

CTC Union Technologies Co., Ltd.

Far Eastern Vienna Technology Center (Neihu Technology Park) 8F, No. 60 Zhouzi St., Neihu, Taipei 114, Taiwan

T +886-2-26591021

F +886-2-26590237

E sales@ctcu.com marketing@ctcu.com techsupport@ctcu.com

H www.ctcu.com

FTH4-1000M(S) FTH4-100M Operation Manual

Version 1.0 April 2014

This Manual supports the following models:

FTH4-1000M: 1x100/1000Base-FX + 1x10/100/1000Base-TX

FTH4-1000MS: 1x100/1000Base-FX (SFP) + 1x10/100/1000Base-TX

FTH4-100M: 1x100Base-FX + 1x10/100Base-TX

2014 CTC Union Technologies Co., LTD.

All trademarks are the property of their respective owners.

Technical information in this document is subject to change without notice.

Legal

The information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. CTC Union Technologies assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein. CTC Union Technologies reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

CTC Union Technologies makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does CTC Union assume any liability arising out of the application or use of any product and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

CTC Union products are not designed, intended, or authorized for use in systems or applications intended to support or sustain life, or for any other application in which the failure of the product could create a situation where personal injury or death may occur. Should the Buyer purchase or use a CTC Union product for any such unintended or unauthorized application, the Buyer shall indemnify and hold CTC Union Technologies and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that CTC Union Technologies was negligent regarding the design or manufacture of said product.

TRADEMARKS

Microsoft is a registered trademark of Microsoft Corp. HyperTerminal™ is a registered trademark of Hilgraeve Inc.

FCC WARNING:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and if not installed and used in accordance with the instruction manual may cause harmful interference in which case the user will be required to correct the interference at his own expense. NOTICE: (1) The changes or modifications not expressively approved by the party responsible for compliance could void the user's authority to operate the equipment. (2) Shielded interface cables and AC power cord, if any, must be used in order to comply with the emission limits.

CISPR PUB.22 Class A COMPLIANCE:

This device complies with EMC directive of the European Community and meets or exceeds the following technical standard. EN 55022 - Limits and Methods of Measurement of Radio Interference Characteristics of Information Technology Equipment. This device complies with CISPR Class A.

CE NOTICE

Marking by the symbol CE indicates compliance of this equipment to the EMC and LVD directives of the European Community. Such marking is indicative that this equipment meets or exceeds the following technical standards: EN 55022:2006, Class A, EN55024:1998+A1:2001+A2:2003, and EN60950-1:2001

Table of Contents

CHAPTER 1 INTRODUCTION	6
1.1 WELCOME	6
1.2 Product Description	6
1.3 Product Features	7
1.4 Specifications	8
1.5 Management Features	8
1.6 PANEL	9
1.6.1 Top & Front panel	9
1.6.2 Wall Mounting Holes & Inside the Media Converter	
1.7 LED Indicators	
1.8 RESET TO DEFAULT BUTTON	
CHAPTER 2 INSTALLATION	13
2.1 Cable Tray Management	13
2.2 WALL MOUNTING	14
2.3 Installation of SFP Modules (for FTH4-1000MS only)	
2.3.1 Inserting a Bale Clasp SFP Module into the Cage	
2.3.2 Removing a Bale Clasp SFP Module	
CHAPTER 3 WEB BASED PROVISIONING	16
3.1 Introduction	
3.2 Web Login Page	
3.3 WEB MAIN PAGE	
3.4 System Information	
3.4.1 Network Information	
3.4.2 DD Information	
3.5 LOCAL SETTINGS	
3.5.1 IP Configuration	21
3.5.2 Password Setting	
3.5.3 Converter Configuration	
3.5.4 Port Configuration	
3.5.5 MIB Counters	
3.5.6 VLAN	
3.5.6.1 VLAN Group	28

3.5.6.2 VLAN Per Port Configuration	29
3.5.7 Management VLAN Setting	
3.6 REMOTE SETTINGS	
3.7 802.3ah OAM Functions	
3.7.1 802.3ah Configuration	
3.7.2 Loop Back Test	
3.7.3 802.3ah Status	
3.8 Tools	
3.8.1 System Reboot	
3.8.2 Save and Restore	
3.8.3 Firmware Upgrade	40
3.9 LOGOUT	41
3.10 Troubleshooting	42
3.10.1 Factory Default	
3.10.2 Reset	42
3.10.3 LED Observations	43
3.10.3.1 Power On	4
3.10.3.2 UTP Link Test	4
3.10.3.3 Fiber Link Test	4
3.10.4 Operation Checks	44
3.10.4.1 Converter Check	44
3.10.4.2 Ping Test	44
3.10.4.3 Web Access Test	V

Chapter 1 Introduction

1.1 Welcome

Thank you for choosing **FTH4-100MS & FTH4-100M** Managed Gigabit & Fast Ethernet OAM/IP Media Converter with cable tray. Throughout this document, the two different models of this family will be referred to as **FTH4-1000M & FTH4-100M** (FTH4-1000MS will also be stated when necessary). If you would like to skip right to the installation of the media converter, proceed to Chapter 2.

This manual is used to explain the hardware installation procedures and operation of **FTH4-100M**, and present its capabilities and specifications. This manual is divided into 3 chapters, the Introduction, Installation, and Provisioning Chapters.

Installers should carefully read the Chapters 1 & 2, Introduction and Installation. The divisions in that manual are intended for use by personnel to answer questions in general areas. Planners and potential purchasers may read the Introduction to determine the suitability of the product to its intended use; Operating Personnel would use the Web Based Management Chapters and Appendices to become familiar with the settings. Network Administrators should read the chapters on Web Based Management and Trouble Shooting to become familiar with the diagnostic capabilities, network settings and management strategies.

1.2 Product Description

FTH4-1000M & FTH4-100M are managed electrical to optical media converters with cable tray for Gigabit & Fast Ethernet. There are two models for FTH4-1000MS series, one with fixed optical transceiver (FTH4-1000M) and one supporting pluggable SFP transceiver (FTH4-1000MS). These converters support embedded stand-alone Web based management over IP networks as well as IEEE802.3ah OAM for remote in-band management.

FTH4-100M & FTH4-100M are IEEE802.3ah OAM compliant copper to fiber Gigabit & Fast Ethernet solution housed in wall mountable enclosure. These converters have a built-in cable tray that allows users to enclose excessive fiber within the converter. When deployed as a stand-alone solution, this media converter incorporates an easy to use Web user interface for operation, administration and maintenance of both locally and remotely connected **FTH4-100M & FTH4-100M** converters. By offering 802.3ah OAM compliance, this converter can be linked to any 802.3ah compliant fiber switch and support loop back and dying gasp functions.

