

Merge DICOM ToolkitTM

V. 5.1.0

.NET/C# USER’S MANUAL
Merge Healthcare

900 Walnut Ridge Drive
Hartland, WI 53029

USA

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/
https://www.facebook.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
http://www.merge.com/

Copyright 2015 Merge Healthcare Incorporated
Unauthorized use, reproduction, or disclosure is prohibited.

This document has been prepared by Merge Healthcare Incorporated, for its customers. The content of
this document is confidential. It may be reproduced only with written permission from Merge Healthcare.
Specifications contained herein are subject to change, and these changes will be reported in subsequent
revisions or editions.

Merge Healthcare® is a registered trademark of Merge Healthcare Incorporated.

DICOM is a registered trademark of National Electrical Manufacturers Association (NEMA). Merge
DICOM Toolkit™ is a trademark of Merge Healthcare. The names of other products mentioned in this
document may be the trademarks or registered trademarks of their respective companies.

For assistance, please contact Merge Healthcare Customer Support:

• In North America, call toll free 1-800-668-7990, then select option 2

• International, call Merge Healthcare (in Canada) +1-905-672-7990, then select option 2

• Email MDTsupport@merge.com

Part Date Revision Description

COM-1676 June 2015 1.0 Updated bi-annually

mailto:MDTsupport@merge.com

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

3

Contents

Overview .. 11

The DICOM Standard ... 11

The Merge DICOM Toolkit ... 15

Development Platform Requirements .. 16

Assembly Structure .. 16
Merge DICOM C/C++ Toolkit Dynamic Library .. 17
Binary Message Information and Data Dictionary Files 18
Sample Applications ... 18
Merge DICOM Message Database Manual and Tools 18

Documentation Roadmap ... 19

Conventions .. 19

Understanding DICOM ... 20

General Concepts .. 20
Application Entities ... 20
Services and Meta Services ... 20
Information Model ... 24

Networking .. 25
Commands.. 25
Association Negotiation .. 26

Messages ... 28
DICOM Data Dictionary .. 28
Message Handling .. 29
Private Attributes .. 31

Media Interchange .. 31
DICOM Files ... 31
File Sets .. 37
The DICOMDIR .. 38
File Management Roles and Services .. 41

Conformance .. 42

Using the Merge DICOM Toolkit .. 43

Configuration .. 43
Initialization File .. 44
Application Profile ... 44

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

4

System Profile ... 51
Service Profile ... 53

Message Logging ... 53

Utility Programs .. 54
mc3comp .. 55
mc3conv .. 55
mc3echo ... 56
mc3list ... 56
mc3valid .. 57
mc3file ... 58

Developing DICOM Applications .. 60

Library Import ... 62

Library Constants ... 62

Exception Handling .. 62

Library Initialization ... 65

Releasing the library ... 66

Getting the Assembly Version .. 66

Releasing Native Memory .. 66

Using the Merge DICOM log file ... 67

Capturing Log Messages in Your Application .. 67

Registering Your Application .. 68
MCapplication objects can be disposed ... 68
The Application Entity (AE) Title ... 68

Association Management (Network Only) .. 69
Preparing a Proposed Context List ... 69
Using a Pre-configured Proposed Context List .. 69
Creating Your Own Proposed Context List ... 69
Using a Pre-configured Transfer Syntax List .. 69
Creating Your Own Transfer Syntax List .. 70
Creating Your Own Proposed Context List ... 70
MCproposedContext properties .. 70
MCproposedContextList properties .. 71
MCresultContext properties .. 72
MCtransferSyntax properties .. 72
MCtransferSyntaxList properties .. 73
Using Extended Negotiation Information .. 73
Starting an Association Requester ... 74

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

5

Starting an Association Acceptor .. 75
Accepting or Rejecting the Association .. 76
Negotiated Transfer Syntaxes .. 78
Merge DICOM Message Classes ... 80
Association Message Handling .. 81
Releasing or Aborting the Association .. 82
Association Properties .. 83
Application Context Name .. 83
TCP/IP Listen Port .. 83
MCapplication object of the local AE .. 83
Application Entity Title .. 83
Implementation Class UID and Implementation Version 83
Maximum PDU Sizes .. 84
The Proposed Context List ... 84
The Read Timeout Value .. 84
The Remote Host’s Name and Address ... 84
Association Role ... 84
Association State .. 85

Using the MCsopClass class .. 85

Using the MCvr class ... 86

Using the MCtag class ... 87
Constructing non-private tags ... 88
Constructing private tags .. 88

Using the MCdataElement class .. 88
Constructing standard data elements ... 88
Constructing non-standard data elements .. 89

Working With Attribute Sets ... 90
Constructing Message Objects ... 90
Construct a message using a pre-populated data set: 90
Construct a message with an empty data set:.. 91
Construct a message using an existing data set: ... 91
Convert an MCfile object .. 91
MCdimseMessage Properties... 92
Transfer Syntax Used ... 92
Contained attribute sets .. 92
The service and command used by the message .. 92
MCdimseMessage Command Set Properties .. 92
Constructing File Objects .. 94
Construct with a pre-populated data set: .. 94
Construct with an empty data set: .. 95
Convert an MCdimseMessage object to an MCfile object 95
Setting data set values ... 95
Specifying the file name .. 95
Constructing Item Objects .. 96
Get/Set item name .. 96
Constructing MCdataSet Objects ... 96
Retrieving Contained Attribute Sets ... 97

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

6

Using the MCattribute class .. 97
Adding Attributes to an Attribute Set .. 98
Using the MCattributeSet indexer to access MCattribute instances 98
Removing Attributes from an Attribute Set ... 99
Attribute Properties ... 99
Assigning Attribute Values from MCattribute .. 99
Assigning Attribute Values from MCattributeSet .. 99
Difference between setValue, addValue, and indexer 100
Assigning a NULL Attribute Value .. 100
Assigning a Non-NULL Attribute ... 100
Using an MCdataSource Class to Assign an Attribute Value 102
Retrieving Attribute Values ... 105
Using a Callback Class to Retrieve an Attribute’s Value 106
Retrieving an Attribute Value’s Properties .. 108
Listing an Attribute Set .. 108
Converting an Attribute Set into a Proprietary Schema XML String 109
Converting a Proprietary Schema XML String into an Attribute Set 110
Converting an Attribute Set into a Native DICOM Model XML String 110
Converting a Native DICOM Model XML String into an Attribute Set......... 111
Converting an Attribute Set into a DICOM JSON Model String 112
Converting a DICOM JSON Model String into an Attribute Set 113
8-bit Pixel Data ... 114
Encapsulated Pixel Data ... 114

Working with MCabstractMessage Derived Classes 115
Compression and Decompression ... 115
Merge DICOM Supplied Compressors and Decompressors 116
Validating Attribute Sets ... 120
The Overhead of Validation .. 124
Validating a Single Attribute.. 126
Streaming Attribute Sets ... 126
Message to Proprietary Schema XML Conversion 129
Proprietary Schema XML to Message Conversion..................................... 129
Message to Native DICOM Model XML Conversion 130
Native DICOM Model XML to Message Conversion 131
Message to DICOM JSON Model Conversion ... 132
DICOM JSON Model to Message Conversion ... 133

Message Exchange (Network Only) ... 134
Reading Network Messages ... 134
Using the MCdimseService .. 134
Using the sendRequestMessage method ... 135
Using the sendResponseMessage method .. 135

Using Attribute Containers ... 136
Using an Attribute Container in a Server Application 137
Using an Attribute Container in a Client Application 137
Declaring an MCattributeContainer and MCattributeContainerEx Classes 137
Writing the provideDataLength method .. 138
Writing the provideData method ... 139
Writing the receiveDataLength method .. 140
Writing the receiveData method ... 140

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

7

Writing the receiveMediaDataLength method .. 141
Registering Your MCattributeContainer .. 141
Releasing Your MCattributeContainer .. 142

Sequences of Items .. 142

DICOM Files ... 144
Constructing a new MCfile Instance ... 145
Construct an MCfile object with a pre-populated data set 145
Construct an MCfile object with an empty data set 146
Convert an MCdimseMessage object to an MCfile object 146
Accessing the service and command properties .. 146
Working with the contained file meta information 147
Accessing the File Preamble .. 147
Working with the contained data set ... 147
Resetting the MCfile object ... 147
File validation .. 148
The MCfile stream .. 148
Setting the file transfer syntax UID ... 148
Setting the file system file associated with the MCfile object 148
Listing the file’s attributes ... 149
Using the MCmediaStorageService Class ... 149
Constructing an MCmediaStorageService object 150
Reading Files .. 150
Creating and Writing Files .. 152
Saving Raw (Unparsed) Messages as DICOM Files 153

The DICOMDIR file .. 154
Structure ... 154
Constructing a new MCdir Instance .. 155
The MCdirRecord class .. 155
Navigating the DICOMDIR .. 156
Adding and Deleting DICOMDIR Records .. 157

Memory Management .. 157
Assigning Pixel Data ... 158
Using Attribute Containers .. 158
Replacing Merge DICOM Toolkit’s Memory Management Functions 159
Accessing Data When Needed ... 159
Saving Received Images Directly to Disk ... 160

DICOM Structured Reporting ... 160
Structured Report Structure and Modules .. 160
Content Item Types .. 164
Relationship Types between Content Items ... 166
Content Item Identifier .. 167
Observation Context ... 168
Structured Reporting Templates ... 169
Overview of the Merge DICOM Toolkit SR Classes 173
Encoding SR Documents .. 174
Reading SR Documents ... 177

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

8

Working with Mergecom WADO Classes ... 178
Configuring Wado Http Controllers and MCwado Services 178
Constructing an MCrequest .. 179
Using MCrequestParameter and MCrequstAttribute Classes 180
Implementing IMCservice and IMCcache Interfaces 181
Using MCdicomResponse Class .. 183
IMCDicomRenderer Interface and Rendering DICOM Service Response . 184
IMCHttpConverter Interface and Constructing HttpResponseMessage 184

Deploying Applications ... 185

Merge DICOM Required Files .. 185

Configuration Options ... 187

Appendix A: Frequently Asked Questions ... 190

Appendix B: Unique Identifiers (UIDs) ... 193

Summary of UID Composition .. 193

Obtaining a UID .. 194
Obtaining a UID From ANSI ... 194

Appendix C: Writing a DICOM Conformance Statement 195

Conformance Statement Sections.. 195
Application Data Flow ... 195
Sequencing of Real World Activities ... 196
AE Specifications .. 196
SOP Classes .. 197
Number of Associations .. 197
Asynchronous Nature ... 197
Implementation Identifying Information ... 197
SOP Specific Conformance .. 198
Transfer Syntax Selection Policies ... 198
Physical Network Interface ... 199
IPv4 and IPv6 Support .. 199
AE Title/Presentation Address Mapping ... 199
Configurable Parameters .. 199
PDU size ... 200
Standard Extended/Specialized/Private SOPs ... 200
Private Transfer Syntaxes .. 200

Appendix D: Configuration Parameters ... 201

Initialization File .. 201

Application Profile ... 203

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

9

Sections .. 203
Parameters ... 204

System Profile .. 216

Service Profile .. 238

Appendix E: Proprietary Schema XML structure ... 240

Base64 encoding of bulks and attributes with VR UN: 240

The default encoding of bulks and attributes with VR UN: 241

Appendix F: Mergecom ApiController Classes .. 243

Appendix G: Json.NET License ... 255

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

11

Overview
This User’s Manual is targeted toward the developer of medical imaging
applications using the Merge DICOM Toolkit™ to supply DICOM network or
media functionality.

Merge DICOM Toolkit .NET supplies you with a powerful and simplified interface
to DICOM. It lets you focus on the important details of your application and
immediate needs of your end users, rather than the often complex and confusing
details of the DICOM Standard.

The goal of this manual is to give you basic understanding of DICOM, and a clear
understanding of the Merge DICOM Toolkit.

The DICOM Standard
The DICOM (Digital Imaging and Communications in Medicine) Standard was
originally developed by a joint committee of the American College of Radiology
(ACR) and the National Electrical Manufacturers Association (NEMA) to “facilitate
the open exchange of information between digital imaging computer systems in
medical environments”1.

Since its initial completion in 1993, the standard has taken hold. More and more
products are advertising DICOM conformance, and more customers are requiring
it. DICOM has also been incorporated as part of a developing European
standard by CEN, as a Japanese standard by JIRA, and is increasingly
becoming an International Standard.

DICOM Version 3.0 is composed of several hundreds of pages over sixteen
separate parts. Each part of the standard focuses on a different aspect of the
DICOM protocol:

Part 1: Introduction and Overview

Part 2: Conformance

Part 3: Information Object Definitions

Part 4: Service Class Specifications

Part 5: Data Structures and Encoding

Part 6: Data Dictionary

Part 7: Message Exchange

Part 8: Network Communication Support for Message Exchange

Part 9: Point-to-Point Communication Support for Message Exchange (retired)

Part 10: Common Media Storage Functions for Data Interchange

1 NEMA Standards Publication No. PS 3.5-1993; DICOM Part 5 - Data Structures and Encoding,

p.4.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

12

Part 11: Media Storage Application Profiles

Part 12: Media Formats and Physical Media for Data Interchange

Part 13: Print Management Point-to-Point Communication Support (retired)

Part 14: Grayscale Standard Display Function

Part 15: Security Profiles

Part 16: DICOM Content Mapping Resource

Part 17: Explanatory Information

Part 18: Web Services

Part 19: Application Hosting

Part 20: Transformation of DICOM to and from HL7 Standards

Part 1 of the standard gives an overview of the standard. Since this part was
approved before most of the other parts were completed, it is already somewhat
outdated and can be confusing.

Part 2 describes DICOM conformance and how to write a conformance
statement. A conformance statement is important because it allows a network
administrator to plan or coordinate a network of DICOM applications. For an
application to claim DICOM conformance, it must have an accurate conformance
statement.

Parts 3 and 4 define the types of services and information that can be exchanged
using DICOM.

Parts 5 and 6 describe how commands and data shall be encoded so that
decoding devices can interpret them.

Part 7 describes the structure of the DICOM commands, that along with related
data, make up a DICOM message. This part also describes the association
negotiation process, whereby two DICOM applications mutually agree upon the
services they will perform over the network.

Part 8 describes how the DICOM messages are exchanged over the network
using two prominent transport layer protocols; TCP/IP and OSI. (Note that IPv4
and IPv6 are supported by DICOM and by Merge DICOM Toolkit.). This is
termed the DICOM Upper Layer Protocol (DICOM UL).

Part 9 is rarely of interest, as it describes how DICOM messages shall be
exchanged using the ‘old’ 50-pin point-to-point connection originally specified in
the predecessor to DICOM (ACR/NEMA Version 2). This part has been retired
from the DICOM standard.

Part 10 describes the DICOM model for the storage of medical imaging
information on removable media. It specifies the contents of a DICOM File Set,
the format of a DICOM File and the policies associated with the maintenance of a
DICOM Media Storage Directory (DICOMDIR) structure.

A quick walk
through DICOM

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

13

Part 11 specifies Media Storage Application Profiles that standardizes a number
of choices related to a specific clinical need (modality or application). This
includes the specification of a specific physical medium and media format (e.g.,
CD-ROM, 3.5” high-density floppy, …), as well as the types of information
(objects) that can be stored within the DICOM File Set. Part 11 also includes
useful templates to provide guidance in authoring media application conformance
statements.

Part 12 details the characteristics of various physical medium and media formats
that are referenced by the Media Storage Application Profiles of Part 11.

While parts 11 and 12 of DICOM are expected to evolve along with the
introduction of new clinical procedures and the advancement of storage media
and file system technology, Part 10 should remain quite stable since it specifies
file formats independent of medical application or storage technology.

Part 13 details a point to point protocol for doing print management services. This
part has been retired from the DICOM standard.

Part 14 specifies a standardized display function for display of grayscale images.

Part 15 specifies Security Profiles to which implementations may claim
conformance. Profiles are defined for secure network transfers and secure
media.

Part 16 specifies the DICOM Content Mapping Resource (DCMR) which defines
the templates and context groups used elsewhere in the standard.

Part 17 consolidates informative information previously contained in other parts
of the standard. It is composed of several annexes describing the use of the
standard.

Part 18 specifies a web-based service for accessing and presenting DICOM
persistent objects (e.g., images, medical imaging reports).

Part 19 defines an API such that a ’plug-in’ Hosted Application written to the API
would be able run in any environment provided by a Hosting System
implementing the API.

Part 20 specifies transformations of DICOM data to and from HL7 standards.

Figure 1 maps portions of the DICOM Standard dealing with networking to the
ISO Open Systems Interconnection (OSI) basic reference model. The
organization and terminology of the DICOM Standard corresponds closely with
that used in the OSI Standard.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

14

Figure 1: The DICOM Protocol Stack

As a user of this toolkit, you should have access to the DICOM Standard. Merge
DICOM Toolkit takes care of most of the details of DICOM for you. However, the
standard is the final word. You will probably find Parts 2 – 6 most useful. The
DICOM Standard can be ordered from:

 NEMA
 1300 N. 17th Street
 Suite 1847
 Rosslyn, VA 22209
 USA
 http://medical.nema.org

The DICOM Standard is typically published every year. Each version includes
approved changes since the last publishing. The most recent version of the
standard is available in PDF format and can be downloaded from NEMA’s public
ftp site at: ftp://medical.nema.org/medical/Dicom/2011

Please note that the DICOM Standard is evolving so rapidly, that additions to the
Standard are published as ‘supplements’. For example, the media extensions
have been incorporated into the DICOM Standard as a supplement that contains
addenda to various parts of the standard (e.g., PS3.3, PS3.4, …). If you find that
this document references a part of the Standard and you cannot find what you
are looking for in that part, you probably need to get the proper supplement from
NEMA. Other additions to the Standard (e.g., new image objects or documents)
will also be published as supplements. NEMA also makes all supplements to the
standard freely available on their ftp server. You can reference these
supplements at: ftp://medical.nema.org/medical/Dicom/Final/

Your DICOM Application

Service and Message
Definitions

Message Exchange

Encoding

DICOM Upper Layer
Protocol

Part 7

Parts 3 & 4

Parts 5 & 6

Part 8

TCP

IP

Data Link & Physical

Network

Network

Transport

Session & Presentation

Application

DICOM PartsISO OSI Layers

Where to get the
DICOM Standard

Special Note!

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/
http://medical.nema.org/
ftp://medical.nema.org/medical/Dicom/2011
ftp://medical.nema.org/medical/Dicom/Final/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

15

The Merge DICOM Toolkit
Merge DICOM Toolkit provides a generalized implementation of DICOM in a
.NET Assembly that you can use with your application. This .NET version of
Merge DICOM makes use of the run-time library of the Merge DICOM C/C++
Toolkit. As such, it benefits from the power of that library while providing a
complete .NET Assembly interface. You use methods of the Assembly to open
connections with other DICOM devices on a network, and to build and exchange
DICOM messages or DICOM files. The .NET Assembly is written in C# and all
examples are supplied in C#, although it can be utilized from other .NET
languages.

Figure 2 presents a pictorial representation of a DICOM Application Entity; Merge
DICOM Toolkit implements for you everything in Parts 5, 6, 7, 8, and 10 of the
DICOM Standard. It also makes it much easier for your application to implement
according to Parts 3 and 4 by supplying many tools for the management of
DICOM messages, and to Part 12 by supplying ‘hooks’ to your applications
underlying file system.

Figure 2: The DICOM Application Layer

Association
Negotiation

Part 7
Annex D

DICOM M essage Services
Element (DIM SE)

Part 7

Upper Layer
Association

Services

Upper Layer Presentation Data Service
Part 8

DICOM Application Entity

Service Classes
Part 4

M erge
Functionality

Your
FunctionalityKey:

Data Structures and Encoding - Part 5

Information Objects
Part 3

DICOM Storage M edia
and File Format

Part 10

DICOM M edia Formats
and Physical M edia

Part 12

Data Dictionary - Part 6

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

16

The DICOM Toolkit also supplies useful utility programs for testing a DICOM
network connection, creating sample DICOM messages and writing them to a
file, and for validating and listing the contents of DICOM messages.

Finally, sample application along with sample working source code give you
valuable examples to work from when developing your own DICOM applications.

The DICOM Standard and the Merge Healthcare DICOM Toolkits allow
applications to add private information to a DICOM message or file. For most
application developers, this is more than sufficient. For applications that need to
define their own non-standard private network or file services, an optional Merge
DICOM Database Manual is available which describes the use of additional tools
to extend the data dictionary.

Development Platform Requirements
Based on the version of the .NET Framework required, the Merge DICOM Toolkit
is built and distributed in two packages:

1. Requires version 2.0 of the .NET Framework. The toolkit requires the
Merge DICOM C/C++ Toolkit run-time library and currently supports the
2.0 .NET Framework on 32-bit or 64-bit Microsoft Windows platforms.

2. Requires version 4.5 of the .NET Framework. The toolkit requires the
Merge DICOM C/C++ Toolkit run-time library and currently supports the
4.5 .NET Framework on 64-bit Microsoft Windows platforms.

Your development environment (or at a minimum your target environment)
should run on a machine with a network interface over which you can run the
TCP/IP protocol. The DICOM Toolkit library supplies you with the DICOM
protocol that runs on top of TCP/IP.

If your application will write DICOM files to interchangeable media, you will need
a device driver for the media storage device and a programming interface
between your operating system and the file system on that device.

Assembly Structure
Understanding the organization and components of the Merge DICOM Assembly
is important to developing an efficient and capable DICOM application (see
Figure 3). Following is a description of the library’s structure and the external
components it uses at runtime to provide DICOM functionality.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

17

.NET
Frame-
work

DICOM Application

Config
il MERGE.INI

MERGECOM.PRO
MERGECOM.APP
MERGECOM.SRV

Cedara’s
Message Info
Database and
Data Dictionary

MergeCOM-3
Advanced .NET Library

DICOM Database
Maintenance
Tools and Manual

DICOM
k

(optional)

binary
files

Sample Store App

Sample Q/R App

other sample applications

Merge
Component

Your
Component

Key:

File
S
Dev.
D i

Interchangeable Media
i

Sample Media App

C Tool
Kit

Figure 3: Merge DICOM Toolkit Library Organization

Merge DICOM C/C++ Toolkit Dynamic Library
The Merge DICOM C/C++ Toolkit Dynamic Library (usually named
Mergecom.Native.dll for the Merge DICOM .NET/C# Toolkit) contains the core
DICOM functionality required by the .NET toolkit. This library services many of
the methods of the .NET DICOM Toolkit.

The Merge DICOM .NET/C# Toolkit Assembly and the Merge DICOM C/C++
Toolkit run-time library shipped with it, have been carefully designed to be re-
entrant and have been validated to be thread-safe. The Merge DICOM

Merge DICOM Toolkit

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

18

Assembly automatically performs all DICOM network activity for each association
instance in its own thread.

When a Merge DICOM Toolkit Application is first run, it reads in its configuration
files; usually named merge.ini, mergecom.app, mergecom.pro, and
mergecom.srv. Toolkit configuration is described later in this document. These
configurable parameters are maintained in ASCII files for easy modification.
When modifying your configuration files, your application must be re-run or the
library reinitialized for those changes to take effect.

Binary Message Information and Data Dictionary Files
A great deal of the power of Merge DICOM Toolkit lies in its message handling
and message validation capabilities. Message Objects are what is
communicated between DICOM Application Entities. When your application
creates a DICOM message object, the library accesses a binary message info
file with information about that class of message. This info file describes to the
library what attributes to expect as part of that message and each attribute’s
characteristics (Value Type, Conditions, and Enumerated or Defined Terms).

Another binary file containing the data dictionary is also accessed by the library.
The data dictionary contains other characteristics of attributes (Name, Value
Representation, and Value Multiplicity).

Merge DICOM Toolkit gives you added flexibility, by not requiring your
application to make use of the message info file. Certain API calls allow you to
open messages without accessing the info files. This means that the toolkit
cannot validate your message against the DICOM standard, but this may not
always be necessary once an application becomes stable. These options are
discussed in detail in the Developing DICOM Applications section of this
document.

Sample Applications
Included with the toolkit are sample C# applications and Visual Studio 2005
project files that compile the sample applications. Sample client and server
applications are supplied for several DICOM services.

Merge DICOM Message Database Manual and Tools
Merge OEM has a DICOM Database Management System in which the DICOM
standard is maintained. This database, along with a few additional tools, is used
to generate the binary message info and dictionary files accessed by the DICOM
Toolkit. As the DICOM standard is updated or extended, by simply maintaining
this database, we can generate new binary files and keep the toolkit current.
This also reduces the number of changes that must be made in the core DICOM
Toolkit library over time.

A number of tools are included with Merge DICOM .NET/C# Toolkit for
maintaining the data dictionary. A Message Database Manual is distributed with
Merge DICOM and describes the use of these tools. This manual describes the
use of the various tools and text files supplied with Merge DICOM Toolkit. Users
can add definitions for private services and private attributes. Please reference
this manual for further information on extending the Merge DICOM data
dictionary.

The sample applications
can be a big help!

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

19

Documentation Roadmap
The Merge DICOM Toolkit documentation is structured as pictured in Figure 4.

The User’s Manual is the foundation for all other documentation because it
explains the concepts of DICOM and the .NET/C# DICOM Toolkit. Before
plunging into the Windows Help File, you should be comfortable with the material
in the User Manual.

The Windows Help File serves as a reference manual for the .NET Assembly.
This help file contains detailed information on the classes provided by the
.NET/C# DICOM Toolkit.

The Release Notes contain a complete release history of the Merge DICOM
Toolkit. It also contains a description of the software distribution and information
on contacting Merge OEM for support.

The DICOM Message Database Manual is an optional manual that describes the
organization of the Merge DICOM Database and how to use it to extend standard
services and define your own private services. Tools are supplied to integrate
your changes and create a new binary runtime object database.

Figure 4: Merge DICOM Toolkit Documentation Roadmap

Conventions
This manual follows a few formatting conventions.

Terms that are being defined are presented in boldface.

Margin notes (in the left margin) are used to highlight important points or sections
of the document.

When the descriptive text applies to one of the .NET classes provided by the
DICOM Toolkit Library, the appropriate class name is listed in the left margin
using Lucida Sans font.

Portions of the document that can relate directly to the performance of your
application are marked with the special margin note Performance Tuning.

Sample commands appear in bold courier font, while sample output, source
code, and method calls appear in standard courier font.

User’s
Manual

Windows Help
File (Reference
Manual)

Release
Notes

DICOM
Message
Database
Manual

OPTIONAL

Sample Margin Note

Read Me FIRST!

Assembly Reference

Extension DB Manual

ClassName

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

20

Hexadecimal numbers are written with a trailing H. For example 16 decimal is
equivalent to 10H hexadecimal.

Understanding DICOM
The many separate parts of the DICOM Standard can seem overwhelming, and
most would agree that they are difficult to read. Part of what makes a successful
standard is precision and detail. Our goal here is to explain the key concepts
without delving too far into the detail, most of which is handled automatically for
you by the DICOM Toolkit.

General Concepts
Some key concepts that must be understood to use the DICOM Toolkit wisely
are common across both DICOM networking and interchangeable media
applications. These concepts are discussed first.

Application Entities
The DICOM Standard refers extensively to Application Entities (AE’s). An
application entity is simply a DICOM application. If your application interacts with
other applications on a network or with interchangeable media using the DICOM
protocol, it is an application entity.

DICOM also refers to Service Class Users (SCU’s) and Service Class
Providers (SCP’s). An application entity is an SCU when it requests DICOM
services over a network and an SCP when it provides DICOM services over a
network. We will more often refer to the SCU as a Client and the SCP as a
Server. A single DICOM application entity can act as both a client and a server.
This client/server model is a powerful and omnipresent one in the world of
distributed network computing.

Services and Meta Services
DICOM is formed around the concepts of Services and Service Classes. The
DICOM Standard specifies a set of services that can be performed over a
network. Some of the services can also be stored to interchangeable media
(these are italicized in Table 1). As new services are introduced, the standard will
be further expanded. The standard also groups related services into a service
class. Table 1 lists the DICOM standard service classes and their component
services. The DICOM Standard actually refers to services as Service Object
Pairs (SOP’s) and meta services as Meta-SOPs.

When a particular collection of services in a service class implies a higher level of
service, this collection is combined by the standard into a Meta Service.
Specifying that your application supports a specific meta service is a useful
shorthand for explicitly listing out the collection of services that make up that
meta service.

Client/Server

MCapplication

MCdimseService
(and it’s subclasses)

MCfileService
(and it’s subclasses)

MCsopClass

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

21

Table 1: DICOM Services Classes and their Component Services

Service Class Services Description

Verification Verification Verifies application level
communication between
DICOM application
entities (AE’s).

Storage Computed Radiography Image Storage
CT Image Storage
Enhanced CT Image Storage
MR Image Storage
Enhanced MR Image Storage
MR Spectroscopy Storage
Enhanced MR Color Image Storage
Spatial Fiducials Storage
Spatial Registration Storage
Deformable Spatial Registration Storage
Ultrasound Image Storage
Ultrasound Multi-frame Image Storage
Enhanced US Volume Storage
Generic implant Template Storage
Implant Assembly Template Storage
Implant Template Group Storage
Implantation Plan SR Document Storage
Intraocular Lens Calculations Storage
Macular Grid Thickness and Volume Report
Nuclear Medicine Image Storage
Positron Emission Tomography Image Storage
Enhanced PET Image Storage
Breast Tomosynthesis Image Storage
Intravascular Optical Coherence Tomography

Image Storage – For Presentation
Intravascular Optical Coherence Tomography

Image Storage – For Processing
Digital X-Ray Image Storage – For

Presentation
Digital X-Ray Image Storage – For Processing
Digital Intra-oral X-Ray Image Storage – For

Presentation
Digital Intra-oral X-Ray Image Storage – For

Processing
Digital Mammography Image Storage – For

Presentation
Digital Mammography Image Storage – For

Processing
Parametric Map Storage
Raw Data Storage
RT Beams Delivery Instruction Storage
RT Beams Treatment Record Storage
RT Brachy Treatment Record Storage
RT Dose Storage
RT Plan Storage
RT Image Storage
RT Structure Set Storage
RT Treatment Summary Record Storage

Transfer of medical
images and related
standalone data between
DICOM application
entities, either over a
network or using
interchangeable media.

MCverificationService

MCstorageService

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

22

Service Class Services Description

RT Ion Beams Treatment Record Storage
RT Ion Plan Storage
VL Endoscopic Image Storage
VL Microscopic Image Storage
VL Photographic Image Storage
VL Slide-Coordinates Microscopic Image

Storage
VL Whole Slide Microscopy Image Storage
Video Endoscopic Image Storage
Video Microscopic Image Storage
Video Photographic Image Storage
XA/XRF Grayscale Softcopy Presentation

State Storage
X-Ray Angiographic Image Storage
X-Ray Radiofluoroscopic Storage
X-Ray 3D Angiographic Image Storage
X-Ray 3D Craniographic Image Storage
Enhanced XA Image Storage
Enhanced XRF Image Storage
Secondary Capture Image Storage
Autorefraction Measurements Storage
Keratometry Measurements Storage
Lensometry Measurements Storage
Ophthalmic Axial Measurements Storage
Ophthalmic Visual Field Static Perimetry

Measurements Storage
Subjective Refraction Measurements Storage
Visual Acuity Measurements Storage
Multi-frame Grayscale Byte Secondary Capture

Image Storage
Multi-frame Grayscale Word Secondary

Capture Image storage
Multi-frame Single Bit Secondary Capture

Image Storage
Multi-frame True Color Secondary Capture

Image Storage
Segmentation Storage
Surface Segmentation Storage
Basic Structured Display Storage
Basic Text Structured Reporting
Comprehensive Structured Reporting
Enhanced Structured Reporting
Key Object Selection
Chest CAD SR
Colon CAD SR
Mammography CAD SR
X-Ray Radiation Dose SR
Encapsulated CDA Storage
Encapsulated PDF Storage
Procedure Log
Blending Softcopy Presentation State Storage
Color Softcopy Presentation State Storage
Grayscale Softcopy Presentation State Storage
Pseudo-Color Softcopy Presentation State

Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

23

Service Class Services Description

12-lead ECG Waveform Storage
Ambulatory ECG Waveform Storage
Arterial Pulse Waveform Storage
Basic Voice Audio Waveform Storage
Cardiac Electrophysiology Waveform Storage
General Audio Waveform Storage
General ECG Waveform Storage
Hemodynamic Waveform Storage
Ophthalmic 8 bit Photography Image Storage
Ophthalmic 16 bit Photography Image Storage
Ophthalmic Tomography Image Storage
Spectacle Prescription Report Storage
Stereometric Relationship Storage
Real World Value Mapping Storage
Wide Field Ophthalmic Photography 3D

Coordinates Image Storage
Wide Field Ophthalmic Photography

Stereographic Projection Image Storage

Storage
Commitment

Storage Commitment Push
Storage Commitment Pull

Ensures that SOP
Instances stored with the
storage service class will
not be deleted after
reception but will be
stored safely and can be
retrieved again at a later
point.

