
METHODS & TOOLS
Global knowledge source for software development professionals ISSN 1023-4918

Summer 2000 (Volume 8 - number 2)

A simple challenge

Software project planning and control belong to the core activities of software engineering. The
common opinion about software project management is that "failure" is more the standard than
"success", even if these words have surely not the same definition for everyone. Schedule and cost
overruns seem to be linked to the majority of projects. When you look at published figures on software
project results you will see the usual Standish Group's CHAOS figures (go to www.standishgroup.com
for more info) showing for instance that around 30% of projects are canceled before completion. Only
16% of software projects are completed on time and on budget. Our own process quality database
shows that only 60% of the companies have a formal schedule estimation mechanism and 18% a formal
cost estimation mechanism.

When you look however at Kathleen Peters' article and more precisely at the software estimation 101
part, software estimation does not look like rocket science. If you read a basic book about software
project management like the DeMarco reference, you will find that most of the text is related to
common sense. So why are so many projects bound to fail... or to "succeed" like they are failures for
most of the participants?

First you have to accept the limitations of what management can achieve. Projects are launched in
organizations and you cannot request too much rationale behaviors from humans. But we have also to
admit that project planning and control activities are not always highly considered. Some project
managers are coming from the developers' ranks and they do not like "administrative" tasks. Other
come from the middle management and they can perform only administrative task without being able to
see an operational meaning to the time and costs records and act accordingly. Hello Dilbert!

So perhaps the biggest challenge of project planning and management is simply there: to find qualified
people and to take the time to do it properly.

Inside

Project: Software Project Estimation..page 2

Testing: Risk-Based E-Business Testing – Part 1...page 16

Facts, News & Comments ...page 32

Project

Methods & Tools * Summer 2000 * Page 2

Effective software project estimation is one of
the most challenging and important activities in
software development. Proper project planning
and control is not possible without a sound and
reliable estimate. As a whole, the software
industry doesn’t estimate projects well and
doesn’t use estimates appropriately. We suffer
far more than we should as a result and we need
to focus some effort on improving the situation.

Under-estimating a project leads to under-
staffing it (resulting in staff burnout), under-
scoping the quality assurance effort (running the
risk of low quality deliverables), and setting too
short a schedule (resulting in loss of credibility as
deadlines are missed). For those who figure on
avoiding this situation by generously padding the
estimate, over-estimating a project can be just
about as bad for the organization! If you give a
project more resources than it really needs
without sufficient scope controls it will use them.
The project is then likely to cost more than it
should (a negative impact on the bottom line),
take longer to deliver than necessary (resulting in
lost opportunities), and delay the use of your
resources on the next project.

Software Project Estimation 101

The four basic steps in software project
estimation are:

1) Estimate the size of the development
product. This generally ends up in either
Lines of Code (LOC) or Function Points
(FP), but there are other possible units of
measure. A discussion of the pros & cons of
each is discussed in some of the material
referenced at the end of this report.

2) Estimate the effort in person-months or
person-hours.

3) Estimate the schedule in calendar months.

4) Estimate the project cost in dollars (or local
currency)

Estimating size

An accurate estimate of the size of the software
to be built is the first step to an effective
estimate. Your source(s) of information
regarding the scope of the project should,
wherever possible, start with formal descriptions
of the requirements - for example, a customer’s
requirements specification or request for
proposal, a system specification, a software
requirements specification. If you are [re-
]estimating a project in later phases of the
project’s lifecycle, design documents can be
used to provide additional detail. Don’t let the
lack of a formal scope specification stop you
from doing an initial project estimate. A verbal
description or a whiteboard outline are
sometimes all you have to start with. In any
case, you must communicate the level of risk
and uncertainty in an estimate to all concerned
and you must re-estimate the project as soon as
more scope information is determined.

Two main ways you can estimate product size
are:

1) By analogy. Having done a similar project in
the past and knowing its size, you estimate
each major piece of the new project as a
percentage of the size of a similar piece of
the previous project. Estimate the total size
of the new project by adding up the
estimated sizes of each of the pieces. An

Software Project Estimation

Kathleen Peters, kpeters@spc.ca
Software Productivity Center Inc., www.spc.ca

Project

Methods & Tools * Summer 2000 * Page 3

experienced estimator can produce
reasonably good size estimates by analogy if
accurate size values are available for the
previous project and if the new project is
sufficiently similar to the previous one.

2) By counting product features and using an
algorithmic approach such as Function
Points to convert the count into an estimate
of size. Macro-level “product features” may
include the number of subsystems,
classes/modules, methods/functions. More
detailed “product features” may include the
number of screens, dialogs, files, database
tables, reports, messages, and so on.

Estimating effort

Once you have an estimate of the size of your
product, you can derive the effort estimate. This
conversion from software size to total project
effort can only be done if you have a defined
software development lifecycle and
development process that you follow to specify,
design, develop, and test the software. A
software development project involves far more
than simply coding the software – in fact, coding
is often the smallest part of the overall effort.
Writing and reviewing documentation,
implementing prototypes, designing the
deliverables, and reviewing and testing the code
take up the larger portion of overall project
effort. The project effort estimate requires you
to identify and estimate, and then sum up all the
activities you must perform to build a product of
the estimated size.

There are two main ways to derive effort from
size:

1) The best way is to use your organization’s
own historical data to determine how much
effort previous projects of the estimated size
have taken. This, of course, assumes (a)
your organization has been documenting
actual results from previous projects, (b)
that you have at least one past project of
similar size (it is even better if you have

several projects of similar size as this
reinforces that you consistently need a
certain level of effort to develop projects of
a given size), and (c) that you will follow a
similar development lifecycle, use a similar
development methodology, use similar tools,
and use a team with similar skills and
experience for the new project.

2) If you don’t have historical data from your
own organization because you haven’t
started collecting it yet or because your new
project is very different in one or more key
aspects, you can use a mature and generally
accepted algorithmic approach such as
Barry Boehm’s COCOMO model or the
Putnam Methodology to convert a size
estimate into an effort estimate. These
models have been derived by studying a
significant number of completed projects
from various organizations to see how their
project sizes mapped into total project
effort. These “industry data” models may
not be as accurate as your own historical
data, but they can give you useful ballpark
effort estimates.

Estimating schedule

The third step in estimating a software
development project is to determine the project
schedule from the effort estimate. This generally
involves estimating the number of people who
will work on the project, what they will work on
(the Work Breakdown Structure), when they
will start working on the project and when they
will finish (this is the “staffing profile”). Once
you have this information, you need to lay it out
into a calendar schedule. Again, historical data
from your organization’s past projects or
industry data models can be used to predict the
number of people you will need for a project of
a given size and how work can be broken down
into a schedule.

If you have nothing else, a schedule estimation
rule of thumb [McConnell 1996] can be used to

Project

Methods & Tools * Summer 2000 * Page 4

get a rough idea of the total calendar time
required:

Schedule in months = 3.0 * (effort-months)1/3

Opinions vary as to whether 2.0 or 2.5 or even
4.0 should be used in place of the 3.0 value –
only by trying it out will you see what works for
you.

Estimating Cost

There are many factors to consider when
estimating the total cost of a project. These
include labor, hardware and software purchases
or rentals, travel for meeting or testing purposes,
telecommunications (e.g., long-distance phone
calls, video-conferences, dedicated lines for
testing, etc.), training courses, office space, and
so on.

Exactly how you estimate total project cost will

depend on how your organization allocates
costs. Some costs may not be allocated to
individual projects and may be taken care of by
adding an overhead value to labor rates ($ per
hour). Often, a software development project
manager will only estimate the labor cost and
identify any additional project costs not
considered “overhead” by the organization.

The simplest labor cost can be obtained by
multiplying the project’s effort estimate (in
hours) by a general labor rate ($ per hour). A
more accurate labor cost would result from
using a specific labor rate for each staff position
(e.g., Technical, QA, Project Management,
Documentation, Support, etc.).

You would have to determine what percentage
of total project effort should be allocated to
each position. Again, historical data or industry
data models can help.

Historical
project data

Analyze the
estimation

process
Actual size,
effort, etc.

Resources
available

Current cost
data

Approved
Estimate(s)

Collect the initial
requirements

Estimate product
size

Estimate the effort

Produce the
schedule

Estimate the cost

Approve the
estimate

Develop the
product

Re-estimate
as needed

Figure 1 – The Basic Project Estimation Process

Project

Methods & Tools * Summer 2000 * Page 5

Working Backwards from Available Time

Projects often have a delivery date specified for
them that isn’t negotiable - “The new release
has to be out in 6 months”; “The customer’s
new telephone switches go on-line in 12 months
and our software has to be ready then”. If you
already know how much time you have, the only
thing you can do is negotiate the set of
functionality you can implement in the time
available. Since there is always more to do than
time available, functionality has to be prioritized
and selected so that a cohesive package of
software can be delivered on time.

Working backwards doesn’t mean you skip any
steps in the basic estimation process outlined
above. You still need to size the product,
although here you really do have to break it
down into a number of pieces you can either
select or remove from the deliverable, and you
still need to estimate effort, schedule, and cost.
This is where estimation tools can be really
useful. Trying to fit a set of functionality into a
fixed timeframe requires a number of “what if”

scenarios to be generated. To do this manually
would take too much time and effort. Some
tools allow you to play with various options
easily and quickly.

Understanding an Estimate’s Accuracy

Whenever an estimate is generated, everyone
wants to know how close the numbers are to
reality. Well, the bottom line is that you won’t
know exactly until you finish the project – and
you will have to live with some uncertainty.
Naturally, you will want every estimate to be as
accurate as possible given the data you have at
the time you generate it. And of course you
don’t want to present an estimate in a way that
inspires a false sense of confidence in the
numbers.

