
PacketView™

User’s Manual

Copyright  Klos Technologies, Inc.
All Rights Reserved

Legal Notice

Information in this document is subject to change without notice and does
not represent a commitment on the part of Klos Technologies, Inc. The
Software described in this document is furnished under the Software License
Agreement set forth in Appendix A of this document. The Software may be
used or copied only in accordance with the terms of the License. The
purchaser may make one copy of the software for back-up purposes, but
no part of this User’s Manual may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means electronic or
mechanical, including photocopying and recording for any purpose other
than the purchaser’s personal use, without the prior written permission of
Klos Technologies, Inc.

Trademarks

ARCNET® is a registered trademark of Datapoint Corporation.
DECnet® is a registered trademark of Digital Equipment Corporation
IBM-PC® and IBM-AT® are registered trademarks of International Business
Machines Corporation.
NetWare® is a registered trademark of Novell, Inc.
PacketView, SerialView and ISDNView are trademarks of Klos
Technologies, Inc.
SMC® is a registered trademark of Standard Microsystems Corporation.
VINES® is a registered trademark of Banyan Systems, Inc.
AppleTalk®, LocalTalk®, and EtherTalk® are registered trademarks of
Apple Computer Inc.

Other brand and product names are trademarks or registered trademarks
of their respective holders.

© Copyright, Klos Technologies, Inc.
All Rights Reserved

Table of Contents

Introduction 1
Product Description 1
System Requirements 1
System Limitations 1
Customer Support 2

Installation 2
Installing PacketView 2
Loading the Packet Driver 2
Loading an ODI Driver 3

Using PacketView 3
Command line options 4
The Main Display 5

RAW Mode 5
TEXT Mode 6
Line Mode 6
Detail Mode 7

Key Functions 8
Main Menu 11
Edit Filter Menu 14

Trigger Filter, Capture Filter and Display Filter Screens 16
Filter Editing 18

Match Criteria 20
Symbol Lookup During Filter Definition 21

Packet Replay Menu 22
Files 22

PV.CFG 22
HOSTS 24
NODES 24
VENDORS 25
OIDS 27

Customizing PacketView 28
External Protocol Decoders 28

The protocol structure 28
The initialization routine 28
The format line routine 29
The format detail routine 29

Library routines for external protocol decoders 30
sprintf 32
printf 32

Formatting IP Addresses 33

Formatting 48-bit Node Addresses 34
Formatting Object IDs 34

format_protocol 34
format_protocol_line 35
format_raw 35
format_raw_line 35
set_color 36
falloc 36
open 36
read 37
write 37
lseek 38
close 38
home_dir 38
current_level 38

Assistance with external protocol decoders 38
Glossary 40
Appendix A - Software License Agreement 43
Appendix B - Sample External Protocol Decoder Listings 47

HEADER.ASM 47
STRUCTS.H 48
IP.H 52
DEMO.C 53

Appendix C - Crynwr Packet Driver Collection 58
Crynwr Packet Driver Installation 59
Using the packet drivers 59

Appendix D - Klos Technologies, Inc. Packet Drivers 67
ETHPD 67
COM20020 68

1

Introduction

Product Description

PacketView is a software product that allows you to view
network traffic, debug network drivers and protocols, and
learn more about your networking environment. Coupled
with a network controller and a packet driver or ODI driver,
PacketView turns any DOS-based system into a real time
protool and network analysis tool. PacketView can also be
used to view and analyze previously saved packets without a
network controller or driver. A unique feature of
PacketView is that it allows users to independently develop
their own protocol decoders (using assembler or a Microsoft
C compiler) for use with PacketView.

System Requirements

PacketView requires an IBM or compatible PC/XT/AT or
PS/2 system running DOS version 5.00 or above. A hard disk
and 640K base memory is recommended, but not required.
For real time access to a network, the system must contain a
network controller with either a packet driver or ODI driver
that supports promiscuous mode.

System Limitations

PacketView uses base and expanded (EMS) memory to
collect packets from the network. As much base memory as
possible should be available when PacketView is loaded.

Filters 10 Display Filters and 10 Capture Filters.
Each filter consists of up to 5 match
terms.

Packets Defaults to 4096 packets, user may
select up 65535, also limited by
available memory.

Protocol Decoders Limited by available memory.
Symbols Limited by available memory (requires

24 bytes per node symbol or host
symbol - OIDs require more).

2

Customer Support

Technical support for PacketView is available by calling
Klos Technologies, Inc. support at (607) 753-0568 between
8:00 AM and 5:00 PM EST or via e-mail at support@klos.com.

Installation

Installing PacketView

To install PacketView, put the PacketView diskette into
the A: drive and type "A:INSTALL" at the DOS command
prompt. Install will prompt for owner name, company name
and the directory in which to copy PacketView (default
C:\PV). Install then creates the specified directory, if
necessary, and copies the PacketView files to that
directory. If the PacketView directory in not in the system
PATH, be sure to update the PATH to include the
PacketView (C:\PV) directory.

Loading the Packet Driver

Most packet drivers are TSR (Terminate and Stay Resident)
programs or device drivers with unique command line
definitions. Two enhanced packet drivers developed by Klos
Technologies, Inc. are included with PacketView. One for
NE1000, NE2000 and compatible Ethernet adapters, and one
for COM20020 based ARCNET adapters. These packet
drivers are described in Appendix C.

Also included is the CRYNWR Packet Driver Collection. This
collection is provided at no cost, and is NOT a part of
PacketView. Appendix D includes support and installation
information, as well as examples for loading packet drivers of
several common network controller boards. If your controller
is not supported by the CRYNWR Packet Driver Collection,
refer to the documentation specific to the packet driver for
your network controller or contact customer support.

3

Loading an ODI Driver

If you would like to use an PacketView with an ODI driver, it
is recommended that you NOT load any networking software
except LSL.COM and the actual ODI driver (also known as
an MLID). This means that you would NOT load IPXODI (and
NETx) or TCPIP or any other protocol stack that would use the
same ODI driver you wish to use with PacketView. Also, try
to determine if the ODI driver supports promiscuous mode.
This is necessary for proper operation of PacketView. To
load the LSL and ODI driver, follow the instructions in the
Novell (or manufacturer’s) manual for the specified network
adapter. An example for an NE2000 board would look like
this:

lsl
ne2000

Using PacketView

To run PacketView, type "PV" at the DOS command
prompt. If the PacketView program was not copied to a
directory in your system’s PATH, be sure to change your
current directory to the directory in which PacketView was
copied.

Example:
C:\>PV↵

When PacketView initializes, it determines the location of
the PacketView program file (PV.EXE) on the hard disk, and
assumes all other support files are in the same subdirectory.
For example, the default configuration file for PacketView
is PV.CFG. If PV.EXE is located in the subdirectory C:\PV,
PacketView will look for PV.CFG in the same directory. The
default location for the support files may be overridden by
the use of an environment variable called "PACKETVIEW". For
example, if PV.EXE is found in the C:\BIN subdirectory, but the
support files are in the C:\PV subdirectory, the following line
should be included in AUTOEXEC.BAT:

SET PACKETVIEW=C:\PV

4

Files that are always kept in the PacketView (ex. C:\PV)
subdirectory include the configuration files, filter files, and the
NODES, HOSTS, VENDORS and OIDS files. However,
PacketView will look in the current directory for the NODES,
HOSTS, VENDORS and OIDS files before it searches the
PacketView (ex. C:\PV) subdirectory.

Command line options

PacketView supports several command line options that
allow you to control the initial state of PacketView when
started.

PV [MONO] [PACKETS=nnnnn] [NOEMS] [NONE | PD=nn |
BOARD=nn] [BATCH=filename]

MONO Selects the display characteristics for a
monochrome display. Default display
mode is color with color display adapters.
This is especially useful for LCD screens
where color is difficult to see.

PACKETS=nnnnn Sets the maximum number of packets
(nnnnn) that can be held in memory at
any one time. The maximum number of
packets may be from 128 to 65535. The
default is PACKETS=4096.

NOEMS Disables the use of Expanded Memory
(EMS). The default is to use Expanded
Memory when available.

NONE Disables the search for a packet driver
stub. This is useful when doing post
analysis on saved packet files. The default
is to search for a packet driver stub.

[PD=]nn Specifies the specific interrupt for the
packet driver stub to be used. nn must be
specified in hexadecimal and must be in
the range of 60 through 80 inclusive.

5

BOARD=nn Specifies the ODI driver to be used. nn
must be specified in decimal and must be
in the range of 1 through 8 inclusive.

BATCH=filename Enables batch mode operation. In this
mode, PacketView will collect packets
until it’s memory or packet table is full. It
then writes the packets to the filename
specified and terminates. Note that if any
key is pressed while PacketView is
executing in batch mode, batch mode is
automatically disabled and WILL NOT
terminate upon a buffer full condition.

The Main Display

The Main Display provides the primary interface for
PacketView. The display provides current packet
information in one of two modes: Line Mode or Detail Mode.
Line mode provides a screen of single line descriptions of
packets, while Detail mode provides a complete description
of a single packet.

If function key display is enabled, the function key definitions
for the Main Display are displayed along the bottom portion
of the screen.

Provided on all displays is the number of packets currently in
the packet buffer, the percentage of memory used and the
packet driver receiver state.

In addition to the two primary modes of display
PacketView also provides two independently controlled
data display modes, RAW and TEXT modes.

RAW Mode

RAW mode displays the data portion of the packet in
hexadecimal and ASCII representation. If RAW mode is not
in effect, PacketView will decode the packet based upon
the protocol specified and the decoders available. If

6

PacketView cannot recognize the protocol specified, the
packet will be displayed in the RAW mode format.

TEXT Mode

If the contents of the data portion of the packet is all ASCII
displayable characters then in TEXT mode this data will
displayed in ASCII. If TEXT mode is disabled then the data
portion of the packet will be displayed in hexadecimal.

Line Mode

In Line mode, PacketView displays a screen of single line
descriptions of packets the packet buffer. Only those
packets that satisfy any Display Filters will be displayed. If no
Display Filters are defined, then all packets are displayed.