Media Storage DICOM Basic Directory Storage and storage of
various (italicized) services from the other
Service Classes

Exists as a member of
every DICOM File Set
and contains general
information about the file
set and a hierarchical
directory of the DICOM
files contained in the file
set.

Query/Retrieve Patient Root Find
Patient Root Move
Patient Root Get
Study Root Find
Study Root Move
Study Root Get
Patient/Study Only Find
Patient/Study Only Move
Patient/Study Only Get

Management of images
through a query and
retrieval mechanism
based on a small number
of key attributes.

Basic Worklist
Management

Modality Worklist Find Supports the exchange of
any type of worklist from
one AE to another.

Print
Management

Basic Film Session
Basic Film Box
Basic Grayscale Image Box
Basic Color Image Box
Printer

Printing (or filming) of
medical images and
image related data on a
hard copy medium. Also,
storage of print related

MCstorageCommitment-
Service

MCmediaStorageService

MCqueryRetrieveService

MCbasicWorklist-
ManagementService

MCprintManagement-
Service

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

24

Service Class Services Description

Printer Configuration
Print Queue Management
Pull Print Request
Printer Referenced Image Box
VOI LUT Box
Presentation LUT
Basic Annotation Box
Basic Print Image Overlay Box SOP Class
Print Job
Image Overlay Retired
Basic Grayscale Print Mgmt. Meta
Basic Color Print Mgmt. Meta
Pull Stored Print Mgmt. Meta
Ref. Grayscale Print Mgmt. Meta
Ref. Color Print Mgmt. Meta

data to interchangeable
media.

Study Content
Notification

Basic Study Content Notification Allows one DICOM AE to
notify another DICOM AE
of the existence,
contents, and source
location of the images of
a study.

Patient
Management

Detached Patient Management
Detached Visit Management
Detached Patient Mgmt. Meta

Creation and tracking of
the subset of patient and
patient visit information
that is required to aid in
the management of
radiographic studies.

Study
Management

Detached Study Management
Study Component Management
Modality Performed Procedure Step
Modality Performed Procedure Step
Notification
Modality Performed Procedure Step Retrieve

Creation, scheduling,
performance, and
tracking of imaging
studies.

Results
Management

Detached Results Management
Detached Interpretation Management
Detached Results Mgmt. Meta

Creation and tracking of
results and associated
diagnostic interpretations.

Information Model
The DICOM Standard includes the specification of a DICOM Information Model.
A detailed entity-relationship diagram of this model is included in both parts 3 and
4 of the standard. This model specifies the relationship between the different
types of objects (also called entities) managed in DICOM. For example, a
Patient has one or more Studies, each of which are composed of one or more
Series and zero or more Results, etc.

DICOM information model

McstudyContentNotification-
Service

MCpatientManagement-
Service

MCstudyManagement-
Service

MCresultsManagement-
Service

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

25

Most of DICOM’s services perform actions on or with object instances.2 An
object can be thought of as a class of data (CT Image, Film Box, etc.) while an
object instance is an actual occurrence of an object (a particular CT Image, a
populated Film Box, etc.).

There are two types of objects (and hence, object instances) defined in DICOM.
Normalized objects are objects consisting of a single entity in the DICOM
information model (e.g., a Film Box). Composite objects are composed of
several related entities (e.g., an MR Image). When possible, it is preferable to
deal with normalized object instances over the network, because they contain
less redundant data and can be more efficiently managed by an application.

Most services inherited from the ACR/NEMA Version 2.x Standard are
composite services (operate on composite object instances) for reasons of
backward compatibility. Newly introduced services, such as the HIS/RIS and
Print Management Services, tend to be normalized services (operate on
normalized object instances).

Networking
Certain aspects of DICOM only apply to networking when using the DICOM
Toolkit. This includes networking commands and association negotiation.

Commands
DICOM defines a set of networking commands.3 Each service uses a subset of
these DICOM commands to perform the service over a network. These
commands usually act on object instances. The C-commands operate on
composite object instances, while the N-commands operate on normalized object
instances.

The DICOM commands and brief descriptions of their actions are listed in Table
2.

Table 2: DICOM Commands

DICOM Commands Description

C-STORE Transfer an object instance to a remote AE.

C-GET Retrieve object instance(s) from a remote AE whose attributes
match a specified set of attributes.

C-MOVE Move object instance(s) from a remote AE whose attributes
match a specified set of attributes to yet another remote AE (or
possibly your own AE - which would be another form of retrieval).

C-FIND Match a set of attributes to the attributes of a set of object
instances on a remote AE.

2 object instances are referred to as SOP Instances or managed SOP’s in the DICOM standard.
3 commands are referred to as DIMSE Services in the DICOM Standard.

Objects vs.
object instances

Normalized vs. composite

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

26

DICOM Commands Description

C-ECHO Verify end-to-end communications with a remote AE.

N-EVENT-REPORT Report an event to a remote AE.

N-GET Retrieve attribute values from a remote AE.

N-SET Request modification of attribute on a remote AE.

N-ACTION Request an action by a remote AE.

N-CREATE Request that a remote AE create a new object instance.

N-DELETE Request that a remote AE delete an existing object instance.

These DICOM commands can be thought of as primitives that every networking
service is built from. In the context of a particular Service, these primitive actions
translate to explicit real-world activities on the part of an Application Entity.
Hence, DICOM places requirements on an application implementing a DICOM
service. DICOM is careful to only express high-level operational requirements,
and leaves the creative detail and look and feel of the application entity to the
developer.

For every command, there is both a request and a response. A command
request indicates that a command should be performed and is usually sent to an
SCP. A command response indicates whether a command completed or its state
of completion and is usually returned to an SCU. Example request commands
are C-STORE-RQ, N-GET-RQ, and N-SET-RQ. Example response commands
are C-STORE-RSP, N-GET-RSP, and N-SET-RSP.

It is important to note that this service definition level is where the Merge DICOM
Toolkit Library leaves off, and your Application begins. While Merge DICOM
supplies running sample applications source code for your platform, they are only
supplied as an example. They clearly explain the requirements that
implementing certain DICOM services places on your application and provide
worthwhile but primitive examples of how to approach your application with the
toolkit. While you will see that the toolkit saves you a great deal of ‘DICOM
work’, it does not implement your end application for you.

Association Negotiation
One of the areas where Merge DICOM Toolkit does a great deal of the ‘DICOM
work’ for you is in opening an association (session) with another DICOM AE over
the network. DICOM application entities need to agree on certain things before
they operate with one another (open an association); these include:

• the services that can be performed between the two devices, which also
impacts the commands and object instances that can be exchanged.

• the transfer syntax that shall be used in the network communication.
The transfer syntax defines how the commands and object instances are
encoded ‘on the wire’.

Where your application
takes over...

Request vs. response

IMPORTANT!

MCassciation

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

27

The exchange of DICOM commands and object instances can only occur over an
open association.

DICOM defines an association negotiation protocol (see Figure 5) in which an
association requester application proposes a connection with an association
acceptor application. In the most common DICOM services, a client application
entity (SCU) proposes an association with a server AE (SCP). However, some
services define a mechanism where the client can be the SCP which opens an
association with the SCU. This is used when an SCP sends asynchronous event
reports to an SCU through the N-EVENT-REPORT command. This is done
when DICOM role negotiation is used during standard association negotiation.
For the sake of simplicity, the remainder of this manual refers to the client as the
SCU and the server as the SCP.

The association request proposal contains the set of services the client would
like to perform and the transfer syntaxes it understands. The server then
responds to the client with a subset of the services and transfer syntaxes
proposed by the client. If this subset is empty, the server has rejected the
association. If the subset is not empty, the server has accepted the association
and the agreed upon services may be performed.

The client is responsible for releasing the association when it is finished
performing its network operations. Either the client or the server can also abort
the association in the case of some catastrophic failure (e.g., disk full, out of
memory).

Figure 5: A Successful DICOM Association

Client Server

Client

Client

Client Server

Association Requested

Association Accepted

ASSOCIATION

Association Released

Server

Server

1)

2)

3)

4)

MCnegotiationInfo

MCproposedContext
MCproposedContextList
MCresultContext
MCsopClass

MCtransferSyntax
MCtransferSyntaxList

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

28

Messages
Once an association is established, services are performed by AE’s through the
exchange of DICOM Messages. A message is the combination of a DICOM
command request or response and its associated object instance (see Figure 6).
Messages containing command requests will be referred to as request
messages, while messages containing command responses will be referred to
as response messages.

When a DICOM service is stored to interchangeable media in a DICOM File, the
structure of a DICOM File is a slightly specialized class of DICOM message.
Media interchange is discussed in detail later; the only important thing to realize
for now is that much of what is discussed relating to DICOM Messages also
applies to DICOM Files.

DICOM specifies the required message structure for each service-command
pair. For example, the Patient Root Find - C-FIND-RQ service-command pair
has a specific message structure. The command portion of a message is
specified in Part 7 of the standard, while the object instance portion is specified in
Parts 3 and 4.

The DICOM data dictionary defines many data elements. An attribute is a data
element with a value. A message is constructed of attributes, with each attribute
identified by a tag. An attribute is a unit of data (e.g., Patient’s Name, Scheduled
Discharge Date, ...). A tag is a 4 byte number identifying an attribute
(e.g., 00100010H for Patient’s Name, 0038001CH for Scheduled Discharge
Date, ...).

A tag is usually written as an ordered pair of two byte numbers. The first two
bytes are sometimes called a group number, with the last two bytes being called
an element number (e.g., (0010, 0010), (0038, 001C), ...). This terminology is
partly a remnant of the ACR-NEMA Standard where elements within a group
were related in some manner. This can no longer be depended on in DICOM,
but the ordered pair notation is still useful and often easier to read.

Also, the ordered pair notation is important when defining a Tag for a private
attribute. We will see later that all private attributes must have an odd group
number.

Figure 6: A DICOM Message

DICOM Data Dictionary
Attributes have certain characteristics that apply to them no matter what
message they are used in. These characteristics are specified in the DICOM

Command Object Instance

= Command Attribute = Object Instance Attribute

Each attribute identified by a Tag

MCdimseMessage
MCcommandSet
MCdataSet
MCitem

Value Representation
MCvr

MCtag.GroupNumber
MCtag.ElementNumber

MCfile
MCdir

MCsopClass

MCattributeSet
MCattribute
MCdataElement
MCtag
MCdicom

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

29

Data Dictionary (Part 6 of DICOM) and are Value Representation (VR) and
Value Multiplicity (VM).

Value Representation can be thought of as the ‘type specifier’ for the values that
can be assigned to an attribute. This includes the data type, as well as its
format. The VR’s defined by DICOM are listed in Table 3. You should refer to
Part 5 of the standard for a detailed description of their legal values and formats.

Table 3: DICOM Value Representations (VR’s)

VR Name VR Name

AE Application Entity OW Other Word String

AS Age String PN Person Name

AT Attribute Tag SH Short String

CS Code String SL Signed Long

DA Date SQ Sequence of Items

DS Decimal String SS Signed Short

DT Date Time ST Short Text

FL Floating Point Single TM Time

FD Floating Point Double UI Unique Identifier

IS Integer String UL Unsigned Long

LO Long String UN Unknown

LT Long Text US Unsigned Short

OB Other Byte String UT Unlimited Text

OD Other Double String

OF Other Float String

A single attribute can have multiple values. Value Multiplicity defines the number
of values an attribute can have. VM can be specified as 1, k , 1-k, or 1-n; where
k is some integer value and n represents ‘many’. For example, Part 6 specifies
the VM of Scheduled Discharge Time (0038, 001D) as 1, while the VM of
Referenced Overlay Plane Groups (2040, 0011) is 1-99.

Message Handling
Given the number of services and commands specified in Table 1 and Table 2, it is
clear that there are a great deal of messages to manage in DICOM. Remember,
each service-command pair implies a different message. Fortunately, you will

Value Multiplicity

MCattributeSet

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

30

see later that Merge DICOM Toolkit saves the application developer a great deal
of work in the message handling arena.

DICOM specifies the required contents of each message in Parts 3, 4, and 7 of
the standard. For each attribute included in a message, additional characteristics
of the attribute are defined that only apply within the context of a service. These
characteristics are Enumerated Values, Defined Terms, and Value Type.

DICOM specifies that some attributes should have values from a specified set of
values. If the attribute is an enumerated value, it shall have a value taken from
the specified set of values. A good example of enumerated values are (M, F, O)
for Patient’s Sex (0010, 0040) in Storage services. If the attribute is a defined
term, it may take its value from the specified set, or the set may be extended with
additional values. An example of defined terms are (CREATED, RECORDED,
TRANSCRIBED, APPROVED) for Interpretation Status ID (4008, 0212) in
Results Management services. If this set is extended by an application with
another term, such as IN PROCESS, it should be documented in that
application’s conformance statement.

The most important characteristic of an attribute that is specified on a message
by message basis, is the Value Type (VT). The VT of an attribute specifies
whether or not that attribute needs to be included in a message and if it needs to
have a value. Attributes can be required, optional, or only required under certain
conditions (conditional attributes). Conditional attributes are always specified
along with a condition. The value types defined by DICOM are listed in Table 4.
Note that a null valued attribute has a value, that value being null (zero length).

Table 4: DICOM Value Types (VT’s)

Value Type
(VT)

Description

1 The attribute must have a value and be included in the message. The
value cannot be null (empty).

1C The attribute must have a value and be included in the message only
under a specified condition. The value cannot be null. If that condition
is not met, the attribute shall not be included in the message.

2 The attribute must have a value and be included in the message. If the
value for the attribute is unknown and cannot be specified, its value
shall be null.

2C The attribute must have a value and be included in the message only
under a specified condition. If the value for the attribute is unknown
and cannot be specified, its value shall be null. If that condition is not
met, the attribute shall not be included in the message

3 The attribute is optional. It may or may not be included in the message.
If included, the attribute may or may not have a null value.

Enumerated values vs.
defined terms

Value type

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

31

Private Attributes
The DICOM Standard allows application developers to add their own private
attributes to a message as long as they are careful to follow certain rules. A
private attribute is identified differently than are standard attributes. Its tag is
composed of an odd group number, a private identification code string, and a
single byte element number.

For example, ACME Imaging Inc. might define a private attribute to hold the
name of the field engineer that last serviced their equipment. They could assign
this attribute to private attribute tag (1455, ‘ACME_IMG_INC’, 00). This attribute
has group number 1455, a private identification code string of ‘ACME_IMG_INC’,
and a single byte element number of 00.

ACME could assign up 255 other private attributes to private group 1455 by
using the other element numbers (01-FF). Part 5 of DICOM explains how these
private tags are translated to standard group and element numbers and encoded
into a message, while avoiding collisions. Merge DICOM Toolkit handles these
details for you.

DICOM makes a couple of rules that must be followed when using private
attributes:

• Private attributes shall not be used in place of required (Value Type 1, 1C, 2,
or 2C) attributes.

• The possible value representations (VR’s) used for private attributes shall be
only those specified by the standard (see Table 3).

The way you use private attributes in your application can also greatly affect your
conformance statement. DICOM conformance is discussed in greater detail
later.

Media Interchange
The DICOM Standard specifies a DICOM file format for the interchange of
medical information on removable media. This file format is a logical extension
of the networking portion of the standard. When an object instance that was
communicated over a network would also be of value when communicated via
removable media, DICOM specifies the encapsulation of these object instances
in a DICOM file.

DICOM Files
A DICOM File is the encapsulation of a DICOM object instance, along with File
Meta Information. File meta information is stored in the header of every DICOM
file and includes important identifying information about the encapsulated object
instance and its encoding within the file (see Figure 7).

DICOM File Structure

MCfile
MCfileMetaInfo

MCfile
MCfileMetaInfo

MCmediaStorageService

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

32

Figure 7: A DICOM File

The file meta information begins with a 128 byte buffer available for application
profile or implementation specific use. Application Profiles standardize a
number of choices related to a specific clinical need (modality or application) and
are specified in Part 11 of the DICOM Standard. The next four bytes of the meta
information contain the DICOM prefix, which is always “DICM” in a DICOM file
and can be used as an identifying characteristic for all DICOM files. The
remainder of the file (preamble and object instance) is encoded using tagged
attributes (as in a DICOM Message).

The object instances that can be stored within the DICOM file are equivalent to a
subset of the object instances that can be transmitted in network messages. The
services that can be performed to interchangeable media are italicized in Table 1.
The Media Storage Service Class (in Part 4 of the DICOM standard) specifies
which service-command pairs can be performed to media. Remember it is the
service-command pair that identifies the object instance portion of the message,
and it is only the object instance portion of the message that is stored in a
DICOM file. The command attributes associated with a network message are
never stored in a DICOM File, only the data set.

The service command pairs whose corresponding object instances can be stored
to media are summarized in Error! Reference source not found.. Note that the
Media Storage Directory Service is not performed over a network and the single
object specified in the Basic Directory Information Object Definition (Part 3) is
used.

Table 5: Service-Command Pairs Specifying Objects that can be Stored in a DICOM File

Service Command

Ambulatory ECG Waveform Storage C-STORE

Arterial Pulse Waveform Storage C-STORE

Autorefraction Measurements Storage C-STORE

Basic Color Image Box N-SET

File Meta Object Instance

= File Meta Info Attribute = Object Instance Attribute

Each attribute identified by a Tag

File Preamble (128 byte

Four byte DICOM Prefix = “DICM”

= Byte Stream

optional extra padding attribute (FFFC, FFFC)

= Optional Padding Attribute

DICOM objects that can be
written to media

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

33

Service Command

Basic Film Box N-CREATE

Basic Film Session N-CREATE

Basic Grayscale Image Box N-SET

Basic Structured Display Storage C-STORE

Basic Text Structured Reporting C-STORE

Basic Voice Audio Waveform Storage C-STORE

Blending Softcopy Presentation State Storage C-STORE

Breast Tomosynthesis Image Storage C-STORE

Cardiac Electrophysiology Waveform Storage C-STORE

Color Softcopy Presentation State Storage C-STORE

Comprehensive Structured Reporting C-STORE

Computed Radiography Image Storage C-STORE

CT Image Storage C-STORE

Chest CAD SR C-STORE

Colon CAD SR C-STORE

Deformable Spatial Registration Storage C-STORE

Detached Interpretation Management N-GET

Detached Patient Management N-GET

Detached Results Management N-GET

Detached Study Management N-GET

Detached Study Component Management N-GET

Detached Visit Management N-GET

Digital X-Ray Image Storage - For Presentation C-STORE

Digital X-Ray Image Storage - For Processing C-STORE

Digital Intra-oral X-Ray Image Storage - For Presentation C-STORE

Digital Intra-oral X-Ray Image Storage - For Processing C-STORE

Digital Mammography Image Storage - For Presentation C-STORE

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

34

Service Command

Digital Mammography Image Storage - For Processing C-STORE

Encapsulated CDA Storage C-STORE

Encapsulated PDF Storage C-STORE

Enhanced CT Image Storage C-STORE

Enhanced MR Color Image Storage C-STORE

Enhanced MR Image Storage C-STORE

Enhanced PET Image Storage C-STORE

Enhanced Structured Reporting C-STORE

Enhanced US Volume Storage C-STORE

Enhanced XA Image Storage C-STORE

Enhanced XRF Image Storage C-STORE

General Audio Waveform Storage C-STORE

General ECG Waveform Storage C-STORE

Generic implant Template Storage C-STORE

Grayscale Softcopy Presentation State Storage C-STORE

Hanging Protocol Storage C-STORE

Hemodynamic Waveform Storage C-STORE

Implant Assembly Template Storage C-STORE

Implant Template Group Storage C-STORE

Implantation Plan SR Document Storage C-STORE

Intraocular Lens Calculations Storage C-STORE

Intravascular Optical Coherence Tomography Image Storage –
For Presentation

C-STORE

Intravascular Optical Coherence Tomography Image Storage –
For Processing

C-STORE

Keratometry Measurements Storage C-STORE

Key Object Selection C-STORE

Lensometry Measurements Storage C-STORE

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

35

Service Command

Macular Grid Thickness and Volume Report C-STORE

Mammography CAD SR C-STORE

Media Storage Directory Storage C-STORE*

MR Image Storage C-STORE

MR Spectroscopy Storage C-STORE

Multi-frame Grayscale Byte Secondary Capture Image Storage C-STORE

Multi-frame Grayscale Word Secondary Capture Image Storage C-STORE

Multi-frame Single Bit Secondary Capture Image Storage C-STORE

Multi-frame True Color Secondary Capture Image Storage C-STORE

Nuclear Medicine Image Storage C-STORE

Ophthalmic 8 bit Photography Image Storage C-STORE

Ophthalmic 16 bit Photography Image Storage C-STORE

Ophthalmic Axial Measurements Storage C-STORE

Ophthalmic Tomography Image Storage C-STORE

Ophthalmic Visual Field Static Perimetry Measurements Storage C-STORE

Parametric Map Storage C-STORE

Positron Emission Tomography Image Storage C-STORE

Procedure Log C-STORE

Pseudo-Color Softcopy Presentation State Storage C-STORE

Raw Data Storage C-STORE

Real World Value Mapping Storage C-STORE

Respiratory Waveform Storage C-STORE

RT Beams Delivery Instruction Storage C-STORE

RT Beams Treatment Record Storage C-STORE

RT Brachy Treatment Record Storage C-STORE

RT Dose Storage C-STORE

RT Ion Beams Treatment Record Storage C-STORE

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

36

Service Command

RT Ion Plan Storage C-STORE

RT Plan Storage C-STORE

RT Image Storage C-STORE

RT Structure Set Storage C-STORE

RT Treatment Summary Record Storage C-STORE

Secondary Capture Image Storage C-STORE

Segmentation Storage C-STORE

Subjective Refraction Measurements Storage C-STORE

Surface Segmentation Storage C-STORE

Spatial Registration Storage C-STORE

Spatial Fiducials Storage C-STORE

Spectacle Prescription Report Storage C-STORE

Standalone Overlay Storage C-STORE

Standalone Curve Storage C-STORE

Standalone Modality LUT Storage C-STORE

Standalone VOI LUT Storage C-STORE

Stereometric Relationship Storage C-STORE

Ultrasound Image Storage C-STORE

Ultrasound Multi-frame Image Storage C-STORE

Video Endoscopic Image Storage C-STORE

Video Microscopic Image Storage C-STORE

Video Photographic Image Storage C-STORE

Visual Acuity Measurements Storage C-STORE

VL Endoscopic Image Storage C-STORE

VL Microscopic Image Storage C-STORE

VL Photographic Image Storage C-STORE

VL Slide-Coordinates Microscopic Image Storage C-STORE

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

37

Service Command

VL Whole Slide Microscopy Image Storage C-STORE

Wide Field Ophthalmic Photography 3D Coordinates Image Storage C-STORE

Wide Field Ophthalmic Photography Stereographic Projection Image
Storage

C-STORE

XA/XRF Grayscale Softcopy Presentation State Storage C-STORE

X-Ray Angiographic Image Storage C-STORE

X-Ray Radiofluoroscopic Image Storage C-STORE

X-Ray Radiation Dose SR Storage C-STORE

X-Ray 3D Angiographic Image Storage C-STORE

X-Ray 3D Craniofacial Image Storage C-STORE

12-lead ECG Waveform Storage C-STORE

* Merge DICOM Toolkit defines a C-STORE command for the Media Storage
Directory (DICOMDIR) service even though it does not formally exist In the
DICOM Standard.

Finally, the DICOM file can be padded at the end with the Data Set Trailing
Padding attribute (FFFC, FFFC) whose value is specified by the standard to have
no significance.

File Sets
DICOM Files must be stored on removable media in a DICOM File Set. A
DICOM file set is defined as a collection of DICOM files sharing a common
naming space within which file ID’s are unique (e.g., a file system partition). A
DICOM File Set ID is a string of up to 16 characters that provides a name for the
file set.

A File ID is a name given to a DICOM file that is mapped to each media format
specification (in Part 12 of DICOM). A file ID consists of an ordered sequence of
one to eight components, where each component is a string of one to eight
characters. One can certainly imagine mapping such a file ID to a hierarchical
file system, and this is done for several media formats in Part 12. It is important
to note that DICOM states that no semantic relationship between DICOM files
shall be conveyed by the contents or structure of file ID’s (e.g., the hierarchy).
This helps insure that DICOM files can be stored in a media format and file
system independent manner.

The allowed characters in both a file ID’s and file set ID’s are a subset of the
ASCII character set consisting of the uppercase characters (A-Z), the
numerals (0-9), and the underscore (_).

Naming DICOM File Sets
and File ID’s

MCfile

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

38

The DICOMDIR
The DICOM Directory File or DICOMDIR is a special type of a DICOM File. A
single DICOMDIR must exist within each DICOM file set, and is always given the
file ID “DICOMDIR”. It is the DICOMDIR file that contains identifying information
about the entire file set, and usually (dependent on the Application Profile) a
directory of the file set’s contents.

Figure 8 shows a graphical representation of a DICOMDIR file and its central role
within a DICOM File Set.

Figure 8: A DICOM Directory File (DICOMDIR) within a DICOM File Set

DICOM File Set

Root record

Patient Records

Study Records

Series Records

Image Records

DICOM Image Files

File Set

“DICOMDIR” File

MCdir

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

39

If the DICOMDIR file contains directory information, it is composed of a hierarchy
of directory records, with the top-most directory record being the root directory
record. A Directory Record identifies a DICOM File by summarizing key
attributes and their values in the file and specifying the file ID of the
corresponding file. The file ID can then be used, in the context of the native file
system, to access the corresponding DICOM file. Each directory record can in
turn point down the hierarchy to one or more related directory records.

Part 3 of the DICOM Standard specifies the allowed relationships between
directory records in the section defining the Basic Directory IOD. We reproduce
this table here (see Table 6) for pedagogical reasons; but, you should refer to the
DICOM Standard for the most up-to-date and accurate specification.

Table 6: Allowed Directory Entity

Directory Record Type Record Types which may be included in the next
lower-level Directory Entity

(Root Directory Entity) * PATIENT, TOPIC, PRINT QUEUE, HANGING
PROTOCOL, PRIVATE

PATIENT STUDY, PRIVATE

STUDY SERIES, VISIT, RESULTS, STUDY COMPONENT,
FILM SESSION, PRIVATE

SERIES IMAGE, STORED PRINT, RT DOSE, RT STRUCTURE
SET, RT PLAN, RT TREAT RECORD, OVERLAY,
MODALITY LUT, VOI LUT, CURVE, SR DOCUMENT,
PRESENTATION, KEY OBJECT DOC,
SPECTROSCOPY, RAW DATA, WAVEFORM,
REGISTRATION, FIDUCIAL, VALUE MAP, ENCAP
DOC, PRIVATE

HANGING PROTOCOL PRIVATE

IMAGE PRIVATE

STORED PRINT PRIVATE

RT DOSE PRIVATE

RT STRUCTURE SET PRIVATE

RT PLAN PRIVATE

RT TREAT RECORD PRIVATE

OVERLAY PRIVATE

MODALITY LUT PRIVATE

VOI LUT PRIVATE

CURVE PRIVATE

The DICOMDIR hierarchy

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

40

Directory Record Type Record Types which may be included in the next
lower-level Directory Entity

SR DOCUMENT PRIVATE

PRESENTATION PRIVATE

KEY OBJECT DOC PRIVATE

SPECTROSCOPY PRIVATE

RAW DATA PRIVATE

WAVEFORM PRIVATE

REGISTRATION PRIVATE

FIDUCIAL PRIVATE

VALUE MAP PRIVATE

ENCAP DOC PRIVATE

TOPIC STUDY, SERIES, IMAGE, OVERLAY, MODALITY LUT,
VOI LUT, CURVE, FILM SESSION, PRIVATE

VISIT PRIVATE

RESULTS INTERPRETATION, PRIVATE

INTERPRETATION PRIVATE

STUDY COMPONENT PRIVATE

PRINT QUEUE FILM SESSION, PRIVATE

FILM SESSION FILM BOX, PRIVATE

FILM BOX BASIC IMAGE BOX, PRIVATE

BASIC IMAGE BOX PRIVATE

PRIVATE PRIVATE

MRDR (Not applicable)

*The first row of this table specifies the directory records that can be contained
within the Root Directory Entity.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

41

File Management Roles and Services
Part 10 of the DICOM Standard specifies a set of file management roles and
services. There are five DICOM File Services, that describe the entire set of
DICOM file operation primitives:

Table 7: DICOM File Services

DICOM File Services Description

M-WRITE Create new files in a file set and assign them a file ID.

M-READ Read existing files based on their file ID.

M-DELETE Delete existing files based on their file ID.

M-INQUIRE FILE-SET Inquire free space available for creating new files within a
file set.

M-INQUIRE FILE Inquire date and time of file creation (or last update if
applicable) for any file within a file set.

The Merge DICOM Toolkit supplies the MCmediaStorageService that performs
the first two (underlined) file services. That class also implements enhanced
read and write functionality for the creation and maintenance of DICOMDIR files
and its hierarchy of directory entities and directory records. The remaining three
file services are best implemented by the application entity through file system
calls because they are file system dependent operations.

DICOM AE’s that that perform file interchange functionality are in turn classified
into three roles:

File Set Creator (FSC) uses M-WRITE operations to create a DICOMDIR
file and one or more DICOM files.

File Set Reader (FSR) uses M-READ operations to access one or more
files in a DICOM file set. An FSR shall not modify
any files of the file set (including the DICOMDIR file).

File Set Updater (FSU) performs M-READ, M-WRITE, and M-DELETE
operations. It reads, but shall not modify the content
of any DICOM files other than the DICOMDIR file. It
may create additional files by means of an M-WRITE
or delete existing files by means of an M-DELETE.

The concept of these roles is used within the DICOM conformance statement of
an application entity that supports media interchange to more precisely express
the capabilities of the implementation. Conforming applications shall support one
of the capability sets specified in Table 8. DICOM conformance is described in
greater detail in the next section.

File Management Services

File Management Roles

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

42

Table 8: Media Application Operations and Roles

Media Roles M-WRITE M-READ M-DELETE M-INQUIRE
FILE-SET

M-INQUIRE
FILE

FSC Mandatory not required not required Mandatory Mandatory

FSR not required Mandatory not required not required Mandatory

FSC+FSR Mandatory Mandatory not required Mandatory Mandatory

FSU Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

FSU+FSC+FSR Mandatory Mandatory Mandatory Mandatory Mandatory

Conformance
Part 2 of DICOM discusses conformance and is important to any AE developer.
For an application to be DICOM conformant it must:

• meet the minimum general conformance requirements specified in Part 2 and
service specific conformance requirements specified in Part 4 (Network
Services), and/or Parts 10 and 11 (Media Services).

• have a published DICOM conformance statement detailing the above
conformance and any optional extensions.

Conformance also applies to aspects of the communications protocol that are
managed by the DICOM Toolkit. Most parameters are configurable by your
application. The conformance statement for the Merge DICOM Toolkit in
Appendix C: DICOM Conformance Statement lists all these protocol parameters
and how they can be configured.

Part 2 also deals with private extensions to the DICOM Standard by defining
Standard Extended Services. Standard Extended Services give your
application a little more flexibility, by allowing you to add private attributes as long
as they are of value type 3 (optional) and are documented in the conformance
statement.

DICOM also allows you to define your own Specialized and Private Services.
These should be avoided by most applications since they are non-standard, add
complexity to your application, and limit interoperability.

If you are significantly extending services or creating your own private services,
you may need the Merge DICOM Toolkit Extended Toolkit to assist in defining
these services so that they can be supported by the toolkit.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

43

Using the Merge DICOM Toolkit
You can use the Merge DICOM Toolkit ‘out of the box’ by using its supplied utility
programs and sample applications. In this section we discuss how to configure
the toolkit and to use the utility programs. Later, we discuss how to develop your
own DICOM applications using the Merge DICOM .NET™ Assembly.

Configuration
Merge DICOM is highly configurable, and understanding its configuration files is
critical to using the library effectively. Four configuration files are used by Merge
DICOM: an initialization file, an application profile, a system profile, and a service
profile

Figure 9: Format of a configuration file

Each of the four toolkit initialization files follow the same format. The format of
the initialization files is the same format that is used by others in the industry.
Configuration files are broken down into sections for easier organization and
grouping of parameters. Each section has a section heading enclosed in square
brackets. Next, parameters are defined by putting the parameter name to the left
of an equal sign and its initial value to the right. Zero of more spaces may
precede and follow the equal sign. Figure 9 illustrates the format of an “ini” file.

Notice that parameter names are relative to their header sections. For example,
PARAMETER_1 and PARAMETER_2 are defined twice in the above example “ini”
file. But, since each is defined in a different section, they are considered different
entities.

Each of the four configuration files are discussed separately below. Only the key
configurable parameters are summarized here. For detailed descriptions of all
configuration files and their parameters, see Appendix D: Configuration
Parameters.

