
www.avrbeginners.net

C/Assembler Tutorial

Accessing C Structs in Assembler

Author: Christoph Redecker
Version: 1.1.2

Introduction to AVRs

Registers and Memories

Port I/O

Jumps, Calls and the Stack

Conditional Branches and Loops

Interrupts

Accessing C Structs in Assembler

This tutorial is licensed under a Creative Commons Attribution–NonCommercial–
NoDerivs 3.0 Unported License:
http://creativecommons.org/licenses/by-nc-nd/3.0/.
Permissions beyond the scope of this license may be available at
http://www.avrbeginners.net.

http://www.avrbeginners.net
http://www.avrbeginners.net/new/tutorials/introduction-to-avrs/
http://www.avrbeginners.net/new/registers-and-memories/
http://www.avrbeginners.net/new/port-io/
http://www.avrbeginners.net/new/tutorials/jumps-calls-and-the-stack/
http://www.avrbeginners.net/new/tutorials/conditional-branches-and-loops/
http://www.avrbeginners.net/new/tutorials/interrupts/
http://www.avrbeginners.net/new/tutorials/accessing-c-structs-in-assembler/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.avrbeginners.net

1

Accessing C structs in assembler programs is not an This document has embedded files. If
your reader doesn’t support embedded
files: don’t worry, their content is in-
cluded inline in the text.

AVR issue, but a generic programming problem. However,
knowing how to do it is especially useful when an ISR (or any
other function) must be “hand–coded”. This tutorial outlines
the steps necessary for making C structs and their members’
offsets visible to assembler code and how to use them.

The procedure of making C structs usable in assembler
code is, as it is presented here, neither system– nor compiler–
independent. Nonetheless, it is very easy to port between
systems — I’m not sure about compilers. Furthermore, a text–
processing tool such as gawk is needed. For this tutorial it is gawk is available at http://www.gnu.

org/s/gawk/; a windows port is avail-
able at http://gnuwin32.sourceforge.
net/packages/gawk.htm.

assumed that gcc is used.

Initial Situation

The first thing we need when assembler code must access a C
struct is the C struct itself, including a type definition. These
are in myStruct.h: myStruct.h’s header guard is not dis-

played here to save space. The embed-
ded file does contain a header guard.#include <stdint.h>

struct SMyStruct_impl

{

uint8_t first;

uint8_t second;

};

typedef struct SMyStruct_impl TMyStruct;

The defined type has two members, first and second, both are
an unsigned 8–bit integer. first starts at offset 0 and second

starts at offset 1. This file is included by our main file, main.c:

#include "myStruct.h"

volatile TMyStruct tMyStruct;

void asm_out(void); /* prototype */

int main(void)

{

tMyStruct.first = 0xAA;

tMyStruct.second = 0x55;

/* here we call the asm function */

asm_out();

while(1);

return 0;

}

Two things must be considered here: the compiler has no control
over the code behind asm_out(). It only knows the prototype of

http://www.gnu.org/s/gawk/
http://www.gnu.org/s/gawk/
http://gnuwin32.sourceforge.net/packages/gawk.htm
http://gnuwin32.sourceforge.net/packages/gawk.htm

2

this function, but not what variables it might touch. This is why
tMyStruct is declared volatile — it prevents the compiler from
optimizing away the two assignments to the struct in main().
asm_out() will later use the values assigned to the struct mem-
bers. This code is written as if there was no interface between C
and Assembler; in fact, one could know write asm_out() in C.

Extracting the Structure Offsets

The structure offsets are known when TMyStruct is typedef’ed,
so myStruct.h will be needed for this process. Only the com-
piler can turn the type definition into offsets, so compiler call is
necessary in which the compiler is used to calculate the offsets
and write them into a seperate file. The following is the file
myStruct_offsets.c: These macros, as well as the

following procedures, are
based on those presented at
http://docs.blackfin.uclinux.org/
doku.php?id=toolchain:gas:structs

#include <stddef.h>

#include "myStruct.h"

#define _ASMDEFINE(sym, val) asm volatile \

("\n-> " #sym " %0 \n" : : "i" (val))

#define ASMDEFINE(s, m) \
ASMDEFINE(offsetof##s##_##m, offsetof(s, m));

void myStruct_defineOffsets() {

ASMDEFINE(TMyStruct, first);

ASMDEFINE(TMyStruct, second);

}

Two macros are defined: _ASMDEFINE(sym, val) and ASMDEFINE(s, m).
ASMDEFINE uses s (a structure name) and m (a structure mem-

ber) to assemble a symbol string. Assuming that s is TMyStruct
and m is first, the string is offsetof_TMyStruct_first.

