMPUTE a = guess, b = guess, var = guess 
MAXIMIZE L  

 
2. Maximum Likelihood Estimates of the LSTAR Model: In constructing your model, it is often 

helpful to define the log likelihood function using several FRML statements instead of one 
complicated expression. To illustrate the procedure, recall that in the previous section, we 
estimated dlm3t as LSTAR model: 
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We can prepare to obtain the maximum likelihood estimates using the three instructions 
below. Notice that the NONLIN instruction is identical to the one we used for the NLLS 
estimation. As before, γ is restricted to be positive. However, there is no need to restrict var; 
the form of the log likelihood function is such that RATS will not find a negative value for 
var. The first FRML instruction creates the formula expression; note that expression is used 
in the second FRML instruction. In either case, you can obtain the desired formula for the log 
likelihood. However, breaking down a complicated formula into several smaller expressions 
is a useful way to prevent errors in your programs 
 
nonlin a0 a1 b0 b1 gamma var gamma.ge.0. 
frml expression = a0 + a1*dlm3{1} + (b0 + b1*dlm3{1})/(1+exp(-gamma*(dlm3{1}))) 
frml lstar = -log(var) - (dlm3 - expression)**2/var 
 
Next, a linear regression is estimated. The estimated intercept and slope coefficients are used 
as the initial guesses for a0 and a1. Unlike NLLS, we also need an initial guess for the 
estimated variance var. The LINREG instruction creates the internal variable %SEESQ equal 
to the standard error of estimate squared. This value is used as the initial guess for var. I had 
difficulty finding a solution using the BFGS method. As such, two different MAXIMIZE 
instructions are used. The first maximize instruction uses the SIMPLEX method to find the 
maximum likelihood estimates of a0 a1 b0 b1 gamma var. The second MAXIMIZE 
instruction uses these estimates as its initial guesses.  

 
lin(noprint) dlm3 ; # constant dlm3{1} 
com a0 = %beta(1), a1 = %beta(2), b0 = 1. , b1 = 1., gamma = 500. , var = %seesq  
maximize(iters=20,method=simplex) lstar  
maximize lstar 

                                                 
10 All of the examples in the remainder of this chapter are in Program 1.4 of the file 
CHAPTER1.PRG. 
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MAXIMIZE - Estimation by Simplex 
Quarterly Data From 1959:01 To 2001:01 
Usable Observations    167 
 Total Observations    169      Skipped/Missing        2 
Function Value                    1603.41185675 
 
   Variable                     Coeff 
***************************************** 
1.  A0                         0.00277148 
2.  A1                         0.19562779 
3.  B0                         0.00035734 
4.  B1                         0.64739304 
5.  GAMMA                    349.87711434 
6.  VAR                        0.00002487 
 
MAXIMIZE - Estimation by BFGS 
Convergence in    36 Iterations. Final criterion was  0.0000000 <  0.0000100 
Quarterly Data From 1959:01 To 2001:01 
Usable Observations    167 
 Total Observations    169      Skipped/Missing        2 
Function Value                    1607.69576372 
 
   Variable            Coeff       Std Error      T-Stat     Signif 
********************************************************************** 
1.  A0               -0.0026446    0.0032940     -0.80285  0.42206111 
2.  A1               -1.6780205    0.6332808     -2.64973  0.00805571 
3.  B0                0.0094796    0.0058559      1.61881  0.10548832 
4.  B1                2.3860318    0.5841316      4.08475  0.00004412 
 

 
The estimated coefficients and their associated t-statistics are very similar to those obtained 
from NLLS. Notice that we also have an estimate of the variance equal to 0.0000243.  

 
3. Maximum Likelihood Estimation of Moving Average Processes: It is straightforward to use 

maximum likelihood estimation to estimate a model with unobserved components. Consider 
the simple MA(1) model:11 

 
yt = εt + β1εt-1  
 
Since the {εt} sequence is unobserved, it is not possible to use LINREG or NLLS to estimate 
the process. To estimate β1 using maximum likelihood techniques, it is necessary to construct 
a formula of the form εt = yt - β1εt-1. However, the following is an illegal statement because et 
is defined in terms of its own lagged value (a nonresolvable recursive expression):  
 
frml e = y – b1*e{1} 
 

                                                 
11 The RATS instruction BOXJENK is the most useful way to estimate standard ARMA(p, q) 
models. The aim of this example is to illustrate the use of a SUBFORMULA on the FRML 
instruction.  
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The way to circumvent this problem is to create a “placeholder” series using the SET 
instruction. Then, define the desired formula in terms of the placeholder series. Finally, use a 
SUBFORMULA to equate the placeholder and the desired series. For example, a simple way 
to create the formula for the MA(1) process is:  
 
set temp = 0.0 
nonlin b1 var 
frml e = y – b1*temp{1} 
frml L = (temp = e), -log(var) - e**2/var 
 
The SET instruction generates the placeholder series temp containing all zeros. The first 
FRML instruction defines the desired relationship such that et is equal to yt – b1temp{1}. The 
second FRML statement uses the SUBFORMULA to equate temp with e (so that et = yt –  
b1et-1) and creates the log likelihood L. The way to conceptualize the process is to suppose 
you knew β and var and wanted to construct the log likelihood function: 
 

2
1 1

2

log(var) ( ) / var
T

t t t
t

y β ε −
=
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One way to construct the sum would be to loop over the following three instructions 
beginning with t = 2: 
 
εt = yt - β1tempt-1 
tempt = εt 

Lt = - log(var) – (εt)
2/var 

 
The first time through the loop, t = 2 so that ε2 = y2 - β1temp1, temp2 = ε2 and L2 = -log(var) - 
(ε2)

2/var. The next time through the loop, t = 3 and ε3 = y3 - β1temp2 = y3 - β1ε2. Hence, temp3 
= ε3 and L3 = - log(var) – (ε3)

2/var. Continuing through t = T, yields the values L2, L3 , … LT. 
The sum of these values yields the desired log likelihood function Λt. 
 
To illustrate the procedure, recall that the change in the 3-month interest rate (drs) was 
estimated as an AR(7) process. It turns out that a more parsimonious representation of the 
series is: 
 
drst = α1drst-1 + α7drst-7 + εt + β1εt-1 

 
This ARMA model can be estimated using the six instructions listed below. The SET 
instruction is used to create the series temp containing all zeros. The NONLIN instruction 
prepares RATS to estimate a1, a7, b1 and var. The first FRML instruction creates the desired 
formula such that et is equal to drst – a1drst-1 – a7drst-7 – b1tempt-1. The second FRML 
statement uses a SUBFORMULA to equate temp with e (so that the ‘next time through the 
loop’ tempt = et) and creates the formula L = - log(var) – e2/var. When you use a placeholder, 
you need to properly specify the start end dates on the MAXIMIZE instruction. In the case at 
hand, one usable observation is lost as a result of differencing and another seven usable 
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observations are lost as a result of the term drst-7. Since eight usable observations are lost, the 
maximization must begin in period 9. If you omit the start end dates, or begin with a starting 
date less than 9, you will obtain the error message: 
 
## SR10. Missing Values And/Or SMPL Options Leave No Usable Data Points 
 
set temp = 0. 
nonlin a1 a7 b1 var 
frml e = drs - a1*drs{1} - a7*drs{7} – b1*temp{1} 
frml L = (temp=e), -log(var) - (e)**2/var 
com a1 = 0.4, a7 = -.3, b1 = .5, var = 1. 
max L 9 * 
 

MAXIMIZE - Estimation by BFGS 
Convergence in    14 Iterations. Final criterion was  0.0000025 <  0.0000100 
Quarterly Data From 1961:01 To 2001:01 
Usable Observations    161 
Function Value                     -46.71000012 
 
   Variable            Coeff       Std Error      T-Stat     Signif 
********************************************************************* 
1.  A1             -0.337729340  0.071464518     -4.72583  0.00000229 
2.  A7             -0.352966296  0.051912480     -6.79926  0.00000000 
3.  B1              0.817502905  0.044594888     18.33176  0.00000000 
4.  VAR             0.491705037  0.038656437     12.71987  0.00000000 

 

The same technique is used for estimating a higher-order MA(q) process. Suppose you wanted 
to estimate the spread as: 
 
drst = α1drst-1 + α7drst-7 + εt + β1εt-1 + β2εt-2 

 
Now, the NONLIN instruction contains the coefficient b2. The first FRML instruction uses 
temp{1} and temp{2} as placeholders for et-1 and et-2. The second FRML instruction creates 
the desired log likelihood and the COMPUTE instruction provides the initial guesses. Notice 
that the start date can remain at 9 since no usable observations are lost from the MA terms.   
 
set temp = 0. 
nonlin a1 a7 b1 b2 var 
frml e = drs - a1*drs{1} - a7*drs{7} - b1*temp{1} - b2*temp{2} 
frml L = (temp=e), -log(var) - (e)**2/var 
com a1 = 0.4, a7 = -.3, b1 = .5, b2 = 0.3, var = 1. 
max L 9 * 

 
4. A Bilinear(1,1) Model of the Money Supply: Given that dlm3t seems to exhibit nonlinear 

behavior, it might be desirable to estimate an alternative nonlinear specification. The bilinear 
model generalizes the standard ARMA(p, q) model by allowing for an interaction among the 
AR and MA terms. Consider the following bilinear(1,1) specification for dlm3t:  
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 dlm3t = α1dlm3t-1 + εt + β1εt-1 + c1dlm3t-1εt-1 
 
The bilinear specification is a way to allow for nonlinear adjustment. In a period with εt-1 = 0, 
the autoregressive coefficient is α1 and the moving average coefficient is β1. However, the 
presence of the interaction term c1dlm3t-1εt-1 means that the degree of autoregressive decay 
and the coefficients of the moving average will change over time. To estimate the bilinear 
model, you can use: 
 
set temp = 0. 
nonlin a1 b1 c1 var  
frml e = dlm3 - a1*dlm3{1} - b1*temp{1} - c1*dlm3{1}*temp{1} 
frml L = (temp=e), -log(var) - (e)**2/var 
 
Since the bilinear specification contains an MA term, it is necessary to use the placeholder 
temp. The NONLIN instruction prepares RATS to estimate the four parameters a1, b1, c1 and 
var. The first FRML instruction creates the formula et as dlm3t - α1dlm3t-1 - β1et-1 - c1dlm3t-1et-

1. The second FRML instruction uses a SUBFORMULA to equate tempt and et and to create 
the log likelihood function. The following COMPUTE instruction provides the initial guesses. 
For this example, the BFGS method does not work well unless the initial guesses are quite 
good. As such, the initial guesses are refined using the SIMPLEX method and the final 
estimates are reported using the default BFGS method. Notice that the maximization begins 
with observation three (one usable observation is lost as a result of differencing and another is 
lost as a result to the term dlm3t-1).  
 
com a1 = .8, b1 = 0., c1 = 0.1, var = 0.01 
max(method=simplex,iters=4) L 3 * 
max L 3 * 
 

MAXIMIZE - Estimation by BFGS 
Convergence in    32 Iterations. Final criterion was  0.0000095 <  0.0000100 
Quarterly Data From 1959:03 To 2001:01 
Usable Observations    167 
Function Value                    1590.80067422 
 
   Variable          Coeff       Std Error      T-Stat     Signif 
******************************************************************* 
1.  A1            0.976977877  0.013236303     73.81048  0.00000000 
2.  B1           -0.273500979  0.134326080     -2.03610  0.04174058 
3.  C1            9.121528605  5.860399296      1.55647  0.11959666 
4.  VAR           0.000026837  0.000002077     12.92295  0.00000000 
 

 
You can see that the bilinear coefficient c1 is not significant at conventional levels. As such, 
it does not appear that the bilateral model is a satisfactory representation of the {dlm3t} 
sequence. One word of caution is in order since it appears that β1 is significant at the 5% 
level. However, it does not follow that dlm3t follows an ARMA(1,1) process. Since dlm3t-1εt-1 
is correlated with εt-1 the individual t-statistics can be misleading. In fact, if you eliminate the 
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bilinear coefficient c1 and estimate dlm3t as a pure ARMA(1,1) model, the MA(1) coefficient is 
insignificant. To illustrate the point, consider: 
 
set temp = 0. 
nonlin a1 b1 var 
frml e = dlm3 - a1*dlm3{1} - b1*temp{1} 
frml L = (temp=e), -log(var) - (e)**2/var 
com a1 = .8, b1 = 0., var = 0.01 
max(method=simplex,iters=4) L 3 * 
max L 3 * 

 
   Variable           Coeff       Std Error      T-Stat     Signif 
******************************************************************** 
1.  A1                0.9799       0.0125       78.12362  0.00000000 
2.  B1               -0.0965       0.0653       -1.47713  0.13964074 
3.  VAR               2.7033e-05   2.0527e-06   13.16948  0.00000000 
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6. GARCH Models 

 
Suppose you want to estimate a simple regression model with an ARCH(1) error process: 
 
 yt = β0 + β1xt + εt 
 

where: 2
0 1 1t t tvε α α ε −= +  and vt ~ WN(0, 1).  

 
Since vt is white-noise, Et-1εt = 0 and Et-1

2
tε  ≡ ht = α0 + α1

2
1tε − . Hence, the desired formula for 

the log likelihood of yt can be written in the form:  
 
 - log(ht) – log( 2

tε )/ht 

 
The autocorrelation function of the residuals is not satisfactory for detecting ARCH errors. 
Correlations measure linear association and ARCH errors manifest themselves in the 
autocorrelations of the squared residuals. The Lagrange Multiplier (LM) test for ARCH 
disturbances has been proposed by Engle (1982). After you have estimated the most appropriate 
model for yt, save the residuals. Suppose you have estimated the model: 
 
lin y / resids ; # constant x 
 
Then obtain the square of the residuals and regress these squared residuals on a constant and on 
n lagged values of the squared residuals. For example, if n = 4: 
 
set r2 = resids**2 
lin r2 
# constant r2{1 to 4} 
 
If there are no ARCH or GARCH effects, this regression will have little explanatory power so 
that the coefficient of determination (i.e., the usual R2-statistic) will be quite low. With a sample 
of T residuals, under the null hypothesis of no ARCH errors, the test statistic TR2 converges to a 
χ2 distribution with n degrees of freedom. If TR2 is sufficiently large, rejection of the null 
hypothesis is equivalent to rejecting the null hypothesis of no GARCH errors. On the other hand, 
if TR2 is sufficiently low, it is possible to conclude that there are no ARCH effects.  
 
Since LINREG creates the internal variables %NOBS (i.e., T) and %RSQUARED (R2), you can 
easily compute TR2 and the significance of trsq�����2 with 4 degrees of freedom with: 
 
compute trsq = %nobs*%rsquared  
cdf chisqr trsq 4 
  
Here, the CDF instruction calculates the marginal significance of trsq����������2 distribution with 
4 degrees of freedom. The syntax for CDF is: 
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CDF distribution   statistic  degree1   degree2 
 
where:  

distribution  The desired F, t, χ2 or normal distribution is selected using: FTEST, 
TTEST, CHISQ, or NORMAL.  

statistic  The value of the test statistic. 
degree1 Degrees of freedom for TTEST and CHISQ or numerator degrees of 

freedom for FTEST. 
degree2  Denominator degrees of freedom for FTEST. 

  
The six instructions below can be used to estimate a regression with ARCH(1) errors. The 
NONLIN instruction indicates that the four parameters a0, a1, b0 and b1 are to be estimated. 
The three FRML instructions create the appropriate log likelihood. The first FRML instruction 
defines et as yt - b0 - b1xt. The second defines the conditional variance h as an ARCH(1) process. 
The third uses the definitions of e and h to define the log likelihood function L. The MAXIMIZE 
command instructs RATS to find the maximum likelihood estimates of a0, a1, b0 and b1.  
 
nonlin a0 a1 b0 b1 
frml e = y – b0 - b1*x 
frml h = a0 + a1*e(t-1)**2 
frml L = - log(h) - log(e**2)/h 
com initial guesses 
max L 2 * 
 

6.1 Examples of GARCH Processes 

 
1. An ARCH Model of the Spread: If you continue to enter the instructions on Program 1.4, you 

can form the difference between the 1-year rate and the 3-month rate as: 
 

set spread = tb1yr - tb3mo 
 
It appears that an AR(3) model of the spread is quite reasonable. Consider: 
 
lin spread / resids; # constant spread{1 to 3} 

 
   Variable            Coeff       Std Error      T-Stat     Signif 
*********************************************************************** 
1.  Constant         0.047619130  0.024652597      1.93161  0.05517527 
2.  SPREAD{1}        0.890042258  0.078014946     11.40861  0.00000000 
3.  SPREAD{2}       -0.318602488  0.101791701     -3.12995  0.00207856 
4.  SPREAD{3}        0.161545395  0.077536269      2.08348  0.03879731 
 

The individual autocorrelations and Ljung-Box Q-statistics of the residuals indicate that there 
is no serial correlation in the residual series. The first twelve autocorrelations and the 
associated Q-statistics can be obtained from: 
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cor(number=12,span=4,qstats) resids 
 

Correlations of Series RESIDS 
Quarterly Data From 1959:03 To 2001:01 
Autocorrelations 
     1:  0.0177090 -0.0072871  0.0877679 -0.0372146  0.0197141 -0.1939013 
     7: -0.0416785  0.0473398 -0.0010301 -0.0979544 -0.1078251  0.0908990 
 
Ljung-Box Q-Statistics 
Q(4)   =          1.6279.  Significance Level 0.80377726 
Q(8)   =          8.9906.  Significance Level 0.34309102 
Q(12)  =         14.3235.  Significance Level 0.28052925 

 
Nevertheless, ARCH errors manifest themselves in the autocorrelations of the squared 
residuals. You can form the squared residuals and perform the Lagrange multiplier test using: 
 
set r2 = resids**2 
lin r2 ; # constant r2{1 to 3}  
 
   Variable           Coeff        Std Error      T-Stat    Signif 
********************************************************************** 
1.  Constant       0.046242482    0.018049071      2.56204  0.01132890 
2.  R2{1}          0.217038776    0.078030863      2.78145  0.00606210 
3.  R2{2}         -0.025838287    0.079861347     -0.32354  0.74670932 
4.  R2{3}          0.159631091    0.077999507      2.04657  0.04233716 
 

To test the restriction that the coefficients for the 3-lagged values of r2 all equal zero, use: 
 
compute trsq = %nobs*%rsquared  
cdf chisqr trsq 3 
 
Chi-Squared(3)=     11.981860 with Significance Level 0.00744556 

 
Since we reject the null hypothesis of no ARCH errors, we can try to estimate the spread using 
the following specification: 

 
spreadt = α0 + α1spreadt-1 + α2spreadt-2 + α3spreadt-3 + εt 

 
2 2 2

0 1 1 2 2 3 3t t t t tv b b b bε ε ε ε− − −= + + +   

 
and  vt ~ WN(0 , 1).  
 
As such Et-1εt = 0 and 2 2 2 2

1 0 1 1 2 2 3 3t t t t t tE h b b b bε ε ε ε− − − −≡ = + + + . The NONLIN instruction 

prepares RATS to estimate the six parameters a0, a1, a2, a3, b0, b1, b2, and b3. Since the 
coefficients in ht cannot be negative, b0, b1, b2, and b3 are constrained to be non-negative.12 
The first FRML creates et as spreadt - a0 - a1*spreadt-1 - a2*spreadt-2 - a3*spreadt-3. The 

                                                 
12 If any of these coefficients is zero, it becomes possible to estimate a negative value for the 
conditional variance.  
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second FRML creates the ARCH(3) model for the conditional variance and the third creates 
the log likelihood.  
 
nonlin  a0 a1 a2 a3 b0 b1 b2 b3 b0.ge.0. b1.ge.0. b2.ge.0. b3.ge.0. 
frml e = spread - a0 - a1*spread{1} - a2*spread{2} - a3*spread{3} 
frml h = b0 + b1*e{1}**2 + b2*e{2}**2 + b3*e{3}**2 
frml L =  -log(h) - (e)**2/h 
 
A linear regression (without ARCH errors) is used to obtain the initial guesses for a0, a1, a2, 
a3 and b0. The initial guesses are refined using the SIMPLEX method and the final estimates 
are reported using the default BFGS method. Notice that we do not need to specify the start 
end dates here. The maximization begins with observation nine (three usable observations are 
lost as a result of the term spreadt-3, another three are lost as a result of the term et-3, and two 
are missing since tb1yr begins in period 3.).  
 
lin(noprint) spread ; # constant spread{1 to 3} 
com a0 = %beta(1), a1 = %beta(2), a2 = %beta(3), a3 = %beta(4) , $ 
b0 = %seesq, b1 = 0.2,  b2 = 0.2, b3 = 0.2 
max(method=simplex,iters=4) L  
max(iters=200) L   

 
MAXIMIZE - Estimation by BFGS  
Convergence in    26 Iterations. Final criterion was  0.0000058 <  0.0000100 
Quarterly Data From 1959:01 To 2001:01 
Usable Observations    161 
 Total Observations    169      Skipped/Missing        8 
Function Value                     317.68938352 
 
   Variable          Coeff       Std Error      T-Stat     Signif 
******************************************************************** 
1.  A0            0.057038155  0.014792370      3.85592  0.00011530 
2.  A1            0.793283630  0.066602420     11.91073  0.00000000 
3.  A2           -0.144647372  0.085452808     -1.69272  0.09050946 
4.  A3            0.100323333  0.052534251      1.90967  0.05617510 
5.  B0            0.022879390  0.003589145      6.37461  0.00000000 
6.  B1            0.203326143  0.119328231      1.70392  0.08839543 
7.  B2            0.102314211  0.081292747      1.25859  0.20817858 
8.  B3            0.446546881  0.112246500      3.97827  0.00006942 
 

 
2. The ARCH-M model: Engle, Lilien, and Robbins (1987) developed the ARCH in Mean 

(ARCH-M) model to allow the conditional variance of an asset’s return to affect the expected 
return. The idea is that an increase in risk (as measured by an increase in the conditional 
volatility of the asset’s returns) should increase the expected reward for holding the asset. If rt 
is the one-period excess return from holding the asset and ht the conditional volatility, they 
estimate a model in the form: 

 
rt = β0 + β1ht + εt 
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ht = α0 + α1(0.4 2
1tε − + 0.3 2

2tε − + 0.2 2
3tε − + 0.1 2

4tε − ) 

 
 The appropriate FRML instructions to estimate this model are: 
 
frml e = r - b0 - b1*h 
�
�
������������������� �!��"�����#�� "!��"�����"�� #!��"�������� �!��"� 
 
$�����
����������������������t as rt - β0 - β1ht. If β1 is positive, increases in risk (as measured 
by ht) increase the expected return. The second statement defines the conditional variance.  

 
3. An IGARCH Model of the Spread: The specification for the spreadt used above required four 

coefficients to estimate the conditional variance ht. A more parsimonious specification is the 
GARCH(1, 1) model: 

 
spreadt = α0 + α1spreadt-1 + α2spreadt-2 + α3spreadt-3 + εt 

 
 2

0 1 1 1 1t t th b b c hε − −= + +  

 
Notice that it is not possible to define ht using a FRML statement. As in the case of a MA 
model, the following is an illegal statement because ht is defined in terms of its own lagged 
value:  
frml h = b0 + b1*e{1}**2 + c1*h{1} 
 
The appropriate solution is to use a placeholder for h{1}. As such, the SET statement 
initializes the series temp to be zero. NONLIN prepares RATS to estimate the parameters a0, 
a1, a2, a3, b0, b1, and c1. The NONLIN instruction restricts b0, b1 and c1 to be positive. The 
first FRML instruction creates et as the AR(3) model of the spread. The second FRML 
instruction creates the conditional variance as: ht = b0 + b1*e{1}**2 + c1*temp{1}. The third 
FRML statement uses a SUBFORMULA to equate tempt with ht and to define the log 
likelihood Lt.  
 
set temp = 0. 
nonlin  a0 a1 a2 a3 b0 b1 c1 b0.ge.0. b1.ge.0. c1.ge.0.   
frml e = spread - a0 - a1*spread{1} - a2*spread{2} - a3*spread{3} 
frml h = b0 + b1*e{1}**2 + c1*temp{1} 
frml L = (temp = h), -log(temp) - (e)**2/temp 
 
After initializing the parameters with the LINREG and COMPUTE instructions, the first 
MAXIMIZE instruction refines the initial guesses with the SIMPLEX method. The second 
obtains the final estimates using to BFGS method:  
 
lin(noprint) spread ; # constant spread{1 to 3} 
com a0 = %beta(1), a1 = %beta(2) , a2 = %beta(3), a3 = %beta(4) , b0 = %seesq, $ 
b1 = 0.2,  c1 = 0.5 
max(method=simplex,iters=5) L 7 * 
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max(iters=200) L  7 * 
 

MAXIMIZE - Estimation by BFGS 
Convergence in    26 Iterations. Final criterion was  0.0000017 <  0.0000100 
Quarterly Data From 1960:03 To 2001:01 
Usable Observations    163 
Function Value                     332.16269201 
 
   Variable          Coeff       Std Error      T-Stat     Signif 
********************************************************************** 
1.  A0             0.047084962  0.013313562      3.53662  0.00040529 
2.  A1             0.881755754  0.055770333     15.81048  0.00000000 
3.  A2            -0.242706983  0.075485128     -3.21530  0.00130310 
4.  A3             0.133517900  0.055961728      2.38588  0.01703837 
5.  B0             0.001382754  0.000804149      1.71952  0.08551898 
6.  B1             0.204112593  0.040165933      5.08173  0.00000037 
7.  C1             0.806864043  0.028403811     28.40689  0.00000000 
 

 
Notice that the estimated values of b1 and c1 are such that their sum exceeds unity. It is 
possible to estimate an IGARCH(1,1) model by restricting b1 + c1 = 1. The only modification 
needed is to replace the NONLIN instruction above with: 
 
nonlin  a0 a1 a2 a3 b0 b1 c1 b0.ge.0. b1.ge.0. c1.ge.0.  b1+c1.eq.1. 
 
 If you re-estimate the model you will find: 
 
max(iters=200) L  7 * 
 

MAXIMIZE - Estimation by BFGS 
Convergence in    25 Iterations. Final criterion was  0.0000027 <  0.0000100 
Quarterly Data From 1960:03 To 2001:01 
Usable Observations    163 
Function Value                     332.09657868 
 
   Variable         Coeff       Std Error      T-Stat     Signif 
******************************************************************** 
1.  A0            0.047285026  0.013536155      3.49324  0.00047720 
2.  A1            0.880737529  0.056049098     15.71368  0.00000000 
3.  A2           -0.243572528  0.075258624     -3.23647  0.00121017 
4.  A3            0.136373691  0.053798145      2.53491  0.01124748 
5.  B0            0.001590978  0.000591367      2.69034  0.00713794 
6.  B1            0.193993102  0.029293592      6.62237  0.00000000 
7.  C1            0.806006898  0.029293592     27.51479  0.00000000 
 

 
4. An ARMA(1,1)-IGARCH(1,1) Model of the Spread: As a final example for this section, 

suppose you want to estimate the spread as an ARMA(1,1) model with IGARCH(1,1) errors:  
 

spreadt = α0 + α1spreadt-1 + εt + βεt-1 
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 2
0 1 1 1 1t t th b b c hε − −= + +  

 
Now it is necessary to use two placeholders; one for et-1 and another for ht-1. In the program 
below, temp1 is the placeholder in the equation for εt = spreadt - α0 - α1spreadt-1 - βεt-1. As 
such, the first FRML instruction creates et as spreadt - a0 - a1*spread{1} - beta*temp1{1}. 
Similarly, the second FRML instruction uses the placeholder temp2 to create the conditional 
variance as h = b0 + b1*e{1}**2 + c1*temp2{1}. The third FRML instruction uses two 
SUBFORMULAS; the first equates temp1t with et and the second equates temp2t with ht.  
 
set temp1 = 0.  ; set temp2 = 0. 
nonlin  a0 a1 beta b0 b1 c1 b0.ge.0. b1.ge.0. c1.ge.0.  b1+c1 == 1. 
frml e = spread - a0 - a1*spread{1} - beta*temp1{1} 
frml h = b0 + b1*e{1}**2 + c1*temp2{1} 
frml L = (temp1 = e), (temp2 = h), -log(temp2) - (temp1)**2/h 
 
The next two instructions are used to initialize the parameters. For now, it is sufficient to note 
that the BOX(constant,ar=1,ma=1,noprint) spread instruction estimates an ARMA(1,1) model 
of the spread without GARCH errors. The initial guesses for a0, a1, beta and b0 are taken 
from this ARMA(1,1) model. Finally, the MAXIMIZE instructions are used to obtain the 
maximum likelihood estimates. 
 
box(constant,ar=1,ma=1,noprint) spread 
com a0 = %beta(1), a1 = %beta(2) , beta = %beta(3),  b0 = %seesq, b1 = 0.2,  c1 = 0.5 
max(method=simplex,iters=5) L 7 * 
max(iters=200) L  7 * 
 

MAXIMIZE - Estimation by BFGS 
Convergence in    31 Iterations. Final criterion was  0.0000050 <  0.0000100 
Quarterly Data From 1960:03 To 2001:01 
Usable Observations    163 
Function Value                     330.04737868 
 
   Variable         Coeff       Std Error      T-Stat     Signif 
******************************************************************* 
1.  A0           0.0673437939 0.0205030899      3.28457  0.00102139 
2.  A1           0.6930927974 0.0663996430     10.43820  0.00000000 
3.  BETA         0.2087641734 0.0987429689      2.11422  0.03449664 
4.  B0           0.0015160176 0.0006060467      2.50149  0.01236732 
5.  B1           0.1927189124 0.0318551475      6.04985  0.00000000 
6.  C1           0.8072810876 0.0318551475     25.34225  0.00000000 

 



 

 

Chapter 2: 
VARs and Error-Correction Models 
 
A vector autoregression (VAR) is a multivariate generalization of the single-equation 
autoregressive model. In the two-variable case, we can let the time path of the {yt} be affected by 
current and past realizations of the {zt} sequence and let the time path of the {zt} sequence be 
affected by current and past realizations of the {yt} sequence. Consider the following 2-variable 
1-lag VAR in standard form: 
 

yt = a
10

 + a
11

y
t-1

 + a
12

zt-1 + e
1t 

 
zt = a

20
 + a

21
y

 t-1
 + a22zt-1 + e

2t 
 
It is assumed that e1t and e2t are serially uncorrelated but the covariance Eet1e2t need not be zero. 
If the variances and covariance are time-invariant, we can write the variance/covariance matrix 
as: 
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where: Var(eit) = σii and Cov(e1t,e2t�����12����21. 

  
Note that the right-hand-sides of the VAR equations contain only pre-determined variables. 
Since the error terms are serially uncorrelated with constant variances, each equation in the 
system can be estimated using OLS. Moreover, OLS estimates are consistent and asymptotically 
efficient. Even though the errors are correlated across equations, estimation using seemingly 
unrelated regressions (SUR) does not add to the efficiency of the estimation procedure since both 
regressions have identical right-hand-side variables.   
 
If one or more of the equations is constrained so as to have different right-hand-side variables 
than the others (including the possibility of differing lag lengths), the system is called a near-
VAR. A near-VAR can be estimated using RATS SUR instruction. In this case, SUR improves 
the efficiency of the estimates. 
 
Preparing RATS to perform a VAR analysis consists of the following two steps:13 
  
Step 1: After making the necessary data transformations, you must define the equations to use in 

the VAR. Typically, you will use the following five instructions to set up a VAR:   
  

                                                 
13 Don’t let the saying ‘You can’t teach an old dog new tricks’ apply to you. Users of RATS 4.3 
and earlier will find that all of their VAR programs are compatible with version 5.0. However, to 
take advantage of some of the new features in RATS, you must use the MODEL=modelname 
OPTION with the SYSTEM instruction. 
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SYSTEM(MODEL=modelname) 
VARIABLES list of dependent variables 
LAGS 1 to lag length 
DETERMINISTIC list of deterministic (constant, seasonals) and exogenous variables 
END(SYSTEM) 

 
Step 2: You instruct RATS to estimate the system using ESTIMATE. The typical form of the 

ESTIMATE instruction is: 
 

ESTIMATE(OUTSIGMA=V,residuals=resids,other options)  start  end 
   
For an n-equation VAR, the OPTION RESIDUALS = resids creates n series of residuals. The 
residuals from the first equation are stored in the series called resids (1), the residuals from 
the second equation are stored in the series called resids(2), and so forth.   
  
Other Options:  
OUTSIGMA=matrix Computes and saves the covariance matrix of the residuals. 
NOPRINT   Suppresses printing of the OLS estimation of each equation.   
NOFTESTS  Suppresses printing the results of all Granger causality tests.  
SIGMA   Displays (but does not save) the covariance matrix of the residuals. 

Use both OUTSIGMA= and SIGMA if you want to compute, save, 
and print the variance/covariance matrix. 

COEFFICIENTS=coef   Creates a matrix of the coefficients. Column i contains the 
coefficients of the i-th equation. 

 
Note that RATS 5.0 recognizes the older form of the ESTIMATE instruction. As such, you 
can still use: 
 
ESTIMATE(OUTSIGMA=V, other options) start end residuals 
 
where: residuals is the first series in a block of series used to store the residuals.  

Examples: 
It is straightforward to set up and estimate the following 2-variable 1-lagVAR as a MODEL 
called example1: 
 

yt = a
10

 + a
11

y
t-1

 + a
12

zt-1 + e
1t 

 
zt = a

20
 + a

21
y

 t-1
 + a22zt-1 + e

2t 
 
The first instruction below prepares RATS to create a system of equations with the name 
example1. The VARIABLES instruction names the two variables in the system and the LAGS 
instruction indicates that one lag of each is to be included in the model. The DETERMINISTIC 
instruction informs RATS to include a constant term in each regression equation. END closes the 
system and ESTIMATE produces the coefficient estimates and the F-statistics for the Granger-
causality tests. The option RESIDUALS=resids instructs RATS to save the residuals from the yt 
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equation in a series called resids(1) and the residuals from the zt equation in a series called 
resids(2).  
 
system(model=example1) 
var y z 
lags 1 
det constant 
end(system) 
estimate(residuals=resids)  
 
Modification of the SYSTEM-END(SYSTEM) block is straightforward. If you want to: 
 
1.  Include 4 lags of yt and zt in each equation, replace the LAGS instruction with: 
 

lags 1 to 4 
 
2. Include lags 1, 2, 3, 4, and 8 of yt and zt in each equation, replace the LAGS instruction with: 
 

lags 1 to 4  8 
 
3. Include an exogenous variable w such that the VAR is: 
 

yt = a
10

 + a
11

y
t-1

 + a
12

z
 t-1

 + a13wt + a14wt-1 + e
1t 

zt = a
20

 + a
21

y
 t-1

 + a22z t-1
 + a23wt + a24wt-1 + e

2t 
 
replace line 4 with: 
 
det constant w{0 to 1} 

 
4. Estimate a 3 variable VAR using y, z and w, replace the VARIABLES instructions with: 
 

var y z w 
 
5. Include quarterly seasonal dummy variables so that the system becomes: 
 

yt = a
10

 + b11D1 + b12D2 + b13D3 + a
11

y
t-1

 + a
12

zt-1 + e
1t 

 
zt = a

20
 + b21D1 + b22D2 + b23D3 + a

21
y

 t-1
 + a22zt-1 + e

2t 
 
First, create the seasonal dummy variables using: 
 
seasonal dummy 
  
Next, modify the DET instruction such that: 
 
det constant dummy{-1 to –3} 
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In some instances, you might want to create centered seasonal dummy variables. Centered 
seasonal dummies are normalized to have a mean of zero. For example, instead of taking on 
the values 0, 0 , 0 and 1, a centered seasonal dummy variable for quarterly data has the values 
-0.25, -0.25, -0.25 and 0.75. Centered seasonal dummy variables are useful in situations, such 
as unit root tests, where you do not want to shift the magnitude of the intercept term. To 
estimate the VAR with centered seasonal dummy variables use: 
 
seasonal(centered) dummy 
det constant dummy{-1 to –3} 
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1. Hypothesis Testing and Model Selection 

 
Most hypothesis tests in a VAR involve cross-equation restrictions. The RATIO instruction can 
easily perform such tests. Let Σu and Σr be the variance/covariance matrices of the unrestricted 
and restricted systems, respectively. Form the test statistic L:  
 

L = (T-c)(log |Σr|) - log |Σu|) 
 
where: |Σr| and |Σu| are the determinants of Σu and Σr, c is the maximum number of regressors 
contained in the longest equation of either VAR system and T is the number of usable 
observations.  
 
L can be compared to a χ2 distribution with degrees of freedom equal to the number of 
restrictions in the system. If L exceeds this critical value, reject the null hypothesis that the 
restriction is not binding (i.e., conclude that the restriction is binding). The usual form of the 
RATIO instruction is: 
 
ratio(degrees=df, mcorr=c, other options)  start  end 
#  series containing the residuals from the unrestricted system 
#  series containing the residuals from the restricted system 
 
The first supplemental card lists the series containing the residuals from the unrestricted system 
and the second supplemental card lists the series containing the residuals from the restricted 
system. RATS uses these lists to construct |Σr| and |Σu|. 
  
where:  

start end    The range over which the test is to be performed. 
degrees=dfc   The number of degrees of freedom (equal to the number of restrictions in 

the system). 
mcorr=c    Sims’ small sample correction for likelihood ratio tests (i.e., the value of 

c). Set mcorr equal to the largest number of parameters estimated in any 
one of the equations (usually equal to the number of parameters 
estimated in each of the unrestricted equations).   

  
The other principal option, NOPRINT, suppresses the printing of the covariance matrices and the 
marginal significance level of the test. It is possible to obtain the marginal significance level with 
the instruction:  
 
display  %signif   
 
The likelihood ratio test is based on asymptotic theory that may not be very useful in the small 
samples available to time-series econometricians. Moreover, the likelihood ratio test is only 
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applicable when one model is a restricted version of the other. Alternative test criteria are the 
multivariate generalizations of the AIC and SBC: 
 
AIC = T log|Σ| + 2 N  

SBC = T log|Σ| + N log(T) 
  
where |Σ| = determinant of the variance/covariance matrix of the residuals and N = total number 
of parameters estimated in all equations.  Thus, if each equation in an n-variable VAR has p lags 
and an intercept, N = n2p+n (each of the n equations has np lagged regressors and an intercept). 
 
Note that for a VAR, ESTIMATE creates the following variables: 
 

%NOBS  Number of usable observations 
%LOGDET  Log determinant of the estimate of Σ 
%SIGMA  Covariance matrix of residuals 

 
When you use the OUTSIGMA= option on the ESTIMATE statement, RATS computes the 
covariance matrix of the residuals. You can fetch the logarithmic determinant of this covariance 
matrix using %LOGDET. The following three statements will compute and display the 
multivariate versions of the AIC and SBC, respectively: 
 
compute aic =  %nobs*%logdet + 2*N 
compute sbc =  %nobs*%logdet + N*log(%nobs) 
dis ‘aic = ’  aic ‘sbc = ’ sbc 
 
where: you must set N to equal the number of parameters estimated in the system. 
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1.1 Innovation Accounting 

  
The variance decomposition and impulse response functions are easily obtained using the 
ERRORS instruction. To obtain the impulse responses and variance decompositions using a 
Choleski decomposition use:  
 
errors(IMPULSES,MODEL=modelname)  equations  steps  name 
 
where:  

modelname  The name of the model, as defined on the SYSTEM instruction 
equations Number of equations in the VAR. 
steps  The forecast horizon and the number of impulse responses. 
name The name of the covariance matrix used on the ESTIMATE instruction. 

 
If you exclude IMPULSES, RATS calculates and prints only the variance decompositions. Note 
that the IMPULSE instruction (discussed below) gives you more control over calculation and 
display of the impulse response functions. 

 

Examples:  
1. The sample program used in Section 2 below estimates a 3-equation 12-lag VAR using the 

variables dlrgdp, dlrm2 and drs. The first two instructions create the growth rate of the real 
value of the money supply as measured by M2. The SYSTEM instruction creates a MODEL 
called chap2. The VARIABLES command instructs RATS to create a 3-variable VAR using 
dlrgdp, dlrm2 and drs. Note that 12 lags of each variable and a constant are to be included in 
each equation.  

  
set lrm2 = log(m2/price)   ;* Creates the log of the ‘real’ value of m2 
dif lrm2 / dlrm2  ;* Creates the first-difference of lrm2  
 
system(model=chap2) 
var dlrgdp dlrm2 drs 
lags 1 to 12 
det constant 
end(system) 
 
ESTIMATE produces the estimates of the three equations and the F-statistics for the Granger-
causality tests. The variance/covariance of the residuals is saved as the matrix v. The 
ERRORS instruction produces forecast error variances (from 1-step ahead through 24-step 
ahead horizons) and impulse responses for each of the three variables in the system. The 
ordering of the Choleski decomposition is that used on the VARIABLES instruction. Hence, 
the errors statement below uses the ordering dlrgdp → dlrm2 → drs. 
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estimate(outsigma=v)  
errors(impulses,model=chap2) 3 24 v 

 
2. Suppose that the VARIABLES instruction in the example above was replaced with: 
 

var drs dlrm2 dlrgdp  
 
The forecast error variances (from 1-step ahead through 12-step ahead horizons) will be 
displayed for each of the three variables in the system. Now the errors(model=chap2) 3 12 V 
statement uses the ordering drs  → dlrm2 →  dlrgdp. (Note that IMPULSE allows you to 
experiment with different orderings without having to re-estimate the model). 
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2. Example: Estimation of a 3-Equation VAR 

 
Program 2.1 in the file CHAPTER2.PRG contains all of the instructions in the sample program 
discussed below. Suppose you want to estimate a VAR using the three variables dlpgdp, dlrm2 
and drs. After reading in the data set MONEY_DEM.XLS and constructing the variables, set up 
the VAR system with 12 lags of each variable using:  
 
system(model=chap2) 
var dlrgdp dlrm2 drs 
lags 1 to 12 
det constant 
end(system) 
 
Next, estimate the system using: 
 
estimate(noprint,residuals=resids12)  
 
Notice that we used the NOPRINT option—a three variable VAR with twelve lags produces a 
substantial amount of output. Since we are not sure if we actually want the 12-lag model, we 
suppress the output. The residuals are saved in the vector of series resids12; resids12(1) contains 
the residuals from the first regression, resids12(2) contains the residuals from the second 
regression and resids12(3) contains the residuals from the third regression.   
 
The next three lines are used to compute and display the multivariate AIC and SBC. Notice that 
N = 37*3 since there are thirty-seven estimated coefficients in each of the three equations of the 
system.14 
 
compute aic =  %nobs*%logdet + 2*(37*3) 
compute sbc =  %nobs*%logdet + 37*3*log(%nobs) 
dis 'aic = '  aic 'sbc = ' sbc 
 

aic =    -3198.00556 sbc =    -2859.47155 

 
In order to perform a lag-length test, we re-estimate the system using only 8 lags. Notice that we 
restrict the estimation to begin in 1962:2 so that both systems are estimated over the same 
sample period. The residuals are saved in the vector resids8. Hence: 
 
 
 

                                                 
14 The function %EQNSIZE(number) returns the number of regressors in equation number and 
%EQNSIZE(0) returns the number of regressors the most recently estimated equation. Since 
equations 1, 2 and 3 each contain the same number of regressions, an alternative is to use: 
compute aic =  %nobs*%logdet + 2*3*%eqnsize(1).  
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system(model=chap2) 
var dlrgdp dlrm2 drs  
lags 1 to 8 
det constant 
end(system) 
estimate(noprint,residuals=resids8) 1962:2 * 
 
compute aic =  %nobs*%logdet + 2*(25*3) 
compute sbc =  %nobs*%logdet + 25*3*log(%nobs) 
dis 'aic = '  aic 'sbc = ' sbc 

 
aic =    -3197.47118 sbc =    -2968.73198 

 
The AIC selects the 12-lag model whereas the SBC selects the 8-lag model. We can also 
determine lag-length using a likelihood ratio test. Under the null hypothesis, we can restrict lags 
9 - 12 of all coefficients in all three equations to be zero. If this restriction is binding, we reject 
the null hypothesis. Consider the following set of instructions:15 
 
ratio(degrees=4*3*3,mcorr=37) 1962:2 * 
# resids12 
# resids8 
 

Covariance\Correlation Matrices 
               RESIDS12(1)    RESIDS12(2)    RESIDS12(3) 
RESIDS12(1)  0.00004258409   0.2427449755    0.2104634745 
RESIDS12(2)  0.00000843189   0.00002833363  -0.2239885437 
RESIDS12(3)  0.00075612185  -0.00065639951   0.30309775570 
 
 
              RESIDS8(1)     RESIDS8(2)     RESIDS8(3) 
RESIDS8(1)  0.00004674920   0.1932339871    0.2567983642 
RESIDS8(2)  0.00000726876   0.00003026766  -0.2174072492 
RESIDS8(3)  0.00112342275  -0.00076529225   0.40938101386 
 
Log Determinants are -21.923113 -21.458149 
Chi-Squared(36)=     55.330714 with Significance Level 0.02068921 

 
The RATIO instruction uses DEGREES=4*3*3 since the 8-lag model eliminates four lags of 
three variables in each of the three equations. MCORR = 37 since there are 37 coefficients in the 
unrestricted equations of the system. The elements along the principal diagonal of the 

                                                 
15 Note that resids12 contains the series resids12(1), resids12(2) and resids12(3) and that resids8 
contains the series resids8(1), resids8(2) and resids8(3). Thus, it is sufficient to use resids12 on 
the first supplementary card and resids8 on the second supplementary card. The identical output 
is obtained using: 
 
ratio(degrees=4*3*3,mcorr=37) 1962:2 * 
# resids12(1) resids12(2) resids12(3) 
# resids8(1) resids8(2)  resids8(3) 



VARs and Error Correction Models 57  

 

Covariance\Correlation Matrices are the autocovariances of the residuals. For example, in the 
12-lag model, the variance of the residuals from the drs equation is 0.30309775570. The 
residual covariances are in the lower portion of the matrices (i.e., below the diagonal) and the 
residual correlations are in the upper portion of the matrices. The log determinants of the 
unrestricted and restricted models are -21.923113 and -21.458149, respectively. Given the 
calculated value of χ2 = 55.330714, the restriction is binding at the 5% (but not the 1%) 
significance level. Thus, the AIC and likelihood ratio test both select the 12-lag model.  
 

Block Exogeneity:  
We can perform a block exogeneity test to determine whether lags of drs enter the equations for 
dlrgdp and dlrm2. The name is a bit misleading; I prefer to use the term ‘block exclusion’ test. If 
lags of drs can be excluded from both the dlrgdp and dlrm2 equations, we can model these two 
variables using a simple 2-variable VAR. The way to perform the test is to estimate a VAR with 
the lags of drs and a second without the lags. Consider: 
 
system(model=unrestricted) 
var dlrgdp dlrm2 
lags 1 to 12 
det constant drs{1 to 12} 
end(system) 
estimate(noprint,residuals=unrest) 
 
system(model=restricted) 
var dlrgdp dlrm2 
lags 1 to 12 
det constant 
end(system) 
estimate(noprint,residuals=rest) 
 
The first block of instructions estimates a VAR for dlrgdp and dlrm2 that includes the 12 lags of 
drs. Even though drs is not deterministic, the DETERMINISTIC instruction allows you include 
deterministic regressors and variables that are not estimated within the system. The residuals of 
this unrestricted VAR are saved in unrest. The second block of instructions estimates a 2-
variable VAR without the lags of drs and saves the residuals in rest. The likelihood ratio test has 
24 degrees of freedom (12 lags of drs are excluded from each equation) and mcorr = 37 (each 
regression in the unrestricted model has 37 regressors).  
 
ratio(degrees=24,mcorr=37) 
# unrest ; # rest 
 

Log Determinants are -20.596224 -20.059977 
Chi-Squared(24)=     63.813364 with Significance Level 0.00001814 
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The restriction is clearly binding. Since the lags of drs should be included in the dlrgdp and 
dlrm2 equations (so that drs is not block exogenous), we need to return to the 3-variable VAR. 
You can confirm that the multivariate AIC and SBC also indicate that drs is not block exogenous.  