#
The pound-sign begins comment lines
#

[HEADER1]
PARAMETER_1 = 12345
PARAMETER_2 = “This is some text”
PARAMETER_3 = 1.2.3.456.78

[HEADER2]
PARAMETER_1 = 4382
PARAMETER_2 = “More text”

Section Header

Section Parameters

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

44

Initialization File
The Merge DICOM Initialization File (usually called merge.ini) provides the
DICOM Toolkit with its top-level configuration. It specifies the location of the
other three configuration files, along with message and error logging
characteristics.

All Merge DICOM applications require access to the Initialization File. Your .NET
programs access the Initialization File differently than do C applications, such as
the utility programs distributed with the Merge DICOM Toolkit.

The C utility programs access the merge.ini file by accessing the MERGE_INI
environment variable. You must set the MERGE_INI environmental variable to
point to the Initialization File. This variable can be set within a command shell;
for example:

In DOS command shell:

set MERGE_INI=\mc3adv\merge.ini

See the Platform notes for your platform if none of these methods apply.

Merge DICOM applications written in .NET do not use the MERGE_INI
environment variable. Instead, they determine the location of the Initialization
File in any way that is appropriate and then pass the location to the Assembly,
using the static mcInitialization method of the MC class.

The initialization file contains one [MergeCOM3] section that points to the
location of the other three Merge DICOM initialization files, specifies
characteristics of the message/error log kept by the DICOM Toolkit library, turns
particular types of logging on and off, and specifies where the messages are
logged (file, screen, both, or neither). In most cases the INFO, WARNING, and
ERROR messages will be sufficient. The Tn_MESSAGE settings (where n is an
integer between 1 and 9) turns on lower-level protocol tracing capabilities.
These capabilities can prove useful when running into difficulties communicating
with other implementations of DICOM over a network and can be used by Merge
OEM service engineers in diagnosing lower-level network problems.

Application Profile
The Merge DICOM Application Profile (usually called mergecom.app) specifies
the characteristics of your own application entity and the AE’s your application
will connect with over a network. The name and location of this file is specified in
the [MergeCOM3] section of the Merge DICOM initialization file.

When your application acts as a client (SCU), you must specify in the Application
Profile the network address of the server (SCP) Application Entities you wish to
connect (open an association) with. Your client refers to the application entity by
a DICOM Application Entity Title and this is the same way it is referred to in the
application profile. The AE title consists of a string of characters containing no
spaces and having a length of 16 characters or less. A section of the profile
exists for each Server AE you wish to connect with.

MERGE_INI environmental
variable needed only by
utility programs

DICOM AE Title

Use MC.mcInitialization
to provide
Initialization File location

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

45

For example, if your application is an image source and also performs query and
retrieval of images from two separate DICOM AE’s, it might contain sections like
the following:

[Acme_Store_SCP]
PORT_NUMBER = 104
HOST_NAME = acme_sun1
SERVICE_LIST = Storage_Service_List

[Acme_QR_SCP]
PORT_NUMBER = 104
HOST_NAME = acme_hp2
SERVICE_LIST = Query_Service_List

Acme_Store_SCP and Acme_QR_SCP are the AE titles for the applications you
wish to connect with. The storage server runs on a Sun computer having the
host name acme_sun1, while the query/retrieve server runs on an HP
workstation with the host name acme_hp2. Both servers listen on port 104 (the
standard DICOM listen port). The host name and port combined, make up the
TCP/IP network address for a listening server application. See Figure 10.

Besides entering a hostname for the HOST_NAME parameter, it is also possible
to simply enter an IP address. Both IPv4 addresses and IPv6 addresses are
allowed in this field.

The SERVICE_LIST is set to the name of another section in the application
profile that lists the DICOM services that will be negotiated with that application
entity. For example, in this case these sections might look like:

[Storage_Service_List]
SERVICES_SUPPORTED = 11 # Services in list
SERVICE_1 = STANDARD_MR
SERVICE_2 = STANDARD_CR
SERVICE_3 = STANDARD_CT
SERVICE_4 = STANDARD_CURVE
SERVICE_5 = STANDARD_MODALITY_LUT
SERVICE_6 = STANDARD_OVERLAY
SERVICE_7 = STANDARD_SEC_CAPTURE
SERVICE_8 = STANDARD_US
SERVICE_9 = STANDARD_US_MF
SERVICE_10 = STANDARD_VOI_LUT
SERVICE_11 = STANDARD_NM

[Query_Service_List]
SERVICES_SUPPORTED = 2 # Services in list
SERVICE_1 = STUDY_ROOT_FIND
SERVICE_2 = STUDY_ROOT_MOVE

[Storage_Service_List] lists the storage services that will be requested,
while [Query_Service_List] lists the type of query/retrieve that will be
requested. These service names are the strings used in Merge DICOM Toolkit to
identify standard DICOM services. Any services listed must be defined in the
Service Profile, discussed below.

You may also dynamically create service lists at run time, using the methods of
the MCproposedContext and MCproposedContextList classes, as well as the
constructors for the MCproposedContextList class. This will be discussed in
more detail in the DEVELOPING DICOM APPLICATIONS section below.

Service List

Dynamic Service Lists
MCproposedContextList

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

46

Figure 10: An example configuration of DICOM applications

A service list also needs to be defined for each of your own server AE’s. Even
though you do not need a section for your server AE Title (since it is running on
your local machine), you do need to specify a service list that your application
supports as an SCP. If your application also acts as a storage server, for
example, it could use [Storage_Service_List]. You also need to specify a
listen port for your server AE in the System Profile, which is discussed below.

For DICOM Toolkit users, Merge DICOM allows for the defining of the transfer
syntaxes supported for each service in a service list. This functionality is
implemented through the use of transfer syntax lists. The basic service lists
discussed above can be modified to include these transfer syntax lists. The
following is an example service list that has transfer syntaxes specified for each
service:

[Storage_Service_List]
 SERVICES_SUPPORTED = 3 # Number of Services
 SERVICE_1 = STANDARD_MR
 SYNTAX_LIST_1 = MR_Syntax_List
 SERVICE_2 = STANDARD_US
 SYNTAX_LIST_2 = US_Syntax_List
 SERVICE_3 = STANDARD_CT
 SYNTAX_LIST_3 = CT_Syntax_List

[MR_Syntax_List]
 SYNTAXES_SUPPORTED = 4 # Number of Syntaxes
 SYNTAX_1 = JPEG_BASELINE
 SYNTAX_2 = EXPLICIT_BIG_ENDIAN
 SYNTAX_3 = EXPLICIT_LITTLE_ENDIAN
 SYNTAX_4 = IMPLICIT_LITTLE_ENDIAN

[US_Syntax_List]
 SYNTAXES_SUPPORTED = 2 # Number of Syntaxes
 SYNTAX_1 = RLE
 SYNTAX_2 = IMPLICIT_LITTLE_ENDIAN

[CT_Syntax_List]
 SYNTAXES_SUPPORTED = 2 # Number of Syntaxes
 SYNTAX_1 = EXPLICIT_LITTLE_ENDIAN
 SYNTAX_2 = IMPLICIT_LITTLE_ENDIAN

Your Application

Acme_Store_SCP

Acme_QR_SCP

acme_sun1

acme_hp2port
104

port
104

myhost

Don’t forget!

Transfer Syntax List

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

47

[Storage_Service_List] lists some standard storage service class services
used by Merge DICOM Toolkit. The SYNTAX_LIST_N parameter has been
added to this example to specify a transfer syntax list for each service. This
optional parameter is set to the name of another section in the application profile
which lists a group of DICOM transfer syntaxes to be negotiated. When this
parameter is not set, the default non-compressed transfers syntaxes (implicit VR
little endian, explicit VR little endian, and explicit VR big endian) are negotiated.

The [MR_Syntax_List], [US_Syntax_List], and [CT_Syntax_List]
sections each define a separate transfer syntax list for the MR, US, and CT
services respectively. Merge DICOM Toolkit currently supports all transfer
syntaxes specified in the DICOM standard. The names used for these transfer
syntaxes are defined in Table 33, in Appendix D: Configuration Parameters.

As mentioned earlier, Merge DICOM supports the dynamic creation of service
lists at runtime. The Assembly also provides the MCtransferSyntaxList.getObject
factory method to construct an MCtransferSyntaxList object from information in
the configuration files. This will be discussed in more detail in the DEVELOPING
DICOM APPLICATIONS section below.

For server (SCP) applications, the order in which transfer syntaxes are specified
in a transfer syntax list dictates the priority Merge DICOM places on them during
association negotiation. For example, in the [US_Syntax_List] specified
above, if a client (SCU) proposed the Ultrasound storage service with the RLE
compressed transfer syntax and the implicit VR little endian transfer syntax,
Merge DICOM would select the RLE transfer syntax because it was listed first in
the transfer syntax list.

When a transfer syntax list is not specified in a service list the priority Merge
DICOM Toolkit places on transfer syntaxes during association negotiation is
dependent on the hardware platform. On little endian machines (Intel based
systems) the priority order is: Explicit VR Little Endian, Implicit VR Little Endian,
and Explicit VR Big Endian.

Merge DICOM also supports DICOM role negotiation through its service lists.
Whereas in previous examples, the same service list could be used for both
client (SCU) and server (SCP), these service lists are specific to the role to be
negotiated for each service.

[SCU_Service_List]
 SERVICES_SUPPORTED = 1 # Number of Services
 SERVICE_1 = STORAGE_COMMITMENT_PUSH
 ROLE_1 = SCU

[SCP_Service_List]
 SERVICES_SUPPORTED = 1 # Number of Services
 SERVICE_1 = STORAGE_COMMITMENT_PUSH
 ROLE_1 = SCP

In this case, the [SCU_Service_List] supports the Storage Commitment
Push SOP class as an SCU and the [SCP_Service_List] supports the
Storage Commitment Push SOP class as an SCP. Merge DICOM will negotiate
the association based on the settings for these roles.

Transfer syntax priority
during association
negotiation

MCtransferSyntax
MCtransferSyntaxList

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

48

The role for a service can be defined as SCU, SCP, BOTH, or be undefined.
Table 9 contains a complete listing of configurable roles for both requestors and
acceptors along with the resultant negotiated roles. Note that in some cases a
service will be rejected because the roles being negotiated do not match.

Table 9: Negotiated Roles

Requestor’s
Configured Role

Acceptor’s
Configured Role

Requestor’s
Negotiated Role

Acceptor’s
Negotiated Role

SCU SCP SCU SCP

 SCU Rejected Rejected

 BOTH SCU SCP

 NOT DEFINED SCU SCP

SCP SCP Rejected Rejected

 SCU SCP SCU

 BOTH SCP SCU

 NOT DEFINED Rejected Rejected

BOTH SCP SCU SCP

 SCU SCP SCU

 BOTH BOTH BOTH

 NOT DEFINED SCP SCP

NOT DEFINED SCP SCU SCP

 SCU Rejected Rejected

 BOTH SCU SCP

 NOT DEFINED SCU SCP

For detailed information about the content of the Application Profile, see

Application Profile in Appendix D: Configuration Parameters.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

49

DICOM Asynchronous Communication
Merge DICOM also optionally supports DICOM Asynchronous Operations
Window Negotiation through service lists. The same service list can be used in
this case for both the client (SCU) and server (SCP). The following is an
example service list that configures DICOM asynchronous communication
negotiation:

[SCU_Or_SCP_Service_List]
 SERVICES_SUPPORTED = 1 # Number of Services
 MAX_OPERATIONS_INVOKED = 10
 MAX_OPERATIONS_PERFORMED = 10
 SERVICE_1 = STANDARD_MR

In this case, the [SCU_Or_SCP_Service_List] supports the Standard MR
SOP Class. For all services, it supports 10 maximum operations invoked and 10
maximum operations performed. When MAX_OPERATIONS_INVOKED and
MAX_OPERATIONS_PERFORMED are not included in the service list,
asynchronous communications are not negotiated. See a subsequent section for
details on implementing DICOM asynchronous communications with Merge
DICOM Toolkit.

Extended Negotiation
Merge DICOM optionally supports configuration of DICOM Extended Negotiation
information in service lists. Currently, the DICOM standard allows extended
negotiation information for the Storage and Query/Retrieve Service classes as
defined in PS3.4 of the standard. The extended negotiation information can be
set for only the client (SCU). Server applications utilizing extended negotiation
must set this information at run-time through the .NET Assembly.

[SCU_Service_List]
 SERVICES_SUPPORTED = 2 # Number of Services
 SERVICE_1 = STUDY_ROOT_QR_FIND
 EXT_NEG_INFO_1 = 0x01
 SERVICE_2 = STUDY_ROOT_QR_MOVE
 EXT_NEG_INFO_2 = 0x01

In this case, the [SCU_Service_List] supports the Study Root Q/R Find and
Move services. Both services have set a single byte of extended negotiation
information set to hexadecimal 0x01. (In this case, this implies the Client
supports relational Queries and Moves.) Multiple hexadecimal bytes can be set
in the service list by listing each byte in the format "0x00 0x01 0x02".

Related General SOP Classes and Service Classes
DICOM Supplement 90 defines a mechanism in association negotiation to
identify when a SOP Class is a customization of a generalized SOP Class. It
also defines a method to identify the service class of a SOP Class that is
proposed by an SCU. This allows flexibility in an SCP to support service classes
for which it supports the generalized version of a SOP Class, but does not
explicitly support the customized SOP Class. It also allows a mechanism to
easily make an SCP that supports all storage service class SOP Classes that are
proposed to it.

Configuring
Asynchronous
Communications
Support

Configuring
Extended
Negotiation for
Clients

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

50

Related General SOP Classes can be supported in the application profile by
defining a service list containing the related general SOP Classes for a given
SOP class, and then assigning the service list to the SOP Class. The following
example shows how this is done:

[SCU_SR_General]
 SERVICES_SUPPORTED = 2
 SERVICE_1 = STANDARD_ENHANCED_SR
 SERVICE_2 = STANDARD_COMPREHENSIVE_SR

[SCU_DX_General]
 SERVICES_SUPPORTED = 1
 SERVICE_1 = STANDARD_DX_PRESENT

[SCU_Service_List]
 SERVICES_SUPPORTED = 3
 SERVICE_1 = STANDARD_BASIC_TEXT_SR
 REL_GENERAL_1 = SCU_SR_General
 SERVICE_CLASS_1 = 1.2.840.10008.4.2
 SERVICE_2 = STANDARD_IO_PRESENT
 REL_GENERAL_2 = SCU_DX_General
 SERVICE_CLASS_2 = 1.2.840.10008.4.2
 SERVICE_3 = STANDARD_CT
 SERVICE_CLASS_3 = 1.2.840.10008.4.2

In this case, the SCU_SR_General service list contains the related general SOP
Classes for the STANDARD_BASIC_TEXT_SR service. The REL_GENERAL_1
option points to the service list to use as the related general services for
SERVICE_1.

The above example also shows how the service class can be defined for each
SOP Class within a service list. For instance, SERVICE_CLASS_3 in the above
example specifies the service class for SERVICE_3. In this case, the UID for the
Storage Service Class as defined in Supplement 90 is used.

The service lists above are only utilized by SCU applications. For SCP
applications, there are several configuration options that define how Merge
DICOM will negotiate an association when related general SOP Classes are
included or the Service Class is included for a SOP Class.

When the ACCEPT_STORAGE_SERVICE_CONTEXTS configuration option is set to
Yes, Merge DICOM will accept any proposed SOP class that is defined as
supporting the Storage Service Class.

When the ACCEPT_RELATED_GENERAL_SERVICES configuration option is set
to Yes, Merge DICOM will accept any SOP class proposed if the SCP supports in
its service list any of the related general SOP Classes defined for a SOP Class
proposed.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

51

System Profile
The Merge DICOM System Profile (usually called mergecom.pro) contains
configuration parameters for the DICOM Toolkit Library itself. The name and
location of this file are specified in the [MergeCOM3] section of the Merge
DICOM initialization file.

Many of these parameters should never need to be modified by the user,
including low-level protocol settings such as time-outs. Only the parameters that
should be understood by every user of the toolkit are discussed here; for a
discussion of all parameters, see

System Profile in Appendix D: Configuration Parameters.

Most importantly, you must place the license number you received when you
purchased the toolkit in the [ASSOC_PARMS]section of the system profile. If the
license you received with your toolkit was 83F3-3F26-FD6E you would need to
set it in the [ASSOC_PARMS]section as follows:

[ASSOC_PARMS]
 LICENSE = 83F3-3F26-FD6E
 IMPLEMENTATION_CLASS_UID = 2.16.840.1.113669.2.1.2
 IMPLEMENTATION_VERSION = MergeCOM3_361
 ACCEPT_MUTLPLE_PRES_CONTEXTS = Yes

The toolkit sample applications, and your own applications that use the DICOM
Toolkit Library will not work without a valid license number.

The above example of the [ASSOC_PARMS] section of the system profile also
contains example implementation class UID and implementation version
configuration values. The implementation class UID is intended by the DICOM
standard to be unique for major revisions of an application entity. The
implementation version is intended to be unique for the minor revisions of an
application entity. These configuration values are used during association
negotiation by Merge DICOM and are intended to aid in tracking versions of
applications in the field.

The ACCEPT_MULTIPLE_PRES_CONTEXTS configuration value is used by server
(SCP) applications. This value determines if multiple presentation contexts can
be negotiated for a single DICOM Service. This option is discussed below.

As mentioned earlier, a listen port must be identified for your server AE. Port 104
is the standard DICOM listen port. This, along with the number of simultaneous
TCP connection requests that can be queued up for acceptance (pending) for
Merge DICOM toolkit, is specified in the [TRANSPORT_PARMS] section.

The MAX_PENDING_CONNECTIONS setting in the “mergecom.pro” file refers to
the maximum number of outstanding connection requests per listener socket.
The value of this configuration is passed by the toolkit to the listen() call on the
socket as the backlog parameter and it specifies how many pending connections
can be queued at any given time.

The MAX_PENDING_CONNECTIONS configuration option affects the accepting of
associations but not the requesting of associations and it affects the behavior at
the TCP level. In the default case, if more than five association requests arrive at

Nothing works without the
license number

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

52

once then only the first five will be accepted by TCP and passed to Merge
DICOM Toolkit, the others would be refused at the TCP level.

[TRANSPORT_PARMS]
TCPIP_LISTEN_PORT = 104
Max number of open listen channels
MAX_PENDING_CONNECTIONS = 5

An important section of the System Profile is the [MESSAGE_PARMS]section:

[MESSAGE_PARMS]
LARGE_DATA_STORE = FILE # | MEM Default = FILE
LARGE_DATA_SIZE = 200
OBOW_BUFFER_SIZE = 4096
DICTIONARY_FILE = /users/mc3adv/mrgcom3.dct
TEMP_FILE_DIRECTORY = /users/mc3adv/tmp_files/
MSG_INFO_FILE = /users/mc3adv/mrgcom3.msg

The LARGE_DATA_STORE parameter informs the toolkit where it should store
large data; either in memory, or in temporary files on disk. Large data is defined
as a value for an attribute larger than LARGE_DATA_SIZE bytes. Pixel data
associated with a medical image would most certainly be considered large data.

If you are running your process on a resource rich system that supplies plenty of
physical and virtual memory, you should select LARGE_DATA_STORE = MEM to
improve your performance. If your process is not so fortunate or you are dealing
with messages with very large data values, you will want to use
LARGE_DATA_STORE = FILE. In this case, the DICOM Toolkit will manage
the large data in temporary files located in the TEMP_FILE_DIRECTORY you
specify.

Large data that is of value representation OB (Other string of Bytes) or OW
(Other string of 16-bit Words) or OD (Other A string of 64-bit IEEE 754:1985
floating point words) or OF (Other string of 32-bit IEEE 754:1985 floating point
words) is treated specially by the toolkit. Pixel Data, Curves, and Overlays are
composed of this type of data. You can let the toolkit manage OB/OW/OF data
for you like any other large data, or register your own Callback Class in your
applications to deal with such data as it is being received or transmitted over the
network. The use of Callbacks will be covered later when we discuss developing
DICOM applications with the toolkit.

The OBOW_BUFFER_SIZE is used to tell the toolkit what size ‘chunks’ in bytes of
OB/OW/OF data it should read in before either writing the data to a temporary file
or passing it to your Callback Class. Choosing a large number for
OBOW_BUFFER_SIZE means less time spent by your application process writing
to temporary files or making callbacks, but results in a larger process size. If you
need to use temporary files or callbacks, you should tune this parameter to
maximize performance within the constraints of your runtime environment.

Another binary file supplied with the toolkit is the message info file. This file
contains binary encoded message objects and is accessed when an application
opens a message. Once open, these objects reside in memory, are ‘filled in’ by
your application, and become a message object instance that can be exchanged
over the network. The message info file, along with the data dictionary file, also
make possible the powerful message validation capabilities of the DICOM

Message info Files

Dealing with large data

Callbacks
MCattributeContainer

Performance Tuning

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

53

Toolkit. The message info file is a binary file supplied with your toolkit with the
default name of mrgcom3.msg. You also specify the location and name of the
message info file using the MSG_INFO_FILE parameter.

It is often useful to capture the raw data that is transmitted across the network to
help determine exactly what each side of an association is sending. Network
“sniffer” programs are often used to capture this data, but they are often not
useful when the data is being transmitted over a secure network connection, as
the data is often encrypted. Merge DICOM provides a network capture facility
that will capture network data as it is sent or received. The data that is captured
to one or more files and is formatted such that it can be analyzed using the
MergeDPM© utility.

Refer to Appendix D for a discussion of the following configuration parameters
that are used to configure the network capture facility. They are encoded in the
[TRANSPORT_PARMS] section of the System Profile (mergecom.pro).

NETWORK_CAPTURE
CAPTURE_FILE
CAPTURE_FILE_SIZE
NUMBER_OF_CAP_FILES
REWRITE_CAPTURE_FILES

Service Profile
The Service Profile (usually called mergecom.srv) informs the toolkit what
types of services and commands it supports, and what the corresponding
message info files are. This file also lists the meta-services and items supported
by the toolkit. Items are the nested ‘sub-messages’ contained within attributes of
a message having the VR Sequence of Item (SQ) and will be discussed in
greater detail later. The name and location of the service profile are specified in
the [MergeCOM3] section of the Merge DICOM initialization file.

The service profile, along with the data dictionary and message info files, is
generated from the Merge DICOM Database and should be modified by other
means only by very experienced or specialized users.

Additional information about the service profile can be found in

System Profile, Appendix D: Configuration Parameters.

Message Logging
Merge DICOM Toolkit supplies a message logging facility whereby three primary
classes of messages can be logged to a specified file and/or standard output:

• Errors

• Warnings

• Status

Error messages include unrecoverable errors, such as “association aborted”, or
“failure to connect to remote application”. Other error messages may be
catastrophic but it is left to the application to determine whether or not to abort an

Items
MCitem

Capturing Network
Data

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

54

association, such as an “invalid attribute value” or “missing attribute value” in a
DICOM message.

Warnings are meant to alert toolkit users to unusual conditions, such as missing
parameters that are defaulted or attributes having values that are not one of the
defined terms in the standard.

Status messages give high-level messages describing the opening of
associations and exchanging of messages over open associations.

As discussed earlier, other more detailed logging can be obtained by using the
T1_MESSAGE through T9_MESSAGE logging levels. For example, the
T5_MESSAGE logging level can be used to log the results of validate() or
validateAttribute() methods of the MCdimseMessage class.

An excerpt from a Merge DICOM Toolkit message log file is included below that
contains all three classes of messages: errors, warnings, and informational.

Message Log Example:

 .
 .
 .
(6196) 03-29 21:14:54.77 MC3 W: (0010,1010): Value from stream had problem:
(6196) 03-29 21:14:54.78 MC3 W: | Invalid value for this tag’s VR
(6196) 03-29 21:14:56.41 MC3(Read_PDU_Head) E: Error on Read_Transport call
(6196) 03-29 21:14:56.41 MC3(MCI_nextPDUtype) E: Error on Read_PDU_Head call
(6196) 03-29 21:14:56.41 MC3(Transport_Conn_Closed_Event) E: Transport
unexpectedly closed
(6196) 03-29 21:14:56.41 MC3(MCI_ReadNextPDV) I: DUL_read_pdvs error: UL
Provider aborted the association
 .
 .
 .

The first column contains the ID of the thread where the message was
generated. The next column contains the date and the time when the message
was generated.

The toolkit synchronizes the logging internally. Each call to log a message will
block the calling thread until other pending calls are completed.

See Using the Merge DICOM log file section for more details on logging.

Utility Programs
The Merge DICOM Toolkit supplies several useful utility programs. These
utilities can be used to help you validate your own implementations and better
understand the standard.

All these utilities use the Merge DICOM Toolkit C Run-time Library and require
that you set your MERGE_INI environmental variable to point to the proper
configuration files (as described earlier).

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

55

mc3comp
The mc3comp utility can be used to compare the differences between two
DICOM objects. The objects can be encoded in either the DICOM file or
“stream” format and do not have to be encoded in the same format. The utility
will output differences in tags between the messages taking into account
differences in byte ordering and encoding. The syntax for the utility is the
following:

mc3comp [-t1 <syntax> -t2 <syntax>] [-e file] [-o -m1 -m2]
file1 file2

t1 <syntax> Optional specify transfer syntax of ‘file1’

 message, where <syntax> = ‘il’ for implicit
 little endian (default), ‘el’ for explicit
 little endian, ‘eb’ for explicit big endian

t2 <syntax> Optional specify transfer syntax of ‘file2’
 message, where <syntax> = ‘il’ for implicit
 little endian (default), ‘el’ for explicit
 little endian, ‘eb’ for explicit big endian

e <file> Optional exception file of all tags to
 ignore in comparison

o Compare OB/OW/OF (e.g., binary pixel) data
m1 Compare ‘file1’ in DICOM-3 file format.
m2 Compare ‘file2’ in DICOM-3 file format.
h Show these options.
file1 DICOM SOP Instance (message) file
file2 Another DICOM SOP Instance (message) file

Example: mc3comp -t1 il -m2 -o 1.img 1.dcm

mc3conv
The mc3conv utility can be used to convert a DICOM object between various
transfer syntaxes and formats. The utility will read an input file and then write the
output file in the transfer syntax specified in the command line. The utility can
also convert between DICOM “stream” format and the DICOM file format. The
syntax for the mc3conv utility is the following:

mc3conv input_file output_file [-t <syntax>] [-m] [-tag
<tag> <”new value”>]

input_file DICOM SOP Instance (message) file
output_file Output DICOM SOP Instance (message) file
t Specify transfer syntax for ‘output_file’,

 where <syntax> = ‘il’ for implicit little
 endian (default), ‘el’ for explicit little
 endian, ‘eb’ for explicit big endian

m Specify format of ‘output_file’ to be DICOM-
 3 media (Part 10) format.

tag Change value for this tag in ‘output_file’,
 where <tag> = the tag that is to be changed
 in hex 0x... <new value> = the value for the
 tag in quotes “”

h Show these options.

Example: mc3conv in.img out.dcm -t el –m

Do a DICOM ‘diff”

Convert Image Formats

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

56

mc3echo
The mc3echo utility validates application level communication between two
DICOM AE’s. An echo test is the equivalent of a network ‘ping’ operation, but at
the DICOM application level rather than the TCP/IP transport level.

All server (SCP) applications built with the DICOM Toolkit also have built-in
support of the Verification Service Class and the C-ECHO command.

The command syntax follows:

mc3echo [-c count] [-r remote_host] [-l local_app_title]
[-p remote_port] remote_app_title

c count Integer number specifying the number of echoes

to send to the remote host. If -c is not
specified, one echo will be performed

r remote_host Host name of the remote computer If -r
is not specified, the default value for
remote_host is configured in the Application
Profile.

l local_app_title Application title of this program.
 If -l is not specified, the default value
 for local_app_title is MERGE_ECHO_SCU
p remote_port Port number the remote computer is

 listening on. If -p is not specified, the
 default value for remote_host is configured
 in the Application Profile.

mc3list
mc3list displays the contents of binary DICOM message files in an easy to
read manner. The message files could have been generated by mc3file (see
below) or written out by your application.

mc3list is a useful educational tool as well as a tool that can be used for off-
line display of the DICOM messages your application generates or receives.

The command syntax follows:

mc3list <filename> [-t <syntax>] [-m]

filename Filename containing message to display
t Specify transfer syntax of message, where

 syntax = “il” (implicit little endian), “el”
 (explicit little endian), or “eb” (explicit
 big endian)

m Optional display a DICOM file object

If the DICOM service and/or command cannot be found in the message file, a
warning will be displayed, but the message will still be listed.

The default transfer syntax is implicit little endian (the DICOM default transfer
syntax). If the transfer syntax is incorrectly specified, the message will not be
displayed correctly.

Display Message Contents

Do a DICOM ‘ping’

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

57

mc3valid
The mc3valid utility validates binary message files according to the DICOM
standard and notifies you of missing attributes, improper data types, illegal
values, and other problems with a message. mc3valid is a powerful
educational and validation tool that can be used for the off-line validation of the
DICOM messages your application generates or receives.

The command syntax follows:

mc3valid <filename> [-e | -w | -i] [-s <serv> -c <cmd>]
[-l] [-m] [-q] [-t <syntax>]

<filename> Filename containing message to validate
e Display error messages only
w Display error and warning messages (default)
I Display informational, error, and warning

 messages
s <serv> Optional force the message to be validated

 against service name “serv”, used along with
 ‘-c’

c <cmd> Optional force the message to be validated
 against command name “cmd”, used along with
 ‘-s’

l Optional list and select possible
 service-command pairs

m Optional specify the input file as being a
 DICOM file object

q Optional disable prompting for correct
 service-command pairs

t Specify transfer syntax of message, where
 syntax = “il” (implicit little endian), “el”
 (explicit little endian), or “eb” (explicit
 big endian)

This command validates the specified message file; printing errors, warnings,
and information generated to standard output. The user can force the message
to be validated against a specified DICOM service-command pair if the message
does not already contain this information.

If the service-command pair is not contained in the message, the program will list
the possible service-command pairs and the user can select one of them. When
using this program with a batch file, this option can be shut off with the -q flag.

The default transfer syntax is implicit little endian (the DICOM default transfer
syntax). If the transfer syntax is incorrectly specified, the message cannot be
validated.

While mc3valid’s message validation is quite comprehensive, it does have
limitations. These limitations are discussed in detail in the description of the
validate method of the MCdimseMessage class in the Assembly Windows
Help File. The DICOM Standard should be always be considered the final
authority.

DICOM Message
Validation tool

limitations

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

58

mc3file
Sample DICOM messages can be generated with the mc3file utility. You
specify the service, command, and transfer syntax and mc3file generates a
‘reasonable’ sample message that is written to a binary file. The contents of this
file are generated in DICOM file format or in exactly the format as the message
would be streamed over the network.

The program fills in default values for all the required attributes within the
message. You can also use this utility to generate its own configuration file,
which you can then modify to specify your own values for attributes in generated
messages.

These generated messages are purely meant as ‘useful’ examples that can be
used to test message exchange or give the application developer a feel for the
structure of DICOM messages. They are not intended to represent real world
medical data.

The messages generated can be validated or listed with the mc3list and mc3valid
utilities. The command syntax for mc3file is the following:

mc3file <serv> <cmd> <num> [-g <file>] [-c <file>] [-l] [-
m] [-q] [-t <syntax>] [-f <file>]

<serv> <cmd> These two options are always used together.

 They specify the service name and command
 for the message to be generated. These
 names can be either upper or lower case.
 If the exact names for a service command
 pair are not known, the -l option can be
 used instead to specify the service name
 and command. If the service name and
 command are improperly specified, mc3file
 will act as if the -l option was used and
 ask the user to input the correct service
 name and command.

<num> This option specifies the number of message
 files to be generated by mc3file. If the -
 g option is used, this option is not needed
 on the command line. If the -c option is
 used, mc3file assumes the number is 1,
 although a higher number can be specified
 on the command line. mc3file will vary any
 fields that have a value representation of
 time when multiple files are generated,
 although when the -c option is used, the
 utility will use the time fields as
 specified in the configuration file. Thus
 multiple message files generated with the -
 c option are identical.

g <filename> This option causes mc3file to generate an
 ASCII configuration file. The file
 contains a listing of all the valid
 attributes for the specified message. The
 utility also adds sequences contained in
 the message along with their attributes.
 Each attribute in the file contains the
 tag, value representation, and the default

DICOM Message
Generation Tool

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

59

 value MC3File uses for the attribute. If a
 given attribute has more than one value,
 the character “\” is used to delimit the
 values. A default value listed as “NULL”
 means the attribute is set to NULL. If the
 filename specified already exists, it will
 be written over my MC3File. The
 configuration file can be modified and
 reloaded into MC3File with the -c option to
 generate a DICOM message.

c <filename> This option reads in a configuration file
 previously generated by mc3file. The
 service name and command for the message
 need not be specified on the command line
 because they are contained in <filename>.
 Because multiple files generated with this
 option are identical, mc3file assume only
 one file should be generated. This
 assumption can be overridden by specifying
 a number on the command line.

l This option lists all the service command
 pairs supported by mc3file. When
 generating a message, this option can be
 used instead of explicitly specifying the
 service name and command on the command
 line. When specified alone in the command
 line, the complete list of pairs is printed
 out without pausing.

m This option allows the user to generate a
 DICOM file. When generating the file
 object, mc3file encodes the File
 Meta Information.

q This option prevents mc3file from prompting
 the user for correct service command pairs.
 It is a useful option when running the
 program from a batch file.

t <syntax> This option specifies the transfer syntax
 the DICOM message generated is stored in.
 The default transfer syntax is implicit
 little endian. The possible values for
 <syntax> are “il” for implicit little
 endian, “el” for explicit little endian,
 and “eb” for explicit big endian.

f <file> This option allows the user to specify the
 first eight characters of the names of the
 DICOM message files being generated.
 mc3file will then append a unique count to
 the end of the filename for each message
 being generated. The default value is
 “file” when creating a DICOM file and
 “message” when creating the format that
 DICOM messages send over a network.