What do we mean by an “accurate” estimate?
Accuracy is an indication of how close
something is to reality. Precision is an indication
of how finely something is measured. For
example, a size estimate of 70 to 80 KLOC
might be both the most accurate and the most

Figure 2 Estimate Convergence Graph; Source: "Rapid Development"
Adapted from "Cost Models forFuture Life Cycle Processes: COCOMO 2.0" (Boehm et al. 1995).

Project

Methods & Tools * Summer 2000 * Page 6

precise estimate you can make at the end of the
requirements specification phase of a project. If
you simplify your size estimate to 75000 LOC it
looks more precise, but in reality it’s less
accurate. If you offer the size estimate as 75281
LOC, it is precise to one LOC but it can only
be measured that accurately once the coding
phase of the project is completed and an actual
LOC count is done.

If your accurate size estimate is a range, rather
than a single value, then all values calculated
from it (e.g., effort, schedule, cost) should be
represented as a range as well. If, over the
lifetime of a project, you make several estimates
as you specify the product in more detail, the
range should narrow and your estimate should
approach what will eventually be the actual cost
values for the product or system you are
developing (Figure 2).

Of course, you must also keep in mind other
important factors that affect the accuracy of
your estimates, such as:

• the accuracy of all the estimate’s input data
(the old adage, “Garbage in, Garbage out”,
holds true)

• the accuracy of any estimate calculations
(e.g., converting between Function Points
and LOC has a certain margin of error)

• how closely the historical data or industry
data used to calibrate the model matches the
project you are estimating

• the predictability of your organization’s
software development process, and

• whether or not the actual project was
carefully planned, monitored and controlled,
and no major surprises occurred that caused
unexpected delays.

Understanding the Tradeoffs

Once you’ve generated a project estimate, the
real work begins – finding some combination of
functionality, schedule, cost and staff size that
can be accepted by management and
customers! This is where a solid understanding
of the relationships between these variables is so
important, and where being armed with different
project estimates illustrating the tradeoffs is very
useful for establishing what the limits are.

Here are a few facts of life you need to
remember during the estimate “adjustment”
phase:

• If you lengthen the schedule, you can
generally reduce the overall cost and use
fewer people. Sometimes you only have to
lengthen the schedule by a few weeks to get
a benefit. Usually management and

Time

Cost
Shortest
Possible
Schedule

Nominal
schedule

Figure 3 – Relationship between cost and schedule on a software project.
Source: “Rapid Development” (McConnell 1996). The cost of achieving the nominal schedule is much

less than the cost of achieving the shortest possible schedule

Project

Methods & Tools * Summer 2000 * Page 7

customers don’t want a long delay, but see
how much “extra” might be acceptable.
Many people don’t consider generating an
estimate option that lengthens the schedule
to see what effect it has unless they are
driven to it in an attempt to reduce cost or
staff size.

• You can only shorten a schedule three
ways. You can reduce the functionality
(reducing the effort by doing less), increase
the number of concurrent staff (but only if
there are tasks you could now do in parallel
to take advantage of this!), or keep the
number of staff constant but get them to
work overtime.

If you can’t reduce the functionality, choosing
one of the two remaining alternatives is going to
cost you. It might cost you a lot more than you
can afford to pay depending on just how much
you want to shrink the schedule (see Figure 3).
And it might not work! Remember the “adding
people to a late project only makes it later”
rule? Well, the same principle applies here – you
can add more people, but the amount of work
also goes up because you now have additional
communication and management overhead. If
you rely on a lot of overtime to reduce the
schedule, you have to remember that
productivity may increase in the short term but
will go down over the long term because people
will get tired and make more mistakes.

• There is a shortest possible schedule for any
project and you have to know what it is.
You can only shrink a schedule so far given
the functionality you are required to
implement, the minimum process you have
to follow to develop and test it, and the
minimum level of quality you want in the
output. Don’t even think of trying to beat
that limit!

• The shortest possible schedule may not be
achievable by you. To achieve the shortest
possible schedule your project team had
better all be highly skilled and experienced,
your development process had better be

well defined and mature, and the project
itself has to go perfectly. There are not many
organizations that can hope to make the
shortest possible schedule, so it’s better not
to aim for this. Instead, you need to
determine what your shortest achievable
schedule is (also known as the “nominal”
schedule). Data from past projects is your
best source of information here.

• Always keep in mind the accuracy of the
estimate you are attempting to adjust. If
your schedule estimate is currently “5 to 7
months” then a small change, for example 2
weeks, either way doesn’t mean much yet.
You can only adjust the schedule in
increments that have some significance given
the accuracy of the estimate.

It’s interesting to observe the reactions of
people learning to estimate projects who are
asked to do a number of different estimates for
a project using a variety of options. When they
analyze the results, most people are startled by
the consequences of different tradeoffs. For
example, the following tables provide 3 different
estimate options for a 75 KLOC project:

The difference between the nominal schedule
and the shortest schedule for the project is only
a little over two months, but to achieve the
shortest schedule the peak staff has to increase
by almost 10 people and the cost increases by
over $870,000! These results should cause
someone to ask if a 2-month decrease in the
schedule is worth the cost, and if 10 additional
people can be found in time to help achieve it.
For some projects, a schedule decrease may be
required at any cost; for others, it won’t be.

Not all projects have such dramatic differences
between estimate options, but the size-effort-
schedule-staff-cost relationship follows some
basic rules that you can’t circumvent. Having
various options available as you discuss a
project estimate ensures everyone involved can
see those basic rules in action and can make
properly informed decisions.

Project

Methods & Tools * Summer 2000 * Page 8

Nominal Plan

Management Metric
Planning
Value

Effort (staff months) 40

Schedule (calendar
months)

12.4

Cost $605,868

Peak Staff (people) 4.8

Average Staff (people) 3.2

Shortest-Schedule Plan

Management Metric Planning Value

Effort (staff months) 97

Schedule (calendar
months)

10.0

Cost $1,479,170

Peak Staff (people) 14.6

Average Staff (people) 9.8

Least-Cost Plan

Management Metric Planning Value

Effort (staff months) 14

Schedule (calendar
months)

16.2

Cost $212,131

Peak Staff (people) 1.3

Average Staff (people) 0.9

Figure 4 – Three different estimates for a 75
KLOC Project

The Trouble with Estimates

While effective software project estimation is
absolutely necessary, it is also one of the most
difficult software development activities. Why is
it so hard?

The following lists some of the things that make
it hard – and they’re things that we need to
overcome:

• Estimating size is the most difficult (but not
impossible) step intellectually, and is often
skipped in favor of going directly to

estimating a schedule. However, if you
haven’t thought through what you are being
asked to build you really don’t have a good
base from which to predict a schedule or to
evaluate how scope changes may affect the
schedule.

• Customers and software developers often
don’t really recognize that software
development is a process of gradual
refinement and that estimates made early in
a project lifecycle are “fuzzy”. Even good
estimates are only guesses, with inherent
assumptions, risks, and uncertainty, and yet
they are often treated as though they are
cast in stone. What can help is offering
estimates as a range of possible outcomes
by saying, for example, that the project will
take 5 to 7 months instead of stating it will
be complete on June 15. Beware of
committing to a range that is too narrow as
that’s about as bad as committing to a
definite date! Alternatively, you could
include uncertainty as an accompanying
probability value by saying, for example,
that there is an 80% probability that the
project will complete on or before June 15.

• Organizations often don’t collect and
analyze historical data on their performance
on development projects. Since the use of
historical data is the best way to generate
estimates for new work, it is very important
to establish some fundamental project
metrics that you collect for every project.

• It is often difficult to get a realistic schedule
accepted by management and customers.
Everyone wants things sooner rather than
later, but for any project there is a shortest
possible schedule that will allow you to
include the required functionality and
produce a quality output. You have to
determine what you can do in a given period
of time and educate all concerned about
what is and what is not possible. Yes, the
impossible has been known to happen from
time to time, but it’s rare and very costly,

Project

Methods & Tools * Summer 2000 * Page 9

and we count on it far more than it is
prudent to do so!

Maintenance & Enhancement Projects vs.
New Development

The software industry does far more
maintenance and enhancement work on existing
products than completely new development.
Most maintenance projects are a combination of
new development and adaptation of existing
software. Although the estimation steps outlined
above can still apply to maintenance and
enhancement projects, there are some special
issues that have to be considered such as:

• When sizing new development for a
maintenance project you have to keep in
mind that inserting this new functionality will
only be feasible if the product’s existing
architecture can accommodate it. If it
cannot, the maintenance effort must be
increased to rework the architecture.

• It’s tricky to attempt to size adaptation
work in the same manner as new work. An
experienced individual estimating
maintenance effort by analogy is a more
common approach than attempting to size
adaptation work in LOC or Function Points
and then converting size to effort (although
approaches to this have been discussed; for
example, see [Putnam 1992]).

• Estimation models that are calibrated to
produce effort and schedule estimates for
new development projects assume
everything is created from scratch. This isn’t
the case for maintenance projects where
you are modifying a certain amount of
existing documentation, code, test cases,
etc. Using these models may tend to over-
estimate maintenance projects.

• Often, maintenance work has fixed delivery
dates (e.g., a maintenance release every 6
months or once a year) and is done by a

fixed number of people (i.e., an allocated
maintenance team) so estimates have to deal
with fitting work into a fixed timeframe with
a constant staffing level.

Some existing estimation models do attempt to
address maintenance concerns. At the moment
though, there is a lot more support, guidance
and discussion available regarding new
development estimation than there is on
maintenance and enhancement estimation.
Hopefully this will change because so much help
is needed in this area.

Estimating Small Projects

Many people work on small projects, which are
generally defined as a staff size of one or two
people and a schedule of less than six months.
Existing industry-data project estimation models
are not calibrated from small projects and so are
of little or no use here unless they can be
adequately adjusted using an organization’s
small project historical data.

Estimates for small projects are highly
dependent on the capabilities of the individual(s)
performing the work and so are best estimated
directly by those assigned to do the work. An
approach such as Watts Humphrey’s Personal
Software Process (PSP) [Humphrey 1995] is
much more applicable for small project
estimation.