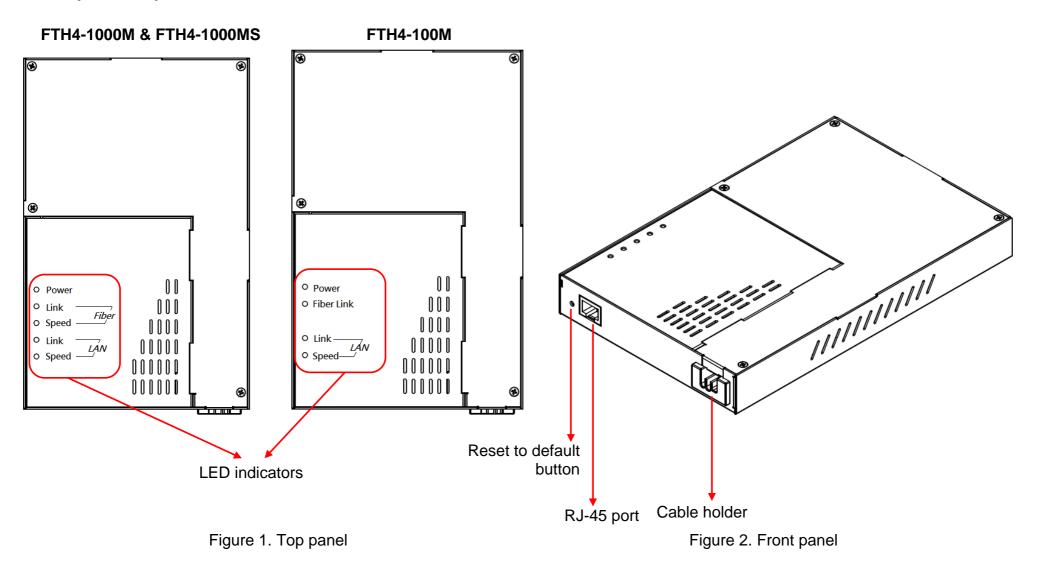
1.3 Product Features

- Auto-Cross over for MDI/MDIX at UTP port
- Auto-Negotiation or Forced Manual mode for UTP port
- Supports SFP for selectable Fast or Gigabit speed on fiber (for FTH4-1000MS only)
- Supports 802.3X flow control Enable or Disable
- Supports Jumbo Frames up to 9600 bytes
- Supports 16 Tag VLAN Groups
- Supports 802.1Q tagging
- Ingress/Egress Bandwidth control with 64K granularity
- Supports 802.3ah-OAM loop back and dying gasp (remote power failure detection)
- Supports firmware upgrade via Web
- Supports Digital Diagnostics (DOM) for supported SFP
- Includes RMON counters
- Supports password setting for authentication
- Supports Link Fault Pass Through (LFP) Function
- Supports Auto Laser Shutdown (ALS) Function
- With built-in fiber cable tray

FTH4-1000MS SFP socket supports a wide range of standard SFP modules to address any network situation.

WARNING: Fiber optic equipment may emit laser or infrared light that can injure your eyes. Never look into an optical fiber or connector port. Always assume that fiber optic cables are connected to an active laser light source.

1.4 Specifications


Model	FTH4-1000M(S)	FTH4-100M
Item		
Optical Interface		
Connector	Duplex SC, ST, FC (FTH4-1000M) or SFP cage (FTH4-1000MS)	Duplex SC, ST, FC
Data rate	100/1000Base-X	100Base-FX
Duplex mode	Full duplex on fiber	Full duplex on fiber
Electrical Interface		
Connector	RJ-45, shielded	RJ-45, shielded
Data rate	auto, 10Mbps (10Base), 100Mbps (100Base), or 1000Mbps (1000Base)	auto, 10Mbps (10Base) or 100Mbps (100Base)
Duplex mode	Full or Half (Auto)	Full or Half (Auto)
Cable	Cat 5e or better	Cat 5e or better
Indications	Power, Fiber Link, Fiber Speed, LAN Link, LAN Speed	Power, Fiber Link, LAN Link, LAN Speed
Power		
Output Voltage	12VDC	
Consumption	< 4W	< 4W
Dimensions	220 x 140 x 27mm (D x W x H)	220 x 140 x 27mm (D x W x H)
Weight	720g	720g
Temperature	0°C~60°C (Operating), -10°C~70°C (Storage)	0°C~60°C (Operating), -10°C~70°C (Storage)
Humidity	10 ~ 90% non-condensing	10 ~ 90% non-condensing
Certifications	CE, FCC, RoHS Compliant	CE, FCC, RoHS Compliant
MTBF	65000 hrs	65000 hrs

1.5 Management Features

Once configured for TCP/IP access, these units support a Web Smart GUI for intuitive setting via point & click.

1.6 Panel

1.6.1 Top & Front panel

1.6.2 Wall Mounting Holes & Inside the Media Converter

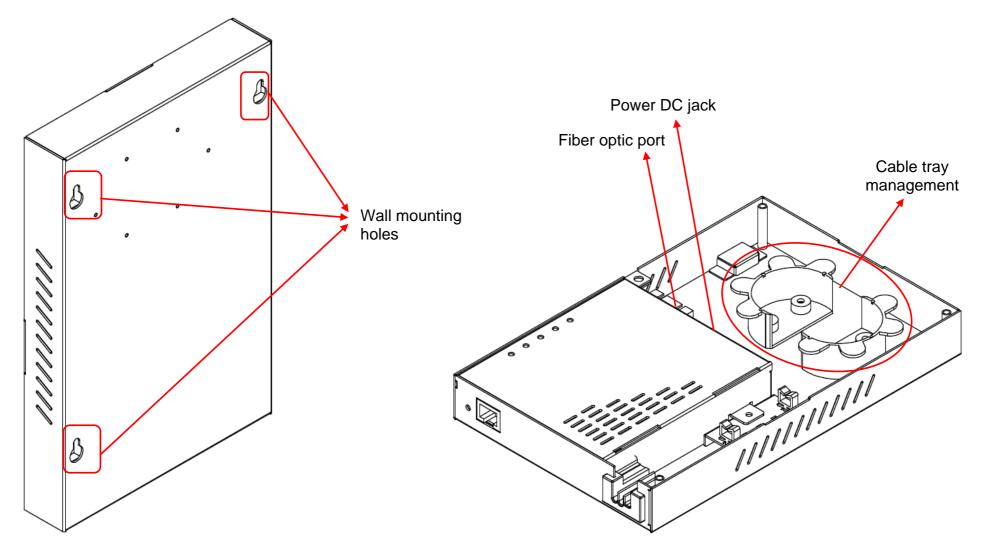


Figure 3. Wall mounting holes

Figure 4. Inside the media converter

1.7 LED Indicators

FTH4-1000M & FTH4-100M have LEDs on the front face that report the condition of power, Fiber link & Speed, LAN link & Speed.