The first column contains the packet number. Each packet
in the packet buffer is assigned a sequential number for
reference.

The second column indicates the time for the packet in one
of three formats. It may indicate either a capture time (the
time the packet was received),a relative time (time before
or after an event marker) or a delta time (time between
adjacent packets).

PacketView v1.23 Total packets: 332 Memory used: 1%
Copyright, Klos Technologies, Inc. Receiver state: Enabled

 1) 0.114 0035 DIX: 00000C004493 <- 0800200894E1 [0800] IP: 130.204.5.68 ->
 2) 0.153 002E DIX: 0800200894E1 <- 00000C004493 [0800] IP: 137.39.1.6 -> 1
 4) 0.288 0044 DIX: 0207010DF931 <- 02608C542501 [0BAD] VINES IP:
 5) 0.292 003A DIX: 02608C542501 <- 0207010DF931 [0BAD] VINES IP:
 7) 0.369 004E DIX: 0207010C11ED <- 02608C542501 [0BAD] VINES IP:
 8) 0.373 002E DIX: Broadcast <- 080089A17562 [809B] AppleTalk:
 9) 0.378 0031 802.3: 090007FFFFFF <- 080089A17562 [0031] DSAP=AA SSAP=AA C
 10) 0.592 0060 802.3: Broadcast <- DEMO [0060] IPX: SAP:
 11) 0.613 002E DIX: 0207010DF931 <- 02608C542501 [0BAD] VINES IP:
 13) 0.652 002E 802.3: 020701058A6A <- BLUE [0020] IPX: Unknown:
 14) 0.657 003C DIX: Broadcast <- 08001E016136 [0800] IP: 130.204.8.9 ->
 15) 0.827 0060 802.3: 0307011C1C1C <- 020701074C2F [0060] DATA: 80 80 00 00
 16) 0.887 0035 DIX: 0800200894E1 <- AA000400FFFF [0800] IP: 130.45.4.100 ->
 17) 0.908 0032 DIX: Broadcast <- 02070101E458 [0806] ARP: (0800) REQUEST
 19) 0.986 0057 DIX: AA000400FFFF <- 0800200894E1 [0800] IP: 130.204.5.68 ->
 21) 1.034 004E DIX: 0207010C11ED <- 02608C542501 [0BAD] VINES IP:
 22) 1.114 0030 DIX: 0800200894E1 <- AA000400FFFF [0800] IP: 130.45.4.100 ->
 23) 1.122 0228 DIX: AA000400FFFF <- 0800200894E1 [0800] IP: 130.204.5.68 ->
+--F1------F2------F3------F4------F5------F6------F7------F8------F9------F10-+
¦ HELP ¦ EDIT ¦PACKET ¦RESTART¦TOGGLE ¦ ¦ PRINT ¦ GOTO ¦CONTIN-¦ MAIN ¦
¦ ¦FILTERS¦REPLAY ¦RECEIVE¦RECEIVE¦ ¦ ¦PACKET ¦ UOUS ¦ MENU ¦
+--+

Typical Line Mode Display

7

The third column contains the size of the packet in
hexadecimal. This size indicates the size of the data field for
the packet, and does not include the MAC header or CRC
bytes.

The remaining columns can be optionally removed from the
display, or vary in format based upon the media and
protocols involved.

Optionally, the MAC (Media Access Control) layer
information may be displayed. For Ethernet, this includes the
media descriptor (DIX or 802.3), the destination address, the
source address and the type field. For token-ring, the display
indicates the media descriptor (802.5), the destination
address and the source address. For ARCNET, the display
indicates the media descriptor (ARC), the destination node
ID, the source node ID, and the protocol ID.ND -> UD

The format of the remainder of the line will vary based upon
the protocol indicated and whether or not raw mode or text
mode are in effect.

Detail Mode

Detail mode, PacketView provides a complete description
of a single packet. The display includes the MAC layer
information, the packet number, packet size and the time for
the packet in one of three formats. The time field may
indicate either a capture time (the time the packet was
received),a relative time (time before or after an event
marker) or a delta time (time between adjacent packets).

8

Key Functions

The following keys are defined for both Line and Detail Mode
displays:

Key Action

Alt-X Exit PacketView
Esc Exit a menu or function
Return Toggle between Detail Mode and Line

Mode
C Toggle color mode between COLOR and

MONOCHROME
D Set the display to Detail Mode
E Toggle Error Mode, when enabled packets

with errors are dropped, when disabled all
packets are saved

F Toggle the display of the Function Key
definitions on the bottom of the screen

L Set the display to Line Mode
M Toggle display of MAC information
R Toggle between raw data display and

protocol decode display
Ctrl-R Switch to "super"-RAW mode, displaying all

bytes of the actual frame in hexadecimal
and ASCII

S Toggle the node name, host name and OID
between symbolic definitions and numeric
values

PacketView v1.23 Total packets: 611 Memory used: 12%
Copyright, Klos Technologies, Inc. Receiver state: Disabled

 IEEE 802.3:
 Destination: 0207010E8A4E Size: 002E Number: 20
 Source: 0207010516F6 Type: 0028 Time: 25.65

 IPX:
 Checksum = FFFF, Packet length = 0028
 Transport control: 0 Hop Count: 0
 Protocol type is 1 (RIP)
 Destination address: 00000001.0207010E8A4E
 Destination socket: 0453 (Routing Information Protocol)
 Source address: 00000001.0207010516F6
 Source socket: 0453 (Routing Information Protocol)

 RIP: Route Response
 Network Hops Ticks
 -------- ---- -----
 00000002 1 2

+--F1------F2------F3------F4------F5------F6------F7------F8------F9------F10-+
¦ HELP ¦ EDIT ¦PACKET ¦RESTART¦TOGGLE ¦ ¦ PRINT ¦ GOTO ¦CONTIN-¦ MAIN ¦
¦ ¦FILTERS¦REPLAY ¦RECEIVE¦RECEIVE¦ ¦ ¦PACKET ¦ UOUS ¦ MENU ¦
+--+

Typical Detail Mode Display

9

Alt-S Send the current packet
T Toggle the packet time field between

absolute time and delta time since the
previous packet

Ctrl-T Mark an event. All other packets’ time field
will be relative to this packets’ time field

Alt-T Toggle Text Mode, wherever packet data
would normally display the data in
hexadecimal, the data is checked for
displayable text, if all of the data is
displayable then it is displayed in ASCII

U Start Update mode, keep the display
current with the last packet received

V Toggle the display mode between 25 and
50 lines for VGA displays

Function KeyAction

F1 Display help
F2 Enter the Filter Menu
F3 Enter the Replay Menu
F4 Clear the packet buffer and enable the

receiver to capture packets from the
network

Alt-F4 Start "continuous capture" mode. This
causes the packet buffer to be cleared and
the receiver to be enabled. Whenever the
packet buffer becomes full, it will
automatically be cleared again, restarting
the capture. This mode is terminated
whenever any key is pressed.

F5 Toggle enable/disable of packet capture
from the network

F6 (undefined at this time)
F7 Select and print a range of packets
F8 Go to a packet by number
F9 Enable Continuous Capture
F10 Display the Main Menu

The following keys are defined for the Line Mode display:

Key Line Mode Action

10

Home Move the cursor to the first packet on the
screen, if the cursor is already on the first
packet then the cursor is moved to the first
packet in the buffer

End Move the cursor to the last packet on the
screen, if the cursor is already on the last
packet then the cursor is moved to the last
packet in the buffer

PgUp Move the cursor up one screen load of
packets

PgDn Move the cursor down one screen load of
packets

North Move the cursor up one packet
South Move the cursor down one packet

11

The following keys are defined for the Detail Mode display:

Key Detail Mode Action

Home Move the cursor to the first packet
End Move the cursor to the last packet
PgUp Display the previous packet
PgDn Display the next packet
North Move the cursor up one line in the current

packet display
South Move the cursor down one line in the

current packet display
Ctrl-Home Display the first screen of the current packet
Ctrl-End Display the last screen of the current packet
Ctrl-PgUp Display the previous screen for the current

packet
Ctrl-PgDn Display the next screen for the current

packet

Main Menu

The PacketView Main Menu is selected from the Main
Display by pressing the F10 key. This screen provides the
ability to load and save PacketView configuration
information, to load and save the contents of the current
packet buffer.

It also provides basic system resource information. This
information includes the base and expanded memory
available for storing symbols and packets, the packet driver
interrupt, the maximum number of packets that may be held
in memory at once, the network physical layer type, and the
number of node and host symbols currently defined.

12

The following describes each of the functions:

F1 - Help

Provides the current help information for the Main Menu.

F2 - Load Configuration from Disk

This function loads predefined configuration information
for PacketView. This configuration information includes
the following configuration options:

Color/Mono Controls the use of color for the
display.

Function Lines Controls the display of the function
key definitions on the Main Display.

Time Display Mode Controls the packet time display
format.

Display Mode Selects either the line or detail
modes for the Main Display.

Screen Mode Selects the number of lines
displayed for the Main Display on
EGA/VGA systems.

PacketView 1.23 Total packets: 0 Memory used: 0%
Copyright, Klos Technologies, Inc. Receiver state: Enabled

 Main Menu

 F1 - Help
 F2 - Load Configuration from Disk
 F3 - Save Configuration to Disk
 F4 - Load Packet Buffer from Disk
 F5 - Save Packet Buffer to Disk
 F10 - Display Protocol List

 Serial number: 01000001
 Registered to: Patrick Klos
 Klos Technologies, Inc.

 Available base memory: 323K Packet driver at interrupt 0x60+
 Available expanded memory: 2048K Packet list contains 16384 entries
 0 node symbols using 0 bytes Current media type is Ethernet
 0 host symbols using 0 bytes

Main Menu

13

Symbolic Mode Selects whether symbols are to be
displayed.

Packets Maximum number of packets that
may be held in memory at any
one time.

The new configuration information takes effect
immediately except for the Packets value which takes
effect only upon initialization of PacketView.