Estimating a “New Domain” Project

How do you estimate a project in a new
application domain where no one in your
organization has any previous experience? If it’s
a leading-edge (or “bleeding-edge”!) project,
no one else has any previous experience either.
The first time you do something you are dealing
with much more uncertainty and there is no way
out of it except to proceed with caution and
manage the project carefully. These projects are
always high risk, and are generally under-
estimated regardless of the estimation process

Project

Methods & Tools * Summer 2000 * Page 10

used [Vigder 1994]. Knowing these two facts,
you must (a) make the risks very clear to
management and customers, (b) avoid making
major commitments to fixed deadlines, and (c)
re-estimate as you become more familiar with
the domain and as you specify the product in
more detail.

Selecting a project lifecycle which best
accommodates the uncertainty of new-domain
projects is often a key step that is missing from
the development process. An iterative life cycle
such as the Incremental Release Model where
delivery is done in pieces, or the Spiral Model
where revisiting estimates and risk assessment is
done before proceeding into each new step, are
often better approaches than the more
traditional Waterfall Model.

Some Estimating Tips

• Allow enough time to do a proper project
estimate – rushed estimates are inaccurate,
high-risk estimates! For large development
projects, the estimation step should really be
regarded as a mini-project.

• Where possible, use documented data from
your organization’s own similar past
projects. It will result in the most accurate
estimate. If your organization has not kept
historical data, now is a good time to start
collecting it.

• Use developer-based estimates. Estimates
prepared by people other than those who
will do the work will be less accurate.

• Use at least one software estimation tool.
Estimation tools implement complex models
that would take significant time to learn to
apply manually. They also make sure you
don’t forget anything, and allow you to tune
an estimate quickly and relatively painlessly.

• Use several different people to estimate and
use several different estimation techniques
(using an estimation tool should be

considered as one of the techniques), and
compare the results. Look at the
convergence or spread among the estimates.
Convergence tells you that you’ve probably
got a good estimate. Spread means that
there are probably things that have been
overlooked and that you need to understand
better. The Delphi approach or Wideband-
Delphi technique [Boehm 1981] can be
used to gather and discuss estimates using a
group of people, the intention being to
produce an accurate, unbiased estimate.

• Re-estimate the project several times
throughout its lifecycle. As you specify the
product in more detail, your estimates
should begin to approach what you will
actually use to complete the project.

• Create a standardized estimation procedure
that all involved can and do buy into. That
way you can’t argue about the outputs, only
the inputs, and your effort is spent
productively understanding the scope and
cost drivers for the project.

• Focus some effort on improving your
organization’s software project estimation
process. As each project is completed,
compare actuals to estimates – how well did
you do in predicting the project’s effort and
schedule? What did you miss? Where could
you improve?

Software Project Estimation Tools

Estimation tools may be stand-alone products or
may be integrated into the functionality of larger
project management products. Estimation tools
may just support the size estimation process, or
just the conversion of size to effort, schedule
and cost, or both. Tools that support just size
estimation include LOC counters, Function
Point analysis programs, and even requirements
capture and management applications. This
section of this report just focuses on estimation
tools that are stand-alone products and support
the conversion of size to effort etc.

Project

Methods & Tools * Summer 2000 * Page 11

No estimation tool is the “silver bullet” for
solving your estimation problems. They can be
very useful items in your estimation toolkit, and
you should seriously consider using one (or
more), but their output is only as good as the
inputs they are given and they require you to
have an estimation and software development
process in place to support them. Beware of
any vendor claiming their tool is able to produce
estimates within +/- some small percentage of
actuals unless they also highlight all the things
you must be able to do in a predictable manner
and what must go right during a project to
ensure an estimate can be that accurate.

There are a variety of commercial and public
domain estimation tools available. Searching for
software project estimation tools on the web
isn’t as straightforward as one might expect. A
mix of keywords and search engines needs to
be used to discover about 80% of the tools and
web-sites where tool lists were available
identified the rest. Web-based information on
the capabilities and pricing of the tools is
variable and occasionally very superficial, so
some phone calls and email should be used to
augment what is gleaned from the web.

The following provides a summary of the
important features and criteria you should
consider when evaluating a software project

estimation tool. Figure 5 provides a context for
the discussion.

Price

Commercial estimation tools can be categorized
as either “for rent” (you pay an annual fee) or
“for purchase” (one-time fee), and they come in
3 price ranges: affordable ($1000 or less), mid-
range ($1001-$5000), or expensive ($5001 to
$20000 or more). Probably only larger
organizations or large projects would consider
the mid-range or high-priced tools.

The tools under $1000 implement non-
proprietary models published by others (e.g.,
COCOMO) and may lack some of the
functionality and extensive support of the
expensive options, but can still generate more
than adequate estimates.

Platform and Performance

Does it run on your current hardware/software?
Does it run on more than one platform? How
much RAM and disk space is required? Will its
database handle the amount of historical data
and the size and number of project estimates
you will be entering?

Constraints & Priorities

Schedule
Project

Estimation
Tool

Effort

Cost

Size
Estimation

(Tool)

Other Cost Drivers

Exported data

 Imported Data

Reports

Requirements

Figure 5 – Estimation Tool Context

Project

Methods & Tools * Summer 2000 * Page 12

Ease of Use and Documentation

Can you generate an initial project estimate
easily the first time you use the tool, or do you
have to study the underlying model in detail for
days first learning all the acronyms and struggling
with attribute definitions? Can you tailor your
estimates easily? Do the user manual and help
text provide an understanding how to use the
tool to generate project estimates, as well as a
simple list of what general functionality the tool
possesses? Is sample project data available?

Networking Capability

Is there a common, shared database so that
multiple users can access and add to the
historical project data, and view or update
estimates (assuming this is important to you)?

Upgrades

Model data shouldn’t be static – as new
programming languages and new development
paradigms appear, as different kinds of
development projects are studied, updates to
the model data in the tool should be made. Does
the vendor make model updates available to
customers? Is the vendor committed to making
continuous enhancements that offer new
functionality and support new platforms etc.?
What do these upgrades cost?

Support

It is important to understand that although
estimation tools are becoming more affordable
and easier to use, the model(s) they implement
are quite complex and you may have questions
or need some guidance now and then. Does the
vendor provide technical support and a means
for asking “how to” questions? Does the vendor
offer estimation training courses that extend
beyond just how to use the tool or can they
recommend supporting courses and
training/reading material?

How Scope/Size is Specified

Flexibility is the key – you may start out
estimating a project’s size a certain way, but as
you learn more about the specification of a
particular product or as you become more
skilled at estimating and branch out into other
sizing techniques, you want a tool that supports
your needs.

What options does the tool provide to specify
the size estimate? Can you enter either LOC or
Function Points? Can you specify GUI
components, number of classes/methods or
modules/functions? Is the size value entered
merely as a single number (e.g., 55000 LOC;
345 Function Points), a range of numbers (e.g.,
Low: 45000 LOC; Expected: 55000 LOC;
High: 65000 LOC), or can the size estimate be
divided into a number of “modules” or “work
packages” that you estimate in whichever way
suits that particular component?

Estimation Model(s) Supported

Some tools use one or more proprietary models
where little detailed information is published;
others use non-proprietary models where you
can purchase a book and/or download detailed
information from the web to learn more. It takes
a lot of resources to develop a sophisticated
model of software development so its not
surprising that there is only a handful of models.

Regardless of how much you can learn about
the tool’s internal algorithms, what you must
determine is whether or not the estimates
generated by the tool are useful in estimating
your organization’s type of software
development projects. Parametric models
typically have a bias – for example, some suit a
military development process while others suit
commercial development.

The only way to quickly become confident that
a tool can give you valuable results is to obtain
an evaluation or demo copy and estimate
previous projects where actuals are known.

Project

Methods & Tools * Summer 2000 * Page 13

Compare the estimates from the tool with what
you know about previous projects and see if the
results are “in the ballpark”.

Assess whether the tool allows you to capture
historical information on your past projects and
how it requires you to enter it. Some tools can
be calibrated to your projects only by modifying
the underlying model data (i.e., you have to
derive the values yourself); others allow you to
simply enter project metrics like actual size,
effort, schedule and then the tool derives the
model data changes.

Does the tool support the estimation of
maintenance & enhancement projects? Does it
have support for object-oriented, COTS,
software re-use or other issues important to
your projects?

Other Cost Drivers

The models generally allow you to specify
values for a number of cost, or productivity
drivers (e.g., staff capabilities and experience,
lifecycle requirements, use of tools, etc.) in
order to tailor the estimate to your organization
and your project’s particular situation. What
cost drivers are available and are the values you
can set them to useful for your situation?

Constraints and Priorities

Does the tool allow you to specify constraints
(e.g., Maximum Schedule=12 months; Peak
Staff=10) when calculating an estimate? Does
the tool allow you to specify priorities (e.g.,
“Shortest possible schedule has highest
priority”; “Lowest number of staff has highest
priority”) when calculating an estimate?

Outputs Generated

Look for a tool that has functionality which
shows options, probabilities and ranges. Tools
using Monte Carlo simulation to generate
estimates with different probabilities provide

interesting insight into the volatility of the
development process.

Reports should help you clearly present and
discuss estimate options with customers and
management. What kinds of reports are
generated and are they useful to you? Can you
obtain a softcopy of the reports so that you can
add material to them or include them easily in
other project documents you generate?

Import/Export Capability

Possible imports include things like module-by-
module size estimates, historical project data,
and updated model data. Possible exports
include schedule, WBS, and staffing information
to project management software like MS-
Project or to a spreadsheet program like Excel.

Conclusion

There is no quick fix that will immediately make
us better estimators and users of estimates.
Effective estimates come about as a result of
process definition and improvement, education
and training, good project management, use of
proper tools and techniques, measurement,
sufficient resources, and sheer hard work.