Innovation Accounting:  
To obtain the variance decompositions and impulse responses, it is necessary to re-estimate the 
system in order to save the variance/covariance matrix. Use the OUTSIGMA= option on the 
ESTIMATE instruction to save the covariance matrix as V. 
 
system(model=chap2) 
var dlrgdp dlrm2 drs  
lags 1 to 12 
det constant 
end(system) 
estimate(outsigma=v)  
 

F-Tests, Dependent Variable DLRGDP 
Variable            F-Statistic       Signif 
DLRGDP                    1.3277     0.2078223 
DLRM2                     2.1065     0.0193254 
DRS                       3.3135     0.0002667 
 
F-Tests, Dependent Variable DLRM2 
Variable            F-Statistic       Signif 
DLRGDP                    0.8990     0.5494694 
DLRM2                     8.5958     0.0000000 
DRS                       3.9210     0.0000285 
 
F-Tests, Dependent Variable DRS 
Variable            F-Statistic       Signif 
DLRGDP                    5.4620     0.0000001 
DLRM2                     2.3067     0.0097938 
DRS                       8.0504     0.0000000 

 
The ESTIMATE instruction will produce the equivalent output of three OLS regression 
estimates for each of the three equations in the system. To save a considerable amount of space, 
the output box above reports only the Granger-causality tests. At conventional significance 
levels, dlrm2 and drs Granger-cause dlrgdp, dlrgdp does not Granger-cause dlrm2 and all 
variables Granger-cause drs.   
 
It is straightforward to obtain the impulse responses using the ERRORS instruction. As indicated 
above, we can obtain the impulse responses and variance decompositions using the ordering 
dlrgdp → dlrm2 → drs with the following set of instructions:16 
                                                 
16 Although RATS produces the impulse responses for periods 1 through 24, only the first three 
impulses are shown here. RATS displays the variance decompositions for all forecast horizons 
through 24; we display only the 1-step, 8-step, 12-step and 24-step ahead forecast error 
variances.  
 



VARs and Error Correction Models 59  

 

errors(impulses,model=chap2) 3 24 v 
 
As shown on the next page, a one standard deviation shock to dlrgdp (approximately equal to 
0.00653 units) induces a contemporaneous increase in dlrm2 by 0.00129 units and a 
contemporaneous increase in drs by 0.11587 units. After one period, dlrgdp is still 0.00093 
units above its initial value, while dlrm2 and drs are 0.00058 and 0.21130 units away from 
their initial values. On the other hand, a one standard deviation shock to dlrm2 (equal to 0.00516 
units) has no contemporaneous effect on dlrgdp but induces a contemporaneous decrease of        
-0.15611 units on drs. After one period, dlrgdp = 0.00069,dlrm2 = 0.00430 and drs =     
-0.10718. Given the ordering of the Choleski decomposition, a one standard deviation drs 
shock (equal to 0.51507) has no contemporaneous effect on the other variables in the system. 
After one period, dlrgdp = 0.00144, dlrm2 = -0.00221 and drs = 0.20055. 
 

Responses to Shock in DLRGDP 
Entry            DLRGDP          DLRM2            DRS 
            1   0.006525648724  0.001292115488  0.115869223380 
            2   0.000928019134  0.000576615555  0.211296040285 
            3   0.000473985466 -0.000059458005  0.088298485503 
 
Responses to Shock in DLRM2 
Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000  0.005163725798 -0.156111296557 
            2   0.000686946710  0.004308977026 -0.107180122895 
            3   0.001613299752  0.002441287281  0.047996790185 
 
Responses to Shock in DRS 
Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000  0.000000000000  0.515074112975 
            2   0.001437493942 -0.002210813500  0.200554826822 
            3  -0.001143540867 -0.001410062827 -0.132047370809 
 
Decomposition of Variance for Series DLRGDP 
Step  Std Error      DLRGDP     DLRM2      DRS 
   1  0.006525649   100.000     0.000     0.000 
   8  0.008207901    69.424    15.408    15.168 
  12  0.008465552    66.607    16.607    16.785 
  24  0.008657572    65.424    16.476    18.100 
 
Decomposition of Variance for Series DLRM2 
Step  Std Error      DLRGDP     DLRM2      DRS 
   1  0.005322934     5.893    94.107     0.000 
   8  0.008874702     2.823    82.859    14.318 
  12  0.009251525     5.115    78.899    15.986 
  24  0.009627022     6.524    74.715    18.761 
 
Decomposition of Variance for Series DRS 
Step  Std Error      DLRGDP     DLRM2      DRS 
   1  0.550543146     4.429     8.041    87.530 
   8  0.692450601    15.569     9.827    74.604 
  12  0.793836231    28.501    11.750    59.749 
  24  0.824410351    31.368    12.064    56.567       
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The variance decompositions suggest a rich interaction among the variables, particularly at the 
longer forecast horizons. For example, dlrgdp explains all of its 1-step ahead forecast error 
variance, but dlrm2 and drs explain 15.408 and 15.168 percent of the 8-step ahead forecast 
error variance in dlrgdp, respectively. 

Extensions 
1. If you want to reverse the ordering of the variables such that drs → dlrm2 → dlrgdp use: 

 
system(model=chap2) 
var drs dlrm2 dlrgdp 
lags 1 to 12 
det constant 
end(system) 
estimate(outsigma=v) 
errors(impulses,model=chap2) 3 24 v 

 
2. You can produce multivariate forecasts using the FORECAST instruction. The most useful 

form of the instruction is: 
 

FORECAST(model=modelname, results=forecasts)  *  steps  start 
 
where:  

modelname  The model name used on the SYSTEM instruction. 
results=forecasts Creates the series forecasts(1), … , forecasts(n) which contain the 

forecasts of the n variables in the system 
steps Number of periods to forecast. 
start First period to forecast. 

 
The following FORECAST instruction uses the VAR model chap2 to produce 12 out-of-
sample forecasts beginning with 2001:2.  
 
forecast(model=chap2,results=fores)  *  12  2001:2 
pri / fores 
 
ENTRY       FORES(1)        FORES(2)        FORES(3) 
 2001:02   0.007005058389  0.018494401728 -0.194920330700 
 2001:03   0.012225055977  0.015287643122  0.242193105882 
 2001:04   0.011144421777  0.015551352314 -0.624105358190 
 2002:01   0.010444864257  0.015556006874 -0.017371770409 
 2002:02   0.016462341748  0.014234534497  0.382157540684 
 2002:03   0.013156260294  0.012041121844 -0.184462465867 
 2002:04   0.011033652617  0.013449326547  0.446338917263 
  etc.   

 
The 12 forecasts for dlrgdpt, dlrm2t and drst are contained in the series fores(1), fores(2) and 
fores(3), respectively.  
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2.1 Near-VARs 

 
In a near-VAR, the right-hand sides of the equations in the system are not identical.  Examples 
include: 
 
i.  Different lag lengths: yt = a11(1)yt-1 + a11(2)yt-2 + a12zt-1 + e1t 
       zt = a21yt-1 + a22zt-1 + e2t 
 
ii. The {zt} series does not Granger-cause {yt}:  yt = a11yt-1 + e1t 
          zt = a21yt-1 + a22zt-1 + e2t 
 
iii. A third variable {wt} affects only {zt}:   yt = a11yt-1 + a12zt-1 + e1t 
          zt = a21yt-1 + a22zt-1 + a23wt + 

e2t 
 
Since the equations have different right-hand-side variables, the efficiency of the estimates can 
be improved using Seemingly Unrelated Regressions. Use the following method to estimate a 
near-VAR using RATS’ SUR instruction. 
 
Step 1: You must define the equations to use in the near-VAR.  The simplest way to set up your 

equations is using the DEFINE= option of the LINREG instruction.   
 

Examples: 
1.  To set up the first near-VAR system above, use:  
  
 linreg(define=equation1) y 
 # y{1 to 2} z{1} 
 linreg(define=equation2) z 
 # y{1} z{1} 
 
2. To set up the third near-VAR system above, use: 
 
 linreg(define=equation1) y 
 # y{1} z{1} 
 linreg(define=equation2) z 
 # y{1} z{1} w 
 

Step 2: Use the SUR instruction to estimate the system. The typical syntax of SUR is:  
 

SUR(OUTSIGMA=V)  equations  start  end  
# equation  
 
where:  

equations The number of equations in the system you want to estimate. 
start  end The range of entries to use.  
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There is one supplementary card for each equation in the system. The information on each 
supplementary card contains the equation name used for the DEFINE= option on LINREG 
instruction. 
 
SUR creates the variables: %XX = covariance matrix of coefficients, %NOBS = number of 
observations, %NREG = number of regressors, %LOGDET = log determinant of the estimate 
of Σ and %SIGMA = final estimate of Σ.  

 
Step 3: To create a model, GROUP the equations and provide a modelname:  
 

GROUP  modelname  equation1  equation2 …  
 
Step 4: As in a VAR, obtain the impulse responses and variance decompositions with: 
 

ERRORS(IMPULSES,MODEL=modelname)  equations  steps  name  
 
Similarly, the forecasts can be obtained with: 
 
FORECAST(MODEL=modelname, RESULTS=forecasts)  *  steps  start 

 

Example  
The 12-lag VAR for dlrgdp, dlrm2 and drs indicated that it was possible to eliminate dlrgdp{1 to 
12} from the dlrgdp and dlrm2 equations. To impose these restrictions, set up the following three 
equations. Note that eq1 regresses dlrgdpt on 12 lags of dlrm2 and drs, eq2 regresses dlrm2t on 
12 lags of dlrm2 and drs, and eq3 regresses drst on 12 lags of all three variables.  
 
lin(define=eq1) dlrgdp ; # constant dlrm2{1 to 12} drs{1 to 12} 
lin(define=eq2) dlrm2 ; # constant dlrm2{1 to 12} drs{1 to 12} 
lin(define=eq3) drs ; # constant dlrgdp{1 to 12} dlrm2{1 to 12} drs{1 to 12} 
 
Next, estimate the system of equations (saving the covariance matrix of the residuals) using: 
 
sur(outsigma=v) 3 
# eq1 ; # eq2 ; # eq3 
 
Since SUR creates %NOBS and %LOGDET we can display the multivariate AIC and SBC 
using: 
 
compute aic =  %nobs*%logdet + 2*(2*25+37) 
compute sbc =  %nobs*%logdet + (2*25+37)*log(%nobs) 
dis 'aic = '  aic 'sbc = ' sbc 
 

aic =    -3217.51381 sbc =    -2952.17634 
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Note that there are 25 regressors in the first two equations and 37 regressors in the third 
equation. If you compare these values of multivariate AIC and SBC to those from the 3-variable 
VAR, you will find that the near-VAR has the better fit.  
 
Now GROUP these three equations into a model called chap2_sur. You can obtain 24 impulse 
responses and 1-step to 24-step ahead forecast error variances from a Choleski decomposition of 
v using (For brevity, only a partial list of the impulses is shown): 
 
group chap2_sur eq1 eq2 eq3 
errors(impulses,model=chap2_sur) 3 24 v 
 
Responses to Shock in DLRGDP 
Entry            DLRGDP          DLRM2            DRS 
            1   0.006850793364  0.001122502049  0.126303901431 
            2   0.000558731002  0.000268039828  0.222089855433 
            3   0.000366973202 -0.000599073730  0.089690963848 
  
Responses to Shock in DLRM2 
Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000  0.005388227762 -0.160730936792 
            2   0.000713637578  0.004584256661 -0.113798715256 
            3   0.001465609436  0.002529968390  0.045146339746 
  
Responses to Shock in DRS 
Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000  0.000000000000  0.515144919333 
            2   0.001322010498 -0.002214755409  0.198307071178 
            3  -0.001325937131 -0.001076247253 -0.148405838091  

 
At this point, you could produce 12 out-of-sample forecasts beginning with 2001:2 with: 
 
FORECAST(model=chap2_sur,results=fores)  *  12  2001:2 
 



64 Walter Enders 

 

3. Error-Correction Models 

 
RATS works a bit differently if you want to estimate an error-correction model. In Chapter 1, we 
established a long-run relationship between the 1-year and 3-month T-bill rates. Recall that the 
estimated long-run relationship is: 
 
 tb1yrt = 0.6980794657 + 0.9167216207 tb3mot  
 
As such, we might want to estimate an error-correction model of the form: 
 
 drlt = α10[tb1yrt-1 - 0.6980794657 - 0.9167216207 tb3mot-1] + A11(L)drlt-1 + A12(L)drst-1 + e1t 

 
 drst = α20[tb1yrt-1 - 0.6980794657 - 0.9167216207 tb3mot-1] + A21(L)drlt-1 + A22(L)drst-1 + e2t 

 
where: Aij(L) are polynomials in the lag operator L. 
 
The steps in setting up the VAR including the error-correction term are a bit different.  
 
Step 1: Estimate the long-run equilibrium relationship, using the DEFINE= option on the 

LINREG instruction. This step allows you to pass the estimated coefficients from LINREG to 
the VAR system. Thus, in the interest rate example, we can use: 

 
 lin(define=spread) tb1yr / resids 
 # constant tb3mo 
 
Step 2: Set up the VAR system using the MODEL= option on the SYSTEM instruction. 

Moreover, in the SYSTEM-END(SYSTEM) block, include the instruction:  
 

ECT name  
 
where: name comes from the LINREG(DEFINE=name) instruction used to estimate the long-
run equilibrium relationship.  
 
Thus, in the interest-rate example, if you want to estimate a model with 5-lagged changes in 
each series, use:17 
 

                                                 
17 If you do your own hypothesis testing, you will find that a 6-lag specification seems quite 
reasonable.  
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system(model=term) 
var tb1yr tb3mo 
lags 1 to 6   
det constant 
ect spread  << NOTE: We used DEFINE = spread on the LINREG instruction. 
end(system) 
 
NOTICE THAT WE SET UP THE MODEL IN LEVELS, NOT IN FIRST DIFFERENCES. 
RATS will report the results in first differences along with the error-correction term. Since we 
want 5 lags in the first differences, we use 6 lags of the level.  

 
Step 3: Enter the appropriate ESTIMATE instruction. For the interest rate example, we can use: 
 

estimate(outsigma=s,residuals=resid)  
 

Dependent Variable TB1YR    
Variable              Coeff        Std Error        T-Stat     Signif 
************************************************************************** 
1.  D_TB1YR(1)       -0.003371434  0.256767615     -0.01313  0.98954030 
2.  D_TB1YR(2)       -0.544498028  0.251691768     -2.16335  0.03200757 
3.  D_TB1YR(3)       -0.243383900  0.244713790     -0.99457  0.32145878 
4.  D_TB1YR(4)        0.076416728  0.223004947      0.34267  0.73230059 
5.  D_TB1YR(5)       -0.446724622  0.220182611     -2.02888  0.04413868 
6.  D_TB3MO(1)        0.294864692  0.231514842      1.27363  0.20465261 
7.  D_TB3MO(2)        0.144076253  0.227888340      0.63222  0.52814921 
8.  D_TB3MO(3)        0.492870264  0.222328127      2.21686  0.02805167 
9.  D_TB3MO(4)       -0.159091114  0.201743992     -0.78858  0.43153218 
10. D_TB3MO(5)        0.512723191  0.198144931      2.58762  0.01055885 
11. Constant          0.002972876  0.051042727      0.05824  0.95362828 
12. EC1{1}           -0.098335589  0.230405391     -0.42679  0.67010686 

 
 
Dependent Variable TB3MO    
Variable              Coeff        Std Error        T-Stat     Signif 
************************************************************************** 
1.  D_TB1YR(1)       -0.290217816  0.280102775     -1.03611  0.30172315 
2.  D_TB1YR(2)       -0.578900068  0.274565632     -2.10842  0.03656203 
3.  D_TB1YR(3)       -0.409504186  0.266953492     -1.53399  0.12701934 
4.  D_TB1YR(4)       -0.084036114  0.243271740     -0.34544  0.73021920 
5.  D_TB1YR(5)       -0.467464611  0.240192909     -1.94620  0.05339312 
6.  D_TB3MO(1)        0.637950862  0.252555018      2.52599  0.01251551 
7.  D_TB3MO(2)        0.073016809  0.248598938      0.29371  0.76936005 
8.  D_TB3MO(3)        0.742308339  0.242533410      3.06064  0.00259335 
9.  D_TB3MO(4)       -0.085007689  0.220078579     -0.38626  0.69982004 
10. D_TB3MO(5)        0.653078711  0.216152434      3.02138  0.00293320 
11. Constant          0.006499189  0.055681513      0.11672  0.90722864 
12. EC1{1}           -0.566413670  0.251344739     -2.25353  0.02559250 
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Step 4: To obtain the impulse responses and variance decompositions, use the instruction 
ERRORS(IMPULSES,MODEL=model). 

 
For the interest rate example, we can use: 

 
errors(impulses,model=term) 2 24 s 
 

Responses to Shock in TB1YR 
   Entry            TB1YR           TB3MO 
            1  0.6427986990792 0.6577227963055 
            2  0.8384894480559 0.9133375666545 
            3  0.6580803688211 0.6962100440500 
  
Responses to Shock in TB3MO 
Entry            TB1YR           TB3MO 
            1   0.000000000000  0.243115941739 
            2   0.049770290069  0.271975555534 
            3   0.073515992403  0.180662886845 
  
Decomposition of Variance for Series TB1YR 
Step  Std Error      TB1YR     TB3MO 
   1  0.642798699   100.000     0.000 
   8  2.185202713    98.828     1.172 
  12  2.799388183    99.125     0.875 
  24  4.042565038    99.100     0.900 
 
Decomposition of Variance for Series TB3MO 
Step  Std Error      TB1YR     TB3MO 
   1  0.701216541    87.979    12.021 
   8  2.463471405    95.601     4.399 
  12  3.139985944    97.004     2.996 
  24  4.463361225    98.009     1.991 

 

As in the previous example, RATS produces the impulse responses for periods 1 through 24, 
only the first three impulses are shown here. RATS displays the variance decompositions for all 
forecast horizons through 24; we display only the 1-step, 8-step, 12-step and 24-step ahead 
forecast error variances.  
 
To create graphs of the impulse responses, it is helpful to know a bit about matrices. Chapter 5 
considers the construction and manipulation of matrices in great detail. For now it is sufficient to 
know that it is necessary to create a 2 x 2 matrix of series to hold the response functions (there 
are two sets of responses for each of the two variables). This is accomplished by using the 
DECLARE instruction to create the 2 x 2 rectangular matrix impulses. 
 
declare rectangular[series] impulses(2,2) 
 
In most circumstances, it is also necessary to create a matrix of labels. A graph that labels the 
variables IMPULSES(2,1) or IMPULSES(2,2) is not very helpful.  
 
com implabels = || '1 year','3 month'|| 
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The impulse responses are created by the IMPULSE instruction. If we use the MODEL= option, 
the form of the IMPULSE instruction the we need is: 
 
impulse(MODEL=modelname,RESULTS=matrix) equations steps shock_to name 
 
where:  

modelname= The model name used on the STSTEM instruction. 
equations Number of equations in the system. Use * with the MODEL= option. 
matrix = Name of the matrix used to store the impulses. 
steps  The forecast horizon and the number of impulse responses. 
shock_to The component to be shocked. Use * with the MODEL= option. 
name The name of the covariance matrix used on the ESTIMATE instruction. 

  
To create 24 impulses from the model term that are stored in the matrix impulses, use: 
 
impulse(model=term,result=impulses,noprint) * 24 * s 
 
The first * is a placeholder for the number of equations and the second tells RATS to shock all 
equations. The responses of tb1yr and tb3mo to innovations in tb1yr are stored in impulses(1,1) 
and impulses(2,1), respectively. The response of tb1yr and tb3mo to innovations in tb3mo are 
stored in impulses(1,2) and impulses(2,2), respectively. The following two graphs were created 
using:18 
 
spgraph(hfields=2,vfi=1,header='Impulse Response Functions') 
 graph(header='Shocks to the One Year Rate',key=upright, number =0, $ 
         patterns,klabels=implabels) 2 
 # impulses(1,1) ; # impulses(2,1) 
 graph(header='Shocks to the 3-month  Rate',key=upright,number=0, $ 
         patterns, klabels =implabels) 2 
    # impulses(1,2) ; # impulses(2,2) 
spgraph(done) 

                                                 
18 Note that the impulses are not scaled since all are in the same units.  
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Notice that both graphs use the KLABELS = option. This option instructs RATS to use the 
vector implabels to label each of the series. The first element in implabels is 1 year and the 
second is 3 month. As such, the series on the first supplemental card is labeled 1 year and the 
series on the second supplemental card is labeled tb3mo.  
 
The program MONTEVAR.PRG allows you to place confidence bands around your impulse 
response functions. The program is distributed with RATS so that it should in the same directory 
as RATS itself. Now that you know how to work with VARs, it should be trivial for you to 
modify MONTEVAR.PRG so as obtain confidence intervals for the impulse responses. 
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4. Structural Decompositions 

 
A Choleski decomposition is not the only way to obtain the impulse responses. In fact, it is 
straightforward to show that the impulse response function is not identified unless additional 
restrictions are imposed on the VAR system. The Choleski decomposition is only one way to 
impose the necessary number of identifying restrictions. Consider a 2-variable model: 
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The impulse response function is obtained using the moving average representation: 
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The issue is that the regression residuals {e1t} and {e2t} are linear combinations of the pure 
innovations in yt and zt. If we call these pure innovations ε1t and ε2t, we have: 
 
 e1t = g11ε1t + g12ε2t 
 e2t = g21ε1t + g22ε2t 
 
or: 
 et = Gεt 
 
The nature of the system is such that the pure innovations are serially uncorrelated and 
orthogonal to each other. Nevertheless, a pure innovation in yt will have a contemporaneous 
effect on zt if g21 ≠ 0 and a pure innovation in zt will have a contemporaneous effect on yt if g12 ≠ 
0. Even though ε1t and ε2t are serially uncorrelated, their effects have some persistence since the 
values of ajk(i) are not all equal to zero. If we let var(ε1t) = 2

1σ and var(ε2t) = 2
2σ , it follows that: 

 

 Eε1tε2t ≡ 
2
1

2
2

0

0
ε

σ
σ

 
Σ =  

 
 

 
The problem is to identify the unobserved values of ε1t and ε2t from the regression residuals e1t 
and e2t. If we knew the four values g11, g12 g13 and g14 we could obtain all of the structural shocks 
for the regression residuals. Of course, we do have some information about the values of the gij. 
Consider the variance/covariance matrix of the regression residuals: 
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 Eee' = Σ 
 
 
We know the four elements of this matrix—in fact, you can display the elements of the matrix 
using DISPLAY %SIGMA. As in the earlier sections of this chapter, denote the elements of Σ as 
σij: 
 

 11 12

21 22

σ σ
σ σ
 

Σ =  
 

 

 
Although the values of the gij are unknown and ε1t and ε2t are unobserved, we know that et = Gεt. 
Hence, it must be the case that: 
 
 Eetet' = EGεtεt'G

 ' 
 
Since Eetet' = Σ and Eεtεt' = Σε, it follows that: 
 

 11 12

21 22

'G Gε
σ σ
σ σ
 

= Σ 
 

  

 
where: Σε is the diagonal matrix (defined above) consisting of var(ε1t) = 2

1σ and var(ε2t) = 2
2σ . If 

it is assumed that 2
1σ = 2

2σ = 1, we can write:19 

  

 
2 2

11 12 11 12 11 21 12 22
2 2

21 22 11 21 12 22 21 22

g g g g g g

g g g g g g

σ σ
σ σ

 + + 
=    + +   

 

 
Since the four values of σij are known, it would appear that there are four equations to determine 
the four unknown values g11, g12, g21 and g22. However, the symmetry of the system is such that 
σ21 = σ12 so that there are only three independent equations to determine the four elements of G. 
The Choleski decomposition adds an additional restriction. If the pure shock to zt is to have no 
contemporaneous effect on yt, it must be the case that g12 = 0. Similarly, if the pure shock to yt is 
to have no contemporaneous effect on zt, it must be the case that g21 = 0. In either case, there is a 
fourth equation that can be used to solve for the other three values of the G matrix.  
 
To generalize the argument to an n-th order VAR systems, we have: 
 
 Σ = GG' 
 
where: Σ and G are n x n matrices. Using the same logic, it is possible to show that it is 
necessary to impose (n2– n)/2 additional restrictions on G to identify completely identify the 

                                                 
19 This normalization assumption is innocuous because it simply scales the magnitudes of g11, 
g12, g13 and g14.   
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system. Regardless of the size of the system, the Choleski decomposition is recursive in that it 
sets: 
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Since each element above the principle diagonal is zero, there is exactly the number of 
restrictions needed to identify all of the remaining elements of G. However, many other 
possibilities exist.  
 
RATS allows you to select the form of the G matrix so that you can impose a far richer set of 
restrictions on the G matrix. Moreover, it is possible to impose overidentifying restrictions so 
that you can test hypotheses concerning the restrictions. Suppose we normalize the elements on 
the principle diagonal to be unity. To keep the notation simple, suppose we let the G matrix be: 
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There are two cases to consider. In the first case, you completely specify all of the numerical 
values of the gij. In such circumstances, you simply create the G matrix and enter the appropriate 
values for all of the gij. In the second case, you fix at least (n2 – n)/2 elements of G. However, 
since the remaining values of the gij are free parameters, they need to be estimated from the data. 
This second case is the most typical and forms the basis of the Sims-Bernanke and Blanchard-
Quah decompositions. Nevertheless, we begin with simple case where G is known.   

 

4.1 Structural VARs with a Known G Matrix 

 
It is straightforward to perform a structural decomposition when G is known. Chapter 5 describes 
how to work with matrices in RATS. For now, it is sufficient to know that you can use the 
COMPUTE to construct the matrix G and enter the desired numerical values for the gij. Then use 
the DECOMP=G option on the ERRORS or IMPULSE instruction. Since you are not performing 
a decomposition using the covariance matrix from the ESTIMATE instruction, do not specify the 
covariance matrix in the name field of the ERRORS of IMPULSE instruction.  

Examples 
1. In the error-correcting model of the term-structure relationship, variance decomposition and 

impulse responses were obtained using a Choleski decomposition. Moreover, 24 impulse 
responses were obtained and stored in the matrix impulses using: 
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impulse(model=term,result=impulses) * 24 * s 
 
Recall that the first few impulses from the model are:  
 
Responses to Shock in TB1YR 
   Entry            TB1YR           TB3MO 
            1  0.6427986990792 0.6577227963055 
            2  0.8384894480559 0.9133375666545 
            3  0.6580803688211 0.6962100440500 
         
Responses to Shock in TB3MO 
   Entry            TB1YR           TB3MO 
            1   0.000000000000  0.243115941739 
            2   0.049770290069  0.271975555534 
            3   0.073515992403  0.180662886845 

         
Instead, suppose you want to force the regression residual from the tb1yr equation to be 
identical to the pure innovation in tb1yr and the regression residual from the tb3mo equation 
to be identical to the pure innovation in tb3mo. This is equivalent to setting g12 = g21 = 0. 
Consider: 
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To equate e1t with ε1t and e2t with ε2t use: 
 
 com g = || 1. , 0. | 0. , 1. || 
 
To obtain 24 impulses using g as opposed to the Choleski decomposition use: 
 
impulse(model=term,results=impulses,decomp=g) * 24 * 
 
Entry            TB1YR           TB3MO 
            1  1.0000000000000 0.0000000000000 
            2  1.0949641548808 0.2761958544234 
            3  0.7143622610318 0.3227246002156 
 
Responses to Shock in TB3MO 
   Entry            TB1YR           TB3MO 
            1   0.000000000000  1.000000000000 
            2   0.204718331973  1.118707204423 
            3   0.302390669558  0.743114110710 

 
For comparison purposes, only the first three impulse responses are shown. Now, an 
innovation to tb1yr has no contemporaneous effect on tb3mo. Also note that an innovation in 
tb3mo has a 1-unit effect on tb3mo. This follows since G is normalized such that 2

1σ and 2
2σ  

both equal unity.  
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2.  Recall that the long-run equilibrium relationship between the two interest rates is such that: 
 

 tb1yrt = 0.6980794657 + 0.9167216207 tb3mot  
 
so that:  
 
 ∆ tb1yrt = 0.9167216207 ∆tb3mot 
 
or:  drlt = 0.9167216207 drst 

 
For illustration purposes, suppose we wanted to impose a similar restriction on the 
innovations. In particular, suppose we wanted to let innovations in tb3mot be unaffected by 
innovations in tb1yrt but we wanted innovations in tb3mot to change the contemporaneous 
value of tb1yrt by 0.9167216207 units. Since the residuals from the tb1yrt and tb3mot 
equations are the {e1t} and {e2t} sequence respectively: 
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Now a pure shock to tb1yrt (i.e., an ε1t shock) affects the contemporaneous value of tb1yrt but 
not tb3mot. A pure shock to tb3mot (i.e., an ε2t shock) has a 1-unit effect on tb3mot and a 
0.9167216207-unit effect on tb1yrt. To obtain the impulse responses using this G matrix, 
recall that we estimated the long-run relationship using: 
 
lin(define=spread) tb1yr / resids 
# constant tb3mo 
 
Immediately after this LINREG instruction insert the line: 
 
com x = %beta(2) 
 
Now the variable x contains the desired slope coefficient. After estimating the error-correction 
model, construct G using: 
 
com g = || 1.0 , x | 0. , 1.0 || 
 
To obtain 24 impulses using this G matrix use: 
 
impulse(model=term,results=impulses,decomp=g) * 24 * 
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Responses to Shock in TB1YR 
   Entry            TB1YR           TB3MO 
            1  1.0000000000000 0.0000000000000 
            2  1.0949641548808 0.2761958544234 
            3  0.7143622610318 0.3227246002156 
 
Responses to Shock in TB3MO 
   Entry            TB1YR           TB3MO 
            1  0.9167216207369 1.0000000000000 
            2  1.2084956466838 1.3719019157307 
            3  0.9572619992845 1.0389627292717 
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5. The Sims-Bernanke Decomposition 

 
Suppose that you want to fix at least (n2 – n)/2, but not all, of the elements of G. RATS allows 
you to estimate an exactly identified or an over-identified structural VAR. The procedure to 
obtain a Sims-Bernanke decomposition consists of the following four steps: 
 
Step 1: Use NONLIN to enumerate the elements of G that you want to estimate. This list of free 

parameters informs RATS of the names of the parameters that will be estimated.  
 
Step 2: DECLARE a FORMULA containing a rectangular matrix and use the formula to 

construct the G matrix. Note that you need to provide RATS with an initial guess for each 
free parameter to be estimated.  

 
Step 3: Use the CVMODEL instruction to estimate the G matrix. The standard syntax you will 

use is: 
 

CVMODEL(factor=output matrix, other options)  %sigma  frml 
 
where:  
output matrix  is the name of the matrix used to store the estimate of G. This will be the 

matrix you use to obtain the impulse responses on the IMPULSES 
instruction.  

%sigma  is the variance/covariance matrix obtained from estimating the VAR 
(i.e., %sigma = Σ) 

frml  is the FORMULA you created in Step 2.  
  
and other options include: 
 
iters=  maximum number of iterations to use in the nonlinear estimation 
method= [BFGS]/SIMPLEX/GENETIC. The BFGS algorithm can be quite 

sensitive to the initial guess. However, only the BFGS estimation 
method can display standard errors and t-statistics.  
 

Step 4: Now that G has been created, you can use the ERRORS or IMPULSES instruction to 
obtain the impulse responses.  

Examples 
1. In the estimation of the term-structure relationship, we used the IMPULSES instruction to 

obtain the impulse responses from a Choleski decomposition of the variance/covariance 
matrix s. It is instructive to use the methodology described in Steps 1 to 4 above to perform 
the same decomposition. Hence, we want G to have the form: 
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where: g21 is a free parameter to be estimated from the data. 
 
Consider the following instructions: 
 
nonlin g21 
dec frml[rect] g_form 
frml g_form = || 1., 0. | g21 , 1. || 
com g21 = 0.01 
 
The NONLIN instruction informs RATS that we want to estimate a single parameter called 
g21. The next instruction DECLARES the FORMULA g_form. 
 

The third instruction is used to specify the form of g_form. Unlike our previous examples, 
there is a free parameter. Since this parameter is estimated using non-linear estimation 
methods, we need to provide RATS with an initial value. In the example, the value 0.01 is 
used. Next, we use CVMODEL to perform the estimation: 
 
cvmodel(factor=g) %sigma g_form 
 

Covariance Model - Estimation by BFGS 
Convergence in     5 Iterations. Final criterion was  0.0000039 <  0.0000100 
Observations                    167 
Log Likelihood                     309.97546215 
Log Likelihood Unrestricted        309.97546215 
 
 Variable         Coeff       Std Error      T-Stat     Signif 
************************************************************************* 
1.  G21        -1.023217373  0.029267200    -34.96123  0.00000000 

 

Notice that the estimation converged in only five iterations. If an estimation does not 
converge, you can increase the number of iterations from the default value of 40, provide 
better initial guesses, or use an alternative estimation method. A useful way to obtain 
satisfactory initial guesses is to use the simplex or genetic estimation method for a few 
iterations and then switch to the BFGS method. Consider: 
 
cvmodel(factor=g,iters=4,method=simplex) %sigma g_form 
cvmodel(factor=g) %sigma g_form 
 
Also note that the reported value of g21 is estimated to be more than 34 standard deviations 
from zero. To interpret this estimate, recall that RATS estimates the matrix G such that G*G' 
= %sigma. You can display G using: 
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dis g 
 
0.64280       0.00000 
0.65772       0.24312 

 
For comparison purposes, you can display the variance/covariance matrix using: 
 
dis %sigma: 
 
0.41319 
0.42278       0.49170 

 
Standardizing G such that the diagonal elements are unity yields: 
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Finally, you can obtain the impulse responses with the instruction: 
 
impulse(model=term,results=impulses,decomp=g) * 24 * 
 

Responses to Shock in TB1YR 
   Entry            TB1YR           TB3MO 
            1  0.6427986990792 0.6577227963170 
            2  0.8384894480582 0.9133375666674 
            3  0.6580803688245 0.6962100440585 
 
Responses to Shock in TB3MO 
   Entry            TB1YR           TB3MO 
            1   0.000000000000  0.243115941753 
            2   0.049770290072  0.271975555549 
            3   0.073515992407  0.180662886855 

 
Hence, the impulse responses are identical to those obtained using the instruction: 
 
impulse(model=term,result=impulses) * 24 * s 

 
2. In the 3-variable VAR with dlrgdp, dlrm2 and drs, we obtained impulse responses using: 
 

system(model=chap2) 
var dlrgdp dlrm2 drs 
lags 1 to 12 
det constant 
end(system) 
estimate(outsigma=v)  
 
errors(impulses,model=chap2) 3 24 v 
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Now suppose we want the contemporaneous relationships among the variables to be: 
 
 eyt = εyt  
 emt = g21εyt + g31εrt + εmt 
 ert = εrt  
 

where: ey, emt and ert are the regression residual from the dlrgdpt, dlrm2t and drst equations, 
and εyt, εmt and εrt are the pure shocks (i.e., the structural innovations) to dlrgdpt, dlrm2t and 
drst, respectively. 
 
The economic interpretation is that the ‘unforecastable’ change in the log of real M2 (i.e., emt ) 
is due to the pure shocks in dlrgdpt, drst and dlrm2t. Hence, we have imposed a standard 
money demand function on the contemporaneous relationship among the three variables. 
Moreover, the ‘unforecastable’ portions of dlrgdpt and drst (i.e., eyt and ert) are due only to 
their own pure shocks. We can model these contemporaneous relationships as: 
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Notice that we have an over-identified system in that we have restricted four elements of G to 
be zero.20 To perform this alternative decomposition, use the following instructions:  
 
nonlin g21 g23 
dec frml[rect] g_form 
frml g_form = || 1., 0. , 0. | g21, 1. , g23 | 0., 0. ,1. || 
com g21 = -.2 , g23 = 0.3 
cvmodel(factor=g) %sigma g_form 
 
The NONLIN instruction informs RATS that we want to estimate the parameters g21 and g23. 
The next instruction DECLARES the FORMULA g_form. The third instruction is used to 
specify the form of g_form. The fourth instruction provides initial guesses for the two 
parameters. Next, we use CVMODEL to perform the estimation: 
 
cvmodel(factor=g) %sigma g_form 
 
 
 
 
 
 
 
 

                                                 
20 Since n = 3, exact identification entails (n2 – n)/2 = 3 restrictions.  
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Covariance Model - Estimation by BFGS 
Convergence in    12 Iterations. Final criterion was  0.0000000 <  0.0000100 
Observations                    156 
Log Likelihood                    1706.46892511 
Log Likelihood Unrestricted       1710.00278213 
Chi-Squared(1)                       7.06771404 
Significance Level              0.00784853 
 
Variable         Coeff         Std Error        T-Stat       Signif 
************************************************************************* 
1.  G21        -0.247417925    0.062562114     -3.95476    0.00007661 
2.  G23         0.002782858    0.000749196      3.71446    0.00020364 

 
Notice that RATS displays the log likelihood of the restricted and the unrestricted models. 
Hence, we might want to relax one of the four restrictions since the difference between the 
log likelihoods is significant at the 0.00784853 level. Nevertheless, we can obtain the 
impulse responses using: 
 
impulse(model=chap2,decomp=g) * 24 * 
 

Responses to Shock in DLRGDP 
   Entry            DLRGDP          DLRM2            DRS 
            1   0.006525648724  0.001614562466  0.000000000000 
            2   0.000674747862  0.001301182781  0.163282831262 
            3   0.000810331530  0.000383503057  0.118501396316 
 
Responses to Shock in DLRM2 
   Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000  0.004941736423  0.000000000000 
            2   0.001074367700  0.003482474955 -0.044400414535 
            3   0.001212253497  0.001927339570  0.007632342684 
 
Responses to Shock in DRS 
   Entry            DLRGDP          DLRM2            DRS 
            1   0.000000000000 -0.001532083485  0.550543146080 
            2   0.001203397095 -0.003442724093  0.228130866164 
            3  -0.001598121579 -0.002104694466 -0.143506667217 

  
To graph the impulse responses, we need to create a matrix to hold the nine series (there are 
three responses to each of the three shocks). The next two instructions creates a 3 x 3 matrix 
called impulses. Be aware that each element of impulses is a series. The RESULT= option 
informs RATS to store the nine impulse responses in impulses. Note that impulses(1,1) 
contains the responses of dlrgdpt to an εyt shock and impulses(3,1) contains the responses of 
dlrgdpt to an εrt shock. 
 
declare rectangular[series] impulses(3,3) 
impulse(model=chap2,result=impulses,decomp=g) * 24 * 
 
Since the variables have different units, it is useful to plot the standardized responses. Note 
that the first entry of impulses(1,1) contains the standard deviation of dlrgdpt, first entry of 
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impulses(2,2) contains the standard deviation of dlrm2t and the first entry of impulses(3,3) 
contains the standard deviation of drst. Hence, we can standardize the responses of each 
variable to an εrt shock using:  
 
 set r1 1 12 = impulses(1,3)/impulses(1,1)(1) 
 set r2 1 12 = impulses(2,3)/ impulses(2,2)(1)  
 set r3 1 12 = impulses(3,3)/impulses(3,3)(1)  
 
We can graph the three series using: 
 
com implabels = || 'dlrgdp','dlrm2', 'drs'|| 
GRAPH(HEADER='Responses to an Interest Rate Shock',KEY=upright,patterns, $ 
number=1, klabels=implabels,vlabel='standard deviations') 3 
# r1 ; # r2 ;  # r3 

Hence, a one-standard deviation innovation in the 3-month T-bill rate is predicted to reduce 
real money balances and (after the second period) real GDP. Even though these results seem 
plausible, one caution is in order. Nonlinear estimations of a likelihood function may find a 
local not a global maximum. It is always wise to repeat the estimations using various initial 
guesses of the parameters to be estimated. In working through this example, I tried a number 
of initial guesses. It turns out that initial guesses very near zero lead to an unsatisfactory 
result. Consider the output from using initial guesses g21 = 0.02 and g23 = 0.01: 
 
com g21 = .02 , g23 = 0.1 
cvmodel(factor=g) %sigma g_form 
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Covariance Model - Estimation by BFGS 
Convergence in     3 Iterations. Final criterion was  0.0000000 <  0.0000100 
Observations                    156 
Log Likelihood                    1696.18382404 
Log Likelihood Unrestricted       1710.00278213 
Chi-Squared(1)                      27.63791617 
Significance Level              1.46283041e-07 
 
Variable                     Coeff       Std Error      T-Stat     Signif 
**************************************************************************** 
1.  G21                   0.0431096354 0.0000000000      0.00000  0.00000000 
2.  G23                   0.0022092447 0.0007865452      2.80880  0.00497272 

 
Notice that the routine did converge. However, the standard error and t-statistic of g31 are both 
shown to be zero. Moreover, the log likelihood of the restricted model is smaller than that for 
initial guesses g21 = -.2 , g23 = 0.3. I experimented with a wide range of initial guesses, and 
usually obtained the first set of estimations. Hence, it seems reasonable to conclude that initial 
guesses near zero lead to a local, not a global, maximum.  
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6. The Blanchard-Quah Decomposition 

 
Blanchard and Quah (1989) provide an alternative way to obtain a structural identification. Let 
{yt} be a difference-stationary series and let {zt} be stationary. Ignoring any deterministic 
regressors, we can estimate a 2-variable VAR of the form: 
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In order to use the Blanchard-Quah technique, both variables must be in a stationary form. Since 
{yt} is I(1), we use the first-difference of the series. If, in your own work, you find {zt} is also 
I(1), use its first-difference in the VAR.  
 
In contrast to the Sims-Bernanke procedure, Blanchard and Quah do not directly associate the 
��
�	��
�
���
���
��� �1t!����� �2t} with pure shocks to {yt} and {zt}.  Instead, the {yt} and {zt} 
��%���	��� �
�� ���� ����������� ��
���
��� ���� ����  �1t!� ����  �2t} sequences represent what an 
economic theorist would call the exogenous variables. The structural variables are assumed to be 
uncorrelated with each other and to have unit variances.  
 
Although the structural variables are unobserved, they are related to the regression residuals by: 
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Changes in ε2t will have no long-run effect on the {yt} sequence if: 
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This long-run restriction provides the extra piece of information that allows us to identify the 
four elements G matrix. Given the relationship between the regression residuals and the 
structural variables, it follows that: 
 
 var(e1) = (g11)

2 + (g12)
2 

 var(e2) = (g21)
2 + (g22)

2 
 cov(e1e2) = g11g21 + g21g22 

 

where: the time subscripts have been omitted since ∆yt and zt are assumed to be covariance 
stationary.  
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Estimation of the VAR provides you with var(e1), var(e2), cov(e1e2) and the coefficient sums 1 - 
Σa11(k) and Σa12(k). Hence there are four equations that allow you to solve for the four 
unknowns g11, g12, g21 and g22. Once the G matrix is identified, it is possible to obtain the 
impulse responses and variance decompositions using the ERRORS and IMPULSES 
instructions. 

 

6.1 The Technical Details 

 
In the n-variable case, (n2 – n)/2 restrictions are needed for the exact identification of G. RATS 
contains a very simple mechanism that allows you to impose (n2 – n)/2 long-run restrictions. Let 
xt, et and εt be the n x 1 vectors of variables, regression residuals and structural shocks, 
respectively. The estimated VAR has the form: 
 
 xt = A(L) xt-1 + et 

 
or: 

 
 (1 – A(L) L) xt = et 
 
where: A(L) = n x n matrix with elements Aij(L) and Aij(L) is p-th order polynomial in the lag 
operator L.  
 
Given that the variables in xt are stationary, we know there exists a moving average 
representation of the form:  
 
 xt = C(L)-1 et 
    = C(L)-1 Gεt 
 
where: C(L) is (1 – A(L) L) and G is the n x n matrix relating the regression residuals and the 
structural shocks.  
 
Now let the variables in xt be arranged such that only ε1t has a long-run effect on x1t, only ε1t and 
ε2t have a long-run effect on x2t, only ε1t, ε2t and ε3t have a long-run effect on x3t and so on. Notice 
that there are exactly (n2 – n)/2 such restrictions. Since the coefficient sums are obtained from 
C(1)-1 G, these restrictions translate into the assumption that each element above the principle 
diagonal in C(1)-1 G be zero.21 The key point to note is that we can impose these restrictions on 
C(1)-1 G from a Choleski decomposition of C(1)-1 GG′ (C(1)-1)′. 
 
 
 
 

                                                 
21 If we evaluate A11(L) = a11(0) + a11(1)L + a11(2)L2 + a11(3)L3 + … at L = 1, we obtain the 
coefficient sum Σa11(k). 
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Given the relationship between the regression residuals and the structural variables, it follows 
that: 
 
 Eetet′ = GG′ 
 
Yet, Eetet′ is precisely the variance/covariance matrix of the regression residuals that we have 
called Σ. Thus, to obtain C(1)-1 G, we need only to obtain the Choleski decomposition of C(1)-1 

Σ (C(1)-1)′. 
 