F3 - Save Configuration to Disk

This function saves the current configuration information
for PacketView. See "Load Configuration" for a
description of the configuration options to be saved. This
configuration can then be loaded again at a later time.

F4 - Load Packet Buffer from Disk

Clears the packet buffer, then loads packets into the
packet buffer from the file specified. Any currently
enabled Capture Filter(s) will be applied to the packets
from the disk and only those passing the Capture Filter(s)
will be placed into the packet buffer.

F5 - Save Packet Buffer to Disk

Saves the packet buffer contents to the file specified.
Any currently enabled Display Filter(s) will be applied to
the packets from the packet buffer and only those
passing the Display Filter(s) will be placed into the output
file. The default extension of .PVD is added when no
extension is given.

F10 - Display Protocol List

This option will display a list of the protocol decoders
loaded along with some memory usage information. This

14

list will include any custom protocol decoders that have
been loaded.

Edit Filter Menu

PacketView provides the mechanism, using Filters, to
selectively start and stop packet collection, store and view
packets received from the network or selectively read
packets from a packet file. The "Trigger Filter" is used to start
or stop packet collection. When a packet is received that
matches the filter criteria then packet collection is either
started, stopped or toggled according to the filter definition.
Trigger filters are used to watch for a specific event on the
network then to use either start or stop packet collection thus
reducing the packets collected to those just around the
significant event. The "Capture Filter" selects which network
packets received from the network driver or read from a
packet file will be kept in the packet buffer. Packets from
the network that are rejected by the capture filter are
dropped and can not be retrieved later. Capture filters are
useful when it is necessary to collect only specific types of
packets from the network. The "Display Filter" selects which
packets from the packet buffer will be displayed (or saved
when the packet buffer is saved to a file). Since the packets
remain in the packet buffer once captured, it is possible to
modify display filters without losing packets from the packet
buffer. Display filters are used to view specific packet types
from the packet buffer without losing packets not of
immediate interest.

PacketView 1.23 Total packets: 0 Memory used: 0%
Copyright, Klos Technologies, Inc. Receiver state: Enabled

 Edit Filter Menu

 F1 - Help
 F2 - Edit Trigger Filters
 F3 - Edit Capture Filters
 F4 - Edit Display Filters

Edit Filter Menu

15

16

Trigger Filter, Capture Filter and Display Filter Screens

The Filter Screens provide the ability to define, modify,
remove, load and save up to ten (10) Trigger, ten (10)
Capture and ten (10) Display filters. Each filter allows for
specific fields of the packet to be checked and either used
to start or stop packet collection (Trigger Filters), saved in the
packet buffer (Capture Filters) or displayed on the screen
(Display Filters).

Note: The packet receiver is disabled while editing Capture
Filters, but remains enabled while editing Display and
Trigger Filters.

The following describes each of the functions:

F1 - Help

Provides the current help information for the Filter
Screens.

F2 - Add

The Add function defines a new filter, either Capture or
Display. See Filter Editing below.

PacketView v1.23 Total packets: 0 Memory used: 0%
Copyright, Klos Technologies, Inc. Receiver state: Disabled

 Capture Filters

 Filter number 0: (enabled)
 Data at offset 0 is 45XXXXXXXXXXXXXX
 Data at offset 14 is 00AXXXXXXXXXXXXX

 Filter number 1: (enabled)
 Data at offset 0 is 45XXXXXXXXXXXXXX
 Data at offset 16 is 00AXXXXXXXXXXXXX

+--F1------F2------F3------F4------F5------F6------F7------F8------F9------F10-+
¦ HELP ¦ ADD ¦ EDIT ¦DELETE ¦ENABLE ¦DISABLE¦ ¦ LOAD ¦ SAVE ¦ DONE ¦
¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦ ¦
+--+

Filter Screen

17

F3 - Edit

The Edit function allows previously defined filters to be
modified. After the filter to be modified has been
selected, the functions available to modify the filter are
the same as those defined for the Add function. See
Filter Editing below.

F4 - Delete

The Delete function allows you to delete a currently
defined filter.

F5 - Enable

The Enable function allows you to selectively enable a
currently defined filter. Any number of filters may be
enabled or disabled at any given time.

F6 - Disable

The Disable function allows you to selectively disable a
currently defined filter. This is useful when you want to
disable the actions of a specific filter without deleting the
filter. The filter may be re-enabled again with the Enable
function (see above) at some time later. Any number of
filters may be enabled or disabled at any given time.

F8 - Load Filters

Loads previously defined filters from disk. If filters are
currently defined, a prompt is provided to ask if the
current filters should be kept. If "no" is selected at the
prompt then the current filters are deleted before
loading the filters from the file. If yes is selected, the filters
from disk are added to the list of currently active filters. If
the total number of filters exceeds ten (10) then only the
first ten (10) filters will be kept.

F9 - Save Filters

18

This function saves the current set of filters to a file.

F10 - Done

Returns to the Main Menu.

Filter Editing

A filter is a list of up to five (5) match criteria which must all
be true for a packet to be selected by the filter. Packets
must be selected by at least one filter to be saved or
displayed.

Filter Editing provides the ability to set or modify the each of
the selection criteria for either a capture filter or a display
filter. This is done with the following selection criteria
functions:

F1 - Help

Provides the current help information for the Filter Editing.

F2 - Add

The Add function allows a packet match criteria to be
added to the filter. However, a maximum of five (5)
packet match criteria may be used in any filter.

F3 - Edit

The Edit function allows the current packet match criteria
to be changed. The criteria to be edited must be
selected using the cursor up and down arrows before
selecting the Edit function. The current packet match
criteria is always displayed in reverse video.

F4 - Delete

This function deletes the current packet match criteria
from the filter. The criteria to be deleted must be
selected using the cursor up and down arrows before

19

selecting the Delete function. The current packet match
criteria is always displayed in reverse video.

20

F5 - Negate

This function negates the current packet match criteria.
Any packets that the criteria would have rejected are
now accepted. Packets that would have been
accepted are now ignored. The criteria to be negated
must be selected using the cursor up and down arrows
before selecting the Negate function. The current
packet selection criteria is always displayed in reverse
video.

F7 - Lookup Node

This function provides for the lookup of a defined Node
name in the symbol table. If the Node is found, its
address may be retrieved for use in the filter definition.

F8 - Lookup Host

This function provides for the lookup of a defined Host
name in the symbol table. If the Host name is found, its
address may be retrieved for use in the filter definition.

F9 - Lookup Vender

This function provides for the lookup of a defined Vender
name in the symbol table. If the Vender is found, its
information may be retrieved for use in the filter
definition.

F10 - Save

After a filter has been completely specified, the Save
function saves it for use.

Match Criteria

Each filter may have from one (1) to five (5) match
criteria. These criteria may be, "Data" match or "Packet
Type" match. Match criteria may be used more than
once in a single filter as long as the total number of

21

match criteria for a filter does not exceed five (5). An
example might use two Data match criteria in a single
filter.

F1 - Data Match

This match criteria prompts for an offset within the data
field (4 digit hexadecimal value) of the packet at which
to begin matching data. The data field is defined to start
after all standard datalink headers, including 802.2 and
SNAP headers. Once the data offset has been entered
up to 16 hexadecimal digits (8 bytes) of data to be
matched is entered. An ’X’ in any digit of the match
data matches all possible values for the digit.

F2 - Packet Type

The Packet Type criteria compares the 4 digit
hexadecimal packet type provided and selects the
packet if the packet type matches.

Symbol Lookup During Filter Definition

When entering match criteria data, a symbol lookup will
allow the user to insert the value of a symbol into the match
criteria data. This is accomplished by pressing either function
key F6, F7 or F8, depending on the type of symbol being
used. Use F6 for node addresses from the NODES file, F7 for a
host address from the HOSTS file, and F8 for a vendor ID from
the VENDORS file. To insert a value from a symbol, press the
appropriate function key, select the desired symbol using the
cursor keys, PgUp or PgDn, then press ENTER. The value for
the specified symbol will be entered into the match criteria.

22

Packet Replay Menu

F1 - Help

F2 - Replay Current Packet (Alt-F2 to View)

F3 - Replay Packet Range

F4 - Change Replay Loop Count

F5 - Change Packet Gap

F6 - Change Packet Range

Files

PV.CFG

The default configuration file for PacketView. This file is
loaded by default whenever PacketView is loaded. To
modify your default configuration, use the "Save
Configuration to Disk" function of the Main Menu after you
have selected your preferred configuration. The
configuration options maintained by this file include the
color mode, function key display, time display format, screen
mode (25 or 50 lines), symbolic display mode, and maximum
packet count.

PacketView v1.23 Total packets: 79 Memory used: 0%
Copyright, Klos Technologies, Inc. Receiver state: Enabled

Current Packet: 79

 Packet Replay Menu

 F1 - Help

 F2 - Replay Current Packet (Alt-F2 to View)
 F3 - Replay Packet Range
 F4 - Change Replay Loop Count
 F5 - Change Packet Gap
 F6 - Change Packet Range

Replay Loops: 1
Packet Gap: [Actual]
Packet Range: [1 - 79]

Packet Replay Menu

23

24

HOSTS

The HOSTS* file is a text file that provides symbolic name
definitions for TCP/IP hosts. The format of each line of the file
is a follows:

###.###.###.### Host_Name

where

Decimal value from 0 to 255
(decimal)

Host_Name Arbitrary name for the host
machine. Up to 15 characters,
without spaces.

Example:

A host whose name is "ftp.klos.com" and whose IP address is
192.80.49.2 would be entered in the HOSTS file as follows:

#
Entry for ftp.klos.com
#
192.80.49.2 ftp.klos.com

Blank lines and lines beginning with the ’#’ character are
ignored as comment lines.

NODES

The NODES file is a text file that provides symbolic name
definitions for 12 digit hexadecimal (48-bit) network node
addresses. The format of each line of the file is as follows:

############ Node Name

* The HOSTS file is similar in format to the standard TCP/IP HOSTS file.