O Power
O Link — Fiber
O Link — O Fiber Link
O Speed — O Link — CAN
O Speed — O Speed

FTH4-1000M LED Indicators

FTH4-100M LED Indicators

LED	Color	Status	Definition
Power	Green	ON	Light if power is connected.
I OWEI	0	FF	Power is not connected.
		ON steadily	Light when the fiber port has an optical link but no link activity.
Fiber Link (FTH4-100M)	Green	Flashing	Flash when there is data traffic.
(11111100111)	0	FF	There is no optical link.
		ON steadily	Light when the fiber port has an optical link but no link activity.
Fiber Link (FTH4-1000MS)	Fiber Link Green	Flashing	Flash when there is data traffic.
(1111110001110)	0	FF	There is no optical link.
Eibar Spaad	Green	ON	Light when the Fiber speed is 100M.
Fiber Speed (FTH4-1000MS)	Amber	ON	Light when the Fiber speed is 1000M.
(F1H4-1000NIS)	0	FF	There is no optical link.
	O ** 0 * 0 * 0	ON steadily	Light when the LAN port has a link but no link activity.
LAN LINK	LAN LINK Green	Flashing	Flash when there is Ethernet traffic.
	OFF	FF	There is no LAN port link.
	Green	ON	Light when the LAN speed is 100M.
LAN Speed	Amber	ON	Light when the LAN speed is 1000M. (for FTH4-1000MS only)
	0	FF	If not lit, the LAN speed of 10M is indicated.

1.8 Reset to Default Button

The "Reset to Default" button is located next to RJ-45 UTP port. It is used to recover lost password or to return TCP/IP settings to factory default values. Use a pencil or blue-point pen and then press the button for 6 seconds then release to reset the device to the factory default settings. DO NOT POWER OFF. Allow the device to again fully reboot.

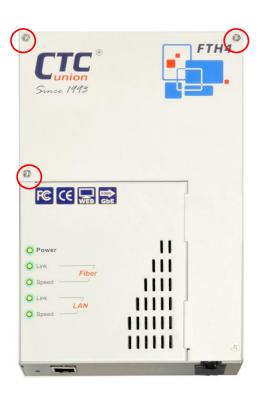
Default values:

Login Username: admin

Password: admin

IP: 10.1.1.1

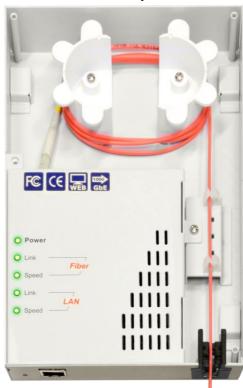
Netmask: 255.255.255.0


Gateway: 0.0.0.0

Chapter 2 Installation

2.1 Cable Tray Management

FTH4-1000M & FTH4-100M have built-in cable tray that is used to organize excessive fiber in order. The installation of fiber cable in the cable tray is simple and straightforward. The following pictures describe the fiber installation step by step.


Step 1. Use the screwdriver to remove screws fixed on the top panel.

Step 2. Remove the top panel.

Step 3. Connect one end of the fiber connector to the fiber optic port and t hen organize excessive fiber in the cable tray.

2.2 Wall mounting

FTH4-1000M & **FTH4-100M** can not only be placed on the flat desk but also be mounted on the wall. The media converter provides three wall mounting holes at the bottom panel that allows users to hang it vertically or horizontally depending on the actual wall mounting needs. The wall mounting installation methods are simple and straightforward. Follow the steps below to hang the media converter on the wall.

Firstly, fix two or three screws (screws are not provided) on the wall. The distance between screws varies depending on the vertical or horizontal direction of the media converter. Once the screws are fixed on the wall, hang the media converter on those screws securely.

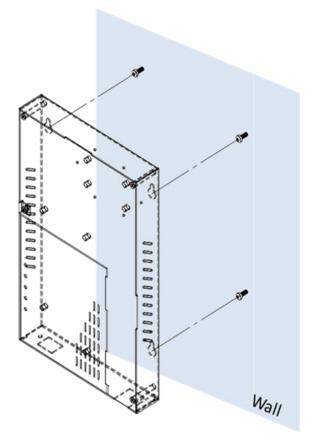


Figure 5. Wall mounting (vertical)

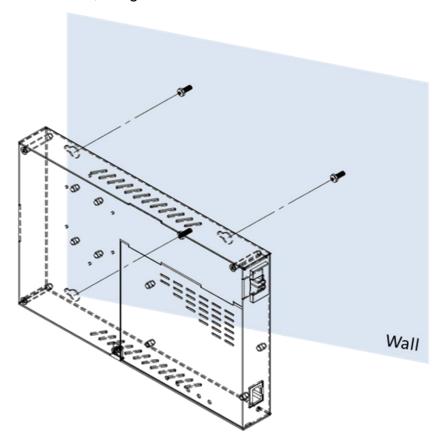
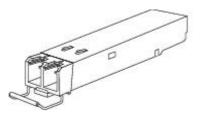



Figure 6. Wall mounting (horizontal)

2.3 Installation of SFP Modules (for FTH4-1000MS only)

We supplied SFP modules are of the Bale Clasp type. The bale clasp pluggable module has a bale clasp that secures the module into the SFP cage and has a handle to aid in removing the module.

Bale Clasp type SFP

2.3.1 Inserting a Bale Clasp SFP Module into the Cage

- Step 1 Close the bale clasp upward before inserting the pluggable module.
- Step 2 Line up the SFP module with the port, and slide it into the cage. Seat it. Attach fiber cable.

2.3.2 Removing a Bale Clasp SFP Module

- Step 1 Remove fiber cable. Open the bale clasp on the SFP module. Press the clasp downward with your index finger.
- Step 2 Grasp the SFP module between your thumb and index finger and carefully remove it from the SFP cage.

Follow all ESD precautions when handling SFP modules.