Depending on what the situation is when you
start, and how long a typical project lasts in your
organization, it could be several years before
you’ve had enough time and project cycles to
establish the basics from which better estimates
are consistently made. Trying to set up
everything in a week is equivalent to trying to
build Rome in a day.

But don’t be discouraged by this! There are
things you can do right now to make a
difference to your current project, and there are
actions you can take to make your next project
better.

Assuming you are past the planning stage of
your current project and you have little time to

Project

Methods & Tools * Summer 2000 * Page 14

spare, here are some important actions you can
take on this project to start improving your
estimation process:

• Re-estimate the project at several key
stages (e.g., after completion of
requirements specification, after completion
of architectural design, after completion
detailed design).

• At the end of the project, record the actual
values (or get as close as you can) for size,
effort, schedule, cost, staffing. Start your
historical database.

• At the end of the project, review your
estimate(s)/actuals and evaluate what you
did right and how you might improve in
future. Use what you learn here the next
time you estimate.

Here are some important actions you can take
for your next project:

• Review the current state of your software
development process – is it chaotic, or does
it have some order and structure that you
generally follow? If it is chaotic to start with,
or your process breaks down under
pressure and you expect that to happen on
this project, then any estimate you make had
better take that into account. Even better,
try to reduce the amount of chaos.
Establishing a predictable development
process isn’t something you can do
overnight, but every little bit of work you do
in this area will help allow for better
estimates and better project control.

• Create a first draft of an estimation
procedure document and follow the
procedure when estimating. See what works
and what doesn’t, and adjust as necessary.
Note that there are templates around for
creating such a document so you don’t have
to start from scratch.

• Allow enough time to do proper project
estimates

• Decide when you should re-estimate the
project and put tasks/milestones for re-
estimation into the project plan

• Start the education of managers and
customers regarding the accuracy of
estimates. Offer estimates as ranges, and
explain the uncertainty and risks associated
with them.

• Follow as many of the other estimation tips
given earlier in this report as you can.

Try to make time to:

• work on defining, documenting and/or
improving your software development
process. A clearly defined, predictable
development process is required so that
your project estimates can be made on a
firm development foundation. There are
document templates and process definition
guidelines, consultants and courses available
to help you in this.

• investigate project estimation tools and use
one (or more).

Small improvement steps, taken with care and
attention, will lead you down the road to better
project estimation and planning. In fact, taking
small steps is often the only way to ensure
permanent change occurs.

Project

Methods & Tools * Summer 2000 * Page 15

References

General Reading (includes Estimation and
Project Planning)

• DeMarco, Tom, Controlling Software
Projects, Prentice-Hall, 1982

• Goether, Wolfhart B., Elizabeth K. Bailey,
Mary B. Busby, Software Effort and
Schedule Measurement: A framework for
counting Staff-hours and reporting
Schedule Information,
CMU/SEI-92-TR-021, 1992,
http://www.sei.cmu.edu/publications/docum
ents/92.reports/92.tr.021.html

• Humphrey, Watts, A Discipline for
Software Engineering, Addison-Wesley,
1995

• McConnell, Steve, Rapid Development –
Taming Wild Software Schedules,
Microsoft Press, 1996

• McConnell, Steve, Software Project
Survival Guide, Microsoft Press, 1998

• Vigder, M.R. & A.W. Kark, Software
Cost Estimation and Control, 1994,
http://wwwsel.iit.nrc.ca/abstracts/NRC3711
6.abs (full text available)

Sizing Lines of Code

• R. Park, Software Size Measurement: A
framework for counting source
statements, CMU/SEI-92-TR-20, 1992,
http://www.sei.cmu.edu/publications/docum
ents/92.reports/92.tr.020.html

Function Points

• Dreger, Brian, Function Point Analysis,
Prentice-Hall, 1989

• Garmus, David & David Herron,
Measuring the Software Process,
Yourdon Press, 1996

• Jones, Capers, Applied Software
Measurement: Assuring Productivity and
Quality, McGraw-Hill, 1991

• Jones, Capers, What are Function Points,
1997,
http://www.spr.com/library/0funcmet.htm

• Symons, Charles, Software Sizing and
Estimating: Mark II Function Point
Analysis, John Wiley, 1991

• International Function Point Users Group
(IFPUG) web site: http://www.ifpug.org

• A function point FAQ:
http://ourworld.compuserve.com/homepage
s/softcomp/fpfaq.htm

Estimation Models

• Boehm, Barry, Software Engineering
Economics, Prentice-Hall, 1981 (original
COCOMO)

• Putnam, Lawrence & Ware Myers,
Measures for Excellence: Reliable
Software on Time, Within Budget,
Yourdon Press, 1992

• Putnam, Lawrence & Ware Myers,
Industrial Strength Software: Effective
Management using Measurement, IEEE
Computer Society, 1997

• COCOMOII web site:
http://sunset.usc.edu/COCOMOII/cocomo.
html

Other Estimation Tool Summaries &
Discussions

• Douglis, Charles, Cost Benefit Discussion
for Knowledge-Based Estimation Tools,
1998,
http://www.spr.com/html/cost_benefit.htm

• Giles, Alan E. & Dennis Barney, Metrics
Tools: Software Cost Estimation, 1995,
http://www.stsc.hill.af.mil/CrossTalk/1995/j
un/Metrics.html

• Software Cost Estimation Web-Site
(SCEW),
http://www.ecfc.u-net.com/cost/index.htm

• Parametric Cost Estimating Reference
Manual,
http://www.jsc.nasa.gov/bu2/resources.html

• DoD Data & Analysis Center for Software,
http://www.dacs.dtic.mil

All rights reserved.

About the Author

Kathleen Peters is a senior consultant with
Software Productivity Center Inc. (SPC)
Kathleen has an M.Sc. in Computing Science
and more than 15 years of industry experience
developing software and managing projects.
She also teaches at Simon Fraser University in
British Columbia, Canada.

Kathleen is editor of SPC's free, biweekly e-
newsletter E-ssentials!, which contains how-to's
for successful project management and practical
software development. Subscribe at
http://www.spc.ca/resources/essentials/index.htm

Testing

Methods & Tools * Summer 2000 * Page 16

There are five main risk areas in E-Business
(EB) system development. These risks relate to
usability, performance, security, availability and
functionality. These risks are not new. What is
new is that functionality may not be the biggest
concern and the shift in risk from functionality
towards non-functional issues is dramatic. Most
EB systems are simple (at least from the users’
perspective) and the four non-functional areas
present a challenge to business and testers.

The pace of development on the web is
incredibly quick. ‘Web-time’ describes the
hustle that is required to create and maintain EB
momentum. Unfamiliar risk areas, rapid
development, uncontrollable user base, new
tools and techniques present the tester with a
real headache.

What are the imperatives for EB testers? To
adopt a rapid response attitude. To work
closely with marketers, designers, programmers
and of course real users to understand both user
needs and the technical risks to be addressed in
testing. To have a flexible test process having
perhaps 20 different test types that cover each
of the most likely problems. To automate as
much testing as possible. These are the main
planks of our EB Test Strategy.

Whether homegrown or proprietary, the
essential tools are test data and transaction
design; test execution using the programmer and
user interfaces; incident management and control
to ensure the right problems get fixed in the right
order. Additional tools to validate HTML and
links, measure download time and generate
loads are all necessary.

To keep pace with development, wholly manual
testing is no longer an option. The range of tools

required is large but thankfully, most are now
widely available.

This paper presents an overview of the risks of
E-Business and a framework for creating an E-
business Test Strategy. The second part of this
two-part paper will describe a collection of E-
Business techniques and tools in detail.

1. Introduction

1.1 E-Business, E-Commerce and
 Everything Else

Before we go any further, let’s get some
definitions clear. The E-phenomenon is
immature and vendors are generating new E-
definitions thick and fast. We’ve taken, as at
least an independent authority, the whatis.com
definitions:

E-Commerce The buying and selling of goods
and services on the Internet,
especially the web.

E-Business The conduct of business on the
Internet which includes:

• buying and selling plus
servicing customers (internet)

• collaborating with partners
(extranet)

• internal work and information
flow (intranet).

1.2 Current State of E-Business Testing
 Experience

At a recent conference (February 2000) I asked
a group of 190 testers a series of questions and
asked for a show of hands.

Risk-Based E-Business Testing - Part 1 Risks and Test Strategy

Paul Gerrard, paulg@evolutif.co.uk Systeme Evolutif Ltd. www.evolutif.co.uk
9 Cavendish PlaceLondon W1M 9DL, UK

Tel: +44 (0)20 7636 6060, Fax: +44 (0)20 7636 6072

Testing

Methods & Tools * Summer 2000 * Page 17

The table below summarizes the responses:

Question % Yes
Use the web regularly? 100
Bought products or services online? 50
Experience of working on an E-
Commerce or E-Business system
that is now in use?

<5

Planning to build an E-Commerce
system?

25

Planning to build an E-Business
system?

30

Experienced problems when using a
web site?

100

What interpretation can we put on these figures?
Perhaps that the ‘first generation’ of E-Business
systems did not involve the professional testers
employed by user IT organizations. Perhaps
these web sites were not tested adequately at
all?

People abandon Web sites for all of the
following reasons:

• Sites are difficult to use.

• Sites are too slow to respond.

• Sites were not trusted to be secure.

• Web pages broke (page not found etc.)

• Goods or services ordered were late,
incorrect or never arrived.

Reference 1, Winning the On-Line Customer,
Boston Consulting Group, (www.bcg.com)
presents some startling statistics concerning the
quality of E-Business systems, the response of
users and the potential impact on suppliers. For
example:

• 4 out of 5 E-Commerce purchasers have
experienced failures.

• 28 percent of all online purchases fail.

These statistics make sobering reading.
Not only could a poor E-Business site fail to
gain more business. They could affect the

business done by your bricks and mortar
stores.

1.3 ‘Web time’

It might be regarded as hype, but there is no
denying it, in some environments, ‘Web time
passes 5-7 times as fast’. What does this mean?