Then _ASMDEFINE is used to insert a line of assembler into
the compiler output, using asm volatile. This is a “fantasy”
instruction, starting with ->. Afterwards val is added as an
integer value at the end of the line. val was supplied by the
calling macro, ASMDEFINE, and is equal the the member’s offset
in the struct.

At the end of myStruct_offsets.c, the two offsets are ac-
tually created, by calling ASMDEFINE in a function. This is a
dummy function and will not show up in the final binary!

The assembler, which is gas in this case, cannot assemble the
lines starting with -> — it would emit an error, because -> is
not a valid assembler instruction. The compiler needs to be
stopped before it calls the assembler. For gcc, this is done with
the -S option. If you haven’t done this before, create the files

http://docs.blackfin.uclinux.org/doku.php?id=toolchain:gas:structs
http://docs.blackfin.uclinux.org/doku.php?id=toolchain:gas:structs

3

myStruct.h and myStruct_offsets.c, each with the content
shown above, open a terminal and execute

avr-gcc -S myStruct_offsets.c -o -

The trailing - is important, as it tells the -o option to write
the output to stdout. You should see the object file output,
including two lines starting with ->. Here is a sample:

myStruct_defineOffsets:

push r29

push r28

rcall .

in r28,__SP_L__

in r29,__SP_H__

/* prologue: function */

/* frame size = 2 */

/* #APP */

; 53 "myStruct_offsets.c" 1

-> offsetof_TMyStruct_first 0

As you can see, the function myStruct_defineOffsets is cre-
ated, and at the end of the above piece of object code the offset
of the first member of TMyStruct is shown — we’re almost
there. The -> lines now have to be extracted from the object
code, which can be done using gawk:

avr-gcc -S myStruct_offsets.c -o - | gawk ’($1 == "->")

{ print "#define " $2 " " $3 }’ > myStruct_offsets.h

The compiler output is piped to gawk, which replaces -> with
#define, and writes the resulting line to its own output. gawk’s
output is written to myStruct_offsets.h. That file now con-
tains:

#define offsetof_TMyStruct_first 0

#define offsetof_TMyStruct_second 1

The offsets are now ready for use in an assembler program!

Using the Structure Offsets

Now it’s time to include this header file in an asm file called
asm_out.S:

#include <avr/io.h>

#include "myStruct_offsets.h"

#define work 18 // our working register

.extern tMyStruct // "import" tMyStruct from main.c

4

.section .text

.global asm_out // "export" for the linker

asm_out:

// directly accessing the first struct member, as in

// PORTD = tMyStruct.first;

lds work, tMyStruct + offsetof_TMyStruct_first

out _SFR_IO_ADDR(PORTD), work

// directly accessing the second member

lds work, tMyStruct + offsetof_TMyStruct_second

out _SFR_IO_ADDR(PORTD), work

// indirect access: Z->tMyStruct as in

// TMyStruct* Z = &tMyStruct;

ldi ZL, lo8(tMyStruct)

ldi ZH, hi8(tMyStruct)

// indirectly accessing the first member as in

// PORTD = Z->first;

ldd work, Z+offsetof_TMyStruct_first

out _SFR_IO_ADDR(PORTD), work

// indirectly accessing the second member

ldd work, Z+offsetof_TMyStruct_second

out _SFR_IO_ADDR(PORTD), work

The assembler file includes the headers, imports the symbol
tMyStruct and places asm_out in the text section. More about sections at

http://www.nongnu.org/avr-libc/
user-manual/mem_sections.html

asm_out writes the values of each structure member to PORTD
in two different ways (you should be familiar with them). It
is “exported” as a global symbol so that the linker can find it.
Finally, it is possible to call the asm function from main.c (see
above). One final note: the structure must be declared volatile,
because the compiler could otherwise optimize the member
assignments away – they are not used in any part of code that
the compiler is aware of.

Putting it all Together

After everything is more or less explained, we can put the whole
thing together:

First, create a C file for each structure you need the offsets of.
The macros defined above can be put into a header file, call it
asmDefine.h for example. The newly created C files need to be

http://www.nongnu.org/avr-libc/user-manual/mem_sections.html
http://www.nongnu.org/avr-libc/user-manual/mem_sections.html

5

compiled every time the structure definition changes, using the
command line that first creates object code and then extracts the
offsets. This can be done with an IDE that support pre–build
steps, a batch file, or built into a makefile — your choice.

Second, include the generated header file in any assembler
file that needs access to the offsets. Any structure that is used
must be imported as an external symbol for the linker to find it.

Third, take into account that the compiler is not aware of
the assembler code’s functionality. Depending on optimisation
settings, it might delete assignments in your main code if they
are of no effect to the compiler.