Chapter 3 Web Based Provisioning

3.1 Introduction

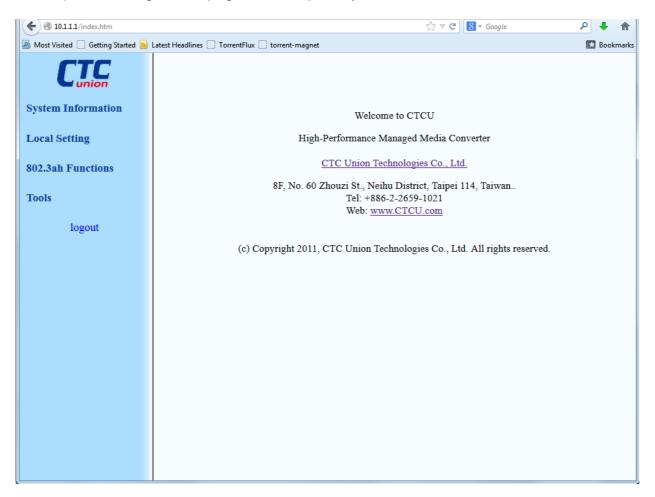
In an effort to make Networking devices easier to configure, many devices can now be configured via a Web Page, which should be familiar to all Internet users.

The webpage is accessed by the Default IP Address of the device from a Web Browser such as Internet Explorer or Firefox in the following way:

http://10.1.1.1/ (Assuming the device has Default IP Address of 10.1.1.1)

Before accessing this device by web browser, the IP address must be known or it must be reset or changed to be used on the desired network. Please refer to Chapter 1, section 1.8 for the factory reset procedure. For initial configuration, you must set your PC to the default IP subnet and access this device that way. Then you can change the IP address through the web interface.

3.2 Web Login Page


Access the device via a web browser.

Enter the username 'admin' and password 'admin'. Then, click "Login".

CTCU
1G Base-TX to 1G Base-FX OAM Media Converter
Username: admin
Password:
Login

3.3 Web Main Page

When you successfully access the device, the first page you will see look like the one provided below. In this manual, we use **Gigabit media converter's** (FTH4-1000M) Web configuration page as example. If you use Fast Ethernet media converter, some pages may vary.

3.4 System Information

3.4.1 Network Information

The information displayed on this page gives specific device, network information, and port status for the local FTH4-1000MS and for any remote that is accessible via IEEE802.3ah OAM in-band management.

Local Device Information

MAC Address	00:02:ab:0d:a8:67
Software Version	1.040
IP Address	10.1.1.1
Gateway	10.1.1.254
Subnet Mask	255.255.255.0
Description	FTH4-1000MS

Remote Device Information

MAC Address	00:02:ab:0d:a8:60
Software Version	1.040
IP Address	10.1.1.1
Gateway	10.1.1.254
Subnet Mask	255.255.255.0
Description	FTH4-1000MS

Local Port Status

Ports	TP	FX
Link Status	Up	Up
Speed	1000M	1000M
Duplex mode	Full	Full
Flow control	Enable	Enable
Auto negotiation	Auto	Auto

Remote Port Status

Ports	TP	FX
Link Status	Down	Up
Speed	10M	1000M
Duplex mode	Half	Full
Flow control	Enable	Enable
Auto negotiation	Auto	Auto

3.4.2 DD Information

The DD or DDOM information is read from the MSA compliant SFP module and can be displayed via the web user interface.

Local DD Information	
Vendor Name0	CTC UNION
Vendor Part Number	SFS-7020-WA-DDI
Fiber Type	Single Mode
TX Wave Length	1310 nm
RX Wave Length	1550 nm
Link Length	0020 Km
Tx Power	-06 dBm
Rx Power	-05 dBm
Rx Sensitivity	-35 dBm
Temperature	035 C

Rem	Remote DD Information	
Vendor Name0	CTC UNION	
Vendor Part Number	SFS-7020-WB-DDI	
Fiber Type	Single Mode	
TX Wave Length	1550 nm	
RX Wave Length	1310 nm	
Link Length	0020 Km	
Tx Power	-06 dBm	
Rx Power	-05 dBm	
Rx Sensitivity	-35 dBm	
Temperature	025 C	

3.5 Local Settings

The following is a listing of the local settings that can be performed via the web interface for the Gigabit & Fast Ethernet media converter. We will go through the settings here, one by one, in detail.

Local Setting

IP Configuration Password Setting Converter Configuration

Port Configuration

MIB Counter

VLAN

3.5.1 IP Configuration

Use this screen to set the TCP/IP configuration for the local unit. Note, that if you change the IP address you could lose remote management for this device. Remember to save settings under the "Tools" menu.

DHCP Client	Disable 🗸
IP Address	10.1.1.1
Subnet Mask	255.255.255.0
Gateway	10.1.1.254
Description	FTH4-1000MS

The above shows the factory default TCP/IP settings for Gigabit & Fast Ethernet media converters. The "Description" field varies depending on the device you use.

DHCP Client, when enabled, will allow the device to automatically get the IP configuration settings from the network's Dynamic Host Configuration Protocol server. When setting this device with static IP, make sure this is disabled (disabled is the default).

IP Address is the dotted/decimal format for the IPv4 address to remotely manage this device.

The **Subnet Mask** defines the type of subnet the device will be on. The proper subnet setting will be defined by the network administrator.

The **Gateway** is the default path for any packets NOT belonging to the local subnet. This IP address is the address of the router on your network. It is also entered as a dotted/decimal IPv4 format address. If the device will only be managed on the local subnet, setting a gateway address is optional.

After applying settings, do not forget to save the configuration under the 'Tools' menu so that the settings are permanent.

3.5.2 Password Setting

This function is used to modify the default password for the device. The password is required so that only authorized users have access to the management of the device.

Password Setting		
Login Name	admin	
Old Password		
New Password		
Confirm		

Key in the current password and type in the new password twice, then click the "Apply" button.

After applying settings, do not forget to save the configuration under the 'Tools' menu so that the settings are permanent.

3.5.3 Converter Configuration

The Converter configuration menu includes special features of Gigabit & Fast Ethernet media converter.

Converter Configuration		
Management	○ Disable ● Enable	
Jumbo Frame (9K)	Disable	
Link Loss Carry Forward	Disable	
Auto Laser Shutdown	Disable	
Forward CRC Error Frame	● Drop ○ Forward	
Forward Pause Frame	● Drop ○ Forward	
Management Packet High Priority (This function need reset to take effect!)	○ Disable ® Enable	
Broadcast Storm Filter	Disable	
Multicast Storm Filter		
Unknown DA Unicast Storm Filter		
: When Management Packet High Priority is enabled, all managemen will be allocated to high priority queue to garantee bandwidth.		

All of these special functions will be explained on the following two pages. Select the proper radio buttons and then click the "Apply" button. Remember to save settings under the "Tools" menu.

The remote **Management** functions of the converter can be disabled. Once disabled and saved, regardless of the 802.3ah OAM settings, the remote management feature is disabled. When management is enabled, the remote management feature will be available.