25

where

############ Refers to a twelve digit
hexadecimal number (Each
digit between 0 - 9 or A - F.)

Node Name The name assigned to the
node (12 characters, spaces
allowed).

Example:

It is usually useful to assign names to file servers and
workstations. A file server whose name is "FS1" would be
quickly recognized if it’s node address had a name
associated with it. If the file servers node address is
0207010EF0F4, the NODES file would contain the following:

#
Entry for FS1
#
0207010EF0F4 FS1

Blank lines and lines beginning with the ’#’ character are
ignored as comment lines.

VENDORS

The VENDORS file is a text file that provides symbolic
translations for the 24-bit vendor specific portion of 48-bit
node address. The format of each line of the file is as follows:

Vendor_Name

where

Six digit hexadecimal number
corresponding to the assigned
vendor ID for the specified
vendor.

Vendor_Name A six character representation
for the specific vendor.

26

27

Example:

3Com’s vendor ID (assigned by IEEE) is 02608C (hex). To
specify this in the VENDORS file, insert the following line:

#
Entry for 3Com
#
02608C 3Com

Blank lines and lines beginning with the ’#’ character are
ignored as comment lines.

OIDS

The OIDS file is a text file that provides symbolic definitions for
SNMP object IDs. This makes viewing SNMP packets much
easier. The format of each line of the file is as follows:

OID_Name ##.##.##.##.##

where

OID_Name A symbolic name to be used in
place of the object ID prefix.

##.##.##.##.## A object ID prefix in dotted
decimal notation. The object
ID may have up to 128 32-bit
values.

Example:

Here are a few standard SNMP object IDs:

iso 1
org 1.3
dod 1.3.6
internet 1.3.6.1
mgmt 1.3.6.1.2
mib-2 1.3.6.1.2.1

Blank lines and lines beginning with the ’#’ character are
ignored as comment lines.

28

Customizing PacketView

External Protocol Decoders

PacketView supports custom external protocol decoders.
These external protocol decoders can be developed using
most C compilers. Source code for a sample external
protocol decoder is provided on the PacketView diskette,
as well as in Appendix B of this manual.

All external protocol decoders must be written in LARGE
model, assuming DS does NOT equal SS, and the decoder’s
entry points must be forced to load DS upon entry. The
MAKEMSC and MAKEBC files show the proper options to use
with the Microsoft and Borland C compilers respectively.

These are four main components in an external protocol
decoder. These include the protocol structure, the
initialization routine, the format line routine, and the format
detail routine.

The protocol structure

The protocol structure (see "structs.h" in Appendix B) provide
the interface between the external protocol decoder and
PacketView. It includes the name of the protocol being
decoded, the type values that identify the protocol for
various frame types, the address of the routine to be called
when displaying the protocol in line mode, and the address
of the routine to be called when displaying the protocol in
detail mode.

The initialization routine

The initialization routine’s primary function is to return the
address of the protocol decoder’s protocol structure to
PacketView. The initialization routine can link several
protocol structures together forming a list of protocols to be
handled by the decoder. This is necessary for those protocol
decoders that will support more than one protocol. The
initialization routine can also load any necessary data (i.e.

29

tables) from disk using the open, read, lseek, and close
routines. The initialization routine should have a C function
definition as follows:

struct protocol * _loadds init()
{
/* body of init() routine */
}

Note that the name used must be "init", as that is what the
header file (HEADER.ASM) will be calling to initialize the
decoder.

The format line routine

The format line routine is called whenever a protocol is to be
displayed in line mode. In this mode, each packet is
summarized in a single line on the screen, allowing
information about many packets to be displayed on a single
screen. The format line routine is passed three parameters:
the address of a character buffer into which the null-
terminated single-line description is to be placed, the
address of the packet buffer containing the packet
contents, and the length of the packet buffer in bytes. In
general, the format line routine will use a special form of
sprintf() to fill the line buffer with the desired information to
describe the packet. The format line routine should have a
C function definition as follows:

void _loadds format_xyz_line(line, packet,
length)
char *line;
byte *packet;
int length;
{
/* body of format_xyz_line() routine */
}

The actual name used for the format line routine is arbitrary
since it is only referenced through the protocol structure.

The format detail routine

30

The format detail routine is called whenever a protocol is to
be displayed in detail mode. In this mode, each packet is
displayed with as much information as possible (or
necessary) to describe the packet. The format detail routine
is passed two parameters: the address of the packet buffer
containing the packet contents, and the length of the
packet buffer in bytes. In general, the format detail routine
will use a special form of printf() to present the packet to the
user. Technically, the printf routine provided will be
formatting the data as requested by the decoder, and
putting that data into an internal "screen buffer", which is
then manipulated by PacketView to allow the user to scroll
the packet through the available lines on the screen. This
mechanism also allows for printing of packets in the same
form as they are displayed on the screen. The format detail
routine should have a C function definition as follows:

void _loadds format_xyz(packet, length)
byte *packet;
int length;
{
/* body of format_xyz() routine */
}

The actual name used for the format detail routine is
arbitrary since it is only referenced through the protocol
structure.

Library routines for external protocol decoders

The following routines are provided by PacketView to aid
in the formatting of packet information:

sprintf
printf
format_protocol
format_protocol_line
format_raw
format_raw_line
set_color
falloc
open
read
write
lseek
close

31

The following variables are provided by PacketView to aid
in the formatting of packet information:

home_dir
current_level

32

sprintf

char *sprintf(buffer, format, ...)
char *buffer;
char *format;

The sprintf routine uses the format string to format the text
and variables specified into the character buffer. This
routine works very similar to the standard C sprintf routine
with a few exceptions. See the section on printf() for a
description of the available format characters. This routine
returns the address of the end of the buffer. This is a quick
way to advance the pointer to the end of the buffer when
you may want to append more information to the line
buffer.

printf

void printf(format, ...)
char *format;

The printf routine uses the format string to format the text
and variables specified into the internal screen buffer. This
routine works very similar to the standard C printf routine with
a few exceptions. The format characters supported in the
PacketView version of printf and sprintf are defined as
follows:

Control letter(s) Description of function
% Display ’%’ character
b Format an unsigned binary integer
lb Format an unsigned long binary

integer
d Format signed decimal integer
ld Format long signed decimal integer
D Format long signed decimal integer
u Format unsigned decimal integer
lu Format long unsigned decimal

integer
x Format hexadecimal integer
lx Format long hexadecimal integer
X Format long hexadecimal integer

33

m Format a hexadecimal byte with a
mask, the first value is the
hexadecimal byte and the second
value is the mask. If the
corresponding nibble of the mask is
0 then ’X’ is output, otherwise the
hexadecimal nibble is displayed.

s Format string
c Format character
t Format the long tick/time value to a

fixed point decimal value

The following formats provide for a standard display of
network values and for symbolic substitution when the value
matches a defined symbol.

Control letter(s) Description of function
i Format IP address as a dotted

decimal number or replace with the
symbolic name

n Format node address as a 12 digit
hexadecimal number or replace
with the symbolic name.

o Format OID as a dotted numeric
value or replace with the symbolic
name

Formatting IP Addresses

The ’i’ format takes a 32-bit unsigned long (dword)
parameter and will display the IP address represented by the
32-bit value in the decimal-dotted notation, always padding
to a display width of 15 characters. For example, if the
parameter for the ’i’ format contained the value 0xc0503101,
the resulting string will be ’192.80.49.1 ’ (4 trailing spaces). If
symbolic mode is enabled, the IP address will be looked up
in the IP address symbol table. If found, the first 15
characters of the symbol representing the IP address will
replace the dotted-decimal notation; otherwise the dotted-
decimal notation will be used.

34

Formatting 48-bit Node Addresses

The ’n’ format takes a byte pointer as a parameter and will
display the node address represented by the 48-bit (6 byte)
value pointed to by the byte pointer in hexadecimal format.
If symbolic mode is enabled, the node address will be
looked up in the node address symbol table. If found, the
first 12 characters of the symbol representing the node
address will replace the hexadecimal format. If not found,
the high 24-bits of the node address are looked up in the
vendor address symbol table. If the vendor portion of the
address has a corresponding symbolic representation, the
first 6 characters of the symbol will replace the first 6
characters of the hexadecimal node address, followed by
the remaining 6 hexadecimal digits of the node address.
Otherwise, the entire node address will be displayed in
hexadecimal format.

Formatting Object IDs

The ’o’ format takes a pointer to an OID structure and will
display the object id represented in the standard dotted
decimal notation. If symbolic mode is enabled, the object id
will be looked up in the object id table. If found, the part of
the id that is defined will be displayed in place of the dotted
decimal notation. If a suffix portion is not found will be
displayed in dotted decimal notation.

format_protocol

void format_protocol(packet, length, type,
media)
byte *packet;
int length;
word type;
word media;

The format_protocol routine allows a protocol decoder to
"hand off" a packet (or portion of a packet) to another
protocol decoder to be decoded as a different protocol.
This is especially useful when supporting protocol tunneling
(one protocol is carried within another). The parameters to
this routine include the address of the packet buffer, the

35

packet buffer’s length, the desired packet type, and the
media value for which the packet type is defined.

format_protocol_line

void format_protocol_line(buffer, packet,
length, type, media)
char *buffer;
byte *packet;
int length;
word type;
word media;

The format_protocol_line routine allows a protocol decoder
to "hand off" a packet (or portion of a packet) to another
protocol decoder to be decoded as a different protocol.
This is especially useful when supporting protocol tunneling
(one protocol is carried within another). The parameters to
this routine include the address of the line buffer, the address
of the packet buffer, the packet buffer’s length, the desired
packet type, and the media value for which the packet
type is defined.

format_raw

void format_raw(heading, packet, length)
char *heading;
byte *packet;
int length;

The format_raw routine allows a protocol decoder to display
a packet (or portion of a packet) as a simple hexadecimal
dump of the contents. The parameters to this routine include
the address of the text string to display as the header, the
address of the packet buffer, and the packet buffer’s length.
If text mode is enabled, then the data will be examined to
see if the entire buffer can be displayed as text, if so it will be
displayed as text, otherwise it will be displayed in
hexadecimal.