The notion of Web time could be summarized as
follows:

• There are significant technology shifts every
six months. The products you are using
today may not have existed six months ago.
The developers using these products are
inexperienced.

• In some organizations, the E-Business
projects may be owned and managed by
non-computer experts. Software
development is out; web publishing is in.

• Those working in the dotcom environments
experience this phenomenon particularly
acutely. The sprint to market dominates
every other objective. There are many
precedents that suggest that in an immature
market, getting to market first means that
you may dominate the market. In this kind
of environment, does quality come second?

• There are obvious cultural, practical,
technical and schedule obstacles to
implementing thorough quality assurance and
testing practices.

1.4 The E-Business Testing Challenge

Testers are used to working in time-pressured
projects, without requirements, using unfamiliar
technology in cultures that prefer to code first
and plan second. But testers have rarely
encountered all of these difficulties
simultaneously.

This is the E-Business Testing challenge:

• Identify and address risks quickly and gain
consensus on the overall test approach.

Testing

Methods & Tools * Summer 2000 * Page 18

• Develop and implement flexible test
strategies that address the risks of most
concern.

• Devise new test techniques and methods
that address the particular constraints of E-
Business technologies.

• Make best use of test automation in every
area of test activity.

• Provide thorough test evidence to help
stakeholders to make the correct release
decision.

1.5 Risk-Based Approach to Testing

If we believe the computer press, the E-
Business revolution is here; the whole world is
getting connected; that many of the small start-
ups of today will become the market leaders of
tomorrow; that the whole world will benefit from
E-anyWordULike. The web offers a fabulous
opportunity for entrepreneurs and venture
capitalists to stake a claim in the new territory –
E-Business. Images of the Wild West, wagons
rolling, gold digging and ferocious competition
over territory give the right impression of a gold
rush.

Pressure to deliver quickly, using new
technology, inexperienced staff, into an untested
marketplace and facing uncertain risks is
overwhelming. Where does all this leave the
tester? In fast-moving environments, if the tester
carps about lack of requirements, software
stability or integration plans they will probably
be trampled to death by the stampeding project
team.

In high integrity environments (where the
Internet has made little impact, thankfully),
testers have earned the grudging respect of their
peers because the risk of failure is unacceptable
and testing helps to reduce or eliminate risk. In
most commercial IT environments however,
testers are still second-class citizens on the
team. Is this perhaps because testers, too often,
become anti-risk zealots? Could it be that

testers don’t acclimatize to risky projects
because we all preach ‘best practices’?

In all software projects, risks are taken. In one
way, testing in high-integrity environments is
easy. Every textbook process, method and
technique must be used to achieve an explicit
aim: to minimize risk. It’s a no-brainer. In fast-
moving E-Business projects, risk taking is
inevitable. Balancing testing against risk is
essential because we never have the time to test
everything. It’s tough to get it ‘right’. If we don’t
talk to the risk-takers in their language we’ll
never get the testing budget approved.
So, testers must become expert in risk. They
must identify failure modes and translate these
into consequences to the sponsors of the
project. “If xxx fails (and it is likely, if we don’t
test), then the consequence to you, as sponsor
is...” In this way, testers, management, sponsors
can reconcile the risks being taken to the testing
time and effort.

How does this help the tester?

• The decision to do more or less testing is
arrived at by consensus (no longer will the
tester lie awake at night thinking: “am I
doing enough testing?”).

• The people taking the risk make the
decision consciously.

• It makes explicit the tests that will not be
done – the case for doing more testing was
self-evident, but was consciously overruled
by management.

• It makes the risks being taken by the project
visible to all.

Using risk to prioritize tests means that testers
can concentrate on designing effective tests to
find faults and not worry about doing ‘too little’
testing.

What happens at the end of the test phase,
when time has run out and there are outstanding
incidents? If every test case and incident can be
traced back to a risk, the tester can say, “At this
moment, here are the risks of release”. The

Testing

Methods & Tools * Summer 2000 * Page 19

decision to release needn’t be an uninformed
guess. It can be based on an objective
assessment of the residual risk.

Adopting a risk-based approach also changes
the definition of ‘good’ testing. Our testing is
good if it provides evidence of the benefits
delivered and of the current risk of release, at an
acceptable cost, in an acceptable timeframe.
Our testing is good if, at any time during the test
phase, we know the status of benefits, and the
risk of release. No longer need we wait a year
after release before we know whether our

testing is perfect (or not). Who cares, one year
later anyway?

1.6 The Shift in Project Risks

In a recent IT project (figure 1), we conducted
an early risk assessment to help the testers
prioritize the testing and we identified 28 risks of
concern. Of these, 21 related to the functionality
of the product. This is typical of a traditional
system development. In a recent E-Business
project (figure 2), we identified 63 product risks
of concern., only 10 of the risks related to
functionality. In all E-Business projects, the

Fu
nc

tio
na

lity

Per
fo

rm
an

ce

Sec
ur

ity

Usa
bil

ity

Ava
ila

bil
ity

Ope
ra

bil
ity

0

5

10

15

20

25

Figure 1 – Risks in a recent IT project

Fu
nc

tio
na

lity

Per
f/R

es
ilie

nc
e

Sec
ur

ity

Plat
for

m
 Is

su
es

Int
eg

ra
tio

n

Lo
ca

lis
at

ion

Usa
bil

ity

In
fra

st
ru

ct
ur

e

Pos
t-D

ep
loy

 A
va

il.
0

2

4

6

8

10

12

14

Figure 2 – Risks in a recent E-Business project

Testing

Methods & Tools * Summer 2000 * Page 20

issues of Non-Functional problems such as
usability, browser configuration, performance,
reliability and security dominate people’s
concerns. We used to think of software product
risks in one dimension (functionality) and
concentrate on that. The number and variety of
the risks of E-Business projects forces us to
take a new approach.

There has been a shift in risks associated
with E-Business projects and this forces us
to reconsider how we address risk in
testing. We need to spend time identifying
the risks to:

• Help us prioritize what we need to do in
our testing and

• Raise the visibility of the risks that are
being taken by the project.

2. Web Risks

2.1 Web Failures

To help us understand the nature of risks facing
the E-Business project, here are a few examples
of problems reported recently on both sides of
the Atlantic.

• A book publisher found that its system sent
out books with blank labels because the
address information was not carried through
to the dispatch department, although
customer credit cards were being debited.

• Many web sites advertise prices that include
postage and packing. There are several
reports of sites that assumed customers
would be based in the home country.
However, anyone in the world can access
these sites and place an order to be
delivered half way across the planet.

• A recruitment consultancy invited applicants
to post their résumés on the web site but
didn’t provide facilities to manage them.
They received thousands, but ended up
trashing them.

• An airline advertised cheap tickets, but
didn’t remove the web pages when the

promotion ended. Customers continued to
demand cheap tickets. One successfully
sued the airline when they were refused the
special deal.

• A health-food wholesaler offered trade
prices on their web site, but failed to direct
retail customers to their local outlet. How
many folk want 100 boxes of dried apricots
at once?

2.2 Web Site as a Retail Store

It is a convenient analogy to compare a web site
to a retail store. Just like a high street store,
anyone can come in to browse or buy. The
store is open to all including minors, foreigners,
hackers, crooks and terrorists.

If your site gives good service, customers will
come back again and again. If the buying
experience is good, they will remember and use
your store regularly. However, they won’t come
back if:

• The door is locked (your servers are down).

• It is difficult to find the product required (the
product catalogue is out of date, incomplete
or inaccurate).

• They get easily lost in the store (the site is
difficult to use).

• Service is slow; there is a queue at the
checkout (performance is poor).

• They feel that they can’t trust the staff (the
site feels insecure).

One of the most disturbing findings of the BCG
report (reference 1) was that many customers
wouldn’t give you a second chance. Where a
user experienced problems at a web site:

• 28% said they stopped shopping at that
web site.

• 23% said they stopped buying at that web
site.

• 6% said they stopped buying at the
company’s bricks and mortar stores.

Testing

Methods & Tools * Summer 2000 * Page 21

The message to E-Business companies is
clear: Improve the reliability and usability
of your web site and give the customer a
comfortable, fast, efficient and secure
buying experience.

2.3 But Many of the Risks are Outside
Your Control

Here is a summary of the risks that threaten your
EB system. Many are outside your control, but
may affect the customers’ experience.

Unlimited potential users

There are virtually an infinite number of users
who could visit your web site, browse and buy
your products. You servers may be perfectly
able to support 1000 visitors per hour, but what
if your marketing campaign is exceptionally
successful? Could your technical infrastructure
support 5,000 users, 10,000 or 10 million?

Dependency on Internet Service Providers
(ISPs)

Many web sites are hosted on servers operated
and maintained by ISPs. Can you rely on these
companies to provide the support you may have
grown use to in your internal data centers?

You have no control over client platforms

Most users of the web have ‘traditional’
hardware such as PCs, Macintosh or Unix
workstations. However, many users of the
Internet in future will use technology that is either
available now on the horizon. WebTV, mobile
phones, and PDAs are all being promoted as
alternatives to existing browser based devices.
Cars, fridges, Internet kiosks and many other
Internet capable devices will be marketed in the
next few years. Could your current web
developments accommodate these future
platforms?

You have no control over client configuration

Just like the new Internet-ready devices that
have different screen sizes and resolutions, your
web site may have to accommodate unusual
user configurations such as very large or very
small screens. Further, PCs and browsers can
be configured with foreign character sets. Will
your back-end systems and databases accept
these unusual local character sets?

You have no control over client software

Visitors to your web site may have any
operating system, any version and in any
condition. If you have children who share your
home PC, you’ll know all about the problems
caused by curious kids installing games, deleting
files and fiddling with control panels. But beyond
the state of the operating system, the user has a
large choice of browser technologies. Microsoft
Internet Explorer and Netscape dominate the
market, but there are many, many other
products available.