This converter is capable of supporting **Jumbo Frames** (9k byte packets) when this option is enabled. Note that in order to support jumbo frames, the TP speed and duplex must match the FX. Jumbo Frames are not typically used on a normal network, since most devices are not able to handle them and they would be truncated. Most PCs, servers, switches, DSL and WiFi do not support jumbo frames. Jumbo frames can only work on a pure Jumbo frame network, which currently only exists in data centers for server-to-server or server-to-storage connections and on some education back bone networks. Jumbo frames will always be considered to be illegal, non-standard Ethernet packets, according to IEEE802.3. In most cases, the call for jumbo frame support is just marketing hype.

Link Loss Carry Forward or Link Fault Pass through (**LFP**) allows a link condition to be passed from fiber to TP or from TP to fiber. This function is disabled by default.

Auto Laser Shutdown (ALS) is an optical safety mechanism which will shutoff laser transmission if the transceiver experiences a loss of receive signal. This function is disabled by default.

Forward CRC Frame option is disabled by default. The normal behavior of a switch is to read the entire Ethernet frame (store), calculate the checksum and compare to the FCS in the packet. If the checksum matches, the packet is transmitted (& forwarded). If the checksum does not match, the switch considers the packet to have CRC error and drops it. If this option is enabled, the packet with CRC error will still be forwarded instead of being dropped.

The option **Forward Pause Frame** allows pause frame forwarding to occur when enabled. Pause frames are special broadcast frames defined in IEEE802.3X. Normally pause frames are used by the switch to throttle packets through a bottle neck rather than drop excess packets (for example, if **1000M** data stream is exiting a lower speed 100M port). Normally, the pause frames are not forwarded between interfaces in the switch. In many cases, pause frames are considered problematic. Therefore, their forwarding is disabled by default in this converter.

Management Packet High Priority is a function which is enabled by default. Unless VLAN is enabled, this function is meaningless. The packet priority is included as 3 bit priority in the VLAN tag. Management packets will be assigned the highest priority so that even in the presence of high traffic throughput, this converter can still be easily managed.

Broadcast Storm is a condition where either a loop exists on the network or an Ethernet transceiver is bad and exhibiting jabber. In addition there are the deliberate attempts to bring a network down through virus and denial of service routines. When enabled, the **Broadcast Storm Filter** will recognize and block the forwarding of these broadcasts.

Multicast storms happen when application participants request retransmits of information they have missed in the multicast stream. There are many applications, like video streaming, IP based punch clocks, IP based surveillance trackers and camera, that come with multicast or some broadcast based protocol turned on by default. The **Multicast Storm Filter** can be enabled to filter these unwanted effects.

The **Unknown DA Unicast Storm Filter** can be used to filter the Unicast broadcasts whose objective is to cause deny-of-service. Some Trojans and virus start scanning multicast IP ranges causing excess broadcasts and reducing network performance.

3.5.4 Port Configuration

This screen is for the configuration of the electrical Ethernet port (TP) and the optical port (FX).

Port	Link	Port Active	Mode	Flow Control	Ingress Rate Limit (bps)	Egress Rate Limit (bps)
TP	Down	Enable 🗸	Auto Speed 🔻	Enable 🔻	Not Limit V 0 * 64	k Not Limit ∨ 0 * 64
FX	1000F	Enable 🔻	Auto Speed 💌	Enable 🔻	Not Limit V 0 * 64	k Not Limit v 0 * 64

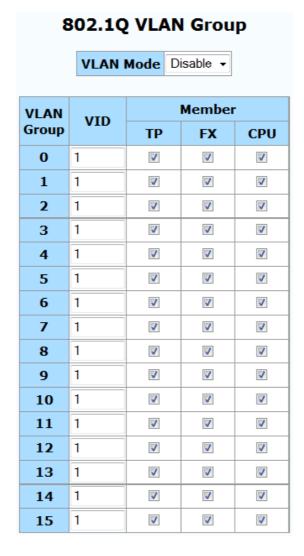
Both the TP and FX **Port Active** are enabled by default. If a port is disabled, all transmission through this port will be stopped. The device's LAN or Fiber Link LED will be extinguished if the port is made inactive. However, any connected device will still detect an Ethernet link.

The UTP port **Mode** supports auto-**negotiation** per IEEE802.3u as well as manual forced mode setting of **Speed** and **Duplex** (Half/Full). In 802.3u, speed can be auto detected, however the Duplex mode MUST be negotiated. When an 802.3u compliant device is configured in auto negotiation mode, failure to negotiate Duplex (for example, if connected to legacy equipment or to equipment configured in forced mode) will result in the Auto device assuming a Half-Duplex operating mode. <u>Do not connect forced Full mode Ethernet ports to an auto device as this will result in a Duplex-Mismatch</u>.

The Gigabit Media Converter's FX port will be able to auto detect speed (100M/1000M for Gigabit media converter; 100M for Fast Ethernet media converter) although there is no standard for fiber speed and duplex negotiation. Therefore, it is important that at least one device on the fiber link be manually configured for speed. In the example here, the device is manually configured for fiber speed of 100M.

Ethernet **Flow Control** (IEEE802.3X) is a mechanism for temporarily stopping the transmission of data on Ethernet family computer networks. It can work in conjunction with rate limiting to avoid dropped packets from TCP. Flow control should also be used with care and with full knowledge of its effect when used to pause traffic coming from a switch.

The **rate limiting** is adjustable for both ingress (packets received into the TP or FX port) and egress (packets transmitted from the TP or FX port) in granularity of 64k. By default, rate limiting is disabled. Once enabled, the rate limit can be set in nx64k rates where n=1 to 16000. Entering an "n" value of zero (0) will again disable the rate limiting.


3.5.5 MIB Counters

MIB Counters				
(The following counter means the port received number)				
Port	TP	FX	СРИ	
Total Bytes	2733581	110332	420652	
Total Pkts	20993	886	3471	
Total Error Pkts	0	0	0	
Unicast Pkts	2648	867	3435	
Multicast Pkts	6329	0	0	
Broadcast Pkts	12016	19	36	
64	5950	450	668	
65-127	8522	0	2271	
128-255	4754	436	445	
256-511	1142	0	6	
512-1023	621	0	4	
1024-1518	4	0	77	
Undersize Pkts	0	0	0	
Oversize Pkts	0	0	0	
Fragments	0	0	0	
CRC Errors	0	0	0	
Jabbers	0	0	0	
Drop Events	0	0	11	
Pause Frames	0	0	0	
Clear Refresh				

The counters have an accumulation of received bytes and packets for each port (UTP, Fiber and Management). The distribution of those packets is further delineated into packet types (Unicast, Multicast, Broadcast) and packet sizes. Also counted are illegal packets and dropped events. This display can be refreshed or the counters cleared by clicking the appropriate buttons.