format_raw_line

void format_raw_line(buffer, packet,
length)

36

char *buffer;
byte *packet;
int length;

The format_raw_line routine allows a protocol decoder to
display a packet (or portion of a packet) as a simple
hexadecimal dump of the contents. The parameters to this
routine include the address of the line buffer, the address of
the packet buffer, and the packet buffer’s length. If text
mode is enabled, then the data will be examined to see if
the entire buffer can be displayed as text, if so it will be
displayed as text, otherwise it will be displayed in
hexadecimal.

set_color

void set_color(background, foreground)
int background;
int foreground;

The set_color routine allows a protocol decoder (either line
or detail mode) to select the background and foreground
colors to be used to display the information relating to the
current packet. In PacketView, the color attribute is
allocated on a per-line basis. Colors cannot be changed in
the middle of a line. In detail mode, separate lines may
have different colors. In line mode, the last set_color() call
determines the color that will be used to display the line. See
the structs.h file for definitions for the various colors.

falloc

byte *falloc(size)
int size;

The falloc routine is used by protocol decoders during
initialization time only. It allows a protocol decoder to
allocate memory from the PacketView memory pool for
whatever the protocol decoder may deem necessary. The
size parameter specifies the size in bytes of the area to be
allocated.

open

37

int open(filename, mode)
char *filename;
int mode;

The open routine uses the DOS function 0x3d to open the file
specified by the filename. The file is opened with the mode
specified (0 = read only, 1 = write only, 2 = read/write). If the
file open is successful, the file handle is returned; otherwise a
-1 is returned.

read

int read(handle, buffer, length)
int handle;
char *buffer;
int length;

The read routine uses the DOS function 0x3f to read bytes
from the file specified by the file handle. The parameters
include the file handle (as returned by the open function),
the address of the buffer, and the length of the buffer. Note
that this function uses the DOS read file function. There is no
interpretation of the data (including new-line/carriage-
return-line-feed conversions). This function returns -1 if an
error occurs, or the number of bytes of data read from the
file into the buffer.

write

int write(handle, buffer, length)
int handle;
char *buffer;
int length;

The write routine uses the DOS function 0x40 to write bytes to
the file specified by the file handle. The parameters include
the file handle (as returned by the open function), the
address of the buffer, and the length of the buffer. Note that
this function uses the DOS write file function. There is no
interpretation of the data (including new-line/carriage-
return-line-feed conversions). This function returns -1 if an
error occurs, or the number of bytes of data written into the
buffer from the file.

38

lseek

long lseek(handle, offset, where)
int handle;
long offset;
int where;

The lseek routine is used to position the file specified by the
file handle to a specific location. The parameters include
the file handle, the long offset specifying the new position in
the file, and the control value indicating where the offset is
relative to. The where values are 0 for beginning of file, 1 for
current position, and 2 for the end of the file. The lseek
routine return -1L if an error occurs, or the long offset of the
new current position of the file.

close

int close(handle)
int handle;

The close function closes the file specified by the file handle.
If an error occurs, -1 is returned.

home_dir

char *home_dir;

The home_dir variable contains the address of the
PacketView home directory (the directory the PV.EXE file is
located in).

current_level

int current_level;

The current_level variable contains the current stack level
being decoded. It’s purpose is not currently defined for
external protocol use.

Assistance with external protocol decoders

39

Technical support for PacketView is available by calling
Klos Technologies, Inc. support at (607) 753-0568 between
8:00 AM and 5:00 PM EST or via e-mail at support@klos.com.
Custom protocol decoders can be developed for a nominal
fee, contact technical support.

40

Glossary

AppleTalk® A set of protocols defined by Apple
Computer.

ARCNET® A self-polling "modified token passing"
network operating at a 2.5M bit data
rate.

Blue Book EthernetThe original Ethernet definition
produced by Digital Equipment
Corporation, Intel Corporation and
Xerox Corporation (DIX). Most notably
differing from IEEE 802.3 by defining
the type field as the protocol ID rather
than the data length.

Capture Filter Determines which packets from the
network or packet file will be stored in
the packet buffer.

CSMA/CD Carrier Sense Multiple Access/Collision
Detection - A network physical layer
method used to control media access
in a bus topology.

DECnet® A suite of protocols defined by Digital
Equipment Corporation.

Display Filter Determines which packets from the
packet buffer will be displayed or
saved to disk.

Ethernet A 10 megabit per second baseband
bus topology network originally
developed by Xerox Corporation.

EtherTalk® AppleTalk on Ethernet.
Filter Provides the means to select and

reject packets.
FTP File Transfer Protocol for TCP/IP.
IPX/SPX Internetwork Packet

eXchange/Sequenced Packet
eXchange protocols used by Novell.

ISDN Integrated Services Data Network -
digital communication services
provided by telephone companies

LocalTalk® Low speed AppleTalk for personal
computers.

41

MAC Media Access Control - A datalink
layer protocol controlling access to
the physical layer.

MS-NET A network operating system produced
by Microsoft.

NetBIOS Network Basic Input/Output System - A
protocol and system interface for data
exchange and network access.

Sun NFS® Network File System - A network
operating system based on TCP/IP and
produced by Sun Microsystems.

Novell NetWare® The file server based network
operating system produced by Novell.

Packet Buffer The memory used to hold packets
received from the network or a file.

Packet Driver A standard software interface to a
network controller.

PPP Point-to-Point Protocol.
Promiscuous Mode Network controller mode where

the network controller passes every
packet on the network to the packet
driver, regardless of intended
destination.

Protocol A set of rules used to govern how two
or more computers communicate on
a network.

Protocol Decoder External software procedure(s) loaded
by a Klos protocol analyzer to allow
alternative and additional protocol
display.

SLIP Serial-Line IP
SNA Systems Network Architecture - A suite

of protocols defined by IBM for
mainframe communications.

StarLAN A network operating system produced
by AT&T.

TCP/IP Transmission Control Protocol/Internet
Protocol

Token-Ring A network physical layer interface that
uses a token message passed around
a ring of computers to arbitrate
network access.

42

TSR Terminate and Stay Resident, a
program which remains in memory
after it terminates. Typically the
program then provides services to
other programs via a mutually agreed
upon protocol or interface.

VINES® A network system produced by
Banyan Systems.

XNS Xerox Network Systems - A suite of
protocols defined by Xerox
Corporation.

X Windows A workstation windowing system
produced by the Massachusetts
Institute of Technology part of which
includes a network protocol.

43

Appendix A - Software License Agreement

PacketView
SOFTWARE LICENSE AGREEMENT

- READ THIS BEFORE USE -

Please read this License carefully.

You are purchasing a license to use the PacketView
Software. The Software is owned by and remains the
property of Klos Technologies, Inc., is protected by
international copyrights, and is transferred to the original
purchaser and any subsequent owner of the Software media
for their use only on the license terms set forth below.
Opening the packaging and / or using PacketView
indicates your acceptance of these terms. If you do not
agree to all of the terms and conditions, or if after use you
are dissatisfied with your PacketView Software, return the
Software, manuals and any partial or whole copies within
thirty days of purchase to the party from whom you received
it for a refund, subject to our restocking fee.

Grant of License. Klos Technologies, Inc. ("KTI"), grants the
original purchaser ("Licensee") the limited rights to possess
and use the Klos Technologies, Inc. Software and User
Manual ("Software"), on the terms and conditions specifically
set out in this License.

Term. This License is effective as of the time Licensee
receives the Software, and shall continue in effect until
Licensee ceases all use of the Software and returns or
destroys all copies thereof, or until automatically terminated
upon the failure of Licensee to comply with any of the terms
of this License.

Your Agreement.
• Licensee is granted a license to use the Software for its

intended purposes. Licensee agrees that the Software

44

will be used solely for Licensee’s internal purposes, and
that at any one time, the Software will be installed on a
single computer only. If the Software is installed on a
networked system, or on a computer connected to a file
server or other system that physically allows shared
access to the Software, Licensee agrees to provide
technical or procedural methods to prevent use of the
Software by more than one user.

• One machine-readable copy of the Software may be
made for BACK-UP PURPOSES ONLY, and the copy shall
display all proprietary notices, and be labeled externally
to show that the back-up copy is the property of KTI, and
that its use is subject to this License. Documentation in
whole or part may not be copied.

• Use of the Software by any department, agency or other
entity of the U.S. Federal Government is limited by the
terms of the attached "U.S. Rider for Governmental Entity
Users", which is incorporated by reference into this
License.

• Licensee may transfer its rights under this License,
PROVIDED that the party to whom such rights are
transferred agrees to the terms and conditions of this
License, and written notice is provided to KTI. Upon such
transfer, Licensee must transfer or destroy all copies of the
Software.

• Except as expressly provided in this License, Licensee
may not use, copy, disseminate, modify, reverse
engineer, distribute, sub-license, sell, rent, lease, lend,
give or in any other way transfer, by any means or in any
medium, including telecommunications, the Software.
Licensee will use its best efforts and take all reasonable
steps to protect the Software from unauthorized use,
copying or dissemination, and will maintain all proprietary
notices intact.

LIMITED WARRANTY. KTI warrants the Software media to be
free of defects in workmanship for a period of ninety days
from purchase. During this period KTI will replace at no cost

45

any such media returned to KTI, postage prepaid. This
service is KTI’s sole liability under this warranty.

DISCLAIMER. LICENSE FEES FOR THE SOFTWARE DO NOT
INCLUDE ANY CONSIDERATION FOR ASSUMPTION OF RISK BY
KTI, AND KTI DISCLAIMS ANY AND ALL LIABILITY FOR
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR OPERATION OR INABILITY TO USE THE SOFTWARE,
OR ARISING FROM THE NEGLIGENCE OF KTI, OR ITS
EMPLOYEES, OFFICERS, DIRECTORS, CONSULTANTS OR
DEALERS, EVEN IF ANY OF THESE PARTIES HAVE BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. FURTHERMORE,
LICENSEE INDEMNIFIES AND AGREES TO HOLD KTI HARMLESS
FROM SUCH CLAIMS. THE ENTIRE RISK AS TO THE RESULTS AND
PERFORMANCE OF THE SOFTWARE IS ASSUMED BY THE
LICENSEE. THE WARRANTIES EXPRESSED IN THIS LICENSE ARE
THE ONLY WARRANTIES MADE BY KTI, AND ARE IN LIEU OF ALL
OTHER WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY
AND OF FITNESS FOR A PARTICULAR PURPOSE.