Visit http://browserwatch.internet.com for a
comprehensive list of browsers. There are over
20 that run under Windows, some are non-
graphic (e.g. Lynx). Other obscure browsers,
such as Cello for example
(http://www.law.cornell.edu/cello/), run on
machines with extremely limited configurations
(2MB of RAM on a 386SX-16!)

Your users may not have required plug-ins

Does your application demand that users have
plug-ins? Common or not, not all users will have
the required plug-ins (or versions) required. If
your site depends on Adobe Acrobat, Flash! or
an up to date version of the Java Virtual
Machine to operate correctly – not all users
appreciate being asked to download the
software required. Some may refuse. In this
case, will your application still work? How will
your user know this? What happens if they
refuse the download, or it fails to install?

Testing

Methods & Tools * Summer 2000 * Page 22

The context of web transactions is a risk area
The HTTP protocol is stateless. What this
means is that under normal conditions, every
request to a web server is treated as an
independent, autonomous, anonymous
transaction. The server cannot link series of
messages from a single client machine without
some further information. Typical methods are
cookies (see below) and hidden fields on
HTML forms. Cookies can be rejected or time
out. Web transactions can be interrupted
through loss of network connection, a visit to
another web domain or using the browser back
and forward buttons.

Cookies can be a problem

Cookies are a common method for holding web
site-specific data on the client machine. Cookies
are typically small amounts of data written to the
client machine’s hard drive to hold personalized
data or information that contains data to be
carried through web pages as they are
navigated. However, the mainstream browsers
can be configured to warn the user when these
are being requested by the web sites visited.
Some users may allow and ignore them, some
want to be reminded when they are invoked,
some will reject them. Will your application
work, if cookies are rejected?

Network connections

If your web site provides business-to-business
services, it is likely that your customers access
the web via a high-speed local network and the
customer’s site may have a direct connection to
the Internet. In this case, the download speed of
web pages, even large ones may never be a
problem. However, business people working
from home, and the vast majority of consumer
customers will use a dial up connection and
modem. The relatively slow speed of modems
dramatically slows the pace of page downloads,
particularly those containing large images. The
perceived ‘slow speed of the web’ is usually
due to over-large images that have not been
optimized. This is a very serious consideration –

slow web sites are unpopular and many people
lose patience and leave them prematurely.

Firewalls may get in the way

There are some situations where the
configuration of a customer’s firewall can cause
your site to be unusable or inaccessible.
Whether your site is ‘banned’ by the customer
network administrator, or the settings of your
web servers conflict with the remote firewalls,
your site may be unusable.

Anyone can ‘walk in’

Just like a real shop, your web site is open to
the public. Users can be experts or hackers but
they are always unknown to you. Anyone on the
web is a potential customer, but you don’t see
them and they don’t see you. Some may be
under-age. How can you tell if a 10 year old
places an order with their parent’s credit card?
How would you know that you were selling
alcohol to minors?

Usability is now a prime concern

Your site is unlikely to be documented. Your
users are almost certainly untrained. If the site is
hard to use, they’ll go elsewhere. What is your
experience of web sites? If you find it difficult to
navigate, confusing, unpleasant to look at, time
consuming, slow on more than one occasion,
you may have just given up. Maybe you didn’t
even reach the functionality that was designed to
help you place an order or find information. The
user experiences good or appalling usability at
the front door of the web site so usability is now
a make-or-break issue for your EB
developments.

Internationalization

Once your web site is up and running, anyone
on the planet who has the technology can visit
and use your site. If you are offering an
international service or delivery this is a fabulous
opportunity. However, people in foreign

Testing

Methods & Tools * Summer 2000 * Page 23

countries may have to use their own language.
Many will not appreciate ‘obscure’ address
formats. They may wish to pay in local
currencies. They may have their own local tax
arrangements.

3. EB Test methodology and the W-Model

The EB test methodology that we will present in
this paper is a natural extension of our W-
Model view of testing.

To many software engineers and development
managers, testing is the last phase of the
development life cycle. However, waiting until
after executable software has been built is the
most costly and least effective way of
performing testing.

The belief that tests can only be run against
executable software is, frankly, wrong. There
are test techniques that can be applied
throughout the entire development life cycle,
even as early as the requirements gathering
stage. These techniques are not only cheaper
than dynamic testing, but they also avoid wasting

money on building the wrong system. Defect
prevention is cheaper than defect correction.

Testing is least costly and most effective if it is
performed throughout the whole life cycle, in
parallel with every stage of development. This
strand of testing in parallel with development is
represented in the W model.

For those who are familiar with the V model, the
W model is a natural evolution. The V model
illustrates the layered and phased nature of
software testing, but lists only dynamic test
stages like unit and system testing. Some
variations also include early preparation of test
cases. The W model, by contrast, supports
testing of all deliverables at every stage of the
development life cycle.

The W-model promotes the idea that for every
activity that generates a project deliverable,
each of those deliverables should have an
associated test activity. This is certainly not a
new idea. Where it differs from the V-model is
that it promotes both static testing of early
document or code deliverables and dynamic test
stages of software deliverables.

Acceptance
Test

Code

Build
Software

Install

Unit Test

Write

Logical
Design

Physical
Design

Test the

Test the
Design

Test the
Specs

Integration
Test

System
Test

Build
System

RequirementsRequirements

Figure 3. The W Model

Testing

Methods & Tools * Summer 2000 * Page 24

Evolutif doesn’t suggest that dynamic testing is
obsolete, only that testing has to start right up
front during requirements definition. The effect is
a dramatic reduction in faults found in dynamic

testing (the faults are removed earlier, before the
wrong code is written), fewer faults found in live
running, and certainty that the delivered system
meets requirements.

Acceptance
Test

Code

Build
Software

Install

Unit Test

Write

Logical
Design

Physical
Design

Test the

Test the
Design

Test the
Specs

Integration
Test

System
Test

Build
System

RequirementsRequirements

Requirements
Animation

Behaviour
Analysis

Scenario
Walkthroughs

Reviews

Inspections

Early
Test Case

Preparation

Inspections Static
Analysis

Figure 4 – Static test in the lifecycle

Acceptance
Test

Code

Build
Software

Install

Unit Test

Write

Logical
Design

Physical
Design

Test the

Test the
Design

Test the
Specs

Integration
Test

System
Test

Build
System

RequirementsRequirements

Features
Testing

Performance,

Testing
Volume, Stress

Restart & Recovery

Testing
 Installation

Path
Testing

Loop
Testing

Input Validation
Testing

Multi-user
Testing

Security
Testing

Equivalence Partitioning
Boundary Value Analysis

Cause-effect Graphing

Transaction Flows

Figure 5 – Dynamic test in the lifecycle

Testing

Methods & Tools * Summer 2000 * Page 25

TotalTesting™ is Evolutif’s implementation of
the W model. It encompasses a range of static
test techniques – like behavior analysis,
requirements animation, scenario walkthroughs,
document reviews and inspections – as well as
dynamic testing and early preparation of
dynamic test cases.

Figures 4 "Static tests in the lifecycle" identifies
the most commonly available static tests that are
useful in the testing of requirements, designs,
code and test plans, perhaps).

Figures 5 "Dynamic tests in the lifecycle"
presents the most commonly used dynamic tests
that are appropriate for testing components,
sub-systems or entire systems. This includes of
course, the many non-functional types of testing.

The value of the W-model approach is that it
focuses attention on all project deliverables. By
matching the deliverables with product risks, the
types of testing required to be incorporated into
the test strategy can be quickly organized into
the test process.

We have used the W-model approach to
identify types of test for the various deliverables
of E-Business projects and to build a collection
of techniques structured into a generic testing
framework that we believe should help testers
address the E-Business testing challenge.

4. E-business test Strategy

4.1 Specialist Knowledge and the New
 Test Techniques

Testers need more than a minimal technical
knowledge to plan, specify, execute and analyze
tests of Internet based systems. The technical
details of how the web works are easy to obtain
– there are now hundreds of books covering
HTML, CGI, Java, ASP and the rest of the
many concepts, terms and technologies. The
knowledge seems easy to acquire, but where
does an E-Business tester’s knowledge start?

The more difficult question is, “where does it
stop?”

The list of topics listed in are a minimum set of
terms and concepts that the E-Business tester
should be familiar with. Beyond the most basic
issues, there are a number of more advanced
topics that the tester should have at least a
passing familiarity.

Some of the test techniques need a perhaps
programmer’s level of knowledge. This is
an unfortunate consequence of working in a
rapidly changing technical environment. In
particular, the tester needs to know where
sub-system (developer) testing stops and
system testing starts.

4.2 Testing Considerations

Here are some broad issues that need to be
considered when formulating the E-business test
strategy. If testing is to keep pace with
development, we need to squeeze the testing
into the develop/release cycle.

Automation-focused approach

Design tests to be automated from the start.
There won’t be enough time to automate manual
tests later. Plan all tests once only and reuse as
regression tests. Where there is dramatic change
in the user interface, consider using test drivers
(below) to do the bulk of functional tests.

Consider working with developers to help them
automate their tests and your own. If you are all
using the same tool, the transition between
development and system testing will be
smoother. Developers can more easily
reproduce the faults reported by later system
testers if there is common test technology.

Developer testing

Consider tying in tests to developer code
check-in/check-out procedures. Firstly, this will
ensure that they do some testing and secondly, a

Testing

Methods & Tools * Summer 2000 * Page 26

trusted set of regression tests will be maintained
throughout the development.

Reference 2, Extreme Programming Explained,
Kent Beck, ISBN 0-201-61641-6, promotes a
set of disciplines for developers that encourage
them to do significantly more and better testing.
Pair programming, continuous automated
testing, permanently maintained regression
testing all combine to improve the development
test process if (and it’s a big if) the developers
are prepared to work this way.

Consider asking the developers to use a variety
of browsers (and versions) for their testing.
Rather than using the company’s chosen
browser, encourage them to use Internet
Explorer, Netscape or their favorite browser
because using a variety of browsers can help to
flush out compatibility problems across the
different browser types. You may be able to
eliminate later configuration testing!