Using this in Real Projects

In a Makefile

I have not yet managed to add the required functionality to a
makefile. If anyone wants to try it, go ahead, I’ll be happy to
include the results here!

In the Code::Blocks IDE

C::B can compile files in different ways, based on their extension. Tested with Code::Blocks 10.05. C::B
is available at http://www.codeblocks.
org.

The first step is to register a new file type in C::B’s advanced
options for AVR–GCC. Go to “Settings”→“Compiler and De-
bugger” and select AVR–GCC. Go to the “Other Settings” Tab
and open the “Advanced Options” (at the bottom). You sould
see a windows that lists a number of commands and their asso-
ciated source extensions on the left, and a list of macros on the
right. Add the source extension “coffsets” (without the leading
period) to the “Compile single file to object file” command.
Select the new extension and change the command line macro
to

$compiler $options $includes -S -x c $file -o - |

gawk -f coffsets.awk > $file_dir/$file_name.h

Again, this is supposed to be just one line. The gawk commands
have to be stored in coffsets.awk, because for some reason
C::B cannot handle gawk commands in the command line. This
coffsets.awk has to be stored in the same directory as your
project if no path is specified for gawk’s -f option.

The compiler usually automatically compiles C code if the
file extension is .c. The compiler does not know the new
extension coffsets, which is why the option -x c is added
to tell the compiler that our input file contains C code. Now
myStruct_offsets.c must be renamed to myStruct_offsets.coffsets,

http://www.codeblocks.org
http://www.codeblocks.org

6

and C::B will automatically apply the new compilation com-
mand to this file.

One more thing is important: when C::B has compiled all
files, it also links all files. It would try to link the object file
myStruct_offsets.o, which doesn’t exist. Remove the “Link”
tick from the file’s advanced build options: right click on
myStruct_offsets.coffsets in the project tree, select “Proper-
ties”, go to the “Build” tab, and uncheck “Link”. Also lower its
“Priority weight”, so that the file is compiled earlier — before
asm_out.S is assembled.

To summarise it:

• Add a new compilation rule for .coffsets files,

• rename the relevant files to end with .coffsets,

• change the files’ options so that they are not linked,

• lower the files’ priority weight (so that it is compiled earlier).

Revision History

1.1 Changes:

• Removed second appearance of main.c in the text,

Additions:

• Embedded source code files,

• Added Code::Blocks configuration section.

1.0 Initial release

	Initial Situation
	Extracting the Structure Offsets
	Using the Structure Offsets
	Putting it all Together
	Using this in Real Projects
	Revision History

#include <avr/io.h>
#include "myStruct_offsets.h"
#define work 18 // our working register

.extern tMyStruct // "import" tMyStruct from main.c
.section .text

.global asm_out // "export" for the linker

asm_out:
 // directly accessing the first struct member, as in
 // PORTD = tMyStruct.first;
 lds work, tMyStruct + offsetof_TMyStruct_first
 out _SFR_IO_ADDR(PORTD), work

 // directly accessing the second member
 lds work, tMyStruct + offsetof_TMyStruct_second
 out _SFR_IO_ADDR(PORTD), work

 // indirect access: Z->tMyStruct as in
 // TMyStruct* Z = &tMyStruct;
 ldi ZL, lo8(tMyStruct)
 ldi ZH, hi8(tMyStruct)

 // indirectly accessing the first member as in
 // PORTD = Z->first;
 ldd work, Z+offsetof_TMyStruct_first
 out _SFR_IO_ADDR(PORTD), work

 // indirectly accessing the second member
 ldd work, Z+offsetof_TMyStruct_second
 out _SFR_IO_ADDR(PORTD), work
ret

#include "myStruct.h"

volatile TMyStruct tMyStruct;
void asm_out(void); /* prototype */

int main(void)
{
 tMyStruct.first = 0xAA;
 tMyStruct.second = 0x55;
 /* here we call the asm function */
 asm_out();
 while(1);
 return 0;
}

#ifndef _MYSTRUCT_H_
#define _MYSTRUCT_H_

#include <stdint.h>

struct SMyStruct_impl
{
 uint8_t first;
 uint8_t second;
};
typedef struct SMyStruct_impl TMyStruct;

#endif /* _MYSTRUCT_H_ */

#include <stddef.h>
#include "myStruct.h"

#define _ASMDEFINE(sym, val) asm volatile \
 ("\n-> " #sym " %0 \n" : : "i" (val))
#define ASMDEFINE(s, m) \
 ASMDEFINE(offsetof##s##_##m, offsetof(s, m));

void myStruct_defineOffsets() {
 ASMDEFINE(TMyStruct, first);
 ASMDEFINE(TMyStruct, second);
}