THIS WARRANTY GIVES YOU SPECIFIED LEGAL RIGHTS, AND
YOU MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM
JURISDICTION TO JURISDICTION. SOME JURISDICTIONS DO
NOT ALLOW THE EXCLUSION OR LIMITATION OF WARRANTIES,
SO THE ABOVE LIMITATIONS OR EXCLUSIONS MAY NOT APPLY
TO YOU.

General. This License is the complete and exclusive
statement of the parties’ agreement. Should any provision of
this License be held to be invalid by any court of competent
jurisdiction, that provision will be enforced to the maximum
extent permissible, and the remainder of the License shall
nonetheless remain in full force and effect. This License shall
be controlled by the laws of the State of New Hampshire,
and the United States of America.

46

Rider For U.S. Governmental Entity Users

This is a Rider to the PacketView SOFTWARE LICENSE
AGREEMENT, ("License"), and shall take precedence over the
License where a conflict occurs.

1. The Software was: developed at private expense; no
portion was developed with government funds; is a trade
secret of KTI and its licensor for all purposes of the
Freedom of Information Act; is "commercial computer
software" subject to limited utilization as provided in any
contract between the vendor and the government
entity; and in all respects is proprietary data belonging
solely to KTI and its licensor.

2. For units of the DoD, the Software is sold only with
"Restricted Rights" as that term is defined in the DoD
Supplement to DFAR 252.227-7013 (b)(3)(ii), and use,
duplication or disclosure is subject to restrictions set forth
in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at 252.227-7013.
Manufacturer: Klos Technologies, Inc., 604 Daniel
Webster Highway, Merrimack, NH 03054.

3. If the Software was acquired under a GSA Schedule, the
Government has agreed to refrain from changing or
removing any insignia or lettering from the Software or
Documentation or from producing copies of manuals or
disks (except for backup purposes) and: (1) Title to and
ownership of the Software and Documentation and any
reproductions thereof shall remain with KTI and its
licensor; (2) use of the Software shall be limited to the
facility for which it is acquired; and (3) if the use of the
Software is discontinued at the original installation and
the Government wishes to use it at another location, it
may do so by giving prior written notice to KTI, specifying
the new location site and class of computer.

4. Governmental personnel using the Software, other than
under a DoD contract or GSA Schedule, are hereby on
notice that use of the Software is subject to restrictions
that are the same or similar to those specified above.

47

Appendix B - Sample External Protocol Decoder Listings

HEADER.ASM

Page 56,132
Title HEADER - Header for protocol decoders

;
; Written by Patrick Klos
; Copyright, Klos Technologies, Inc.
;

DGROUP Group _DATA

PARMS Struc
 Dw ? ;BP
 Dw ? ;IP
 Dw ? ;CS
PARM1 Dw ? ;
PARM2 Dw ? ;
PARM3 Dw ? ;
PARM4 Dw ? ;
PARMS Ends

HEADER_TEXT Segment Byte Public ’CODE’
HEADER_TEXT Ends

_DATA Segment Word Public ’DATA’

 Public __acrtused
__acrtused Dw 0 ;

 Public _decoder_header
_decoder_header Dd HEADER_TEXT:decoder_header

_DATA Ends

CONST Segment Word Public ’CONST’
CONST Ends

_BSS Segment Word Public ’BSS’
_BSS Ends

 Extrn _init:Far

HEADER_TEXT Segment Byte Public ’CODE’

 Public decoder_header
decoder_header Label Byte
 Db "DECODER1" ;REV 1
 Dd _init ;
 Dd 15 Dup (0) ;Addresses of
 ;support
 ;routines

 Assume CS:HEADER_TEXT,DS:DGROUP,ES:Nothing,SS:Nothing

 Public _htons
_htons Proc Far
 Push BP ;
 Mov BP,SP ;

 Mov AX,[BP].PARM1 ;
 Xchg AH,AL ;

48

 Pop BP ;
 Ret ;
_htons Endp

 Assume CS:HEADER_TEXT,DS:DGROUP,ES:Nothing,SS:Nothing

 Public _htonl
_htonl Proc Far
 Push BP ;
 Mov BP,SP ;

 Mov AX,[BP].PARM1 ;
 Mov DX,[BP].PARM2 ;
 Xchg DH,AL ;
 Xchg DL,AH ;

 Pop BP ;
 Ret ;
_htonl Endp

HEADER_TEXT Ends
 End

STRUCTS.H

/*
 * Copyright, Klos Technologies, Inc.
 * All Right Reserved
 */

typedef unsigned char byte;
typedef unsigned short int word;
typedef unsigned long int dword;

#define ETHERNET 0x00
#define TOKENRING 0x08
#define ARCNET 0x10
#define FDDI 0x18
#define PPP 0x20
#define SLIP 0x28
#define MEDIA_MASK 0x38

#define IEEE8022 0x01
#define IEEE8022SNAP 0x02
#define DIX 0x04

#define MEDIA_ETHERNET_8022 (ETHERNET+IEEE8022)
#define MEDIA_ETHERNET_8022_SNAP \
 (ETHERNET+IEEE8022+IEEE8022SNAP)
#define MEDIA_ETHERNET_DIX (ETHERNET+DIX)
#define MEDIA_TOKENRING_8022 (TOKENRING+IEEE8022)
#define MEDIA_TOKENRING_8022_SNAP \
 (TOKENRING+IEEE8022+IEEE8022SNAP)
#define MEDIA_ARCNET (ARCNET)
#define MEDIA_ARCNET_8022 (ARCNET+IEEE8022)
#define MEDIA_ARCNET_8022_SNAP \
 (ARCNET+IEEE8022+IEEE8022SNAP)
#define MEDIA_FDDI (FDDI)
#define MEDIA_FDDI_8022 (FDDI+IEEE8022)
#define MEDIA_FDDI_8022_SNAP \
 (FDDI+IEEE8022+IEEE8022SNAP)
#define MEDIA_PPP (PPP)
#define MEDIA_SLIP (SLIP)

49

#define BLUE 0x01
#define GREEN 0x02
#define CYAN 0x03
#define RED 0x04
#define MAGENTA 0x05
#define BROWN 0x06
#define WHITE 0x07
#define GREY 0x08
#define LTBLUE 0x09
#define LTGREEN 0x0a
#define LTCYAN 0x0b
#define LTRED 0x0c
#define LTMAGENTA 0x0d
#define YELLOW 0x0e

struct ethernet_header
{ byte destination[6];
 byte source[6];
 word type;
 byte data[];
};

struct token_ring_header
{ byte access_control;
 byte frame_control;
 byte destination[6];
 byte source[6];
 byte data[];
};

50

struct arcnet_header
{ byte source;
 byte destination;
 byte type;
};

struct fddi_header
{ byte frame_control;
 byte destination[6];
 byte source[6];
 byte data[];
};

struct PPP_header
{ byte direction;
 byte address;
 byte control;
 word type;
};

struct SLIP_header
{ byte direction;
};

struct sap_header
{ byte dsap;
 byte ssap;
 byte control;
};

struct snap_header
{ byte organization[3];
 word type;
};

struct protocol
{ struct protocol *next;
 char *protocol_name;
 word type1; /* type field for DIX and SNAP */
 byte type2; /* type field for 802.2 headers */
 byte type3; /* type field for ARCNET */
 word type4; /* type field for PPP */
 word type5; /* to be defined */
 void (*show_line)();
 void (*show_packet)();
};

51

struct interface /* REV 1 */
{ byte i_signature[8];
 struct protocol *(*i_initialize)();
 byte *(*i_sprintf)();
 void (*i_printf)();
 void (*i_format_protocol)();
 void (*i_format_protocol_line)();
 void (*i_format_raw)();
 void (*i_format_raw_line)();
 void (*i_set_color)();
 byte *(*i_falloc)();
 int (*i_open)();
 int (*i_read)();
 int (*i_write)();
 long (*i_lseek)();
 int (*i_close)();
 char *i_home_dir;
 int *i_current_level;
};

#ifdef INTERNAL_DECODER
char *sprintf();

extern char home_dir[];
extern int current_level;
#else /* EXTERNAL_DECODER */
extern struct interface *decoder_header;

#define sprintf (decoder_header->i_sprintf)
#define printf (decoder_header->i_printf)
#define format_protocol \
 (decoder_header->i_format_protocol)
#define format_protocol_line \
 (decoder_header->i_format_protocol_line)
#define format_raw (decoder_header->i_format_raw)
#define format_raw_line \
 (decoder_header->i_format_raw_line)
#define set_color (decoder_header->i_set_color)
#define open (decoder_header->i_open)
#define read (decoder_header->i_read)
#define write (decoder_header->i_write)
#define lseek (decoder_header->i_lseek)
#define close (decoder_header->i_close)

#define home_dir (decoder_header->i_home_dir)
#define current_level (decoder_header->i_current_level)
#endif

unsigned int htons();
#define ntohs htons
unsigned long htonl();
#define ntohl htonl

52

IP.H

/*
 * Copyright, Klos Technologies, Inc.
 * All Right Reserved
 */

struct arp_header
{ word type;
 word protocol;
 byte node_len;
 byte host_len;
 word operation;
 byte source_node_addr[6];
 dword source_host_id;
 byte target_node_addr[6];
 dword target_host_id;
};

struct arp_header2
{ word type;
 word protocol;
 byte node_len;
 byte host_len;
 word operation;
 byte source_node_addr;
 dword source_host_id;
 byte target_node_addr;
 dword target_host_id;
};

struct ip_header
{ byte version_length;
 byte type_of_service;
 word length;
 word id;
 word fragment_offset;
 byte time_to_live;
 byte protocol;
 word checksum;
 dword source_host_id;
 dword destination_host_id;
 byte options[];
};

struct tcp_header
{ word source_port;
 word destination_port;
 dword sequence;
 dword acknowledgement;
 word control;
 word window;
 word checksum;
 word urgent_ptr;
};

struct udp_header
{ word source_port;
 word destination_port;
 word length;
 word checksum;
 byte data[];
};

struct rip_entry
{ word address_family;