3.5.6 VLAN

3.5.6.1 VLAN Group

By default, this device is VLAN unaware, making it completely transparent to VLAN tags. In most application, this device only acts as a media converter and therefore the device should be transparent. This device does support up to 16 VLAN groups. By using the check boxes for each port, the ingress access to different VIDs can be controlled here for TP, FX and management.

3.5.6.2 VLAN Per Port Configuration

802.1Q VLAN Per Port Setting			
Port	Egress Link Type	Port VLAN Entry	
TP	Dont Touch Tag ▼	0 🔻	
FX	Dont Touch Tag ▼	0 🔻	
CPU	Dont Touch Tag 🔻	0 🔻	
	Replace Tag Remove Tag Add Tag Dont Touch Tag		

Within the Gigabit & Fast Ethernet media converter, there are actually three different ports, the external copper and fiber ports, plus the internal CPU port (management). The VLAN Per Port Setting page deals with how frames exit (egress) the copper, fiber and CPU (management). These are the **Frame Egress Type**. The following operations may be performed to the outgoing frames: <1>: Replace Tag The switch will remove VLAN tags from packets then add new tags to them. The inserted tag is defined in "Port VLAN Entry". <2>: Remove Tag The switch will remove VLAN tags from packets, if they are tagged. The switch will not modify packets received without tags <3>: Add Tag The switch will add VLAN tags to packets, if they are not tagged when these packets are output on this port. The switch will not add tags to packets already tagged. The inserted tag is defined in "Port VLAN Entry". <4>: Don't Touch Tag Do not insert or remove VLAN tags to/from packet which is output on this port.

3.5.7 Management VLAN Setting

This function is independent of any other VLAN group or per port settings. The settings here provide a very quick method to configure how access to management is controlled.

Management VLAN Setting				
Utp Port Access Control	O Disable O Enable O Drop			
Fiber Port Access Control	O Disable	ОЕ	Enable	ODrop
Management VID	1 (1~4094)			
Apply				

There are three control 'states' defined as follows:

Disable: This means that the "access control" is not enabled. When set to disable, management is allowed in the respective port. By default, both the TP and FX ports allow full management using untagged packets.

Enable: The access control for the effected port is now enabled. Only packets tagged with the assigned "Management VID" are allowed for management of the Gigabit & Fast Ethernet media converter.

Drop: No management is allowed from this port connection. If, for example, the TP port is set for 'Drop', then there will be no way to manage this device when connected to the UTP port. The management is effectively blocked on that port. This dropped setting might be used in an application where only management arriving from the FX port is desired and all management from TP is blocked.

Caution: The "Apply" button is immediate and persistent. An incorrect setting here could result in 'loss of management' when applying that setting. For example, if you are managing the device via the UTP connection, select 'Drop' for the UTP port and then click 'Apply', management will be immediately lost. In fact, the device will no longer reply to 'ping' at its IP address. Simply rebooting the device will not be enough to recover. To regain management control, either access management from the fiber side, or reset the device to factory default and start over again.

3.6 Remote Settings

When 802.3ah is active in both the local and remote unit (with fiber connection), the in-band management provides an embedded channel to control and configure the remote by using OAM (layer 2) Ethernet packets. The same settings available to the local unit are available under the **Remote Setting** menu, with the exception of password setting.

Remote Setting

IP Configuration Converter Configuration Port Configuration VLAN

3.7 802.3ah OAM Functions

This converter supports IEEE 802.3ah, an OAM protocol that operates at Ethernet Layer 2 (Data Link layer). OAM provides mechanisms to monitor link operation / health and to improve fault isolation. OAM only works point-to-point over the fiber link. In addition to standard 802.3ah functions like loop back and dying gasp, **this converter** also implements OAM to provide complete provisioning of the remote fiber connected converter, without using Layer 3 IP protocol. By using OAM, we can remotely manage another fiber connected converter, without IP addressing. From this menu we can also perform some basic diagnostics, such as loop back test.

802.3ah Functions

802.3ah Configuration Loopback Test 802.3ah Status

3.7.1 802.3ah Configuration

802.3ah OAM Configuration				
802.3ah Function	Disable	0	Enable	
802.3ah Mode	Passive	0	Active	
Link Events	O Disable	0	Enable	
Remote Loopback	Disable	0	Enable	
Unidirection Support	Disable	0	Enable	
Errfrm_Win(second)	2		(1~60)	
Errfrm_Thr	1		(1~2^32)	
Errfrmprd_Win	148800		(1~2^32)	
Errfrmprd_Thr	5		(1~2^32)	
Errfrmsec_Win(second)	10		(10~900)	
Errfrmsec_Thr	5		(1~65535)	
Apply				

To use the OAM functions, the **802.3ah Function** setting must be enabled. It is not enabled by default. The **802.3ah mode** is used to configure an OAM pair. In a pair, one unit must be 'active', while the other must be 'passive'. We typically place the remote converter (CPE) in 'passive' mode and make the local converter 'active'. 'Passive' is the default setting when 802.3ah function is enabled.

The 802.3ah function supports Event Notification with user-defined Alarm Thresholds for alarm reporting. This allows the service provider to monitor alarm thresholds to verify the given SLA (Service Level Agreement) of the line. These alarms are reported in the form of "Error Events" when the errors in a given "Window" size reach a pre-defined threshold. Use the radio button to enable or disable **link events**.

Definitions:

- * Error Symbol Period (error symbols per second): The number of symbol errors that occurred during a specified period exceeded a threshold. These errors are coding symbol errors.
- * Error Frame (error frames per second): The number of frame errors detected during a specified period exceeded a threshold.

- * Error Frame Period (error frames per n frames): The number of frame errors within the last n frames has exceeded a threshold.
- * Error Frame Seconds Summary (error seconds per m seconds): The number of error seconds (1-second intervals with at least one frame error) within the last m seconds has exceeded a threshold.

It is recommended that the Alarm Threshold settings not be adjusted by the novice end user. Threshold settings are specifically for the 802.3ah fault events, which should be defined and set by the service provider.

If "Link Events" are disabled, these threshold settings are all ignored.

Here are the meanings of the settings in the GUI.

Errfrm_Win = Error Frame Event Window: This window of time can be adjusted from 1 to 60 seconds, with the default window being 2 seconds. This is the "Window" used to gather error frames.