Once the VAR has been estimated, you can obtain the desired matrix using: 
 
COMPUTE C = %VARLAGSUMS 
COMPUTE S1 = %MQFORM(%SIGMA,TR(INV(C))) 
COMPUTE S2 = %DECOMP(S1) 
COMPUTE G = C*S2 
 
To explain, when you use the ESTIMATE instruction RATS creates the matrix 
%VARLAGSUMS containing the n x n matrix of the appropriate sums of the lag coefficients. 
Hence, the first COMPUTE instruction creates a matrix C corresponding to the matrix C(1) in 
the discussion above. The function %MQFORM(X, Y) creates a matrix equal to Y´XY for Yn x n 

and Xn x m. INV(C) creates C-1 and TR(INV(C)) creates the transpose of C-1. Hence, the second 
instruction creates (C-1)′Σ(C-1)′. The function %DECOMP(S1) creates the matrix S2 equal to 

Choleski decomposition of (C-1)′ΣC-1 = C-1G. Multiplication by C yields the factorization 
containing the desired form of G. At this point it is possible to obtain the impulse responses and 
variance decompositions using the DECOMP=G option on an ERRORS or IMPULSES 
instruction.  
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Example 
The 3-variable VAR with dlrgdpt, dlrm2t and drst is in the appropriate form since all of the 
variables appear to be difference stationary. Although there is strong evidence that a 12-lag 
model is appropriate, it is instructive to estimate the system using only 1-lag. The goal here is to 
illustrate the creation of the desired matrices and coefficient sums; these sums are trivial to 
calculate in a 1-lag model. As such, re-estimate the 3-variable VAR using the following 
instructions: 
 
system(model=chap2) 
var dlrgdp dlrm2 drs 
lags 1  
det constant 
end(system) 
estimate(outsigma=v,noftests) 
 
VAR/System - Estimation by Least Squares 
Dependent Variable DLRGDP 
   Variable           Coeff        Std Error         T-Stat    Signif 
**************************************************************************** 
1.  DLRGDP{1}      0.1006658743   0.0783973356      1.28405  0.20092557 
2.  DLRM2{1}       0.3655350277   0.0719395585      5.08114  0.00000101 
3.  DRS{1}         0.0015984145   0.0008299146      1.92600  0.05582371 
4.  Constant       0.0047686768   0.0009110037      5.23453  0.00000050 
 
Dependent Variable DLRM2 
    Variable          Coeff        Std Error       T-Stat      Signif 
**************************************************************************** 
1.  DLRGDP{1}      0.060434793    0.061966497      0.97528    0.33084820 
2.  DLRM2{1}       0.629182216    0.056862167     11.06504    0.00000000 
3.  DRS{1}        -0.003657927    0.000655978     -5.57630    0.00000010 
4.  Constant       0.002338028    0.000720072      3.24694    0.00141302 
 
Dependent Variable DRS 
   Variable           Coeff        Std Error       T-Stat      Signif 
******** ******************************************************************** 
1.  DLRGDP{1}     12.09953383     7.74975243       1.56128    0.12037364 
2.  DLRM2{1}       7.98709105     7.11138667       1.12314    0.26300908 
3.  DRS{1}         0.15367238     0.08203892       1.87316    0.06281438 
4.  Constant      -0.15426829     0.09005476      -1.71305    0.08858167 

 
The ESTIMATE instruction creates the 3 x 3 matrix %VARLAGSUMS. We can display this 
matrix using: 
 
dis %varlagsums 

  0.89933      -0.36554      -0.00160 
 -0.06043       0.37082       0.00366 
-12.09953      -7.98709       0.84633 
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Notice that the coefficient on dlrgdpt-1 in the first equation [ i.e., a11(1) ] equals 0.1006658743 
and the first element of %varlagsums is 0.89933. Hence, %varlagsums(1, 1) = 1 – a11(1). 
Similarly %varlagsums(2, 2) and %varlagsums(3, 3) correspond to 1 – a22(1) and 1 – a33(1), 
respectively. The off-diagonal elements %varlagsums( i , j ) equal – aij(1).  
 
Next, create the matrices C, s1 and s2 using the following three instructions: 
 
com c = %VARLAGSUMS 
com s1 = %MQFORM(%SIGMA,TR(INV(c))) 
com s2 = %DECOMP(S1) 
 
Notice that s2 corresponds to C(1)-1G—we want each element above the principle diagonal to be 
zero. We can display this matrix using: 
 
dis s2 

0.01222       0.00000       0.00000 
0.01210       0.01518       0.00000 
0.18724      -0.51647       0.63922 

 
Next, we can compute and display G using: 
 
com g = C*S2 ; dis g 

 0.00626      -0.00472      -0.00102 
 0.00443       0.00374       0.00234 
-0.08599      -0.55838       0.54099 

 
The impulses responses can be obtained using: 
 
impulses(decomp=g,model=chap2) * 24 * 
 

6.2 Decomposing GDP, Real M2 and the Interest Rate 

 
The neoclassical macroeconomic model suggests that aggregate demand shocks can have short-
run, but not long-run, effects on economic real variables. As such, the Blanchard-Quah 
decomposition is ideally suited for analyzing the effects of various shocks on key 
macroeconomic variables. Let εft, εmt and εpt represent a fiscal policy shock, a monetary policy 
shock and a productivity shock, respectively. In terms of our 3-variable VAR, we might suppose 
that fiscal shocks and monetary shocks have no long-run effects on real GDP. Thus, we have two 
of the requisite three restrictions. To obtain a third restriction, it might be argued that fiscal 
shocks have no long-run effect on real money balances.  
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The relationship among the regression residuals and the structural shocks is: 
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Now, restricting the elements of G such that C(1)-1G has all elements above the principal 
diagonal equal to zero, is identical to assuming that monetary and fiscal policy shocks have no 
long-run effect on the {dlrgdpt} sequence and that fiscal shocks have no long-run effect on the 
{dlrm2t} sequence. Estimate the 3-variable VAR using all 12 lags.  
 
You can create the appropriately restricted G matrix using: 
 
compute g=%varlagsums*%decomp(%mqform(%sigma,tr(inv(%varlagsums)))) 
 
As in earlier programs, the impulse responses will be saved in a 3 x 3 matrix called impulses. 
The next two lines instruct RATS to create this matrix and to obtain the impulse responses using 
the decomposition of G: 
 
declare rectangular[series] impulses(3,3) 
impulses(model=chap2,result=impulses,decomp=g) * 24 * 
 
Responses to Shock in DLRGDP 
   Entry            DLRGDP          DLRM2            DRS 
            1   0.003010662081  0.004756093316 -0.263743931599 
            2   0.000447294073  0.004559080262 -0.063402066434 
            3   0.001943388494  0.002463374844  0.128481679716 
 
Responses to Shock in DLRM2 
   Entry            DLRGDP          DLRM2            DRS 
            1  -0.003711849678  0.002312008411  0.137086248729 
            2   0.000701092521  0.000947945412 -0.068523721029 
            3   0.000027167701  0.000666465186 -0.097559696296 
 
Responses to Shock in DRS 
   Entry            DLRGDP          DLRM2            DRS 
            1   0.004443216973  0.000606481672  0.463405065412 
            2   0.001645570241 -0.001450397016  0.296041401790 
            3  -0.000597985872 -0.001199710195 -0.038876550562 

 
Since we normalized the shocks to have unit-variances, the interpretation of the absolute 
magnitudes of the impulse responses is unclear. We can scale the responses of each variable in 
terms of standard deviations. The scaled responses to a fiscal policy shock are obtained using: 
 
 set r7 1 12 = impulses(1,3)/%sigma(1,1)**.5 
 set r8 1 12 = impulses(2,3)/%sigma(2,2)**.5 
 set r9 1 12 = impulses(3,3)/%sigma(3,3)**.5 
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A graph of the scaled responses is obtained from: 
 
com implabels = || 'dlrgdp','dlrm2', 'drs'|| 
graph(header ='Responses to a Fiscal Shock', key=upright, number=1, $ 
   klabels=implabels,patterns) 3 
# r7 ; # r8 ;  # r9 
 
Initially, the fiscal shock acts to increase dlrgdpt, however, by the third quarter dlrgdpt is 
negative. By construction, the cumulated change in dlrgdpt zero. Similarly, the fiscal shock is 
estimated to create a sharp increase in the short-term interest rate. Note that drst is positive for 
the first two quarters. Thereafter, drst seems to fluctuate around zero so that the cumulated 
change in the 3-month t-bill rate is positive. This is possible since we did not impose any 
restriction concerning the effect of the fiscal shock on drst. 
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Chapter 3:  
Loops Over Dates and Series 
 
Try this little program:22  
 
all 10 
scratch 1 
set 1 = 5 
pri / 1 
 
Notice that the program does not use the RATS’ CALENDAR Instruction. Instead, line 1 
instructs RATS to set the default length of a series to 10—by default, any series will have 10 
observations. The second instruction instructs to create one series. The third line instructs RATS 
to set 1 equal to 5. This may seem nonsensical at first, and I will explain the meaning in more 
detail below. However, since RATS does not display an error message, it must somehow set 1 
equal to 5. Perhaps, you can figure out the dilemma by entering line 4 (line 4 instructs RATS to 
PRINT over the default range). Your output should look like: 
 

  ENTRY     No Label(1) 
      1          5 
      2          5 
      3          5 
      4          5 
      5          5 

6 5 
etc. 

 
Now you can make sense of the program. There is a series—called 1—that has a length of 10. 
Each value of the series (i.e., entries 1 through 10) is equal to the number 5. The point is that the 
series called 1 does not have a label like y, gdp or inflation. It is series number “1” because it is 
the first series that has been created. Similarly, the entries of the series are not dates like 99:2 or 
2001:3. Instead of using dates, RATS numbers each value 1 through 10.  
 
You might want to think of series 1 as a 10 x 1 vector.23 Each element in the vector has the value 
of 5. The point is not that RATS can represent a series name by a number and a calendar date by 
a number. Instead, RATS always represents a series by a number. This is true regardless of 
whether or not you attach a name or label to the series. You are allowed to attach a label to a 
series for convenience. Similarly, RATS always represents each calendar date by a number. You 
are allowed to attach a date label like 99:2 or 2001:3 for your own convenience. This is true 
regardless of whether or not you use the CALENDAR instruction.  

                                                 
22 For your convenience, the programs illustrated in this section can all be found on the file 
labeled CHAPTER3_1.PRG.  
23 As explained when we discuss matrices, within RATS Programming Language, there is a 
difference between a series and a declared vector.  
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1. Dates as Integers 

 
In case you skipped over the last two chapters, note that the file labeled MONEY_DEM.XLS 
contains a number of variables in Excel format. If you open the file labeled CHAPTER3_1.PRG, 
you will find Program 3.2; open the file and read in the data set by entering the following four 
lines: 
 
cal 1959 1 4 
all 2001:1 
open data a:\money_dem.xls  ;* Modify this line if your data is not on drive a:\ 
data(org=obs,format=xls)  
 
Next, print out the four values of real GDP (rgdp) from 1959:1 through 1959:4 using:  
 
pri 1959:1 1959:4 rgdp 

 ENTRY    RGDP 
  1959:01  2273.0 
  1959:02  2332.4 
  1959:03  2331.4 
  1959:04  2339.1 

 
Now try using: 
 
pri(nodates) / rgdp 

 ENTRY      RGDP 
       1      2273.0 
       2      2332.4 
       3      2331.4 
       4      2339.1 
   ...      ...... 
     165      9191.8 
     166      9318.9 
     167      9369.5 
     168      9393.7 
     169      9439.9 

      

Thus, rdgp is one-dimensional array containing 169 observations or entries. As you can see, 
entry 1 is equivalent to 1959:1, entry 2 is equivalent to 1959:2, … and 2001:1 is entry 169. In 
fact, you can substitute the integers for the date labels whenever you find it convenient. For 
example, you can obtain first four values using: 
 
pri 1 4 rgdp 

 ENTRY    RGDP 
  1959:01  2273.0 
  1959:02  2332.4 
  1959:03  2331.4 
  1959:04  2339.1 
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If you do not want the date labels use: 
 
pri(nodates) 1 4 rgdp 

 ENTRY   RGDP 
      1       2273.0 
      2       2332.4 
      3       2331.4 
      4       2339.1 

 
What about the series tb1yr? Recall from Chapter 1, that the first two observations for this series 
were NA (or missing). In the language of econometricians, tb1yr contains only 167 observations. 
Nevertheless, in RATS Programming Language, tb1yr contains the same number of entries (i.e., 
169) as all of the other series in the data set. Entries 1 and 2 are simply recorded as NA. If you 
PRINT entries 1 to 4 and entries 165 to 169 you will obtain: 
 
print(nodates) 1 4 tb1yr 

   ENTRY       TB1YR 
      1          NA 
      2          NA 
      3      4.493333333333 
      4      4.740000000000 

 
print(nodates) 165 169 tb1yr 

 ENTRY       TB1YR 
    165      5.816666666667 
    166      5.856666666667 
    167      5.803333333333 
    168      5.630000000000 
    169      4.416666666667 

 
Thus, you can refer to value of the 1-year T-bill rate in 2001:1 using either tb1yr(2000:1) or 
tb1yr(169). You can DISPLAY the equivalent specifications if you enter: 
 
dis tb1yr(2001:1)  tb1yr(169) 
     4.41667       4.41667 
 
 

1.1 Omitting CALENDAR 

 
Given that all of the series in MONEY_DEM.XLS all have 169 entries, you could read in the 
data set using: 
 
all 169 
open data a:money_dem.xls 
data(org=obs,format=xls)  
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In fact, if you want to refer to entries only by number, rather than by date label, you never use 
the CALENDAR instruction. However, you would not be able to use date labels. Thus, using 
CALENDAR gives you the choice of using date labels or entry values. You cannot use date 
labels if you omit CALENDAR.  

Examples:  
1. Date arithmetic: Since 2001:1 = 169, it follows that 2001:1-8 =161 is equivalent to 1999:1.  

Hence, to print the last two years of the rgdp series you can use: 
 

pri 2001:1-8 * rgdp  
 
Note that RATS will perform the date arithmetic 2001:1-8 if you do not use spaces adjacent to 
the minus sign.  

 
2. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the first 100 

observations: 
 

set dlrgdp = log(rgdp) – log(rgdp{1}) 
lin dlrgdp * 100 
# constant dlrgdp{1} 
 
The first line creates the logarithmic change of rgdp. The second line prepares RATS to 
estimate a regression with dlrgdp as the dependent variable such that the last sample point is 
observation 100 (Note: A second observation will be lost as a result of the lagged change). 
The asterisk instructs RATS to use the default value for the start entry. 
 

3. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the last 100 
observations and save the residuals in the series resids: 
 
lin dlrgdp 2001:1-99 * resids 
# constant dlrgdp{1} 
 
Now line 2 instructs RATS to estimate the regression using the start date beginning at 100 
observations from the end of the data set. Note that if you want RATS to perform the date 
arithmetic 2001:1–100, you cannot put a space on either side of the minus sign. Also note that 
you will get precisely the same output using: 
 
lin dlrgdp 69 * resids 
# constant dlrgdp{1} 
 
The reason that the two are equivalent is that there are 169 observations for rgdp. Observation 
69 is identical to 2001:1–100. If you take the time to count, you can verify that both of these 
entries are equivalent to 1976:1. Fortunately, you never have to actually count the number that 
is equivalent to a particular date label. In fact, RATS provides a number of instructions that 
are helpful for using date manipulation. The two most useful ones are: 
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%CAL(YEAR,PERIOD) = The entry number  PERIOD of YEAR. 
%DATELABEL(T) = The date string (e.g., 1991:3) corresponding to the entry value. 
 

4. To find the date label of the observation 100 periods before 2001:1 use: 
 
dis %DATELABEL(2001:1-100)    
 
Your output will be: 1976:01. (Note: In performing date arithmetic, RATS does not allow 
you use spaces inside the %DATELABEL function; hence, in the instruction above, you 
cannot place a space on either side of the minus sign). You can also use %DATELABEL with 
any integer value. For example, if you insist on putting spaces next to the minus sign, you can 
use: 
 
com i = 2001:1 - 100 
dis %DATELABEL(i)  
 
Similarly, dis %cal(1976,1) yields:  
 
69 
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2. Series as Integers 

 
Just as each calendar date has an associated entry value, each series has its own sequence 
number. If continue to use Program 3.2 and type TABLE, you will see: 
 

Series  Obs       Mean       Std Error      Minimum       Maximum 
DATE    169   1979.876331     12.232185   1959.100000   2001.100000 
GDP     169   3572.739053   2873.158128    496.100000  10243.600000 
RGDP    169   5142.364497   1950.840494   2273.000000   9439.900000 
M2      169   1904.835266   1399.706717    287.800000   5043.710000 
M3      169   2414.462229   1916.764710    290.053333   7260.136667 
TB3MO   169      5.915148      2.590483      2.303333     15.053333 
TB1YR   167      6.153872      2.393622      2.713333     14.380000 
DLRGDP  168      0.008475      0.008960     -0.020598      0.037804 
RESIDS  101      0.000000      0.007737     -0.027190      0.031366 

 
Notice that the series in MONEY_DEM.XLS are in order, followed by the dlrgdp series you 
created. The series numbers are such that date is series 1, gdp is series 2, rgdp is series 3. The 
series dlrgdp created with the SET instruction, is series 8. As you create additional series, RATS 
stores each consecutively. Thus, the series resids created by the LINREG instruction is series 9. 
 
As discussed above, you can just use the series number instead of its label. Anywhere RATS 
expects a series name, you can simply use the sequence number. You do need to make sure that 
you reference sequence numbers as integers and not floating point numbers.  
Thus, you can print out the first values of rgdp using: 
 
pri 1 4 3  
 
Recall that the syntax for the PRINT instruction is PRINT  start  end  series list. Thus, pri 1 4 3 
instructs RATS to print, from entry 1 through 4, the values of series 3. If you follow the logic, 
you know that it is possible to print the first four values of rgdp and dlrgdp using: 
 
pri 1 4 3 8 

 ENTRY         RGDP           DLRGDP 
 1959:01       2273.0           NA 
 1959:02       2332.4      0.025797235495 
 1959:03       2331.4     -0.000428834862 
 1959:04       2339.1      0.003297294498 

 
Care must be taken if a series is on the right-hand side of a FRML, SET or COM instruction 
since RATS will interpret the integer as a scalar. In fact, whenever it is ambiguous, you can force 
RATS to use the series instead of an integer if you use: [series]number. 

Examples: 
1. To print the last two years of the rgdp series you can use: 

 
 pri 2001-7 * 3  
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2. Estimate an AR(1) autoregression of the logarithmic change in rgdp using the first 100 

observations: 
 
set 8 = log(rgdp) – log(rgdp{1}) 
lin 8 * 100 
# constant 8{1} 
 
As before, the first line creates the logarithmic change of rgdp. However, there is no label 
attached to the series—it is just referred to as “8”. The second line prepares RATS to estimate 
a regression with series 8 as the dependent variable such that the last sample point is 
observation 100. The third line instructs RATS to include a constant and the lagged value of 
series 8 in the regression. 
 

3. set y = log(2) versus set y = log([series]2) 
 
The first instruction sets each entry of y equal to the natural log of 2; hence, all values of y are 
0.69315. The second statement sets each entry of y equal to the natural log of the 
corresponding entry of series 2. Suppose that the first four entries of series 2 are 1, 4, 2 and 6. 
The second statement sets the first four values of y to be: 0, 1.38629, 0.69315 and 1.79176. 
 

4. Suppose that the series y is the second series in RATS’ memory. All of the following create 
the growth rate of y: 
 
set gy = log(y) - log(y{1})  
set gy = log([series]2) - log(([series]2){1})   
set gy = log(2{0}) - log(2{1})  
 
The first instruction creates gy as the log of the current value of y less the lag of the previous 
period’s log of y. The second instruction uses square brackets to distinguish between the 
number 2 and series number 2. Notice that it is necessary to use the construction 
log(([series]2){1}); log([series]2{1}) creates an error message. The third instruction is correct 
because the use of lag notation ensures that there is no ambiguity in the meaning of 2{0} and 
2{1}. However, log(2) - log(2{1}) would not produce the desired effect.  
 

5. The very first program in this chapter contained the line set 1 = 5. This set all entries of series 
1 equal to the number 5.  

 
 
2.1 Creating Numbered Series and Labels 
  
Since RATS allows you work with a series using its label or its integer value, you will want to 
become familiar with creating numbered series, assigning a label to a series, fetching the integer 
value of a series from its label, and fetching the label of a series from its integer value.  
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In principal, you do not need to assign a label to a series. However, labels make it easier to 
remember recall the various steps in your program and to interpret your output. One way to 
create series is to use ALLOCATE instruction with the optional series field. Consider the first 
five lines of Program 3.3 on the file labeled CHAPTER3_1.PRG: 
 
cal 1959 1 4 
all 4 2001:1   ;* <<< Note that line 2 is modified 
open data a:\money_dem.xls 
data(org=obs,format=xls)  
tab  
 

Series         Obs       Mean       Std Error      Minimum       Maximum 
No Label(1)      0 
No Label(2)      0 
No Label(3)      0 
No Label(4)      0 
DATE           169  1979.8763314    12.2321846  1959.1000000  2001.1000000 
GDP            169  3572.7390533  2873.1581276   496.1000000 10243.6000000 
RGDP           169  5142.3644970  1950.8404937  2273.0000000  9439.9000000 
. . . 
TB3MO          169     5.9151479     2.5904835     2.3033333    15.0533333 
TB1YR          167     6.1538723     2.3936222     2.7133333    14.3800000 

 
As in all the other programs considered, line 2 sets the default series length to 2001:1. However, 
the value 4 in the series field instructs RATS to create a block of series numbered 1 to 4. Notice 
that the integer values assigned to the seven series contained on MONEY_DEM.XLS now begin 
with 5 and end with 11. At this point in the program, series 1 through 4 have no label. You can 
assign a name to each using the EQV instruction. The syntax of EQV (for EquiValance) is: 
 
EQV integer values of series 
list of names for series 
 
For example, we can assign series 1, 2, 3 and 4 the names resids1, resids2, resids3, and resids4 
using:24 
 
eqv 1 to 4 
resids1 resids2 resids3 resids4  
 
After entering these two lines, a table instruction produces the names of the four series: 
 
tab / 1 to 4 
 
 
 
 
 

                                                 
24 Notice there are no commas between the labels and there is no # symbol on the list of labels.  
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Series       Obs       Mean       Std Error      Minimum       Maximum 
RESIDS1        0 
RESIDS2        0 
RESIDS3        0 
RESIDS4        0 

 
You can use the names created with EQV for input and for output. An alternative is to assign a 
label to a series, using the LABELS instruction. The syntax for LABELS is: 
 
labels list of series numbers 
# 'labels' for the series  (each label in quotation marks) 
 
Hence, to assign the labels resids1, resids2, resids3, and resids4 to series 1 through 4 use: 
 
labels 1 to 4 
# ‘resids1’ ‘resids2’ ‘resids3’ ‘resids4’ 
 
Notice that each label is enclosed in single or double quotation marks and that you use the # 
symbol to begin the supplementary card for LABELS. There is an important distinction between 
EQV and LABELS. EQV produces a name that can be used for manipulations within a program. 
However, EQV cannot be used within a compiled section of a program. LABELS attaches an 
output label to a series that RATS displays when printing a series or writing a series to a data 
file. However, you cannot manipulate the series using its output label. The main reason to use an 
output label is to display strings that cannot be created with the SET or EQV instructions (e.g., 
spaces or a mix of upper case and lower case letters).  
 
The SCRATCH instruction provides an alternative way to create consecutively numbered series. 
Unlike ALLOCATE, the SCRATCH instruction assigns series numbers beginning with the 
highest unused integer value. Since tb1yr is assigned the integer value of 11, any new series 
created by SCRATCH will begin with the integer value of 12. The simplest way to create series 
from SCRATCH is to use: 
 
scratch  number  start  end  scr_no 
 
where:  

number   The number of series to create 
start end  The range of entries to allocate to the series 
scr_no An integer variable equal to the number of existing series prior to the 

execution of SCRATCH. Hence, scr_no + 1 contains the integer value of 
the first series created by SCRATCH. 

 
The next line of Program 3.3 creates two additional series and uses b to hold the value of scr_no. 
The TABLE instruction shows the order of the series in RATS’ memory. Since b = 11, the 
summary statistics for tb1yr and the two newly created series are displayed. At this point, the 
EQV or LABELS instructions can be used to assign labels to the two new series. Note that any 
additional series created will begin with integer number 14.  
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scratch 2 / b 
tab / b to b+2 

Series        Obs       Mean       Std Error      Minimum       Maximum 
TB1YR         167  6.1538722555  2.3936221961  2.7133333333 14.3800000000 
No Label(12)  0 
No Label(13)  0 

 

Retrieving Labels and Integer Numbers 
The simplest way to retrieve the integer value assigned to a series is to use the COMPUTE 
instruction.25 You COMPUTE an integer value to be equal to the name of a series: 
 
com integer = series name. 
 
For example, to display the integer value assigned to rgdp use: 
 
com num = rgdp 
dis num 
 
At first, this instruction makes no sense since num is a number and rgdp is a series (recall that 
COMPUTE is not used to set entire series). Since RATS expects a number on the right hand 
side, it will equate num with the series number assigned to rgdp. Thus, after entering dis num in 
Program 3.3, you will see the integer 7 displayed on the screen.  
 
The function %L(number) returns the LABEL attached to the specified variable. Hence: 
 
dis %l(7) 
    RGDP 
 
dis %l(rdgp) 
 RGDP 
 
Also note that you can use com a$ = %l(7) to assign the string ‘RGDP’ to the string variable a$. 
Once a$ has been computed, it can be manipulated using the various string handling instruction 
provided with RATS. 
 
 

                                                 
25 The function %s(label) also returns the series number whose name is label. Be sure to include 
the label in single or double quotation marks. To display the series number associated with rdgp 
use: com ii = %s(‘rgdp’) ;  dis ii 
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3. Do Loops 

 
The DO loop is a very simple way to automate many of your repetitive programming tasks. The 
usual structure of a DO loop is: 
 
do i = 1,n 
  program statements 
end do i 
 
The structure is such that RATS will perform all program statements within the DO loop exactly 
n times. The first time the program statements are executed, the counter i contains the integer 
value 1. On reaching the end of the loop, the counter i is incremented by 1 (i.e., i = 2). If i is less 
than or equal to n, the block of program statements is executed again. On reaching the end of the 
loop, the value of i is incremented by 1, compared to n, and if i ≤ n, the loop is executed once 
more. After the n-th loop i = n+1 and the instruction following the loop is executed. Consider the 
example: 
 
do i = 1,5 
  dis i 
end do i 
 
  1 

2 
3 
4 
5 
 
More generally, you can use: 
 
do integer = n1, n2, increment 
  program statements 
end do integer  
 
where: n1, n2 and increment are integers. To understand how the loop performs consider 
 
do i = 1,5,2 
 
Here, i begins at 1 and is incremented by 2 every time the loop is completed. After three loops, i 
= 6 so that the loop is not performed a fourth time.  
 
do i = 6 , -3, -2 
 
Here i begins at 6 and is decreased by 2 every time the loop is completed. At the end of the first 
loop, i = 4 and the loop is completed a second time. At the end of the 5th loop, i = -4 so the loop 
is not completed a sixth time.  
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3.1 DO Loops, Switches and Choices 

  
Since all Switch and Choice options have an integer representation, they can be selected by the 
index of a DO loop. Consider the following: 
 

Examples: 
1. do i = 0,1 

  lin(robusterrors=i) drs 
  # constant drs{1 to 7} 
end do i 
 
In Chapter 1, the change in the short-term interest rate ( drs ) was estimated as an AR(7) with 
and without the ROBUSTERRORS option. The program segment estimates an AR(7) model 
with and without ROBUSTERRORS. Recall that ROBUSTERRORS is OFF when its value 
equals 0 and is ON when its value equals 1.  
 

2. Any RATS instruction containing supplementary cards in a regression format allows you to 
use the ENTRIES option. The syntax for the option is: 
 
entries = number of entries to process 
 
For example, the instructions below will produce three regression equations. The first will 
regress y on a constant, the second will regress y on a constant and x, and the third will regress 
y on a constant x and z.26  
 
do i = 1,3 
  lin(entries=i) y 
  # constant x z 
end do i 
 

3.  The RATS procedure BJIDENT.SRC will display the autocorrelation and partial 
autocorrelation functions for the series you specify. After compiling the procedure, the syntax 
to EXECUTE the procedure is: 
 
execute  bjident(options)  series  start  end 
 
or, if you use @ as a shortcut for EXE, 
 

                                                 
26 You need to be a bit careful since any object you include on the supplementary card (except #, 
$ or a space) is counted as an entry. Thus, dlrgdp{1} is counted as four entries: dlrgdp, {, 1, and 
}. Similarly, dlrgdp{1 to p} is counted as 6 entries: dlrgdp, {, 1, to, and p}.  
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@bjident(options)  series  start  end 
 
where:  
start end   The range of the series to use for constructing the 

 autocorrelations and partial autocorrelations   
 
The most useful options are: 
 
DIFF=   Maximum regular differencings[0] 
SDIFFS=   Maximum seasonal differencings[0] 
TRANS=[NONE]/LOG/ROOT   Transformation to apply to data 
[GRAPH]/NOGRAPH             Do High-resolution graphs? 
SPAN=   Seasonal span 
 
Since TRANS has three choices, you can obtain the ACF and PACF of a series y, the log of y 
and the square root of y using: 
 
do i = 1,3 
  @bjident(trans=i) y 
end do i 
 
Similarly, you can obtain the ACF and PACF of  y and its first and second differences using: 
 
do i = 0, 2 ; @bjident(diff = i) ; end do i 
 
You can also manipulate the start or end entry. For example, to obtain the ACF and PACF of 
y using observations 1 though 100, 150 and 200, use: 
 
do i = 100,200,50 ; @bjident y * i ; end do i 
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3.2 Lag Length Tests 

 
Now scroll down Program 3.3, and form the growth rate of real GDP using: 
 
set dlrgdp = log(rgdp) – log(rgdp{1}) 
 
Instead of estimating the series as an AR(1), suppose that we want to ascertain the number of 
lags to use in an AR(p) representation. Suppose that you believe that the maximum possible lag 
length is 12.  
 
do p = 1,12 
  lin dlrgdp  
  # constant dlrgdp{1 to p} 
end do p 
 
RATS will estimate the regression exactly 12 times. The first time through the loop, p = 1 so that 
RATS estimates an AR(1) model (i.e., lags{1 to p} is simply lag 1). The second time through the 
loop, p = 2 so that RATS includes lags 1 and 2 in the autoregression. Each time through the loop, 
p is increased by 1; hence, the number of lags used in the autoregression is increased by 1.  
 
As it stands, the routine has a number of flaws. First, if we want to perform lag length tests, we 
need to estimate each autoregression over the same sample period. Since one usable observation 
is lost for each lag included in the model, we can estimate all of the autoregressions over the 
same sample period by modifying the LINREG instruction such that: 
 
lin dlrgdp 14 * 
 
Now all autoregressions begin with observation 14 (since one usable observation is lost by taking 
first-differences and 12 are lost when estimating the AR(12) regression). The second flaw is that 
we get too much output. Oftentimes, you will want to calculate the aic or sbc from each equation 
and then to examine the output of the model with the smallest aic and/or sbc. For each 
regression, you can compute and display the aic and sbc using: 
 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 
It is also common to determine a lag length based on the outcome of t-tests. This methodology 
picks the lag length such that the t-statistic for the last lag is significant at some pre-specified 
level. Given the presence of an intercept, each regression will have p+1 coefficients and the t-
statistic for the last lag can be obtained from %TSTATS(p+1).  
 
dis ‘Lags:’ p ‘AIC =’ aic ‘SBC =’  sbc ‘t =’ %tstats(p+1) 
 
Hence, we can put these instructions in the loop and use the NOPRINT option in LINREG to 
obtain: 
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do p = 1,12 
  lin(noprint) dlrgdp 14 *  
  # constant dlrgdp{1 to p} 
  compute aic = %nobs*log(%rss) + 2*(%nreg) 
  compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
  dis 'Lags: ' p 'AIC = ' aic ' and SBC = ' sbc  't =' ###.### %tstats(p+1) 
end do p 
 
Lags: 1  AIC =    -703.21209 SBC =    -697.11238 t =       3.79455 
Lags: 2  AIC =    -704.98313 SBC =    -695.83356 t =       1.93483 
Lags: 3  AIC =    -703.03417 SBC =    -690.83475 t =      -0.22304 
... 
Lags: 11 AIC =    -693.50814 SBC =    -656.90987 t =      -0.38318 
Lags: 12 AIC =    -695.48673 SBC =    -655.83860 t =      -1.92196 
  
Here the AIC selects the model with two lags while the SBC selects the model with one lag. In 
this example, the choice is unclear since t-statistic on lag 2 has a prob-value that is slightly 
greater than 0.05. At this point, a careful researcher would subject the models to additional 
diagnostic checks. 

Modifying the Program 
The idea of looping over lags is easily extended to selecting the order p and q of an ARMA 
model. The remaining portion of Program 3.3 illustrates the process of fitting an ARMA(p, q) 
model to the change in the 1-year T-bill rate. The first line creates drl as the first difference of 
tb1yr. Then two DO loops are created. The program loops over all values of p and q from 0 to 4 
so that a total of 25 ARMA models are estimated. Inside the DO loops, the BOXJENK 
instruction estimates an ARMA model (without an intercept) using the current values of p and q. 
The start date for all models is fixed at 1960:4 in order to ensure that all equations are estimated 
over the same sample period (Note: The first two observations of tb1yr are NA , one observation 
is lost be differencing and four more are lost due to the four autoregressive lags). For each 
model, the value of p and q  the AIC and SBC are displayed. 
 
dif tb1yr / drl 
do p = 0,4 
    do q = 0,4 
 box(ar=p,ma=q,noprint) drl 1960:4 *      
 compute aic = %nobs*log(%rss) + 2*(%nreg) 
 compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 dis  'Order ' p q 'The aic = ' aic ' and sbc = ' sbc  
    end do q  
end do p 
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Order  0 0 The aic =      718.76274  and sbc =      718.76274 
Order  0 1 The aic =      708.79596  and sbc =      711.88356 
Order  0 2 The aic =      700.19711  and sbc =      706.37230 
Order  0 3 The aic =      702.19589  and sbc =      711.45868 
Order  0 4 The aic =      696.65415  and sbc =      709.00454 
Order  1 0 The aic =      716.09728  and sbc =      719.18488 
Order  1 1 The aic =      703.94238  and sbc =      710.11758 
Order  1 2 The aic =      702.19348  and sbc =      711.45627 
Order  1 3 The aic =      703.75461  and sbc =      716.10500 
Order  1 4 The aic =      696.61767  and sbc =      712.05565 
Order  2 0 The aic =      705.59455  and sbc =      711.76974 
Order  2 1 The aic =      699.89149  and sbc =      709.15428 
Order  2 2 The aic =      701.02566  and sbc =      713.37604 
Order  2 3 The aic =      701.05749  and sbc =      716.49547 
Order  2 4 The aic =      697.58720  and sbc =      716.11277 
Order  3 0 The aic =      698.58881  and sbc =      707.85160 
Order  3 1 The aic =      700.04901  and sbc =      712.39940 
Order  3 2 The aic =      701.86138  and sbc =      717.29936 
Order  3 3 The aic =      701.71606  and sbc =      720.24163 
Order  3 4 The aic =      699.19451  and sbc =      720.80769 
Order  4 0 The aic =      700.27063  and sbc =      712.62102 
Order  4 1 The aic =      702.03769  and sbc =      717.47568 
Order  4 2 The aic =      703.86137  and sbc =      722.38695 
Order  4 3 The aic =      703.53608  and sbc =      725.14926 
Order  4 4 The aic =      699.36336  and sbc =      724.06413 

  
The AIC selects an ARMA(1, 4) model and the SBC selects an ARMA(0, 2) [i.e., the SBC 
selects an MA(2) specification].27 The final instruction in the program estimates an MA(2) model 
over the full sample period. 
 
box(ma=2) drl 
 

Box-Jenkins - Estimation by Gauss-Newton 
Convergence in    16 Iterations. Final criterion was  0.0000062 <  
0.0000100 
Dependent Variable DRL 
Quarterly Data From 1959:04 To 2001:01 
 
   Variable          Coeff       Std Error      T-Stat     Signif 
******************************************************************** 
1.  MA{1}          0.293888856  0.076814701      3.82595  0.00018490 
2.  MA{2}         -0.220139206  0.076854845     -2.86435  0.00472551 
 

                                                 
27 RATS uses the Gauss-Newton algorithm to estimate coefficients of an ARMA model. The 
default number of iterations for the BOXJENK instruction is 40. Thus, if you use this type of 
automated procedure to select the order of an ARMA model, you must check to ensure that the 
estimation process converged. Line 2 of the printed output for the MA(2) indicates that the 
process converged in 16 iterations.   
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3.3 Lag Length Tests in a VAR 

 
We can use a similar procedure to perform lag length tests in a VAR. In Chapter 2, we performed 
some likelihood ratio tests to determine the lag length in a VAR using the variables dlrgdp, 
dlrm2 and drs. It is possible to automate the procedure using a DO loop. Since the data are 
quarterly, it seems plausible to perform leg length tests for lags 16 versus 12, 12 versus 8, and 8 
versus 4. The following instruction can be found in Program 3.4 on the file labeled 
CHAPTER3_2.PRG. The program reads in the data set and creates the three variables dlrgdp, 
dlrm2 and drs. The next instruction creates a DO loop such that the variable lags runs from 16 to 
8 in steps of minus 4 (i.e., lags will equal 16, 12 and 8): 
 
do lags = 16,8,-4 
 
Next, the SYSTEM-END(SYSTEM) block sets up the three variable VAR using a lag length of 
1 to lags.   
 
system(model=chap3) 
vars dlrgdp dlrm2 drs 
lags 1 to lags 
det constant 
end(system) 
 
The ESTIMATE instruction below is the key to the program. The system is estimated beginning 
with observation 1959:2+lags since one observation is lost as a result of differencing and lags 
observations are lost by incorporating the lagged variables. The residuals are stored in 
unrestrict—unrestrict(1) contains the residuals from the dlrgdp equation, unrestrict(2) contains 
the residuals from the dlrm2 equation and unrestrict(3) contains the residuals from the drs 
equation. The following two statements calculate the AIC and SBC for the unrestricted model. 
Note that there are 3*lags + 1 coefficients in each of the three equations.  
 
estimate(resids=unrestrict,noprint) 1959:2+lags * 
com aic_u = %nobs*%logdet + 2*(3*lags+1)*3 
com sbc_u = %nobs*%logdet + log(%nobs)*(3*lags+1)*3 
 
The second SYSTEM-END(SYSTEM) block shown below estimates the VAR using four fewer 
lags (i.e., lags-4). You should be careful not to leave any spaces on either side of the plus sign. 
This restricted system is estimated over the same sample period as the unrestricted system 
(1959:2+lags *) and the residual series are saved in restrict. The AIC and the SBC for the 
restricted model are calculated and denoted by aic_r and sbc_r, respectively. Notice that there are 
(3*(lags-4)+1)*3 estimated coefficients in the system (each of the three equations contains lags-4 
lags of each variable plus an intercept).  
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system(model=chap3) 
vars dlrgdp dlrm2 drs 
lags 1 to lags-4 
det constant 
end(system) 
estimate(resids=restrict,noprint) 1959:2+lags * 
com aic_r = %nobs*%logdet + 2*(3*(lags-4)+1)*3 
com sbc_r = %nobs*%logdet + log(%nobs)*(3*(lags-4)+1)*3 
 
We display the AIC and SBC for the unrestricted and restricted systems using:  
 
dis 'Lags = '  lags 'aic_u = ' aic_u 'sbc_u = ' sbc_u 
dis 'Lags = '  lags-4 'aic_r = ' aic_r 'sbc_r = ' sbc_r 
 
Notice that there are 36 (3*4*3) restrictions—four lags of three variables in three equations and 
each unrestricted equation contains 3*lags + 1 parameters. Hence, the next four instructions 
calculate and display the significance level for the test. The final line ends the DO loop, the 
counter lags is decreased by four and the process continues for the next value of lags. 
 
ratio(degrees=3*4*3,mcorr=3*lags+1,noprint) 1959:2+lags * 
# unrestrict 
# restrict 
dis 'Significance level = ' %signif   ; dis '  ' 
end do 
 

Lags =  16 aic_r =    -3080.45335 sbc =    -2635.94291  
Lags =  12 aic =      -3108.63138 sbc =    -2772.98064 
Significance level =        0.76164 
 
Lags =  12 aic_r =    -3198.00556 sbc =    -2859.47155 
Lags =   8 aic =      -3197.47118 sbc =    -2968.73198 
Significance level =        0.02069 
 
Lags =  8 aic_r =    -3289.27609 sbc =    -3058.63806 
Lags =  4 aic =      -3276.50688 sbc =    -3156.57511 
Significance level =    3.87731e-04 

 
Thus, at conventional significance levels, the restriction from 16 to 12 lags is not binding. 
However, restricting the system from 12 to 8 lags has a prob-value of 0.02069 and further 
restriction the system from 8 to 4 lags has a prob-value of 3.87731e-04. The multivariate AIC 
and SBC both select the 12-lag model over the 16-lag model. However, in the other two cases 
the AIC selects the model with the long lag and the SBC selects the model with the short lag.  
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4. Loops for Dates 

 
As suggested by the last program, one important use of a DO loop is to perform a set of RATS 
instructions such that the start and/or end date is altered each time through the loop. Since dates 
have an equivalent integer representation, it is simple to use date manipulations in the loop. 
 
Suppose that you wanted to compare the 1-step ahead mean square prediction errors for an 
AR(1) and an AR(2) model of dlrgdp. One way to do this is to estimate each model over the first 
100 observations and then obtain the 1-step ahead forecast for each. Since the value of dlrgdp for 
period 101 is known, it is possible to obtain the squared prediction error for the AR(1) and the 
AR(2) specifications. Next, estimate each model over the first 101 observations and obtain the 
squared 1-step ahead prediction error for period 102. Repeat the entire process up through 
observations 168 (so that you have the 1-step ahead prediction error for period 169) and compare 
the means of the sum of the squared prediction errors. Continue to scroll down Program 3.4 and 
enter the following instructions: 
 
set f_ar1 = 0. 
set f_ar2 = 0. 
do i = 100,168 
   lin(noprint,define=ar1) dlrgdp 3 i; # constant dlrgdp{1}  
   forecast 1 1  
   # ar1 f_ar1 
   lin(noprint,define=ar2) dlrgdp 3 i; # constant dlrgdp{1 to 2}  
   forecast 1 1 
   # ar2 f_ar2 
end do i 
 
Lines 1 and 2 initialize the two series f_ar1 and f_ar2; these series are used to store the forecasts 
from the two models. The third line instructs RATS to execute the DO loop 69 times beginning 
with i = 100 and terminating after i = 168. Within each loop, RATS estimates an AR(1) model of 
dlrgdp over the sample period 3 through i. Lines 5 and 6 instruct RATS to make a 1-step ahead 
forecast for period i+1 and store the forecast in f_ar1.  Lines 7 - 9 repeat the procedure for the 
AR(2) specification and stores the forecast in f_ar2. After the 69 loops are completed, f_ar1 and 
f_ar2 each contain the 69 1-step ahead forecasts.  
 
The remainder of the program is straightforward. The first two lines shown below calculate the 
squared prediction errors from the AR(1) and the AR(2)—each prediction error is the difference 
between the actual and forecasted values of dlrgdp. Lines 3 and 4 calculate and display the mean 
square prediction error for the AR(1) and lines 5 and 6 calculate and display the mean square 
prediction error for the AR(2).  
 
set pe_1 101 169 = (dlrgdp – f_ar1)**2 
set pe_2 101 169 = (dlrgdp – f_ar2)**2 
sta(noprint)  pe_1 
dis ‘The MSPE from the AR(1) is: ‘ %mean 
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sta(noprint) pe_2 
dis ‘The MSPE from the AR(2) is: ‘ %mean 
 

The MSPE from the AR(1) is:    2.44821e-05 
The MSPE from the AR(2) is:    2.31782e-05 

 
A Small Quiz: Now take a little quiz. Some might recommend eliminating an initial observation 
every time through the loop. In this way, you would estimate a model with 98 observations each 
time through the loop.  
 
How would you rewrite the DO loop to perform this task? 
 
Answer: Rewrite the LINREG instructions such that the initial observation increases by 1 each 
time through the loop. The two LINREG instructions should be: 
 
lin(noprint,define=ar1) dlrgdp i-97 i; # constant dlrgdp{1}  
lin(noprint,define=ar2) dlrgdp i-97 i; # constant dlrgdp{1 to 2} 
 
Now, the first time through the loop, the initial observation is 3 (i.e., 3 = 100 – 97) and the last 
observation is 100. The second time through the loop, the initial observation is 4 and the last 
observation is 101. Continuing through i = 168 yields an entry value of 71 for the initial 
observation and 168 for the last observation. Thus, each regression has 97 usable observations.  
 
Question two of the quiz concerns the use of date notation in a DO loop. Since the use of date 
notation is equivalent to the use of integers, it is possible to use date notation for the indices of 
the DO loop. In MONEY_DEM.XLS, observation 100 is equivalent to date 1988:1 and 
observation 168 is 2004:1. How could you rewrite lines 3 – 10 of the program above using date 
labels?  
 
Answer:  
do i = 1988:1,2004:1 
   lin(noprint,define=ar1) dlrgdp 1959:3 i; # constant dlrgdp{1}  
   forecast 1 1 
   # ar1 f_ar1 
   lin(noprint,define=ar2) dlrgdp 1959:3 i; # constant dlrgdp{1 to 2}  
   forecast 1 1 
   # ar2 f_ar2 
end do i 
set pe_1 1988:2 2001:1 = (dlrgdp – f_ar1)**2 
set pe_2 1988:2 2001:1 = (dlrgdp – f_ar2)**2 
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5. Loops for Series 

 
One of the most powerful features of RATS is that it allows you to perform a DO loop such that 
the index refers to a series. Here is a routine to create the growth rates of the variables in 
MONEY_DEM.XLS. Recall that gdp is [series]2, rgdp is [series]3, m2 is [series]4, m3 is 
[series]5, TB3mo is [series]6 and TB1yr is [series]7. The first part of Program 3.5 reads in the 
data set MONEY_DEM.XLS, but does not create the variable dlrgdp. Instead, we can create the 
growth rate of each series using a DO loop. Consider: 
 
scratch 6 / scr_no 
do i = 1,6 
   set scr_no+i  = log((i+1){0}) - log((i+1){1}) 
end do i 
 
The first line of the routine creates six new series. The series numbers begin at 8 (since a total of 
7 series reside in memory) and run through 13. The variable scr_no contains the integer value 7. 
Notice that the indices of the DO loop range from 1 through 6. The first time through the loop i = 
1 so that series 8 (8 = scr_no + 1) is set equal to the log of series 2 minus the log of series 2 
lagged one period. The next time through the loop, i = 2 so that series 9 is set equal to the log of 
series 3 minus the log of series 3 lagged one period. In this fashion, series 8 – 13 contain the 
logarithmic changes of gdp, rgdp, m2, m3, tb3mo and tb1yr, respectively.  
 
Now we can jazz up the program a bit. We know that we can read the label assigned to a series 
using: %L(variable). We can also assign a label to a variable. In fact, we can make our routine 
more user-friendly by assigning labels to series 8 through 13. Each label will begin with ‘dl’ and 
end with the name of the original series being changed (e.g., dlrgdp for the change in the log of 
rdgp). As discussed in Section 2.1, we cannot use EQV in a loop, so we will want to use 
LABELS here. Now consider the following modification of our program: 
 
do i = 1,6 
   set scr_no+i  = log((i+1){0}) - log((i+1){1}) 
   labels scr_no+i ; # 'DL'+%l(i+1) 
end do i 
tab / scr_no+1 to scr_no+6 
 

Series   Obs       Mean         Std Error      Minimum       Maximum 
DLGDP     168      0.018022      0.009419     -0.010052      0.057029 
DLRGDP    168      0.008475      0.008960     -0.020598      0.037804 
DLRM2     168      0.017045      0.008553     -0.002633      0.053028 
DLM3      168      0.019167      0.009285     -0.005379      0.038578 
DLTB3MO   168      0.003286      0.109786     -0.332247      0.396932 
DLTB1YR   166     -0.000104      0.102851     -0.329450      0.288489 

 
Note that LABELS does not allow you to refer to a series by its label. For example, you will 
obtain an error message if you type TABLE / dlrgdp.  
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6. The DOFOR Instruction 

 
The DO instruction forces a particular relationship between subsequent values of the index. The 
index of a DO instruction must be an integer and the index is increased by the same amount from 
one loop to the next. However, there are many instances in which we do not want one value of 
the index to bear any precise relationship to the adjacent values. In such circumstances, DOFOR 
is particularly helpful.  
 