MC3File retrieves default values for attributes from the text file “default.pfl”.
Unlike the “info.pfl” and “diction.pfl” files which are converted into binary files,
“default.pfl” is used as a text file. It will first be searched for in the current
directory and then in the message information directory. This file contains default
values for all messages and for specific service-command pairs. This file can be

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

60

modified to contain defaults specific for the user, although it is recommended that
a backup of the original be kept. If this file is modified, there are no guarantees
that the messages generated will validate properly.

Developing DICOM Applications
The Merge DICOM Toolkit .NET Assembly provides classes and interfaces that
represent all of the major components of the DICOM standard:

Utility and Initialization methods -- MC
DICOM constants

o MCdicom
DICOM Applications

o Local applications -- MCapplication
o Remote applications -- MCremoteApplication

Merge DICOM Logging
o MClog
o MClogHandler
o MClogInfo
o MClogTime

DICOM Associations - MCassociation
o Association acceptors – MCacceptor
o Association requesters -- MCrequester
o Association negotiation

 MCnegotiationInfo
 McstorageNegotiation
 MCqueryRetrieveNegotiation

o MCproposedContext
o MCproposedContextList
o MCresultContext
o MCtransferSyntax
o MCtransferSyntaxList

DICOM Messages and Message Elements
o DIMSE messages

 MCabstractMessage
 MCdimseMessage

o Data Elements -- MCdataElement
o Data element identifiers – MCtag
o DICOM Value Representation -- MCvr
o Attributes – MCattribute
o Attribute representations

 Age String – MCage
 Date – MCdate
 DateTime – MCdateTime
 Time – MCtime
 Person Name – MCpersonName
 UID – MCinstanceUID
 Patient Name Component Group – MCpnComponentGroup

o String Encoding -- MCstringEncoder
o Attribute Collections - MCattributeSet

 MCcommandSet
 MCdataSet

The Merge DICOM
Toolkit .NET™
Assembly

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

61

 MCitem
 MCfileMetaInfo

DICOM message handling callbacks
o Data Sinks

 MCdataSink interface
 MCfileDataSink
 MCmemoryDataSink
 MCstreamDataSink

o Data Sources
 MCdataSource interface

 MCfileDataSource
 MCmemoryDataSink (MCmemoryDataSink implements the

MCdataSink and MCdataSource interfaces.)
 MCstreamDataSource

DICOM message validation
o MCvalidationError
o validate and validateAttribute methods of MCdataSet, MCfile and

MCdimseMessage classes
DICOM Service class Information

o MCsopClass
o MCfailedSopInfo
o MCrefSopInfo
o MCrefStudyInfo

DICOM Network Service classes - MCdimseService
o MCbasicWorklistManagementService
o MCpatientManagementService
o MCprintManagementService
o MCqueryRetrieveService
o MCqueueManagementService
o MCresultsManagementService
o MCstorageService
o MCstorageCommitmentService
o MCstudyContentNotificationService
o MCstudyManagementService
o MCverificationService

DICOM media services and objects
o Files –

 MCabstractMessage
 MCfile

 DICOMDIR – MCdir
 DICOMDIR record - MCdirRecord

o DICOM files service – MCmediaStorageService
Exception handling – Mcexception, MCruntimeException and their sub-classes
Compression related

o Compression Interface –
 MCcompression

 RLE Compressor -- MCrleCompressor
 RLE Decompressor -- MCrleDecompressor
 JPEG and JPEG2000 Compressor -- MCstandardCompressor
 JPEG and JPEG2000 Decompressor --

MCstandardDecompressor

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

62

This section of the User’s Manual attempts to present the highlights of the Merge
DICOM Toolkit Assembly in a logical manner as it might be used in real DICOM
applications. The classes are presented in the context of example C# source
code snippets, and alternative approaches are presented that tradeoff certain
features for the benefits of increased performance.

Most of the discussions that follow pertain both to networking and media
interchange applications; only the Association Management, Negotiated Transfer
Syntaxes, and Message Exchange sections are networking specific. The last
two sections; DICOM Files and DICOMDIR are media interchange specific.

Library Import
In order to access the classes of the Merge DICOM Toolkit you should use the
mergecom namespaces in your applications. This gives you visibility not only to
the public and protected classes, but it also provides visibility to the constants
contained in the MCdicom interface. The following namespaces are utilized by
the Merge DICOM .NET assembly:

using Mergecom;
using Mergecom.Exceptions;
using Mergecom.Gen;
using Mergecom.Logging;

Library Constants
The MCdicom interface is generated from the Merge DICOM dictionary and
contains constant values for all of the attributes defined by the DICOM standard.
A copy of the interface source file is included with the library, although you will
never have a need to actually compile the file.

Exception Handling
Each of the Toolkit classes is documented in the Merge DICOM .NET™
Assembly Help File. The exceptions that each class may throw are documented
there.

Merge DICOM methods throw exceptions derived from MCexception class that
extend the System.ApplicationException class.

A special group of exceptions is MCruntimeException derived exception classes
that are thrown for serious problems within the Assembly or when untenable
conditions have been detected. Most applications would not catch these
exceptions.

When an instance of MCexception is thrown, a message is logged to the Merge
DICOM log file if the severity level of the exception is enabled in the merge.ini
file. (Most exceptions have a severity level of “error” and are always logged.)

Each MCexception object has a public exceptionNumber field that identifies the
exception. If desired, you may simply catch MCexception and then interrogate
the exceptionNumber property to determine which specific exception was thrown.
The exception numbers are defined by constants in the MCexception class and
listed in Table 10. The following, for example, may be used to check exception
after a network read.

Errors Happen

Exception Numbers

Constant values for
DICOM tags

Visibility

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

63

try {
 msg = assoc.read(30000);
} catch (MCassociationReleasedStatus e) {
 // Normal association completion:
 System.Console.Out.WriteLine(“Association Released.”);
} catch (MCexception e) {
 // Association is no longer active
 if (e.exceptionNumber == NETWORK_SHUTDOWN)
 System.Console.Out.WriteLine(“Network dropped”);
 else if (e.exceptionNumber == ASSOCIATION_ABORTED)
 System.Console.Out.WriteLine(“Assoc. abort”);
 else if (e.exceptionNumber == INVALID_MESSAGE_RECEIVED)
 System.Console.Out.WriteLine(“Invalid msg”);
 else if (e.exceptionNumber == NETWORK_INACTIVITY_TIMEOUT)
 System.Console.Out.WriteLine(“Network stopped”);
 else {
 System.Console.Out.WriteLine(“MCexception”);
 }
 break;
} catch (System.Exception e) {
 System.Console.Out.WriteLine(“Error on network read”);
 assoc.abort();
 break;
}

You could, of course, have separate catch clauses for each exception.

Table 10: exceptionNumber property for each MCexception class

MCexception subclass exceptionNumber property

MCalreadyExistsException ALREADY_EXISTS

MCalreadyInitializedException ALREADY_INITIALIZED_EXCEPTION

MCalreadyListeningException ALREADY_LISTENING

MCassociationAbortedException ASSOCIATION_ABORTED

MCassociationRejectedException ASSOCIATION_REJECTED

MCassociationReleasedStatus ASSOCIATION_RELEASED

MCattributeNotFoundException ATTRIBUTE_NOT_FOUND

MCcallbackCannotComplyException CALLBACK_CANNOT_COMPLY

MCcallbackInvalidArgumentException CALLBACK_INVALID_ARGUMENT

MCconfigFileErrorException CONFIG_INFO_ERROR

MCconfigurationError CONFIGURATION_ERROR

MCconnectionFailedException CONNECTION_FAILED

MCdicomdirException DICOMDIR_ERROR

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

64

MCexception subclass exceptionNumber property

MCdisposedException OBJECT_DISPOSED

MCillegalArgumentException ILLEGAL_ARGUMENT_EXCEPTION

MCinactivityTimeoutException NETWORK_INACTIVITY_TIMEOUT

MCincompatibleValueException INCOMPATIBLE_VALUE

MCinvalidEncodingWarning INVALID_CHARS_IN_VALUE

MCinvalidEncodingException INVALID_DIMSE_COMMAND

MCinvalidDirRecordTypeException INVALID_DIR_RECORD_TYPE

MCinvalidLicenseInfoError INVALID_LICENSE

MCinvalidMessageReceivedException INVALID_MESSAGE_RECEIVED

MCinvalidTransferSyntaxException INVALID_TRANSFER_SYNTAX

MClostConnectionException LOST_CONNECTION

MCmaxOperationsExceededWarning MAX_OPERATIONS_EXCEEDED

MCnegotiationAbortedException NEGOTIATION_ABORTED

MCnetworkShutdownException NETWORK_SHUTDOWN

MCnoAttributesException NO_ATTRIBUTES

MCnoSuchRecordException NO_SUCH_RECORD

MCnoSuchValueException NO_SUCH_VALUE

MCnotFoundException NOT_FOUND

MCnotIntiaiizedError NOT_INITIALIZED_EXCEPTION

MCnotStandardElementException NOT_A_STANDARD_DATA_ELEMENT

MCoperationNotAllowedException OPERATION_NOT_ALLOWED

MCrequiredAttributeMissingException REQUIRED_ATTRIBUTE_MISSING

MCtimeoutException TIMEOUT

MCunacceptableServiceException UNNACCEPTABLE_SERVICE

MCunknownHostNameException UNKNOWN_HOST

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

65

Library Initialization
Your first call to the Assembly should be the static mcInitialization method of the
MC class. Using the library without an explicit initialization results in automatic
initialization using the default configuration. The mcInitialization method
provides the location of the Initialization File (merge.ini) and allows Merge
DICOM to perform essential startup tasks.

FileInfo mergeIniFile = new FileInfo(“Path to merge.ini”);
try {
 MC.mcInitialization(mergeIniFile);
} catch (MCalreadyInitializedException e) {
 …
} catch (MCinvalidLicenseInfoError e) {
 …
} catch (MCruntimeException e) {
 // DLL Not Found …
}

The mcInitialization method allows the Toolkit to perform the following critical
processing.

First, the Merge DICOM C/C++ toolkit dynamic link library, Mergecom.Native.dll
is loaded. The .NET CLR searches for the library using the platform’s normal
search path.

If the library cannot be located, an MCruntimeException exception will be
thrown.

After the dynamic library is loaded, the C toolkit is initialized. If an error occurs
during initialization, the MCnotInitializedError exception is returned. This
may include errors accessing the Merge DICOM Data Dictionary or Message info
files. This could happen if you have not specified or incorrectly specified the
DICTIONARY_FILE or MSG_INFO_FILE parameters in the System Profile
(mergecom.pro). When this exception is thrown, further information on the
reason for the exception may be contained in the merge.log file.

Then the license key you specified in the System Profile (mergecom.pro) is
checked for validity. If the key validation fails or the license key is not in the
System Profile, an MCinvalidLicenseInfoError exception is thrown. Any
further Library calls will result in an MCnotInitializedError runtime
exception.

At any time you can check to see if the Library has been initialized by using the
static mcIsInitialized method of the MC class. The method returns true if
the mcInitialization method has already been called successfully.

Note that the Library can not be used from different application domains at the
same time. In order to use it from a different application domain the Library must
be released first in the application domain that initialized it.

Before anything else

The dynamic library
Is loaded

Configuration files located

You must be licensed

isInitialized

Application Domains

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

66

Releasing the library
The static mcLibraryRelease method of the MC class is used to release the
resources used by the Merge DICOM library. The method performs a graceful
shutdown of the library. mcInitialization must be called again before
using the library. This method is normally called before exiting a Merge DICOM
application. This method will release all resources allocated by the Merge
DICOM C/C++ Toolkit dynamic link library.

mcLibraryRelease must be called in the same application domain in which
the mcInitialization call was made. After the Library is successfully
released it can be re-initialized in either the same application domain or a new
one.

Getting the Assembly Version
You can use the static mcGetVersionString method of the MC class to retrieve
the string identifying the Merge DICOM Library version. The library version
number string is of the form “n.m.v” where n is major version number, m is minor
version number and v is an interim release number.

Releasing Native Memory
The Merge DICOM .NET Classes call a number of routines in the C Merge
DICOM toolkit that allocate memory. The .NET classes have been written so
native resources associated with a .NET class are automatically freed when the
.NET CLR garbage collector cleans up the managed memory in the class. Note,
however, that a number of classes implement the dispose method that an
application can use if it wants greater control over when native memory is freed.
Note that after this method is called for a specific instance, that instance can no
longer be utilized by your application.

Here is a list of the classes that can be disposed explicitly:

• MCapplication

• MCassociation

• MCdataSet

• MCdimseMessage (contains a MCdataSet reference)

• MCfile (contains a MCdataSet reference)

• MCitem

• MCproposedContextList

• MCproposedContext

• MCtransferSyntaxList

• MCdata

mcGetVersionString

mcLibraryRelease

Dispose

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

67

Using the Merge DICOM log file
The Mergecom.Logging namespace contains definitions for utilizing the Merge
DICOM log file (usually merge.log). The Merge DICOM logging mechanism
allows logging at several different logging levels. Error, Warning, Info, and nine
trace logging levels are allowed. The MClog class contains methods for logging
to these various log levels. The method prototypes to log to several of these
levels are:

public static void error(System.String msg)
public static void warning(System.String msg)
public static void info(System.String msg)
public static void t1(System.String msg)
public static void t9(System.String msg)

Each of these methods writes an entry into the Merge DICOM log file containing
msg. The entry will be logged only if messages of specific type have been
enabled in the merge.ini file.

The Merge DICOM log file is defined by the LOG_FILE parameter in the
[MergeCOM3] section of the merge.ini file. To enable logging of specific types of
messages, enter one or more of these parameters in the merge.ini file:

ERROR_MESSAGE =<destinations>
WARNING_MESSAGE=<destinations>
INFO_MESSAGE=<destinations>

<destinations> may be one or both of these values, separated by commas:

File to request that the messages be written to the
LOG_FILE

Screen to request that the messages be written to the

system’s standard out

Memory to request that the messages be written to system

memory. This option is useful if the application
registers a custom log handler and no other
destination is selected.

Please note that Error_Msg type messages are always written to the LOG_FILE.

Capturing Log Messages in Your Application
You may want to capture log messages yourself, for example to integrate Merge
DICOM log messages into your application’s logging scheme.

To do this, create a new class that implements the MClogHandler interface.
That interface requires you to provide a receiveLogMessage method that will be
called by Merge DICOM whenever it is logging a message. Information about
the logged message is passed to the receiveLogMessage method in an
instance of the MClogInfo class.

You must register your log handler using the addHandler method of the MClog
class. Once registered your MClogHandler class will be notified as messages
are logged. Multiple handlers can be registered at any given time. You can de-
register a handler by calling the removeHandler method of the MClog class.

Logging a message

MClog

Log Callback

addHandler
removeHandler
MClogHandler
MClogInfo

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

68

Refer to the description of addHandler in the .NET Assembly Windows Help File,
for more detailed information about controlling which messages will reach your
handler.

If a log handler is registered the Library calls receiveLogMessage in the thread
that generated the message but the calls are synchronized by the Library so the
log handler does not have to deal with synchronization.

Registering Your Application
Before performing any network or media activity, your application must register
its DICOM Application Title with the Merge DICOM Toolkit. This is done by
calling the getApplication factory method of the MCapplication class. The
getApplication method returns an MCapplication object that represents
your DICOM Application Entity. Note that if the getApplication method is
called more than once with the same argument, the same MCapplication
instance is returned.

This DICOM Application Title is equivalent to the DICOM Application Entity Title
defined earlier. If your application is a server, this application title must be made
known to any client application that wishes to connect to you. If your application
is a client, your application title may need to be made known to any server you
wish to connect to, depending on whether the server is configured to act as a
server (SCP) only to particular clients for security reasons.

For example, if your application title is “ACME_Query_SCP”, you would register
with the toolkit as follows:

MCapplication myAE;
myAE = MCapplication.getApplication(“ACME_Query_SCP”);

MCapplication objects can be disposed
If you wish to disable your application and free up its resources to the system you
must release it using the Dispose method. This is necessary to free the
resources used by the underlying native dynamic library.

myAE.dispose();

The Application Entity (AE) Title
Current and potentially future DICOM service classes assume that Application
Entity Titles on a DICOM network are unique. For instance, the retrieve portion
of the Query/Retrieve service class specifies that an image be moved to a
specific Application Entity Title (and not to a specific hostname and listen port). If
two identical Application Entity Titles existed on a network, a server application
can only be configured to move images to one of these applications. For this
reason, the DICOM Application Entity Title for your applications should be
configurable.

You can use the ApplicationTitle property to retrieve the Application Entity Title
of the MCapplication object.

AE titles should be
Unique on a network

Create an application
object
MCapplication
getApplication

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

69

Association Management (Network Only)
Once you have registered one or more networking applications, you will probably
want to initiate an association if you are a client, or wait for an association if you
are a server. Clients will use the requestAssociation method of the
MCassociation class and servers will use the startListening method of that
class.

Preparing a Proposed Context List
Before you establish an association connection you must determine what DICOM
services you are prepared to handle and perhaps create an
MCproposedContextList object to encapsulate the service information.

Using a Pre-configured Proposed Context List
If you wish to propose the services that are configured in a [<service_list_name>]
section of the Application Profile (mergecom.app) file, you can use the
MCproposedContextList.getObject factory method to retrieve an
MCproposedContextList object based on the configured services.

MCproposedContextList myContext =
MCproposedContextList.getObject(“service_list_name”);

Creating Your Own Proposed Context List
You also have the option of creating your own proposed context list at run time.
An MCproposedContextList object represents a collection of
MCproposedContext objects. Each MCproposedContext object represents:

• one DICOM service (SOP class)

• a set of transfer syntaxes you can support for the service

• a declaration of the roles you will play (SCU and/or SCP)

Before you can create an MCproposedContext object you must create one or
more MCtransferSyntaxList objects representing the transfer syntaxes you
want to use for the services. The MCtransferSyntaxList class represents a
collection of MCtransferSyntax objects.

Using a Pre-configured Transfer Syntax List
Again, you have the option of creating an MCtransferSyntaxList object based on
configuration information, or you can create a new transfer syntax list at run time.
To create an MCtransferSyntaxList object from transfer syntaxes configured in a
[<syntax_list_name>] section of the Application Profile (mergecom.app) file, use
the getObject factory method of the MCtransferSyntaxList class:

MCtransferSyntaxList mySyntaxes =
MCtransferSyntaxList.getObject(“syntax_list_name
name”);

MCproposedContextList
MCproposedContext

MCtransferSyntaxList
MCtransferSyntax

Use a pre-configured
service list …

… or build your own
service list
at run-time

MCtransferSyntaxList.
 getObject

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

70

Creating Your Own Transfer Syntax List
To create your own transfer syntax list you must create an array containing the
predefined instances of the MCtransferSyntax objects you want to support, and
call the constructor for the MCtransferSyntaxList class.

The MCtransferSyntax class contains a number of static properties which return
MCtransferSyntax instances for each of the defined DICOM transfer syntaxes.

MCtransferSyntax[] mySynArray = new MCtransferSyntax[2];

mySynArray[0] = MCtransferSyntax.ExplicitBigEndian;
mySynArray[1] = MCtransferSyntax.JpegBaseline;

MCtransferSyntaxList myTSL = new

MCtransferSyntaxList(“MYSYNS”, mySynArray);

Creating Your Own Proposed Context List
For each service you want to include in your MCproposedContextList you must
have an MCsopClass object. You can only get MCsopClass objects for services
known to the Toolkit. You must either identify the service by its name, or you
must identify it by its DICOM Unique Identifier (UID). Valid service names and
UIDs are configured in the Service Profile (mergecom.srv) file.

MCsopClass myService1 =
MCsopClass.getSopClassByName(“STANDARD_CT”);

MCsopClass myService2 = MCsopClass.getSopClassByUid
(“1.2.840.10008.5.1.4.1.1.1”);

For each service you want to include in your MCproposedContextList you must
specify what roles your application is prepared to play for the service. Your
application may indicate whether it is willing to perform the Service Class
User(SCU) role and/or Service Class Provider(SCP) role. It may support either
role or both roles. If these parameters are not specified the default role of the
association requester is SCU only and the default role of the association
acceptor is SCP only.

Now, you are ready to create an array of MCproposedContext objects that will be
used in your new MCproposedContextList.

MCproposedContext[] myCtxArray = new MCproposedContext[2];
myCtxArray[0] = new MCproposedContext(myService1, myTSL);
bool scuRole = true, scpRole = true;
myCtxArray[1] = new MCproposedContext(myService2, myTSL,

scuRole, scpRole);

Finally, you create your own MCproposedContextList:

MCproposedContextList myContextList = new
MCproposedContextList(“MYLIST1”, myCtxArray);

MCproposedContext properties
The MCproposedContext class provides properties for the proposed context.
The AbstractSyntax property retrieves the abstract syntax name associated

MCsopClass

AbstractSyntax
SCProle
SCUrole
ServiceName
TransferSyntaxList

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

71

with this proposed service. Note that this is equivalent to the SOP Class UID
used to identify the DICOM service.

The SCProle property retrieves a code defining whether or not the application is
willing to perform the SCP role, and the SCUrole property retrieves a code
defining whether or not the application is willing to perform the SCU role.

The ServiceName property retrieves the name associated with this proposed
service. This is the name configured in the mergecom.srv file.

The TransferSyntaxList property returns the MCtransferSyntaxList object
which is a list of proposed transfer syntaxes for this service.

MCproposedContextList properties
The MCproposedContextList class provides methods to retrieve properties of the
proposed context list. The clearNegotiationInfo method clears any
negotiation information that may have been set for a service. As a result, no
negotiation information will be used for this service when the library attempts to
establish an association with another DICOM application using this
MCproposedContextList list. This method call is treated as a no-op if no
negotiation information is registered for the service.

The setNegotiationInfo method is used to provide extended negotiation
information for one or more services in the list. The extended negotiation
information will be used during association negotiation by Merge DICOM Toolkit.
The existence of extended negotiation information is dependent on the service
and must be documented in the application’s DICOM Conformance Statement.
The negotiation information is provided by the toByteArray method of the
specified MCnegotiationInfo instance. If a null pointer or an empty byte array is
provided by the toByteArray method, this call is treated as if it were a
clearNegotiationInfo method call.

The contains method determines if the proposed context list contains an
MCproposedContext element or if it contains an element that has a specified
service name.

The getContext method uses a service name to identify and return an
MCproposedContext object from those encapsulated in the proposed context list.

The ListName property retrieves the name that uniquely identifies this list
among all proposed context service lists used by the library.

The GetEnumerator method creates and returns an enumerator for all of the
MCproposedContext objects encapsulated in the proposed context list. The
iterator will present the elements in the order they were presented when this
object was created.

The Size property contains the number of elements in the
MCproposedContextList object.

The toArray method returns a reference to an array of MCproposedContext
items that represent the proposed contexts used in the proposed context list.

clearNegotiationInfo
setNegotiationInfo
contains
getContext
ListName
GetEnumerator
Size
toArray

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

72

MCresultContext properties
The MCresultContext class contains the properties of a service that has been
accepted by both sides of a DICOM association. Instances of this class are
returned by the FirstAcceptableContext and NextAcceptableContext properties of
the MCassociation class. The NextAcceptableContext property is repeatedly
accessed until it returns null, siginaling the end of the result context list.

The getNegotiationInfo method retrieves any extended negotiation
information that may have been received for the service. If none was received
the method returns false.

If extended negotiation information was received for this service, the method
returns true and calls the decode method of MCnegotiationInfo instance
provided to provide the negotiation information.

The PresentationContextID property retrieves the DICOM Presentation
Context ID assigned to this context’s service for the current association.

The ResultCode property retrieves the result/reason code returned by the
remote DICOM system for this context.

The RoleNegotiated property retrieves the role negotiated for the association
requestor for this service. During association negotiation, for each proposed
service, the association requestor proposes that it serve as an SCU (service
class user) and/or an SCP (service class provider). An association acceptor can
accept or reject the proposal.

The ServiceName property retrieves the Merge DICOM service name of this
service which has been successfully negotiated between two DICOM application
entities.

The TransferSyntax property retrieves a MCtransferSyntax object that
contains the Merge DICOM id for the negotiated transfer syntax, as well as its
DICOM Transfer Syntax UID.

MCtransferSyntax properties
The MCtransferSyntax class provides methods to retrieve properties of the
DICOM transfer syntax encapsulated by class instances.

Since the only instances are those defined by the static fields of the
MCtransferSyntax class the ‘==’ operator can be used to check two transfer
syntax references for equality.

The Name property retrieves the transfer syntax name provided by Merge DICOM
for the transfer syntax.

The Uid property retrieves the DICOM Transfer Syntax UID associated with the
transfer syntax.

The BigEndian property determines if the transfer syntax uses big endian
encoding or not, and the LittleEndian property determines if the transfer syntax
uses little endian encoding or not.

getNegotiationInfo
PresentationContextID
ResultCode
RoleNegotiated
ServiceName
TransferSyntax

==
Name
Uid
BigEndian
LittleEndian
Encapsulated
ExplicitVR

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

73

The Encapsulated property determines if the transfer syntax uses
encapsulation or not.

The ExplicitVR property determines if the transfer syntax explicitly specifies
the DICOM Value Representation. Otherwise the VR is known implicitly
according to each attribute tag.

MCtransferSyntaxList properties
The MCtransferSyntaxList class provides methods to retrieve properties of the
DICOM transfer syntax list encapsulated by class instances.

The contains method determines if the list contains a specified transfer syntax.
The getSyntax method retrieves a reference to a specific MCtransferSyntax
object in the list.

The ListName property retrieves the name that uniquely identifies this list
among all transfer syntax lists used by the library.

The GetEnumerator method creates and returns an Iterator for all of the
MCtransferSyntax objects encapsulated in the list. The iterator will present the
elements in the order they were presented when this object was created.

The Size property returns the number of elements in the list and the toArray
method returns a reference to the encapsulated MCtransferSyntax object array.

Using Extended Negotiation Information
Some DICOM services allow you to use extended negotiation information during
the association creation process. The Toolkit provides the MCnegotiationInfo
abstract class to represent this process. Classes that extend the
MCnegotiationInfo class must supply a decode method and a toByteArray
method. The Library calls the decode method when it receives a buffer of
extended negotiation information and it calls the toByteArray method to request
that negotiation information be placed in a byte array for transmission.

Merge DICOM provides two sub-classes to the MCnegotiationInfo class: the
MCstorageNegotiation class and the MCqueryRetrieveNegotiation class.
(Refer to the Merge DICOM .NET™ Assembly Windows Help File for details.)

If you will be using extended negotiation, you will use the setNegotiationInfo
method of the MCproposedContextList class to “register” your MCnegotiationInfo
object. For example,

MCnegotiationInfo myInfo;
MyContextList.setNegotiationInfo(myInfo);

Note that if you use the MCstorageService or MCqueryRetrieveService classes,
this negotiation processing is handled for you automatically.

MCnegotiationInfo
MCstorageNegotiation
MCqueryRetrieve-
Negotiation

contains
getSyntax
ListName
GetEnumerator
Size
toArray

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

74

Starting an Association Requester
If your application will be an association requester, the MCapplication class
provides several options you can use to request an association with a network
partner.

First, you must decide how you will process the new association. If your current
thread will process the association, you will use the following form of the
MCassociation requestAssociation method, providing the Remote
Application Title of the server you wish to connect to through the use of the
MCremoteApplication class:

MCapplication myAE =
MCapplication.getApplication(“ACME_Query_SCU”);

MCremoteApplication remoteApp =
MCremoteApplication.getObject(“ACME_Query_SCP”);

MCassociation myAssoc;
myAssoc = MCassociation.requestAssociation(myAE,

remoteApp);

The getObject static method of MCremoteApplication allows you to load
configuration information about the remote application from the Application
profile. It is also possible to use the constructor from MCremoteApplication to
supply all of the connection information for the remote application. See the
Merge DICOM .NET Windows Help File description of MCremoteApplication for
the format of these constructors.

If you want a separate thread to process the association, you must first provide a
class that will process the new association. The class must implement the
MCrequester interface. That interface requires that your class have a start
method that will be passed a newly-created MCassociation object. When
Merge DICOM has successfully started an association, it will use a separate
thread to call your class’s start method. Everything you need to know about
the association is provided in the MCassociation object. When your start method
returns, Merge DICOM will end the thread.

In this case, you must not only supply the Remote Application Title of the server
you wish to connect to, but you must also provide an instance of your
MCrequester class:

class MyAssocHandler : MCrequester {
 …
 void start(MCassociation assoc) {
 …
 }
}

MyAssocHandler myHandler = new MyAssocHandler();
MCremoteApplication remoteApp =

MCremoteApplication.getObject(“ACME_Query_SCP”);

MCassociation myAssoc;

myAssoc = myAE.requestAssociation(“ACME_Query_SCP”,

remoteApp, myHandler);

Processing the association
in the same thread

Processing the association
in the another thread

Association startup
for a client application
MCrequester

MCassociation

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

75

If the requestAssociation call returns without throwing an exception the new
thread has been started and your myHandler instance is called to process the
association.

Note that in the last two examples we only specified the Application Entity Title of
the remote server. In this case the Library retrieves three important pieces of
information from the information in the Application Profile (mergecom.app) file:

The list of services to be proposed is obtained from your application’s entry in the
Application Profile.

The name of the host the remote server is running on is obtained from the
remote application entity’s entry in the Application Profile.

The TCP/IP port number the remote server is listening on is obtained from the
remote application entity’s entry in the Application Profile.

Starting an Association Acceptor
If your application will be an association acceptor (a server), the MCassociation
class provides the startListening method to start up a thread that will listen
for and process requests from remote DICOM Application Entities that wish to
start an association with your local Application Entity.

Merge DICOM handles every association request that is received in a separate
thread. You must supply an instance of a class that implements the MCacceptor
interface. When the new association request is received, Merge DICOM calls the
start method of your MCacceptor class instance to process the association,
passing it a reference to a newly-created MCassociation object.

Three forms of the startListening method exist. One allows you to specify
which TCP/IP port is to be listened on; other will wait for association connections
on the port specified by the TCPIP_LISTEN_PORT configuration parameter, or
on port 104, if the TCPIP_LISTEN_PORT configuration parameter is missing
from the System Profile (mergecom.pro). The third form allows an application to
specify an IPEndPoint object representing the specific address and port number
to listen on. This form also allows starting a ‘dual-mode’ listener that accepts both
IPv4 and IPv6 connections, if the operating system supports such listeners.

Note that a given Application Entity may only make this call one time for a given
address-port combination, without first calling stopListening (see below). It is
possible though to start listeners on the same address and port for different
application objects, in this case the toolkit will attach the existing listener to the
second application.

Merge DICOM starts a separate thread for each listener.

In addition to the previous parametes, you must specify an
MCproposedContextList object that describes the services your Application Entity
is willing to support.

class MyAssocHandler : MCacceptor {
 …
void start(MCassociation assoc) {
 …
 }
}

DEFAULT
is to proposed the services
defined in mergecom.app

Association startup
for a server application

MCacceptor
MCassociation

NOTE: the widely-known
DICOM listen port is 104

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

76

MyAssocHandler myHandler = new MyAssocHandler();
MCapplication myAE = MCapplication.getApplication

(“ACME_Query_SCP”);
MCproposedContextList myContext =

MCproposedContextList.getObject
(“service_list_name”);

int port; // the port that is being listened on

To use the port number configured in mergecom.pro or the default port 104:

port = MCassociation.startListening(myAE, myContext,
myHandler);

To listen on a specific port (e.g., 1114):

port = MCassociation.startListening(myAE, 1114, myContext,
myHandler);

To listen on a specific network interface and port number:

IPEndPoint ep = new IPEndPoint(localAddress, 1114);
Mcassociation.startListening(scpApp, ep, false, myContext,

myHandler);

If your application wants to stop listening for association requests on a given port,
it must call the stopListening method of the MCassociation class. This
simply requests that the library no longer accept connection requests on the port
that are directed to this Application Entity. A server program may call this when it
is about to shut down, and then wait for any active threads to finish.

MCapplication myAE =
MCassociation.getApplication(“ACME_Query_SCP”);

…
MCassociation.stopListening(myAE, port);

Accepting or Rejecting the Association
Before DICOM messages can be exchanged across the association, the
association acceptor must either accept or reject the association request from the
association requestor.