53

 word reserved1;
 dword ip_address;
 dword reserved2[2];
 dword metric;
};

struct rip_header
{ byte command;
 byte version;
 word reserved;
 struct rip_entry rip_entries[];
};

DEMO.C

/*
 * This is a sample DECODER for Klos Technologies
 * protocol analyzers.
 * It decodes IP and ARP packets.
 *
 * Copyright, Klos Technologies, Inc.
 * All Rights Reserved
 */

#include "structs.h"
#include "ip.h"

void _loadds format_ip_line();
void _loadds format_ip();
void _loadds format_arp_line();
void _loadds format_arp();

54

/* */
/* This is a multiple protocol decoder. It supports both DOD */
/* IP and ARP. Note how they are chained in the init() */
/* routine. */
/* The last entry in the chain should contain a NULL next */
/* pointer. */
/* */
/* PPP packet type goes here ============================*/
/* ||*/
/* ARCnet packet type goes here ==================\\ ||*/
/* || ||*/
/* 802.2 SAP type goes here ================\\ || ||*/
/* || || ||*/
/* Ethernet type goes here ==========\\ || || ||*/
/* || || || ||*/
/* Protocol Name goes here || || || ||*/
/* || || || || ||*/
/* VV VVVV VV VV VVVV*/
struct protocol ip_protocol =
 { 0, "Demo IP", 0x0800, 0x06, 0xf0, 0x0021,
 0, format_ip_line,

format_ip };
struct protocol arp_protocol =
 { 0, "Demo ARP", 0x0806, 0x00, 0xf1, 0x0000,
 0, format_arp_line,

format_arp };

char yes[] = "yes";
char no[] = "no";

char *well_known_protocols[] =
{ "ICMP", "GGP", "TCP", "EGP", "IGP", "CHAOS", "UDP", "TP4"
};

byte protocol_lookup[] =
{ 1, 3, 6, 8, 9, 16, 17, 29
};

char *hardware_types[] =
{ "Ethernet (10MB)",
 "Ethernet (3MB)",
 "Amateur Radio AX.25",
 "Proteon PROnet Rings",
 "CHAOSnet",
 "IEEE 802",
 "ARCNET"
};

struct protocol * _loadds init()
{
 ip_protocol.next = &arp_protocol;
 return (&ip_protocol);
}

55

void _loadds format_arp(arp, length)
 struct arp_header *arp;
 int length;
{ int i, j;

 set_color(LTGREEN, YELLOW);

 printf("DEMO DoD ARP:\n");
 i = htons(arp->type);
 if ((i > 1) && (i < 7))
 printf("Hardware type = %s\n", hardware_types[i-1]);
 else
 printf("Hardware type = %04x\n", i);
 printf("Protocol = %04x\n", htons(arp->protocol));
 printf("Node address length = %d, Host address length =

%d\n",
 arp->node_len, arp->host_len);
 i = htons(arp->operation);
 if ((i < 1) || (i > 2))
 { printf("Operation = UNKNOWN (%d)\n", i);
 return;
 }
 printf("Operation = %s\n", (i == 1) ? "REQUEST" : "REPLY");
 printf("Source node address: %n Source host address: %i\n",
 arp->source_node_addr, htonl(arp->source_host_id));
 if (i == 1)
 printf("Target node address: UNKNOWN Target host

address: %i\n",
 htonl(arp->target_host_id));
 else
 printf("Target node address: %n Target host address:

%i\n",
 arp->target_node_addr, htonl(arp-

>target_host_id));
}

void _loadds format_ip(packet, length)
 byte *packet;
 int length;
{ int i, j, k;
 struct ip_header *ip = (struct ip_header *)packet;

 set_color(LTGREEN, WHITE);

 printf("DEMO DoD IP:\n");
 printf("IP version: %d IP header length: %d (32-bit

words)\n",
 ((ip->version_length&0xf0)>>4),
 (ip->version_length&0x0f));
 printf("Type of service: %02x\n", ip->type_of_service);
 printf("Packet length: %04x Packet ID: %04x\n",
 htons(ip->length), htons(ip->id));
 i = htons(ip->fragment_offset);
 if (i&0x8000)
 printf("Don’t fragment\n");
 else
 printf("More fragments: %s Fragment offset: %04x\n",
 (i&0x4000) ? yes : no, (i&0x3fff));
 i = ip->protocol;

 for (j=0; j<sizeof(protocol_lookup); j++)
 if (protocol_lookup[j] == i)
 break;
 if (j != sizeof(protocol_lookup))
 printf("Time-to-live: %d Protocol: %s Header checksum:

%04x\n",
 ip->time_to_live, well_known_protocols[j],

56

 htons(ip->checksum));
 else
 printf("Time-to-live: %d Protocol: %d Header checksum:

%04x\n",
 ip->time_to_live, i, htons(ip->checksum));
 printf("Source host id: %i\n", htonl(ip-

>source_host_id));
 printf("Destination host id: %i\n",
 htonl(ip->destination_host_id));

 i = (ip->version_length&0x0f)*4;
 if (length <= i)
 return;

 packet += i;
 length -= i;

 printf("\n");

 switch (ip->protocol)
 {
 case 83: /* Vines IP */
 format_protocol(packet, length, 0xff00);
 break;

 default:
 format_raw("IP Data:", packet, length);
 break;
 }
}

void _loadds format_arp_line(b, arp, length)
 char *b;
 struct arp_header *arp;
 int length;
{
 set_color(LTGREEN, YELLOW);
 b = sprintf(b, "DEMO DoD ARP: (%04x) ", htons(arp-

>protocol));

 switch (htons(arp->operation))
 {
 case 1:
 sprintf(b, "REQUEST from %i for %i",
 htonl(arp->source_host_id),
 htonl(arp->target_host_id));
 break;

57

 case 2:
 sprintf(b, "REPLY from %i to %i",
 htonl(arp->source_host_id),
 htonl(arp->target_host_id));
 break;

 default:
 sprintf(b, "UNKNOWN");
 break;
 }
}

void _loadds format_ip_line(b, packet, length)
 char *b;
 byte *packet;
 int length;
{ int i, j, k;
 struct ip_header *ip = (struct ip_header *)packet;

 set_color(LTGREEN, WHITE);
 b = sprintf(b, "DEMO DoD IP: %i -> %i ",
 htonl(ip->source_host_id),
 htonl(ip->destination_host_id));

 i = ip->protocol;
 for (j=0; j<sizeof(protocol_lookup); j++)
 if (protocol_lookup[j] == i)
 break;
 if (j != sizeof(protocol_lookup))
 b = sprintf(b, "%s: ", well_known_protocols[j]);
 else
 b = sprintf(b, "%d: ", i);
}

58

Appendix C - Crynwr Packet Driver Collection

This appendix describes how to use the Crynwr Packet Driver
Collection provided with PacketView. The following
information is provided as a quick reference. The entire
contents of the files SUPPORT.DOC and INSTALL.DOC are
available on the Crynwr Packet Driver Collection diskette.

Crynwr Software sells support to packet driver users.

This is what support includes:
The assurance that the drivers will continue to be
improved,
New packet driver releases automatically mailed to you,
Input into future packet driver developments.
Answers to questions on the phone to one person or an
alternate,
Answers to questions emailed by anyone at your site.

Number of adapters Price (year-long contract)
1-5 $50
6-64 $100
65-499 $100 + $1.50/adapter past 65
500-1499 $850 + $1.00/adapter past 500
1500- $1850 + $0.80/adapter past 1500

Special pricing is available for special circumstances.
Crynwr also sells support to vendors of hardware and
software that use packet drivers.

We can accept checks and purchase orders. We accept
orders via phone, FAX, or email. We’re a small company, so
checks are preferable. Prices subject to change without
notice.

Crynwr Software
11 Grant St.
Potsdam, NY 13676
(315)268-1925 FAX: (315)268-9201
info@crynwr.com

59

Crynwr Packet Driver Installation

(excepts from the file INSTALL.DOC on the Crynwr Packet
Driver Collection diskette)

All numbers in this appendix are given in C-style
representation. Decimal is expressed as 11, hexadecimal is
expressed as 0x0B, octal is expressed as 013. All reference to
network hardware addresses (source, destination and
multicast) and demultiplexing information for the packet
headers assumes they are represented as they would be in a
MAC-level packet header being passed to the send_pkt()
function.

Using the packet drivers

The packet driver must be installed prior to use. Since each
packet driver takes only a few thousand bytes, this is best
done in your AUTOEXEC.BAT. Since the Ethernet boards
typically have jumpers on board, the packet driver must be
informed of the values of these jumpers (auto-configure is
possible, but can disturb other boards). The first parameter is
the software interrupt used to communicate with the packet
driver. And again, because each board is different, the rest
of the parameters will be different.

All parameters must be specified in C-style representation.
Decimal is expressed as 11, hexadecimal is expressed as
0x0B, octal is expressed as 013. Any numbers that the
packet driver prints will be in the same notation.

Before installing the packet driver, you must choose a
software interrupt number in the range between 0x60 and
0x80. Some of these interrupts are used for other purposes,
so your first choice may not work.

Running a packet driver with no specifications will give a
usage message. The parameters for some packet drivers are
documented below.

60

Most drivers can also be used in a PROM boot environment,
see PROMBOOT.NOT for how to use -d and -n options for that
purpose.

The -w switch is used for Windows. Install the packet driver
before running MS-Windows. This switch does not prevent
Windows from swapping your network application out of
memory, it simply detects when that has happened, and
drops the packets on the floor.