Errfrm_thr = **Error Frame Event Threshold:** This threshold count can be set from 1 up to 2 x 10^32 . This count in conjunction with the time frame window will determine if the Error Frame event is reported via OAM.

Errfrmprd_Win = Error Frame Period Event Window: This window can be set from 1 up to 2 x 10^32, with 148800 being the default.

Errfrmprd_Thr = Error Frame Period Event Threshold: This threshold count can be set from 1 up to 2×10^3 2. This count in conjunction with the frame window will determine if the Error Frame Period event is reported via OAM.

Errfrmsec_Win = **Error Frame Seconds Summary events Window:** This window of time can be adjusted from 10 to 900 seconds, with the default window being 10 seconds. This is the "Window" used to gather error frame seconds.

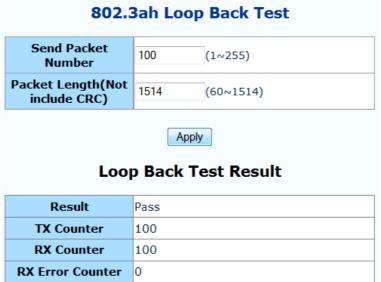
Errfrmsec_Thr = **Error Frame Seconds Summary Threshold:** This threshold count can be set from 5 up to 2 x 10^16. This count in conjunction with the frame seconds window will determine if the Error Frame Seconds Summary event is reported via OAM.

In order to do **Remote Loop Back** test, this option must be enabled in both converters. By default it is enabled.

802.3ah Status			
Discovery Status ACTIVE_SEND_LOCAL			
Fiber Port Status	Fiber Port Status NORM FWD		
refresh			

The normal status when OAM is working is shown above. If OAM is not passing due to fiber disconnect, Discovery Status will be Fault. If OAM is not enabled, this status window will not even be shown.

The unidirectional support indicates whether or not the device supports the transmission of OAMPDUs on links that operate in unidirectional mode. Use the radio button to enable **Unidirection Support** if it is capable of sending OAMPDUs when the receive path is non-operational.


3.7.2 Loop Back Test

802.3ah Loop Back Test		
Send Packet Number	1	(1~255)
Packet Length(Not include CRC)	60	(60~1514)

The loop back test is a non-intrusive test which uses OAM packets and will not affect normal transmissions. The number of OAM frames used (the number of times the loop back is done) is set by the **Send Packet Number**. The default is 1 packet.

The **Packet Length (Not including CRC)** controls the packet size of the OAM frames used for loop back testing. The default is 60 bytes. The CRC of Ethernet packets uses 4 bytes. Valid Ethernet packets range in size from 64 bytes to 1518 bytes. VLAN tag adds another 4 bytes for a maximum size of 1522 bytes. Any frame size larger than this is technically called a jumbo frame and is not IEEE802.3 compliant.

The **Loop Back Test Start** is accomplished by clicking the "Apply" button.

802.3ah is a slow protocol with a maximum throughput of 10 packets per second. The test above takes about 10 seconds for 100 packets.

3.7.3 802.3ah Status

802.3ah Status Information

Global Config

Function Enable	ENABLED		
Fiber Port State	NORM FWD		
Local DTE MAC	00-02-AB-11-22-44		
Remote DTE MAC	00-02-AB-11-22-23		

Flags Field

	Local	Remote
Remote Stable	TRUE	TRUE
Remote Evaluating	FALSE	FALSE
Local Stable	TRUE	TRUE
Local Evaluating	FALSE	FALSE
Critical Event	FALSE	FALSE
Dying Gasp	FALSE	FALSE
Link Fault	FALSE	FALSE

Discovery Information

Discovery State	SEND_ANY
Local PDU	ANY
Local Satisfied	TRUE
Remote State Valid	TRUE
Local Lost Link Timer Done	FALSE
Local Link Status	TRUE

The **Global Config** fields display the state of OAM, if OAM is enabled. We can also see the MAC addresses of the local and remote units in the OAM manageable pair. The **Flags Field** list the results of individual events based on the results of OAM protocol data units (OAMPDUs). Lastly, when two OAM devices start negotiation, there is **Discovery Information** passed between them. The results are shown here.

Information TLV

	Local	Remote
State Mux	FWD	FWD
State Par	FWD	FWD
Revision	0x2	0x2
Variable	TRUE	TRUE
Link Events	TRUE	TRUE
Loopback	TRUE	TRUE
Unidir	FALSE	FALSE
Mode	ACTIVE	PASSIVE

Most information carried by OAMPDU is encoded using type-length-value (TLV) format. The first octet (or byte) of the OAMPDU indicates the type. This type is used to let the OAM client know how to decode the bytes containing the information. The next octet carries the length of the information. This display has **TLV information** for both the local and remote OAM units.

Link Event Notification Status

	Local	Remote
Frm Errtal	0	0
Frm Evetal	0	0
Frmprd Errtal	0	0
Frmprd Evetal	0	0
Frmsec Errtal	0	0
Frmsec Evetal	0	0

Ethernet OAM also defines a set of standard event conditions that Ethernet links should monitor in normal operation, and if detected, should be signaled to a peer entity. The **Link Event Notification Status** conditions reflect a degraded, but not yet inoperable, Ethernet connection. These conditions include threshold-crossing alarms on the frequency of symbol errors and frame errors.

Remote Dying Gasp	
Remote Dying Gasp Count:	0

One of the most critical problems in an access network for carriers is differentiating between a simple power failure at the customer premise and an equipment or facility failure. Dying gasp provides this information by having a station indicate to the network that it is having a power failure.

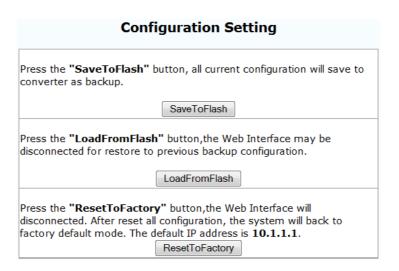
If remote management is lost, we simply need to check the **Remote Dying Gasp Count** register to see if it has been incremented.

Remote Dying Gasp	
Remote Dying Gasp Count:	1

3.8 Tools

The Tools menu includes the System Reboot, Save and Restore settings and Firmware Upgrade functions.