When the Merge DICOM library calls the start method of your MCacceptor
class, it has already determined that both the local and remote applications wish
to perform at least one common service. The FirstAcceptableContext and
NextAcceptableContext properties of the MCassociation class may be used
to examine the services that are agreeable to both sides. The
NumberOfAcceptableContexts property retrieves the number of contexts
that is acceptable to both sides. Each of these calls returns an
MCresultContext object that can be interrogated to determine the properties of
each acceptable service. The NextAcceptableContext property can be
called multiple times to traverse through the acceptable contexts. A null will be
returned by the property when the end of the list has been reached. The
FirstAcceptableContext method can be called to reset the list and traverse
through it again. Several other methods are available in MCassociation class to

STOP!

stopListening

MCresultContext
NumberOfAcceptable-
Contexts
FirstAcceptableContext
NextAcceptableContext
MCassociation
accept
reject
MCresultContext

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

77

inquire about the proposed association. (Please refer to the MCassociation and
MCresultContext classes in the Windows Help File.)

Note that many applications don’t have a need to call the
FirstAcceptableContext or NextAcceptableContext methods since it is
acceptable that any of the services it negotiated were agreeable to both sides.

If this application agrees with the acceptable services, it calls the accept
method of MCassociation to establish an association between the two
applications. If it disagrees, for some reason, it calls the reject method.

class MyAssocHandler : MCacceptor {
 …
 void start(MCassociation assoc) {
 …
 try {
 MCresultContext ac = assoc.FirstAcceptableContext;
 while (ac != null) {
 // Insert your check here
 ac = assoc.NextAcceptableContext;
 }
 if (<the services negotiated are acceptable>)
 assoc.accept();
 else
 assoc.reject();
 } catch (MCassociationAbortedException e) {…}
 }
}

If you are rejecting the association, DICOM allows you to specify the reason you
are rejecting and what type of rejection it is. If you specify no parameters to the
reject method (as in the example above), it is assumed that the reject is
permanent (i.e. there is no need for the remote application to “call later”) and no
reason is provided.

If you wish to give a reason, use this form of the reject method:

bool permanentReject = false;
assoc.reject(permanentReject,

MCrejectReason.TEMPORARY_CONGESTION);

The reason codes are defined in the MCrejectReason enumerated value.
These codes are available:

MCrejectReason.NO_REASON_GIVEN
MCrejectReason.APPLICATION_CONTEXT_NAME_IS_NOT_SUPPORTED
MCrejectReason.CALLING_AE_TITLE_NOT_RECOGNIZED
MCrejectReason.CALLED_AE_TITLE_NOT_RECOGNIZED
MCrejectReason.TEMPORARY_CONGESTION
MCrejectReason.LOCAL_LIMIT_EXCEEDED

The association requestor (normally the client application) must check for
association rejection when it makes the association request:. Other exceptions
also need to be checked (please see to the MCaassocition class in the Assembly
Windows Help File).

try {

The acceptor decides

Accept or Reject

Requestor reacts

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

78

 myAssoc = MCassociation.requestAssociation(myAE,
remoteApp);

} catch (MCassociationRejectedException e) { … }
 catch (MCconnectionFailedException e) { … }
 catch (MCnegotiationAbortedException e) { … }
 catch (MCunknownHostNameException e) { … }
 catch (Exception e) { … }

Negotiated Transfer Syntaxes
Merge DICOM Toolkit supports all currently approved standard and encapsulated
DICOM transfer syntaxes. Encapsulated transfer syntaxes require compression
of the pixel data contained in the message. These messages can be sent and
received by the toolkit. A subsequent section describes how compression and
decompression can be done with the library. Encoding of this pixel data is also
discussed below.

For DICOM Toolkit users, the toolkit allows for the negotiation of more than one
transfer syntax for a given DICOM service. This functionality is of most use for
applications supporting encapsulated transfer syntaxes. This functionality may be
disabled by use of the ACCEPT_MUTLPLE_PRES_CONTEXTS configuration value.
In order to understand how it is implemented, a more in depth description of
DICOM association negotiation is required.

During association negotiation a client (SCU) application will propose a set of
presentation contexts over which DICOM communication can take place. Each
presentation context consists of an abstract syntax (DICOM service) and a set of
transfer syntaxes that the client (SCU) understands. The server (SCP) will
typically accept a presentation context if it supports the abstract syntax and one
of the proposed transfer syntaxes.

As previously discussed, the abstract and transfer syntaxes supported by a
server (SCP) are defined through a service list contained in the Merge DICOM
Application Profile. When support within a server (SCP) is limited to the three
non-encapsulated DICOM transfer syntaxes, the toolkit will transparently handle
the use of multiple presentation contexts for a DICOM service. However, when
encapsulated DICOM transfer syntaxes are used, the server (SCP) must be able
to determine the transfer syntax of messages it receives so that it can properly
parse the pixel data contained in them. When a single presentation context is
negotiated for a DICOM service, the FirstAcceptableContext and
NextAcceptableContext MCassociation properties can be used to
determine the transfer syntax for a service.

When more than one presentation context is negotiated for a service, the
TransferSyntax property of the MCdimseMessage class must be used to set
or get this transfer syntax. The following is a typical call to this method:

MCdimseMessage dm; // A DICOM message just received
MCtransferSyntax ts = dm.TransferSyntax;

Exchange of messages over the network is discussed further below.

The presentation contexts supported for client (SCU) applications using Merge
DICOM are also defined through the Merge DICOM Application Profile. The
following is a typical client’s (SCU) configuration:

Transfer Syntax Lists for
SCUs

Dealing with transfer
syntaxes

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

79

[Acme_Store_SCP]
PORT_NUMBER = 104
HOST_NAME = acme_sun1
SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 1 # Number of Services
SERVICE_1 = STANDARD_CT

In this case, the client (SCU) would propose the CT Image Storage service in a
single presentation context. The transfer syntaxes for each service are the three
standard (non-encapsulated) DICOM transfer syntaxes.

The following example is the configuration for a client (SCU) that supports more
than one presentation context for a service:

[Acme_Store_SCP]
PORT_NUMBER = 104
HOST_NAME = acme_sun1
SERVICE_LIST = Storage_Service_List

[Storage_Service_List]

SERVICES_SUPPORTED = 2 # Number of Services
SERVICE_1 = STANDARD_CT
SYNTAX_LIST_1 = CT_Syntax_List_1
SERVICE_2 = STANDARD_CT
SYNTAX_LIST_2 = CT_Syntax_List_2

[CT_Syntax_List_1]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes
SYNTAX_1 = JPEG_BASELINE

[CT_Syntax_List_2]

SYNTAXES_SUPPORTED = 1 # Number of Syntaxes
SYNTAX_1 = IMPLICIT_LITTLE_ENDIAN

If a server (SCP) accepts both of these presentation contexts, the client (SCU)
must use the TransferSyntax property of the MCdimseMessage class to
specify which presentation context to send a message over as follows:

MCdimseMessage dm; // A DICOM message ready to send
dm.TransferSyntax = MCtransferSyntax.JpegBaseline;

Server (SCP) applications are configured differently than client (SCU)
applications. An SCP should include all of the transfer syntaxes a service
supports in a single transfer syntax list. If more than one transfer syntax list is
used for a service, server (SCP) applications will only support the transfer
syntaxes contained in the first transfer syntax list. The following is an example
configuration for a server (SCP):

[Storage_Service_List]
SERVICES_SUPPORTED = 1 # Number of Services
SERVICE_1 = STANDARD_CT
SYNTAX_LIST_1 = CT_Syntax_List_SCP

[CT_Syntax_List_SCP]

SYNTAXES_SUPPORTED = 4 # Number of Syntaxes
SYNTAX_1 = JPEG_BASELINE

Transfer Syntax Lists for
SCPs

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

80

SYNTAX_2 = EXPLICIT_LITTLE_ENDIAN
SYNTAX_3 = IMPLICIT_LITTLE_ENDIAN
SYNTAX_4 = EXPLICIT_BIG_ENDIAN

As discussed previously, for server (SCP) applications, the order in which
transfer syntaxes are specified in a transfer syntax list dictates the priority Merge
DICOM places on them during association negotiation. In this case, Merge
DICOM would select JPEG_BASELINE if proposed, followed by
EXPLICIT_LITTLE_ENDIAN, IMPLICIT_LITTLE_ENDIAN, and
EXPLICIT_BIG_ENDIAN.

Network message exchange is discussed further in one of the following sections.

Merge DICOM Message Classes
Before we discuss the process of transferring messages, we must discuss some
basic Merge DICOM classes used to represent a DICOM message.

DICOM data elements (MCdataElement class) are identified by a unique
number (MCtag class). A DICOM attribute (MCattribute class) contains the
value of a DICOM data element. An attribute has assigned to it a value
representation (MCvr class), a value multiplicity(n[-n]) and a value type (1, 1C,
2, 2C, 3).

DICOM messages sent across a network connection on an association are
represented by the MCdimseMessage class. DICOM supports different sets of
attributes (MCattributeSet class). A DIMSE message contains a command set
MCcommandSet class) containing header information used by the DICOM
DIMSE service, plus, optionally, a data set (MCdataSet class) containing DICOM
data being exchanged. The value of a Sequence of Items (SQ) attribute is zero
or more DICOM items, where each item is a set of attributes. These DICOM
items are represented by the MCitem class. (See figure below)

Figure 11: DIMSE messages and attribute sets

 MCd imseMessage

MCcommandSet
(a type of MCattributeSet)

MCdataSet
(a type of MCattributeSet)

MCattributeSet

MCattribute (PN)
 Value: “Doe^John”

MCattribute(SQ)
 value 3 items:

…

MCitem MCattribute …

MCitem MCattribute …

MCitem

M Cattribute …

MCattribute

MCattribute

MCattribute

A brief review
MCdataElement
MCtag
MCattribute
MCvr

MCdimseMessage
contains an
MCcommandSet
and, optionally, an
MCdataSet

SQ attributes have
MCitem
objects as values

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

81

Association Message Handling
Once an association has been negotiated, the two cooperating applications, the
Service Class Provider (SCP) and the Service Class User (SCU), exchange
DICOM messages on the association network connection. These messages are
encapsulated in MCdimseMessage objects.

Applications use instances of the MCdimseService class (or one of its sub-
classes) to send request and reply messages, and use the read method of the
MCassociation class to retrieve the messages sent by the network partner.

For example, if an application is using the DICOM Storage Service, it would
construct an instance of the MCstorageService and then use its
sendStoreRequest method to send a request message and use, for example,
its sendSuccessResponse method to reply to a received DIMSE message.
When you construct a new MCdimseService class you provide the
MCassociation object that the service is to operate on.

MCstorageService myService = new MCstorageService(assoc);
MCdataSet ds = new MCdataSet(C_STORE_RQ, “STANDARD_CR”);
// encode the ds
 …
String affectedSopClassUid = “1.2.840.10008.5.1.4.1.1.1”;
MCdimseMessage dm;
try {
 // This call creates a new McdimseMessage,
 // using the MCdataSet(ds) provided.
 // It then sends the message to the network partner.
 dm =
 myService.sendStoreRequest(ds, affectedSopClassUid);
} catch (Exception e) { … }

MCstorageService might be used to send a request message provided by an
instance of a data source class, which implements MCdataSource interface, such
as MCfileDataSource for instance:

MCstorageService myService = new MCstorageService(assoc);
MCfileDataSource fs = new MCfileDataSource(filename);
 …
try {
 // This call send a request message from a file to the
 // network partner.
 myService.sendStoreRequest(fs, filename);
} catch (Exception e) { … }

Internally the message contents are obtained as blocks of data through repeated
calls to the provideData() method of MCdataSource interface. This method is
especially useful for transfering large data and decreasing the application
memory footprint.

Note: The example above is just a sample of the methods available with the
MCstorageService class. Refer to the Assembly Windows Help File for
complete details on using the mentioned classes.

Send messages using one
of the MCdimseService
sub-classes or the
MCdimseService class
itself

Send messages using
MCstorageService and
MCdataSource

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

82

The MCassociation read method retrieves the next message sent by the
network partner. The read method returns an instance of the
MCdimseMessage class. See the section Negotiated Transfer Syntaxes.

Note that DICOM requires that one or more reply message be sent in response
to all DIMSE messages received, depending on the DICOM service being
performed.

MCdimseMessage dm;
try {
 long timeout = 30000; // 30 second timeout
 dm = assoc.read(timeout);
 if (dm == null)
 // Timeout!
 // The MCdimseMessage just sent is returned
} catch (Exception e) { … }

The MCassociation readToStream method retrieves the next message sent by
the network partner and stores it with the instance of class implementing
MCdataSink interface. The readToStream method returns MCReadError status
as a result of read operation:

MCfileDataSink fs = new MCfileDataSink(filename);
MCReadError rs;
try {
 long timeout = 30000; // 30 second timeout
 rs = assoc.readToStream(fs, timeout, filename);
} catch (Exception e) { … }

The received message is read and stored through repeated calls of the
recieveData() method of MCdataSink interafce. This method allows to handle
the large data without affecting the application memory footprint.

The current implementation of read method does not support timeout values that
are less than one second. Any value that is less than 1000 and greater than zero
will be rounded to 1000 (one second). Subsequently any value greater than 1000
is rounded to the nearest thousand (second).

Releasing or Aborting the Association
The DICOM standard requires the association requester to release the
association when no further processing is required. This is done using the
release method of the MCassociation class.

assoc.release();

At any time either association partner may abort the association. This is used
only in abnormal situations.

assoc.abort();

After calling release or abort, no other methods should be called for the
association object.

Read messages using
MCassociation.read

Read messages using
MCassociation.readToStream

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

83

When the network partner releases or aborts the association, the other
application is notified by an exception thrown by the read method.

MCdimseMessage dm;
try {
 long timeout = 30000; // 30 second timeout
 dm = assoc.read(timeout);
 if (dm == null)
 // Timeout!
 // The MCdimseMessage just sent is returned
} catch (MCassociationReleasedStatus e) { … }
 catch (MCassociationAbortedException e) { … }
 catch (MCexception e) { … }

Association Properties
The MCassociation class contains several properties that can be used to retrieve
information about the association.

Application Context Name
The ApplicationContextName property contains the name of the application
context in use by the local and remote applications on this association
connection. It is in the form of a DICOM Unique Identifier.

An application context is an explicitly defined set of application service elements,
related options, and any other information necessary for the interworking of
application entities over the association.

Currently there is only one DICOM Application Context Name that is defined for
the DICOM standard: “1.2.840.10008.3.1.1.1”

Refer to Annex A in Part 7 of the DICOM standard for more information.

TCP/IP Listen Port
The ListenPort property retrieves the port number that the association is using
to listen for TCP/IP connection requests.

MCapplication object of the local AE
The LocalApplication property retrieves the MCapplication object identifying
the DICOM application responsible for this MCassociation object.

Application Entity Title
Each DICOM application is assigned a application entity ID, known also as the
application title. The LocalApplicationTitle property retrieves the
application title of the local application and the RemoteApplicationTitle
property retrieves the application title of the remote application

Implementation Class UID and Implementation Version
The identification of an implementation of the DICOM standard relies on two
pieces of information: the Implementation Class UID (required) and the
Implementation Version Name (optional). The DICOM standard requires that
association requestors and acceptors notify each other of their respective

ApplicationContextName

LocalImplementationClassUid
LocalImplementationVersion
RemoteImplementationClassUid
RemoteImplementationVersion

LocalApplicationTitle
RemoteApplicationTitle

LocalApplication

ListenPort

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

84

Implementation Class UID. The LocalImplementationClassUid property
returns the Implementation Class UID of the local application and the
LocalImplementationVersion property returns the Implementation Version
of the local application. The RemoteImplementationClassUid property
returns the Implementation Class UID of the remote application and the
RemoteImplementationVersion property returns the Implementation Version
of the remote application.

Maximum PDU Sizes
During association negotiation Merge DICOM and the remote DICOM system
exchanged the maximum size of Protocol Data Units that each is willing to
receive. Each system commits to send TCP/IP data no larger than that
negotiated for the receiver. The LocalMaxPDUsize property returns the size of
the largest PDU that the local system is willing to receive. The
RemoteMaxPDUsize property returns the size of the largest PDU that the
remote system is willing to receive.

The Proposed Context List
When an MCassociation object is constructed, an MCproposedContextList object
is usually provided to define the services that the local application is willing to
perform. If no MCproposedContextList was provided, Merge DICOM created an
MCproposedContextList from information defined in the mergecom.app file. The
ProposedContextList property returns a reference to the
MCproposedContextList object used.

During association negotiation the DICOM association requestor proposes the
services it wishes to use. The association acceptor can then reject or accept
each of the proposed services. The NumberOfProposedContexts property
returns the number of services proposed by the association requestor.

The Read Timeout Value
The ReadTimeout property returns the timeout value specified by the timeout
parameter of the last read method call for this association. If no read has been
called yet, zero (0) will be returned.

The Remote Host’s Name and Address
Merge DICOM applications communicate with each other using TCP/IP. The
RemoteHostName property returns the IP name of the remote application’s host
computer and the RemoteIpAddress property returns the IP address of the
remote application’s host computer and the RemotePort property retrieves the
port number that the remote system is using to listen for TCP/IP connections.

Association Role
MCassociation objects may be constructed as acceptors (those waiting for and
responding to DICOM association requests) or as requesters (those making
DICOM association requests). The Acceptor property returns true if this
MCassociation object represents an acceptor association and the Requester

LocalMaxPDUsize
RemoteMaxPDUsize

ProposedContextList

NumberOf-
ProposedContexts

ReadTimeout

RemoteHostName
RemoteIpAddress
RemotePort

Acceptor
Requester

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

85

property returns true if this MCassociation object represents an requester
association.

Association State
For a DICOM association requester application, an association is considered
active from the moment the requester receives a successful return from the
MCapplication requestAssociation call until it calls the MCassociation release
method or until the association is aborted by either the local requester or remote
acceptor application.

For a DICOM association acceptor application, an association is considered
active from the moment the acceptor calls its accept method until the association
is released by the remote requester or until the association is aborted by either
the local acceptor or remote requester application.

The Active property returns true if the association is currently active. Refer to
the MCassociation Active property description in the Assembly Windows Help
File for more detailed information about association states.

Using the MCsopClass class
The MCsopClass class encapsulates the properties of a DICOM service. Merge
DICOM manages instances of the MCsopClass for each service defined in the
System Profile (mergecom.srv). MCsopClass class has two static methods,
getSopClassByName and getSopClassByUid, which can be used to retrieve
these Merge DICOM managed instances. These two methods take either the
service name, or a DICOM SOP Class UID. Both of these are defined in the
System Profile (mergecom.srv).

The MCsopClass has the following get methods: BaseClasses, Commands,
Name, Number, Uid, BaseClass, MetaClass, plus an overridden Equals
method. See the sample code below.

MCsopClass sop1 = MCsopClass.getSopClassByUid
(“1.2.840.10008.5.1.1.1”);

MCsopClass sop2 = MCsopClass.getSopClassByName
(“BASIC_FILM_SESSION”);

if (!sop1.Equals(sop2))
 System.Console.Out.WriteLine(“They should be equal”);
System.Collections.IList baseClasses = sop1.BaseClasses;
if (baseClasses != null)
 System.Console.Out.WriteLine(“? Not a meta sop”);
System.Collections.BitArray commands = sop1.Commands;
if (!sop1.Name.Equals(sop2.Name))
 System.Console.Out.WriteLine(“? Should be equal”);
if (!sop1.Uid.equals(sop2.Uid))
 System.Console.Out.WriteLine(“? Should be equal”);
if (sop1.Number != sop2.Number)
 System.Console.Out.WriteLine(“? Should be equal”);
if (sop1.BaseClass)
 System.Console.Out.WriteLine(“That’s right”);
if (!sop1.MetaClass)
 System.Console.Out.WriteLine(“That’s right”);

BaseClasses
Commands
Name
Number
Uid
BaseClass
MetaClass
Equals

Active

All about SOP classes

getSopClassByName
getSopClassByUid

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

86

Earlier we saw how MCsopClass instances are used when creating new
MCproposedContext objects.

Using the MCvr class
The MCvr class encapsulates a DICOM Value Representation (VR). DICOM
defines a set of valid value representations for data elements encoded to the
standard. The MCvr class contains a number of staticly defined MCvr instances
for each of the valid VRs. The static field names are:

MCvr name Value Representation used for …

vrAE Application Entity

vrAS Age String

vrAT Attribute Tag

vrCS Code String

vrDA Date

vrDS Decimal String

vrDT Date Time

vrFD Floating Point Single

vrFL Floating Point Double

vrIS Integer String

vrLO Long String

vrLT Long Text

vrOB Other Byte String

vrOF Other Float String

vrOL Other Long String (Note: this was a VR defined in a draft
supplement for DICOM that was never adopted.)

vrOW Other Word String

vrPN Person Name

vrSH Short String

vrSL Signed Long

vrSQ Sequence of Items

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

87

MCvr name Value Representation used for …

vrSS Signed Short

vrST Short Text

vrTM Time

vrUI Unique Identifier

vrUL Unsigned Long

vrUN Unknown

vrUS Unsigned Short

vrUT Unlimited Text

Several Merge DICOM class methods make use of MCvr class references. Most
often, you will be using one of the static values in the MCvr class, which
encapsulate each of the standard DICOM Value Representations.

The MCvr class provides some convenient methods. The ToString method is
overridden to return a 2-character string that represents this Value
Representation. For example, using the MCvr field vrSQ, vrSQ.toString returns
“SQ”.

The validateValue method can be used to validate the encoding of an
attribute according to the rules defined in DICOM.

A number of other properties are also defined for MCvr that describe the
properties of a VR. These properties are detailed in the Windows Help file.

Using the MCtag class
An MCtag object identifies a DICOM attribute. All class methods that require an
attribute identifier use the MCtag object for that identification. Note that in most
cases these routines also allow the use of uint values to represent a DICOM tag.

As mentioned before, a DICOM tag is usually written as an ordered pair of two
byte numbers. The first two bytes are sometimes called a group number, with
the last two bytes being called an element number (e.g., (0010, 0010), (0038,
001C), ...).

The MCtag class addresses the fact that DICOM allows both private and non-
private attributes. The group number for private attributes must always be odd,
while the group number for non-private attributes must always be even. Private
attributes belong to a private group, identified by a private code string, and
private groups may only have 254 elements, numbered 1 through 255.

MCtag

MCvr

ToString
validateValue

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

88

Constructing non-private tags
Non-private tags may be constructed using a 32-bit integer number, or using a
16-bit group number plus a 16-bit element number.

MCtag tag;
try {
 tag = new MCtag(0x00080010);
} catch (MCillegalArgumentException e) {}

or-

try {
 tag = new MCtag(0x0008, 0x0010);
} catch (MCillegalArgumentException e) {}

The group and element numbers may be specified as two unsigned integers. An
MCillegalArgumentException will be thrown if the group number portion of the tag
number is odd.

Constructing private tags
Tags for private attributes are constructed by providing a private group code
string in addition to the private group number and element number.

MCtag tag;
try {
 tag = new MCtag(“Group1”, (uint)0x0009, (uint)0x10);
} catch (MCillegalArgumentException e) {}

or-

try {
 tag = new MCtag(0x00091010U, “Group1”);
} catch (MCillegalArgumentException e) {}

The numbers may be specified as two unsigned integers. An
MCillegalArgumentException will be thrown if the group number was an even
number, if the element number was greater than 0xFF, or if the private group
code string was empty.

Using the MCdataElement class
The MCdataElement class is used to define DICOM data elements. This is most
often used to define data elements that are not defined in the data dictionary.
DICOM data elements may be “standard” (i.e. they are defined in the data
dictionary) or “non-standard” (those not defined in the data dictionary).

Merge DICOM allows you to define both private and non-private data elements,
by simply using a private or non-private MCtag object to identify the data
element.

Constructing standard data elements
Standard data elements are built using the following constructor.

MCdataElement de;
try {

MCdataElement

Non-Private Tags

Private Tags

Standard
Data Elements

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

89

 MCtag tag = new MCtag(0x0008, 0x0010);
de = new MCdataElement(tag);
} catch (MCnotStandardElementException e) {}

An MCnotStandardElementException will be thrown if the data element is
not defined in the data dictionary.

Constructing non-standard data elements
Since non-standard data elements are by definition not in the data dictionary, you
must supply the properties of data elements that are not recorded in the data
dictionary. These properties must be defined:

• The name of the data element. If name is not provided, the attribute will be
named “<UNKNOWN>” by the library. If provided, name must not be null and
must have a length between 0 and 30. If longer than 30 it will be truncated.
If 0 (i.e. “”), the name will be reported as blank in reports.

• The vr parameter specifies the Value Representation of the data element. It
must be one of the MCvr instances that are static members of the MCvr
class. An exception will be thrown if an invalid MCvr reference is provided.
These pre-defined MCvr object references are available to use:

vrAE, vrAS, vrCS, vrDA, vrDS, vrDT, vrIS, vrLO, vrLT, vrPN, vrSH, vrST,
vrTM, vrUT, vrUI, vrSS, vrUS, vrAT, vrSL, vrUL, vrFL, vrFD, vrUN, vrOB,
vrOW, vrOL, vrSQ

• The data element’s Value Multiplicity is specified by the n and m parameters.
The following table describes the effect of specifying zero, one or both of the
n and m parameters:

n specified m specified Value Multiplicity is

no no 1-many (no upper limit)

yes no must have exactly n values

yes yes n – m (at least n values; no more
than m values)

Use Short.MAX_VALUE to specify
no upper limit.

Non-standard data elements are built using the following constructor.

MCdataElement de;
MCvr vr = vrDT;
ushort n = 1; // minimum number of values allowed
ushort m = 5; // maximum number of values allowed
String name = “My Private Data Element”;
try {
 MCtag tag1 = new MCtag(0x8014, 0x0010);

 de = new MCdataElement(vr, tag1, n, m, name);
} catch (MCillegalArgumentException e) {}

Non-standard
Data Elements

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

90

An MCillegalArgumentException will be thrown if vr parameter was not a valid
MCvr reference.

An MCillegalArgumentException will be thrown if n or m is less than 1, or if n > m.

Working With Attribute Sets
As mentioned above, the MCattributeSet class encapsulates different types of
attribute sets used by DICOM. Sub-classes of MCattributeSet are used to define
those different types:

• MCcommandSet contains the attributes of a DIMSE message command set.

• MCdataSet contains the attributes of a DICOM information object.

• MCitem contains the attributes of a DICOM item.

• MCfileMetaInfo contains the attributes of a DICOM file’s meta information.

Your applications deal with network messages in Merge DICOM using
MCdimseMessage objects, and DICOM files using MCfile objects.
MCdimseMessage objects contain command information attributes
(MCcommandSet) and data set attributes (MCdataSet). MCfile objects contain
meta information attributes (MCfileMetaInfo) and data set attributes (MCdataSet).

Constructing Message Objects
Network messages are encapsulated in MCdimseMessage objects.

When you call the MCassociation read method, Merge DICOM returns a newly
constructed and populated MCdimseMessage object.

When you use the MCdimseService class to send network messages (as
opposed to using one of the MCdimseService sub-classes provided by Merge
DICOM Toolkit), you must construct an MCdimseMessage object. You have
several options available when you construct the new MCdimseMessage:

Construct a message using a pre-populated data set:
One form of the constructor creates a MCdataSet object and a MCcommandSet
object that contain all of the attributes of a DICOM message that will be used for
the given serviceName and command. References to the created attribute sets
may be retrieved using the DataSet and CommandSet properties. Normally you
will only deal with the data set and the command set attributes will be set
automatically by Merge DICOM Toolkit.

MCdimseMessage dm;
uhort command = MCdimseService.C_STORE_RQ;
String serviceName = “STANDARD_CT”;

dm = new MCdimseMessage(command, serviceName);

The library uses the serviceName parameter to reference the proper message
info file along with the data dictionary and builds a MCdataSet object containing
all of the attributes that may be used for that the service class.

Merge DICOM Toolkit
attribute sets

Messages and files
Contain attribute sets

Constructing a message to
use with the
MCdimseService
base class

MCdimseMessage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

91

The command parameter is used to inform Merge DICOM what values must be
placed in the MCcommandSet it constructs for you.

Exceptions will be thrown if either of the parameters in invalid.

Construct a message with an empty data set:
A second form of the constructor is used if the service and command are not
yet known, or if there is no need to validate the values that will be set. It creates
an empty MCdataSet object as well as the MCcommandSet object. The
MCdimseMessage object is not associated with any particular DICOM service or
command. If the object is to be used to send a message to a network partner, or
if the validate method is to be called, the setServiceCommand method must be
called first to associate this message object with a given DICOM service and
command.

MCdimseMessage dm;

dm = new MCdimseMessage();

Construct a message using an existing data set:
A third form of the constructor creates a new MCdimseMessage object that
references an existing MCdataSet object for its data set, and constructs a new
MCcommandSet object. If the data set has not yet been assigned a service and
command, the setServiceCommand method should be used to do so before
using this object to send a message to a network partner, or if the validate
method is to be called.

MCdimseMessage dm;
MCdataSet ds; // A non-null reference

dm = new MCdimseMessage(ds);

A common programming technique is to construct an empty MCdataSet object
and use it when setting attribute values (see below).

MCdimseMessage dm;
MCdataSet ds = new MCdataSet(); // empty data set

dm = new MCdimseMessage(ds);

In this case, the message info and data dictionary files are not accessed when
the MCdataSet object is constructed. The MCdataSet object contains no
attributes and the setServiceCommand method must be called to set the
service and command for this data set before it can be used in a message sent
over the network. Since this approach avoids accessing the message info files, it
is more efficient. However, this approach also penalizes you in terms of runtime
error checking. This is discussed further later.

Convert an MCfile object
A fourth form of the constructor creates a new MCdimseMessage object that
shares the same MCdataSet object as that contained in a specified file object.

MCdimseMessage dm;

Peformance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

92

MCfile file; // A non-null reference

dm = new MCdimseMessage(file);

If you will be using one of the sub-classes of the MCdimseService class to send
network messages, you will not be required to construct a MCdimseMessage
object. Typically those DICOM service-class-specific classes require that your
provide a data set (MCdataSet) object only.

MCdimseMessage Properties
The MCdimseMessage class contains several methods that can be used to
retrieve properties of the DIMSE message.

Transfer Syntax Used
The TransferSyntax property returns an MCtransferSyntax object that
identifies the transfer syntax used to encode this message.

Contained attribute sets
MCdimseMessage objects contain references to MCcommandSet and
MCdataSet objects. The CommandSet property returns the MCcommandSet
reference and the DataSet property returns the MCdataSet reference.

The service and command used by the message
The Command property returns the command currently assigned to this message
and the ServiceName property returns the current DICOM service name. The
setServiceCommand method is used to assign a specifiC/C++ DICOM service
and command to the message.

MCdimseMessage Command Set Properties
Normalized DICOM service classes make use of the N-ACTION DIMSE service.
That service requests that a specific action be performed by the peer DIMSE
service user. Each SOP class using the N-ACTION service defines Action Type
IDs that identify a specific service. The ActionTypeId property can be used to
get or set the Action Type ID that was specified in the DIMSE message. This for
attribute (0000,1008).

The AffectedSopClassUid property sets or gets the DICOM Affected SOP
Class UID associated with the DIMSE message. It is retrieved from attribute
(0000,0002) in the message’s command set.

The AffectedSopInstanceUid property sets or gets the DICOM “Affected
SOP Instance UID” associated with this DIMSE message. It is retrieved from
attribute (0000,1000) in the message’s command set.

DIMSE services using N-GET operations use a command set field to provide an
attribute tag for each of the attributes applicable to the N-GET operation. The
AttributeIdentifiers property sets or gets an array of unsigned integer
values, each of which is an attribute tag number. This will set or get attribute
(0000,1005) in the command set.

Constructing a message
to use with the
MCdimseService derived
classes

TransferSyntax

AffectedSopInstanceUid

AffectedSopClassUid

ActionTypeId

Command
ServiceName
setServiceCommand

AttributeIdentifiers

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

93

The DIMSE services that use C-GET or C-MOVE operations place the number of
C-STORE sub-operations completed in their response messages. The
CompletedSubOperations property gets or sets that value from attribute
(0000,1021).

Many DIMSE services provide for a field to be returned in response messages
that describes an error that may occur while servicing a DIMSE request. The
ErrorComment property sets or gets that field from the command set attribute
(0000,0902). Usually, the use of this attribute is optional.

Certain DIMSE services provide for sending an application-specific error code in
response messages. The ErrorId property sets or gets that value from the
(0000,0903) attribute in the command set.

Normalized DICOM service classes reference events that are identified by
application-specific event IDs. The EventTypeId property sets or gets the
Event Type ID from the command set for attribute (0000,1002).

The DIMSE services that use C-GET or C-MOVE operations place the number of
C-STORE sub-operations that failed in their response messages. The
FailedSubOperations property gets or sets that value from attribute
(0000,1022).