NOTE: Not all packet drivers listed below have been tested
with PacketView. Please call Klos Technologies, Inc.
customer support if you are having problems with a
particular packet driver.

3Com 3C501

usage: 3C501 [-n] [-d] [-w] packet_int_no [int_no [io_addr]]

The 3C501 driver requires two additional parameters -- the
hardware interrupt number and the I/O address. The
defaults are 3 and 0x300.

3Com 3C503

usage: 3C503 [-n] [-d] [-w] packet_int_no [int_level(2-5)
[io_addr [cable_type]]]

The 3C503 driver requires three additional parameters -- the
hardware interrupt number, the I/O address, and the cable
type. The 3C503 can be attached to thick or thin Ethernet
cables, and the selection is made in software. The cable
type parameter should be zero for thick, and one for thin.
The defaults are 2, 0x300, and 1 (thin). The 3C503 uses
shared memory whose address is set by jumpers, but the
software can ask the board what the address is.

3Com 3C507

usage: 3C507 [-n] [-d] [-w] packet_int_no [int_no [io_addr
[base_addr]]]

61

The 3C507 will determine its parameters by reading the
board. The only time you would need to specify the
parameters is when you have multiple 3C507s in the same
machine. The 3C507 driver will use three additional
parameters -- the hardware interrupt number, the I/O
address, and the memory base address.

3Com 3C523

usage: 3C523 [-n] [-d] [-w] packet_int_no [int_no [io_addr
[base_addr]]]

The 3C523 driver requires three additional parameters -- the
hardware interrupt number, the I/O address, and the
memory base address. The defaults are 3, 0x300 and 0xc000.

BICC Data Networks’ ISOLAN 4110 Ethernet

usage: ISOLAN [-n] [-d] [-w] packet_int_no [int_no
[base_addr]]

The BICC ISOLAN requires three additional parameters -- the
hardware interrupt number and the memory base address.
The defaults are 2 and 0xb800h.

D-Link DE-600

usage: DE600 [-n] [-d] [-w] packet_int_no

The D-Link Pocket Lan Adapter packet driver requires no
additional parameters.

HP Ethertwist

usage: HPPCLAN [-n] [-d] [-w] packet_int_no [int_no
[io_addr]]

The HPPCLAN driver requires two additional parameters --
the hardware interrupt number and the I/O address. The
defaults are 3 and 0x300.

ICL EtherTeam16

62

usage: ETHIIE [-n] [-d] [-w] packetintno [intlevel [ioaddr
[cabletype]]]

The ETHIIE driver requires three additional parameters -- the
hardware interrupt number, the I/O address, and the cable
type. The interrupt levels supported by the adapter are 5, 9
(2), 12 and 15. The Ethernet IIe can be attached to thick or
thin Ethernet cables, and the selection is made in software.
The cable type parameter should be zero for thick, and one
for thin. With the Twisted Pair (TP) version of the adapter, you
must set interface to the value 1 (thin).

The defaults are 9 (2), 0x300 and 1 (thin).

Please note, that the adapter can be used only in a 16-bit
slot of your computer.

Intel EtherExpress

usage: EXP16 [-n] [-d] [-w] <packet_int_no> [<io_addr>]

The Intel EtherExpress packet driver has one optional
parameter. The <io_addr> is only needed if there is more
than one EtherExpress card in your system. Otherwise, the
driver will search for adapter and get its parameters from it.

Multitech EN-301

usage: EN301 [-n] [-d] [-w] packet_int_no [int_no [io_addr]]

The Multitech driver runs the EN-301 cards. The Multitech
driver requires two additional parameters, the hardware
interrupt number, and the I/O port.

Novell NE1000

usage: NE1000 [-n] [-d] [-w] packet_int_no [int_no
[io_addr]]

63

The NE1000 driver requires two additional parameters -- the
hardware interrupt number and the I/O address. The
defaults are 3 and 0x300.

64

Novell NE2000

usage: NE2000 [-n] [-d] [-w] packet_int_no [int_no
[io_addr]]

The NE2000 driver requires two additional parameters -- the
hardware interrupt number and the I/O address. The
defaults are 2 and 0x300.

Racal-InterLan NI5010

usage: NI5010 [-n] [-d] [-w] packet_int_no [int_no [io_addr]]

The NI5010 driver requires two additional parameters -- the
hardware interrupt number and the I/O address. The
defaults are 3 and 0x300.

Racal-InterLan NI5210

 usage: NI5210 [-n] [-d] [-w] packet_int_no [int_no
[io_addr [base_addr]]]

The NI5210 driver requires three additional parameters -- the
hardware interrupt number, the I/O address, and the
memory base address. The defaults are 2 and 0x360 and
0xd000. Note that Racal-InterLan sets the default memory
base to 0xa000, which is brain-damaged, because that area
of memory is specifically reserved for video adapters, and in
fact the EGA and VGA use it.

Racal-InterLan NI6510

usage: NI6510 [-n] [-d] [-w] packet_int_no [int_no [io_addr]]

The NI6510 driver has two additional parameters -- the
hardware interrupt number and the I/O address. The
defaults are 2 and auto-sense. These parameters do not
need to be set unless the auto-sense routine fails, or
otherwise disrupts operation of your PC.

65

Racal-InterLan NI9210

 usage: NI9210 [-n] [-d] [-w] packet_int_no [int_no [io_addr
[base_addr]]]

The NI9210 driver requires three additional parameters -- the
hardware interrupt number, the I/O address, and the
memory base address. The defaults are 2, 0x360 and 0xd000.

Tiara Lancard

usage: tiara [-n] [-d] [-w] packet_int_no [int_no [io_addr]]

The Tiara driver runs the Tiara LANCARD/E cards, both eight
and sixteen bit cards. The Tiara driver requires two additional
parameters, the hardware interrupt number, and the I/O
port.

Ungermann-Bass NIC-PC

usage: UBNICPC [-n] [-d] [-w] <packet_int_no> <int_no>
<base_addr>

The UB NIC-PC driver requires two additional parameters, the
hardware interrupt number, and the memory base address.

Western Digital WD8003 E EBT EB ET/A and E/A

usage: WD8003E [-n] [-d] [-w] packet_int_no [-o] [int_level
[io_addr [mem_base]]]

The WD8003E driver runs the Western Digital E, EBT, EB, ET/A,
and E/A Ethernet cards. The WD8003E requires three
additional parameters -- the hardware interrupt number, the
I/O address, and the memory base address. The defaults are
2 and 0x280 and 0xd000. The wd8003 cards do not enable
their memory until configuration time. Some 386 memory
mappers will map memory into the area that the card
intends to use. You should be able to configure your
software to leave this area of memory alone. Also driver will
refuse to map memory into occupied memory. The
occupied memory test fails on some machines, so the

66

optional switch "-o" allows you to disable the check for
occupied memory.

67

Appendix D - Klos Technologies, Inc. Packet Drivers

Klos Technologies, Inc. makes two enhanced packet drivers
available for use with ISDNView. These packet drivers
provide error information to ISDNView, allowing a more
complete view of the network. At this time, only two packet
drivers are available with these extended capabilities. One
for ethernet NE1000 and NE2000 (and compatible) boards,
and one for Cimetrics ARS-20020 (and other COM20020
based) ARCNET boards.

ETHPD

ETHPD is an enhanced packet driver for NE1000, NE2000 and
compatible ethernet adapters. It automatically detects the
bus-width and memory size of the adapter.

Example:

 ethpd [/p:nnn][/h:nn][/s:nn]

The optional switches allow you to select a configuration
other than the default configuration for the packet driver.

Switch Description

/p:nnn Select the I/O base address for the ethernet
adapter. The default I/O base address is 300

(hex).
To use a different I/O base address, specify the
address "nnn" as a HEXADECIMAL value.

/h:nn Select the hardware interrupt request level for the
ethernet adapter. The default hardware interrupt
request level is 5. To use a different hardware
interrupt request level, specify the level "nn"
between 2 and F (inclusive) as a HEXADECIMAL
value.

68

/s:nn Select the packet driver’s software interface
interrupt. The default software interface interrupt
is 60 (hex). If this value causes a conflict with
other software in your PC, select another value
between 60 hex and 80 hex (inclusive). Specify
the new value "nn" in HEXADECIMAL.

COM20020

COM20020 is an enhanced packet driver for SMC
COM20020 based ARCNET adapters. To start the packet
driver, simply execute COM20020 from the command line.

Example:

 com20020
[/a:nn][/p:nnn][/h:n][/s:nn][/r:n][/b:n]

The optional switches allow you to select a configuration
other than the default configuration for the packet driver.

Switch Description

 /a:nn Select the 8-bit network node address for the
COM20020. If the board is compatible with the
ARS-20020 board from Cimetrics Technology, the
default is to use the network node address set on
the SW2 switch. You can override the default
setting by selecting this option where "nn" is the
HEXADECIMAL value of the desired network node
address. If the board you are using is NOT
compatible with the ARS-20020, you MUST use
this switch to set the desired network node
address for your board.

/p:nnn Select the I/O base address for the COM20020.
The default I/O base address is 300 (hex). To use
a different I/O base address, specify the address
"nnn" as a HEXADECIMAL value.

69

/h:n Select the hardware interrupt request level for the
COM20020. The default hardware interrupt
request level is 5. To use a different hardware
interrupt request level, specify the level "n"
between 2 and 7 (inclusive).

/s:nn Select the packet driver’s software interface
interrupt. The default software interface interrupt
is 60 (hex). If this value causes a conflict with
other software in your PC, select another value
between 60 hex and 80 hex (inclusive). Specify
the new value "nn" in HEXADECIMAL.

/r:n Select the network speed of the COM20020. The
default network speed is 0 (for 2.5 Mbps). Values
for "n" are listed below:

Value Network Speed
 0 2.5 Mbps (default)
 1 1.25 Mbps
 2 625 Kbps
 3 312.5 Kbps

/b:n Select backplane mode for the COM20020. To
enable backplane mode, use "/b:1". To disable
backplane mode (default), use "/b:0".