Program 3.6 illustrates a simple way to create multiple graphs on a page. After reading in 
MONEY_DEM.XLS, the program creates the logarithmic changes in real gdp, the gdp deflator 
and m3 and the difference in the 3-month T-bill rate (drs) using: 
 
set dlrgdp = log(rgdp) - log(rgdp{1}) 
set dlm3 = log(m3) - log(m3{1}) 
dif tb3mo / drs 
set price = gdp/rgdp 
set dlp = log(price) - log(price{1}) 
 
The SPGRAPH instruction below indicates that we want to create a Special Graph with the 
header Graphs of Four Principal Series. The graphs are to be arranged into two horizontal fields 
and two vertical fields.  
 
spgraph(hea='Graph of Four Principal Series',hfi=2,vfi=2) 
 
We want to loop over the series dlm3 dlrgdp dr and dlp. Since the series numbers bear no 
particular relationship to each other, it is simplest to use a DOFOR loop. However, we need to 
use a counter j to indicate how many loops have been completed. Before entering the DOFOR 
loop, the value of j is initialized to zero and is increased by one every pass through the DOFOR 
loop. The first time through the loop, i equals the integer representing the series dm3 and j = 1. 
Consider: 
 
com j = 0 
dofor i = dlm3 dlrgdp drs dlp 
   com j = j + 1 
 
The next instruction below creates the header Panel 1: Time path of dlm3. To understand, note 
that the variable called header is necessarily a string variable. The string is equal to ‘Panel’ plus 
the value of j (=1) plus the string ‘Time Path of’ plus the label of dlm3 (i.e., the label of series i). 
The GRAPH instruction creates a graph of series i using the header created in the previous 
COMPUTE instruction. After the first pass, i becomes the integer value of dlrgdp and j = 2. 
Next, the header Panel 2: Time Path of dlrgdp is created and the GRAPH instruction creates a 
graph of series dlrgdp using this header. The process continues until i has taken on the values 
corresponding to dr and dlp. The final instruction SPGRAPH(done) displays the output. 
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   com header = 'Panel ' + j + ': Time Path of ' + %l(i) 
   gra(hea= header) 1 ; # i 
end do i 
spgraph(done) 
 

Graphs of Four Principal Series
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6.1 DOFOR and Loops for Series 

 
In Program 3.5, we created the logarithmic change of series 2 through 7 and stored the results in 
series 8 through 13. It is quite possible that you do not want to create a variable in the form ∆ln 
xt for every variable in our data set (this is especially true if a series has one or more negative 
values). Suppose that you wanted to create only the logarithmic changes in real gdp (series 3), 
m2 (series 4) and tb3mo (series 6). Program 3.7 illustrates how you can perform this task using 
the DOFOR instruction: 
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scratch 3 / scr_no 
dofor i = rgdp m2 tb3mo 
   com j = j + 1 
   set scr_no+j = log(i{0}) - log(i{1}) 
   labels scr_no+j ; # 'DL'+%l(i) 
end dofor 
table / scr_no+1 scr_no+2 scr_no+3 
 

Series      Obs       Mean       Std Error      Minimum       Maximum 
DLRGDP      168  0.0084752669  0.0089595106 -0.0205982814  0.0378040869 
DLM2        168  0.0170454250  0.0085532148 -0.0026327924  0.0530276961 
DLTB3MO     168  0.0032859057  0.1097860047 -0.3322470533  0.3969315930 

 
Now, only three series are ‘created from scratch’ beginning with scr_no+1. The first time 
through the loop, i is the integer value of rdgp (i.e., i = 3) and j = 1. The SET instruction creates 
series 8 (note the scr_no+1 = 8) as the logarithmic change in rgdp (series 3.) The second time 
through the loop, j is incremented by 1 and series 9 is created as the logarithmic change in M2. 
Similarly, the last time through the loop, series 10 is created as the logarithmic change in tb3mo. 
 
One final way to improve the program is to use the %S(L) function. As mentioned earlier, %S(L) 
returns the series number corresponding to the label L. You can verify that rgdp is the third series 
in RATS’ memory by entering the instructions: 
 
com a = %s('rgdp') ; dis a 
 

3 
 
A very useful feature of %S(L) is that it will create a series with the name L if it does not already 
exist. Suppose you have read in MONEY_DEM.XLS. An alternative way to create the 
logarithmic changes in rgdp, m2 and tb3mo is:  
 
dofor i = rgdp m2 tb3mo 
   set %s('dl'+%l(i)) = log(i{0}) - log(i{1}) 
end dofor 
 
The key to understanding the program is recall that %l(i) is a string equal to the label of series i. 
Hence ‘dl’ + %l(i) refers to the label dl plus the label of series i. The first time through the loop, i 
= 3. Since the label dlrgdp does not exist, %s('dl'+%l(i)) creates a series with the name dlrgdp as 
the logarithmic change in series i. The second time through the loop, i is equal to the integer 
value of m2 and %l(i) is the string ‘m2’. Since there is no series named dlm2, %s('dl'+%l(i)) 
creates this series as the logarithmic change in m2. Similarly, the third time through the loop, the 
logarithmic change in tb3mo is created. Unlike the LABELS instruction, the names creates by 
%S(label) can be used for input and for output.  
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6.2 DOFOR and ENTRIES 

  
In Section 3.1, it was indicated that any RATS instruction containing supplementary cards in a 
regression format allows you to use the ENTRIES option. However, any object you include on 
the supplementary card (except #, $ or a space) is counted as an entry. Thus, dlrgdp{1} is 
counted as four entries: dlrgdp, {, 1, and }. Similarly, dlrgdp{1 to p} is counted as 6 entries: 
dlrgdp, {, 1, to, and p}.  
 
Suppose you want to determine whether the contemporaneous and lagged growth rate of M3 
(dlm3) affected the growth rate of real GDP. You want to include contemporaneous money 
growth and the possibility that lags 1 to 4 of money growth are important. Since it is unclear 
whether the AR(1) or AR(2) model for dlrgdpt is most appropriate, you might want to estimate 
all your equations using both lag lengths. You could read in MONEY_DEM.XLS and construct 
dlrgdpt and dlm3t as follows: 
 
set dlrgdp = log(rgdp) - log(rgdp{1}) 
set dlm3 = log(m3) - log(m3{1}) 
 
Then you could estimate six regressions using the following supplementary cards. 
 
# constant dlrgdp{1} 
# constant dlrgdp{1 to 2} 
# constant dlrgdp{1} dlm3 
# constant dlrgdp{1 to 2} dlm3 
# constant dlrgdp{1} dlm3 dlm3{1 to 4} 
# constant dlrgdp{1 to 2} dlm3 dlm3{1 to 4} 
 
Alternatively, you could use the following set of instructions contained in Program 3.8: 
 
dofor i = 7 8 14 
     do p = 1,2 
 lin(noprint,entries=i) dlrgdp 6 * 
 # constant dlrgdp{1 to p} dlm3 dlm3{1 to 4} 
 compute aic = %nobs*log(%rss) + 2*(%nreg) 
 compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 dis  'The aic = ' aic ' and sbc = ' sbc 
     end do p 
end dofor i 
 
The first time through the DOFOR loop, i = 7 so that the ENTRIES option reads the constant 
and dlrgdp{1 to p} entries on the supplementary card. Hence, inside the DO loop as p 
changes from 1 to 2, the pure AR(1) and AR(2) are estimated. Next i = 8, so that ENTRIES 
option reads the constant dlrgdp{1 to p} and dlm3 entries on the supplementary card. 
Again, two regressions are estimated using one and two lags of dlrgdp. Finally, i = 14 so that the 
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ENTRIES option reads the constant, dlrgdp{1 to p}, dlm3 and dlm3{1 to 4} entries on 
the supplementary card. If you run the program, your output should be: 
 

The aic =     -725.43529  and sbc =     -719.23556 
The aic =     -727.49692  and sbc =     -718.19732 
The aic =     -728.35931  and sbc =     -719.05971 
The aic =     -729.80200  and sbc =     -717.40253 
The aic =     -724.17933  and sbc =     -702.48027 
The aic =     -725.39124  and sbc =     -700.59230 

 
The SBC selects the model with only one lag of dlrgdpt. However, if you estimate the model 
selected by the AIC, your output will look like: 
 
lin dlrgdp 6 * 
# constant dlrgdp{1 to 2} dlm3 
 

   Variable     Coeff        Std Error        T-Stat     Signif 
*********************************************************************** 
1.  Constant   0.0023202979 0.0016286184      1.42470  0.15619062 
2.  DLRGDP{1}  0.2347026242 0.0766291214      3.06284  0.00257298 
3.  DLRGDP{2}  0.1412306952 0.0766582885      1.84234  0.06727619 
4.  DLM3       0.1475857849 0.0715417775      2.06293  0.04073517 

 

Jazzing Up the Program 
The problem with ENTRIES is that we have to count the number of entries to use from the 
supplementary card. As illustrated above, this can be tricky when you use braces { }. However, 
RATS allows you to replace the individual entries on a supplemental card with a vector. You use 
the ENTER instruction to manipulate the items in the vector. By changing the contents of the 
vector, you modify the information on the supplementary card. The first few examples in the 
chapter on matrices (Chapter 5) cover this technique in great detail.  
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7. Loops with While and Until 

 
The DO loop is appropriate if you know exactly how many loops you want to make. However, 
there are circumstances in which the number of repetitions is unclear. For example, a common 
way to select the a lag length in an AR(p) model is to estimate the autoregression equation using 
the largest value of p deemed reasonable. If the t-statistic on the coefficient for lag p is 
insignificant at some pre-specified level, estimate an AR(p-1) and repeat the process until the last 
lag is statistically significant. If you used a DO loop, it would be necessary to estimate every 
autoregression from p to 1. A more efficient procedure is to stop the process once a significant 
lag is found. The syntax for a WHILE block is: 
  
while condition { 
     block of statements executed as long as condition is “true” 
  } 
end while  ;* (omit if the WHILE block is nested inside another compiled section) 
The syntax for an UNTIL block is: 
 
 
until condition { 
    block of statements executed as long as condition is “true” 
 } 
end until ;* (omit if the WHILE block is nested inside another compiled section) 
 
The remaining portion of Program 3.8 uses the WHILE instruction to perform the type of lag 
length test discussed above. Suppose that we want to fit an AR(p) model for drl with no more 
than 12 lags and that we want the t-statistic for the last coefficient to be significant at the 5% 
level. The COMPUTE instruction initializes the variable lags to be 13. This counter will be 
decreased by 1 each time through the WHILE loop. The variable sign is used to store the 
significance level of the t-statistic for the coefficient for drl(lags). COMPUTE initializes the 
variable sign to be 0.5 (Note: sign can be initialized to be any real number greater than 0.05). As 
long as sign exceeds 0.05, RATS will loop through the WHILE-END WHILE block below:  
 
com lags = 13, sign = .5 
while sign > 0.05  { 
      com lags = lags - 1 
      lin(noprint) drl 
      # constant drl{1 to lags} 
      exclude(noprint) ; # drl{lags} 
      com sign = %signif   
      dis 'Significance of lag' lags  '= ' sign 
    } 
end while 
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Significance of lag 12 =        0.92989 
Significance of lag 11 =        0.60897 
Significance of lag 10 =        0.62405 
Significance of lag  9 =        0.32442 
Significance of lag  8 =        0.43783 
Significance of lag  7 =        0.01255 

 
The first time through the loop, the variable sign is compared to 0.05. Since sign exceeds 0.05 
(i.e., since the condition sign > 0.05 is true) all of the instructions within the block are executed. 
Hence, lags is decreased from 13 to 12 and drl is estimated as an AR(12).  EXCLUDE 
calculates, but does not display, the value of the F-statistic for the exclusion restriction that the 
coefficient on drlt-12 = 0. Of course, with only one restriction, an F-test is equivalent to a t-test. 
Note that EXCLUDE creates the internal variable %SIGNIF containing the significance level of 
the restriction. The key instruction is COMPUTE sign = %signif. The variable sign is equated to 
the significance level of the restriction. If at the end of any loop sign < 0.05, the WHILE-END 
loop is terminated. Notice that sign exceeds 0.05 for lags 12 through 8 so that looping over the 
instructions within the WHILE-END block continues. However, in the AR(7) model, the 
significance level of the coefficient on dlr7 is less than 0.05 and RATS exits the loop (i.e., the 
condition sign > 0.05 is not true). The next two lines produce the AR(7) model: 
 
lin drl 
# constant drl{1 to lags} 
 

   Variable         Coeff       Std Error      T-Stat     Signif 
******************************************************************* 
1.  Constant     0.007234002  0.053259079      0.13583  0.89213923 
2.  DRL{1}       0.281822834  0.080465922      3.50239  0.00060674 
3.  DRL{2}      -0.343129641  0.083606666     -4.10409  0.00006620 
4.  DRL{3}       0.274614957  0.088185213      3.11407  0.00220824 
5.  DRL{4}      -0.035831951  0.090593547     -0.39552  0.69301422 
6.  DRL{5}       0.016548074  0.087971257      0.18811  0.85104475 
7.  DRL{6}      -0.030787141  0.083329087     -0.36946  0.71229913 
8.  DRL{7}      -0.202414362  0.080118649     -2.52643  0.01255294 

 
Jazzing Up the Program 
The program can be made much more useful by incorporating it into a DOFOR loop. You can 
allow DOFOR to loop over each series. Within each of these loops, the WHILE-END  block 
determines the lag length. The remaining portion of Program 3.8 constructs the variable dlp. The 
counter i in the DOFOR instruction loops over each for these five variables. Within the DOFOR 
loop, the WHILE-END  block determines the lag length for series i. At the end of each WHILE 
loop, the label of series i and the lag length is displayed. If you want the AR(p) model for each 
series, remove the comment label (i.e., remove *) from the final LINREG instruction.  
 
set price = gdp/rgdp 
set dlp = log(price) - log(price{1}) 
dofor i = dlrgdp dlm3 drs drl dlp 
    com lags = 13, sign = .5 
    while sign > 0.05  { 
  com lags = lags - 1 
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 lin(noprint) i 
 # constant i{1 to lags} 
     exclude(noprint) ; # i{lags} 
    com sign = %signif   
      } ;* Note that END WHILE is removed since we are in a compiled section 
      dis %label([series]i) ‘Lag length =  lags  
      *  lin i ; # constant i{1 to lags} 
end dofor 

 
DLRGDP Lag length =  1 
DLM3 Lag length =  1 
DRS Lag length =  11 
DRL Lag length =  7 
DLP Lag length =  3 

 

Frequently Asked Questions 
1.  What would happen if condition was never true? 
 

Answer: Big problems! One possibility is that looping continues indefinitely until you click 
the HALT icon on RATS Menu Bar. The other possibility is that you produce an error that 
causes (1) RATS stop execution and display an error message or (2) an inadvertent condition 
that is true. For example, suppose you used the program above on a series that behaves as a 
white noise process (so that none of the lags is significant at the 5% level). Hence, looping 
will continue until lags equals zero. At this point, the program regresses the series on itself so 
that the resulting F-statistic is necessarily significant at the 5% level (R2 will be 1). Here, 
dumb luck yields the correct lag length of zero. Since you can’t count on being this lucky all 
of the time, it is important to be careful that you do not get caught in an infinite loop or a loop 
that produces an error.  

 
2.  What is the difference between WHILE and UNTIL? 
 

Answer: The WHILE instruction checks to determine if condition is true at the beginning of a 
loop (i.e., when WHILE condition is encountered). The UNTIL instruction checks at the end 
of the loop (i.e., when END UNTIL or the closing brace } is encountered). Thus, the UNTIL 
block of instructions is always executed at least once.  

 
If PROGRAM 5 had used UNTIL instead of WHILE, the first three lines could have been: 
 
dofor i = dlrgdp dlm3 drs drl dlp 
  com lags = 13 
until sign < 0.05  {  ;* Note the reversed inequality 
 
The first time UNTIL is encountered, sign is not defined (so the condition sign < 0.05 is not 
true). The program continues until a significance level less than 0.05 is encountered. 
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3. What other conditions are allowed in the WHILE and UNTIL instructions? 
 

Answer: As detailed in the very beginning of the next chapter, any of the standard conditional 
relationships are allowed including < > (i.e., not equal) and = = (i.e., equality) as well as 
compound conditions created with .AND. and .OR.  

 
 



 

 

Chapter 4:  
IF Statements and Monte Carlo Experiments 
 
There are many instances in which we want to perform a set of instructions only if a particular 
condition is met. For example, in the last chapter, we used the WHILE instruction to reduce the 
order of an AR(p) model if the last coefficient was not significant at the 5% level. The process 
continued until a significant lag was found. At that point, the program produced the output of the 
final autoregressive model. In fact, RATS enables you to control the flow of a program using 
many types of conditional statements.  
 
Suppose that A and B are two numbers of the same type (real, integer, … ). RATS is able to 
check the following conditions involving the standard relational operators: 

 
equality: A = = B or  A.EQ.B 
not equal A <> B    or A.NE.B 
greater than A > B      or A.GE.B 
less than  A < B      or A.LT.B 
greater or equal to A >= B    or A.GE.B 
less than or equal to A <= B    or A.LE.B 

 
Moreover, RATS can create compound conditional statements that use AND, NOT and OR: 

 
A.AND.B 
A.NOT.B 
A.OR.B 

  
The simplest way to use relational operators is with the IF instruction. The basic syntax of IF is: 
 
IF condition  
    instruction to be executed if the condition is true  
 
where: condition is any of the relational conditions listed above and instruction is any valid 
RATS instruction.  
 
If the specified condition is met, RATS will execute the next instruction. If the condition is not 
met, the next instruction will be skipped. For example, consider the following instructions: 
 
if x = = 2 
   dis ‘The value of x equals 2’ 
end if  
 
This set of instructions will display ‘The value of x equals 2’ only when the value of x equals 2. 
You need to be careful about the use of the double equal sign since you are not equating x with 
the value of 2. If, by mistake, you type IF x = 2, RATS will not interpret this as any of the 
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relational statements above. Instead, the equals sign will cause RATS set the value of x equal to 
2; since the condition is TRUE, the message always be displayed. 
 
Note that you do not use the END IF statement if you are within a compiled section of a RATS 
program. For example, an IF statement within a DO loop or within a RATS procedure does not 
need the END IF statement. Otherwise, you should include the END IF instruction.  
 

Examples 
1. do t = 2,2000:4 

   if %valid( x(t) )==0 ; com x(t) = 0.5( x(t-1) + x(t+1) ) 
end do t 
 
I do not recommend it, but suppose you want to ‘fix’ the missing values in your data set by 
averaging. The %valid() function returns zero if the argument is a missing value. If the data 
runs from periods 1 through 2001:1, this routine will replace a missing value of x(t) with the 
average of the two adjacent values. (Example 3 in the Section %IF(x,y,z) below, discusses a 
faster way to perform the averaging). 
 

2. sta(noprint,fractiles) drs 
if %minimum > 0.  
   log drs / ldrs 
if %minimum.le.0  
   dis ‘I CAN ONLY TAKE THE LOG OF POSITIVE NUMBERS’ 
     
The STATISTICS instruction with the FRACTILES option stores the smallest value of drs in 
the internal variable %minimum. If the smallest value of drs exceeds zero, RATS forms the 
new series ldrs as the log of drs. If the smallest value of drs is negative or zero, RATS will 
display a warning message.  
 

3.  if %converged <> 1 ; dis ‘Model did not converge’ 
 
A number of RATS instructions including NLLS and MAXIMIZE produce the internal 
variable %converged. Note that %converged = 1 if the nonlinear estimation converged within 
the allowable number of iterations and is equal to zero otherwise. Here, the warning message 
Model did not converge is displayed if the previous nonlinear estimation did not converge.  
 

4.  if %converged = = 0 ; dis ‘Model did not converge’ 
 
The program will display Model did not converge if convergence is not obtained. However, 
the following contains a serious mistake: 
  
if %converged = 0 ; dis ‘Model did not converge’ 
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The program will never display Model did not converge since the equal sign (instead of a 
double equal sign) was used. In my own programs, I try to avoid this possible source of error 
and use .EQ. instead of = = .  

 

1. If-Then-Else Blocks  

 
If you want to execute a block of statements when a condition is met, simply include them in 
braces as illustrated below: 

 
IF x = = 0 {  
   program statements  
}  
END IF   (omit the END when the IF occurs inside a compiled sections) 

 
All of the program statement in braces will be executed if the value of x is equal to zero. 
Otherwise, the entire set of statements will be ignored. If you have a single instruction (with or 
without supplementary cards) you can place them on the same line as the IF statement. Consider: 
 
if i.ge.4 ; lin y ; # constant y{1 to i} 
 
The IF block will estimate an AR(i) model so long as the value of i is greater than or equal to 4. 
If i is less than 4, the regression will not be estimated. 

Examples 
1.  if lags.gt.0 { 

  dis ‘The lag length is’ lags 
  lin(noprint) y ; # constant y{1 to lags} 
  com aic = %nobs*log(%rss) + 2*(%nreg)       
  dis ‘The aic is’ aic 
} 
 
If the value of lags is greater than zero, the routine will display ‘The lag length is’ lags. 
Moreover, an AR(p) model (with p = lags) will be estimated and the value of the AIC will be 
calculated and displayed.  
 

2.  Consider the following routine to determine the optimal lag length for an AR process for 
dlrgdp. The first time through the DO loop, p = 1 and an AR(1) model is estimated. The 
resulting AIC is compared to aic_min. On this first loop, p = 1, so that the lag length p = 1 is 
stored in the variable p_opt and the value of the AIC replaces aic_min. The next time through 
the loop, an AR(2) model is estimated and the AIC for this model is compared to aic_min. 
After the DO loop is complete, p_opt contains the lag length of the best fitting model and 
aic_min contains the AIC for that model.  
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do p = 1,12 
   lin(noprint) dlrgdp 13 *  
   # constant dlrgdp{1 to p} 
   compute aic = %nobs*log(%rss) + 2*(%nreg) 
   if p.eq.1.or.aic < aic_min { 
       com p_opt = p  
 com aic_min = aic 
    } 
end do p 
 

The ELSE Block 
If the condition for the IF Block fails, you may want the RATS to execute an alternative set of 
statements. The syntax is: 
 
If condition { 
 program statements 
 }  
Else { 
 Alternate program statements 
 } 
End if 
  
The first set of statements will be executed if the condition is true, otherwise the alternate set of 
program statements will be executed. Again, you do not need the braces for a single statement. 
You should not use the END IF instruction if you are within a compiled section of a program.  
 
ELSE IF Blocks 
Oftentimes in your programming, you will encounter a situation where there is not an either/or 
choice. You might have a number of possible states and want to execute different sets of 
instructions for each possible state. In such circumstances, you can use ELSE IF blocks—each 
consists of a set of instructions that is executed if the appropriate condition is met. The typical 
structure of a complex IF instruction is: 
 
IF condition 1 { 
 first set of statements 
 } 
Else if condition 2 { 
 second set of statements 
 } 
… 
Else { 
 last set of statements 
 } 
End if  (if not within a compiled program segment) 
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Note: RATS performs the first IF or ELSE IF condition that is true. If all are false, RATS will 
perform ELSE (if present). 

 
 
Nested IF Statements 
It is possible to nest IF statements. Consider the following example.  If condition 1 and condition 
2 hold, then statement 1 is executed. Statement 2 is executed if condition 1 does not hold.  
 
if condition 1 { 
 if condition 2 ; statement 1 
 } 
else ; statement 2 
 
With the appropriate use of braces { } you can write programs with many conditional statements 
embedded within others. If you want to use nested IF statements, you should refer to the RATS 
Reference Manual. My experience indicates that it is best to avoid nested IF statements since 
they are very difficult to debug. It is always possible to program precisely the same conditional 
statements without nested IF statements using the relational .OR. and .AND. conditions.  
  

1.1 Sample Program: Lag Lengths Again 

  
Reconsider the problem of using the AIC to select the lag length for an autoregressive model of 
dlrgdpt. After reading in the data set MONEY_DEM.XLS, Program 4.1 on the file labeled 
PROGRAM4.PRG constructs the variables dlrgdp, drs and dlrm2. Since these should be familiar 
to you, we can jump to the next part of the program:  
 
 lin(noprint) dlrgdp 14 * ; # constant 
 com aic_min = %nobs*log(%rss) + 2*%nreg, p_opt = 0 
 do p = 1,12 
  lin(noprint) dlrgdp 14 *  
  # constant dlrgdp{1 to p} 
  compute aic = %nobs*log(%rss) + 2*(%nreg) 
  if aic < aic_min { 
    com p_opt = p  
      com aic_min = aic 
  } 
 end do p 
 
As discussed in Example 2 above, the variable aic_min will be used to contain the smallest value 
of the AIC and the integer p_opt will be used to contain the value of p yielding the lowest AIC. 
However, to allow for the case where the optimal lag length is zero, the initial values of aic_min 
and p_opt  are obtained from regressing dlrgdpt on a constant. In the second line of the program, 
the variables aic_min and p hold the AIC and lag length for this regression. The first time 
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through the loop, p = 1 and the AR(1) model will be estimated. The value of the resulting AIC 
will be compared to aic_min—if the calculated AIC is less than aic_min, the two instructions in 
brackets will be executed.  

 
If the optimal lag is zero, the condition on the IF instruction below is true. As such, RATS 
displays the message: An AR model is inappropriate. The autocorrelations are. The COR 
instruction then produces the first twelve autocorrelations of dlrgdpt and the associated Q-
statistics. If p_opt is greater than zero, the ELSE block is executed. Hence, the autoregression 
using p_opt lags is displayed along with the value of the AIC and p_opt. END IF instruction is 
used since the IF-ELSE block is not within a compiled section of the program.  
 
 if p_opt = = 0 { 
  dis ‘An AR model is inappropriate. The autocorrelations are’ 
  cor(number=12,span=4,qstats) dlrgdp  
  } 
 else { 
  lin dlrgdp / resids 
  # constant dlrgdp{1 to p_opt}  
  compute aic = %nobs*log(%rss) + 2*(%nreg)  
  dis ‘The aic with’ p_opt ‘lags is’ aic 
  } 
 end if 
 
If you run the program, your output will be: 
 

  Variable           Coeff       Std Error      T-Stat     Signif 
********************************************************************** 
1.  Constant      0.0051566068 0.0010217954      5.04661  0.00000119 
2.  DLRGDP{1}     0.2508977521 0.0769801061      3.25925  0.00135976 
3.  DLRGDP{2}     0.1362250820 0.0762100846      1.78749  0.07571568 
 
The aic with 2 lags is    -732.28752 

 
Jazzing Up the Program 
1. You might want to use a routine such as this in a number of your programs. However, you 

might not always want to use a maximum possible lag length of 12. To generalize the 
program, you can create a variable called max_lag and a variable called diffs right before the 
DO p = 1,12 instruction. Max_lag contains the maximum lag length you are willing to 
consider and the value of diffs equals 1 if the variable has been differenced. You will also 
need to modify the DO instruction such that the index p runs through max_lag. Hence, if you 
want to consider a maximum of 16 lags using a variable that has been differenced once, use: 

 
 com max_lag = 16, diffs = 1 
 do p = 1,max_lag 
  lin(noprint) dlrgdp max_lag+diffs+1 * 
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These instructions cause RATS to use a maximum of 16 lags. Since the variable has been 
differenced once (diffs = 1), the estimation for all 16 regressions will begin with observation 
18. 

 
2.  You can easily modify the program so that it can be used with any variable. Simply replace 

every occurrence of dlrgdp with the symbol x. For example, the first portion of the program 
will become: 

 
com max_lag = 16, diffs = 1 
lin(noprint) x max_lag+diffs+1 * ; # constant 
com aic_min = %nobs*log(%rss) + 2*%nreg, p_opt = 0 
do p = 1,max_lag 
   lin(noprint) x max_lag+diffs+1 * 
   # constant x{1 to p} 
   compute aic = %nobs*log(%rss) + 2*(%nreg) 
   if aic < aic_min { 
  com p_opt = p  
  com aic_min = aic 
    } 
end do p 

 
If you eliminate the END IF instruction, you can use the routine to find the optimal lag length 
of dlrgdpt, dlrm2t and drst using: 
 
dofor x = dlrgdp dlrm2 drs 
 The modified program 
End DOFOR 
 
The complete program is on the final portion of Program 4.1. 
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2. The %IF(x,y,z) Function  

  
There is a second type of conditional statement that is especially useful when working with a 
series. Consider: 
 
 %IF(condition,y,z)   
 
This function returns y if the condition is true and returns z if the condition is false. Note that y, 
and z can be REAL or INTEGER.  

Examples: 
1. com x = %if(i.ge.5,1.0,-1.0) 

 
Here the %IF( ) function is used with a real variable x. The value of x will be 1.0 if i is greater 
than or equal to 5 and will be –1.0 if i is less than 5.  
 

2. set dummy = %if(t.ge.1992:1,1,0) 
  
In conjunction with SET, the %IF( ) function works on each entry of a series. Here, each 
value of DUMMY is equal to 1 for t ≥ 1992:1 and is equal to zero otherwise. Thus, in contrast 
to example 1, the SET command applies the %IF( ) function operates to the entire series. In 
fact, this single statement works just like the following DO loop: 
 
set dummy = 0 
do t = 1,2001:1 
 if t.ge. 1992:1 ; com dummy(t) = 1 
end do i  
 
Although both yield the identical values for dummy, there is one major difference. The actual 
DO loop works many times slower than the SET with %IF( ). The following two programs 
both create a dummy variable equal to zero for observations 1 to 249 and equal to one for 
observations 250 through 500. In order to ascertain the differential speed of the DO loop 
versus the implied DO loop if the SET with %IF(), each program performs this task 10000 
times. Program 1 took 1 minute and 18 seconds to run, while Program 2 took only 12 seconds.  
 
Program 1      Program 2 
all 500       all 500 
set dummy = 0     set dummy = 0 
do i = 1,10000     do i = 1,10000 
 do t = 1,500         set dummy = %if(t.ge.250,1,0) 
   if t.ge.250; com dummy(t) = 1  end do i 
 end do t 
end do i   
* 1 minute 18 seconds     * 12 seconds 
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The point is to avoid DO loops if possible since they are slow. The implied DO loop of the 
%IF( ) instruction used in conjunction with SET is an efficient programming technique. 
 

3.  Reconsider the example where we ‘fixed’ a missing value by averaging: 
 
do t = 2,2000:4 
   if  %valid( x(t) ) = = 0 ; com x(t) = 0.5( x(t-1) + x(t+1) ) 
end do t 
 
The following is much faster: 
 
set x 2 2000:4 = %if( %valid(x) , x, (x{1} + x{-1})/2) 
 

4.  It is possible to SET entry i of one series based on the value of a corresponding value of a 
second series. Consider: 
 
SET plus = %if(resids{1}< 0, 1, 0) 
 
The series plus is equal to 1 if the lagged value of resids is negative, and is 0 when the lagged 
resids is greater than or equal to zero. To better understand the output of the %IF( ) function, 
suppose that resids contains the residuals from an AR(2) model. As such, the first two entries 
of resids are missing since two usable observations are lost in estimating the AR(2).  

 
ENTRY       RESIDS           PLUS 
      1        NA                0 
      2        NA                0 
      3   -0.41281771461         0 
      4   -3.11837667346         1 
      5    0.20035497963         1 
      6    0.67954385844         0 
      7    2.80353550741         0 
      8   -0.78068210129         0 
      9    1.18970179911         1 
     10    0.97092277920         0 

 
In RATS, all series begin with entry 1. The first entry of plus [i.e., plus(1) ] is zero since the 
previous entry of resids is undefined (i.e., it is not true that resids for period 0 is negative). 
Both plus(2) and plus(3) are equal to zero since the first two entries of resids are NA (hence, 
they are NOT positive). Since resids(3) and resids(4) are both negative, the fourth and fifth 
entries of plus are set equal to 1. The same logic prevails throughout; plus(10) equals zero 
since resids(9) is positive.  
 
In essence, the single statement above replaces the more complex (and much slower): 
 set plus = 0 
 do t = 2,N 
  if resids(t) < 0; com plus(t-1) = 1 
 end do t  
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3. Estimating a Threshold Autoregression 

 
The threshold autoregressive (TAR) model has become popular in that it allows for different 
degrees of autoregressive decay. Consider a two-regime version of the threshold autoregressive 
(TAR) model developed by Tong (1983): 
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where: yt is the series of interest, the αi, and βi are coefficients to be estimated, τ is the value of 
the threshold, p is the order of the TAR model and It is the Heaviside indicator function: 
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The nature of the system is that there are two states of the world. In the one state of the world,  
yt-1 exceeds the value of the threshold τ so that It = 1 and (1 - It ) = 0. As such, yt follows the 
autoregressive process: α0 + Σαiyt-i. Similarly, in the low state, yt-1 falls short of the threshold τ, 
so that It = 0, (1 - It ) = 1 and yt follows the autoregressive process: β0 + Σβiyt-i. In a sense, there 
are two attractors or potential “equilibrium” values. In the ‘high’ state, the system is drawn 
toward α0/(1-Σαi) and in the ‘low’ state, the system is drawn toward β0/(1-Σβi). Moreover, the 
degree of autoregressive decay will differ across the two states if for any value of i, αi ≠ βi. The 
key feature of the TAR model is that a sufficiently large εt shock can cause the system to switch 
between states.  
 
PROGRAM 4.3 in the file CHAPTER4_1.PRG illustrates the estimation of a TAR model for the 
{dlrgdpt} series. As usual, the first five lines of the program read in the data set and construct the 
variable dlpgdp using: 
 
 set dlrgdp = log(rgdp) – log(rgdp{1}) 
 
First, suppose that we want the value of the threshold τ to equal zero. This might be the case if 
we were certain the positive real GDP growth behaved differently from negative growth. We 
have already determined that it is reasonable to use a lag length of 2. Hence, we need to construct 
a number of variables. First, we can construct the indicator function using: 
 
set plus = %if(dlrgdp{1}>= 0,1,0) 
 
Note first that we denote the indicator It by a variable called plus—we cannot use the symbol i 
(since i is a reserved integer variable) to represent a series. For each possible entry in the data set, 
the SET instruction compares dlrgdpt-1 to the value 0. IF dprgdpt-1 is greater than zero, the value 
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of plust is equal to 1, otherwise plust is zero. You can see how the program works by printing the 
first 10 values of plus and dlrgdp.  
 
pri 1 10 dlrgdp plus 
 

ENTRY        DLRGDP           PLUS 
 1959:01        NA                0 
 1959:02   0.025797235495         0 
 1959:03  -0.000428834862         1 
 1959:04   0.003297294498         0 
 1960:01   0.021945448475         1 
 1960:02  -0.004947391752         1 
 1960:03   0.001847653167         0 
 1960:04  -0.012963339986         1 
 1961:01   0.005763460460         0 
 1961:02   0.018546572263         1 

 
Note that plus(1959:1) is zero since dlrgdp(1958:1) is not in the data set. Since this value was not 
positive, plus(1959:1) is set equal to zero. Similarly, the initial value of dlrgdp is NA (we lost an 
observation by differencing); since dlrgdp(1959:1) is not positive, plus(1959:1) is set equal to 
zero. However, dlrgdp(1959:2) is positive. As such, plus(1959:3) is set equal to 1. Continuing 
through the observations, you can verify that plust is 1 when dlrgdpt-1 is positive. 
 
Next we create (1-It) as the series minus using: 
 
set minus = 1 - plus  
 
Now we can create the variables: It*dlrgdpt-1, It*dlrgdpt-2, (1-It)*dlrgdpt-1 and It*dlrgdpt-2. 
Consider: 
 
set y1_plus = plus*dlrgdp{1} 
set y2_plus = plus*dlrgdp{2} 
set y1_minus = minus*dlrgdp{1} 
set y2_minus = minus*dlrgdp{2} 
 
Now we can estimate the regression using: 
 
lin dlrgdp 
# plus y1_plus y2_plus minus y1_minus y2_minus 
 
Variable       Coeff       Std Error      T-Stat     Signif 
***************************************************************** 
1.  PLUS       0.005600681  0.001464144      3.82523  0.00018693 
2.  Y1_PLUS    0.192048274  0.108292518      1.77342  0.07806129 
3.  Y2_PLUS    0.174427730  0.086316981      2.02078  0.04497008 
4.  MINUS      0.003903606  0.003147715      1.24014  0.21673934 
5.  Y1_MINUS   0.146629915  0.338184772      0.43358  0.66517798 
6.  Y2_MINUS  -0.010018863  0.165657994     -0.06048  0.95184946 
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At this point, you might want to pare down the number of coefficients since a number have t-
statistics that are quite low. Nevertheless, our goal here is to illustrate programming techniques, 
not to obtain the best fitting TAR model for real GDP. 
 

3.1 Estimating the Threshold 

 
One problem with the above model is that the thres��
����&��������'�
���(������ �����)��*�+�

Chan (1993) shows how to obtain a super-consistent estimate of the threshold parameter. For a 
TAR model, the procedure is to order the observations from smallest to largest such that: 

 
 y1 < y2 < y3 ... < yT  

For each value of yj
+� 
�������yj, set the Heaviside indicator according to this potential threshold 

and estimate a TAR model. The regression equation with the smallest residual sum of squares 
contains the consistent estimate of the threshold. In practice, the highest and lowest 15% of the 
{yj} values are excluded from the grid search so as to ensure an adequate number of observations 
on each side of the threshold. We can conduct this procedure using the following program 
segment. Consider: 
 
compute low = 1959:2 + fix(.15*%nobs) , high = 2001:1 - fix(.15*%nobs) 
 
This first instruction creates two variables; low is equal to the integer corresponding to the 15% 
of the observations following 1959:2 and high is equal to the integer corresponding to the last 
observation less 15% of the total number of observations. The first instruction below creates a 
variable rss_test that will be used to hold the residual sum of squares for the best fitting model. 
This value is initially set to be higher than any possible value of the estimated residual sum of 
squares. The second instruction creates the series that will hold the calculated residual sum of 
squares from each regression estimated. 
 
compute rss_test = 1000000.0  
set rss = 0. 
 
Next, we need to create a series for the ordered values of dlrgdp. The first instruction below 
creates the series thresh_test that will hold the potential thresholds. Initially this series is SET 
equal to dlrgdp. The ORDER instruction orders the series from lowest to highest. Thresh_test 
now contains the ordered values of dlrgdp.  
 
set thresh_test = dlrgdp 
order thresh_test 
 
Now we can use each value of thresh_test as a potential threshold. We begin by equating thresh 
with the very first value of thresh_test. 
 
compute thresh = thresh_test(low) 
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Next, we begin the loop. For each value of i running from low to high, we take the associated 
value of thresh_test and use it as a potential threshold. Inside the DO loop, the program creates 
the series plus, minus, y1_plus, y2_plus, y1_minus, y2_minus and estimates a TAR model. The 
residual sum of squares is compared to rss_test. If the resulting residual sum of squares exceeds 
this value, two instructions in brackets are not executed, the value of i is incremented by 1 and 
the loop is repeated. However, if %rss is lower than rss_test (i.e., if the residual sum of squares 
from the current regression is lower than any from the prior regressions) the bracketed 
instructions are executed. The value of rss_test is replaced by the value of %rss and the value of 
thresh is equated to the thresh_test (i.e., current value of the test threshold). Once the loop is 
completed, thresh will hold the value of the threshold that yields the lowest residual sum of 
squares.  
 
do i = low,high 
   set plus = %if(dlrgdp{1}<thresh_test(i),0,1) 
   set minus = 1 - plus  
   set y1_plus = plus*dlrgdp{1} 
   set y2_plus = plus*dlrgdp{2} 
   set y1_minus = minus* dlrgdp{1} 
   set y2_minus = minus* dlrgdp{2} 
 
   lin(noprint) dlrgdp 
   # plus y1_plus y2_plus minus y1_minus y2_minus 
 
   com rss(i) = %rss 
   if %rss < rss_test { 
    compute rss_test = %rss 
    compute thresh = thresh_test(i) 
   } 
end do i 
 
Once the program loop exits the loop, we can display the consistent estimate of the threshold if 
we use:  
 
dis 'We have found the attractor' 
dis ' Threshold = ' thresh 
 

We have found the attractor 
Threshold =        0.01724 

 
Finally, we can estimate the TAR model with the consistent estimate of the threshold using: 
 
   set plus = %if(dlrgdp{1}<thresh,0,1) 
   set minus = 1 - plus  
   set y1_plus = plus*dlrgdp{1} 
   set y2_plus = plus*dlrgdp{2} 
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   set y1_minus = minus* dlrgdp{1} 
   set y2_minus = minus* dlrgdp{2} 
 
   lin dlrgdp 
   # plus y1_plus y2_plus minus y1_minus y2_minus 
 
   Variable           Coeff       Std Error      T-Stat     Signif 
********************************************************************* 
1.  PLUS          0.022981605  0.009875828      2.32706  0.02121556 
2.  Y1_PLUS      -0.443888007  0.406708488     -1.09142  0.27673082 
3.  Y2_PLUS      -0.036693896  0.208404259     -0.17607  0.86046101 
4.  MINUS         0.005019041  0.001047997      4.78918  0.00000379 
5.  Y1_MINUS      0.237965600  0.104676378      2.27335  0.02433550 
6.  Y2_MINUS      0.142325595  0.083235738      1.70991  0.08922107 
 

 
Note that the series rss holds the residual sum of squares associated with each regression. The 
pattern of these values can be seen for every potential threshold value if we create a scatter 
diagram using: 
 
scatter(Header='Residual Sums of Squares',style=lines,hlabel='Threshold') 1  
#  thresh_test rss low high 

It is the case that the threshold of 0.01724 does result in the lowest residual sum of squares. 
However, it is clear from the scatter diagram that there is a sharp local minimum around 0.0025. 
This suggests that there may be two thresholds implying the existence of a low, medium and 
high state. 

Residual Sums of Squares

Threshold
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4. Branching 

 
IF-THEN-ELSE blocks allow you to have some control over the flow of your program. It is 
possible to have a set of instructions executed or completely skipped depending on a set of 
criteria that you specify. Nevertheless, program execution necessarily resumes with the first 
instruction following END IF. Note that in the example estimating the threshold model, RATS 
always displays “We have found the attractor.”  
 
Another flexible way to control the execution of your program is the BRANCH instruction. 
BRANCH enables you to jump to the particular point in your program that you specify. You can 
jump out of an IF-THEN-ELSE block, BRANCH back to some key instruction, or to jump to 
almost any other point in the program. The key rules are that you cannot jump back to the 
ALLOCATE instruction, into the middle of a nested block such as a DO loop or an IF-THEN-
ELSE block.  

 
Otherwise, there are only two rules about branching. The first is that BRANCH works only 
within a compiled section of a program. Second, to use BRANCH you must first label the point 
in the program where you want to branch to. You label this point by beginning that line with a 
colon and then immediately supplying the label. Consider the following three labels: 

 

Examples: 
:100 
: jump_here 
: exit 

 
Any one of these three labels is a legitimate jump point—labels can be line numbers, multiple 
words or a word that conveys information about the execution of the program. The unconditional 
jump to label is performed by the instruction: 
 
 BRANCH  label 
 

4.1 Sample Program Using BRANCH 

  
Suppose that you want to generate an AR(1) process for a series with 100 observations. In 
particular, suppose you want to generate a random-walk model in the form: 
 
 yt = yt-1 + εt 
 
where: εt is an i.d.d. random number with mean zero and variance equal to unity.  
 
For each series you generate, you want to estimate an equation in the form: 
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 yt = β0 + β1yt-1 + εt 
 
Your goal is to save the estimate of β1 and repeat the entire process 1000 times. Your aim is to 
obtain information about the distribution of the estimated values of β1. A program that will 
perform this task is: 
 
all 100 
set y = 0. 
set beta 1 1000 = 0. 
do i = 1,1000 
 set y 2 * = y{1} + %ran(1) 
 lin(noprint) y ; # constant y{1} 
 com beta(i) = %beta(2) 
end do 
table / beta     
 
The first line of Program 4.4 sets the default length of all series to 100. The second line 
initializes all 100 values of {yt} to equal zero. The estimated values of β1 will be stored in the 
series called beta. The third line initializes all 1000 values of beta to be zero. The initialization is 
necessary since RATS cannot create a series using COMPUTE. Instead, you create the series 
with SET so that later instructions can manipulate the individual entries of the series. There is a 
second interesting feature of the SET instruction. Although the default length for beta is 100, 
SET allows us to override this default by specifying the START and END values. The first 
instruction in the DO loop below generates a simulated random walk—the current value of y is 
equal to the previous value plus a random error term drawn from a normal distribution with mean 
zero and variance equal to 1. The second line in the loop estimates the model and the third 
equates the i-th value of the series beta with the estimated value of β1. On exiting the loop, the 
TABLE instruction displays the sample statistics on the series beta.  
 
If you run the program, your output will look something like: 
 

Series    Obs       Mean       Std Error      Minimum       Maximum 
BETA      1000 0.94693484752 0.04471912585 0.70122076370 1.04215477194 

 
Note your output will be a bit different from mine in that your computer probably used different 
‘random numbers’ than mine to generate the 1000 random-walk sequences. An issue that may 
arise concerns the use of random numbers in the program. We might want to ensure that the 
random numbers selected by RATS actually appear to be random. Towards this end, we can 
modify the routine as follows:   
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do i = 1,1000 
:redraw 
set epsilon = %ran(1) 
 cor(number=4,qstats,noprint) epsilon  
 if %signif < 0.005 ; branch redraw 
set y 2 * = y{1} + epsilon 
lin(noprint) y ; # constant y{1} 
com beta(i) = %beta(2) 
end do 
 
Now the first instruction inside the loop is a label called :REDRAW. The program will jump 
back to this point and redraw a new set of ‘random-numbers’ if the current series does not appear 
to be random. The second instruction in the loop fills the series epsilon with 100 pseudo-random 
numbers. The next line obtains the first four autocorrelations of the epsilon series. The 
CORRELATE instruction creates the internal variable %signif that holds the significance level 
of the for the null hypothesis that these first four autocorrelations are all equal to zero. In the next 
line, we compare this significance level to 0.005. If the significance level for the Ljung-Box 
Q(4)-statistic is less than 0.001, the program jumps back to :REDRAW. Whenever such a jump 
occurs, RATS draws a new set of pseudo-random numbers.    
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5 Monte Carlo Experiments 

 
A Monte Carlo experiment attempts to replicate an actual data generating process (DGP) using 
experimental means. You can use RATS to generate one or more series that characterize those 
produced by the actual data generating process in all key respects.  A Monte Carlo experiment 
will generate a random sample of size T and the parameters and/or sample statistics of interest 
are calculated.  This process in repeated N times (where N is a large number) so that the 
distribution of the desired parameters and/or sample statistics can be tabulated.  These empirical 
distributions are used as estimates of the actual distributions. In fact, the previous Sample 
Program was a Monte Carlo experiment that can answer the following question: If the {yt} 
sequence is actually a random walk, what is the sampling distribution of the OLS estimate of β1? 
Notice that the sample mean of the estimated values of β1 (0.94693484752) is below the true 
value of unity and that the minimum value (0.70122076370) is further away from unity than the 
maximum value (1.04215477194).  
 

As it turns out, Dickey and Fuller (1979) show that it is quite correct to infer that the estimate of 
β1 is biased to be below unity. We will examine the Dickey-Fuller distribution in detail in two of 
the sample programs below. For now, suffice it to say that the use of the Monte Carlo method is 
justified by the Law of Large Numbers and various forms of the Central Limit Theorem. 
Consider the simplest case where vt is an identically and independently distributed (i.i.d.) random 
number with mean µ and variance σ2, i.e.,  

 
vt ~ (µ, σ2)  

 
Consider the sample mean using T observations: 
 

 ∑
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As the sample size T grows sufficiently large: 
 
 a. →)(VE µ  

 b. TVE /)( 22 σµ →−  

 c. the distribution of V approaches a normal distribution with mean µ and variance σ2/T. 
 