The DIMSE service provider (for example, Merge DICOM Toolkit) assigns a
number to each DIMSE request message. The MessageId property sets or gets
that identifying number from the command set attribute (0000,0110).

DIMSE response messages set an attribute in the command set that identifies
which request message is being responded to. The
MessageIdBeingRespondedTo property gets that value from attribute
(0000,0120).

The MessagePriority property gets or sets the DICOM “Message Priority” of
this DIMSE message. It is retrieved from attribute (0000,0700) in the message’s
command set.

DIMSE C-MOVE request messages contain an attribute that provides the
destination DICOM Application Entity for which C-STORE sub-operations are
being performed. The MoveDestination property sets or gets that value from
attribute (0000,0600).

C-STORE request messages contain an attribute the provides the DICOM AE
Title of the DICOM AE which invoked the C-MOVE operation from which a C-
STORE sub-operation is being performed. The MoveOriginator property sets
or gets that value from attribute (0000,1030).

C-STORE request messages contain an attribute that provides the Message ID
of the C-MOVE request message from which the C-STORE sub-operation is
being performed. The MoveOriginatorMessageId property gets or sets that
value from attribute (0000,1031).

Some DIMSE services place the data element tag number of the element or
elements involved in an error in their response messages. The
OffendingElements property gets or sets these tag numbers, as an array of
unsigned integers, from the command set attribute (0000,0901).

ErrorId

ErrorComment

CompletedSubOperations

EventTypeId

FailedSubOperations

MessageId

MessageIdBeingRespondedTo

MessagePriority

MoveDestination

MoveOriginator

MoveOriginatorMessageId

OffendingElements

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

94

The DIMSE services that use C-GET or C-MOVE operations place the number of
C-STORE sub-operations remaining to be sent in their response messages. The
RemainingSubOperations property sets or gets that value from attribute
(0000,1020).

Normalized DIMSE services provide the SOP Class UID associated with a
particular operation in the request and response messages. The
RequestedSopClassUid property sets or gets this “Requested SOP Class
UID” from attribute (0000,0003).

Normalized DIMSE services provide the SOP Instance UID for which a given
operation occurred. The RequestedSopInstanceUid property sets or gets
this “Requested SOP Instance UID” from attribute (0000,1001).

The ResponseStatus property gets the Response Status Code (0000,0900)
from the message command set.

The DIMSE services that use C-GET or C-MOVE operations place the number of
C-STORE sub-operations that generated warnings in their response messages.
The WarningSubOperations property sets or gets that value from attribute
(0000,1023).

Constructing File Objects
Before you can use the DICOM media storage services provided by the
MCmediaStorageService class, you must construct an MCfile object that will
encapsulate the DICOM file that will be read or written.

As discussed above, each instance of the MCfile object contains an MCdataSet
object and an MCfileMetaInfo object. The MCfile may be constructed with a pre-
populated data set or with an empty data set.

Construct with a pre-populated data set:
Two forms of the MCfile constructor create a MCdataSet object and a
MCfileMetaInfo object that contain all of the attributes of a DICOM file that will be
used for the given serviceName and command. References to the created
attribute sets may be retrieved using the DataSet and MetaInfo properties.
Normally you will only deal with the data set and the file meta information
attributes will be set automatically by Merge DICOM Toolkit.

MCfile myFile;
ushort command = MCdimseService.C_STORE_RQ;
String serviceName = “STANDARD_CT”;

myFile = new MCfile(command, serviceName);

or-

String file = “MyFileName”;

myFile = new MCfile(file, command, serviceName);

MCfile

Get the contained attribute
sets with
getDataSet
getMetaInfo

RemainingSubOperations

RequestedSopClassUid

RequestedSopInstanceUid

ResponseStatus

WarningSubOperations

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

95

serviceName and command are used to access configuration information that
describes the attributes of the message. If such configuration information is not
available, an empty file object is created, and a warning message is logged. An
exception is thrown if the command parameter is invalid. The file parameter, if
used, associates this object with a specific operating system file.

Construct with an empty data set:
Two forms of the constructor are used if the service and command are not yet
known, or if there is no need to validate that values will be set only for attributes
assigned to a given service/command pair. It creates an empty MCdataSet
object. The MCfile object is not associated with any particular DICOM service or
command. If the validate() method is to be called, the setServiceCommand
method must be called first to associate this file object with a given DICOM
service and command.

MCfile myFile = new MCfile();

or-

String file = “MyFileName”;
MCfile myFile = new MCfile(file);

Convert an MCdimseMessage object to an MCfile object
One form of the constructor converts an MCdimseMessage object (message)
into a file object associated with the specified file system (file). The data set
contained in message will be used in this object.

String fileName = “MyFileName”;
MCdimseMessage message; // a non-null reference

myFile = new MCfile(message, fileName);

Note: The original MCdimseMessage and the new MCfile objects will be
sharing the same MCdataSet object.

Setting data set values
If the command and serviceName parameters are not provided, it is not
necessary to add attributes to the data set before setting attribute values. If one
of the set value methods of the contained MCdataSet object is used for an
attribute, the attribute will automatically be added to the data set before the value
is set. This is NOT THE CASE if the MCfile object is built when the command
and service are known. In that case the message IS associated with a given
service/command pair and attributes other than those associated with that
service and command must be explicitly added to the message before setting
values for the added attributes.

Specifying the file name
The fileName parameter specifies an operating system file that is related to this
MCfile object. If the fileName parameter is not specified the File property
defaults to “UNSPECIFIED”.

Remember:
Service and command are
needed to validate the data
set

When you want
to save a network message
in a
DICOM media file

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

96

Constructing Item Objects
MCitem objects describe DICOM items used normally in sequence of items (SQ)
attributes. They are identified, in Merge DICOM Toolkit, by specific, configured
item names.

MCitem item = new MCitem();

or-

String itemName = “Configured_Item_Name”;
MCitem item = new MCitem(itemName);

If the first form of the constructor is used an “empty” MCitem object will be
created. The attribute list for the MCitem will initially be empty.

The second constructor form populates the MCitem’s attribute list with attributes
defined by the itemName parameter. The itemName is used to access
configuration information that describes the attributes of the message. If the
itemName is unknown to Merge DICOM an empty attribute list is created and a
warning message is logged.

Get/Set item name
You can use the ItemName property of the MCitem class to set or get the item
name.

Constructing MCdataSet Objects
DICOM network services (MCdimseService classes) and file service
(MCmediaStorageService class) each deal with information objects. These
objects are sets of attributes that provide information about the real world entities
being acted upon by the service. The MCdataSet class encapsulates such an
information object.

The DICOM messages used in DIMSE services (MCdimseMessage class)
contain a command set object (MCcommandSet) and an MCdataSet object. The
DICOM media storage service deals with file objects (MCfile) that contains a set
of file meta information (MCfileMetaInfo class) and an MCdataSet object.

MCdataSet objects are related to specifiC/C++ DICOM service-command pairs
(i.e. SOP classes). Normally you construct new instances by providing the
service name that identifies the DICOM information object and the DIMSE
command that will be used with the information object. By providing the service
and command, Merge DICOM can retrieve all of the attributes used for the
service and pre-populate the data set with those attributes. (Of course, no
values are assigned to the attributes yet – that is your job.)

ushort command = MCdimseService.C_STORE_RQ;
String serviceName = “STANDARD_CT”;
MCdataSet ds = new MCdataSet(command, serviceName);

The command can be any of the valid constant values defined in the
MCdimseService class. (Please refer to the Assembly Windows Help File.) The
service name must be one of the services defined in the Services Profile
(normally mergecom.srv) file; if not, a warning message will be logged.

ItemName

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

97

An MCillegalArumentException will be thrown if the command value is
invalid. An MCconfigurationError runtime error will be thrown if the library
cannot access the configuration files.

A common programming technique is to construct an empty MCdataSet object
that initially contains no attributes.

MCdataSet ds = new MCdataSet(); // empty data set

In this case, the message info and data dictionary files are not accessed when
the MCdataSet object is constructed. The MCdataSet object contains no
attributes and the setServiceCommand method must be called to set the
service and command for this data set before it can be used in a message sent
over the network. Since this approach avoids accessing the message info files, it
is more efficient. However, this approach also penalizes you in terms of runtime
error checking.

Retrieving Contained Attribute Sets
When your application needs to build or parse the attributes contained in
MCdimseMessage objects, it accesses the contained MCcommandSet or
MCdataSet objects, using the MCattributeSet methods inherited by those
classes. Similarly, When your application needs to build or parse the attributes
contained in MCfile objects, it accesses the contained MCfileMetaInfo or
MCdataSet objects, using the MCattributeSet methods inherited by those
classes. Both MCdimseMessage and MCfile classes provide DataSet properties
to retrieve the contained data set object. The MCdimseMessage provides a
CommandSet property to retrieve the contained command set and the MCfile
class provides a MetaInfo property to retrieve the contained file meta info.

Using the MCattribute class
New DICOM attributes can be defined by constructing a new MCattribute class
object. An MCdataElement object is used to construct the MCattribute.

de = new MCdataElement(new MCtag(0x00080010));
MCattribute myAttr = new MCattribute(de);

The MCattribute class exists primarily to contain the properties of the DICOM
attributes they encapsulate. Properties of the MCattribute class allow you to
retrieve the following properties.

• The number of values currently stored for the attribute (the Count property).

• The tag that identifies the attribute (the Tag property).

• The DICOM Value Representation for the attribute (the
ValueRepresentation property).

• The values of the attribute.

DataSet
CommandSet
MetaInfo

MCattribute

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

98

• The keyword of the attribute.

int count = myAttr.Count;
MCtag tag = myAttr.Tag;
MCvr vr = myAttr.ValueRepresentation;
String keyword = myAt.getKeyword();

Adding Attributes to an Attribute Set
Attributes may be added to an attribute set in two ways. The first method is by
using the add method of the MCattributeSet class. The second method is
through the use of an indexer. The use of the indexer is defined in the next
section.

When using the add method of MCattributeSet, the attribute to be added can be
identified by 1) an uint reference or 2) by an MCtag reference. All forms of the
add method return the MCattribute added to the set. If the attribute already
exists in the set, this attribute is returned.

MCattributeSet myAttrSet; // non-null reference
MCtag tag = new MCtag(0x0008, 0x0010);
MCattribute myAttr;

// All of the following accomplish the same thing
myAttr = myAttrSet.add(tag);
myAttr = myAttrSet.add(0x00080010);

If you are attempting to add a private attribute and there are already 240 private
blocks in the attribute’s private group, an MCinvalidEncodingException will
be thrown. If the MCtag parameter does not identify an element in the data
dictionary or the MCdataElement parameter is not defined in the data dictionary,
an MCnotStandardElementException will be thrown.

Using the MCattributeSet indexer to access MCattribute
instances
The MCattributeSet contains a number of indexers for access attributes and
values within an attribute set. Two forms of the indexer are specifically for
getting and setting MCattribute instances within the MCattributSet. These forms
require a uint or MCtag instance to indentify the attribute. The following are the
two forms of the indexer setting and getting MCattribute instances:

public MCattribute this[uint tag]
public MCattribute this[MCtag tag]

The following example shows how the indexers can be used to set and get
MCattribute instances from the attribute set.

MCtag tag = new MCtag(0x00080010);
MCattribute attrib = new MCattribute(tag);
MCattributeSet myAttrSet; // non-null reference

myAttrSet[tag] = attrib;

attrib = myAttrSet[0x00080010];

Adding attributes
to the set

Getting an MCattribute
from an attribute set

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

99

Removing Attributes from an Attribute Set
A specific attribute may be removed from an attribute set using the
removeAttribute method of the MCattributeSet class. The attribute to be
removed can be identified by 1) a uint tag reference or 2) by an MCtag reference.
The removeAttribute methods do not return a value.

MCattributeSet myAttrSet; // non-null reference
MCtag tag = new MCtag(0x0008, 0x0010);

// Both of the following accomplish the same thing
myAttrSet.removeAttribute(tag);
myAttrSet.removeAttribute(0x00080010);

The second form of the call will throw an MCattributeNotFoundException if
the attribute is not in the set.

Attribute Properties
The MCattribute class provides three methods to retrieve or set properties of the
attribute. The ValueRepresentation property retrieves the attribute’s value
representation, the Count property returns the number of values assigned to the
attribute, and the ValueLength property returns the length in bytes of this
value if it were encoded in a DICOM stream or file.

try {
 MCattribute myAttr; // non-null reference
 int count = myAttr.Count;
 MCvr vr = myAttr.ValueRepresentation;
 int length = myAttr.ValueLength;
} catch (MCattributeNotFoundException e) {…}
 catch (MCincompatibleValueException e) {…}
 catch (MCvrAlreadyValidException e) {…}

Assigning Attribute Values from MCattribute
Each DICOM attribute may have zero or more values assigned to it, based on
the Value Multiplicity assigned to the attribute. You have several methods
available to assign values to attributes in an MCattribute object.

• setValue and addValue

• MCattribute[index]

• addEncapsulatedFrame

Assigning Attribute Values from MCattributeSet
The MCattributeSet class also has several convenience methods for assigning
values to specific attributes. These routines ensure an attribute has been added
into the attribute set, and then set or append the value. There are setValue and
addValue routines, similar to the MCattribute class.

Filling an attribute set
with values via
MCattribute

Removing a specific
attribute from the set

Getting/setting
attribute properties

Filling an attribute set
with values via
MCattributeSet

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

100

Difference between setValue, addValue, and indexer
The “setValue” methods first remove any existing values from the attribute and
then append the new value. The “addValue” method appends a value to the
attribute.

The indexer can be used to set specific values if the attribute is multi-valued.
The following example shows the user of the indexer and the setValue and
addValue methods.

try {
 MCtag tag = new MCtag(0x000101001);
 MCattribute myAttr = new MCattribute(tag);
 myAttr[0] = new MCpersonName(“Smith^John”);
 myAttr[1] = new MCpersonName(“Smith^Jonathan”);

 myAttr.setValue(new MCpersonName(“Smith^John”));
 myAttr.addValue(new MCpersonName(“Smith^Jonathan”));
} catch (MCattributeNotFoundException e) {…}
 catch (MCincompatibleValueException e) {…}
 catch (MCvrAlreadyValidException e) {…}

Assigning a NULL Attribute Value
DICOM allows attributes to have a NULL value (that is the value’s length is zero).
You can use the setValue or addValue routines to assign a value to NULL:

MCattributeSet myAttrSet; // non-null reference

myAttrSet.addValue(0x00080010U, null);
myAttrSet.setValue(0x00080020U, null);

Note: Both of these methods may be used to set the first or only value of an
attribute to NULL (zero-length). The methods may be called to set
subsequent values of multi-valued attributes only if the attribute’s value
representation is a text type that allows the backslash (\) character as a
field delimiter in streamed messages. Attributes with the following Value
Representations may call this method to set values subsequent to the
first value: AE, AS, CS, DA, DS, DT, IS, LO, LT, PN, SH, TM, UI. An
MCincompatibleVrException is thrown if an attempt is made to set a
value NULL and the attribute’s Value Representation does not allow it.

Assigning a Non-NULL Attribute
You can use the addValue or setValue method to assign non-NULL values.
(We will discuss setValue below.)

As discussed above, these methods are implemented in the MCattribute class
and the MCattributeSet class, where you must identify the tag that you’re working
on. This can be done using an MCtag object or by supplying the actual DICOM
tag as a uint. The MCattributeSet implementation finds the appropriate
MCattribute within the set, and then calls the corresponding setValue or
addValue method in the MCattribute class for convenience. All three methods
allow you to identify the attribute using an MCtag object.

appendNullValue
putNullValue

Do you want to
set or add
your value?

Identifying the attribute

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

101

While these methods allow you to specify the value using a variety of data types,
the attribute’s Value Representation restricts the data type of the value
parameter. Table 11 details which data type may be used with each Value
Representation.

Table 11: Permissible data types per Value Representation of the attribute.

Data Type May be used to set attributes with these VRs

MCdate DA

MCdateTime DT

MCtime TM

MCage AS

String AE, DS, IS, UI, CS, LO, LT, SH, ST, UT, DA, DT, TM,
AS, PN, FL, FD, AT, UL, SL, SS, US

MCpersonName PN

float FL, FD, UL, AT, DS, IS

double FD, FL, UL, AT, DS, IS

uint SL, SS, US, UL, AT, IS

int SL, SS, US, UL, AT, IS

short SL, SS, US, UL, AT, IS

ushort SL, SS, US, UL, AT, IS

byte[] OB, OD, OF, OW, UNKNOWN_VR

MCdataSource OB, OD, OF, OW, UNKNOWN_VR

MCitem SQ

MCattributeSet myAttrSet; // non-null reference
MCtag tag1 = new MCtag(0x00080020);
MCtag tag2 = new MCtag(0x00080030);
MCtag tag3 = new MCtag(0x00080052);
MCtag tag4 = new MCtag(0x00280010);
// the value can be any of the types shown in Table 11.
String value = “my value”;

myAttrSet.setValue(tag1, new MCdate(“20051109”));
myAttrSet.setValue(tag2, new MCtime(“081401”);
myAttrSet.putValue(tag3, “PATIENT”);
myAttrSet.setValue(tag4, (ushort)256);

Polymorphic values

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

102

Merge DICOM will perform any reasonable conversion from the types listed in .
Table 11 to the form necessary to encode it in the Value Representation of the
attribute. If a type conversion is not reasonable (e.g., from short to LT), then
an MCincompatibleValueException will be thrown. An
MCinvalidEncodingWarning will be thrown if the value is invalid according to
the rules for the value representation. Note that this is just a warning – the value
is encoded.

Note that each time the addValue method is called for an attribute, another value
is added to the attribute’s list of values.

A default string encoder is implemented that will convert between Unicode and
many of the DICOM defined character sets. If you want to define a string
encoder or decoder that is different than the default implementation, you must
use the MC.mcSetStringEncoder method to set your own string encoder and
decoder.

To set values for attributes with value representations of OB, OW, OD, OF use
the setValue call which includes MCdataSource as a parameter. The
MCdataSource class is described further in the following section. The setValue
may also be used to set values for attributes of types SL, SS, UL, US, AT, FL
and FD.

Using an MCdataSource Class to Assign an Attribute Value
When setting the value of an attribute with a value representation of OB, OW, OD
or OF (e.g., Pixel Data), you can create a class that implements the
MCdataSource interface and then call the setValue(MCdataSource, uint)
method of MCattribute to assign the attribute’s value. Pixel Data can be very
large and you can use this method to supply the data value a block at a time.

The callback class must provide a provideData method that is called by the
library to retrieve portions of the attribute’s value. The library provides the
provideData method which is a bool that is true the first time the method is called
to retrieve attribute values. The library also provides a System.Object reference
to the instance that is calling provideData. The provideData method is required to
return portions of the attribute’s value, using an instance of the MCdata class.

For example, your application could define a MCdataSource class called
MyPDSupplyCallback whose purpose is to supply Pixel Data. The pseudo-
code for this class follows:

class MyPDSupplyCallback : MCdataSource, IDisposable { //
implements IDisposable recommended

 public String file = null;
 private MCdata prevData = null;
 private byte[] chunk = new byte[4096]; // re-use the

same buffer to supply data for more efficient usage
of memory

 public MCdata provideData(bool isFirst Object origin) {

// If prevData was previously returned, dispose it
before supplying next chunk.

 // Due to garbage collection policy, you may see
large amount of

Values are converted
to the proper
Value Representation

Using alternate
character sets

Supplying pixel data

MCdataSource
provideData method
MCdata class
MCcallbackCannotComply-
Exception

setValue

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

103

 // memory usage if not dispose the previous data
promptly.

 if (prevData != null)
 {
 prevData.Dispose();
 prevData = null;
 }

 if (isFirst) {
 // Open pixel data source (e.g., a file) here
 …
 if (openFailed)
 throw new MCcallbackCannotComplyException();
 }

 // Read next chunk of pixel data from source
 // and return it and its size in a MCdata object
 …
 if (readFailed)
 throw new MCcallbackCannotComplyException();
 // Data is read into chunk
 // chunk = read in your data here;
 // put number of bytes read in size
 int size;
 // set isLast to true if this is last of the data
 bool isLast;

 MCdata data = new MCdata(chunk, size);
 data.IsLast = isLast;

 prevData = data; // remember the current MCdata

object
 return data;
 }

 public void Dispose()
 {
 if (prevData != null)
 {
 prevData.Dispose();
 prevData = null;
 }
 }
}

The MCdataSource class is called by Merge DICOM only when triggered by the
application. For example, the application might use MyPDSupplyCallback to set
the value of the MCdicom.PIXEL_DATA attribute (7FE0, 0010) as follows:

MCattributeSet as; // non-null reference
uint length;
MyPDSupplyCallback cb = new MyPDSupplyCallback();
cb.file = “MypixelDataFile”;

MCattribute attrib = as[MCdicom.PIXEL_DATA];
attrib.setValue(cb, length);

// after stream out or write out your pixel data
cb.Dispose(); // this will dispose last used MCdata

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

104

On making this call, the toolkit library will keep a reference to the MCdataSource
instance. When the data is required by the toolkit (if the attribute set is written to
a file or to the network), it will repeatedly call the provideData method of the
callback class until it indicates that all of the pixel data has been read in without
any errors. If your callback class throws
MCcallbackCannotComplyException, the library will fail its current
operation.

Supplying Pixel Data a block at a time is especially useful for very large Pixel
Data and/or on platforms with resource (e.g., memory) limitations. In this case,
you would also want to set LARGE_DATA_STORE to the value FILE in the
Service Profile, and Merge DICOM Toolkit will store the Pixel Data value in a
temporary file.

It is recommended that you re-use the same buffer in provideData() to reduce
memory consumption before garbage collection is due. Also, keeping the
previous data supplied to the toolkit allows user to control the prompt disposal of
the data as shown in the example above. After the pixel data has been streamed
out, it is recommended that you dispose MyPDSupplyCallback object using
Dispose() method to release the last MCdata object. With this callback
mechanism, the memory usage in both native and managed code can be
minimized for large pixel data.

If your application runs on a resource-rich system, you should set
LARGE_DATA_STORE to the value MEM in the Service Profile, and Merge DICOM
Toolkit will keep the Pixel Data values in the message object stored in memory
rather than using temporary files. This should improve performance. Also, in this
case you may want your callback class to supply the Pixel Data in fewer big
blocks (or one large block).

Merge DICOM provides several implementations to the MCdataSource interface.
The MCfileDataSource class implements a data source that reads from a file. A
file name is supplied to the constructor, and the class will automatically supply
the contents of this file. The MCstreamDataSource class implements a data
source that reads from a System.IO.Stream derived instance. For example,
an instance of the System.IO.FileStream class can be used to read the file.
Finally, the MCmemoryDataSink class also implements the MCdataSource
interface. This class also implements the MCdataSink interface, which is
described in a subsequent section. The MCmemoryDataSink class implements a
data source where the data is supplied from memory. The MCmemoryDataSink
class constructor takes an MCdata instance in the constructor which contains the
actual data being supplied.

MCfileDataSource
MCstreamDataSource
MCmemoryDataSink

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

105

Retrieving Attribute Values
When your AE receives a DICOM message, it will most often need to examine
the values contained in the message attributes to perform an action (e.g., store
an image, print a film, change state...). If your application is a server, the
message conveys the operation your server should perform and the data
associated with the operation. If your application is a client, the message may be
a response message from a server on the network resulting from a previous
request message to that same server.

Once you have received an MCattributeSet object (probably one contained in an
MCdimseMessage object), you can use the indexer for MCattributeSet to retrieve
values. (Note that you can also use a different form of the indexer to retrieve
MCattribute objects, which in turn have an indexer to retrieve values.) The
indexers have the following forms:

public Object this[uint tag, int index];
public Object this [MCtag tag, int index];
public Object this [uint tag, int index, Object defaultValue];
public Object this [MCtag tag, int index, Object defaultValue];

Each of these methods return an Object representing the value. The tag to
retrieve can be specified as an MCtag instance or a uint containing the tag. The
index parameter allows the user to specify the specific value to get, if the
attribute has a value of multiplicity greater than one. The index is zero based.
Two final forms are added as a convenience and allow a default value to be
specified if the attribute does not have a value or it is missing in the attribute set.

Each method returns an Object representing the value; the type of object
returned is determined by value representation of the attribute that is being
retrieved. The methods return null if the attribute’s value was a DICOM NULL
value (i.e. its value length was zero). Table 12 below shows the data types that
are returned for each DICOM Value Representation.

Table 12: Valid value type parameters for the various Value Representations

Data Types
Returned

Value Representations

MCdate DA

MCdateTime DT

MCtime TM

MCage AS

String AE, DS, IS, UI, CS, LO, LT, SH, ST, UT

MCpersonName PN

float FL

double FD

Retrieving values
from an attribute set

Indexers

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

106

Data Types
Returned

Value Representations

uint UL, AT

int SL

short SS

ushort US

MCdataSink OB, OD, OF, OW, UNKNOWN_VR,

MCitem SQ

Note: If a value is retrieved which is not set, the indexer will throw an
MCnoSuchValueException.

MCdimseMessage dm; // non-null reference
MCattributeSet as = dm.getDataSet();
try {
 MCdate value = (MCdate)as[MCdicom.

INSTANCE_CREATION_DATE, 0);
} catch (MCnoAttributesException e) {…}
 catch (MCattributeNotFoundException e) {…}
 catch (MCincompatibleValueException e) {…}
 catch (MCnoSuchValueException e) {…}

The MCattribute class contains a number of routines that can do explicit
conversion from the internal encoding for VRs into other data types. These
MCattribute methods are getIntValue, getStringValue, getUIntValue,
and getDoubleValue. These routines will convert the internal Merge DICOM
representation into the types specified in the routine name. See the Assembly
Windows Help File for further details on these methods.

Using a Callback Class to Retrieve an Attribute’s Value
You shall use the IsBulk attribute’s property to identify if the value is bulk. To
retrive the bulk value you must use the readBulkData method or the
readNextFrame method of MCattribute.. In most of the cases it is a value
representation of OB, OW, OD or OF (e.g., Pixel Data). Pixel Data tends to be
very large and normally you use this method to read the data value a ‘chunk’ or
block at a time. This method is the complement to the setValue method
described previously.

You must construct a callback class that implements the MCdataSink interface
and then call readBulkData to retrieve the attribute’s value.

The callback class you provide must provide a receiveData method that is
called by the library to provide portions of the attribute’s value. The library calls
the receiveData method, passing an instance of the MCdata class that

Have Merge DICOM
Toolkit give a callback the
value

MCdataSink
receiveData method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

107

contains a reference to the data being provided and a System.Object reference
to the origin of the data.

As an example, your application could define a MCdataSink class called
MyPDStoreCallback whose purpose is to store Pixel Data to an external data
sink so that your application uses less primary memory. Pseudo-code for this
class follows:

class MyPDStoreCallback : MCdataSink {
 public String file = null;
 public bool isFirst = true;
 public void receiveData (MCdata data,

System.Object origin) {
 if (isFirst) {
 isFirst = false;
 // Open pixel data sink (e.g., file) here
 …
 if (openFailed)
 throw new MCcallbackCannotComplyException();
 }

 byte[] array = data.ManagedBuffer;
 int size = data.Length;

 // Store size bytes of the array in the pixel data sink.
 …
 if (storeFailed)
 throw new MCcallbackCannotComplyException();
 if (data.IsLast) {
 // close the data sink here
 }
 return;
 }
}

This callback is called by the Merge DICOM .NET Library only when triggered by
your application. For example, your application might use
MyPDStoreCallback to retrieve the value of the TAG_PIXEL_DATA attribute
(7FE0,0010) as follows:

MCdataSet ds; // non-null reference
MyPDStoreCallback cb = new MyPDStoreCallback();
cb.file = “MypixelDataFile”;
try {
 MCattribute attrib = ds[MCdicom.PIXEL_DATA];
 attrib.readBulkData(cb);
} catch (MCexception e) {…}

On making this call, the toolkit library will repetitively call the receiveData method
of the MyPDStoreCallback class until all the pixel data has been retrieved from
the attribute without any errors.

Storing or ‘setting aside’ Pixel Data a block at a time is especially useful for very
large Pixel Data and/or on platforms with resource (e.g., memory) limitations. In
this case, you would also want to set LARGE_DATA_STORE to the value FILE in
the Service Profile, so that Merge DICOM Toolkit will also maintain the pixel data
value stored in the attribute set in a temporary file.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

108

If your application runs on a resource rich system, you should set
LARGE_DATA_STORE to the value MEM in the Service Profile, and Merge DICOM
Toolkit will keep the pixel data values in the attribute set stored in memory rather
than using temporary files. This should improve performance. Also, in this case
you may want your callback class to store the Pixel Data in fewer big blocks (or
one large block) and keep them in primary memory for rapid access.

Merge DICOM provides a number of implementations to the MCdataSink
interface. The MCfileDataSink class implements a data sink that writes to a file.
A file name is supplied to the constructor, and the class will automatically write
the supplied data to this file. The MCstreamDataSink class implements a data
sink that writes to a System.IO.Stream derived instance. For example, an
instance of the System.IO.FileStream class can be used to write to a file.
Finally, the MCmemoryDataSink class also implements the MCdataSink
interface. This class implements a data sink where the data is stored in memory.

Retrieving an Attribute Value’s Properties
You can obtain the length of an attribute’s value by using the ValueLength
property of the MCattribute class. The length returned is the stream length of the
attribute. It is the sum of all lengths of all values if the attribute is multi-valued. If
the VR is a text VR and the attribute is multi-valued, the length also includes the
numbers of separators.

If the attribute’s value is a DICOM NULL, zero is returned.

If an attribute has a value representation of SQ, the number of items in the
sequence is returned.

MCattributeSet as; // non-null reference
MCtag tag = new MCtag(0x0008, 0x0010);

uint length = as[tag].ValueLength;

Please refer to the Assembly Windows Help File for the exceptions that may be
thrown.

You can use the Count property of the MCattribute class to retrieve the number
of values that are currently stored for an attribute. If no values are stored for the
attribute zero will be returned. If the attribute contains one NULL value, 1 will be
returned.

MCattributeSet as; // non-null reference
MCtag tag = new MCtag(0x0008, 0x0010);

int values = as[tag].Count;

Listing an Attribute Set
You can create a formatted list of the attributes of an attribute set, along with
their values by using the list method of the MCattributeSet. The list method
produces a report describing the contents of the MCattributeSet (or one of its
sub-classes). The report will be written to the TextWriter provided, or to
stdout, if a file is not provided.

Get a value’s length

MCattribute.ValueLength

Get a count of values

MCattribute.Count

Attribute set report

list method

MCfileDataSink
MCstreamDataSink
MCmemoryDataSink

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

109

Note: If the object contains an attribute with a Value Representation of SQ
(sequence of items), each item in the sequence will be listed. Each
sequence of items is indented in the listing four spaces to the right of its
owning message or items.

MCattributeSet as; // a non-null reference
as.list(); // list to the standard output stream
System.IO.StreamWriter writer = new StreamWriter(“myFile”);
as.list(writer); // list to myFile

Converting an Attribute Set into a Proprietary Schema XML
String
You can convert a list of attributes of an attribute set, along with their values into
proprietary schema XML string by using the writeToXML method of the
MCattributeSet. The writeToXML method creates an XML string describing the
contents of the MCattributeSet. The XML buffer is written to the stream identified
by the stream object provided.

Note: If the object contains an attribute with a Value Representation of SQ
(sequence of items), each item in the sequence will be converted into its
XML representation.

The following example shows how the writeToXML method is utilized at a high
level.

MCdataSet ds; // a non-null reference
MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |

XmlOptExcludeSequences;
StreamWriter writer = new StreamWriter(“myXMLFile”);
// convert DICOM DataSet to an XML file
ds.writeToXML(writer, xmlOptions);
writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration
and are available for the Attribute Set to XML conversion.

// Use the default settings
XmlOptDefault = 0x0
// Store bulk attributes (VR is OB or OW) in the XML
XmlOptIncludeBulks = 0x1
// Store Pixel Data buffer in the XML
XmlOptIncludePixelData = 0x2
// Do not store Sequence attributes in the XML
XmlOptExcludeSequences = 0x4
// Do not store Private attributes in the XML
XmlOptExcludePrivateAttributes = 0x8
// Use Base64 encoding for bulks and UN VR attributes
XmlOptBase64Binary = 0x10

Attribute set to XML
conversion

writeToXML method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

110

 Converting a Proprietary Schema XML String into an Attribute
Set
You can read attribute values from a proprietary schema XML string into an
attribute set by using the readFromXML method of the MCattributeSet.

The content of the attribute set is not cleared before processing XML attributes.
The existing attributes in the attribute set will be overridden if they are present in
the XML string.

The following example shows how the readFromXML method is utilized at a high
level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCdataSet ds = new MCdataSet();
// convert an XML file into an attribute set
ds.readFromXML(reader);
reader.Close();

Converting an Attribute Set into a Native DICOM Model XML
String
You can convert a list of attributes of an attribute set, along with their values into
XML string by using the writeToXMLNative method of the MCattributeSet. The
writeToXMLNative method creates a Native DICOM Model (PS3.19) XML string
describing the contents of the MCattributeSet. The XML buffer is written to the
stream identified by the stream object provided.