Consider using test drivers

From the point of view of the user interface,
Web applications are often relatively simple
compared to traditional client/server or
mainframe based systems. However, the user
interface of Web applications is sometimes the
very last thing to be developed and the
integration of automated tools with browser-
based applications is not always perfect, so
consider using test drivers to execute functional
tests of server based code.

The general recommendation with Web
applications is to place as much functionality on
servers, rather than the client browser. Where
the Web is being used as a front-end to existing
legacy systems, the testing of the back-end
systems is as complicated as ever. Consider
testing the back end functionality using the
application programmer’s interface (API). Test
drivers are often very simple programs that
accept test data, construct the call to the server-
based code, execute the transactions and store
the results for later evaluation. Some drivers can

be enhanced to perform simple comparisons
with previously run benchmarks.

There are a limited number of proprietary tools
that can help, but you should consider writing
your own in a few hundred lines of Visual Basic,
Perl or C++ etc.

4.3 Using a Test Process Framework to
 Build Your Test Strategy

The E-Business Test Process Framework
(Table 2) is an attempt to provide a framework
for testers to construct their own test process
from an assessment of risks faced by their
project. (The risk assessment methodology that
we use in our projects is not described in this
paper). Based on an assessment of E-business
product risks, the test types listed in the first
column would be selected to address each risk
in turn. The structure of the test process table is
intended to help you to construct the detailed
test stages from the test types.

Each risk can be transformed into a test
objective to be addressed by the test types.

Test types are grouped into five categories

To address the risks of the E-Business project,
we have identified 19 distinct test types. Each
type of test addresses a different risk area. The
purpose table 2 is to provide a framework for
constructing your own project-specific test
process. The test types are grouped into five
main categories:

• Static testing

• Test Browsing

• Functional Testing

• Non-Functional Testing

• Large Scale Integration.

These reflect the nature of the test activities
themselves. For example, static tests are those
relating to inspection, review or automated static
analysis of development deliverables.

Testing

Methods & Tools * Summer 2000 * Page 27

Tests can be static or dynamic

Test types can be static or dynamic. There are
actually only four static test types.

Essential Testing Priorities

Interesting aspects of E-Business projects are
the extremes of project pace. In mature
companies trying to establish a web presence,
the existing IT department may be responsible
for the development and they may follow their
standard, staged development and test process.

However, some projects operate in Web Time.
If you are working in a dotcom environment,
where speed to market is the first priority, you
may have to work under such pressure that the
testing has to be squeezed into a few days or
even a few hours. Release cycles may be daily.
How can the traditional test process be fitted
into this kind of schedule?

It is clear that the tester must be prepared to
adopt test practices that complement these two
very different scenarios. Our proposal is that a
range of ‘test priorities’ be used to align with the
project development process.

Table 1 Essential Testing Priorities presents one
possible way of looking at the most important
attributes of your web site. They are introduced
here to give you an impression of the stark
choices you may face in your projects. We
suggest that you consider the following four
levels of test priority.

The test types have been allocated a slot against
the four test priorities mentioned earlier. Test
types that fall into the Smoke testing column, are
typically automated and should be the minimum
set of tests considered to address the maximum
number of risks in the shortest time. The tests
that fall into the Functionality column are
typically the tests that are most expensive and
time consuming to implement and execute. The
purpose of these columns is to help you to select

the test types should be included in your test
process.

Testing Priority When to Use
1. Smoke testing Can the application survive

one user session without
crashing? If you are under
severe time pressure and have
hours to do the testing, stick
to smoke testing.

2. Usability If your site is hard to use, the
user won’t hesitate to leave
your site before reaching the
functionality. There are several
techniques involving
inspection, review and
heuristic evaluation.

3. Performance If your site is usable, but slow,
users may give up on the
functionality and leave.
Performance tests measure
the speed of the site; flush out
weak points, measures limits.

4. Functionality Functionality isn’t always the
biggest issue. On basic E-
Commerce’ sites, functionality
may be simple and relatively
easy to ‘get right’.
Functionality is obviously
tested in all projects, but often
the functionality can be proven
during development and user
evaluation.

Table 1 Essential Testing Priorities

Five stages of testing

We have found that the test types do not always
fit into the traditional unit, link, system and
acceptance test stages. So we provide a test
structure that has five test stages that group the
test types by the clear technical groupings:

• Desktop development testing (broadly, what
the browser executes)

• Infrastructure testing (what runs on the
servers)

Testing

Methods & Tools * Summer 2000 * Page 28

• System testing (of the complete system in
isolation)

• Large Scale Integration (with other systems)

• Post-deployment monitoring (retaining
automated tests to monitor live sites).

Tests can be automated or manual

The A and M entries in the table denote whether
the test can be automated:

• M – the test can only be done manually.

• A – the test can only be done using a tool.

• A/M – the test can be done manually or
using a tool.

Tools are covered later in this paper.

4.4 Guidelines for Using the Test Process
 Table

Not all test types are appropriate or possible in
all circumstances. We are not suggesting that
you must commit to doing all the test types
identified in the framework. Rather that you gain
a consensus view on the risks of most concern,
match this to your development process and use
the framework to help construct your test
process.

The sequence of tasks required to construct the
test process is as follows:

1. Identify the risks of concern with the project
stakeholders, management, users and
technologists and prioritize those that must
be addressed by the testing.

2. For each risk to be addressed, identify one,
or more, test types that can help to address
the risk. Be sure to document those risks
that will not be addressed by the testing.

3. Using the text of the risk description, write
up test objectives (e.g. “to demonstrate that
the Web application operates reliably in a
range of configurations”) to show how this
risk will be addressed.

4. Assign the test type to a test stage and
nominate the responsible party within the
project.

5. Estimate the time required to plan and
execute the test.

6. Review the scope of the testing (what is in
scope and what is out of scope), test
objectives, stage definitions, responsibilities
and estimates and refine.

The framework is a guideline to be
considered and adapted - tailor it to your
environment.

4.5 Post-Deployment Monitoring

Post-deployment monitoring is done after
implementation in a production environment.
The reason for including this in your test strategy
is that production E-Commerce sites can fail,
but it may be that none of your prospective
customers will tell you. They’ll simply go
elsewhere.

Further, degradation of site performance may
not be noticeable day by day, but using a tool,
statistics can give early warning of performance
problems while there may still be time to recover
the situation. Hence, we recommend that some
selected automated tests be re-used to monitor
the site. Services aimed at monitoring your site
remotely are now becoming available, so this is
an alternative worth considering.

4.6 Other Test Scoping Issues

Which platforms will your software support?

What browsers and versions will your Web site
support? Do you need to worry about no-
frames browsers? Do you need to consider
non-graphic browsers? These questions are
important because they help you to determine
the scale of regression testing across a range of
browsers and versions. Even if you will support
only Explorer and Netscape, which versions of
these browsers should you test to ensure there
are no configuration problems?

Testing

Methods & Tools * Summer 2000 * Page 29

Test Priorities Test Types Mapped to Usual Test Stages

Test Type

Sm
ok

e

U
sa

bi
li

ty

P
er

fo
rm

an
ce

F
un

ct
io

na
li

ty

St
at

ic
/

D
yn

am
ic

D
es

kt
op

D
ev

el
op

m
en

t

In
fr

as
tr

uc
tu

re
T

es
tin

g

Sy
st

em
 T

es
tin

g

In
te

gr
at

io
n

T
es

tin
g

P
os

t-
D

ep
lo

ym
en

t
M

on
ito

ri
ng

Static Testing

HTML testing Y S A/M

Browser syntax compatibility Y S A

Visual browser validation Y D M M M

Test Browsing

Link checking Y D A A

Object load and timing Y Y D A A

Transaction verification Y S A/M A/M

Functional Testing

Browser page testing Y D A/M

CGI component testing Y D A/M

Transaction Testing Y D A/M

Application testing Y D A/M

Internationalisation Y D A/M A/M

Non-Functional Testing

Configuration testing Y D M A/M M

Performance Y D A A A

Soak Testing/reliability Y D A A A A

Availability D A

Usability Y S/D M

Security Y D A/M A/M A/M A

Large Scale Integration

External links/legacy system

integration

Y D A/M A/M

End to end functionality Y D A/M A

Table 2 – E-Business Test Process Framework

Testing

Methods & Tools * Summer 2000 * Page 30

Propose a scope for the testing to be performed
(and estimate the potential cost) and review that
with the stakeholders, management and
technical experts in the project. This will help to
force a decision on what will actually be
supported, and that may be much less than was
envisaged by management. If you are going to
test many of the browsers and versions, you will
be committed to doing an awful lot of regression
testing.

Consider and propose an alternative: that the
developers work to the HTML standards
supported by the chosen browsers. Tools can
then be used to validate the HTML in your web
pages. The number of browser platforms
available is steadily growing. In the future, it
looks increasingly likely that standards-based
development and automated HTML validation
will be a more practical approach than
expensive regression testing across a large range
of platforms.

Which Web conventions should be adhered to?

Although adherence to conventions is never
mandatory, following Web conventions can
make a big difference to your users. If your web
site behaves differently to 90% of other sites, it
might look good superficially, but may cause
your users so much hassle they stop using it.

For example, will your application support users
turning off graphics? Dial-up users regularly
switch off graphics to speed things up. Will the
site work if users reject cookies or the cookies
time out prematurely? Must users always have
the required plug-ins? As a tester, you need to
establish what conventions apply to you can test
against these, and ignore other contraventions.
The best thing about web conventions is that
they are widely documented and the browser
defaults support them. Testing becomes
straightforward.

The Web Accessibility Initiative (WAI), The
World Wide Web Consortium, (www.w3.org)
guidelines paper is an ideal document for testers

to work against. Any contravention can be
reported as a fault to the developers. In that
way, the document is a good baseline
(invaluable where other requirements may be
lacking). So, get your project either to obey
some or all conventions, and use a baseline to
test against, or eliminate web conventions from
the considerations in your test plan.