Hence, the Monte Carlo mean (V ) is an unbiased estimate of the population mean with a 
variance of σ2/T. Note that V is normally distributed around the true mean µ when T is large. 
The sample variance is an unbiased estimate of the population variance. Dividing the sample 
variance by T yields an unbiased estimate of the variance of the sample mean around the true 
mean. The point is that population means can be estimated using means of simple random 
samples—the accuracy is decreasing in σ2/T so that the greater T, the greater the accuracy. (Note 
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that it is difficult to obtain a high degree of accuracy for the standard deviation since it is a 
function of T -1/2 not T -1). 
 
When the distribution for vt is more complicated, it is often not possible to obtain results in the 
form of a, b, and c. Moreover, it is often difficult to derive the properties of the distribution of 
the sample mean for the sample sizes typically used in econometric studies. This is when Monte 
Carlo analysis is most valuable. 

 
There are two RATS functions that are especially useful for generating random numbers: 
 

%RAN(X)  A random draw from a Normal (0, x) distribution 
%UNIFORM(L,H) A random draw from a uniform distribution ranging from lower 

bound L to upper bound H. 

Examples 
1. set x = %ran(1) 
 

This instruction equates each value of x with an i.i.d. random number drawn from a normal 
distribution with a mean of zero and a standard deviation equal to unity.   
 

2. set x = %uniform(-1,1) 
 
This instruction equates each value of x with an i.i.d. random number drawn from a uniform 
distribution with a lower bound of –1 and an upper bound of 1. 
 

 3. Set y = 6 + %ran(1) 
set y 2 * = 3 + 0.5*y{1} + sqrt(0.75)*%ran(1) 
 
You might use these two statements to generate an AR(1) sequence with a mean of 6 [ i.e., 6 = 
3/(1 – 0.5) ], an autoregressive parameter of 0.5 and a long-run variance of 1.0. The first 
statement initializes the series to equal the long-run mean plus a normally distributed random 
number with a variance equal to unity. The second equates the entries (beginning with entry 
2) equal to the desired AR(1) process such that the unconditional variance of the y is unity.  

 

5.1 A Simple Monte Carlo Experiment 

 
A Modified Coin Tossing Problem: Suppose you toss a coin and a tetrahedron. For the coin, you 
get 1 point for a ‘tail’ and 2 points for a ‘head.’ The faces of the tetrahedron are labeled 1 
through 4. For the tetrahedron, you get the number of points shown on the downward face. Your 
total score equals the number of points received for the coin and the tetrahedron. Of course, it is 
impossible to have a score of zero or 1. It is straightforward to calculate that the probabilities of 
scores 3, 4, and 5 equal 0.25 while the probabilities of scores 2 and 6 equal 0.125.  
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It is possible to simulate a roll of the coin and tetrahedron on the computer. Since the probability 
of a ‘head’ is 0.5, we can use the following program statement: 
 
compute coin =  %if(%uniform(0,1) > .5,2,1)  
         
The instruction equates the variable coin with 2 if a uniformly drawn random number over the 
interval [ 0, 1 ] exceeds 0.5. If the value of %uniform(0,1) is less than or equal to 0.5, the value 
of coin is 1. In this way, a ‘head’ is equal to 2 while a ‘tail’ is equal to 1. Similarly, we can 
simulate the toss of the tetrahedron.  

 
com tet = fix(%uniform(1.0,5.0))  
 
The first line equates x with a integer value of uniformly distributed random number over the 
interval [ 1, 5 ]. Note that FIX transforms a floating point number to an integer. As such, if the 
random number is between 1 and 2, the value of tet is the integer 1. Similarly, if the number is 
between 4 and 5, the value of tet is the integer 4. Thus, the probabilities that tet will equal 1, 2, 3 
or 4 are all equal to 0.25.  
 
We can obtain the total score using: 
 
com score = coin + tet; dis score 
 
To this point, we have done nothing but replicate the possible outcome of the game. However, it 
is simple to modify our program to replicate the game 1000 times. We can then calculate the 
proportion of instances in which we get scores of 2, 3, 4, 5, and 6. If the Monte Carlo method 
works, these sample proportions should come close to the true probabilities.  
 
We will use the series num to hold the number of times we roll a 1, 2, 3, 4, 5 and 6 (Of course, 
the number of times a 1 is obtained will be zero). For example num(4) will equal the number of 
times a score of 4 is obtained. Consider the instructions from Program 4.5 on the file labeled 
CHAPTER4_1.PRG.  
 
all 6 
set num = 0                 
do j = 1,1000                
 compute coin = fix(%if(%uniform(-1,1) > 0,2,1)) 
 com tet = fix(%uniform(1.0,5.0)) 
 compute num(coin+tet) = num(coin+tet) + 1   ;*  add 1 to sum(total # faces) 
end do j 
print / num 
 
The ALLOCATE instruction sets the default series length equal to 6—we need only six entries 
to hold the series num. Line 2 initializes all entries of num to equal zero. The DO loop indicates 
that the lines 4 through 6 will be performed 1000 times. Line 4 is the simulated coin toss and line 
5 is the simulated tetrahedron toss. To understand line 6, recall that coin + tet is equal to the 
score. Thus, line 6 increments the appropriate entry of score by 1. For example, if coin + tet = 5, 
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line 6 adds 1 to the value stored in num(5). Once we exit the loop, the values of num are printed 
to the screen. If you run the program yourself, you will obtain something like: 
 
  
  ENTRY         SUM 
      1           0 
      2         129 
      3         262 
      4         241 
      5         252 
      6         116 
 
 

A score of 1 was never observed, a 2 was observed 12.9% of the time, a 3 was observed 26.2% 
of the time, and so on. In fact, the sample proportions are reasonably close to the true 
probabilities. If you increase the number of simulated rolls, you should obtain output that is 
closer to the true probabilities.  
 
Of course, your answers will be somewhat different from mine. Your computer will not draw 
precisely the same random numbers as mine. However, this can be an undesirable feature of a 
program. Suppose we are debugging a program or want to perform a sensitivity analysis such 
that we want to use precisely the same random numbers from one computer run to the next. This 
can be done by seeding RATS’ random number generator in the identical fashion from one run to 
the next. The instruction that does this is: 
 
SEED Integer 
 
If you include SEED 2001 immediately after the allocate statement, you should get the same 
output as that shown above. 
 

5.2 Downward Bias in an AR Model  

 
It is well known that the OLS estimates of a first-order autoregressive process are biased towards 
zero. The size of the bias increases as the magnitude of the autoregressive coefficient increases 
from zero to unity. Consider the following autoregressive model: 
 
 yt = α0 + α1yt-1 + εt 

 
It is possible to write a simple program to measure the size of the bias and to see how it is 
affected by the magnitude of α1. Towards this end, we could perform the following tasks: 
 
Step 1: Generate a series in the form of the AR(1) model using a value of α1 = 0.2.   

 
Step 2: Estimate the series using OLS and calculate the discrepancy between the estimated value 
of α1 and 0.2. 
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Step 3: Repeat Steps 1 and 2 a total of 1000 times. Display the average value of the discrepancy. 
 
Step 4: Repeat Steps 1 to 3 using alternative values of α1. 
 
Consider the first three lines of Program 4.6 in the file CHAPTER4_1: 
 
all 100 
set discrep 1 1000 = 0. 
set y = 0. 
 
Since the program uses only simulated data, we do not include a CALENDAR instruction. The 
ALLOCATE instruction sets the default length of any series we create equal to 100. For each 
value of α1, we will store the 1000 discrepancies between the actual and estimated values in the 
series called discrep.  The third instruction initializes all 100 observations in the simulated {yt} 
sequence to be zero. 
 
Now we have to decide which values of α1 to include. It might make sense to include 0.5 (since 
it is midway between 0. and 1.0) and two values near 1.0—say 0.9 and 0.99. Finally, we might 
want to include 0.0 for comparison purposes. Consider the next two instructions: 
 
com alpha1 = 0. 
dofor alpha1 = .2 .5 .9 .99 0. 
 
The DOFOR instruction acts in a way that is similar to the DO instruction. Notice, however, that 
the index is not an integer and does not increase in any precise way from one loop to the next (In 
fact, for the last iteration, the index decreases from 0.99 to 0.) .The instruction, com alpha1 = 0. 
is necessary since we need to initialize the index to be a real number. Otherwise, RATS would 
have expected a list of integers for alpha1. Note that we could have used any real number (e.g., 
com alpha1 = -.5) for the initialization.  
 
The next instruction reseeds the random number generator each time α1 takes on a new value. 
This way, the random numbers do not change as the values of the various values for αi change. 
The first instruction inside the DO i loop, generates yt as the current value of α1 multiplied by yt-1 
plus an i.i.d. normally distributed random number with mean zero and variance equal to 1. Since 
we are interested only in the discrepancy between the actual and estimated values of α1, the 
output is suppressed. The last line in the DO i loop equates entry i of discrep with the difference 
between the actual and estimated values of α1. On exiting the DO i loop, discrep will contain 
1000 values of the discrepancy.  
 

seed 2001 
do i = 1,1000 
 set y 2 * = alpha1*y{1} + %ran(1) 
 lin(noprint) y ; # constant y{1} 
 com discrep(i) =  alpha1 - %beta(2) 
end i 
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The sample statistics of discrep, including the mean, are displayed using the TABLE instruction. 
If you want, you can display many interesting sample statistics using the command: 
statistics(fractiles) discrep. The final instruction closes the DOFOR loop. As such, α1 changes 
from 0.2, to 0.5, to 0.9, to 0.99 and finally to 0.0. 
 
table / discrep 
end dofor 
 

Series     Obs       Mean       Std Error      Minimum       Maximum 
DISCREP    1000  0.0166418436  0.0972591579 -0.2935443023  0.3218321838 
DISCREP    1000  0.0267019830  0.0905765140 -0.2170420309  0.3415792684 
DISCREP    1000  0.0443060778  0.0615724835 -0.0715945104  0.3328153050 
DISCREP    1000  0.0556321214  0.0456496779 -0.0321881468  0.2691217328 
DISCREP    1000  0.0103641243  0.0974089395 -0.3157692119  0.2998128902 
 

You can see that the mean value of discrep increases as α1 increases. The smallest mean value of 
the discrepancy (i.e., 0.0103641243) occurs for α1 = 0. Why didn’t this number turn out to be 
exactly zero—doesn’t this show a bit of an ‘upward bias’ in the discrepancy? The answer 
involves the fact that we used only 1000 replications of the AR(1) process. In many Monte Carlo 
experiments, 100,000 replications are used in order to get a more precise estimate of the true 
sampling distribution. 
 

5.3 Power of the Dickey-Fuller Test 

 
The last example used the first-order AR(1) process: 
 
 yt = α0 + α1yt-1 + εt 

  
where: {εt} is generated from a white noise process.  
 
In spite of the downward bias in the estimate of α1, most applied econometricians would still use a 
standard t-test to determine whether α1 is significantly different from zero. The bias is only large 
when α1 is large. The situation is quite different if we want to test the hypothesis α1= 1. Now, 
under the null hypothesis, the {yt} sequence is a non-stationary process. As such, it is inappropriate 
to use classical statistical methods to estimate and perform significance tests on the coefficient α. 
Dickey and Fuller (1979) used Monte Carlo methods to obtain the appropriate critical values to test 
for the presence of a unit root. The following program produces results that mimic their τµ 
distribution. 
 
The logic of the method is identical to that for the AR(1) process used in the previous example. 
The difference is that we will generate random-walk sequences instead of mean-reverting 
autoregressive processes. The ALLOCATE instruction in Program 4.7 of the file labeled 
CHAPTER4_1.PRG, uses a sample size of 100. Line 2 initializes a series called tstat—this series 
will hold all of the t-statistics generated in the Monte Carlo experiment. Notice that we will 
perform the experiment 10000 times and will have 10000 t-statistics.  As such we want tstat to 
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have a length of 10000. Line 3 initializes the y sequence to zero and sets the first entry equal to a 
normal distributed random number with a mean of zero and standard deviation of unity. Lines 5 
– 9 are performed 10000 times. Line 5 generates a sequence that mimics the random-walk: 
 
 yt = yt-1 + εt 
 
Line 6 takes the first-difference of the sequence and calls the result dy. The usual form of the 
Dickey-Fuller test is to estimate the AR(1) equation in the form: 
 
 ∆yt =α0 + ρyt-1 + εt 
 
As such, lines 7 and 8 estimate dy on a constant and y{1}. Since ρ = α1 - 1, we want to know 
whether it is possible to reject the null hypothesis ρ = 0. The sampling distribution of the   t-
statistic for the null hypothesis ρ = 0 is stored as entry i of tstat. Once the 10000 replications of 
this Monte Carlo experiment are completed, statistics(fractiles) tstat produces the distribution of 
the t-statistics.  
 
all 100 
set tstat 1 10000 = 0. 
set y = 0.0 ; compute y(1) = %ran(1) 
 
do i = 1,10000 
    set y 2 100 =  y{1} + %ran(1) 
    diff y / dy 
    linreg(noprint) dy * 100 
    # constant y{1} 
    compute tstat(i) = %tstats(2) 
end do i 
statistics(fractiles) tstat 
 
Statistics on Series TSTAT 
Observations   10000 
Sample Mean    -1.5411735979            Variance               0.725122 
Standard Error  0.8515412362            SE of Sample Mean      0.008515 
t-Statistic     -180.98637              Signif Level (Mean=0) 0.00000000 
Skewness           0.19591              Signif Level (Sk=0)   0.00000000 
Kurtosis           0.35386              Signif Level (Ku=0)   0.00000000 
Jarque-Bera      116.14118              Signif Level (JB=0)   0.00000000 
 
Minimum     -4.8214558640               Maximum      2.3794080538 
01-%ile     -3.4919869782               99-%ile      0.6158486194 
05-%ile     -2.8861478731               95-%ile     -0.0669050993 
10-%ile     -2.5748048837               90-%ile     -0.4212769335 
25-%ile     -2.0988978255               75-%ile     -1.0183779154 
Median      -1.5835459078 

 
Your output will look a bit different from mine since we have not used the same SEED integer. 
Notice that 90% of the t-statistics exceeded -2.57, 95% exceeded -2.88 and 99% exceeded -3.49. 
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If you look at the Dickey-Fuller table, you will see that the at the 10%, 5% and 1% significance 
levels are -2.58, -2.89 and -3.51, respectively. 
 
Thus, suppose you had a sample with 100 observations and estimated the series in question as an 
AR(1) process. If it turned out that the estimated value of ρ = -.05 (so that the estimated value of 
α1 = 0.95) with a standard error of 0.02, could you reject the null hypothesis ρ = 0? The answer 
is no! Although the estimate ρ̂ is 2.5 standard deviations away from unity, it is not permissible to 

use a traditional t-statistic. Instead, the Monte Carlo results show that when the true value of ρ = 
0 (i.e., α1 = 1 so that the true data generating process is a random-walk), we would obtain a t-
statistic that exceeds -2.5748048837 (i.e., is less than -2.5748048837 in absolute value) more 
than 90% of the time. As such, at the 1%, 5% and 10% significance levels, we cannot reject the 
null hypothesis ρ = 0.  

Power of the Test 
Now that we know critical values for the Dickey-Fuller test, it is instructive to show how to 
ascertain its power. Since the Dickey-Fuller confidence intervals exceed those for the usual t-
test, it is to be expected that the power of the Dickey-Fuller test is low. Program 4.8 on the file 
labeled CHAPTER4_1 illustrates a way to determine how often the Dickey-Fuller test rejects a 
false null hypothesis. To be more specific, given that the true data generating process is such that 
ρ < 0 (i.e., α1 < 1), the program calculates the probability of rejecting the false null hypothesis ρ 
= 0 and accepting the correct alternative hypothesis ρ < 0.  The first two lines of the program set 
the default sample size of any series to 200 and seed the random number generator.  
 
all 200 
seed 237 
 
Suppose we want to determine the power of the Dickey-Fuller test for various values of α1 close 
to unity. The program uses the four values: α1 = 0.8, 0.9, 0.95 and 0.99. DOFOR will loop over 
real values if the index has been defined as a real number. This is accomplished using com 
aplha1 = 0.0. The first time through the DOFOR loop, alpha1 = 0.8 and rho = -.2. The next line 
below initializes the variables hits10, hits5 and hits1 to equal zero; we will use these variables to 
hold the number of times the Dickey-Fuller test correctly rejects the null hypothesis of a unit-
root at the 10%, 5% and 1% significance levels, respectively. The fifth line below initializes the 
{yt} sequence to equal its unconditional mean value of zero with a variance of 1.0. 
 
com alpha1 = 0.0  
dofor alpha1 = 0.80 0.90 0.95 0.99 
com rho = alpha1 - 1.0 
 
compute hits10 = hits5 = hits1 = 0 
set y = %ran(1) 
 
The DO j loop prepares RATS to do 10,000 Monte Carlo replications. Within each loop, the  {yt} 
sequence is constructed as an AR(1) process with i.i.d. normally distributed errors. (Note that the 
value of alpha1 is determined by the number of times the program has completed the DOFOR 
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loop). As constructed, the variance of the {yt} sequence is 1.0. If you take the variance of each 
side of the SET instruction you obtain var(yt) = (α1)

2var(yt-1) + [ 1 - (α1)
2 ]. Hence, var(yt) = 

var(yt-1) = 1.  
 
do j = 1,10000 
    set y 2 * = alpha1*y{1} + sqrt(1-alpha1**2)*%ran(1) 
 
The next instruction creates the first-difference of {yt} and calls the resulting series {dyt}. Next, 
dyt is regressed on a constant and yt-1. Notice that we use only the last 99 observations of the 
simulated {dyt} sequence for the regression. This technique is used to eliminate the problem of 
choosing the initial condition for the {yt} sequence. Since we do not want to impose any 
particular initial condition on the simulated sequence, we generate 200 values for {yt} and use 
only the last 100. Since we lose one additional observation by differencing, the regression uses 
99 observations so as to replicate a data set containing 100 observations. The t-statistic for the 
estimated value of α1 is stored in the variable df. 
 
   dif y / dy  
   linreg(noprint) dy 102 * 
   # constant y{1}  
   compute df = %tstats(2) 
  
The three IF statements below compare the calculated t-statistic to the Dickey-Fuller critical 
values.28 If the t-statistic is less than -2.58, the null hypothesis of ρ = 0 is rejected at the 10% 
significance level. Thus, if df < -2.58 the value of hits10 is increased by one. Similarly, if df < -
2.89, hits5 is increased by one and if df < -3.51, hits1 is increased by one. After the 10,000 DO j 
loops, we can use these three numbers to indicate the number of times that the test correctly 
rejected the null hypothesis of a unit-root.  
    
   if df < -2.58 ; compute hits10 = hits10 + 1 
   if df < -2.89 ; compute hits5 = hits5 + 1 
   if df < -3.51 ; compute hits1 = hits1 + 1 
end do j 
 
The last section of the program displays the key output; for each value of ρ, hits10, hits5 and 
hits1 are shown. 
 
display ' rho = ' rho 
display '    10%     5%     1%    ' 
display ###### hits10 ######  hits5  ######  hits1 
display '     ' 
end dofor 
 
 

                                                 
28 The values used are those reported in Dickey and Fuller (1979), not those obtained in Program 
4.7 above.   
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  rho =       -0.20000 
    10%     5%     1% 
  9601   8730   5131 
 
 rho =       -0.10000 
    10%     5%     1% 
  5206   3256    865 
 
 rho =       -0.05000 
    10%     5%     1% 
  2350   1272    269 
 
 rho =       -0.01000 
    10%     5%     1% 
  1154    561    109 

 
When ρ = -0.2, the test does reasonably well—at the 5% significance level, the false null 
hypothesis of a unit-root is rejected in 87.30% of the Monte Carlo replications. However, when ρ 
= -0.05, the probability of correctly rejecting the null hypothesis of a unit-root is estimated to be 
only 12.72%.  
 
Jazzing Up the Program 
A Monte Carlo analysis can take a very long time to execute. We could, for example, run the 
program for a number of sample sizes and for additional values of alpha1. Your computer screen 
can remain blank for a very long time before you see any output. You have probably noticed an 
INFOBOX that quickly appears and disappears when you read in a data set. Similarly, it is 
possible to ‘keep track’ of the number of iterations completed by using the INFOBOX 
instruction. It is necessary to use INFOBOX three times in the program; once to DEFINE the 
box, a second time to update or MODIFY the box and a third time to REMOVE the box. The 
syntax for INFOBOX is: 
 
INFOBOX(ACTION=, other options)  'messagestring' 
 
where:    
 ACTION = DEFINE/[MODIFY]/REMOVE 
 
With ACTION = DEFINE, the key options are: 
 

PROGRESS/[NOPROG] This option determines whether the box will include a progress bar. 
You must specify values for LOWER and UPPER when you use 
PROGRESS. 

LOWER = Integer value for the lower bound. 
UPPER = Integer value for the upper bound. 
 

With ACTION = MODIFY, use the option:       
        

CURRENT = The current integer value for the progress bar  
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Thus, to keep track of the number of iterations over j that have been completed, immediately 
before the instruction DO j = 1,10000, include: 
 
 infobox(action=define,progress,lower=1,upper=10000) 'Replications Completed' 
 
Immediately after the instruction DO j = 1,10000, include: 
 
 infobox(current=j) 
 
Immediately after the instruction END DO j, include: 
 
 infobox(action=remove) 
 
If you now run the program you should see something that looks like: 
     

                
 
 

5.4 The Enders-Granger Statistic 

  
In addition to shamelessly promoting my own work, the following program illustrates the use of 
several other BRANCHING and IF statements within a Monte Carlo study. In Enders and 
Granger (1998), we generalized the Dickey-Fuller methodology to consider the null hypothesis 
of a unit-root against the alternative hypothesis of a threshold autoregressive (TAR) model. The 
simple version TAR model is: 
 
 ∆yt = Itρ1yt-1 + (1 – It)ρ2yt-1 + εt 

 

where: 
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The basic idea is that autoregressive decay might not be symmetric. If yt-1 < 0, the indicator 
function It = 0, so that: ∆yt = ρ2yt-1 + εt and if yt-1 ≥ 0, It = 1 so that ∆yt = ρ1yt-1 + εt. Notice that if 
ρ1 = ρ2 = 0, the process is a random walk. However, as in the Dickey-Fuller test, it is not possible 
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to use a classical F-statistic to test the null hypothesis ρ1 = ρ2 = 0. Instead, the following program 
can be used to accomplish the following tasks: 
 
1. Generate a random-walk sequence.  
2. Estimate the sequence as a threshold autoregressive model. 
3. BRANCH if the simulated sequence does not cross the threshold 
4. Calculate the sample F-statistic for the null hypothesis ρ1 = ρ2 = 0. 
5. Obtain the distribution of the sample F-statistics.  
 
There is one technical task that must be done. It is necessary to ensure that there are a sufficient 
number of observations on each side of the threshold to estimate the TAR model. One way to 
check is immediately after task 3. If either of the t-statistics for ρ1 or ρ2 is zero (or undefined), 
the simulated series needs to be eliminated from the study. Thus, after estimating the TAR 
model, we check to see is the absolute value of the product of the two t-statistics is less than 
0.0000001. If so, we branch to step 1 to obtain a replacement series. Program 4.9 of the file 
CHAPTER4_2.PRG contains the program that we used to calculate the Monte Carlo values. 
 
The first four lines perform some bookkeeping tasks. The default length of a series is 200. Also, 
the random number generator is seeded and the series f is initialized with 50000 values of zero. 
The sample values of the F-statistic for the null hypothesis ρ1 = ρ2 = 0 will be stored in f. Line 4 
initializes the value of the {yt} sequence to zero.   
 
all 200 
seed 2001 
set f 1 50000 = 0.  
set y = 0. 
 
The next line of the program begins the DO loop and the following line is labeled reset. The 
program jumps back to this line if the simulated series does not cross the threshold (i.e., the 
program will BRANCH to reset if the two t-statistics are too small. 
 
do j = 1,50000 
 :reset 
  
Task 1 is performed by the next three lines of the program. The next two lines in the program 
simulate a random-walk sequence of 200 observations. The third instruction takes the first-
difference of the simulated series.  
 
 *  TASK 1: COMPUTE the y series 
 set y 2 200 = y{1} + %ran(1) 
 diff y 2 200 dy 
 
Next, the %IF instruction is used to set the indicator—called plus—to equal zero if yt-1 is 
negative and to equal 1 otherwise. The second and third instructions shown below create zplus 
(the indicator multiplied by the lagged value yt-1) and zminus (one minus the indicator multiplied 
by the lagged value yt-1).  
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 * TASK 2: Estimate the TAR Model 
 set plus = %if(y{1}<0,0,1) 
 set zplus = plus*y{1} 
 set zminus = (1-plus)*y{1} 
 
In the two instructions below, RATS estimates the TAR model using only observations 102 
through 200. Thus, as in the previous program, this mimics a data set with 100 total observations.  
 
 linreg(noprint) dy 102 200 
 # zplus zminus 
 
The next two instructions are used to check the two t-statistics to see if they are both different 
from zero. If the product of the two is sufficiently close to zero, the program branches back to the 
line labeled :reset. Hence, if the two t-statistics are sufficiently low, the program branches back 
to the point where a new sequence is generated.  
 
 *  TASK 3 
 compute t1 = %tstats(1), t2 = %tstats(2) 
 if abs(t1*t2) < 0.0000001 
       branch reset 
 
If the program does not BRANCH to reset, the next three lines of the program obtain the sample 
F-value for the null hypothesis ρ1 = ρ2 = 0. The last line within the loop stores this sample F-
value as entry j of the series f. At the end of 50,000 replications, the program exits the END DO j 
loop. The STATISTICS instruction with the FRACTILES option produces the output shown 
below. Be aware that the program takes a long time to complete the 50000 replications.  
 
 * TASK 4: Calculate the Sample F-statistic 
 exclude(noprint) 
 # zplus zminus 
 compute f(j) = %cdstat 
end do j 
 
* TASK 5 
statistics(fractiles) f  
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Statistics on Series F 
Observations   50000 
Sample Mean     1.6524588263            Variance               1.378597 
Standard Error  1.1741364996            SE of Sample Mean      0.005251 
t-Statistic      314.70023              Signif Level (Mean=0) 0.00000000 
Skewness           1.73656              Signif Level (Sk=0)   0.00000000 
Kurtosis           5.01475              Signif Level (Ku=0)   0.00000000 
Jarque-Bera    77521.44422              Signif Level (JB=0)   0.00000000 
 
Minimum      0.0013651902               Maximum     14.4743025649 
01-%ile      0.1977081049               99-%ile      5.6967829958 

05-%ile      0.3681509883               95-%ile      3.9233591336 

10-%ile      0.5025774653               90-%ile      3.1857908038 
25-%ile      0.8187794721               75-%ile      2.1691250789 
Median       1.3579015615 

 

Suppose that you estimated a series as a threshold process: 
 
 ∆yt = Itρ1yt-1 + (1 – It)ρ2yt-1 + εt 

 

 where: 
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If the sample F-statistic of the null hypothesis ρ1 = ρ2 = 0 was 3.5, you would be able to reject 
the null hypothesis at the 10% significance level but not the 5% level. You can modify the 
program by (i) including an INFOBOX, (ii) obtaining the critical values for additional sample 
sizes, and (iii) obtaining the critical values when Chan’s (1993) method (see Section 3.1 in this 
chapter) is used to estimate the threshold. 
 

5.5 Inference in a Cointegrated System 

 
This is one of my favorite programs. It illustrates a number of RATS advanced features and the 
folly of using traditional distribution theory to perform hypothesis tests on a cointegrating vector. 
Suppose that xt and yt are two non-stationary time-series variables that are cointegrated of order 
1. The error-correction representation of the system is: 
 
 yt = yt-1 - α1 [ β0 + yt-1 - β1xt-1 ] + A11(L)∆yt-1 + A12(L)∆xt-1 + e1t 

 
 xt = xt-1 + α2[ β0 + yt-1 - β1xt-1 ] + A21(L)∆yt-1 + A22(L)∆xt-1 + e2t  
 
It is assumed that e1t and e2t are serially uncorrelated but the covariance Ee1t e2t need not be zero. 
As in Chapter 2, if the variances and covariance are time-invariant, we can write the 
variance/covariance matrix as: 
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where: Var(eit) = σii and Cov(e1t,e2t�����12����21. 

 
The nature of the system is such that {yt} and {xt} are unit-root processes that are linked by the 
cointegrating vector β0 + yt-1 - β1xt-1. Suppose you estimate the regression equation: 

 

0 1
ˆ ˆ

t t ty x eβ β= + +  

Stock (1987) proves that the OLS estimates of the coefficient of a cointegrating vector converge 
faster than similar estimates for stationary variables. As such, it is inappropriate to use standard 
t-statistics and confidence intervals to perform inference on 1̂β . The following Monte Carlo 

experiment illustrates the problem: 
 
Step 1. Generate {xt} and {yt} as a cointegrated system. For simplicity, we will generate the 
series without an intercept in the cointegrating vector and with all values of Aij(L) = 0. Hence, the 
simulated model is: 
 

yt = yt-1 - α1 [ yt-1 - β1xt-1 ] + e1t 

 
  xt = xt-1 + α2[ yt-1 - β1xt-1 ] + e2t  
 
Step 2. Estimate the cointegrating vector: 
 

0 1
ˆ ˆ

t t ty x eβ β= + +  

 
and use the t-distribution to form a 95% confidence interval around 1̂β . The point of the exercise 

is to determine how well (or poorly) the t-distribution works for cointegrated variables. If this 
confidence interval includes the actual value of β1 used in STEP 1, add 1 to the variable success. 
If the t-distribution is appropriate, success should be increased in 95% of the Monte Carlo 
replications.  
 
Also, store the value of 1̂β  so that it can be compared to the actual value of β1. 

 
Step 3. Repeat the experiment 2000 times and examine the variable success.  
 
Step 4. Repeat Steps 1 – 3 for different values of α1, α2, β1 and the elements of Σ.  
 
The program relies on the EQUATION and the SIMULATE instructions. If you are familiar with 
these instructions, you can skip the remainder of this section. As used in the program, the syntax 
for the EQUATION instruction is:29 
                                                 
29 If you have an equation with no AR or MA terms omit these fields and the MORE option.  
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EQUATION(COEFFS=coeffs,other options)  equation  depvar  ARlags  MAlags 
#  list of explanatory variables  
 

where:  
equation  Equation name. 
depvar  Dependent variable. 
ARlags  Number of AR lags 
MAlags  Number of AR lags 
coeffs Vector of coefficient values assigned to the constant, AR terms, MA 

terms, and explanatory variables, respectively. 
 
Other Principal Options 

CONSTANT Include a constant in the equation (CONSTANT is the default for  
      /NOCONSTANT  ARMA models). 
MORE/[NOMORE] For ARMA equations, MORE indicates that other explanatory 

variables are on a supplementary card.  
VARIANCE= Value for the variance of the residual series. 

 
SIMULATE creates a Monte Carlo replication of a model using normally distributed error terms. 
The syntax used in the program is: 
 
simulate(model=modelname,results=results)  *  number  start  V 
 

where:  
number  The number of observations in the simulated model 
start The start date for the first entry. 
V The variance/covariance matrix of the residuals. 
results The simulated values of the first equation are stored in results(1), the 

simulated values of the second equation are stored in results(2), and so 
on. 

The Program 
The first four instructions of Program 4.10 on the file CHAPTER4_2.PRG set the default size of 
a series to 150 entries, SEED the random number generator, and initialize the y and x series to 
equal zero. The COMPUTE instruction sets β1 = 1.0 and α1 = α2 = 0.1.  
 
allocate 150 
seed 2002 
set y = 0.0 
set x = 0. 
com beta1 = 1.0 , alpha1 = 0.1 , alpha2 = 0.1 
 
equation(noconstant,more,coeffs=|| 1.-alpha1, alpha1*beta1 ||) eq1 y ; # y{1} x{1} 
equation(noconstant,more,coeffs=|| 1.-alpha2*beta1, alpha2 ||) eq2 x ; # x{1} y{1}  
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The first EQUATION instruction creates an equation in the form: 
 
 yt = (1 - α1)yt-1 + α1β1xt-1 + e1t 

 
Notice that NOCONSTANT is used. Hence, the value of (1 - α1) is assigned to the AR(1) 
coefficient and the value of α1β1 is assigned to the coefficient for xt-1. [Note: MORE indicates 
that an explanatory variable appears on a supplementary card]. The VARIANCE= option is not 
used. Similarly, the second EQUATION instruction creates an equation of the form: 
 
 xt = (1 - α2β1)xt-1 + α2yt-1 + e2t 

GROUP creates a model called unit using the equations eq1 and eq2. The first COMPUTE 
instruction creates the symmetric matrix v; the elements of v represent the elements of Σ. Here, 
σ11 = σ22 = 1 and σ12 = σ21 = 0. The second COMPUTE instruction initializes the variable 
success to be zero and the SET instruction initializes the 2000 entries of the series betahat to be 
zero; betahat is used to store the estimated values of β1.  
 
group unit eq1 eq2 
com [symmetric]v = || 1.0 , 0.0 | 0.0 , 1.0 || 
com success = 0. 
set betahat 1 2000 = 0. 
 
The instructions within the DO i loop are performed 2000 times. SIMULATE creates a Monte 
Carlo replication of the model unit using the error structure specified by v. The simulated series 
contain 149 observations and begin with entry 2. Note that sims(1) contains the simulated valued 
of {yt} and sims(2) contains the simulated values of {xt}. The LINREG instruction estimates a 
regression of sims(1) on a constant and sims(2). Only the last 100 observations are used to avoid 
any problems concerning the initial conditions used for y1 and x1. COMPUTE stores the 
estimated value of β1 in betahat(i).  
 
do i = 1,2000 
 sim(model=unit,results=sims) * 149 2 v 
 lin(noprint) sims(1) 51 * ; # constant sims(2) 
 com betahat(i) = %beta(2) 
 if beta1.gt.%beta(2)-1.96*%stderrs(2).and. beta1.le.%beta(2)+1.96*%stderrs(2) 
  com success = success+1 
 dis beta1-1.96*%stderrs(2)    beta1+1.96*%stderrs(2)  success 
end do i 
 
The IF instruction needs a bit of explanation. Recall that %STDERRS(2) holds the standard error 
of %BETA(2). Hence, %beta(2) – 1.96*%STDERRS(2) is the lower bound of the 95% 
confidence interval constructed using the t-distribution. Similarly, %beta(2) + 
1.96*%STDERRS(2) is the upper bound of the confidence interval. If the actual value β1 
exceeds the lower bound and is less than the upper bound, β1 is within the confidence interval. 
Thus, if the condition is TRUE, success is increased by 1. The DISPLAY instruction displays the 
lower and the upper bound for each replication along with the current value of success.  
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After the loop is completed, the summary STATISTICS for betahat are displayed along with the 
percentage of instances in which β1 fell within the confidence interval. 
  
sta(fractiles) betahat  
dis 'The percentage of successes is:' success/20. 
 
Statistics on Series BETAHAT 
Observations   2000 
Sample Mean     0.6271085179        Variance               0.070829 
Standard Error  0.2661369878        SE of Sample Mean      0.005951 
t-Statistic      105.37861          Signif Level (Mean=0) 0.00000000 
Skewness          -0.46258          Signif Level (Sk=0)   0.00000000 
Kurtosis           0.07801          Signif Level (Ku=0)   0.47716964 
Jarque-Bera       71.83512          Signif Level (JB=0)   0.00000000 
 
Minimum     -0.3874254319               Maximum      1.3107230084 
01-%ile     -0.0732848428               99-%ile      1.1432856243 
05-%ile      0.1554922902               95-%ile      1.0196162470 
10-%ile      0.2617774667               90-%ile      0.9400523351 
25-%ile      0.4552469550               75-%ile      0.8244537550 
Median       0.6507239420 
 
The percentage of successes is:      16.85000 

 
Notice that 16.8% of the confidence intervals contained the true value of β1. Moreover, the 
average value was 0.6271085179 whereas the actual value was 1.0. Clearly, it is inappropriate to 

use the usual confidence intervals for 1̂β . Now, if you rerun the program using β1 = 0.5, you will 

obtain: 
 
The percentage of successes is:      33.30000 
 
Hence, the level of β1 affects the accuracy of the 95% confidence interval. Moreover, the value 
of the elements of Σ are also important. If you replace the elements of v with com [symmetric]v 
= || 1. , -.5 | -5. , 1. ||, you will obtain: 
 
The percentage of successes is:      56.95000 
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6. Antithetic Random Variables  

  
A complete Monte Carlo experiment involves many replications and a substantial amount of 
computer time. It is typical to obtain a sampling distribution over a number of different 
parameter values and sample sizes. In the Enders-Granger (1998) example discussed above, we 
examined various types of TAR models using sample sizes ranging from 50 to 1000 with 
100,000 Monte Carlo replications for each; I would turn on my computer, go to lunch and hope it 
would be done when I returned. The problem is the critical values will change from one 
replication to the next; we wanted to use a number of replications such that the critical values 
stabilized in the second decimal place. One technique for reducing the sampling variance 
inherent in a Monte Carlo study (and reduce the number of replications) is to use ‘antithetic’ 
random numbers.   
 
The basic idea is to pool two different unbiased estimates of the parameters of interest so as to 
obtain an estimate with a small variance. Suppose that α(1) and α(2) are the two different 
estimates of the parameter α from replications 1 and 2. Consider the pooled estimator, α , that is 
the simple average of the two: 
 
 α = 0.5[ α(1) + α(2) ] 

The variance of α  is: 

 var(α ) = 0.25{ var[ α(1) ]  + var[ α(2) ]  + 2 cov[α(1), α(2) ] } 

If the two estimates have a negative covariance, the pooled estimator will have a far smaller 
variance than those from the two independent draws. The problem is to find a way to ensure that 
the estimates have a negative covariance (i.e., are antithetic). In certain circumstances, the 
solution is remarkably simple—use the same set of numbers with the sign reversed for the 
second replication. Intuitively, if the first replication gives an estimate of α that is too high, the 
second should give an estimate that is too low.  
 

6.1 Bias in NLLS Estimates 

 
Antithetic random variables can be quite effective when working with nonlinear models. The 
sample program illustrated below replicates the results of a Monte Carlo experiment reported in 
Davidson and MacKinnon (1993). The issue is to find the bias, if any, of the exponent α in the 
nonlinear regression model: 
 
 yt = β α

tx + εt 
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Davidson and MacKinnon (1993) use a sample size of 50 with a single set of the {xt} sequence 
drawn from a uniform distribution on the interval [ 5, 15 ] using parameter values β = 1, α = 0.5 
and εt drawn from an i.i.d. standardized normal distribution. The program will use the following 
four instructions to set up the nonlinear estimation: 
 
 NONLIN alpha beta 
 FRML monte y = beta*x**alpha 
 COM alpha = 0.48, beta = 0.98 
 NLLS(frml=monte,noprint) y  
 
Program 4.11 of the file labeled CHAPTER4_2 performs the Monte Carlo experiment without 
using antithetic variates. The first three lines define the default size of a series to equal 50, seed 
the random number generator, and create the 50 entries of the sequence {xt} as random draws 
from a uniform distribution on the interval [ 5, 15 ]. The next two lines initialize 1000 values of 
alpha_hat and beta_hat to zero. These two series will be used to store the estimates of α and β, 
respectively. 
 
all 50 
seed 2001 
set x = %uniform(5,15) 
set alpha_hat 1 1000 = 0. 
set beta_hat 1 1000 = 0. 
 
The next three instructions prepare RATS to perform a nonlinear estimation of the model and 
provide initial guesses of α and β. The statements within the DO loop will be performed 1000 
times. The 50 values of yt are created as xt

0.5 plus an i.i.d. disturbance drawn from a standardized 
Normal distribution. The NLLS instruction actually perform the estimation. 
 
NONLIN alpha beta 
FRML monte y = beta*x**alpha 
COM alpha = 0.48, beta = 0.98 
 
do i = 1,1000 
 set y = x**0.5 + %ran(1) 
 NLLS(frml=monte,noprint) y  
 
The next instruction stores the estimated value of α in the i-th entry of alpha_hat and the 
estimated value of β as the i-th entry of beta_hat.  On exiting the DO loop, the TABLE 
instruction is used to provide the summary statistics for alpha_hat and beta_hat.  
 
 com alpha_hat(i) = alpha, beta_hat(i) = beta 
end do i 
table / alpha_hat beta_hat 
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Series      Obs       Mean       Std Error      Minimum       Maximum 
ALPHA_HAT   1000 0.50061759618 0.14924811080 0.00760025999 1.00199740576 
BETA_HAT    1000 1.06013032231 0.37423173774 0.30586651854 2.97669650556 

  
The first half of the sample is quite similar to the second half of the sample. Consider: 
 
table * 500 alpha_hat beta_hat 
 

Series     Obs       Mean       Std Error      Minimum       Maximum 
ALPHA_HAT  500 0.50526653814 0.14860337610 0.00760025999 0.93395005105 
BETA_HAT   500 1.04927811557 0.38210832158 0.33895348276 2.97669650556 

 

table 501 * alpha_hat beta_hat  
 

Series     Obs       Mean       Std Error      Minimum       Maximum 
ALPHA_HAT  500 0.49596865421 0.14989449989 0.07604389005 1.00199740576 
BETA_HAT   500 1.07098252906 0.36624672687 0.30586651854 2.74200765785 

 
Notice the mean values of the estimates are quite close to their true values. However, the 
standard errors of alpha_hat and beta_hat are very large.  
  
Results with Antithetic Variables: The remaining portion of the program takes advantage of 
antithetic random numbers. The next two instructions create the series alpha_bar and beta_bar; 
these two series will hold the averaged estimates of α and β.  
 
set alpha_bar 1 500 = 0. 
set beta_bar 1 500 = 0. 
 
Again, the next three instructions prepare RATS to perform a nonlinear estimation of the model 
and provide initial guesses of α and β.  
 
nonlin alpha beta 
frml monte y = beta*x**alpha 
com alpha = 0.48, beta = 0.98 
 
Next, two DO loops are created. The instructions within the DO i loop are executed 500 times. 
The series eps will contain 50 i.i.d. draws from a standardized normal distribution. The next 
portion of the program is the critical part: 
 
do i = 1,500 
   set eps = %ran(1) 
   do j = 0,1 
 set y = x**0.5 + (1-j)*eps - j*eps 
 nlls(frml=monte,noprint) y 
 
Each time through the DO j loop, yt is set equal to x0.5 = (1-j)*eps - j*eps. The first time through 
the DO j loop, j = 0 so that: 
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 yt = 5.0
tx + εt 

 
The second time through the DO j loop, j = 1 so that: 
 
 yt = 5.0

tx - εt 

 
The NLLS instruction estimates the nonlinear equation using the formula previously defined as 
monte. Next, the values of alpha_bar(i) and beta_bar(i) are updated—50% of the estimated 
value of alpha is added to alpha_bar(i) and 50% of the estimated value of beta is added to 
beta_bar(i). At the end of the DO loop, entry i of each of these series contains the desired pooled 
estimate. After the process is performed 500 times, the DO i loop is completed. The TABLE 
instruction is used to obtain the distribution of alpha_bar and beta_bar. 
  
 com alpha_bar(i) = alpha_bar(i) + 0.5*alpha 
 com beta_bar(i) = beta_bar(i) + 0.5*beta 
end do j 
end do i 
tab /  alpha_bar beta_bar 
 

Series      Obs       Mean       Std Error      Minimum       Maximum 
ALPHA_BAR   500 0.50192972485 0.00880740910 0.45061006127 0.56465375430 
BETA_BAR    500 1.05368592894 0.07719055534 0.99439278963 1.65755600806 

 
The mean values are quite similar to those of alpha_hat and beta_hat. However, the standard 
errors of alpha_bar and beta_bar are about 17 times and 5 times smaller than those of alpha_hat 
and beta_hat, respectively. 
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7. Bootstrapping 
 

  
Programming for bootstrapping is similar to that for a Monte Carlo experiment. However, there 
is an essential difference. In a Monte Carlo study, you generate the random variables from a 
given distribution such as the Normal. The bootstrap takes a different approach—the random 
variables are drawn from their observed distribution. This is quite useful if you are working with 
data that is not Normally distributed. In essence, the bootstrap uses the plug-in principle—the 
observed distribution of the random variables is the best estimate of their actual distribution.  
 
The idea of the bootstrap was developed in Efron (1979). Suppose you have a data set of size T 
and want to estimate the mean µ and the standard deviation of the mean σµ. The key point made 
by Efron is that the observed data set is a random sample of size T drawn from the actual 
probability distribution generating the data. As such, the empirical distribution function is 
defined to be the discrete distribution that places a probability of 1/T on each of the observed 
values. It is the empirical distribution function—and not some pre-specified distribution such as 
the Normal—that is used to generate the random variables. The bootstrap sample is a random 
sample of size T drawn with replacement from the observed data putting a probability of 1/T on 
each of the observed values. Once the bootstrap sample has been drawn, it is possible to estimate 
the mean of the bootstrap sample. Call this estimate using the first bootstrap sample *

1µ . If N 

bootstrap samples are drawn, there are N  bootstrap estimates of µ that we denote by *
1µ through 

*
Nµ . The bootstrap estimate of σµ is the standard deviation of the }{ *

iµ  sequence. 

 
To be more specific, suppose that we have the following 10 values of xt: 

 
t 1 2 3 4 5 6 7 8 9 10 
xt 0.8 3.5 0.5 1.7 7.0 0.6 1.3 2.0 1.8 -.05 

 
The sample mean is 1.87 and the standard deviation is 2.098. Next, we will draw 100 bootstrap 
samples in order to estimate the standard deviation of the mean. Each bootstrap sample consists 
of 10 randomly selected values of xt drawn with replacement—each of the 10 values listed above 
is drawn with a probability of 0.1. It might seem that this resampling repeatedly selects the same 
sample. However, by sampling with replacement, some elements of xt will appear more than 
once in the bootstrap sample. The first three bootstrap samples might be: 
 
 
 

t 1 2 3 4 5 6 7 8 9 10 µi
* 

x1
* 3.5 1.7 -0.5 0.5 1.8 2.0 1.7 0.6 0.6 7.0 1.89 

x2
* -0.5 0.6 0.6 0.8 1.7 7.0 1.8 3.5 1.8 0.8 1.81 

x3
* 0.5 0.6 7.0 1.3 1.3 7.0 1.3 1.8 3.5 0.6 2.49 

 
where: xi

* denotes bootstrap sample i.  
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Notice that 0.6 and 1.7 appear twice in the first bootstrap sample, 0.6, 0.8 and 1.8 appear twice in 
the second and that 1.3 appears three times in the third bootstrap sample. As such, the sample 
means are not identical. For 100 such bootstrap samples, the standard deviation of the 100 values 
of µi

* is the estimate of the standard deviation of the mean σµ. The algorithm is as follows: 
 

1. Select N = 100 bootstrap samples each consisting of 10 data points (N should be between 25 
and 200 for estimating standard errors). 

 
2. Evaluate the parameter of interest (µi

*) for each bootstrap sample. 
 