The following example shows how the writeToXMLNative method is utilized at a
high level.

MCdataSet ds; // a non-null reference
MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |

XmlOptExcludeSequences;
StreamWriter writer = new StreamWriter(“myXMLFile”);
// convert DICOM DataSet to an XML file
ds.writeToXMLNative(writer, xmlOptions);
writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration
and are available for the Attribute Set to XML conversion.

// Use the default settings
XmlOptDefault = 0x0
// Store bulk attributes (VR is OB or OW) in the XML
XmlOptIncludeBulks = 0x1
// Store Pixel Data buffer in the XML
XmlOptIncludePixelData = 0x2
// Do not store Sequence attributes in the XML
XmlOptExcludeSequences = 0x4
// Do not store Private attributes in the XML
XmlOptExcludePrivateAttributes = 0x8

The Native DICOM Model provisions that bulk data can be replaced by a URI
string instead of the actual data. To allow the substitution at run time, a new
interface MCbulkDataUriHandler is introduced.

XML to Attribute set
conversion

readFromXML

Attribute set to XML
conversion

writeToXMLNative
method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

111

public interface MCbulkUriHandler
{
 object provideData(MCattributeSet attrSet, unit tag,

MCvr vr, string uri);
 string provideUri(MCattributeSet attrSet, unit tag,

MCvr vr);
}

Following example shows how to implement this interface and calling an
overloaded method of writeToXMLNative to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler
{
 public string provideUri(MCattributeSet attrSet, unit

tag, MCvr vr)
 {
 if (tag == MCdicom.PIXEL_DATA)
 return “http://xyz.net/pixeldatalocation”; //
return your URI string
 }

}

// call an overloaded method of writeToXMLNative
ds.writeToXMLNative(writer, xmlOptions, new

BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data
to the XML file using based 64 encoded string.

Converting a Native DICOM Model XML String into an Attribute
Set
You can read attribute values from an XML string into an attribute set by using
the readFromXMLNative method of the MCattributeSet.

The content of the attribute set is not cleared before processing XML attributes.
The existing attributes in the attribute set will be overridden if they are present in
the XML string.

The following example shows how the readFromXMLNative method is utilized at
a high level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCdataSet ds = new MCdataSet();
// convert an XML file into an attribute set
ds.readFromXML(reader);
reader.Close();

To handle bulk Uri from a Native DICOM Model XML file, the
MCbulkDataUriHandler interface is used. Following shows how to implement this
task:

XML to Attribute set
conversion

readFromXMLNative

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

112

class BulkDataUriHandler: MCbulkUriHandler
{
 public object provideData(MCattributeSet attrSet, unit

tag, MCvr vr, string uri)
 {
 if (tag == MCdicom.PIXEL_DATA)
 {
 // use parameter uri to retrieve your data
 // based on your data, create an array of datasize
 byte[] data = new byte[datasize];
 // populate your data array
 return data;
 }
 }

}

// call an overloaded method of readFromXMLNative
ds.readFromXMLNative(reader, new BulkDataUriHandler());

By default, if no Bulk URI handler is supplied and a bulk URI attribute is
encountered in the XML file, the toolkit will generate an empty attribute (tag with
zero length) for the encountered tag.

Converting an Attribute Set into a DICOM JSON Model String
You can convert a list of attributes of an array of attribute set, along with their
values into DICOM JSON Model string by using the writeDataSetsToJSON
method of the MCattributeSet. The writeDataSetsToJSON method creates a
DICOM JSON Model (PS3.18) string describing the contents of the
MCattributeSet. The API helps converting an array of data sets to a JSON file
containing an array of JSON objects. The JSON buffer is written to the stream
identified by the stream object provided.

The following example shows how the writeToJSON method is utilized at a high
level.

MCdataSet[] dsa; // a non-null reference array of MCdataSet
StreamWriter writer = new StreamWriter(“myXMLFile”);
// convert DICOM DataSet(s) to an JSON file
dsa.writeDataSetsToJSON(writer);
writer.Close();

The DICOM JSON Model provisions that bulk data can be replaced by a URI
string instead of the actual data. To allow the substitution at run time, a new
interface MCbulkDataUriHandler is introduced.

public interface MCbulkUriHandler
{
 object provideData(MCattributeSet attrSet, unit tag,

MCvr vr, string uri);
 string provideUri(MCattributeSet attrSet, unit tag,

MCvr vr);
}

Following example shows how to implement this interface and calling an
overloaded method of writeDataSetsToJSON to accomplish the task.

Array of Attribute set to
array of JSON objects
conversion

writeDataSetsToJSON
method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

113

class BulkDataUriHandler: MCbulkUriHandler
{
 public string provideUri(MCattributeSet attrSet, unit

tag, MCvr vr)
 {
 if (tag == MCdicom.PIXEL_DATA)
 return “http://xyz.net/pixeldatalocation”; //
return your URI string
 }

}

// call an overloaded method of writeDataSetsToJSON
ds.writeDataSetsToJSON(writer, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data
to the JSON file using based 64 encoded string.

Converting a DICOM JSON Model String into an Attribute Set
You can read attribute values from a DICOM JSON Model string that containing
multiple JSON objects into an array of attribute set objects by using the
readDataSetsFromJSON method of the MCattributeSet.

The following example shows how the readDataSetsFromJSON method is
utilized at a high level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCdataSet[] dsa = ds.readDataSetsFromJSON(reader);

To handle bulk URI from a DICOM JSON Model file, the MCbulkDataUriHandler
interface is used. Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler
{
 public object provideData(MCattributeSet attrSet, unit

tag, MCvr vr, string uri)
 {
 if (tag == MCdicom.PIXEL_DATA)
 {
 // use parameter uri to retrieve your data
 // based on your data, create an array of datasize
 byte[] data = new byte[datasize];
 // populate your data array
 return data;
 }
 }

}

// call an overloaded method of readFromXMLNative
dsa.readDataSetsFromJSON(reader, new BulkDataUriHandler()

);

By default, if no bulk URI handler is supplied and a bulk URI attribute is
encountered in the JSON file, the toolkit will generate an empty attribute (tag with
zero length) for the encountered tag.

Array of JSON objects to
array of Attribute set
conversion

readDataSetsFromJSON

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

114

8-bit Pixel Data
For DICOM’s Implicit VR Little Endian transfer syntax, the pixel data attribute’s
(7fe0,0010) VR is specified as being OW (independent of what the bits
allocated and bits stored attributes are set to). To reduce confusion, Merge
DICOM Toolkit sets the VR of pixel data for the other non-encapsulated transfer
syntaxes to OW.

When retrieving or setting pixel data with a MCdataSink or MCdataSource
class, the toolkit assumes that the OW pixel data is encoded in the host system’s
native endian format as defined by DICOM. Figure 12 describes how 8-bit pixel
data is encoded in an OW buffer for both big and little endian formats.

Figure 12: Sample Pixel Data Byte Stream for 8-bits Allocated, 8-bits Stored,
High bit of 7 (VR = OW)

The DICOM standard specifies that the first pixel byte should be set to the least
significant byte of the OW value. The next pixel byte should be set to the most
significant byte of the OW value. This implies that on big endian machines, 8-bit
pixel data is byte-swapped from the OB encoding method. Note that .NET and
Windows is in Little Endian format.

Encapsulated Pixel Data
Merge DICOM Toolkit supports the DICOM encapsulated transfer syntaxes. The
method for compression and decompression (JPEG, RLE, etc.) of encapsulated
pixel data is specified in part 5 of the DICOM standard. Merge DICOM also
supports compression and decompression for several specific transfer syntaxes.
The methods for this are discussed in subsequent section. Besides this support,
the MCattribute class also has several methods for dealing with encapsulated
transfer syntaxes.

There are several classes that can be used for compressing or decompressing
data. See “Compression and decompression” section for further details.

Encapsulated pixel data is dealt with in a similar manner as standard pixel data.
MCdataSink and MCdataSource classes are used. Merge DICOM .NET has the
capability of encapsulating each frame of data according to the encoding

LSb

LSb

LSb

LSb

LSb

LSb

MSb

MSb

MSb

MSb

MSb

MSb
Pixel 1
Pixel 2

Pixel 3
Pixel 4

Pixel 5
Pixel 6

Big Endian Machines Little Endian Machines

0 0 7 7

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 0

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

LSb

LSb

LSb

LSb

LSb

LSb

MSb

MSb

MSb

MSb

MSb

MSb
Pixel 2
Pixel 1

Pixel 4
Pixel 3

Pixel 6
Pixel 5

Swapping pixel data
bytes

Swap Method

Handling Compressed
Data

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

115

specified in Part 5 of the DICOM standard. Table 13 contains a sample encoding
of frames.

Table 13: Sample Encapsulated Pixel Data

Pixel Data Element

Basic Offset
Table with NO
Item Value

First Fragment (Single
Frame) of Pixel Data

Second Fragment (Single
Frame) of Pixel Data

Sequence
Delimiter Item

Item
Tag

Item
Length

Item
Tag

Item
Length

Item Value Item
Tag

Item
Length

Item Value Sequenc
e Delim.
Tag

Item
Length

(FFFE
,
E000)

0000
0000H

(FFFE,
E000)

0000
04C6H

Compresse
d Fragment

(FFFE,
E000)

0000
024AH

Compresse
d
Fragment

(FFFE,
E0DD)

0000
0000H

4
bytes

4
bytes

4 bytes 4 bytes 04C6H
bytes

4 bytes 4 bytes 024A H
bytes

4 bytes 4 bytes

When encoding encapsulated data, each compressed fragment shown in Table
13 is set with the addEncapsulatedValue method of MCattribute. This routine
supplies an MCdataSource which contains the encapsulated pixel data. When
needed, Merge DICOM will retrieve data from the source and encapsulate. In
this case, it is assumed that the MCdataSource is supplying already compressed
data. addEncapsulatedValue can be called multiple times to add additional
compressed frames to an attribute.

When decoding encapsulated data, the getEncapsulatedFrame or
getFrame methods of MCattribute are used. These methods can be repeatedly
called to retrieve each encapsulated frame. Note that the compressed data is
returned unless the decompressor is registered using registerCompressor
method for the given DICOM message.

Working with MCabstractMessage Derived Classes
The MCabstractMessage class is an abstract class that implements several
routines that are common between DIMSE messages (MCdimseMessage) and
DICOM files (MCfile). These routines include compression and validation of
attribute sets.

Compression and Decompression
The MCabstractMessage derived classes (MCfile and MCdimseMessage)
provide a duplicate method, which can be utilized to do compression,
decompression, or both. The duplicate method will create a copy of the MCfile or
MCdimseMessage that is encoded in a new transfer syntax. If the transfer
syntax of the source message is compressed, a decompressor must be supplied
to the duplicate method. If the result transfer syntax is compressed, a
compressor must be supplied.

Abstract Message
Routines

MCabstractMessage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

116

The MCcompression interface defines an interface for compressors and
decompressors utilized by Merge DICOM .NET. Merge DICOM supplies a
number of compressors and decompressors that implement this interface and
are defined in the following sections. The duplicate method of
MCabstractMessage requires that the compressor and decompressor supplied to
it implement the MCcompression interface. The following example shows how
the duplicate method is utilized at a high level.

MCdimseMessage msg; // A non-null uncompressed message

MCdimseMessage resultMsg;

resultMsg = msg.duplicate(MCtransferSyntax.Rle, null,

new MCrleCompressor());

MCdimseMessage resultMsg2;

resultMsg2 = resultMsg.duplicate(
MCtransferSyntax.JpegBaseline,
new MCrleDecompressor(),
new MCstandardCompressor());

The example starts with an uncompressed image, and creates a new message
that is RLE compressed with the duplicate method. It then calls duplicate again
to decompress the RLE image and recompress the image as JPEG Baseline.

The following section describes the compressors and decompressor supplied by
Merge DICOM and how they must be utilized with MCabstractMessage.duplicate.

Merge DICOM Supplied Compressors and Decompressors
Merge DICOM supplies several implementations of compressors and
decompressors. Table 14 lists each of the Merge DICOM classes, if they
implement compression or decompression and what transfer syntaxes they
support.

Table 14: Merge DICOM Supplied Compressor and Decompressors

Merge DICOM Class Type DICOM Transfer Syntaxes Supported

MCstandardCompressor Compressor JPEG Baseline

JPEG Extended (Process 2 & 4)

JPEG Lossless Non-Hierarchical Process 14

JPEG 2000

JPEG 2000 Lossless Only

MCrleCompressor Compressor RLE

MCstandardDecompressor Decompressor JPEG Baseline

JPEG Extended (Process 2 & 4)

JPEG Lossless Non-Hierarchical Process 14

MCcompression

MCstandardCompressor
MCstandardDecompressor
MCrleCompressor
MCrleDecompressor

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

117

Merge DICOM Class Type DICOM Transfer Syntaxes Supported

JPEG 2000

JPEG 2000 Lossless Only

MCrleDecompressor Decompressor RLE

For the JPEG Baseline, Jpeg Extended (Process 2 & 4), JPEG Lossless Non-
Hierarchical Process 14, JPEG 2000, and JPEG 2000 Lossless Only transfer
syntaxes, Merge DICOM utilizes libraries from Pegasus Imaging to do
compression and decompression. The RLE transfer syntax is supported directly
in Merge DICOM Toolkit.

JPEG Baseline, JPEG Extended (Process 2 & 4), and JPEG Lossless Non-
Hierarchical Process 14 can be compressed or decompressed at a maximum
rate of 3 images (or frames) per second. For JPEG 2000 Lossless and Lossy, a
dialog will be displayed each time the compressor or decompressor is used. Full
licenses can be purchased from Pegasus and configured in Merge DICOM to
remove these compression and decompression limits. The licenses can be
configured in the mergecom.pro configuration file.

The MCtransferSyntax.JpegBaseline transfer syntax is UID
1.2.840.10008.1.2.4.50, JPEG Baseline (Process 1): Default Transfer Syntax for
Lossy JPEG 8 Bit Image Compression, and uses Pegasus libraries 6420/6520.
Table 15 details the photometric interpretation and bit depths supported by the
standard compressor and decompressor for this transfer syntax. When lossy
compressing RGB data, the standard compressor by default compresses the
data into YBR_FULL_422 format. The compressor can also compress in
YBR_FULL format if the COMPRESSION_RGB_TRANSFORM_FORMAT configuration
option is set to YBR_FULL. The Photometric Interpretation tag must be changed
by the application after compressing RGB data. Similarly, the Photometric
Interpretation tag should be changed back to RGB before decompressing
YBR_FULL or YBR_FULL_422 data.

Table 15: JPEG Baseline Supported Photometric Interpretations and Bit Depths

JPEG Baseline

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422
YBR_FULL

Bits Stored 8 8 8

Bits Allocated 8 8 8

Samples Per Pixel 1 3 3

The MCtransferSyntax.JpegExtended2_4 transfer syntax is UID
1.2.840.10008.1.2.4.51, JPEG Extended (Process 2 & 4): Default Transfer
Syntax for Lossy JPEG 12 Bit Image Compression (Process 4 only), and uses

Pegasus Licenses are
required to remove speed
limitations

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

118

Pegasus libraries 6420/6520. Table 16 details the photometric interpretation and
bit depths supported by the standard compressor and decompressor for this
transfer syntax. When lossy compressing RGB data, the standard compressor by
default compresses the data into YBR_FULL_422 format. The compressor can
also compress in YBR_FULL format if the
COMPRESSION_RGB_TRANSFORM_FORMAT configuration option is set to
YBR_FULL. The Photometric Interpretation tag must be changed by the
application after compressing RGB data. Similarly, the Photometric Interpretation
tag should be changed back to RGB before decompressing YBR_FULL or
YBR_FULL_422 data.

Table 16: JPEG Extended Supported Photometric Interpretations and Bit Depths

JPEG Extended (Process 2 & 4)

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

RGB YBR_FULL_422
YBR_FULL

Bits Stored 8 10 12 8 8

Bits Allocated 8 16 16 8 8

Samples Per Pixel 1 1 1 3 3

The MCtransferSyntax.JpegLosslesHier14 transfer syntax is UID
1.2.840.10008.1.2.4.70, JPEG Lossless, Non-Hierarchical, First-Order Prediction
(Process 14 [Selection Value 1]): Default Transfer Syntax for Lossless JPEG
Image Compression, and uses Pegasus libraries 6220/6320. Table 17 details
the photometric interpretation and bit depths supported by the standard
compressor and decompressor for this transfer syntax. The standard
compressor does not do a color transformation to RGB data when compressing
with JPEG_LOSSLESS_HIER_14. The Photometric Interpretation tag should be
left as RGB in this case.

Table 17: JPEG Lossless Supported Photometric Interpretations and Bit Depths

JPEG Lossless Non-Hierarchical Process 14

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

RGB

Bits Stored 2 to 16 8

Bits Allocated 8 or 16 8

Samples Per Pixel 1 3

The MCtransferSyntax.Jpeg2000 transfer syntax is UID 1.2.840.10008.1.2.4.91,
JPEG 2000 Image Compression, and uses Pegasus libraries 6820/6920 for lossy
or lossless. Table 18 details the photometric interpretation and bit depths

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

119

supported by the standard compressor and decompressor for this transfer
syntax.

Table 18: JPEG 2000 Lossy Supported Photometric Interpretations and Bit Depths

JPEG 2000 (When used for Lossy)

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_ICT RGB

Bits Stored 8 10 12 16 8 8

Bits Allocated 8 16 16 16 8 8

Samples per Pixel 1 1 1 1 3 3

The MCtransferSyntax.Jpeg2000LosslessOnly transfer syntax is UID
1.2.840.10008.1.2.4.90, JPEG 2000 Image Compression (Lossless Only), and
uses Pegasus libraries 6820/6920 for lossless. Table 19 details the photometric
interpretation and bit depths supported by the standard compressor and
decompressor for this transfer syntax.

Table 19: JPEG 2000 Lossless Supported Photometric Interpretations and Bit Depths

JPEG 2000 Lossless

Photometric
Interpretation

MONOCHROME1
MONOCHROME2

YBR_RC
T

RGB

Bits Stored 8 10 12 16 8 8

Bits Allocated 8 16 16 16 8 8

Samples Per Pixel 1 1 1 1 3 3

When using the standard compressor, all data needs to be right justified, i.e. bit 0
contains data, but the highest bits may not. RGB and YBR must be non-planar
(R1G1B1, R2G2B2, ... or Y1Y2B1R1, Y3Y4B3R3,...)

MCtransferSyntax.Jpeg2000 and MCtransferSyntax.Jpeg2000LosslessOnly will
cause a irreversible, or reversible color transformation when compressing RGB
data. The Photometric Interpretation MUST be changed from RGB to:

• YBR_ICT if MCtransferSyntax.Jpeg2000 is used with
COMPRESSION_WHEN_J2K_USE_LOSSY = Yes (Lossy color transform for
lossy compression)

• YBR_RCT if MCtransferSyntax.Jpeg2000LosslessOnly or
MCtransferSyntax.Jpeg2000 with COMPRESSION_WHEN_J2K_USE_LOSSY
= No (Lossless color transform for lossless compression).

SPECIAL NOTES!

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

120

Similarly, on the decompression end, the Photometric Interpretation should be
changed back to RGB, but the Lossy Image Compression attribute should indicate
it has been lossy compressed.

Validating Attribute Sets
Once your application has a populated message object, either one that you have
built or one that you have received and are about to parse, Merge DICOM Toolkit
supplies DICOM Toolkit DICOM message validation functionality. The
MCabstractMessage derived classes (MCdimseMessage and MCfile) and the
MCdataSet class each provide a validate method that will validate the attribute
sets it contains against the DICOM Standard’s specification for its service-
command pair.

One of the files supplied with Merge DICOM Toolkit is the message.txt file.
This file contains a listing of all the messages supported by the toolkit and the
parameters they are validated against. message.txt is a useful guide in your
application development because it specifies the attributes that can make up the
object instance portion of each message type (service-command pair) and is
often easier to use as a quick reference than paging through two or three parts of
the DICOM Standard. message.txt also specifies the contents of items and
files (see discussions of Sequence of Items and DICOM Files later in this
document). Remember though that the DICOM Standard is the final word and
that message.txt has its limitations as described further below.

The validate methods do not validate the attributes that make up the
command portion of a DICOM message. Command set attributes (attributes with
a group number less than 0008) are also not specified in message.txt. The
Merge DICOM Toolkit Library sets as many of the command group attributes as
possible automatically. In some services, your application may need to set
command set attributes if you do not use one of the sub-classes of the
MCdimseService class.

An excerpt of message.txt follows for the service-command pair
DETACHED_PATIENT_MANAGEMENT - N_GET_RSP as an illustration. For each
attribute in the message, at least one line of data is specified. This first line
includes the tag, attribute name, value representation, and value type.
Additional lines may be included for the attribute to list conditions, enumerated
values, defined terms, and item names for attributes with a VR of SQ. You
should refer to the DICOM Standard (parts 3 and 4) for a detailed description of
particular conditions and their meanings.

message.txt can be very
useful

You can validate
MCdimseMessage,
MCfile, and MCdataSet
instances

Validate method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

121

DETACHED_PATIENT_MANAGEMENT - N_GET_RSP
0008,0005 Specific Character set CS 1C
Condition: EXPANDED_OR_REPLACEMENT_CHARACTER_SET_USED
Defined Terms: ISO-IR 100, ISO-IR 101, ISO-IR 109, ISO-IR 110,
ISO-IR144, ISO-IR 127, ISO-IR 126, ISO-IR 138, ISO-IR 148
0008,1110 Referenced Study Sequence SQ 2
Item Name(s): REF_STUDY
0008,1125 Referenced Visit Sequence SQ 2
Item Name(s):
0010,0010 Patient’s Name PN 2
0010,0020 Patient IDLO2
0010,0021 Issuer of Patient ID LO 3
0010,0030 Patient’s Birth Date DA 2
0010,0032 Patient’s Birth Time TM 3
0010,0040 Patient’s Sex CS 2
Enumerated Values: M, F, O
0010,0050 Patient’s Insurance Plan Code Sequence SQ 3
Item Name(s): PATIENTS_INSURANCE_PLAN_CODE
0010,1000 Other Patient IDs LO 3
0010,1001 Other Patient Names PN 3
0010,1005 Patient’s Birth Name PN 3
0010,1020 Patient’s Size DS 3
0010,1040 Patient’s Address LO 3
0010,1060 Patient’s Mother’s Birth Name PN 3
0010,1080 Military Rank LO 3
0010,1081 Branch of Service LO 3
0010,1090 Medical Record Locator LO 3
0010,2000 Medical Alerts LO 3
0010,2110 Contrast Allergies LO 3
0010,2150 Country of Residence LO 3
0010,2152 Region of Residence LO 3
0010,2154 Patient’s Telephone Numbers SH 3
0010,2160 Ethnic Group SH 3
0010,21A0 Smoking Status CS 3
Enumerated Values: YES, NO, UNKNOWN
0010,21B0 Additional Patient History LT 3
0010,21C0 Pregnancy Status US 3
Enumerated Values: 0001, 0002, 0003, 0004
0010,21D0 Last Menstrual Date DA 3
0010,21F0 Patient’s Religious Preference LO 3
0010,4000 Patient Comments LT 3
0038,0004 Referenced Patient Alias Sequence SQ 2
Item Name(s): REF_PATIENT_ALIAS
0038,0050 Special Needs LO 3
0038,0500 Patient State LO 3

While Merge DICOM validation is not foolproof, it is very useful and will catch
many standard violations. It validates the following:

• That the value assigned to an attribute is appropriate for that attributes VR.

• That all value type 1 attributes have a value, and that value is not null.

• That all value type 2 attributes have a value, and that value may be null.

What validation can do for
you...

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

122

• That a specified set of conditional attributes (value type 1C or 2C) are
validated as value type 1 or 2 attributes when the specified condition is
satisfied. Merge DICOM supports a number of conditional functions that are
straightforward to validate. Not all conditions can be validated by the toolkit
and those that cannot need to be checked by the application itself.

• That an attribute does not have too many or too few values for its specified
value multiplicity.

• That an attribute that has enumerated values does not have a value that is
not one of the enumerated values. A warning is also issued if an attribute
that has defined terms has a value that is not one of those defined terms.

• That a non-private attribute is not included in the message that is not defined
for that DICOM message (service-command pair).

As mentioned, Merge DICOM Toolkit does not capture all standard violations,
and the DICOM Standard itself should be considered the final word when
validating a message. Important limitations of Merge DICOM validation include:

• DICOM Part 3 specifies Information Object Definitions (IOD’s) as being
composed of modules. Each module contains attributes. Only in the case of
composite IOD’s may an attribute be specified in DICOM Part 3 as being
contained in either a User Optional or Conditional Module. Merge DICOM
Toolkit treats all such attributes as being value type 3 (optional).

• Also, certain modules may be mutually exclusive (e.g., curve and overlay
modules), in the case of some composite IOD’s (e.g., Ultrasound Image
Object) used in storage services.

• For normalized services using the N-EVENT-REPORT command, the actual
contents of an N-EVENT-REPORT message are dependent on the Event
Type ID being communicated. Merge DICOM Toolkit treats all Event Type
ID’s identically when performing message validation; namely it treats all
attributes as type 3.

An example of the use of the validate method follows. The example assumes a
MCdimseMessage (msg) was just received and the intent is to validate the
message.

MCdimseMessage msg; // non-null reference

bool validates;
validates = msg.validate(MCvalidationLevel.Errors_Only);
if (!validates)
{
 MCvalidationError err = msg.getNextValidationError();
 while (err != null)
 {
 System.Console.Out.WriteLine(err.ToString());
 err = msg.getNextValidationError();
 }
}

and what validation cannot
do for you

An example...

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

123

In this example, the application validates the MCdimseMessage object msg at
the MCvalidationLevel.Errors_Only level.
MCvalidationLevel.Errors_And_Warnings could be used to report both
warnings and errors, while MCvalidationLevel.Full could be used to report
errors, warnings, and informational messages. If MCdimseMessage.validate
returns false, your application can use the getNextValidationError method
to retrieve MCvalidationError objects that describe the error. Each
MCvalidationError instance has these public properties:

• Tag — A uint identifying the DICOM tag in error

• AttributeSet — the MCattributeSet derived class containing the attribute
in error

• ValueNumber — specifies which of the attribute’s values was in error

• ErrorDescription — a String describing the error

• ErrorNumber — a number identifying the error. Refer to the
MCvalidationError class in the Assembly Windows Help File for the error
numbers that may be returned.

The ToString method in the MCvalidationError class provides a convenient way
to display a validation error. A sample string (that includes imbedded line feeds)
follows:

Attribute tag: 0x00100010 (Patient’s Name)
Dataset: Mergecom.MCdataSet
Value Number: 0
Description: Invalid value for this tag’s VR
Error Number: 28

It is on the initial call to the validate method that all the validation takes place
and that the results of the validation for the entire message are logged to the
message log file. Subsequent calls to the getNextValidationError method
simply steps through the results of the validation, passing additional errors found
back to the application. A sample log file report follows.

01-11 13:52:09.00 7919 MC3 T5: (0008,0005) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0008,0023) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0008,0033) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0010,1010) VE: [41Y] Invalid value for this tag’s VR
01-11 13:52:09.00 7919 MC3 T5: (0018,0010) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0015) VE: Required attribute has no value
01-11 13:52:09.00 7919 MC3 T5: (0018,0020) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0021) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0022) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0023) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0050) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0080) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0081) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0082) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0084) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0085) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,0091) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,1041) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,1060) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0018,1250) VW: Invalid attribute for service

Example Log File

Example Output

MCvalidationLevel
enum

MCvalidationError
firstError
nextError

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

124

01-11 13:52:09.00 7919 MC3 T5: (0018,5101) VE: Required attribute has no value
01-11 13:52:09.00 7919 MC3 T5: (0020,0032) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0020,0037) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0020,0052) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0020,0060) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0020,1040) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0020,1041) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0028,0006) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0028,0030) VW: Invalid attribute for service
01-11 13:52:09.00 7919 MC3 T5: (0028,0034) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0028,1101) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0028,1102) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0028,1103) VI: Unable to check condition
01-11 13:52:09.00 7919 MC3 T5: (0028,1201) VI: Unable to check condition

Notice in this log file that all warnings and informational messages are also
logged. This is always the case, although the first violation returned to the
application was an error because MCvalidationLevel.Full was specified.
The message log agrees in that the first VE (Validation Error) logged is for the
attribute Patient’s Age (0010,1010). The log states that the message contains
“41Y ” as the value for this attribute. Part 6 of DICOM clearly states that this
attribute has a value representation of AS (Age String) and part 5 states that for
this VR the value should have a leading zero and be represented as “041Y”.
There is also one other error flagged in this message. The required attribute
View Position (0018,5101) had no value.

The Overhead of Validation
DICOM attribute set validation does involve processing overhead. The most
significant overhead is in the accessing of the message info files, and
significantly less overhead is involved in actually validating the contents of the
message structure. It is important to understand that depending on the way in
which your MCdimseMessage, MCfile or MCdataSet object was created, this
validation overhead can occur at different points in your application; see Table 20.

Table 20: Point of performance overhead associated with attribute set validation.

Message Object Construction Method Point at which file access overhead for
validation occurs

new MCdimseMessage

if command/service supplied

new MCdimseMessage

new MCdimseMessage

if no command/service supplied

MCdimseMessage.validate

Note: You must use setServiceCommand
method before validating and/or sending a
message created in this manner.

new MCdimseMessage(MCdataSet)

if command/service supplied when
constructing MCdataSet

new MCdataSet()

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

125

Message Object Construction Method Point at which file access overhead for
validation occurs

new MCdimseMessage(MCdataSet)

if no command/service supplied when
constructing MCdataSet

MCdimseMessage.validate

MCdimseMessage =
read::MCassociation

MCdimseMessage validate

new MCfile

if command/service supplied

new MCfile

new MCfile

if no command/service supplied

MCfile.validate

Note: You must use setServiceCommand
method before validating and/or sending a
message created in this manner.

new MCfile (MCdimseMessage)

if command/service supplied when
constructing MCdimseMessage

new MCdimseMessage ()

new MCfile (MCdimseMessage)

if no command/service supplied when
constructing MCdataSet

MCfile.validate

new MCdataSet

If command/service supplied

new MCdataSet

new MCdataSet

If no command/service supplied

MCdataSet.validate

When the attribute set is constructed by providing the service and command to
be used, there is an up-front performance cost but it provides additional
validation as you set the value of attributes in the message object. When the
service and command are not known at construction time, the cost occurs when
the validate call is made.

Many times the validate method is selectively used in an application: as a
runtime option or conditionally compiled into the source code. Validation might
only be used during integration testing or in the field for diagnostic purposes.
Reasons for this include performance since the overhead associated with
message validation may be an issue, especially for larger messages having
many attributes or on lower-end platforms. Also, validation can clutter the
message log with warnings and errors that may not be desirable in a production
environment. Performance issues related to message handling are discussed
further under Message Exchange later in this document.

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

126

Validating a Single Attribute
If you wish to validate only a single attribute, you may use the
validateAttribute method of the MCdimseMessage, MCfile or MCdataSet
class. The validateAttribute method works exactly as the validate method
with the exception that you provide a tag parameter to identify the attribute use
wish to have validated.

MCdimseMessage msg; // non-null reference

bool validates;
validates = msg.validateAttribute(0x00100010,

MCvalidateLevel.Errors_Only);
if (!validates)
{
 MCvalidationError err = msg.getNextValidationError();
 while (err != null)
 {
 System.Console.Out.WriteLine(err.ToString());
 err = msg.getNextValidationError();
 }
}

Streaming Attribute Sets
When DICOM messages are exchanged over a network, they are in an encoded
format specified by the DICOM standard and the negotiated transfer syntax.
Merge DICOM Toolkit calls this encoded format a message stream and supplies
powerful methods that allow your applications to work directly with message
streams.

When your application builds or parses attribute sets as described earlier, it
works with the MCattributeSet objects contained in MCdimseMessage or MCfile
objects. These MCattributeSet objects abstract and encapsulate the DICOM
message and hides its details from the developer. When you send a DICOM
message over the network, Merge DICOM internally creates a DICOM message
stream that is passed over the network. This message stream is an encoded
stream of bytes that follows all the rules of DICOM.

Merge DICOM Toolkit also supplies methods to generate and read DICOM
message streams directly (see Figure 13). The methods are available in the
MCdimseMessage class and the MCattributeSet class. The streamOut
method creates a message stream from the contents of an MCdimseMessage
object, while the streamIn method populates an MCdimseMessage object from
a message stream. Also, streamLength method is supplied to calculate the
length of the DICOM stream that would result from using the streamOut call.
(The streamLength method is also provided in the MCfile class to return the
actual length of the streamed file object. And the streamIn, streamOut and
streamLength methods are also provided by the MCattributeSet class, so any
attribute set may be used to create a stream.)