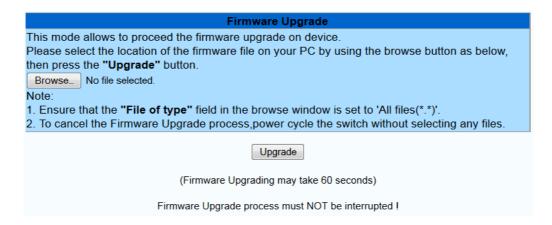
Tools System Reboot Save and Restore Firmware Upgrade


3.8.1 System Reboot

When the converter is rebooted, all counters and registers are cleared and the converter starts fresh. If OAM is enabled, the discovery process will start. After selecting the System Reboot menu item, a confirmation dialogue box will pop up. Click "OK" to reboot the converter or click "Cancel" to leave without rebooting. The converter requires about 20~25 seconds to fully reboot.

3.8.2 Save and Restore

After performing configuration of the converter, the settings must be saved. Click the "Save To Flash" button to save settings. If you wish to abandon all settings and return to the previous settings before doing configuration, click the "Load From Flash" button.



To restore all settings to factory default, click the "Reset To Factory" button. The IP address will also be reset, so you might lose management contact with the converter. So, be careful.

3.8.3 Firmware Upgrade

If functions are added or if factory default settings are changed, the firmware in the converter will require upgrading. The only method to do upgrade for this converter is through the local Web (HTTP) user interface. The firmware image is uploaded from the browser (Post), it is checked for integrity, the flash is erased and then the flash is written with the new image.

DO NOT LET ANY POWER INTERRUPTION OCCUR DURING THE UPGRADE PROCEDURE.

The "Upload success!" indicates the image was transferred OK. Do not do anything for the next 60 seconds!!!!.

Upload success! please wait a few seconds and visit the main page again! Click here to visit the web site.

After 60 seconds, you may click the link to re-login to the web interface. Login as usual.

3.9 Logout

Logging out will ensure that the management session with the device is terminated. This is especially important if you are using a public computer to manage the device. Once logged out, a password must be entered to access the device again.

Click the "OK" button to completely log out. Click the "Cancel" button to return to configuration of the device.

3.10 Troubleshooting

3.10.1 Factory Default

Apply power to the device and allow 25-30 seconds to fully boot. Using a pencil or ball-point pen, press the 'DEFAULT' recessed push-button switch (located on the face plate) and hold for 10 seconds or more then release. **DO NOT POWER OFF**; Allow the unit to again fully reboot (about 25 seconds). The factory default TCP/IP settings are:

IP=10.1.1.1 netmask=255.255.255.0 GW=10.1.1.254

The username and password are both reset to 'admin'.

Additionally, any VLAN, 1Q or bandwidth control will be disabled. All ports will be enabled, UTP ports set for auto-negotiation.

3.10.2 Reset

The reset function is a hardware reboot. Using a pencil or ball-point pen, press the 'DEFAULT' recessed push-button switch and hold for 3 seconds (no more than 4 seconds) and release. The unit will reboot using the previous saved configuration.

3.10.3 LED Observations

3.10.3.1 Power On

At initial power on, PWR LED will not be lit. If active LAN is connected to the TP port, that Link and Speed LED will be lit. After 25 seconds the CPU has fully booted, PWR LED will be lit.

Error conditions:

If all LEDs immediately light and never turn off, or if no LED ever lights, then the unit is possibly defective. Be sure to double check power source.

3.10.3.2 UTP Link Test

Following a complete power and boot up (about 25 seconds) the converter will be active and LAN port will display LAN LNK state when connected to a live Ethernet circuit. The LAN SPD LED will be green when connected to Fast Ethernet (100M) and yellow when connected to Gigabit Ethernet (1000M). When connected to 10Base-T the LAN SPD LED will be off.

3.10.3.3 Fiber Link Test

Following a complete power and boot up (about 25 seconds) the converter will be active. For **FTH4-1000MS**, place a known good SFP module into Fiber Port cage. Use a simplex patch cable (single fiber strand, LC to LC), route the SFP Tx back to the Rx optical connection. The FX LNK LED should light. For **FTH4-1000M** & **FTH4-1000M**, use a simplex patch cable (single fiber strand, SC to SC, ST to ST or FC to FC), route the Tx back to the Rx optical connection. The FX LNK LED should light.

Caution: When performing a physical loop back on any fiber port, DO NOT connect the LAN port to a live Ethernet network. Doing so could create a broadcast storm.

3.10.4 Operation Checks

3.10.4.1 Converter Check

A very easy way to ensure a pair of **FTH4-1000M or FTH4-100M** is passing traffic, is to place them between two PCs. Connect PC1 to LAN of one converter and PC2 to LAN of the other converter. When the two PCs can ping each other, it indicates **FTH4-1000M or FTH4-100M** pair is operational.

3.10.4.2 Ping Test

With the device reset to factory default, connect a PC and configure the PC to the 10.1.1.0 network (10.1.1.100 recommended). Use a PC to ping the device at its factory default IP address of 10.1.1.1. With a direct connection to PC, there should be no time outs and ping latency should be less than 1 millisecond. If you switch to another device, be sure to clear the PC ARP table. Every device has the same default IP address, but every unit has a different MAC address. To clear the PC's MAC table, open a command window and execute the command 'arp – d'. In addition, if you disconnect the PC from any LAN connection and then re-connect, the ARP table should also be cleared.

```
Microsoft Windows [Version 6.1.7601]
Copyright (c) 2009 Microsoft Corporation. All rights reserved.

C:\Users\socialistator.C:\Windows\phateboxer.

ping 10.1.1.1 with 32 bytes of data:
Reply from 10.1.1.1: bytes=32 time=16ms TTL=32
Reply from 10.1.1.1: bytes=32 time=5ms TTL=32

Ping statistics for 10.1.1.1:

Packets: Sent = 4, Received = 4, Lost = 0 (0x loss),
Approximate round trip times in milli-seconds:

Minimum = 5ms, Maximum = 16ms, Average = 8ms

C:\Users\socialistator.

C:\Users\socialistator.

M:\text{C:\Users}\socialistator.

M:\text{C:\Users}\socialistator.

A:\text{C:\Users}\socialistator.

M:\text{C:\Users}\socialistator.

A:\text{C:\Users}\socialistator.

A:\text{C:\Users}\socialistat
```

3.10.4.3 Web Access Test

With the device reset to factory default, connect a PC and configure the PC to the 10.1.1.0 network (10.1.1.100 recommended). Use a PC to connect to the device at its factory default IP address of 10.1.1.1 using a web browser (Internet Explorer, Firefox, Chrome, etc.). The local web page login page should display. Use 'admin/admin' to login; the local main page should be displayed in the browser.

If the ping test can pass and the login page can be displayed but login fails, we recommend that cookies be deleted. You may either delete all cookies for your browser or only the individual cookie created for the IP address of the device.

This page is intentionally left blank.

T +886-2 2659-1021

F +886-2 2659-0237

E sales@ctcu.com