3. Estimate the standard deviation of the mean by the sample standard deviation of the N 

replications. 
 

Efron (1979) shows that such bootstrap estimates converge to the population standard deviation 
as N goes to infinity. Program 4.12 will estimate the standard deviation of the mean using the 
bootstrap. The first two instructions set the default size of a series to 10 and seed the random 
number generator. The third line generates xt. Note that xt is not quite normally distributed since 
fix(10*%ran(2)) generates the integer value of 10 times an i.i.d. normally distributed random 
number with a standard deviation of 2. Dividing this result by 10 and adding 2 yields the xt series 
listed above: 0.8, 3.5. 0.5, 1.7, 7.0. 0.6, 1.3, 2.0, 1.8 and -0.5. The series mean is created; the 100 
entries of mean will hold the bootstrap mean values µ1

* through *
100µ . 

 
all 10 
seed 2002 
set x = 2+fix(10*%ran(2))/10. 
set mean 1 100 = 0. 
 
The instructions in the DO loop will be performed 100 times. A series y of length 10 is created. 
Note that fix(%uniform(1,11)) draws the integer value of a uniformly distributed random variable 
on the interval (1, 11). Thus, fix(%uniform(1,11)) will be one of the integers from 1 to 10 each 
selected with a probability of 0.1. Suppose these integers happen to be 2, 1, 5, 6, 10, 10, 4, 5, 7, 
and 2. The values of y will be such that y(1) = x(2), y(2) = x(1), y(3) = x(5), … , y(10) = x(2). 
Hence, y is a bootstrap sample--it consists of randomly selected values of x drawn with 
replacement (the probability of selecting any particular value is 0.1). The STATISTICS 
instruction generates the mean of y and this value is stored in entry i of mean. At the end of the 
DO loop, mean contains the 100 bootstrap means. The standard deviation of these means is 
obtained using the TABLE instruction. 
 
do i = 1,100 
 set y = x(fix(%uniform(1,11))) 
 sta(noprint) y ; com mean(i) = %mean  
end do i 
table / mean 
 

Series      Obs       Mean       Std Error      Minimum       Maximum 
MEAN        100 1.90330000000 0.61347998082 0.78000000000 4.31000000000 
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Thus, the bootstrap estimate of the standard deviation of the mean is about 0.61348. Notice 
this is quite similar to the standard deviation of x ( = 2.098) divided by the square root of the 
number of observations (2.098/10**.5 = 0.663) . 
 

7.1 Bootstrapping Regression Coefficients 

  
Suppose you have a data set with T observations and want to estimate the effects of variable x on 
variable y. Towards this end, you might estimate the linear regression: 

 
yt = β0 + β1xt + εt 
 

Although the properties of the estimators are well-known, you might not be confident using 
standard t-tests if the estimated residuals do not appear to be normally distributed. One way to 
estimate the sample properties of 0β̂  and 1β̂  is to use the method of Bootstrapped Residuals.30 

After estimating the model, you perform the following steps: 
 
Step 1: Calculate the residuals as: et = yt - 0β̂ - 1β̂ xt. 

 
Step 2: Generate a bootstrap sample of the error terms e* containing the elements *

1e , *
2e , … , 

*
Te . Use the bootstrap sample to calculate a bootstrapped y series (called y*). For each value of 

i running from 1 to T, calculate *
iy as: 

 
   ** ˆˆ

ii10i e  + x  +  = y ββ  

 
 Note that the estimated values of the coefficients are treated as fixed. Moreover, the values of 

xi are treated as fixed quantities so that they remain the same in the bootstrap sample.  
 
Step 3. Use the bootstrap sample to estimate new values of β0 and β1 calling the resulting values 

*
0β  and *

1β . 

 
Step 4. Repeat Steps 2 and 3 many times and calculate the sample statistics for the estimated 

values 0β̂  and 1β̂  using the sample properties of *
0β  and *

1β . 

 
Of course, it is possible to apply the identical procedure to a nonlinear regression model as well. 
Program 4.13 of the file CHAPTER4_2.PRG finds bootstrap confidence intervals for the 
nonlinear regression model discussed in conjunction with antithetic variates: 
 
 yt = βxt

α + εt 

                                                 
30 The alternative method is to bootstrap the paired (yi, xi) combinations. 
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Instead of using two actual series from MONEY_DEM.XLS, the program uses artificially 
generated data for {xt} and {yt}. As such, we will know how the two series data are actually 
generated and the true values of α and β. As in Program 6, the first two lines set the default 
length of a series to 50, seed the random number generator and generate the {xt} and {yt} 
sequences. Hence, the true parameter values are β = 1 and α = 0.5. 
 
all 50 
seed 2001 
set x = %uniform(5,15) 
set y = x**0.5 + %ran(1) 
 
The trick to understanding the program is to pretend that we do not know the actual data 
generating process. The next four lines of the program use the NONLIN-NLLS block to estimate 
α and β. Note that the NLLS instruction saves the residuals in series e. The estimated values of α 

and β (i.e., α̂ and β̂ ) are saved as alpha_hat and beta_hat.  
 
nonlin alpha beta 
frml monte y = beta*x**alpha 
com alpha = 0.48, beta = 0.98 
nlls(frml=monte) y / e 
 

   Variable     Coeff       Std Error      T-Stat     Signif 
*************************************************************** 
1.  ALPHA      0.4194759184 0.1538968309    2.72570  0.00892917 
2.  BETA       1.1695671363 0.4194023378    2.78865  0.00756525 

 
The parameter estimates are reasonable. Note that stopping at this point would require us to use a 
normal approximation to obtain a confidence interval for the coefficients. For a 90% confidence 
interval, 1.64 standard deviations on either side of alpha gives us an interval of 0.16709 to 
0.67187, and two standard deviations on either side of beta gives us an interval of 0.48175 to 
1.85739. 
 
Thus, Step 1 has been completed. In preparation for Step 2, the series alpha_star and beta_star 
are initialized to contain 1000 entries.  
 
com alpha_hat = %beta(1) , beta_hat = %beta(2) 
set alpha_star 1 1000 = 0. 
set beta_star 1 1000 = 0. 
 
The first instruction inside the DO loop constructs the bootstrap sample of the residuals e_star 
(note that the BOOT instruction can also be useful for these situations). The series e_star will 
consist of 50 values drawn from the regression residuals e. Each value of e_star is a random 
draw with replacement from e. Note that each element of e has a 1/50 chance of being selected 
since fix(%uniform(1,51)) generates an integer on the interval ( 1, 50 ). The next instruction uses 
the bootstrap residuals to construct the bootstrap y series (y*). Notice that the coefficient values 
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used in the construction are those originally estimated from the data. Moreover, the values of xt 
have not been modified or resampled. Thus, Step 2 is completed.   
 
do i = 1,1000 
 set e_star = e(fix(%uniform(1,51))) 
 set y_star = beta_hat*x**alpha_hat + e_star 
 
Step 3 requires us to use the bootstrapped y_star sequence to obtain new coefficient estimates. 
This is accomplished in the four instructions in the NONLIN-NLLS block below. The coefficient 
estimates for α* and β* are stored in entry i of alpha_star and beta_star, respectively. 
On exiting the DO loop, these two series will each contain 1000 values of bootstrapped 
coefficients. The sample properties of these coefficients are obtained using the STATISTICS 
instruction with the FRACTILES option. 
 
 nonlin alpha beta 
 frml monte y_star = beta*x**alpha 
 com alpha = alpha_hat, beta = beta_hat 
 nlls(frml=monte,noprint) y_star 
 com alpha_star(i) = %beta(1) , beta_star(i) = %beta(2) 
end do i 
sta(fractiles) alpha_star 
 
Statistics on Series ALPHA_STAR 
Observations   1000 
Sample Mean     0.4179067424            Variance               0.023137 
Standard Error  0.1521082297            SE of Sample Mean      0.004810 
 
Minimum     -0.0878398657               Maximum      1.0489024933 
01-%ile      0.0706360305               99-%ile      0.8022149869 
05-%ile      0.1715603199               95-%ile      0.6706139537 
10-%ile      0.2215775497               90-%ile      0.6020511077 
25-%ile      0.3161065322               75-%ile      0.5150522575 
Median       0.4178528143 

 

 
sta(fractiles) beta_star 
 
Statistics on Series BETA_STAR 
Observations   1000 
Sample Mean    1.24610274529            Variance               0.198084 
Standard Error 0.44506578336            SE of Sample Mean      0.014074 
 
Minimum     0.26104747424               Maximum     3.85257134145 
01-%ile     0.48336068574               99-%ile     2.59363073397 
05-%ile     0.64414171297               95-%ile     2.08050680611 
10-%ile     0.75625461184               90-%ile     1.84697927718 
25-%ile     0.94211587333               75-%ile     1.48805437120 
Median      1.17862968423 
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We can use the distribution for alpha_star to form a symmetric 90% confidence interval for α̂ . 
Since 5% of the values lie below 0.1715603199 and 5% lie above 0.6706139537, the 90% 
confidence is the range 0.1715603199 to 0.6706139537. Similarly, 90% confidence interval 

for β̂ using the bootstrap distribution is 0.64414171297 to 2.08050680611. Notice that this 
confidence interval is much wider than that obtained using the normal approximation.  
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7.2 The AR Coefficients of Real GDP Growth 

 
Step 2 needs to be modified for a time series model due to the presence of lagged dependent 
variables. As such, the bootstrap y* is constructed in a slightly different manner. Consider the 
simple AR(1) model:  
 
 yt = β0 + β1yt-1 + εt 

 
As in Step 2, we can construct a bootstrap sample of the error terms e* containing the elements 

*
1e , *

2e , … , *
Te . Now, the bootstrap y* sequence using this sample of error terms. In particular, 

given the estimates of β0 and β1 and an initial condition for *
1y , the remaining values of the y* 

sequence can be constructed using: 
 

*
iy = *

110
ˆˆ

ii ey ++ −ββ  

 
For higher order AR(p) models, initial conditions for *

1y through *
py are needed. Typically, these 

values are selected by random draws from the {yt} sequence.31  
 
Program 4.14 uses this method to bootstrap the coefficients of an AR(2) model of the dlrgdp in 
the form: 
 
 dlrgdpt = β0 + β1dlrgdpt-1 + β2dlrgdpt-2 + εt 
 
The issue is that the coefficient of dlrgdpt-2 has a significance level of 0.0756. However, since 
the residuals are not normally distributed, it might be wise to use the bootstrap to obtain 

confidence intervals for 2β̂ . The first six lines of Program 4.14 read in the data set 
MONEY_DEM.XLS, seed the random number generator with 2001 and estimate the model: 
 
lin dlrgdp  / resids 
# dlrgdp{1 to 2} constant 
 

                                                 
31 A second, although less common, bootstrapping technique used in time series models is called 
“Moving Blocks.” For an AR(p) process, select a length L that is longer than p; L is the length of 
the block. To construct the bootstrap y* series, randomly select a group of L adjacent data points 
to represent the first L observations of the bootstrap sample. In total, you need to select T/L of 
these samples to form a bootstrap sample with T observations. The idea of selecting a block is to 
preserve the time-dependence of the data. However, observations more than L apart will be 
nearly independent. Use this bootstrap sample to estimate the bootstrap coefficients *

0β and *
1β . 
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   Variable            Coeff       Std Error      T-Stat     Signif 
********************************************************************** 
1.  DLRGDP{1}       0.2508977521 0.0769801061    3.25925  0.00135976 
2.  DLRGDP{2}       0.1362250820 0.0762100846    1.78749  0.07571568 
3.  Constant        0.0051566068 0.0010217954    5.04661  0.00000119 

 
The next two instructions do some bookkeeping. The first line below stores the estimates 

21
ˆ,ˆ ββ and 0β̂ in the variables beta1_hat, beta2_hat and beta0_hat, respectively. The second line 

stores the standard error and t-statistic of 2β̂ in the variables se_2 and t2, respectively.  
 
com beta1_hat = %beta(1), beta2_hat = %beta(2) , beta0_hat = %beta(3) 
com se_2 = %STDERRS(2), t2 = %tstats(2) 
 
If we use the normal approximation, we can obtain the lower (l) and upper (u) limits of the 90%, 

95% and 99% confidence intervals for 2β̂ using: 
 
dis 'Normal Approximation' 
com l = beta2_hat - 1.644*se_2 , u = beta2_hat + 1.644*se_2 ; dis '  90% '  l h 
com l = beta2_hat - 1.96*se_2 ,  u = beta2_hat + 1.96*se_2 ; dis '  95% '  l h 
com l = beta2_hat - 2.57*se_2 ,  u = beta2_hat + 2.57*se_2 ; dis '  99% '  l h 

 
Normal Approximation 
 90%        0.01094       0.26151 
 95%       -0.01315       0.28560 
 99%       -0.05963       0.33208 

 
In order to see if the residuals appear normal, we can use the STATISTICS instruction: 
 
sta resids 
Statistics on Series RESIDS 
Quarterly Data From 1959:04 To 2001:01 
Observations   166 
Sample Mean    0.00000000000            Variance           7.095529e-05 
Standard Error 0.00842349604            SE of Sample Mean      0.000654 
t-Statistic        0.00000              Signif Level (Mean=0) 1.00000000 
Skewness           0.05245              Signif Level (Sk=0)   0.78455071 
Kurtosis           1.40625              Signif Level (Ku=0)   0.00029372 
Jarque-Bera       13.75405              Signif Level (JB=0)   0.00103121 

 
Although the residuals do not appear to be skewed, there is excess kurtosis and the Jarque-Bera 
test clearly rejects normality. In preparation for the construction of bootstrap confidence 
intervals, a bit more bookkeeping is necessary. The integer boot_num, containing the number of 
replications, is set equal to 1000. If you want to alter the number of replications simply change 
this single program statement. The next instruction creates the series beta2_star; the 1000 
bootstrap estimates of β2 (i.e., the values of *

2β ) will be stored in this series. The third instruction 
creates the values of the y* sequence.  
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com boot_num = 1000 
set beta2_star 1 boot_num = 0 
set y_star = 0. 
 
The instructions in the DO loop will be executed 1000 times. The first instruction in the loop 
randomly selects an integer in the range 1959:2 to 2001:1. The value of ii serves as a randomly 
selected entry value. The COM instruction uses this value to equate the first two values of y_star 
(i.e., *

1y  and *
2y ) with two consecutive values of dlrgdp. Next, the bootstrapped e* series is 

created from residuals of the AR(2) model. Each value *
1e , *

2e , … , *
Te is a random draw with 

replacement from resids. Note that each element of resids has a 1/166 chance of being selected 
since fix(%uniform(1959:4,2001:1+1)) generates integers on the interval (4, 169). 
 
do k = 1,boot_num 
 com ii = fix(%uniform(1959:2,2001:1))  
 com y_star(1) = dlrgdp(ii), y_star(2) = dlrgdp(ii+1)  
 set e_star = resids(fix(%uniform(1959:4,2001:1+1))) 
 
The first instruction below creates the series y_star for entries 1959:4 through 2001:1 using the 
bootstrapped residuals e_star. As such, the first two entries of y_star remain the values SET by 
the first instruction inside the DO loop. Notice that the estimated values of 21

ˆ,ˆ ββ and 0β̂ are used 

in the construction of y_star. The second instruction below uses the bootstrap sample to estimate 
*
1β , *

2β and *
0β . The value of *

2β is stored as the i-th entry of beta2_star: 

 
 set y_star 3 * = beta1_hat*y_star{1} + beta2_hat*y_star{2} + beta0_hat + e_star 
 lin(noprint) y_star ; # y_star{1 to 2} constant 
 compute beta2_star(k) = %beta(2) 
end do k 
 
At this point, beta2_star contains the 1000 values of *

2β . We can use the STATISTICS 
instruction to obtain the FRACTILES of beta2_star: 
 
sta(fractiles) beta2_star 
 
Statistics on Series BETA2_STAR 
Minimum     -0.1559817399               Maximum      0.3371048578 
01-%ile     -0.0558588474               99-%ile      0.2886134655 
05-%ile     -0.0113366577               95-%ile      0.2431975939 
10-%ile      0.0172751868               90-%ile      0.2141146300 
25-%ile      0.0661351327               75-%ile      0.1684400633 
Median       0.1204672933 

 
From the output, it is clear that a symmetric 90% confidence interval includes zero--the lower 
and upper boundaries are -0.0113366577 and 0.2431975939, respectively. This suggests that we 
can exclude the second lag of dlrgdp. The FRACTILES option may not provide all of the 
information you would like concerning the distribution of beta2_star. One way to obtain 
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whatever set of FRACTILES you want is to order beta2_star from the smallest to the largest 
value: 
 
order beta2_star 
 
Now the 50-th value (5% of 1000 replications) and the 950-th (95% of 1000) can be used to 
obtain the lower and upper bounds of a 90% confidence interval. Similarly, the same logic can be 
used to construct 95% and 99% confidence intervals. The following four instructions produce 
these three confidence intervals:32 
 
dis 'Confidence intervals for beta2' 
dis ' 10% ' beta2_star(fix(.05*boot_num))  beta2_star(fix(.95*boot_num)) 
dis '  5% ' beta2_star(fix(.025*boot_num)) beta2_star(fix(.975*boot_num)) 
dis '  1% ' beta2_star(fix(.005*boot_num)) beta2_star(fix(.995*boot_num)) 

 
Confidence intervals for beta2 
  10% -0.01137 0.24317 
  5% -0.03765 0.25895 
  1% -0.09205 0.3096

                                                 
32 An alternative way to construct confidence intervals it to use the bootstrapped t-statistics for 

the null hypothesis *
2β  = 2β̂ . Program 4.14a (not discussed here) shows how to construct 

confidence intervals using the “Bootstrapped T-Statistics.”   



 

 

Chapter 5:  
Vector and Matrix Manipulations 
 
Although RATS is not intended to be a matrix programming language, it has evolved to the point 
where you can use it to perform very complicated econometric tasks entirely in matrix notation. 
In fact, you can create various vectors and matrices from your data set. For example, you can 
create a Y vector, an X matrix and obtain the ordinary least squares (OLS) coefficient estimates 
from (X'X)-1X'Y. I will show you how to do that, and more, in the section entitled Making 
Matrices from Your Data. However, most RATS users will not want their programs to consist 
entirely of matrix manipulations. One of the strengths of RATS is that you can use vectors and 
matrices to complement the existing instruction set. Programming in a pure matrix language can 
be cumbersome; it is a lot easier to let RATS perform some of the matrix manipulations for you. 
For example, the LINREG instruction creates the coefficient vector (%beta) and the (X'X)-1 
matrix. You can call and manipulate both of these matrices without having to construct them 
yourself. Similarly, many RATS instructions accept a vector or a matrix as inputs. In essence, 
you pass information to the instructions using matrices. In fact, there are so many RATS 
instructions that utilize or create matrices that advanced RATS programmers often incorporate 
some matrix manipulations into their overall program.  
 

1. Creating Matrices and Vectors 

 
In traditional matrix algebra, the elements of a matrix are numbers. RATS allows you to be much 
more flexible. Not only can the elements of a matrix be real numbers, complex numbers or 
integers, they can also be strings, labels or series. Be aware that many RATS instructions have 
options allow you to create matrices. For example, the ESTIMATE instruction discussed in 
Chapter 2 can have the form:  
 
ESTIMATE(OUTSIGMA=V,residuals=resids,coefficients=coef)  

 
where:  

OUTSIGMA=  Computes and saves the covariance matrix of the residuals. 
COEFFICIENTS=coef   Creates a matrix of the coefficients. Column i contains the 

coefficients of the i-th equation. 
RESIDUALS=resids  Creates a vector of series. The residuals from the first equation are 

stored in the series called resids(1), the residuals from the second 
equation are stored in the series called resids(2), and so forth.   

 
Also, you can create vectors and matrices in RATS using the DECLARE, COMPUTE and 
MAKE instructions. The main use of each is:   
 

DECLARE  The most general instruction for creating matrices. 
COMPUTE  Useful for creating small matrices or vectors. 
MAKE  Creates a matrix (or vector) from data series. 
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Whenever you create a matrix using the DECLARE instruction, you need to inform RATS about 
three features of the matrix. First, you can create different types of matrices. The types will 
usually be: 
 

rectangular:  an r x c matrix where r = # rows and c = # columns  
vector: a one dimensional array 
symmetric:  a symmetric r x r matrix  

 
Second, you need to DIMENSION the matrix by indicating the number of rows and columns it 
contains. You can DIMENSION the matrix directly on the DECLARE instruction or on a DIM 
instruction.33 It is useful to know that matrices can be redimensioned within any program. 
However, you cannot DECLARE a matrix as a different data type. For example, if A is a vector 
of integers, you cannot DECLARE A to be a vector of real numbers or a RECTANGULAR 
matrix of integers. Third, you need to instruct RATS concerning the type of information 
contained in the matrix. A matrix might contain one or more series or a set of integers, real 
numbers or string variables. 
 

1.1 Declare 

 
DECLARE is the most general instruction for creating a matrix. DECLARE allows you to 
completely specify the type of the matrix (i.e., rectangular, vector or symmetric) along with its 
dimension and the contents of the elements. The syntax for DECLARE is: 
 
DECLARE matrix type  list of names 
 

where:   
matrix type  Will usually be rectangular, vector, or symmetric. By default, the 

elements are real numbers. You indicate other element types by the use 
of brackets [ ]. The most typical element types are INTEGER, SERIES, 
LABELS or STRING. 

 
list of names  The names of the matrices you wish to create. Note that you can include 

the DIMENSION in parentheses. 
 
It is important to note that within a compiled procedure, you cannot dimension a matrix on the 
DECLARE instruction. Instead, you must use a separate DIMENSION statement.  

                                                 
33 Within a procedure, you cannot DECLARE and DIMENSION a matrix on the same 
instruction. See Chapter 6 for details on writing your own procedures. 
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Examples 
1.  To create a vector x that can hold 100 real numbers, you can use: 

 
 declare vector x(100)  
 
 or: 
   
 declare vector x 
 dim x(100) 
    
NOTE: Within a procedure, you must use the second set of instructions. 
 

2. To create a vector x that can hold 100 integers and a vector y that can hold 50 integers, you 
can use: 
 
 declare vector[integer] x(100) y(50) 
 
 or:   

   
 declare vector[integer] x y 

 dim x(100) y(50) 
 

3. To create a vector x that can hold 10 series, you can use: 
 
 declare vector[series] x(10)  
 

4. To create a vector x that can hold 100 real numbers and a 10 x 20 matrix b containing real 
numbers, you can use: 
 
 dec vector x(100) 
 dec rectangular b(10,20) 
 
 or:  
 
dec vector x 
dec rectangular B 
dim x(100) B(10,20) 
 
Note: You can include different types of matrices on a DIMENSION instruction but not on a 
DECLARE instruction. 
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1.2 COMPUTE 

 
In many ways, you create and manipulate matrices just as scalars. You PRINT a series but you 
DISPLAY (or WRITE) a scalar and a matrix. Similarly, you manipulate a series using SET but 
you can manipulate scalars and matrices using COMPUTE. In fact, the simplest way to create 
and manipulate matrices is with the COMPUTE instruction. COMPUTE allows you to implicitly 
DECLARE and DIMENSION a matrix so that there is no need to have an explicit DECLARE 
instruction. Moreover, COMPUTE also allows you to completely specify the data type. There are 
two rules you need to know when using compute: 
 
1. COMPUTE creates a RECTANGULAR matrix if you do not specify vector or symmetric. You 

can specify (i.e., explicitly DECLARE) the type of the matrix using braces [ ].  
 
2. COMPUTE determines the type of the elements (e.g., integer, real, string) from the 

expression you enter.34 
 

Examples 
1.  com a = ||'dlrgdp', 'dlm3' , 'drs' || 

dis a 
 
     dlrgdp dlm3 drs 
 
The COMPUTE instruction creates a 1 x 3 RECTANGULAR matrix containing the string 
variables dlrgdp, dlm3 and drs. You can refer to each element by its position in the matrix. 
For example: 
 
 dis a(1,2) 
 
  dlm3 
 
Suppose that the residuals from a VAR using dlrgdp, dlm3 and drs are stored in series 1, 2, 
and 3. You could graph each of the residuals series using: 
 
do i = 1,3 
  graph(header='Residuals from '+a(1,i)) 1 ; # i 
end do 
 
The headers of the graphs would be: Residuals from dlrgdp, Residuals from dlm3 and 
Residuals from drs. 
 

                                                 
34 Note that if you use brackets to explicitly create a vector or symmetric matrix, you should also 
specify the data type (i.e., integer, string, series, …). For example: [vector[string]]  
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2. The syntax of the supplementary card in LINREG is: 
 # list of explanatory variables 
 
The list of explanatory variables can include labels and/or series numbers. Suppose that you 
want to regress the log of M2 (lm2) on a constant, the log of RGDP (lrgdp), the log of the 
GDP deflator (lp) and a short-term interest rate. Program 5.1 in the file CHAPTER5.PRG 
reads in the seven series from the data set MONEY_DEM.XLS and creates these variables. If 
you enter the TABLE instruction, you will see that tb3mo is series 6, tb1yr is series 7, lrgdp is 
series 8, lm2 is series 9, and lp is series 10. All of the following produce the identical 
regression output: 
 
lin lm2 
# constant lrgdp lp tb3mo 
 
lin lm2 
# 0 8 10 6       ;* NOTE: 0 is equivalent to constant. If you type: pri / 0 you get constant 
 
com a = || 0, 8, 10, 6 || 
lin lm2 
# a 
 
You could embed this routine in a DOFOR loop to obtain a regression of lm2 on each of the 
short-term interest rates: 
 
dofor i = tb3mo tb1yr 
 com a = || 0, 8, 10, i || 
 lin lm2 
 # a 
end do for 
 
The first time though the loop, i = 6 and the regressor list uses tb3mo. The second time 
through the loop, i = 6 and the regressor list uses tb1yr. 
 

3.  Program 4.1 also illustrates the difference between different data types, Consider:  
 
com names = || 'rgdp' , 'tb3mo' || 
dis names(1, 2) 
  tb3mo 

 
The 1 x 2 rectangular matrix names consists of the string variables rgdp and tb3mo. 
DISPLAY element a(1, 2)  produces the string tb3mo. PRINT operates on one or more series. 
As such, if you try to PRINT names or an element of names, you will get an error message: 
 
pri / names  
## SX22. Expected Type SERIES, Got RECTANGULAR(STRING) Instead 
>>>> pri / names<<<< 
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Now create a 1 x 2 rectangular matrix b that contains the series numbers of series rgdp and 
tb3mo. 
 
com b = || rgdp, tb3mo || 
pri / b 
 
ENTRY         RGDP            TB3MO 
 1959:01       2273.0      2.773333333333 
 1959:02       2332.4      3.000000000000 
 ....... 
 2000:04       9393.7      6.016666666667 
 2001:01       9439.9      4.816666666667 

 
pri / b(1, 2) 
 
ENTRY         TB3MO 
 1959:01   2.773333333333 
 1959:02   3.000000000000 
 1959:03   3.540000000000 
 ....... 
 2000:03   6.016666666667 
 2000:04   6.016666666667 
 2001:01   4.816666666667 

 
Because b consists of a integer for which there are corresponding series, you can PRINT b or 
an element of b.  If you wanted to DISPLAY the second ENTRY of tb3mo [i.e. entry 
tb3mo(1959:02)] you could enter: 
 
dis b(1, 2)(2) 
 
3.00000 

  
Finally, create the VECTOR c consisting of the strings rgdp and tb3mo. Note that we needed 
to use [vector[string]] c. The default for COMPUTE is RECTANGULAR and the default for 
VECTOR is REAL. The double bracket [vector[string]] overrides both of these defaults. We 
can display either the entire vector or a single element of the vector. Note that a VECTOR 
uses only a single subscript.  
 
com [vector[string]] c = || 'rgdp', 'tb3mo' || 
dis c 
       rgdp tb3mo 
 
dis c(2) 
  tb3mo 
 

4.  com d = || 1.0, 2 | 3 , 4|| , e = || 1, 2 || 
dis d e      
    1.00000       2.00000 
    3.00000       4.00000 
     1 2 
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A single COMPUTE instruction can be used to create several matrices and/or vectors. Here, a 
is a 2 x 2 matrix of real numbers and b is a 1 x 2 rectangular matrix of integers. Note that 
COM [vect] b = || 1 , 2 || creates a vector of real numbers 
 
com a = || 1.0, 2 | 3 , 4|| , [vect[integer]] b = || 1, 2 || 
 
If you are going to explicitly declare the type of matrix and the type of data on the COMPUTE 
instruction, it might be simpler to use the DECLARE instruction. Nevertheless, the next 
several examples might prove instructive.  
 

5.  com [vect] x = || 1.0, 4.0, -3.9 , 2.0  || 
 
Since [vect] is specified, the COMPUTE instruction creates the vector x consisting of four real 
numbers. Since the default for a matrix argument is a RECTANGULAR matrix, 
 
com y = || 1.0, 4.0, -3.9 , 2.0  ||  
 
creates a 1 x 4 rectangular matrix of real numbers.  
 
The difference is that a matrix has double subscripts that reference the row and column while 
a vector has a single subscript. For example, you reference the value 4.0 in each using: 
 
dis x(2)  y(1,2) 
       4.00000       4.00000 

 
6. The following instruction creates the 1 x 4 RECTANGULAR matrix inum consisting of four 

integers: 
 
com inum = || 1, 4, -3 , 2  || 
 
In contrast:  
 
com [vect] inum = || 1, 4, -3 , 2  ||    
 
creates a vector of real numbers since the default data type for vector is real numbers.  
 
com [vect[integer]] inum = || 1, 4, -3 , 2  || 
 
creates a vector of integers since both types are specified. Note the appropriate use of double 
brackets: vect[integer] must be enclosed in brackets. 
 

7.  You can use COMPUTE in association with previously defined variables. Consider: 
  
com i11 = 1, i12 = 2 , i13 = 3 , i14 = 4 
com [rect[integer]] inum = ||i11, i12 | i13, i14|| 
dis inum   
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   1  2 
   3  4 
 
Note that once the data type is made explicit, you must take care not to use a different type. If 
you let j13 equal 3.9, and enter: 
 
com j11 = 1, j12 = 2 , j13 = 3.9 , j14 = 4 
com [rect[integer]] inum = ||j11, j12 | j13, j14|| 
 
  ## SX22. Expected Type INTEGER, Got REAL Instead 
  >>>>, j12 | j13, j14||<<<< 
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2. Matrix Operations  

 
Suppose that A and B are conformable matrices. The following are just some of the matrix 
operations you are allowed to perform:  
 

COM C = A + B (or A – B) Addition and subtraction 
COM C = A*B   Multiplication A and B 
TR(A)     Transpose of A 
INV(A)   Inverse of A 
%DECOMP(A)   Choleski decomposition (of SYMMETRIC only) 
%KRONEKER(A,B)      Kroneker product of A and B. 
%CORR(A,B)    Correlation of A and B 
%DET(A)    Determinant 
%DOT(A,B)     Dot product 
%DIAG(A)   n x n diagonal matrix from an (n x 1) or (1 x n)  
%SOLVE(A,B) Solves the problem Ax = B, where A is an NxN array of 

known values, B is an Nx1 array of known values, and x is 
an Nx1 array of unknowns. The function returns x as an 
Nx1 RECTANGULAR array.  

 
In addition to the usual conformability restrictions, you need to be sure that the matrices contain 
the same type of variables. For example, if A is a 2 x 2 matrix of real numbers and I1 is a 2 x 2 
identity matrix of integers, A*I1 is not permissible. 
   

2.1 Operations on Subcomponents of a Matrix 

  
One way to manipulate an element is through the COMPUTE instruction. Consider the following 
examples: 
 
1.  com a(1,5) = 3.0 
 

Here the COMPUTE instruction equates the element in the first row of the fifth column of the 
matrix A with the real number 3.0.  

 
2.  com x = a(1,5)  
 

Here the COMPUTE instruction equates the variable x with the element in the first row of the 
fifth of the matrix A. 

 
 
Sometimes there is a particular relationship among the elements of a matrix. You can exploit this 
relationship using the EWISE instruction. To use EWISE, you must dimension the matrix. For a 
vector, EWISE contains an implied DO loop. Consider: 
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EWISE a(i)   = formula in i   
 
Suppose you wanted to construct a vector of integers running from 1 to 10. One way to do this 
would be to: 
  
declare vector[integer] a(10) 
do i = 1,10 
 com a(i) = i  
end do i 

 1 2 3 4 5 6 7 8 9 10 

 
The first time through the loop i = 1 and RATS performs the operation COM a(1) = 1. The 
second time through the loop i = 2 and RATS performs the operation COM a(2) = 2. This 
procedure continues through i = 10. A more efficient way to perform the same task is to use: 
 
declare vector[integer] a(10) 
ewise a(i) = i 
 
Here EWISE sets element a(1) = 1, element a(2) = 2 , … . The index i runs from 1 though the 
dimension of the array.  
 
For RECTANGULAR and SYMMETRIC arrays, EWISE is equivalent to the use of multiple DO 
loops. Consider: 
 
EWISE a(i,j) = formula in i and j  
 
Here, EWISE sets element (i,j) according to the specified formula. For example: 
 
declare rect[integer] ix(3,3) 
ewise ix(i, j) = i – j 
dis ix  

0 -1  -2 
1  0  -1 
2  1   0 

 
Note that you do not need to be too careful about the fact that i and j are integers while the 
elements of the matrix ix might be real. Consider: 
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declare rect[real] ix(3,3) 
ewise ix(i, j) = i – j 
dis ix 

 0.00000      -1.00000      -2.00000 
 1.00000       0.00000      -1.0000 
 2.00000       1.00000       0.00000 
 

 

2.2 Selecting ARMA Coefficients  

  
The BOXJENK instruction also allows you to use vectors to input information. The syntax and 
principal options of the BOXJENK instruction are: 
 
boxjenk(options)  depvar  start  end  residuals 
 
where:    

depvar  The dependent variable  
start end The range to use in the estimation.  
residuals The name of the series to call the residuals.   

 
The important options for our purposes are: 
 

CONSTANT You must specify constant if you want to include an  
    /[NOCONSTANT] intercept. 
AR=   List of autoregressive coefficients. [Default = 0] 
MA=   List of moving-average coefficients. [Default = 0] 

 
Thus, the program line below will estimate the model yt = a0 + a1yt-1 + a2yt-2����t + β1�t-1 + β2�t-2 
over the sample period 3 through 100 (since two observations are lost due to the 2 AR 
coefficients) and saves the residuals in a series called resids. 
 
box(constant,ar=2,ma=2) y 3 100 resids 
 
It is important to know that the options ar = p and ma = q include AR coefficients for lags 1 
through p and MA coefficients 1 through q. In contrast, you can use ar = || list || and ma = || list || 
to include only those coefficients enumerated in list.  For example, ar = 4 calls for the inclusion 
of autoregressive coefficients a1, a2, a3, and a4. Instead, ar = ||1, 4|| calls for the inclusion of 
autoregressive coefficients a1 and a4 but not a2 or a3.  Thus, to estimate the model yt = a0 + a1yt-1 
+ a2yt-2����t + β2�t-2 + β4εt-4 use: 
 
box(constant,ar=2,ma=||2, 4||) y 3 100 resids 
 
What you are doing is entering a vector of integers (i.e., the vector [2 , 4]) into the instruction. 
This method works well if the vector list is short. Since you are creating a vector, you must type 
each integer value that you want to include. Hence, you cannot enter:  ma = || 1 to 4, 5||. 
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Moreover, if you embed the instruction in a procedure, you want to give the user the flexibility to 
input any possible parameter set. The way to avoid this problem is to use the method shown 
below to create your own integer vector. Although it is not especially efficient to use three lines 
of code instead of one, you could estimate the model above using: 
 
declare vector[integer] mas 
com mas = || 2, 4|| 
box(constant,ar=2,ma=mas) y 3 100 resids 
 
In other circumstances, the method can be particularly useful. A friend of mine working with 
energy-price tick data wanted to estimate an MA model with coefficients at lags 1 - 60, 120, 180 
and 240. A simple way to create the vector is: 
 
declare vector[integer] mas(63) 
ewise mas(i) = i 
com mas(61) = 120, mas(62) = 180, mas(63) = 240 
box(constant,ar=2,ma=mas) y 3 100 resids 
 
Here, you declare the vector mas and fill the vector with the coefficient values you want in the 
estimation. The EWISE instruction fills all 63 entries with integer values running from 1 to 63. 
The COMPUTE instruction corrects entries 61, 62 and 63 such that they equal 120, 180 and 240, 
respectively. The final instruction estimates a model with 2 autoregressive coefficients and the 
63 moving average coefficients—the MA terms at lags 1-60, 120, 180 and 240. 
 
 

2.3 Manipulating the Output of a VAR 

 
In Chapter 2, we were able to create a 3-variable VAR using:  
 
system(model=chap2) 
var dlrgdp dlrm2 drs 
lags 1 to 12 
det constant 
end(system) 

 
The necessary instructions to set up the VAR are repeated in Program 5.2. The next statement 
instructs RATS to estimate the VAR, and create the variance/covariance matrix v. The regression 
residuals are stored in the series resids(1), resids(2) and resids(3) and the coefficients are stored 
in the matrix ca. 
 
estimate(sigma,outsigma=v,residuals=resids,coeffs=ca)  
 

Note that ca is a 37 x 3 RECTANGULAR matrix. You can view the coefficients using:  
 
dis ca 
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 0.04961       0.02504      27.24470 
-0.02046       0.06033       6.04229 
-0.16255       0.05159     -12.42336 
 0.12126      -0.07211       9.71846 
-0.15415       0.00161      -2.79501 

 ……..  
 
 

Element ca(1,1) is the regression coefficient of dlpgdp on its own first lag and element ca(37, 2) 
is the intercept in the dlrm2 equation. Similarly, PRINT the residuals using: 
 
pri * 16 resids 

ENTRY       RESIDS(1)       RESIDS(2)       RESIDS(3) 
 1962:02  -0.004738155830  0.004968068719 -0.651980315507 
 1962:03  -0.001610217811  0.000793836267 -0.117657508925 
 1962:04  -0.010007743363  0.005422212237  0.101551774645 

 
Notice that the residual series begin with 1962:02 since one usable observation is lost by 
differencing and twelve are lost by using lags in the regression equations. The PRINT instruction 
caused RATS to print three series: resids(1), resids(2) and resids(3). In essence, resids is a vector 
containing three series. You can print any one of the three series using resids(i). For example, 
you can print the residuals from the second regression equation using: 
 
pri * 16 resids(2) 

ENTRY       RESIDS(2) 
 1962:02   0.004968068719 
 1962:03   0.000793836267 
 1962:04   0.005422212237 

 
Thus, 0.004968068719 is the first defined entry of the series called resids(2) and 
0.000793836267 is the second defined entry of the same series. You can reference the 
individual elements as follows: 
 
dis resids(2)(14) 

   0.00497 

 
Next, we want to decompose the variance/covariance matrix using a Choleski decomposition. 
You can display the variance/covariance matrix v and the Choleski decomposition of v using: 
 
dis v 

  4.25841e-05 
  8.43189e-06   2.83336e-05 
  7.56122e-04  -6.56400e-04       0.30310 

 
dis %decomp(v) 

  0.00653       0.00000       0.00000 
  0.00129       0.00516       0.00000 
  0.11587      -0.15611       0.51507 

 



  Vector and Matrix Manipulations 181 
 

 

Hence: 
 
v = B*B' 
 
where: B = %decomp(v) 
 

To obtain impulse responses, it is desirable to use the transpose of this matrix. You can compute 
the matrix G as the transpose of %decomp(v) with: 
 

com g = tr(%decomp(s)) 
dis 'Decomposed Matrix' g 

Decomposed Matrix 
0.00653       0.00129       0.11587 
0.00000       0.00516      -0.15611 
0.00000       0.00000       0.51507 

 
You can obtain the autocorrelations of the residuals using the DO loop below. The first time 
through the loop, i = 1 so that the autocorrelations of resids(1) are displayed.  
 
do i = 1,3  
  cor(qstats,span=4) resids(i)  
end do 
 
Sections 4 through 6 of Chapter 2 contain a number of examples involving structural VARs. In a 
structural VAR, you model the individual elements of the matrix g.   
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3. Example: ENTER and Supplementary Cards 

  
RATS allows you to replace the individual entries on a supplemental card with a vector. You use 
the ENTER instruction to manipulate the items in the vector. By changing the contents of the 
vector, it is easy to add, subtract or (in almost any reasonable way) modify the information on 
the supplementary card.  
 
You first have to create the vector that will hold the information. If we are going to modify the 
various series listed on the card, it is necessary to create a vector of integers (Recall that series 
can be referenced by their labels or integers). The syntax of ENTER needed to perform this task 
is:35 
 
ENTER(varying) vector 
# variables for vector 
 
Use the VARYING option since the length of the vector will vary as you add or delete variables. 
We will return to the issue of automating model selection in a VAR in Sections 3.1 and 3.2 
below. Before considering the full VAR system, suppose you want to estimate the three 
regression equations: 
 

dlrgdpt = α0 + A11(L)dlrgdpt-1 + εt 

dlrgdpt = α0 + A11(L)dlrgdpt-1 + A12(L)dlrm2t-1 + εt 

dlrgdpt = α0 + A11(L)dlrgdpt-1 + A12(L)dlrm2t-1 + A13(L)drst-1 + εt 

 
The next instruction in Program 5.2 is used to DECLARE the integer vector reglist. This vector 
will hold the list of regressors we want to place on the supplementary card. The second line 
above places ‘constant’ in the vector reglist. 
 
dec vector[integer] reglist 
compute reglist = || constant || 
 
dofor i = dlrgdp dlrm2 drs 
 enter(varying) reglist  
 # reglist i{1 to 12} 
 lin dlrgdp 
 # reglist 
end dofor i 
 
The first time through the DOFOR loop, i = the integer assigned to the series dlrgdp.  Hence, 
dlrgdp{1 to 12} is added to reglist.  Notice that the supplementary card on the ENTER 
instruction also contains reglist. This is because we want the new list of regressors to include 

                                                 
35 ENTER can also be used when passing information to a procedure. Here, we consider only the 
use of ENTER to create a variable list. 
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everything in the previous list (i.e., a constant) and the variable we are adding to the list. Next, i 
= the integer assigned to dlrm2 and a new list is created. The new vector reglist contains 
everything in the previous list (i.e., a constant and dlrgdp{1 to 12}) and dlrm2{1 to 12}. In this 
way the program estimates the regression equations.  
 
If you do not want a constant in any of the regressions, you can replace the first line of the 
routine with: 
 
dec vector[integer] reglist(0) 
 
Now reglist has been dimensioned such that it contains no entries. 
 

3.1 Automating Model Selection in a VAR 

  
You can use ENTER to modify the list of deterministic variables in a VAR. Suppose that we 
want to determine whether to include seasonal dummy variables in the 3-variable 12-lag VAR. 
We want a routine that will make three loops. In the first loop, the system is estimated without 
the seasonal dummies and the seasonal dummies are used in the second loop. The VAR output is 
not displayed at this stage. In the third loop, the program estimates the ‘best fitting’ of the two 
models and displays the output. The first line of the program creates a seasonal dummy variable 
that is 1 in the 4-th quarter of each year and zero in all other quarters. The next instruction of 
PROGRAM2 on the file CHAPTER5.PRG initializes a switch called print that is OFF (i.e., = 0) 
in the first two loops and is ON (i.e., = 1) in the third loop. It also initializes the variable 
aic_min—this variable will be used to hold the aic for the ‘best-fitting’ model. 
 
sea seasons  
com print = 0  , aic_min = 100000000. 
 
Next, we create two vectors; one will hold the deterministic regressors we want to keep in the 
VAR (perm_det) and the other holds the current regressor list (temp_det). These two integer 
vectors are initialized to hold only a constant. 
 
dec vector[integer] temp_det perm_det 
com temp_det = ||constant|| 
com perm_det = ||constant||  
 
Next we begin the three DO loops. On the first loop, i = 1 and the bracketed conditional 
statement is ignored. Hence, the only deterministic regressor is the constant. On the second loop, 
i = 2 and three seasonal dummy variables are added to the list of temporary variables. On the 
third loop, i = 3 and the first set of conditional statements is ignored but the PRINT switch is 
turned ON.  
 
do i = 1,3 
 if i == 2 { 
 enter(varying) temp_det 
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 # perm_det seasons{1 to 3} 
        } 
 if i == 3 ; com print = 1 
 
Next the VAR system is estimated. On the first loop, only the constant is included in the 
deterministic regressors. On the second loop, the list will include the seasonal dummy variables.  
 
 system 1 to 3 
 vars dlrgdp dlrm2 drs 
 lags 1 to 12 
 det temp_det 
 end(system) 
 estimate(print=print) 
 
After the system is estimated, the multivariate AIC is computed. The function 
%eqnsize(equation) returns the number of regressors in the specified equation. To obtain the 
number of coefficients estimated in the system, find the number of regressors in equation 1 (i.e., 
the first equation in the system) and multiply by 3. If the resulting value of the AIC is less than 
aic_min, the list of permanent regressors is equated to the current regressor list and aic_min is 
replaced by the current AIC. Otherwise these two instructions are skipped.  
 
 com aic = %nobs*%logdet + 2*(%eqnsize(1))*3; dis aic 
 if aic < aic_min { 
   enter(varying) perm_det 
   # temp_det 
   com aic_min = aic 
   } 
 
Next, the temporary list is replaced by the permanent list and the loop is completed.  
 
   enter(varying) temp_det 
   # perm_det 
end do 
 
If you run the program, you will find that the model without the seasonal dummy variables is 
selected. 
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3.2 Creating a Near-VAR Using ENTER 

  
Suppose that we want to forecast a series {yt} using lagged values of a number of 
macroeconomic variables. One way to determine which variables to include in the forecasting 
equation is to use Granger-causality tests. Suppose that we have determined that a four-lag 
model is most appropriate and that a tentative forecasting equation for yt is: 
 
 yt = α0 + a11yt-1 + a12yt-2 + a13yt-3 + a14yt-4 + a21xt-1 + a22xt-2 + a23xt-3 + a24xt-4 + … + εt 

 
where: {xt} is one of the series that we might want to include in our final forecasting equation.  
 
Since there is likely to be a fair amount of correlation among the regressors, it is standard to rely 
on F-tests to determine whether or not to include a series in the forecasting equation. It is said 
that {xt} Granger-causes {yt} if it is possible to reject the null hypothesis: 
 
 a21 = a22 = a23 = a24 = 0 
 
Hence, if we cannot reject this null hypothesis, we exclude all values of {xt} from the forecasting 
equation. Of course, we can also determine if {yt} Granger-causes itself by testing the null 
hypothesis a11 = a12 = a13 = a14 = 0. One way to proceed is to estimate a very general forecasting 
equation using all variables in the data set and then to eliminate variables based on Granger-
causality tests. The other way is to begin with only an intercept and sequentially add variables 
keeping only those that pass the causality test. The purpose of this section is to illustrate the use 
of the ENTER instruction, not to determine which of the two methods is best. As such, we will 
use the second method to obtain a forecasting equation for the logarithmic change in M3.  
 
As in the previous section, it is necessary to keep track of two regressor lists. The first—called 
reglist—holds only the variables that we want to keep for the final forecasting equation. These 
are the variables that have already passed the Granger-causality test. The second—called 
templist—holds the variables in reglist plus the variable that is currently under consideration for 
inclusion. Only if this variable passes the causality test will it be added to reglist.  
 