5. References

1. Winning the On-Line Customer, Boston
Consulting Group, (www.bcg.com)

2. Extreme Programming Explained, Kent
Beck, ISBN 0-201-61641-6

3. The Web Accessibility Initiative (WAI), The
World Wide Web Consortium,
(www.w3.org)

This paper is Part 1 of a two-part document. In
Part 2, the details of the various test types
introduced in this paper are described in detail.
Automated tools that support the various test
types are also covered.

Testing

Methods & Tools * Summer 2000 * Page 31

APPENDIX A - ESSENTIAL INTERNET CONCEPTS FOR THE TESTER

HTTP Hypertext Transfer Protocol - the way that client
browsers and web servers communicate

URL Unified Resource Locator e.g.
http://www.evolutif.co.uk/subdir/index.html

HTML Hypertext Markup Language
Web pages comprise HTML tags and ASCII text

CGI Common Gateway Interface – the mechanism by which
HTML pages can execute programs that reside on web
servers. CGI are Perl, C++ or other programs that
execute on the server. Using HTML forms, users can
send data and have it processed on the server

Cookies Small quantities of data stored on the client’s hard drive
at the request of a web site. The web site can ‘read’ the
cookie on a later visit. Used to carry data through Web
transactions.

How a web page works • You select a target URL in your browser by using
the URL window or clicking on a link.

• The browser sends a HTTP request for the HTML
file to the site defined by the URL.

• The server processes the request; sets up a
connection, sends the HTML file and closes the
connection.

• Browser interprets the HTML file and displays it
according to HTML standard.

JavaScript/VBScript Programming languages (cut down versions of Java and
Visual Basic) used to provide functionality within a web
page on the client or on servers.

ASP Active Server Pages – a Microsoft technology that
allows VBScript or JavaScript embedded in HTML
pages to be executed on servers.

Applets Programs normally written in Java that are downloaded
from servers and executed within the browser.

Servlets Programs normally written in Java that are executed on
servers.

The web is stateless After processing an HTTP request, the server forgets
everything about the transaction. Developers need to
maintain context through business transactions so use
cookies, hidden form fields to do this.

Facts, News & Comments

Methods & Tools * Summer 2000 * Page 32

- Companies

Corel and Inprise/Borland divorce

Before the marriage was even celebrated, Corel
and Inprise/Borland announced in May that
theirs merger agreement has been terminated by
mutual agreement. Respecting a three-year
confidentiality agreement, both companies will
not comment further this divorce, but the end of
the Linux market's overhyping and the
subsequent drop of Corel's stock price could be
a big part of the explanation.

Considering the current problems of Corel, we
think that this failure is good for Inprise. It will
allow the company to focus again on serving the
interests of the software development
community.

$9%£ Numbers

Have you failed enough?

"Question: How many datawharehouses do you
have?
Answer: We have had eight.
Question: To what do you attribute so many
warehouses?
Answer: Seven mistakes...."

Source: The Meta Myth, The Standish Group,
www.standishgroup.com.

The text adds that the user still realized
substantial benefits of the mistakes that occurred
over a number of years. Yes, we have to admit
imperfection... and learn from it to improve!

& In Others' Words

Do consultants suck?

"You're way to enthusiastic, and you dress
funny. This is not your fault. But you can't
blame us for feeling annoyed when you show up
all bushy-tailed, and you tail is in $1'200 blue
pinstripes and we're in brown. Or you're
wearing a power tie we haven't seen in ten
years. Or your hair is too short. Or too long.
There's no question you're from over the
border, chum.

The boss likes you far too much. You're an
institutionalized suck-up. You're there to make
him look good when he shouldn't. Does he listen
to the guys who are in the trenches every day?
No, he does not. [...]

You don't listen. You look like you're listening,
but you're not, you're just waiting to talk.
Because you've got a lot to say. You've been
waiting since they poured all that stuff in your
ear at Wharton to download all your
knowledge, and this is your chance.

Everlasting Advertisement Available
6000 registered readers in 100 countries receive Methods & Tools via e-mail...

1000 visitors read the online HTML version each month...
More than 800 times downloads each month for all past issues in PDF version...

Advertise in Methods & Tools and you will harvest results forever!
(and this space costs only $60!)

Contact: franco@martinig.ch

Facts, News & Comments

Methods & Tools * Summer 2000 * Page 33

The solutions you propose to our problems
were baked fresh in the 1990s and have
been used every year since then. You have
your spiel, and you stick to it. Why not? It's why
you were hired. This is particularly true of
McKinsey guys, who seem to come out of one
Stepford factory with the entire program
ingrained on their internal database.

You don't really know anything about our
business or our company. You've been here
for five minutes! Last week you were flogging
cheese processors in Wisconsin. The week
before, it was a private hospital in Omaha!
Quick – who are we again?

Your solutions generally evaporate like fog
over a mountain lake. You have your
meetings. You "capture" all this stupid stuff on
big sheets of paper you tack onto the wall. You
rush around with overheads and Magic
Markers. We get real creative for a while. Then
you go away to put together the results. A few
weeks later the report comes. It has all the
resonance of old love letters written by another
person. The report is filed and forgotten.

You cost a lot. We're dealing with 4% raises,
and you cost, what... $25'000 a month? More?
How much do you cost, anyhow? We don't
know. A few years ago we hired a consulting
group on what our newly merged corporation
call itself. At the time we were Acme Inc.
Several hundred thousand dollars later, we were
Acme Corp. Ha!

You alienate us from our bosses. You sort of
have to. If staff can solve internal problems,
that's the end of you, isn't it, Charley?

You're here to get us fired. We know it. You
know it. What you're selling might be Quality or
Excellence or Productivity, but you're to figure
out ways to kill us, or spend money on
something other than us. [...]

And it could be different. This, in the end, is the
most tragic and galling part. There are some

good practitioners of what you do. They come
in with highly specific knowledge and expertise
after years of fighting in the trenches. They help
the inside guys identify a problem and fight
against senior management to get things done.
They have ideas but impose none. They come
like the blessed rain and are gone like the wind.
And they are loved.

No one just out of school can be this person,
nor can some ancient mariner ten years into
retirement. If you aspire to be a consultant, I
wish you well. You've got a life-time of
preparation and study before you. An in the
meantime? Hey. You're smart and resourceful.
Why not get a job?"

Source: Stanley Bing, "Why Consultant
Generally Suck", Fortune, May 29, 2000.

There are a lot of consultants in our world.
Some funny thoughts from Mr Bing for internal
staff and consultants... that have a sense of
humor :-]

Managing conflicts

"Despite the self-reliant focus of our formal
training as software engineers, our profession
entails significant human contact. Most likely, we
will experience some conflict with coworkers,
bosses, subordinates, customers, or suppliers.
Constructively resolving these differences can
make or break our ongoing relationships.

[...] The first and most significant strategy point
is to take steps to avoid becoming defensive or
putting other people on the defensive. If we go
on the defensive and attempt to justify ourselves
when we perceive a verbal attack, it simply
escalates the conflict. A more helpful approach
is to do the following:

• stop and let the other person talk;

• actively listen and gather more information
about your transgressions;

• echo the problem back to the attacker until
the agree that we've characterized the

Facts, News & Comments

Methods & Tools * Summer 2000 * Page 34

situation from their perspective, even though
we might not agree with them; and

• look at the problem from their perspective,
and if you see how they might have a
legitimate concern, say so.

[...] A second conflict strategy is to describe the
offending behavior rather than evaluating the
person. When people feel evaluated, they
usually go on the defensive, and this is what we
want to prevent. For example, it might be more
productive to say, "It feels like you're not
listening to me when you work at your computer
while we're talking," than to say, "You're really
rude." The former describes the troublesome
behavior rather than judging the person.

A third strategy is to give "I messages" instead
of "you messages." With I messages, the focus is
on speaking your reality rather than trying to
impugn the value, motivations, or cold
bloodedness of your colleague. With you
message, it is far too easy to trigger defensive
reactions.

[...] A forth conflict strategy is to focus on the
future rather than dwelling on past
transgressions. Get a clear understanding of the
problem and propose a way to avoid the
problem in the future.

[...] Here are a few other constructive tips for
dealing with conflicts:

• Avoid using the absolute terms "always" and
"never" in describing behavior.

• Avoid pointing at someone in an accusatory
way. It's guaranteed to inflame
defensiveness.

• When someone approaches you with a
conflict, and you can't engage at that time,
tell the other person exactly when you'll
reenter the discussion. Otherwise, the other
person will feel dismissed and be further
angered.

• If possible, work through conflict in a
private setting. People tend to resist
changing their positions if there is an
audience."

Source: Karen Mackey, "Conscious Conflict",
IEEE Software, September/October 1999

� Coming next in Methods & Tools

• Risk-Based E-Business Testing – Part 2

• How to Sponsor a Successful Project

• Testing Client/Server Applications

Classified Advertisement

Advertising for a new Web development tool? Looking to recruit software developers? Promoting a
conference or a book? Organizing software development related training? This space is waiting for you
at the price of US $ 20 each line. Reach more than 6'000 web-savvy software developers and project
managers worldwide with a classified advertisement in Methods & Tools. Without counting those that
download the issue without being registered! To advertise in the classified section, to place a page ad
or to become the distribution sponsor of the next issue, simply send an e-mail to franco@martinig.ch

METHODS & TOOLS is published by Martinig & Associates, Rue des Marronniers 25,
CH-1800 Vevey, Switzerland Tel. +41 21 922 13 00 Fax +41 21 921 23 53 www.martinig.ch
Editor: Franco Martinig; e-mail franco@martinig.ch ISSN 1023-4918
Free subscription: www.martinig.ch/mt/index.html
The content of this publication cannot be reproduced without prior written consent of the publisher
Copyright  2000, Martinig & Associates