The final section of Program 5.2 creates the variables dlm3 and dlp and the two integer vectors 
templist and reglist.  
 
dec vector[integer] templist reglist 
compute templist=||constant|| 
compute reglist=||constant|| 
 
Next, the program loops over the series dlrgdp, dlm3, drs and dlp. The DOFOR instruction 
below uses the fact that RATS allows you to refer to a series by its name or by its number. The 
first time through the loop, templist and reglist contain only the constant term. The ENTER 
instruction creates templist as the constant (i.e., the contents of reglist) plus the first four lags of 
dlrgdp. Next, the LINREG instruction estimates a regression of dlm3t on the contents of templist.  
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dofor i = dlrgdp dlm3 drs dlp 
 enter(varying) templist 
 # reglist i{1 to 4} 
 lin(noprint) dlm3 
 # templist 
 
The EXCLUDE instruction is used to perform the F-test that the coefficients on the four lags of 
dlrgdpt are statistically significant from zero. If the null hypothesis that the coefficients are 
jointly equal to zero is significant at the 5% level, the bracketed instructions are executed. The 
bracketed ENTER instruction adds lags 1 to 4 of dlpgdpt to reglist. If the null hypothesis cannot 
be rejected, the bracketed ENTER instruction is skipped so that the lagged values of dlpgdpt are 
not added to reglist. 
         
 exclude(noprint) 
 # i{1 to 4} 
 if %signif < .05 { 
  enter(varying) reglist 
  # reglist i{1 to 4} 
 } 
 
Next, templist is updated such that the regressors in templist are identical to that in reglist. As it 
turns out, the null hypothesis cannot be rejected so that we conclude that the {dlrgdpt} sequence 
does not Granger-cause dlm3t. At the end of the DOFOR loop, reglist contains only the constant.  
 
 enter(varying) templist 
 # reglist 
end dofor i 
 
On completing the first pass through the DOFOR loop i = dlm3 [To be more precise, the entire 
process is repeated for i = the integer corresponding to series number of dlm3]. As such, four 
lags of dlm3t are added to templist and a regression of dlm3t on its own four lags and a constant 
is estimated. The entire process discussed above is repeated for dm3t and subsequently for drt 
and dlpt. It turns out that only the lags of dlm3t help to forecast the current value of dlm3t. On 
completing the four loops, the final two instructions below estimate a regression containing only 
those variables passing the Granger-causality test. 
 
lin dlm3 
# reglist 
 
If you execute the program, your output will be: 
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   Variable      Coeff       Std Error      T-Stat     Signif 
******************************************************************* 
1.  Constant   0.002906841  0.000993077      2.92711  0.00392329 
2.  DLM3{1}    0.824726885  0.080688781     10.22108  0.00000000 
3.  DLM3{2}    0.004028644  0.104551220      0.03853  0.96931127 
4.  DLM3{3}   -0.079967942  0.104224480     -0.76727  0.44406097 
5.  DLM3{4}    0.109141754  0.079475991      1.37327  0.17160277 

 

Jazzing Up the Program 
It is straightforward to modify the program to use each of the four variables as the dependent 
variable in the regression equation. Thus, the final output will be a four-variable near-VAR in the 
sense that only the variables that are “causal” remain in the system. Towards this end, we will let 
the index j loop over dlrgdp, dlm3, drs and dlp. Consider: 
 
dec vector[integer] templist reglist 
 
dofor j = dlrgdp, dlm3, drs and dlp 
compute templist=||constant|| 
compute reglist=||constant|| 
 
Now, each time through the DOFOR j loop, templist and reglist will be initialized to contain only 
a constant. There are only three other required modifications to the program. As indicated below, 
the two LINREG instructions are changed to indicate that the dependent variable in the 
regression is series j. The final line in the program closed the DOFOR j loop. 
 
dofor i = dlrgdp dlm3 drs dlp 
 enter(varying) templist 
 # reglist i{1 to 4} 
 lin(noprint) j  ;* NOTE the change in this line 
 # templist 
         
 exclude(noprint) 
 # i{1 to 4} 
 if %signif < .05 { 
 enter(varying) reglist 
 # reglist i{1 to 4} 
 } 
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enter(varying) templist 
 # reglist 
end dofor i 
lin j    ;* NOTE the change in this line 
# reglist 
end dofor j   ;* NOTE the addition of this line 
 
If you execute the program, you will obtain four regression equations. Instead of reproducing a 
rather large amount of output, simply note that: 
 
 Equation  Causal Variables 
 dlrgdp   dlrgdp, drs 
 dlm3   dlm3 
 drs    dlrgdp, drs, dlp 
 dlp    dlrgdp, dlm3, drs, dlp 
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4. Example: Moving Average Representations 

  
Suppose that we have an ARMA(p,q) model and want to calculate the coefficients of its infinite-
order moving average representation. Specifically, suppose that we are working with the model: 
 
 yt = α0 + α1yt-1 + α2yt-2 + … + αpyt-p + εt + β1εt-1 + … + βqεt-q 
 
As long as the equation is invertible, it is possible to express the {yt} sequence in terms of the 
{εt} sequence as: 
 

 yt = φ0 + ∑
∞

=
−

0i
itiεφ  

 
One way to obtain the values of the {φi} sequence is to use the Method of Undetermined 
Coefficients. It should be clear that φ0 = α0/(1 - α1 - α2 - … - αp) and that φ1 = 1. However, 
finding the remaining values of the {φi} sequence can be complicated. In particular, the formulas 
for the coefficients are given by: 
 
 φ0 = 1 
  
 φ1 = β1 + φ0α1 
  
 φ2 = β2 + φ1α1 + φ0α2 
 
 φ3 = β3 + φ2α1 + φ1α2 + φ0α3 
 
 … 
 
Thus, with knowledge of the {αi} and {βi} the values of the various {φi} can be found by 
iteration using the formula: 
 

 ∑
=

−+=
j

k
kjkjj

1

φαβφ  for j = 1, 2, 3, … , 24 

 
We want the program to contain the following steps: 
 
1.  Allow the user to enter any number of autoregressive coefficients and/or moving average 

coefficients.  
 
2.  Calculate the φj iteratively using the formula above. 
 
3.  Create a bar graph of the first 24 values of the {φi} sequence.  
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There are many ways to perform these three tasks; the program developed below is designed to 
illustrate matrix manipulations. Consider the first five lines of Program 5.3 on the file 
CHAPTER5.PRG: 
 
compute number = 24 
all number 
 
com alpha = ||1.1, -.4, .2  || 
com beta = ||-.7, .3|| 
 
The first two lines set the default length of any series to 24. You can change the value of 
“number” to obtain a smaller or larger number of impulse responses. 
 
The third and fourth lines create the vectors alpha and beta. The two vectors hold the 
coefficients of the ARMA model. Here you can enter as many or as few values for αi and βi as 
desired. In the example, α1 = 1.1, α2 = -0.4, α3 = 0.2, β1 = -.7 and β2 = 0.3. Hence, these first 
four lines have accomplished task 1. However, we did not DECLARE either alpha or beta to be 
vectors—refer to the individual elements of each as alpha(1,1), alpha(1,2), alpha(1,3), beta(1,1) 
and beta(1,2). 
 
Now we need to do some bookkeeping. Our first bookkeeping task is to compute values of p and 
q, i.e., the dimensions of the alpha and beta vectors. The function %cols(A) returns the number 
of columns in matrix A. Hence, we can obtain p and q using: 
 
compute p = %cols(alpha) 
compute q = %cols(beta) 
 
Unless otherwise specified, creation of a literal vector using COMPUTE causes RATS to create 
a row vector. Hence, alpha has 1 row and 3 columns while beta has 1 row and 2 columns.  
 
Next, we need to set up a vector—that we call phi—to hold the twenty-four values of the {φi}. 
However, there is a small problem in that a vector cannot have an element zero. Thus, we cannot 
use the notation φ0, φ1 … because we cannot have an element of a vector designated as phi(0). 
Instead, we need to store the first value of φ in phi(1), the second value in phi(2), … . Thus, 
phi(1) will equal 1, phi(2) will equal β1 + α1phi(1), … . In essence, we need to create the phi 
vector such that phi(1) = φ0, phi(2) = φ1, … Hence, we will replace the usual formula for 
calculating impulse responses with: 
 
 φ1 = 1 
 

 ∑
=

−++ +=
j

k
kjkjj

1
11 φαβφ  for j = 1, 2, 3, … , 23 

We can DECLARE the phi vector to contain 24 elements and initialize the first value phi(1) = 1 
using:  
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dec vect phi(number) 
com phi(1) = 1. 
 
We cannot directly use the formula above since αk is undefined for k > p and βj is undefined for j 
> q. The final bookkeeping task concerns treatment of these values. One straightforward method 
is to define two new vectors of dimension 24. We can let the first p elements of vector A hold the 
elements of alpha and set the remaining values to zero. Similarly, we can let the first q elements 
of vector B hold the elements of beta and set the remaining values to zero. 
 
dec vect a(number) b(number) 
com a = %const(0.) , b = %const(0.) 
ewise a(i) = %if(i<=p, alpha(1,i), 0.0) 
ewise b(i) = %if(i<=q ,beta(1,i), 0.0) 
 
Hence, the DECLARE instruction in the program segment above creates the vectors A and B and 
sets the dimension of each to 24. COMPUTE uses the %CONST(x) instruction to set all values 
of A and B to equal the constant zero.36 Next, looping over p, equates the first p values of A with 
the corresponding elements of alpha. Similarly, looping over q sets the first q elements of B 
equal to the corresponding elements of beta. Finally, we can write a routine that calculates the 
remaining values of phi. 
 
 
do j = 1,number-1 
 com phi(j+1) = b(j) 
 do k = 1,j  ; com phi(j+1) = phi(j+1) + phi(j+1-k)*a(k) ; end do k 
end do j 
 
The first loop initializes phi(j+1) equal to βj. Each time through the inner loop (i.e., for each 
value of k), αkφj+1-k is added to phi(j+1). Exiting this inner loop yields the desired sum: 
 

 ∑
=

−++ +=
j

k
kjkjj

1
11 φαβφ  

 
This process is repeated for each value of j up to and including j = 23.  
 
The last task is to create a bar graph of the phi sequence. Since phi is a vector, it cannot be 
graphed directly. However, we can convert phi into a series called response and graph response 
using: 
 
set response = phi(t) 
gra(style=bar,header='Impulse Responses') 1 ; # response 
 
If you run the program as shown, your output will be: 

                                                 
36 You cannot use com a = 0; this instruction would cause A to equal the number 0. 
%CONSTANT sets each element of A to zero.  
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Jazzing Up the Program 
It is likely that you might want to find the impulse responses to an ARMA(p, q) model that you 
estimated using the BOXJENK instruction. BOXJENK estimates a model and stores the 
resulting coefficients in a vector called %BETA. The first element of %BETA is always the 
constant (if any), then the AR(p) coefficients and finally the MA(q) coefficients. We need to 
make the following modifications to the program: 
 
1. Program 5.4 illustrates the process by estimating drs from the data set MONEY_DEM.XLS. 
Consider: 
 
cal 1959 1 4 
all 2001:1 
open data a:\money_dem.xls 
data(org=obs,format=xls)  
dif tb3mo / drs 
com number = 24 
 
The first five lines instruct RATS to read the data set and create the variable drs. The sixth line 
indicates that we want 24 impulse responses. If you use the Box-Jenkins methodology, you can 
convince yourself that a plausible model for the {drst} sequence is: 
 
 drst = α2drst-2 + α7drst-7 + εt + β1εt-1 + β3εt-3 
 
Nevertheless, in order to illustrate some vector manipulations, we will estimate this model 
including an intercept. We can estimate the model with: 
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com ar = ||2,7|| 
com ma = ||1,3|| 
box(constant,ar=ar,ma=ma) drs 

 
   Variable   Coeff        Std Error        T-Stat    Signif 
*************************************************************** 
1.  CONSTANT  0.012981373  0.053771900      0.24142  0.80955008 
2.  AR{2}    -0.268737166  0.076271837     -3.52341  0.00055917 
3.  AR{7}    -0.335461768  0.073223473     -4.58134  0.00000940 
4.  MA{1}     0.385063544  0.078041223      4.93410  0.00000205 
5.  MA{3}     0.183914603  0.074495456      2.46880  0.01463518 

 
Formulating the model in this form makes our programming problem a bit more complicated 
than estimating an ARMA(7,3) model. The first autoregressive coefficient estimated is α2 and the 
second is α7. Similarly, the first MA coefficient estimated in β1 and the second is β3.  In fact, the 
five estimated coefficients are contained in the vector %BETA. Note that %BETA has only 5 
elements: %BETA(1) = 0.012981373, %BETA(2) = -0.268737166,%BETA(3) = -

0.335461768, %BETA(4) = 0.385063544 and %BETA(5) = 0.183914603. We need to 
transfer these five values to the appropriate elements of the A and B matrices in the formula used 
to calculate phi.  
 
The next two instructions use the variable p to store the number of AR coefficients and q to store 
the number of MA coefficients. The third instruction sets up an indicator called flag equal to the 
number of coefficients estimated minus (p + q). Note that %BETA is a column vector so that 
%ROWS(%BETA) indicates the total number of coefficients estimated. Thus, flag equals 1 if 
there is an intercept (since the number of coefficients estimated will exceed p + q by 1) and is 
zero if no intercept is present. If this was the only time you were going to use the program, this 
step would be unnecessary. However, you might want to use the same routine for other 
estimations that might not include an intercept. As such, it becomes convenient to allow the 
program to determine whether of not an intercept was included in the estimation. 
 
compute p = %cols(ar)  
compute q = %cols(ma)  
com flag = %rows(%beta) - p -q  
 
As in the original program above, the next two instructions fill the vectors A and B with zeroes. 
 
dec vect a(number) b(number) 
com a = %const(0.) , b = %const(0.) 
 
Now we need to transfer the values of %BETA(2) to A(2), %BETA(3) to A(7), %BETA(4) to 
B(1) and %BETA(5) to B(3). One way to do this would be to use: 
 
com a(2) = %beta(2), a(7) = %beta(3), b(1) = %beta(4) and b(3) = %beta(5). 
 
However, a more general way to do this is to recall that the first element of AR is the integer 2, 
the second element of AR is the integer 7, the first element of MA is the integer 1 and the second 
element of MA is the integer 3. Hence, we can write: 
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do i = 1,p ; com a(ar(1,i)) = %beta(i+flag) ; end do i 
do i = 1,q ; com b(ma(1,i)) = %beta(i+p+flag) ; end do i 
 
Since flag = 1, the first loop equates A(2) with %BETA(2) and A(7) with %BETA(3) and the 
second loop equates B(1) with %BETA(4) and B(3) with %BETA(5). The key point to note is 
that this set of instructions will work for any pattern of ARMA coefficients. The next six lines of 
code are identical to that of the program above: 
 
dec vect phi(number) 
com phi(1) = 1. 
 
do j = 1,number-1 
 com phi(j+1) = b(j) 
 do k = 1,j  ; com phi(j+1) = phi(j+1) + phi(j+1-k)*a(k) ; end do k 
end do j 
 
The remainder of the program is unchanged: 
 
set response = phi(t) 
gra(nodates,style=bar,Header='Impulse Responses') 1 ; # response 
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4.1 Impulse Responses in a First-Order VAR 

 
Suppose you estimated a dlrgdpt, dlrm2t and drst as a first-order VAR using:37 
 
estimate(sigma,outsigma=v,residuals=resids,coeffs=ca)  
 
You could obtain the impulse responses using: 
 
errors(impulses,model=modelname) 3 24 v 
 
or 
 
impulse(model=modelname) 3 24 * V 
 
An alternative way to obtain the identical answers is to use RATS matrix instructions.  
The matrix ca contains the slope coefficients and the intercept terms. Since the impulse 
responses represent deviations from equilibrium, you will want to create a new matrix, called A, 
containing only the slope coefficients. Consider the next three instructions: 
 
dec rect a(3,3) 
ewise a(i,j) = ca(i,j) 
dis 'A = ' a 
 

The DECLARE instruction creates A as a 3 x 3 rectangular matrix. The EWISE instruction 
equates each element of A with the corresponding element of ca. The third instruction allows you 
to view the newly created matrix A. Next, create a matrix to contain the impulse responses. We 
will create an 8 x 3 matrix called imp to hold the eight impulse responses of a shock to the first 
variable on the time path of the three variables in the system: 
 
dec rect imp(8,3)  
 

Thus, imp(4,2) will contain the impulse response of a shock to dlrgdpt on the value of dlm2t+4. 
Next, we create the impulse responses themselves. Since we consider only a first-order VAR, 
after the first period, the system evolves as: 
 
 impt = impt-1 a 
 
where: the 1 x 3 vector impt are the impulse responses of  (dlrgdpt dlmt drt) to a real gdp shock 
and A is the coefficient matrix created above.  
 
 

                                                 
37 Although the 12-order VAR is more appropriate, the example here is intended to be 
illustrative. 
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ewise imp(i,j) = g(1,j) 
do i = 2,8 
   com c = tr(%xrow(imp,i-1))*a 
   do j = 1,3 ; com imp(i,j) = c(1,j) ; end do j 
end do i 
dis ##.########   ##.####### ##.######## imp 
 
 

The logic of the program is to initialize the impulses with a 1-unit shock to dlrgdp. Within the 
first loop, c is computed as the transposed value of the i-1 row of imp (i.e., the impulses for 
period i-1) multiplied by the coefficient matrix a. Then the current value of imp for real gdp, 
money and interest rates are computed as the associated value of the 1 x 3 vector c. Displaying 
imp yields identical answers to the ERRORS(impulses) instruction.  
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5. Creating Matrices from Your Data 

 
If you are going to use matrix manipulations on your data set, it is important to realize that 
RATS does not treat a series in the same way as a vector. For example, a vector is a one-
dimensional array such that the elements have subscripts that run from 1 to N. In order to 
manipulate the vector, each element needs to be defined. Unlike a vector, you can manipulate a 
series even if it has ranges that are undefined or NA. The key point is that RATS treats the two 
differently: to perform any matrix manipulations on your data set, you need to create vectors 
from your series. You can also create a RECTANGULAR matrix of series such that you can 
refer to each element by its row and column. In a RECTANGULAR matrix, columns represent 
variables and rows represent observations. Thus, element i,j is the element in the i-th row of the 
j-th column. Similarly, element i,j is the i-th observation of variable j.  
 
You can create matrices from series using the MAKE instruction. The syntax is: 
 
MAKE  array  start  end  numobs  numvars 
# list of variables 
 

numobs:   INTEGER used by RATS to return the number of observations (i.e., the 
number of rows) 

numvars:  INTEGER used by RATS to return the number of variables (i.e., the 
number of columns) 

 
Options: 

EQUATION= equation supplying variables  
LASTREG:     use regressors from last regression.  
   NOTE: Omit the supplementary card with either of the above. 
 
TRANS:  set up the transpose of the observation array 

Examples 
For all of the examples below, read in the data set MONEY_DEM.XLS and create dlrgdp using 
PROGRAM 5 of CHAPTER5.PRG. Next, estimate dlrdgp as an AR(2) process using: 
 
lin dlrgdp / resids 
# constant dlrgdp{1 to 2} 

   Variable        Coeff       Std Error     T-Stat     Signif 
**************************************************************** 
1.  Constant    0.0051566068 0.0010217954    5.04661  0.00000119 
2.  DLRGDP{1}   0.2508977521 0.0769801061    3.25925  0.00135976 
3.  DLRGDP{2}   0.1362250820 0.0762100846    1.78749  0.07571568 

 
Now we can perform the identical estimation using matrices. First, we can make the matrix x 
containing the regressors from the AR(2) using: 
make(lastreg) x 4 2001:1 
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Unlike a series, you can show the contents of a matrix using the DISPLAY instruction. If you 
DISPLAY x, you will see that the first 5 rows of matrix x are: 
 
dis x 

1.00000  -4.28835e-04   0.02580 
1.00000   0.00330      -4.28835e-04 
1.00000   0.02195       0.00330 
1.00000  -0.00495       0.02195 
1.00000   0.00185      -0.00495 

 
You can see that the first column consists of all 1’s, the second column contains dlrgdp{1} and 
the second column contains dlrgdp{2}. You can display any particular element of x by referring 
to its row and column. For example: 
 
dis x(2,3) 

-4.28835e-04 

 
Next, create the matrix y containing the dependent variable (i.e., the contemporaneous values of 
dlrgdp). Care needs to be taken about the conformability of the x and y matrices. It is necessary 
to begin with observation 4 since one usable observation is lost by using first differences and two 
more are lost as a result of estimating a model with two lags. Hence: 
 

make y 4 2001:1 
# dlrgdp 
 
If you enter DISPLAY y, you will see that the first five rows are: 
 
dis y 

   0.00330 
   0.02195 
  -0.00495 
   0.00185 
  -0.01296 

 
You can display the individual elements of y by referring to their row and column. For example: 
 
dis y(3,1) 

  -0.00495 
 

5.1 Estimating the Regression Coefficients 

 
We want to compute and display the matrix of coefficients as: (x'x)-1x'y. Consider the following 
program statements: 
 
com xx = tr(x)*x 
com xx_inv = inv(xx) 
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com xy = tr(x)*y 
com beta = xx_inv*xy 
dis beta 

0.00516 
0.25090 
0.13623 

 
We could have written all of the above in one step. However, it is instructive to consider each of 
the program statements. The first line creates xx as x'x. The second line takes the inverse (x'x)-1 
and the third creates x'y. The fourth line creates β as (x'x)-1x'y and the fifth displays β. Here is 
how you could have written all of the above in the single step:  
 
dis inv(tr(x)*x)*tr(x)*y 
 
Next, call tŷ  the predicted value of yt. The matrix x(x'x)-1x' is often called the projection matrix P 

since: 
  
 β̂ˆ tt Xy =   

 
and β̂ = (x'x)-1x'y 
 
Moreover, since the error term et = yt - tŷ , it follows that: 

 
 et = yt - tŷ = (I – P)yt = Myt. 

 
We can calculate the projection matrix P as: 
 
com p = x*xx_inv*tr(x) 
 
Students of econometrics will recall that P is idempotent (By definition, the square matrix A is 
idempotent if A*A = A). You can verify that P is idempotent using: 
 
com test = p*p - p ; dis test  
 
Since P has the dimensions 166 x 166, you will see a tremendous amount of output displayed to 
the screen. Nevertheless, all of the values of test are approximately equal to zero. Although, each 
value should be exactly equal to zero, rounding errors are present. As another exercise, you 
might recall that the rank of an idempotent matrix equals the trace of the matrix. You can display 
the trace of P using: 
 
dis %trace(p) 

3.00000 

 
You can use the projection matrix to obtain the predicted values of yt and the error terms using: 
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com y_hat = p*y  ; dis y_hat 
com e = y - y_hat ; dis e 
 
If you display e and print resids, you should obtain exactly the same results. Additionally, you 
can obtain the orthogonal complement (M) of P by forming: 
 
 M = I – P. 
 
Notice that M is another useful way to calculate the residuals. Since: 
 
 et = yt - tŷ   

 
it follows that: 
 
  et = yt – Pyt = (I – P)yt = Myt 
 
We can calculate M using: 
 
com m = %identity(166) – P 
 

Exercises: 
1.  Verify that %identity(166) is an identity matrix with 166 rows and columns. 
 
 dis %identity(166) 
 
2.  Verify that M and P are orthogonal by entering: 
 
 dis m*p 
 
3.  Verify that M is idempotent by entering: 
 
 com test = m*m - m ; dis test 
 

5.2 Hypothesis Testing in the Regression Model 

 
We can calculate the variance of the residuals (i.e., the squared standard error of the estimate) as: 
 
 )3/('ˆ 2 −= Teeσ  
 
com v = %scalar(tr(e)*e)/163 ; dis v 
* An alternative is to use com v = %dot(e, e)/163  
dis %sqrt(v)   
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Note that we need to covert the 1 x 1 matrix tr(e)*e into a scalar before dividing by the scalar 
value 163. Alternatively, we could use %dot(e, e) to produce the inner product. If you compare 
the answer to that from the regression model, you should find the same answer. Next, we can 
find the standard errors of the coefficients using that fact that: 
 

 var( β̂ ) = var(e)* (X'X)-1 
 
com v_beta = %scalar(v)*xx_inv 
dis v_beta 
dis %sqrt(v_beta(1,1)) %sqrt(v_beta(2,2)) %sqrt(v_beta(3,3)) 

0.00102 
0.07698 
0.07621 

 
Notice that these are the same as the standard errors of the coefficients that we obtained using the 
LINREG instruction. Typically, we estimate regressions in order to perform a Wald test on the 
regression coefficients. The simplest way to perform such a test is to use an EXCLUDE or 
RESTRICT instruction. However, to further illustrate matrix manipulations, consider a set of 
linear restrictions of the form: 
 

 R β̂  = c 
 
where:  R = q x k 

β̂  = estimated coefficients 
  c = constants 
 
and q = number of restrictions, and k = number of estimated parameters. The F-statistic is: 
 

 F(q,T-k) = (c - R β̂ )'[ R(X'X)-1R' ] –1 (c - R β̂ )/(q 2σ̂ ) 
 
Now consider the null hypothesis that the intercept term is zero. We can write this restriction as: 
 

 ( ) 0001

2

1

0

=
















β
β
β

  

 
com q = 1 
com R = || 1. , 0. , 0. || 
com c = || 0.|| 
com f =  tr(c - R*beta)*inv( r*xx_inv*tr(r) )*(c - r*beta) 
com f1 = %scalar(f)/(q*v) ; dis f1 
 
We can obtain the t-statistic for the null hypothesis using:  
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dis %sqrt(f1) 
 5.04661 
 

You can easily verify this value as the same as that obtained using the LINREG instruction. We 
can test the more complicated hypothesis: β1 = β2 = 0 using:  
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com n = 2 
com R = || 0. , 1. , 0. | 0., 0., 1. || 
com c = || 0. | 0.|| 
com f =  tr(c - R*beta)*inv( r*xx_inv*tr(r) )*(c - r*beta) 
com f1 = %scalar(f)/(2*v) ; dis f1 
 9.17622  
 
We obtain precisely the same value using LINREG ad EXCLUDE. Consider: 
 
exclude 
 # dlrgdp{1 2} 

 
 Null Hypothesis : The Following Coefficients Are Zero 
 DLRGDP           Lag(s) 1 to 2 
 F(2,163)=      9.17622 with Significance Level 0.00016735 
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5.3 Creating Series from a Matrix 

 
There are some instructions that operate only on series. As such, you may want to create a series 
from a vector or several series from matrix. For example, suppose that you want to crate a graph 
of the regression residuals contained in the 166 x 1 vector e. Since GRAPH requires a series, we 
need to DECLARE a series that can be used to hold the residuals. The first instruction creates the 
vector errors containing a single series. The second instruction sets each element of errors(1) 
equal to the corresponding element of e. The PRINT instruction allows you to compare the 
difference between the errors(1) and the resids series: 
 
dec vector[series] errors(1) 
set errors(1) = e(t,1) 
pri 1 5 errors(1) resids 

ENTRY       ERRORS(1)        RESIDS 
1959:01  -0.005265949134       NA 
1959:02   0.016019975946       NA 
1959:03  -0.016059236473       NA 
1959:04  -0.005057184696 -0.005265949134 
1960:01  -0.017909559980  0.016019975946 

 
Notice that the first three entries of resids are NA; one observation was lost because we used the 
first difference of dlrgdp and two more were lost because we used two AR coefficients in the 
LINREG instruction. Notice that the first entry of errors(1) corresponds to fourth entry of resids. 
To explain, note that x was constructed with no missing observations. Hence, first element of e 
[i.e., e(1,1) ] contains the difference between y3 and 3ŷ . Except for the two-period shift, the 

resids and errors(1) series are identical.  



 

 

Chapter 6:  
Writing Your Own Procedures  
 
In RATS, a procedure is a set of instructions that resides ‘outside’ of the program itself. In 
writing a procedure, you are effectively writing your own RATS instruction along with options, 
supplementary cards and choices concerning the series and variables to use. It is clear why you 
might want to write a procedure. Suppose that there is a particular task involving a set of 
instructions that you frequently invoke. It would be desirable if you could simply type a few 
keystrokes that instructed RATS to perform this more complicated set of instructions. In this 
way you could automate your task within any particular program. More importantly, by writing a 
procedure you can ‘call up’ this set of instructions in a number of programs. Since the procedure 
resides in a file, you can send the file to your co-author, students or post it on your website. You 
might think of a procedure as a ‘macro’ in WORD. Older programmers, like myself, might want 
to think of a procedure as an external function in FORTRAN. Now, the advantage is that you can 
customize RATS by writing (or downloading) a procedure.  
 
RATS comes with a number of useful procedures and you can download many more from the 
Estima website (www.estima.com). Even if you do not want to write your own procedures from 
scratch, the material in this chapter should be useful to the advanced RATS user. It is often quite 
simple to edit existing procedures to tailor them to your needs. In order to use a procedure, it 
must be complied. The syntax for compiling a procedure stored on an external file is: 
 
source name  (The sole option is noecho.) 
 
If you use the noecho option, you will not see anything displayed on the screen after compiling 
the procedure. If you omit noecho, you will see each line of the ‘source code’ preceded by the 
location in memory where the beginning of the code resides. This is useful for two reasons. If 
you need to debug a procedure, knowing the location in computer memory can be useful. Also, 
the fact that you get to see each line of the procedure allows you to see the instructions and 
comments contained in the procedure.  Good programmers will include a set of comments in the 
procedure (usually at the beginning) that describe the proper use of the procedure.  
 
If you are an experienced RATS user, you certainly have used procedures many times. You 
know that a procedure needs to be compiled only once within any program. Once it has been 
compiled, the procedure can be used any number of times. In Chapter 2, we discussed the 
procedure BJIDENT.SRC. Recall that you can use the procedure to construct the 
autocorrelations and partial autocorrelations of a series using:  
 



Writing Your Own Procedures 205 
 
 

 

@bjident(options)  series  start  end 
 

where:  
start  end  The range of the series to use for constructing the autocorrelations and 

partial autocorrelations   
 

Some of the options for the procedure are: 
 
DIFF =   Maximum regular differencings [0]. 
TRANS = [NONE]/LOG/ROOT   Transformation to apply to data 
[GRAPH]/NOGRAPH              Do High-resolution graphs? 
 

The key point to note is that the procedure allows you to make a number of important choices. 
You choose the series to use along with the start and end dates. Moreover, the procedure 
contains three different types of options. The DIFF = option uses an integer value, the TRANS = 
option is an OPTION CHOICE allowing you to select a particular type of data transformation 
and GRAPH/NOGRAPH is a SWITCH option. A good portion of this chapter will develop the 
syntax allowing you to pass information concerning series names, entries and options to a 
procedure. All of the procedures developed here are available on the file labeled 
CHAPTER6.PRG 
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1. A Procedure to Display the AIC and SBC 

 
It is likely that your RATS sessions require you to calculate and display the aic and sbc a number 
of times. After estimating a regression equation, you need to enter the following three lines: 
 
compute aic = %nobs*log(%rss) + 2*(%nreg) 
compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
display  'aic = ' aic ' bic = ' sbc 
 
Once you have typed the three lines, you never need to type them again. Instead of retyping, you 
probably scroll upward in your program and re-execute the three lines. However, this can be a bit 
of a hassle, and, if you are like me, you might even lose your place in a complicated program. A 
simple way to avoid this is to write a procedure containing the lines that you want to execute.  
 
Every procedure should begin and end with its own name. For example, you can write a 
procedure called BIC as the following five lines: 
 
procedure bic 
  compute aic = %nobs*log(%rss) + 2*(%nreg) 
  compute bic = %nobs*log(%rss) + (%nreg)*log(%nobs) 
  display  'aic = ' aic 'bic = ' sbc 
end bic 
 
If you write the procedure in RATS, you can just save the procedure in a separate file 
somewhere on your hard drive. I save all of my procedures in the same directory containing 
RATS32S.EXE. If you write the procedure using WORD or some other word processing 
program, be sure to save the program in ASCII (i.e., *.txt) format). Good programming style 
dictates that similar files all have the same extension. As such, most RATS programmers use the 
extension *.SRC to indicate a file containing source code. Say that the five lines are saved as 
c:\winrats\bic.src.  
 
To compile the procedure use:  
 
source c:\winrats\bic.src 
 
or, if you do not want the source code and location numbers displayed to the screen, use  
 
source(noecho) c:\winrats\bic.src 
 
Once you have estimated a regression, you can obtain the aic and sbc by simply typing: 
 
@bic 
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2. Using SWITCH Options 

 
The procedure BIC.SRC is quite simple since we did not need to pass any information to the 
procedure. Unlike BJIDENT.SRC, the procedure BIC.SRC contains all of the necessary 
information to compute the aic and the sbc. The RATS instruction LINREG (or BOXJENK) 
creates the regression variables %nobs, %rss and %nreg. These are the only three pieces of 
information needed to create the aic and sbc. Since all are stored internally in RATS, we do not 
need to ‘send’ or pass them to the procedure. However, the most useful procedures perform far 
more complicated tasks on variables, matrices, and/or entire series (or set of series). Since a 
procedure is external to RATS, we need a mechanism to pass information from RATS to the 
procedure itself.  
 
As discussed in Chapter 1, a number of RATS instructions, such as LINREG, have SWITCH and 
CHOICE options. It is straightforward to include such options within your own procedure. 
Recall that a SWITCH option allows only two choices: ON or OFF.  For all RATS switching 
options, you can turn on the switch by equating its value to 1 and turn off the switch by 
equating its value to 0. The appropriate syntax to include a SWITCH option in a procedure is:  
 
OPTION  SWITCH  option name  default value  (Note: The default value must be 0 or 1) 
 
If you turn back to Section 3.1 of Chapter 1, you will see that LINREG has a SWITCH option 
named PRINT. Since PRINT = 1 is the default, all of the following will cause the regression 
output to be displayed: 
 
 lin drs ; # constant drs{1 to 7}  
 
 lin(print) drs; # constant drs{1 to 7}  
 
 lin(print=1) drs; # constant drs{1 to 7}  
 
 com ii = 1 
 lin(print=ii) drs; # constant drs{1 to 7}  
 
Similarly, all of the following will suppress printing the regression output: 
 
 lin(noprint) drs; # constant drs{1 to 7}  
 
 lin(print=0) drs; # constant drs{1 to 7}  
 
 com ii = 0 
 lin(print=ii) drs; # constant drs{1 to 7}  
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We can illustrate the use of a SWITCH option in a procedure by returning to BIC.SRC. Note that 
a number of authors calculate the values of the aic and the sbc using the following two 
formulas:38  
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It is simple to modify BIC.SRC to allow us to select the desired form. The modified procedure 
shown below uses OPTION SWITCH with the name altform; notice that the default value of 
altform is 0. The IF-ELSE block uses altform to determine which form to calculate and display. 
If altform = 0, the procedure will calculate and display the aic and the sbc as in our original 
procedure. Otherwise, the procedure will calculate and display aic’ and sbc’. 
  
procedure bic 
option switch altform 0 
 if altform = = 0 { 
 compute aic = %nobs*log(%rss) + 2*(%nreg) 
 compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 display  ‘ aic = ' aic ' bic = ' sbc 
 } 
else { 
 com aic = %nobs*log(%rss)  + 2*(%nreg) - %nobs*log(%nobs) 
 com sbc =  %nobs*log(%rss) + (%nreg)*log(%nobs) - %nobs*log(%nobs) 
 display “aic’ = ”  aic “bic’  = ”  sbc 
 } 
end bic 
 
Suppose you have just estimated drs using: LIN drs ; # constant drs{1 to 7}. Since the default 
value of altform is 0, all of the following will cause the procedure to display the aic and sbc in 
logarithmic form: 
 
 @bic 
 @bic(noaltform) 
 @bic(altform=0) 
 com ii = 0; @bic(altform=ii) 
 
Similarly, all of the following will display the alternate form of the aic and sbc: 
  
 @bic(altform=1)  [Since altform =1, the ELSE Block is executed]  
 @bic(altform)  [Turns ON the altform OPTION]  
 @bic(altform=2)   [Since altform ≠ 0, the ELSE portion of the procedure is executed]. 
 
 

                                                 
38 Note that aic and aic’ will necessarily select the same model since aic is a monotonic 
transformation of aic’. Similarly sbc and sbc’ will select the same model.  
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2.1 Integer and Choice Options 

 
Oftentimes you will want something more complicated than an ON/OFF switch. At times, it will 
be convenient to pass a particular number to the procedure. For example, BJIDENT.SRC allows 
you to obtain the ACF and the PACF using first-differences of the data using DIFF = 1. 
Similarly, BJIDENT.SRC allows you to select a logarithmic transformation of the data 
transformation using TRANS=log.  

 
The syntax for an integer choice (such as the number of lags to use in the ACF and PACF) is: 

  
OPTION INTEGER option name  default value 
 
To allow for a non-numerical set of choices (such as TRANS = log) use: 
 
OPTION CHOICE option name  default number  list of choices  
 
Examples 
1.  Suppose you want your procedure to estimate the series y as an AR(p) model where p is 

selected by the user. Since the number of lags is an integer, use the INTEGER option. To set 
the default number of lags equal to 1 use: 

 
OPTION INTEGER lags 1 
 
You should protect the user from inadvertently entering lags=0. Somewhere in your 
procedure, you could use the following set of instructions: 
 
if lags.ge.0 { 
lin y ; # constant y{1 to lags} 
} 

 
2.  Suppose you want the user to determine whether to graph series y in levels, first differences, 

or in logarithmic first differences. If you want the default to be such that the series is 
displayed in levels, you can use: 

 
OPTION CHOICE trans 1 levels diff growth 
 

Your procedure should contain instructions that are similar to: 
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if trans.eq.1 { 
  gra 1 ; y 
} 
if trans.eq.2 { 
  dif y / dy ; gra 1 ; # dy 
} 
if trans.eq.3 { 
  log y / ly ; dif ly / dly 
  gra 1 ; dly 
} 
 
If the option trans is left unspecified or set equal to 1, the routine will produce a graph of y. If 
the user sets trans=2, the time path of the first difference of y will be shown and if the user 
sets trans=3, the time path of the growth rate of y will be shown. 
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3. Passing Series to a Procedure 

 
Usually you will want a procedure to perform one or more operations on a series. As an 
experienced RATS user, you will have passed a series along with its start and end dates to a 
procedure. For example, we can use BJIDENT.SRC to construct the ACF and the PACF for the 
series dlgdp over the sample period 1959:1 through 1985:4 using: 
 
@bjident dlrgdp * 1985:4 
 
In essence, you are passing the sample values of the series lgdp along with the integer values of 
the start and end dates to the procedure. There must be a way for the procedure to ‘recognize’ 
the type of information it is being sent. This is done by listing all of the parameters (series, 
integer values and matrices) that can be passed on the first line of the procedure. If you actually 
open BJIDENT.SRC, you will see that the first thirteen lines are: 
 
proc bjident series start end 
type series series 
type integer start end 
 
option integer diff   0 
option integer sdiff  0 
option choice  trans  1  none  log  root 
option switch  graph  1 
option integer span 
 
local integer nbeg nend spanl i j 
local series  corrs partials 
local series  transfrm  diffed     upper lower 
local integer number 
 
inquire(series=series) nbeg>>start nend>>end 
 
 

As in BIC.SRC, the first line names the procedure. However, the first line also contains the three 
parameters SERIES, START and END. The second line declares that SERIES is a series. The 
third line declares START and END to be integers. This illustrates the general organization of a 
procedure. The first set of instructions classifies the parameters being passed by the procedure. 
Next, the various options used in the procedure are enumerated. Note that the number of 
differences (DIFF= ), seasonal differences (SDIFF= ), and the seasonal span (SPAN=) are all 
INTEGER OPTIONS. The form of the data transformations (TRANS= ) is a CHOICE OPTION 
and whether or not to display a graph is a SWITCH OPTION. The third set of instructions 
indicates whether or not the variables will be local (defined only within the procedure) or global 
(accessible throughout the main program and procedures). Fourth, you might want to inquire 
about the nature of the series being passed to the procedure—it is especially useful to obtain the 
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starting and ending entries. Finally come the set of instructions you want the procedure to 
perform. The general structure of any procedure is: 
 
PROCEDURE procedure name list of parameters 
TYPE instructions 
OPTION instructions  
LOCAL instructions 
INQUIRE instructions 
  set of instructions to be performed 
END procedure name 
 
The procedure is executed by @procedure name list of parameters. Note that the order of the 
parameter list must match that used within the procedure.  
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4. Writing a Procedure to Test for Unit Roots 

  
We will illustrate the process by writing a procedure called UNIT.SRC that will perform an 
augmented Dickey-Fuller test. The final procedure will be similar to that in DFUNIT.SRC that 
comes with RATS. However, by writing such a procedure from scratch, it will be possible to 
illustrate the structure and key instructions of any procedure. We begin simply. At first, the 
procedure will only estimate a model of the form:  
 
 ∆yt = β0 + ρyt-1 + β1∆yt-1 + εt  
 
The entire regression output will not be displayed. Instead, the procedure will only display the 
estimate of ρ and the t-statistic for the null hypothesis ρ = 0.  
 
After compiling, the procedure can be invoked using @unit series. For example, you can use to 
procedure to test for a unit root in the variable lrgdp using:  
 
@unit lrgdp 
 
We begin by writing UNIT.SRC as:  
 
procedure unit y 
type series y 
set dy = y - y{1} 
lin(noprint) dy  
# y{1} dy{1} constant 
dis 'The estimate of rho = ' %beta(1)  
dis 'the t-statistic for the null hypothesis rho = 0 is ' %tstats(1) 
end unit 
 
The interpretation of lines 1 and 8 is straightforward; these are simply the starting and ending 
lines of the procedure. In line 1, we inform RATS that we will pass a parameter to UNIT.SRC.  
 
Line 2 needs a bit of explanation. In general, you will want to pass series, integers, real variables, 
matrices, etc., to the procedure. RATS needs a mechanism by which to determine the type of 
parameter that is being passed. Line 2 indicates that the parameter we pass (i.e., y) is a series. 
This is done using the TYPE instruction. The syntax is: 
 
 TYPE   data type   parameter list 
 

where:  
data type  can be any RATS date type such as SERIES, INTEGER, REAL, 

SYMMETRIC, …  
parameter list  is the list of parameters you which to declare as this particular date type.  
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Notes:  
1.  Use one TYPE instruction for each data type. 
 
2.  The TYPE instructions should begin in line 2 of a procedure (i.e., immediately after the 

PROC  name  parameter list instruction). 
 
3.  We cannot include dy on a TYPE instruction since we do not pass this series to the procedure. 

Instead, dy is created within the procedure.  
 

If you are not familiar with programming, it might seem troublesome that we want to pass lgdp 
to the procedure, but the procedure seems to use only the series denoted by y. Actually, y is only 
a placeholder—it will accept any series that is passed to it.  

 
Line 3 creates the first-difference of y and the regression is estimated in lines 4 and 5. Line 7 
displays the point estimate of ρ and line 8 displays the t-statistic for the null hypothesis ρ = 0. 
Thus, if we use @unit lrgdp, we will obtain the estimate of ρ, the t-statistic for the null ρ = 0 for 
the equation: 
 
 ∆lrgdpt = β0 + ρlrgdpt-1 + β1∆lrgdpt-1 + εt 
 
The procedure seems to work as intended. However, there is a potential problem that needs to be 
addressed. Just because a procedure works within your particular program does not mean it will 
work in all possible programs. Suppose that you posted a copy of UNIT.SRC on your class 
webpage and one of your students had a data set that included a variable called dy. Every time 
she invoked UNIT.SRC, the procedure would write over her variable. In order to separate 
variables used in the main body of a program from those used in a procedure, RATS allows you 
to designate variables used in a procedure as local variables. 
 

4.1 Creating Local Variables 

 
Unless otherwise stated, all variables in RATS can be used in the main program or in a 
procedure. Thus, by default, all variables are global. If you modify a variable within a procedure, 
it will be modified when control returns to the main body of the program. In many 
circumstances, this can be desirable. In fact, you might want a procedure to perform a particular 
transformation on a variable and then return control to the main program. Other times, you might 
create a variable within a procedure that is already named within the main body of the program. 
Thus, the procedure would overwrite the values of the variable. A local variable is one that is 
used only in the procedure that defines it. Thus, changing the value of a local variable changes 
its value only within the procedure.  
 
There is another reason to use local variables. Suppose a procedure includes a series that is not 
defined as a local series. If you attempt to compile the procedure prior to the ALLOCATE 
instruction, RATS will display the error message: 
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## SR1. ALLOCATE Instruction Needed Before Series or Equations Can Be Used 

 
The point is that RATS will have no way of knowing the length of the series appearing in the 
procedure. By declaring the variable as a local variable, the procedure can be compiled before 
the ALLOCATE instruction is encountered.  
 
To define a variable as local, use: 
 
LOCAL SERIES series name 
 
or  
 
LOCAL INTEGER name 
 
Thus, we want to include the following line in UNIT.SRC 
 
LOCAL SERIES dy 
 
The precedence of statements is that DECLARE instructions should precede TYPE, LOCAL and 
OPTION instructions. All of these must precede the executable instructions.  Hence, we want the 
first three lines of UNIT.SRC to be: 
 
procedure unit y 
type series y 
local series dy 
 
Notice that we do not need to define y as a local variable since y is a parameter (i.e., the symbol y 
acts only as a placeholder).  
 

4.2 Adding Options 

 
To turn UNIT.SRC into a procedure that you might want to use in your own research, we need to 
make three changes to the basic program. The user should be able to select the deterministic 
regressors to include in the model, select the lag length to use in the augmented form of the 
Dickey-Fuller test, and to choose whether to display a graph of the residuals. 
 
The Choice of Lag Length 
Since the number of lags is an integer, we need to make only two modifications to the procedure: 
 
1.  Include the instruction: OPTION INTEGER LAGS 1.  
2.  Replace the supplementary card in the LINREG instructions with: 

 
  #  y{1} dy{1 to lags} constant 
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Since the default value of LAGS is 1, if you use @unit lrgdp or @unit(lags=1) lrgdp, you 
estimate a regression only one lag of ∆lrgdp. If you invoke the procedure using @unit(lags=4) 
lrgdp, you estimate a regression with four lags of ∆lrgdp. 
 
The Choice of Deterministic Regressors 
The selection of the deterministic regressors is a clearly a CHOICE option; the deterministic 
regressors can be NONE, CONSTANT or TREND (i.e., constant plus trend). As such, we need 
to make four modifications to the program:  
 
1.  Include the instruction: OPTION CHOICE DET 2 NONE INTERCEPT TREND  

 
 Notice that default value of DET is 2. If you use @unit(det=none) lrgdp, the value of 
DET will be 1, @unit lrgdp or @unit(det=intercept) lrgdp the value of DET will be 2, and 
@unit(det=trend) lrgdp the value of DET will equal 3.  
 

2.  In order to create the time trend, we need to include the instruction: 
 
 set time = t  
 

3.  Since the procedure creates the series time, we should include this in the list of local series 
using: LOCAL SERIES dy time.  
 

4.  We need to include a set of IF statements to select the regressors: 
 
 If det.eq.1 ; lin(noprint) dy ; # y{1} dy{1 to lags} 
 If det.eq.2 ; lin(noprint) dy ; # y{1} dy{1 to lags} constant 
 If det.eq.3 ;  lin(noprint) dy ; # y{1} dy{1 to lags} constant time 

 
The Choice to Display a Graph of the Residuals 
We can use a SWITCH OPTION to allow the user to turn ON or OFF a display of the graph.  
We need to make the following modifications to the procedure: 
 
1. Include the instruction OPTION SWITCH graph 0 
 

As formulated, the default the value of GRAPH is zero. In order to turn the option on (i.e., in 
order to set GRAPH = 1), we can use: 
@unit(graph) lrgdp 
@unit(graph=1) lrgdp 
 

2.  We need to save the residuals from the selected regression equation. Hence, we modify our IF 
instructions such that the residuals are saved in the series called resids: 
 
If det.eq.1; lin(noprint) dy / resids ; # y{1} dy{1 to lags} 
If det.eq.2 ; lin(noprint) dy / resids ; # y{1} dy{1 to lags} constant 
If det.eq.3;  lin(noprint) dy / resids ; # y{1} dy{1 to lags} constant time 
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3.  We obtain the ACF of resids using: 
  
cor(noprint,number=24) resids / corrs 
  

4.  If GRAPH = 1, we create a time series plot of the residuals and the ACF of the residuals 
using:39  
  
cor(noprint,number=24) resids / corrs 
if graph==1 { 
  spgraph(hfields=1,vfields=2,header='RESIDUAL ANALYSIS') 
  gra(header='Time Path of the Residuals') 1 ; # resids 
  gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header='Residual ACF') 1 
 # corrs 
 spgraph(done) 
 } 
 

5.  Notice that the procedure creates the series corrs and resids. We want to include these newly 
created series on the list of local series using: 
 
local  series  dy resids corrs time 
 

The complete procedure is listed below: 
 
procedure unit y 
type series y 
 
option switch graph 0 
option integer lags 1 
option choice det 2 none intercept trend 
local series dy resids corrs time 
set dy = y - y{1} 
set time = t  
if det.eq.1; lin(noprint) dy / resids ; # y{1} dy{1 to lags} 
if det.eq.2 ; lin(noprint) dy / resids ; # y{1} dy{1 to lags} constant 
if det.eq.3; lin(noprint) dy / resids ; # y{1} dy{1 to lags} constant time 
 
dis 'The estimate of Rho = ' %beta(1) 
dis 'The t-statistic for the null hypothesis Rho = 0 is ' %tstats(1) 
cor(noprint,number=24) resids / corrs 
if graph==1 { 
spgraph(hfields=1,vfields=2,header='Residual Analysis') 

                                                 
39 At this point in the construction of the procedure, you might want to place the COR instruction 
inside of the IF block. As such, the correlations would be computed only if the GRAPH option is 
selected. However, when we extend the program in later sections we will want to place COR 
outside of the IF block.  
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gra(header='Time Path') 1 ; # resids 
gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header='Residual ACF') 1 ; # corrs 
spgraph(done) 
} 
end unit 
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5. Retrieving START and END entry values 

  
If you pass a series to a procedure, you might not want the procedure to operate on the entire 
range of entries. The INQUIRE instruction is specifically designed to allow the user to select the 
starting and ending values of any series passed to a procedure. It is important to note that 
procedures are often designed to work with a variety of data sets. As such, it is most useful to 
write procedures that use integers, as opposed to dates, to represent the entries of a series. You 
can use the INQUIRE instruction to obtain the defined range of a series as follows: 
  
INQUIRE (SERIES = series name ) value1 value2 
 
After execution, value1 will contain the starting entry value of series name and value2 will 
contain the ending entry value. To illustrate, suppose you read in the data set 
MONEY_DEM.XLS and enter the following TABLE instruction: 
 
table / rgdp tb1yr 

Series  Obs       Mean       Std Error      Minimum       Maximum 
RGDP    169   5142.36449704 1950.84049366 2273.00000000 9439.90000000 
TB1YR   167      6.15387226    2.39362220    2.71333333   14.38000000 

 
Both series are quarterly running from 1959:1 to 2001:1; as such, 1959:1 is entry 1 and 2001:1 is 
entry 169. Recall that the first two values of tb1yr are NA. Next, enter: 
 
inquire(series=rgdp) v1 v2 
inq(series=tb1yr) v3 v4 
dis v1 v2 v3 v4 

 
1 169 3 169 

 
Hence, v1 and v2 contain the first and last entries of rgdp, respectively. However, tb1yr(1) and 
tb1yr(2) are NA; as such, v3 = 3 and v4 = 169.  
 
You can also use INQUIRE with the SEASONAL option to obtain the seasonal frequency of the 
data. The following instruction returns the seasonal frequency in the variable value: 
 
INQUIRE(SEASONAL) value 
 
Since we used CALENDAR to instruct RATS that MONEY_DEM.XLS contains quarterly data, 
we can store the seasonal frequency in the variable v using: 
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inq(seasonal) v; dis v 
 
 4 

 
It is unlikely that you will ever need to use INQUIRE outside of a procedure. In fact, the more 
useful form of INQUIRE is: 
 
INQUIRE(SERIES = series name)   v1 >>start  v2 >>end 

 
where: start and end are the start and end integer values supplied by the user when the procedure 
is executed. The expressions >>start and >>end instruct RATS to equate v1 with start and to 
equate v2 with end if explicit values are given by the user.  

 

Examples: 
BJIDENT.SRC contains the instruction:  
 
inquire(series=series) nbeg>>start nend>>end 
 
1. @bjident rgdp 1959:1 2001:1 

 
Here start = 1 and end = 2001:1. Similarly, nbeg = 1 and nend = 161. If the user does not 
provide the values start and end, nbeg and nend will automatically default to the first and last 
dates for which the series is defined.  

 
2. @bjident rgdp * 2001:1 
 

Here start is ‘undefined’ so nbeg becomes the first defined value and nend is 169. Since, the 
first entry for rgdp is 1, nbeg = 1.  

 
3. @bjident tb1yr 1959:1 1999:1 
 

Now start = 1 and end = 161 so that nbeg = 1 and nend = 161. Since the first entry of tb1yr is 
3, RATS uses entries 3 through 161 to form the autocorrelations.  

 
Suppose you want the user of your procedure to supply a series along with the start and end 
dates. The typical format will be: 
  
@procname series start end 
 
Your procedure should have the following structure: 
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procedure procname seriesname start end 
type series seriesname 
type integer start end 
option instructions 
local instructions 
inquire (series = series) v1>>start v2>>end 
 
As in the previous examples, the PROCEDURE instruction contains the name of the procedure 
(procname) along with a list of all of the parameters what will be passed to the procedure. Here, 
we pass a series (seriesname) and the start and end entries. The second instruction declares 
seriesname to be a SERIES and the third declares start and end to be integers. The fourth 
instruction equates v1 and v2 with the start and end values selected by the user. If the user does 
not provide the values start and end, v1 and v2 will automatically default to the first and last 
dates for which the series is defined.  
 
To alter UNIT.SRC such that we can pass starting and ending dates, we need to make the 
following five modifications to the procedure: 
  
1.  We need to list all parameters passed to the procedure. Since we pass start and end values, the 

first line of the UNIT.SRC should be: 
 
 procedure unit y start end 
  
2.  We need to instruct RATS that start and end are integers. This is done using: 
 
 type integer start end 
 
3.  We need to use the INQUIRE instruction to store the start and end values in the variables v1 

and v2. Note that INQUIRE is an executable instruction; it should be placed after all TYPE, 
OPTION, and LOCAL instructions.  

 
  inquire(series=y) v1>>start v2>>end 
 
4.  UNIT.SRC creates the two integer variables v1 and v2. We can declare then as  LOCAL 

variables using: 
 
 local integer v1 v2 
 
5.  Modify the LINREG, GRAPH and CORRS instructions such that v1 and v2 are used as the 

starting and ending entries: 
 
 if det.eq.1; lin(noprint) dy v1 v2 resids ; # y{1} dy{1 to lags} 
 if det.eq.2 ; lin(noprint) dy v1 v2  resids ; # y{1} dy{1 to lags} constant 
 if det.eq.3; lin(noprint) dy v1 v2  resids ; # y{1} dy{1 to lags} constant time 
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The graph and autocorrelations can be obtained from: 
 
 gra(header='Time Path') 1 ; # resids * v2 
 cor(noprint,number=24) resids * v2 corrs 
 
The source code for the first nine lines of the procedure is: 
 
procedure unit y start end  
type series y  
type integer start end 
option switch graph 0 
option integer lags 1 
option choice det 2 none intercept trend 
local series dy resids corrs  time 
local integer v1 v2 
inquire(series=y) v1>>start v2>>end 
 
Now, the procedure can be quite useful. For example, open the file CHAPTER6.PRG and read in 
the data set using Program 6.1. As the program illustrates, you can embed the UNIT.SRC in a 
DO loop so that you that you perform augmented Dickey-Fuller tests on tb1yr using lags 1 
through 12: 
 
do i = 1,12;  @unit(lags=i) tb1yr ; end do i 
 

The estimate of rho with  1  lags =       -0.06280 
The t-statistic for the null hypothesis rho = 0 is       -2.49752 
 
The estimate of rho with  2  lags =       -0.04931 
The t-statistic for the null hypothesis rho = 0 is       -1.98906 
 
. . . 
 
The estimate of rho with  11  lags =       -0.05338 
The t-statistic for the null hypothesis rho = 0 is       -2.00540 
 
The estimate of rho with  12  lags =       -0.05416 
The t-statistic for the null hypothesis rho = 0 is       -2.00671 

 
 

5.1 Passing Information by Address 

  
To this point, we have thought in terms of passing information to a procedure. However, in many 
circumstances you will want to pass a variable from a procedure to the main program. This is not 
particularly difficult if you are working with a global variable; a global variable is accessible 
from any point in RATS. Of course, if you sent the procedure to someone else, that person would 
need to know how you named the variable in question. It would be most convenient if you 
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allowed the user to fetch the variable in question using any name she selected. The way to do 
this is to pass the information by address (not by name). This is done by placing an asterisk * 
immediately preceding the variable name on the TYPE instruction. Suppose, for example, that 
you wanted to pass the residual autocorrelations created by CORR back to the main program. To 
illustrate, suppose we modify UNIT.SRC by removing corrs from the list of LOCAL series. 
Once you invoke the procedure using @unit tb1yr, you can print the ACF of the regression 
residuals by entering the instruction: print / corrs. The two potential problems with this method 
are: (1) the user needs to know the name of the series containing the correlations and (2) you 
might not want the name corrs to refer to a global variable. A way to rectify this problem is to 
modify the PROCEDURE, TYPE SERIES and LOCAL SERIES instructions such that:  
 

procedure unit y start end corrs   Add corrs to the parameter list 
type series y *corrs Define corrs to be a series that can be passed back to 

the main program. 
local series dy resids time Remove corrs as from the list of LOCAL series. 

 
No other instructions need to be modified or added. Now, you can invoke the procedure and 
print the ACF of the residuals using: 
 
@unit series start end  name for the correlations 
 
Note that the user can select any valid series name for the correlations; corrs is simply a 
placeholder for the name specified by the user. For example, the following three instructions all 
yield the identical output: 
 
@unit tb1yr 3 169 corrs ; pri / corrs 
 
@unit tb1yr 1 2000:1 zz ; pri / zz 
 
@unit tb1yr / x ; pri / x 
 

5.2 Optional Fields 

 
Notice that the following three instructions produce quite different results:40 
 
@unit tb1yr  

The estimate of rho with  1  lags =       -0.05355 
The t-statistic for the null hypothesis rho = 0 is       -2.31170 

   
@unit(graph) tb1yr / corrs 

The estimate of rho with  1  lags =       -0.05355 
The t-statistic for the null hypothesis rho = 0 is       -2.31170 

                                                 
40 The version of UNIT.SRC distributed with this book contains the ‘fix’ described below. 
Hence, it will not produce the error message. 
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@unit(graph) tb1yr  

The estimate of rho with  1  lags =       -0.05355 
The t-statistic for the null hypothesis rho = 0 is       -2.31170 
## SX22. Expected Type SERIES, Got Function Instead 
The Error Occurred At Location 1060 of UNIT 

 
The reason is that the field for the correlations (i.e., name for the correlations) must be specified 
if a graph of the ACF is to be displayed. Recall that the GRAPH instruction uses: 
 
gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header='Residual ACF') 1; # corrs 
 
Hence, the graph cannot be created unless a name for the field is specified by the user. The way 
to fix the problem is to use one series to pass the correlations and another series on the COR 
instruction. Consider the following modifications to the procedure: 
 
1.  LOCAL SERIES dy resids xx time 

 
A variable xx is defined to be a local series. This series will hold the correlations.  
 

2.  cor(noprint,number=24) resids v1 v2 xx  
if %defined(corrs) ; set corrs 1 25 = xx 
    
The autocorrelations of resids are now stored in the series xx. Note that the RATS function 
%DEFINED(name) returns the status of a procedure parameter or option called name. Here, if 
the field for corrs is specified by the user, %defined = 1 and the SET instruction is performed. 
If the field is not specified, %defined = 0 and the SET instruction is not performed. No error 
message is created since the series corrs is used only when the field is specified by the user.  
 

3. gra(max=1.0,min=-1.0,style=bar,number=0,nodates,header='Residual ACF') 1; # xx 
 
If the GRAPH option is selected, a graph of xx is produced.  

Examples: 
1.  Suppose you want to perform three unit root tests on tb1yr. The first does not have any 

deterministic regressors, the second has an intercept, and the third has an intercept and a 
trend. Use: 
 
do det = 1,3 ; @unit(det=det,lags=7) tb1yr ; end do det 
 
The procedure produces the desired result since the first time through the loop, det = 1, the 
second time det = 2, and the third time det = 3.  
 

2.  To perform the test with an intercept in the equations for tb1yr and tb3mo use: 
  
dofor j = tb1yr tb3mo ; @unit(lags=7) j ; end dofor  
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3.  @unit(lags=7,graph) tb1yr 1980:1 * corrs  
 
 
A unit root test containing an intercept and seven lagged values of tb1yr is performed. A 
graph of the residuals is displayed and the autocorrelations of the residuals are returned in the 
series corrs. Note that the test is performed beginning with 1980:1. The results for the t-test 
are identical to those obtained from: 
 
dif tb1yr / drl 
lin drl 1980:1 * ; # constant tb1yr{1} drl{1 to 7}  
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6. A Procedure for Computing Lag Lengths 

 
Anyone working with time-series data routinely selects the optimal lag length to use in an 
autoregressive model. It is straightforward to write a procedure to automate this process. The 
procedure below, called LAGLENGTH.SRC, estimates a number of AR(p) models and reports 
the one selected as ‘best’ by the SBC. The procedure is executed using: 
 
@laglength(option) y start end laglength 
  
where:  

y Series to estimate as an AR(p) model 
start and end  The range to use in the estimation. Note that one observation will be lost 

for each lag. 
laglength (Optional) If laglength is specified, the procedure returns the integer 

value of the lag selected by the SBC.  
 
The sole option for the procedure is: 

MAXLAG = Maximum number of lags to use in the lag length test. 
 
In the first line below, the PROCEDURE instruction contains the name of the procedure and a 
parameter list containing y, start end, laglength. The next two lines define the TYPE of these 
parameters. Line 2 indicates that y is a series and line 3 indicates that start, end and laglength are 
all integers. Notice the asterisk preceding laglength. If this field is specified by the user, 
laglength will return the integer value of the optimal lag to the main body of the program.  
 
procedure laglength y start end laglength 
type series y 
type integer start end *laglength 
 
The next section of a procedure should contain the OPTIONS. Here, there is a single option 
called MAXLAG with a default value equal to 1. The user can use the option maxlag = p to select 
the maximum value of p to use in the estimated models autoregressive models.  
 
option integer maxlag 1 
 
The third section of procedure declares the LOCAL variables. Here, v1, v2, bestlag and i are all 
declared as local integers and sbc, sbcmin are local real numbers.41 
 
local integer v1 v2 bestlag i 
local real sbc sbcmin 

                                                 
41 Note that LAGLENGTH.SRC does not create any series; as such, we do not define any local 
series. The series y is not created by the procedure; y is just a placeholder for the series passed to 
LAGLENGTH.SRC by the user.  
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In any procedure, the executable instructions follow the declaration of the local variables. The 
first executable instruction is INQUIRE. The integers v1 and v2 will contain the start and end 
dates selected by the user. The next three lines initialize several key variables. The LINREG 
regresses y on a constant, calculates the SBC (called sbcmin) for this regression and computes 
bestlag = 0. In essence, the procedure estimates and calculates the SBC for an AR(0) model.  
 
inq(series=y) v1>>start v2>>end 
 
lin(noprint) y v1+maxlag v2 
# constant 
compute sbcmin = %nobs*log(%rss) + (%nreg)*log(%nobs) , bestlag = 0 
 
The next section of the procedure estimates an AR(p) model for lag length running from 1 to 
maxlag. Notice that all estimations are performed over the same sample period; the start date for 
each is v1+maglag and the end date is v2. The first time through the DO loop, i = 1 and an AR(1) 
model is estimated. The value of the SBC is compared to that of the AR(0), if the AR(1) has the 
smaller SBC, bestlag is equated to i and sbcmin is replaced by sbc. Thus, if the AR(1) provides a 
better fit than the AR(0), bestlag = 1 and sbcmin contains the SBC of the AR(1). The next time 
through the loop, i = 2. The SBC from the AR(2) is compared to that of the previously selected 
best fitting model. If the AR(2) fits better than the model indicated by bestlag, the value of 
bestlag is set equal to 2. On exiting the loop, bestlag contains the lag length of the model 
providing the best fit.  
 
do i = 1,maxlag 
 lin(noprint) y v1+maxlag v2 
 # constant y{1 to i} 
 compute sbc = %nobs*log(%rss) + (%nreg)*log(%nobs) 
 if sbc < sbcmin ; compute bestlag = i , sbcmin = sbc 
end do i 
 
If bestlag = 0, the regression is not estimated and the procedure displays: DO NOT USE LAGS. 
If bestlag is greater than zero [i.e., if any of the AR(p) models fit better than the AR(0)], the 
AR(bestlag) model is estimated and the output is displayed. Notice that the sample period runs 
from v1+bestlag to v2.  
 
if bestlag.EQ.0 ; dis 'DO NOT USE LAGS' 
if bestlag.GT.0  
lin y v1+bestlag v2 ; # constant y{1 to bestlag} 
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If the user specifies laglength, the procedure returns the value of bestlag. Consider: 
 
if %defined(laglength) ; com laglength = bestlag  
end laglength 
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7. Interacting With Procedures 

  
RATS contains a number of instructions that allow you to interact with a procedure. The most 
straightforward of these instructions is MESSAGEBOX. You can use MESSAGEBOX to halt 
the execution of the procedure and display an ‘Alert’ that contains a message. Execution of the 
procedure will resume when the user enters the appropriate button. The most commonly used 
syntax for MESSAGEBOX is: 
 
messagebox(status=value,style=style)  'Your Message' 
 
where:  

STATUS = value The integer variable value will set equal to a particular number 
corresponding to the button selected by the user. 

 
STYLE=[ALERT] Displays a MESSAGEBOX that will look like the following: 
 

                                                        
 

STYLE = YESNO Halts execution of the program and sets value = 1 if YES is 
selected and value = 0 if NO is selected.  

STYLE=OKCANCEL Halts execution of the program and sets value = 1 if OK is selected 
and value = 0 if CANCEL is selected. 

STYLE=YNCANCEL Halts execution of the program and sets value = 1 if YES is 
selected, value = 0 if NO is selected and value = -1 if CANCEL is 
selected. 

 
In most instances, you will use a SWITCH or CHOICE OPTION to allow the user to make a 
selection. The advantage of MESSAGEBOX is that it allows the user to make a choice in the 
midst of the execution of the procedure.  
 
The QUERY instruction works in a similar fashion. QUERY halts the execution of the procedure 
and prompts the user to to input the values for a list of variables. The most commonly used 
syntax is: 
 
query(prompt=‘Your message’)  variable list 
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where:  
variable list The list of variables whose values are input by the user. The individual 

variables can be any combination of integer, real, string, or label 
variables. 

 
Note that QUERY uses a dialog box similar to that shown above. The user’s response is entered 
such that each value is separated by commas or spaces. Notice that QUERY does not display a 
separate line for each value to be entered. As such, I recommend using a separate QUERY 
instruction for each value to be input. Also, the TYPE of variable to be input (e.g., real, string, 
or integer) must be specified prior to the QUERY instruction. COMPUTE or DECLARE, for 
example, can be used to determine the variable TYPE.  
 

Examples 
1.  Suppose you reach the end of LAGLENGTH.SRC and see the message: DO NOT USE 

LAGS. You might be concerned that the SBC selected a model that was too parsimonious. 
You could insert a MESSAGEBOX to prompt the user for further instructions. Consider the 
following modifications to the procedure: 

 
a)  if bestlag.EQ.0 ; mes(style=alert) ‘DO NOT USE LAGS’ 
 
This modification will inform the user of the problem by halting execution of the procedure 
and display an ALERT.  
 
b)  if bestlag.EQ.0 {  
         mes(style=YESNO,status=status) ‘Do you want to enter the lag length?’ 
       if status.eq.1  ; query(prompt=‘Enter the lag length’) bestlag   
       } 
 
The procedure will display a MESSAGEBOX with YES and NO buttons along with the 
message: Do you want to enter the lag length? If the YES button is selected, the user will see 
the prompt: Enter the lag length. The variable integer variable bestlag is set equal to the value 
input by the user.  

 
2.  You can add the following two lines to LAGLENGTH.SRC: 

 
messagebox(style=yesno,status=status) 'Do you want to run a unit root test?' 
if status.eq.1 ; @unit(lags=bestlag-1) y v1 v2 
 
If you position the two lines after the IF %DEFINED(laglength)  instruction, the variable 
bestlag contains the lag length selected by the SBC. The MESSAGEBOX instruction prompts 
the user with the question: Do you want to run a unit root test? If the YES button in the 
MESSAGEBOX is selected, the variable status = 1. Since the condition on the IF instruction 
is TRUE, LAGLENGTH.SRC calls UNIT.SRC. Hence, UNIT.SRC performs a unit root test 
on the variable y over the sample period v1 to v2 using the lag length contained in bestlag. If 
the NO button is selected, status = 0 and the unit root test is not performed.  
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Read in the data set MONEY_DEM.XLS and compile the procedures UNIT.SRC and 
LAGLENGTH.SRC. It is important to compile the procedures in this order: If procedure A 
makes reference to procedure B, B must be compiled before A. Now enter the following 
instruction and select the YES button: 
 
@laglength(maxlag=8) tb1yr 
 

   Variable       Coeff       Std Error       T-Stat     Signif 
****************************************************************** 
1.  Constant     0.327483556  0.148546781      2.20458  0.02892885 
2.  TB1YR{1}     1.259723680  0.077483059     16.25805  0.00000000 
3.  TB1YR{2}    -0.608960910  0.119220538     -5.10785  0.00000093 
4.  TB1YR{3}     0.552438699  0.119096075      4.63860  0.00000731 
5.  TB1YR{4}    -0.255732154  0.077249623     -3.31046  0.00115404 
 
With 3 lags, the estimate of rho =       -0.05253 
The t-statistic for the null hypothesis rho = 0 is       -2.33526 

 

LAGLENGTH.SRC selects a lag-length of 4; if you selected the YES button, you see the output 
from UNIT.SRC such that the augmented Dickey-Fuller test contains (bestlags – 1) lags. If you 
want to include these two procedures in your research, you could make several small 
modifications. 
 
a)  Notice that LAGLENGTH.SRC displays regression output with 4 lags and UNIT.SRC 

displays “With 3 lags, the estimate of rho =.  You can modify LAGLENGTH.SRC 
such that it displays the message: In the augmented Dickey-Fuller test. The output 
will look like: 
 
In the augmented Dickey-Fuller test 
With 3 lags, the estimate of rho =       -0.05253 
The t-statistic for the null hypothesis rho = 0 is       -2.33526 

 
b)  It is important that the user compile UNIT.SRC prior to compiling LAGLENGTH.SRC. One 

way to ensure this is done correctly is to include both procedures on a single file in the 
desired order. Save the file using a descriptive name and the extension *.SRC. When the user 
compiles the file, all of the procedures will be compiled in the appropriate order. For 
example, you might you have a single file structured as follows: 
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procedure unit y start end corrs_save 
type series y *corrs_save 
type integer start end 
 
other program statements 
 
end unit 
********** 
procedure laglength y start end laglength 
type series y 
type integer start end *laglength 
  
other program statements 
 
end laglength 
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8. Creating a Menu 

 
RATS allows you to present the user with menu of choices in one of two ways. The first presents 
the user with a box listing the choices. After the user selects a choice from the list, a specified 
block of instructions can be performed. The typical syntax for the MENU block is: 

 
MENU  ‘Message to Display’ 
 
CHOICE  ‘Name of First Choice’ 
   Instruction block for first choice 
 
CHOICE ‘Name of Second Choice’ 
   Instruction block for second choice 
  …  
END MENU 

Example 
The following procedure, called TRANSFORM, uses the MENU instruction to prompt the user 
for a particular type of data transformation. After compiling TRANSFORM.SRC, the procedure is 
executed using: 
 
@transform series 
 
The user will see a dialog box that looks something like: 
 

 
 
Once the desired transformation is selected, the procedure will create a graph of the transformed 
series. The label of the transformed series will be the series label appended with an L for the 
logarithmic transformation, D for the first-difference, or G for the growth rate. Notice that the 
TYPE instruction listed below declares the parameter y to be a series. The instructions in the 
MENU—END MENU block create the dialog box shown above.  
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procedure transform y  
type series y  
 
menu 'Select the Transformation' 
 
choice 'Logarithmic'  
{ 
sta(noprint,fractiles) y 
   if %minimum > 0. { 
     com a$ = 'L' + %label(y) 
     set %s(a$) = log(y) 
   } 
  if %minimum.le.0 
    mes(style=alert) "I CAN TAKE THE LOG OF POSITIVE NUMBERS ONLY" 
} 
 
choice 'First Difference' 
{ 
com a$ = 'D' + %label(y) 
set %s(a$) = y - y{1} 
} 
 
choice 'Growth Rate' 
{ 
com a$ = 'G' + %label(y) 
set %s(a$) = y/y{1} - 1 
} 
 
end menu 
graph(header='Time Path of ' + a$) 1 ; # %s(a$) 
 
end transform 
 
If Logarithmic is selected, a simple check is performed before the routine attempts to create the 
log of series. The STATISTICS instruction is used to obtain the minimum value of the series. If 
this value is negative, an ALERT is displayed informing the user that it is not possible to obtain 
the log of a negative number. Only if the smallest value of series is positive will the procedure 
create the new series. The label attached to the newly created series is L + series label. Similarly, 
if First Difference is selected, the instructions in the second CHOICE block are executed. The 
first difference of series is created with the label D + series label.  
 
The final instruction creates the graph of the transformed series. Notice that the choice Growth 
Rate does not check for the possibility of values that equal zero. If any value of series does equal 
zero, the associated entry value for the transformed series will be NA. The next two lines of 
Program 6.1 compile the procedure and EXECUTE the procedure using rgdp: 
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source(noecho) c:\winrats\transform.src 
@transform rgdp 

Select Growth Rate and use the instruction: 

table / 
  
Series     Obs       Mean       Std Error      Minimum       Maximum 
DATE      169   1979.876331     12.232185   1959.100000   2001.100000 
GDP       169   3572.739053   2873.158128    496.100000  10243.600000 
RGDP      169   5142.364497   1950.840494   2273.000000   9439.900000 
M2        169   1904.835266   1399.706717    287.800000   5043.710000 
M3        169   2414.462229   1916.764710    290.053333   7260.136667 
TB3MO     169      5.915148      2.590483      2.303333     15.053333 

TB1YR     167      6.153872      2.393622      2.713333     14.380000 

GRGDP     168      0.008551      0.009027     -0.020388      0.038528 

 
Notice that the series GRGDP has been created. Since this variable has not been declared as a 
LOCAL SERIES, it is accessible from the main body of the program. 
 

8.1 Creating a USERMENU 

  
A second way to create an interactive procedure is to use the USERMENU instruction. 
USERMENU allows you to add a user-defined menu to the RATS menu bar. The user clicks on 
the pull-down menu and the list of choices appears. Once a USERMENU is activated, it controls 
the flow of the program until a selection is made. Typically, you will use the USERMENU 
instruction at least three times within a procedure.42 The first use is to DEFINE the structure of 
the menu, the second causes the menu to appear on the menubar and the third is to REMOVE the 
menu.  
 
The typical syntax to DEFINE the structure a USERMENU is: 
 
usermenu(action=define,title=‘Title’)  1>>‘string 1’ 2>>‘string 2’ … n>>‘string n’ 
 
The ACTION=DEFINE option is used to create a pull-down menu to the right of the RATS Help 
menu with the title determined by the string Title. The choices on the USERMENU appear as 
string 1, string 2, … through string n. The menu does not actually appear on the menubar until 
the simple instruction USERMENU is encountered. The user can now select one of the choices. 
Once a choice is selected, the variable %MENUCHOICE is set equal to integer value of the 
selection. At this point, a series of IF instructions can be used to control program execution.  
 
Finally, the menu is removed using: 
 

                                                 
42 The next section discusses how to turn on and off choices using the ENABLE option. 
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USERMENU(action=remove) 
 
It is possible to rewrite the procedure TRANSFORM so that it uses the USERMENU instruction 
instead of the MENU instruction. Consider the modified procedure called TRANSFORM_USER. 
The procedure is executed using:  
 
@transform_user series 
 
As in the original procedure, the user passes a series to the procedure; the TYPE instruction 
defines this parameter as a series. The first USERMENU instruction defines a menu with the title 
Transform. Clicking on this pull-down menu will reveal the three choices Logarithmic, First 
Difference, and Growth Rate. Notice that the instruction is completely contained on a single 
program statement; the use of the $ sign as a continuation is simply to make the program easier 
to read. 
 
procedure transform_user y 
type series y 
 
usermenu(action=define,title='Transform') $ 
1>>'Logarithmic' $ 
2>>'First Difference' $ 
3>>'Growth Rate' 
 
The menu does not appear until USERMENU with the (default) option ACTION=RUN is 
encountered. If the user selects Logarithmic, %menuchoice=1 and the instructions in the first IF 
block are executed. Again, there is a check that prevents the user from trying to take the log of a 
number that is not positive.  
  
usermenu 
 
if %menuchoice.eq.1 { 
sta(noprint,fractiles) y 
   if %minimum > 0. { 
     com a$ = 'L' + %label(y) 
     set %s(a$) = log(y) 
   } 
   if %minimum.le.0 
     mes(style=alert) "I CAN ONLY TAKE THE LOG OF POSITIVE NUMBERS" 
} 
 
The integer variable %menuchoice equals 2 if the user selects First Difference and equals 3 if the 
user selects Growth Rate. After the appropriate IF block is completed, a graph of the transformed 
series is created. The instruction USERMENU(action=REMOVE), removes the menu from the 
menubar. In order to make another transform or to transform another variable, it is necessary to 
execute the procedure a second time.  
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if %menuchoice.eq.2 { 
  com a$ = 'D' + %label(y) 
  set %s(a$) = y - y{1} 
} 
 
if %menuchoice.eq.3 { 
  com a$ = 'G' + %label(y) 
  set %s(a$) = y/y{1} - 1 
} 
 
graph(header='Time Path of ' + a$) 1 ; # %s(a$) 
usermenu(action=remove) 
end transform_user 

Jazzing up the Procedure 
To allow several transformations on the same variable, it is possible to use a LOOP. Place the 
LOOP instruction immediately preceding USERMENU and an END LOOP instruction before 
USERMENU(action=remove). Of course, it is necessary to have a way to break out of the loop. 
This is easily accomplished by adding a fourth menu choice and a fourth IF block. The key 
changes to the procedure are: 
 
usermenu(action=define,title='Transform') $ 
1>>'Logarithmic' $ 
2>>'First Difference' $ 
3>>'Growth Rate'   $   ;* New continuation sign 
4>>'Done'    ;* New choice 
 
loop     ;* Begin loop here 
usermenu 
 
 THE ORIGINAL INSTRUCTION SET BELONGS HERE 
 
if %menuchoice.eq.4 ; break  ;* If Done is selected, terminate the loop 
 
graph(header='Time Path of ' + a$) 1 ; # %s(a$) 
end loop 
usermenu(action=remove) 
end transform_user 
 
 
Program 6.1 compiles and EXECUTES the procedure using: 
 
source(noecho) c:\winrats\transform_user.src 
@transform_user rgdp 
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Notice the new selection on the Menu bar entitled Transform. You can select the desired 
transformation from the menu. Note that you cannot execute any other instructions until you 
select ‘Done.’ 
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9. An Interactive Procedure with Menu and USERMENU 

 
This section will illustrate a simple program that uses both the MENU and the USERMENU 
instructions. The procedure allows the user to estimate a regression equation with seasonal 
dummy variables and a nonlinear time trend of the form: 
 
 yt = a0 + a1time + a2time2 + a3time3

 + b1D1 + b2D2 + … + bs-1Ds-1 + εt 

 
where: D1 through Ds-1 are seasonal dummy variables and s is the seasonal span of the series.  
  
The USERMENU instruction allows the user to select the dependent variable. The MENU 
instruction is used to create a dialog box that allows the user to enter the degree of the 
polynomial. After the procedure is executed, RATS creates a menu called Trends on the 
menubar. If the user clicks the mouse on this Trends menu, a list of three potential selections 
appears: Select a Variable to Estimate, Estimate the Trend, and Done. The flow of the program 
is as follows: 
 
1.  If the user chooses Select a Variable to Estimate, a list of all of the series in RATS memory is 

displayed. Once the selection is made, a graph of the time path of the series is displayed. 
Initially, the user is not allowed to select Estimate the Variable. The program requires the user 
to choose Select a Variable to Estimate before the selection Estimate the Variable is enabled. 

 
2.  Once a variable has been selected, the user is allowed to select any of the three choices from 

the Trends menu. Hence, it is possible to select an alternative variable by returning to Select a 
Variable to Estimate, estimate the selected variable with Estimate the Variable or to exit the 
procedure with Done.  

 
3.  If the user selects Estimate the Variable, another menu appears. However, this second menu is 

actually a dialog box with ‘buttons’ that allow the user to select one of four choices. The user 
can select whether to estimate the series without a trend, with a linear trend, with a quadratic 
trend or with a cubic trend. Whichever choice is made, the program displays the regression 
output and shows a graph of the actual and the fitted values of the series.  

 
The program consists of two separate procedures with the names ESTIMATE and SEASONS. 
SEASONS creates the USERMENU called Trends. No parameters are passed to SEASONS and 
the procedure contains no OPTIONS, CHOICES or SWITCHES. As such, the first instruction 
defines a LOCAL INTEGER variable called depvar. Depvar is the integer value corresponding 
to the series selected by the user (i.e., the dependent variable in the regression equation). The 
first USERMENU instruction defines the menu Trends and creates the three possible selections. 
The second USERMENU instruction illustrates the use of the ACTION = MODIFY option. 
Notice that choice 2 is not enabled; the user will not be able to select Estimate the Trend until 
RATS encounters a USERMENU instruction enabling choice 2.  
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procedure seasons 
local integer depvar 
usermenu(action=define,title='Trends')   $ 
1>>'Select a Variable to Estimate' $ 
2>>'Estimate the Trend' $ 
3>>'Done' 
 
usermenu(action=modify,enable=no) 2 
 
If the user chooses Select a Variable to Estimate, menuchoice = 1 so that the instructions in the 
first IF block are executed. The SELECT(series) depvar instruction presents the user a list of all 
series in memory. The integer value corresponding to the selected series is assigned to depvar 
and the label of depvar is stored in the string variable a$. The remaining instructions in the first 
IF-block create a graph of depvar and enable the choice Estimate the Trend. 
 
loop 
  usermenu 
  if %menuchoice.eq.1 { 
     select(series) depvar 
 compute a$ = %l(depvar) 
 gra(header= 'Time Path of ' + a$) 1 
 # depvar 
 usermenu(action=modify,enable=yes) 2 
 } 
 
If the user selects Estimate the Trend, SEASONS invokes the procedure ESTIMATE. This 
second procedure interacts with the user to request information concerning the type of time trend 
to estimate. Once ESTIMATE has completed its functions, program control returns to LOOP-
ENDLOOP block. The instructions within this block are continually executed until the BREAK 
instruction is encountered. As long as the user does not select DONE (i.e., as long as 
%menuchoice does not equal 3), the user can continually select variables and estimate regression 
equations. Once BREAK is encountered, the program exits the loop and the USERMENU is 
removed from the menubar. 
 
  if %menuchoice.eq.2  
 @estimate depvar 
  if %menuchoice.eq.3 
 break 
end loop 
usermenu(action=remove) 
 
end seasons 
 
The procedure ESTIMATE is invoked from SEASONS. Hence, it is necessary to compile 
ESTIMATE before SEASONS. Since SEASONS passes the parameter depvar to ESTIMATE, it 
is necessary to declare depvar as a series. The program needs to create variables for the linear, 
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quadratic and cubic time trends and for the fitted values from the regression. The next instruction 
declares time, t2, t3 and fitted to be local series.  
 
proc estimate depvar 
type series depvar 
local series time t2 t3 fitted 
 
The next instruction creates an integer vector (called reglist) that will hold the variables to be 
used in the regression equation. The second instruction below uses COMPUTE to include a 
constant in the list of regressors. The linear, quadratic and cubic time trends are created by the 
subsequent SET instructions. 
 
dec vector[int] reglist 
compute reglist=||constant|| 
set time = t ; set t2  = t*t ; set t3  = t*t*t 
 
The MENU instruction below creates a dialog box with the title Select the Degree of the 
Polynomial. The user will be presented with four choices in a dialog box that looks like: 
 
 

 
 
 
The selection will affect the string variable b$ and the vector reglist. For example, if NO Time 
Trend is selected,  b$ = ‘No Time Trend’ and the vector reglist is unaltered (hence, reglist 
contains only the constant). Instead, if Cubic Trend is selected, b$ = ‘Cubic Time Trend’ and 
reglist contains a constant, time, t2, and t3.  
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menu 'Select the degree of the Polynomial' 
 choice 'NO trend ' 
    com b$ = 'No Time Trend' 
 choice ' Linear trend' 
 { 
   enter(varying) reglist ; # reglist time 
   com b$ = 'Linear Time Trend' 
 } 
 choice ' Quadratic trend' 
 { 
   enter(varying) reglist ; # reglist time t2 
   com b$ = 'Quadratic Time Trend' 
 } 
 choice ' Cubic trend ' 
 { 
  enter(varying) reglist ; # reglist time t2 t3 
  com b$ = 'Cubic Time Trend' 
 } 
end menu 
 
Next, the linear regression is estimated using the depvar as the dependent variable and the 
variables in reglist as the independent variables. The PRJ instruction is used to create a series of 
the fitted values. The final three instructions obtain the label assigned to depvar, and create a 
graph of the series and the fitted values from the regression. On completion of the graph, control 
passes back to the LOOP—ENDLOOP block in the procedure SEASONS.  
 
lin depvar ;# reglist 
prj fitted 
 
compute a$ = %l(depvar) 
gra(header='Trend Estimate of ' + a$,subheader=b$,key = below,patterns, $ 
klabel=||'Fitted','Actual'||) 2  ; # fitted ; # depvar 
 
end estimate 

Jazzing up the Procedure 1 
The procedure is called SEASONS because we are going to modify it to allow for seasonal 
dummy variables. If the seasonal span of the data is s, the procedure will estimate a model of the 
form: 
 
 yt = a0 + a1time + a2time2 + a3time3

 + b1D1 + b2D2 + … + bs-1Ds-1 + εt.  
 
The first step is to add the choice Estimate the Trend and Seasonals to the USERMENU. The 
procedure will set the variable s_ = 0 if the user selects Estimate the Trend and will set s_ = 1 if 
the user selects Estimate the Trend and Seasonals. As such, the modified procedure adds s_ to 
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the list of local integer variables. Moreover, note that the third choice on the USERMENU is 
Estimate the Trend and Seasonals and that Done has been moved to the fourth position. 
 
procedure seasons 
local integer depvar s_ 
usermenu(action=define,title='Trends')   $ 
1>>'Select a Variable to Estimate' $ 
2>>'Estimate the Trend' $ 
3>>'Estimate the Trend and Seasonals' $ 
4>>'Done' 
 
We do not want to ENABLE either of the Estimate choices unless the user has chosen Select a 
Variable to Estimate. As such, the following two lines are used to prevent the user from selecting 
choice 2 or choice 3.  
 
usermenu(action=modify,enable=no) 2 
usermenu(action=modify,enable=no) 3 
 
Next, it is necessary to modify the statements that are executed with each %MENUCHOICE. 
Consider the program segment below. If Select a Variable to Estimate is selected, 
%MENUCHOICE=1. The two USERMENU instructions enable the Estimate the Trend and the 
Estimate the Trend and Seasonals choices.  
 
If the user selects Estimate the Trend (%MENUCHOICE =2), s_ = 0, and if the user selects 
Estimate the Trend and Seasonals (%MENUCHOICE =3), s_ = 1. Both of these choices pass 
depvar and the value of s_ to the procedure ESTIMATE. If Done is selected, %MENUCHOICE 
= 4 and the procedure exits the LOOP.  
 
loop 
usermenu 
if %menuchoice.eq.1 { 
 
 Original Instructions 
 
 usermenu(action=modify,enable=yes) 2 
 usermenu(action=modify,enable=yes) 3 
 } 
if %menuchoice.eq.2 { 
 com s_ = 0 
 @estimate depvar s_ 
} 
if %menuchoice.eq.3 { 
 com s_ = 1 
 @estimate depvar s_ 
} 
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if %menuchoice.eq.4 
 break 
end loop 
 
 
It is also necessary to modify ESTIMATE. Note that s_ is included on the parameter list and is 
defined as an integer.43 Moreover, span is a local integer that will be set equal to the seasonal 
span of the data (i.e., span = 4 for quarterly data, 12 for monthly data, … . The seasonal span is 
determined on the CALENDAR instruction).  
 
proc estimate depvar s_ ;* s_ is included on the parameter list 
type integer s_   ;* s_ is an integer 
type series depvar 
local integer span  ;* Span is an integer representing the seasonal span of the data 
local series time t2 t3 fitted 
 
dec vector[int] reglist 
compute reglist=||constant|| 
 
The following IF-block is added to the procedure. If the user selected Estimate the Trend, s_ = 0 
so that this new section of the procedure is bypassed. If the user selected Estimate the Trend and 
Seasonals, s_ = 1. As such, the procedure uses the INQUIRE instruction to obtain the seasonal 
span. Next, a seasonal dummy variable called seasons is created. The current value of seasons 
plus span-2 leads are added to the regressor list. For example, if span = 4, there will be three 
seasonal dummy variables in addition to the intercept. The remaining portions of the 
ESTIMATE procedure are unaltered.  
 
if s_.eq.1 { 
inquire(seasonal) span 
seasons seasons 
enter(varying) reglist ; # reglist seasons{0 to -span+2} 
} 

Jazzing up the Procedure 2 
It is straightforward to modify the procedure so that it incorporates the features of 
TRANSFORM. The source code below indicates the necessary modifications of SEASONS. 
Notice that a new choice called Transform a Variable has been added to the USERMENU 
instruction. As such, Estimate the Trend moves to choice 3 and Estimate the Trend and 
Seasonals moves to choice 4. As such, it is necessary to change the instructions using the 
ENABLE = option to reflect the new position.   
 
usermenu(action=define,title='Trends')   $ 
1>>'Transform a Variable'  $    ;* New Choice  
2>>'Select a Variable to Estimate' $ 

                                                 
43 Another possible way to write the procedure is to use s_ as an OPTION in ESTIMATE.  
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3>>'Estimate the Trend' $ 
4>>'Estimate the Trend and Seasonals' $ 
5>>'Done' 
  
usermenu(action=modify,enable=no) 3 ;* Estimate the Trend is choice 3 
usermenu(action=modify,enable=no) 4 ;* Estimate the Trend and Seasonals is choice 4 
 
If Transform a Variable is selected, %MENUCHOICE = 1 and the user is presented with a list 
of variables. Selection of the variable invokes the procedure TRANSFORM. Once the graph of 
the transformed variable is displayed, program control returns to the LOOP block of instructions. 
The user can make another transformation, Select a Variable to Estimate, or exit the procedure 
by selecting Done. Given the new positions for the menu choices, only the remaining IF 
%MENUCHOICE instructions need be modified. Consider: 
 
loop 
usermenu 
if %menuchoice.eq.1 {      
 select(series) depvar 
 @transform depvar 
} 
 
if %menuchoice.eq. 2 {   ;* Select a Variable to Estimate is now choice 2 
            select(series) depvar 
 compute a$ = %l(depvar) 
 gra(header= 'Time Path of ' + a$) 1 
 # depvar 
 usermenu(action=modify,enable=yes) 3   ;* Enable Estimate the Trend 
 usermenu(action=modify,enable=yes) 4   ;* Enable Estimate the Trend and Seasonals 
 } 
if %menuchoice.eq.3 {    ;* Estimate the Trend is choice 3 
 com s_ = 0 
 @estimate depvar s_ 
} 
if %menuchoice.eq.4 {    ;* Estimate the Trend and Seasonals  
 com s_ = 1 
 @estimate depvar s_ 
} 
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if %menuchoice.eq.5     ;* Done is now choice 5 
 break 
 
end loop 
usermenubreak(action=remove) 
end seasons 

Cleaning up 
I have used SEASONS.SRC in one portion of my undergraduate forecasting class. The 
experience taught me the importance of anticipating every possible choice a user can make. My 
recommendation for debugging the procedure is to experiment with various combinations of 
choices that might seem implausible to you. For example, SEASONS.SRC will catch a mistaken 
attempt to take the log of a series containing negative numbers. However, this might not deter 
someone from trying to take the growth rate of the same series. If you ‘fool around’ with the 
procedure, you will discover the glitch. One way to remedy the problem is to modify 
TRANSFORM.SRC such that portion that calculates the growth rate requires all entries to be 
positive.44 To make the change, you do not have to do much more than copy the instructions 
from the logarithm choice and paste them into the ‘Growth Rate’ section: 
 
choice 'Growth Rate' 
{ 
sta(noprint,fractiles) y 
   if %minimum > 0. { 
 com a$ = 'G' + %label(y) 
 set %s(a$) = y/y{1} - 1 
} 
   if %minimum.le.0 
    mes(style=alert) "I CANNOT PERFORM THE DESIRED TRANSFORMATION" 
} 
 
A user might also select “CANCEL” when selecting a variable to transform or estimate. In no 
other series has been selected previously, SEASONS.SRC will attempt transform (or estimate) a 
constant. To clean up the program, you can use the STATUS option on the two SELECT 
instructions. The option STATUS=INTEGER returns the integer value 0 if the user clicks the 
“Cancel” button and a 1 if the user clicks the “OK” button. Thus, in the segment below, 
TRANSFORM.SRC is called only if the user clicks the “OK” button: 
 
if %menuchoice.eq.1 { 
    select(series,status=cancel) depvar 
  if cancel.eq.1 
    @transform depvar 
} 
 

                                                 
44 Of course, you could modify the procedure to allow all entries to be negative.  
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The file SEASONS.SRC includes a similar check in case the user cancels the choice Select a 
Variable to Estimate. Program 6.2 in the file CHAPTER6.PRG EXECUTES the procedure 
using: 
 
source(noecho) c:\winrats\seasons.src 
@seasons
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