The streamIn methods return the byte offset from the beginning of the stream to
the next attribute after the stop tag parameter.

validateAttribute

Message stream
defined

Streaming methods

streamOut
streamIn
streamLength
MCstreamOffset

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

127

MCdimseMessage
or MCattributeSet

Object
.
.
.

DICOM
Message Stream

streamOut()

streamIn()

Figure 13: Relationship between an Attribute Set Object and a Message Stream

A streamOut call could look like the following:

class MyStreamHandler : MCdataSink {
 …
 public void receiveData(MCdata data, System.Object

origin)
 {
 // Store the data described in data
 // as appropriate
 …
 if (errorOccured)
 throw new MCcallbackCannotComplyException();
 }
}

MCdimseMessage msg; // non-null reference
MyStreamHandler streamHandler = new MyStreamHandler();
try {
 msg.streamOut(0x00080000, 0x7FDFFFFF,

MCtransferSyntax.ExplicitLittleEndian,
streamHandler);

} catch (MCnoAttributesException e) {…}
 catch (MCillegalArgumentException e) {…}
 catch (MCcallbackCannotComplyException e) {…}

This call converts the attributes from (0008,0000) through (7FDF,FFFF) in the
MCdimseMessage object identified by msg into a DICOM message stream using
the explicit VR little endian transfer syntax. The message stream will be encoded
using the explicit VR little endian transfer syntax.

streamHandler is an instance of MyStreamHandler, a class that implements
the MCdataSink interface. The MCdataSink interface requires a receiveData
method that receives and manages the stream data a block at a time. See the
API description in the Assembly Windows Help File for further details.

Creating
a message stream

MCstreamOutCallback
MCdata
receiveData method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

128

Once your application has done the above and stored the stream somewhere,
you could later rebuild a message object containing only group 0008 using:

class MyStreamHandler : MCdataSource {
 …
 public MCdata provideData(bool isFirst, Object origin)
 {
 // Retrieve a portion (or all) of the stream
 // and return it as an MCdata object
 …
 if (errorOccured)
 throw new MCcallbackCannotComplyException();
 }
}

MCdimseMessage msg; // non-null reference
MyStreamHandler streamHandler = new MyStreamHandler();

try {
 msg.streamIn(0x00080000, 0x0008FFFF,

MCtransferSyntax.ExplicitLittleEndian,
streamHandler);

} catch (MCexception e) {…}

streamHandler is an instance of MyStreamHandler, a class that implements
the MCdataSource interface. The MCdataSource interface requires a
provideData method that retrieves the stream data a block at a time and
returns it to the Merge DICOM library. This call converts only the attributes in
group 0008 of the stream supplied by your MyStreamHandler callback class and
places them in the message identified by msg. It is important that the transfer
syntax specified in this call is identical to that used to create the stream or the
call will fail with an error.

The same kind of performance issues apply in the callback classes discussed
when retrieving pixel data. Namely, your settings of LARGE_DATA_STORE and
OBOW_BUFFER_SIZE should take into consideration the capabilities of your
platform.

Message streams can be very valuable to your application for debugging and
validation purposes. By writing DICOM message streams out to a binary file, you
have a compact and reproducible representation of a message. You can directly
examine the binary message stream to see how the data would be sent over the
network. Also, you can read this binary file in again later to reconstruct the
original message object. Once you have the message object you can use the
usual toolkit methods to examine or alter its contents.

Performance Tuning

Retrieving message data
from a message stream

MCstreamInCallback
MCdata
provideData method

Why use message
streams?

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

129

Message to Proprietary Schema XML Conversion
The MCabstractMessage provides a writeToXML method which can be utilized
to convert its derived classes (MCfile and MCdimseMessage) to a proprietary
schema XML string.

You can convert a list of attributes of an MCfile or MCdimseMessage, along with
their values into an XML string by using the writeToXML method of the
MCabstractMessage. The writeToXML method creates an XML string describing
the contents of the MCfile or MCdimseMessage. The XML buffer will be written to
the stream identified by the stream object provided.

Note: If MCfile or MCdimseMessage objects contain an attribute with a Value
Representation of SQ (sequence of items), each item in the sequence is
converted into its XML representation.

The following example shows how the writeToXML method is utilized at a high
level.

MCfile myFile; // a non-null file reference
MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |

XmlOptExcludeSequences;
StreamWriter writer = new StreamWriter(“myFile”);
// convert DICOM file to an XML file
myFile.writeToXML(writer, xmlOptions);
writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration
and are available for the MCabstractMessage to XML conversion:

// Use the default settings
XmlOptDefault = 0x0
// Store bulk attributes (VR is OB or OW) in the XML
XmlOptIncludeBulks = 0x1
// Store Pixel Data buffer in the XML
XmlOptIncludePixelData = 0x2
// Do not store Sequence attributes in the XML
XmlOptExcludeSequences = 0x4
// Do not store Private attributes in the XML
XmlOptExcludePrivateAttributes = 0x8
// Use Base64 encoding for bulks and UN VR attributes
XmlOptBase64Binary = 0x10

Proprietary Schema XML to Message Conversion
The MCabstractMessage provides a readFromXML method that can be utilized
to read attribute values from a proprietary schema XML string into
MCabstractMessage’s derived classes (MCfile and MCdimseMessage).

The content of the message is not cleared before processing XML attributes. The
existing attributes in the message are overridden if they are present in the XML
string.

Converting message data
to an XML string

writeToXML method

Converting an XML string
into a message

readFromXML method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

130

The following example shows how the readFromXML method is utilized at a high
level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCfile file = new MCfile();
file.readFromXML(reader);
reader.Close();

Message to Native DICOM Model XML Conversion
The MCabstractMessage provides a writeToXMLNative method which can be
utilized to convert its derived classes (MCfile and MCdimseMessage) to a Native
DICOM Model XML string (PS3.19).

You can convert a list of attributes of an MCfile or MCdimseMessage, along with
their values into an XML string by using the writeToXMLNative method of the
MCabstractMessage. The writeToXMLNative method creates an XML string
describing the contents of the MCfile or MCdimseMessage. The XML buffer will
be written to the stream identified by the stream object provided.

The following example shows how the writeToXMLNative method is utilized at a
high level.

MCfile myFile; // a non-null file reference
MCxmlOptions xmlOptions = MCxmlOptions.XmlOptIncludeBulks |

XmlOptExcludeSequences;
StreamWriter writer = new StreamWriter(“myFile”);
// convert DICOM file to an XML file
myFile.writeToXMLNative(writer, xmlOptions);
writer.Close();

The following configuration flags are defined in the MCxmlOptions enumeration
and are available for the MCabstractMessage to XML conversion:

// Use the default settings
XmlOptDefault = 0x0
// Store bulk attributes (VR is OB or OW) in the XML
XmlOptIncludeBulks = 0x1
// Store Pixel Data buffer in the XML
XmlOptIncludePixelData = 0x2
// Do not store Sequence attributes in the XML
XmlOptExcludeSequences = 0x4
// Do not store Private attributes in the XML
XmlOptExcludePrivateAttributes = 0x8

The Native DICOM Model provisions that bulk data can be replaced by a URI
string instead of the actual data. To allow the substitution at run time, a new
interface MCbulkDataUriHandler is introduced.

public interface MCbulkUriHandler
{
 object provideData(MCattributeSet attrSet, unit tag,

MCvr vr, string uri);

Converting message data
to an XML string

writeToXMLNative
method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

131

 string provideUri(MCattributeSet attrSet, unit tag,
MCvr vr);

}

Following example shows how to implement this interface and calling an
overloaded method of writeToXMLNative to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler
{
 public string provideUri(MCattributeSet attrSet, unit

tag, MCvr vr)
 {
 if (tag == MCdicom.PIXEL_DATA)
 return “http://xyz.net/pixeldatalocation”; //
return your URI string
 }

}

// call an overloaded method of writeToXMLNative
myFile.writeToXMLNative(writer, xmlOptions, new

BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to
the XML file using based 64 encoded string.

Native DICOM Model XML to Message Conversion
The MCabstractMessage provides a readFromXMLNative method that can be
utilized to read attribute values from a Native DICOM Model XML string into
MCabstractMessage’s derived classes (MCfile and MCdimseMessage).

The content of the message is not cleared before processing XML attributes. The
existing attributes in the message are overridden if they are present in the XML
string.

The following example shows how the readFromXMLNative method is utilized at
a high level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCfile file = new MCfile();
file.readFromXMLNative(reader);
reader.Close();

To handle bulk URI from a Native DICOM Model XML file, the
MCbulkDataUriHandler interface is used. Following shows how to implement this
task:

class BulkDataUriHandler: MCbulkUriHandler
{
 public object provideData(MCattributeSet attrSet, unit

tag, MCvr vr, string uri)
 {
 if (tag == MCdicom.PIXEL_DATA)
 {
 // use parameter uri to retrieve your data
 // based on your data, create an array of datasize

Converting an XML string
into a message

readFromXMLNative
method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

132

 byte[] data = new byte[datasize];
 // populate your data array
 return data;
 }
 }

}

// call an overloaded method of readFromXMLNative
file.readFromXMLNative(reader, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied and a bulk URI attribute is
encountered in the XML file, the toolkit will generate an empty attribute (tag with
zero length) for the encountered tag.

Message to DICOM JSON Model Conversion
The MCabstractMessage provides a writeToJSON method which can be utilized
to convert its derived classes (MCfile and MCdimseMessage) to a DICOM JSON
Model string (PS3.18).

You can convert a list of attributes of an MCfile or MCdimseMessage, along with
their values into a DICOM JSON Model string by using the writeToJSON method
of the MCabstractMessage. The writeToJSON method creates a JSON string
describing the contents of the MCfile or MCdimseMessage. The JSON buffer will
be written to the stream identified by the stream object provided.

The following example shows how the writeToJSON method is utilized at a high
level.

MCfile myFile; // a non-null file reference
StreamWriter writer = new StreamWriter(“myFile”);
// convert DICOM file to a JSON file
myFile.writeToJSON(writer);
writer.Close();

The DICOM JSON Model provisions that bulk data can be replaced by a URI
string instead of the actual data. To allow the substitution at run time, a new
interface MCbulkDataUriHandler is introduced.

public interface MCbulkUriHandler
{
 object provideData(MCattributeSet attrSet, unit tag,

MCvr vr, string uri);
 string provideUri(MCattributeSet attrSet, unit tag,

MCvr vr);
}

Following example shows how to implement this interface and calling an
overloaded method of writeToJSON to accomplish the task.

class BulkDataUriHandler: MCbulkUriHandler
{
 public string provideUri(MCattributeSet attrSet, unit

tag, MCvr vr)
 {

Converting message data
to a JSON string

writeToJSON method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

133

 if (tag == MCdicom.PIXEL_DATA)
 return “http://xyz.net/pixeldatalocation”; //
return your URI string
 }

}

// call an overloaded method of writeToJSON
myFile.writeToJSON(writer, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied, the toolkit will write out all bulk data to
the JSON file using based 64 encoded string.

DICOM JSON Model to Message Conversion
The MCabstractMessage provides a readFromJSON method that can be utilized
to read attribute values from a DICOM JSON Model string into
MCabstractMessage’s derived classes (MCfile and MCdimseMessage).

The content of the message is not cleared before processing JSON attributes.
The existing attributes in the message are overridden if they are present in the
JSON string.

The following example shows how the readFromJSON method is utilized at a
high level.

StreamReader reader = new StreamReader(“myXMLFile”);
MCfile file = new MCfile();
file.readFromJSON(reader);

To handle bulk URI from a DICOM JSON Model file, the MCbulkDataUriHandler
interface is used. Following shows how to implement this task:

class BulkDataUriHandler: MCbulkUriHandler
{
 public object provideData(MCattributeSet attrSet, unit

tag, MCvr vr, string uri)
 {
 if (tag == MCdicom.PIXEL_DATA)
 {
 // use parameter uri to retrieve your data
 // based on your data, create an array of datasize
 byte[] data = new byte[datasize];
 // populate your data array
 return data;
 }
 }

}

// call an overloaded method of readFromJSON
file.readFromJSON(reader, new BulkDataUriHandler());

By default, if no bulk URI handler is supplied and a bulk URI attribute is
encountered in the JSON file, the toolkit will generate an empty attribute (tag with
zero length) for the encountered tag.

Converting a JSON string
into a message

readFromJSON method

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

134

Message Exchange (Network Only)
We have discussed how associations are managed as well as how messages
objects are populated and parsed. Now we discuss how these DICOM
messages are exchanged with other application entities over the network.

The exchange of DICOM messages between AE’s only occurs over an open
association. After the DICOM client (SCU) application opens an association with
a DICOM server (SCP), the client sends request messages to the server
application. For each request message, the client receives back a corresponding
response from the server. The server waits for a request message, performs the
desired service, and sends back some form of status to the client in a response
message. This process, along with the corresponding Merge DICOM Toolkit
method calls, are pictured in Figure 14.

Figure 14: Message Exchange in Merge DICOM Toolkit Applications

Reading Network Messages
The read method of the MCassociation class is always used to retrieve the next
message available on the network connection. It returns an MCdimseMessage
object that encapsulates the DICOM message. Its only parameter is a timeout
value:

public MCdimseMessage read(long timeout);

The timeout parameter specifies, in milliseconds, how long your process will
wait for a message before the read call times out and returns control to your
application code. The thread handling your association will be blocked during
this waiting period and the system processor will be available for other threads.
Setting timeout to 0 is equivalent to polling, since read returns immediately,
whether a message has been received or not. A timeout of -1 indicates wait
forever, or until a message arrives, before returning. An MCtimeoutException will
be thrown if the time expires before a message arrives.

Using the MCdimseService
To send request messages you use the sendRequestMessage method of the
MCdimseService class, and to send response messages you use the
sendResponseMessage method. You should note, however, that you will
probably be using a sub-class of the MCdimseService class and those derived
classes usually provide other methods to send messages. This section
describes the use of the MCdimseService class directly.

DICOM
Client

MCassociation.read MCdimseService.sendRequestMessage

MCdimseService.sendResponseMessage MCassociation.read

DICOM
Server Open Association

Request Message

Response Message

Reading messages

MCassociation.read

Sending messages

sendRequestMessage

sendResponseMessage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

135

You must relate each instance of the MCdimseService class with a specific
association by passing an MCassociation reference as a parameter to the class
constructor:

MCassociation myAssoc; // a non-null reference
MCdimseService myService = new MCdimseService(myAssoc);

Using the sendRequestMessage method
There are four forms of the MCdimseService sendRequestMessage method:

public void sendRequestMessage(MCdimseMessage msg)
public void sendRequestMessage(MCdimseMessage msg, String

affectedSopInstanceUID)
public void sendRequestMessage(String metaServiceName,

MCdimseMessage msg)
public void sendRequestMessage(String metaServiceName,

MCdimseMessage msg, String affectedSopInstanceUID)

At minimum, the sendRequestMessage call must provide a reference to an
MCdimseMessage object that encapsulates the message to be sent (the msg
parameter).

Some DICOM SOP Classes require that you assign an Affected SOP Instance
UID to the composite message object being sent; in those cases, you must use
the affectedSopInstanceUID parameter, providing the UID.

The metaServiceName parameter is also optional. If it is null or it if is an empty
string, it will be ignored. Some DICOM services (e.g., the Basic Print Service)
allow you to support multiple meta services. Each meta service consists of a set
of basiC/C++ DICOM services. In some cases a DICOM application may support
multiple meta services over the same association. When two of the meta
services include the same basic service, this metaServiceName parameter is
used to tell Merge DICOM which meta service to use when sending the
message.

Using the sendResponseMessage method
There are two forms of the MCdimseService sendResponseMessage method:

public void sendResponseMessage(MCdimseMessage requestMsg,
short statusCode)

public void sendResponseMessage(MCdimseMessage requestMsg,
MCdimseMessage responseMsg, short statusCode)

This sendResponseMessage method allows you to respond to a message
received from the remote application. It is called after a successful
MCassociation.read call. The requestMsg parameter identifies which DICOM
message is being responded to.

The statusCode parameter provides the status of the requested operation and
must be a valid response code for the service involved. Response codes are
defined in MCdimseSerivce. Many DICOM services do not require a response of
more than just a status. Others, however, (e.g., C_FIND_RSP) require the
setting of several message attributes.

Requesting
a DICOM service

Responding to a
DICOM service request

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

136

The responseMsg parameter, if provided, must have been constructed for the
same service as the requestMsg, and for an appropriate command. For
example, if responding to a C-STORE request message, the responseMsg would
be constructed as follows:

responseMsg = new MCdimseMessage
(MCdimseService.C_STORE_RSP,
requestMsg.ServiceName);

Response codes for specifiC/C++ DICOM commands are described in the
Assembly Windows Help File and in Part 4 of the DICOM Standard. Constants
for the various request and response codes are defined in the MCdimseService
class.

If responseMsg is not provided, Merge DICOM will create one automatically.

Some DICOM services require that values for certain command set attributes
(i.e. group 0 attributes) be set. Merge DICOM automatically adds command set
attributes when an MCdimseMessage is constructed. With the exceptions listed
below, you must set any command set attribute values before sending the
message. However, this method will set the following attribute values for you – if
you have not set them:

• The group length attribute (0000,0000) value is always set by Merge DICOM
Toolkit.

• If the message command requires it, the Affected SOP Class UID attribute
(0000,0002) value is set to the service’s abstract syntax UID.

• The command attribute (0000,0100) value is always set by Merge DICOM
Toolkit.

• The Response Message ID attribute (0000,0120) value is set to the message
ID of the last received Request message for this association.

• The Data Set Type attribute (0000,0800) value is always set by Merge
DICOM Toolkit.

Using Attribute Containers
The MCattributeContainer and MCattributeContainerEx interfaces (referenced
MCattributeContainer for breivity) are the interfaces for classes that will provide
methods for the library to get and set a given attribute’s value. A class which
implements this interface is registered with the library using the
registerAttributeContainer method of the MCapplication class. The
library considers this interface a “container” for a specific attribute’s value and
calls methods of the class to get or set the attribute’s value. Such container
classes are registered only for attribute’s that have values of great length, such
as pixel data.

The methods of the MCattributeContainer class exhibit one significant difference
from the methods used in the MCdataSink and MCdataSource interfaces
described earlier. MCattributeContainer classes ‘throttle’ the data flow as the
message object is communicated over the network. Rather than storing

Merge DICOM Toolkit
handles the command set
for you

Attribute values
can be stored
in your own
container class

MCattributeContainer

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

137

attributes with large OB/OW/OF values within the message object itself, your
application is responsible for maintaining the value of these attributes.

We will also see that MCattributeContainer objects affect accessing media files.
See the discussion of this in the DICOM Files section later in this manual.

Using an Attribute Container in a Server Application
A server (SCP) application can register a MCattributeContainer object that will be
called repetitively as the attribute’s value arrives on an association during a
MCassociation.read call. By the time the read method returns to the
application, the attribute value will already have been handled by your
MCattributeContainer class. The MCattributeContainer class could be used by
the server to treat this large block of OB/OW/OF data (usually pixel data)
specially (e.g., store in a frame buffer, filter through decompression hardware,
write to disk...) without any overhead introduced by the MCdimseMessage
object.

Using an Attribute Container in a Client Application
A client (SCU) application can register a MCattributeContainer object that will be
called repetitively as the attribute’s value is transmitted over an association
during an MCdimseService class sendRequestMessage or
sendResponseMessage call. During either of these calls, the attribute value
will be handled by your registered MCattributeContainer object before these calls
can return to your application. The MCattributeContainer class can also be used
by the client to specially manage OB/OW/OF data (e.g., read from a frame buffer,
filter through compression hardware or software, read from disk...) without any
overhead introduced by the MCdimseMessage object.

Declaring an MCattributeContainer and
MCattributeContainerEx Classes
The MCattributeContainer interface requires that your container class provide
five methods that will be called by the Merge DICOM library at different times. A
sample class declaration follows:

public class MyContainer : MCattributeContainer{
 …
 public uint provideDataLength(MCattributeSet attribSet,

MCtag tag) {
 }

 public MCdata provideData(MCattributeSet attribSet,

MCtag tag, bool isFirst) {
 }

 public void receiveDataLength(MCattributeSet attribSet,

MCtag tag, uint dataLength) {
 }

 public void receiveData(MCattributeSet attribSet, MCtag

tag, MCdata data, bool isFirst) {
 }

Server callbacks

Client callbacks

How to declare an
MCattributeContainer
class

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

138

 public void receiveMediaDataLength(MCattributeSet
attribSet, MCtag tag, uint dataLength, uint
dataOffset) {

 }
}

The MCattributeContainerEx interface extends MCattributeContainer interface
adding a new provideData method which allows to provide data from a seekable
data stream with a specified offset. A sample class declaration follows:

public class MyContainer : MCattributeContainerEx{
 …
 public uint provideDataLength(MCattributeSet attribSet,

MCtag tag) {
 }

 public MCdata provideData(MCattributeSet attribSet,

MCtag tag, bool isFirst) {
 }

 public MCdata provideData(MCattributeSet attribSet,

MCtag tag, uint offset, bool isFirst) {
 }

 public void receiveDataLength(MCattributeSet attribSet,

MCtag tag, uint dataLength) {
 }

 public void receiveData(MCattributeSet attribSet, MCtag

tag, MCdata data, bool isFirst) {
 }

 public void receiveMediaDataLength(MCattributeSet

attribSet, MCtag tag, uint dataLength, uint
dataOffset) {

 }
}

Writing the provideDataLength method
The provideDataLength method is called by the library to request the data length
of the attribute identified by the tag parameter. The attribute set containing the
attribute is identified by the attribSet parameter. The library will call this
method before it begins calling the provideData method.

This method is required to return the length of the attribute’s value. The returned
data length must be an even number. The hex value 0xffffffff (which means
undefined length in DICOM)may be returned if the attribute contains
encapsulated data.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge
DICOM will make no further calls for this instance of the attribute.

public uint provideDataLength(MCattributeSet attribSet,
MCtag tag)

{
 uint length;

Merge DICOM Toolkit
calls for
the attribute’s
data length

How to declare an
MCattributeContainer
class

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

139

 // If unable to get the attribute value’s length
 throw new MCcallbackCannotComplyException();
 // Set length to the number of bytes contained
 // in the attribute’s value.
 return length;
}

Writing the provideData method
The provideData method is called by the library to request a portion of the
attribute’s value. If an offset is given, the provideData method should use this
offset to read from a data stream.The attribute is identified by the attribSet
and tag parameters.

The value is returned in an MCdata object that contains the data buffer
(managed or unmanaged), the Length property giving the amount of data in the
buffer, and a bool indicator (IsLast). The buffer must contain an even number
of bytes and may be empty. The IsLast property of the returned MCdata object
must be set to true if this is the last portion of the value that will be provided.
Merge DICOM will no longer call provideData for this instance of the attribute
after IsLast is returned true. The Length property must be set to the number
of significant bytes in the data buffer.

isFirst is set by the library to true if this is the first request for the attribute’s
value.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge
DICOM will make no further calls for this instance of the attribute.

public MCdata provideData(MCattributeSet attribSet, MCtag
tag, uint offset, bool isFirst)

{
 Stream stream = null;
 byte[] array = new byte[4096]; bool isLast = false; uint

size = 0;

 if (unableToProvideData)
 throw new MCcallbackCannotComplyException();

 if (isFirst) {
 stream = new FileStream(this.fname, FileMode.Open,

FileAccess.Read, FileShare.Read);
 stream.Seek(offset, SeekOrigin.Begin); }

 // Read the next portion of the value into array
 // put length read into size
 if (thereIsNoMoreData)
 isLast = true;
 MCdata data = new MCdata(array,size);
 data.IsLast = isLast;
 return data;
}

Merge DICOM Toolkit
calls for
the attribute’s
data value

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

140

Writing the receiveDataLength method
The receiveDataLength method is called by the library to provide the callback
class with the data length (dataLength parameter) of the attribute identified by
the attribSet and tag parameters. The library calls this method before calling
the receiveData method.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge
DICOM will make no further calls for this instance of the attribute.

public void receiveDataLength(MCattributeSet attribSet,
MCtag tag, uint dataLength)

{
 if (dataLengthUnacceptable)
 throw new MCcallbackCannotComplyException();

 mYlocalLength = dataLength;
}

Writing the receiveData method
The receiveData method is called by the library to provide the callback with
some or all of the attribute’s value. The library has set the data field of the
MCdata object to a byte array containing all or a portion of the attribute’s value.

isFirst will be true if the library is presenting the first portion of the attribute’s
value. If this is the last portion of the value that the library will present, the
IsLast property of the MCdata object will be true.

The data buffer in the MCdata object may have a length of zero if this is the last
portion of the data (i.e. MCdata.IsLast = true).

Note that this method is not called when processing the MCmediaStorageService
readFileBypassLargeData call because the OB/OW/OF data is left on the
media. Instead, the library calls the receiveMediaDataLength method (see
below).

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge
DICOM will make no further calls for this instance of the attribute.

public void receiveData(MCattributeSet attribSet, MCtag
tag, MCdata data, bool isFirst)

{
 if (anyProblemOccurs)
 throw new MCcallbackCannotComplyException();
 if (isFirst) {
 // Perhaps open an output data sink
 }

 // Save the data

 if (data.IsLast) {
 // perhaps close the data sink
 }
}

Merge DICOM Toolkit
calls to provide the
attribute’s data length

Merge DICOM Toolkit
calls to provide the
attribute’s data length

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

141

Writing the receiveMediaDataLength method
The receiveMediaDataLength method is called by the library when it is
reading a file from media while it is processing an MCmediaStorageService
readFileBypassLargeData call. This method provides the total size of the
attribute’s value and the byte offset of the attribute’s value from the beginning of
the media file.

Note: The library calls this method instead of calling the receiveData method
when it is processing the MCmediaStorageService
readFileBypassLargeData call.

If the method cannot comply with the request, it must throw an
MCcallbackCannotComplyException. If the exception is thrown, Merge
DICOM will make no further calls for this instance of the attribute.

public void receiveMediaDataLength(MCattributeSet
attribSet, MCtag tag, uint dataLength, uint
dataOffset)

{

 if (anyProblemOccurs)
 throw new MCcallbackCannotComplyException();
 // Perhaps save the dataOffset and dataLength
 // so they can be used later to access the data
}

Registering Your MCattributeContainer
Each Application Entity registers its own MCattributeContainer objects. The
MCapplication class registerAttributeContainer method is used to
register an MCattributeContainer object to be used with the Application Entity:

MCapplication myApp; // a non-null reference
MyContainer myContainer = new MyContainer();
MCattributeContainer oldContainer;
oldContainer = myApp.registerAttributeContainer(new

MCtag(MCdicom.PIXEL_DATA), myContainer);

This call registers myContainer, an instance of the MyContainer class (which
must implement the MCattributeContainer interface). myContainer will handle
the pixel data (7FE0,0010) attribute for myApp. A single MCattributeContainer
object can be multiply registered to handle many tags. Also, a single
MCattributeContainer object will handle both transmittal and reception of the data
associated with the tag(s). If the return value is null you know that there was
not a previously-registered attribute container for the attribute.

How to register an
MCattributeContainer object

registerAttributeContainer

Merge DICOM Toolkit
calls to provide the
attribute’s data length
and data offset

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

142

Releasing Your MCattributeContainer
To “de-register” your attribute container class, use the
releaseAttributeContainer method of the MCapplication class. The
method releases the callback object that was registered for the attribute identified
by the MCtag parameter. The callback’s methods will no longer be called when
the attribute’s value is being received or when the attribute’s value is required.

The callback’s methods will still be called, however, for MCdimseMessage
objects or MCfile objects that were created before this method call was made.

Sequences of Items
The DICOM Value Representation SQ is used to indicate a DICOM attribute that
contains a value that is a sequence of items. Each item in the sequence is an
attribute set (MCitem class). Each of the attribute sets can also contain
attributes that have a VR of SQ. This powerful capability allows the nesting of
attribute sets, or the definition of ‘container’ objects (such as folders, film boxes,
directories, etc.).

Figure 15 shows a DICOM message containing a sequence of items running two
levels deep. Note that these nested sequences are contained within the same
Message Stream. Sequences of items can also be contained in a DICOM file,
and we will see that they are contained in DICOMDIR’s. An attribute whose
value is a sequence of items is simply an attribute that has a potentially large and
complex value. Fortunately, Merge DICOM Toolkit allows your application to
deal with sequences of items an item at a time and hierarchically, as pictured in
Figure 15, and takes care of the encoding of the sequence within the DICOM
message stream.

Command Object Instance

= Command Attribute = Object Instance Attribute

. . .

.

SQ Attribute

SQ Attribute SQ Attribute

DICOM Message

Sequence of Items

Sequence of Items Sequence of Items

 . . .

Item 1 Item 2 Item n

Item 1 Item 2 Item 1

Values for SQ attributes

MCitem

Items in a message
stream

How to release an
MCattributeContainer object

releaseAttributeContainer

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

143

Figure 15: A DICOM Message containing doubly nested sequences of items.

Each item in a sequence is handled as a special derived sub-class of the
MCattributeSet class, called MCitem. All the MCattributeSet methods are
inherited by the MCitem class.

Similar to the constructors for MCdataSet objects, there are two variations of the
MCitem constructor. You can create an “empty” item attribute set by providing
no parameter to the constructor. If you wish to have the item populated by
Merge DICOM with specific attributes, you supply an itemName parameter used
to identify the item. If the itemName is unknown to Merge DICOM a warning
message is logged and an empty MCitem object is constructed.

MCitem emptyItem = new MCitem();
MCitem myItem = new MCitem(“REF_FILM_BOX”);

Available item names are listed in the message.txt file for attributes in
messages having a VR of SQ. The contents of each item are also listed in the
message.txt file. Below are two excerpts of message.txt, one showing a
reference to the Referenced Film Box Item, and the other the contents of that
item.

BASIC_FILM_SESSION - N_SET_RQ

0008,0005 Specific Character set CS 3
Defined Terms: ISO-IR 100, ISO-IR 101, ISO-IR 109, ISO-IR 110,
ISO-IR144, ISO-IR 127, ISO-IR 126, ISO-IR 138, ISO-IR 148
0008,0012 Instance Creation Date DA 3
0008,0013 Instance Creation Time TM 3
0008,0014 Instance Creator UID UI 3
0008,0016 SOP Class UID UI 3
0008,0018 SOP Instance UID UI 3
2000,0010 Number of Copies IS 3
2000,0020 Print Priority CS 3
Enumerated Values: HIGH, MED, LOW
2000,0030 Medium Type CS 3
Defined Terms: PAPER, CLEAR FILM, BLUE FILM
2000,0040 Film Destination CS 3
Enumerated Values: MAGAZINE, PROCESSOR
2000,0050 Film Session Label LO 3
2000,0060 Memory Allocation IS 3
2000,0500 Referenced Film Box Sequence SQ 3
Item Name(s): REF_FILM_BOX

 .
 .
 .

Item Name: REF_FILM_BOX

0008,1150 Referenced SOP Class UID UI 1
0008,1155 Referenced SOP Instance UID UI 1

To encode an item into an attribute of Value Representation SQ, treat the
attribute as a multi-valued attribute, where each value is an MCitem object. This
means using an MCitem reference with the MCattributeSet addValue, setValue

Encoding and decoding
attributes in an item

Encoding items in a
sequence

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

144

or indexer. Similarly, the MCattributeSet indexer methods return MCitem objects
when you request the value of a sequence attribute.

The following sample code fragment gives an example of encoding a Pre-
formatted Grayscale Image Item into a sequence:

MCitem myItem = new MCitem(“PREFORMATTED_GRAYSCALE_IMAGE”);

MCdataSet ds; // non-null reference to the
 // data set we are building

myItem[MCdicom.PIXEL_ASPECT_RATIO, 0] = “1”;
myItem[MCdicom.PIXEL_ASPECT_RATIO, 1] = “1”;

/* encode other item attributes here */

 .
 .
 .
/* now add the item to the sequence */
ds[MCdicom.PREFORMATTED_GRAYSCALE_IMAGE_SEQUENCE, 0] =

myItem;
 .
 .
 .

DICOM Files
Maintaining a DICOM file set is a matter of maintaining various DICOM files and
a single DICOM directory file (DICOMDIR).

DICOM media files are encapsulated in the MCfile class. A sub-class of the
MCfile class, the MCdir class, encapsulates a special DICOM directory file,
called the DICOMDIR. Just as DICOM network messages (the
MCdimseMessage class) contain a command set (MCcommandSet) and a data
set (MCdataSet), so the MCfile class contains a special file meta information
attribute set (the MCfileMetaInfo class) and a data set (MCdataSet).

Figure 16 demonstrates the attribute sets contained in DICOM network messages
and DICOM file objects.

DICOM message objects

MCfile
MCdir
MCfileMetaInfo

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

145

MCcommandSet

MCdataSet

M
C

at
tr

ib
ut

eS
et

 s
ub

-c
la

ss
es

Network Message
MCdimseMessage

MCfileMetaInfo

MCdataSet

DICOM file object
MCfile

M
C

at
tr

ib
ut

eS
et

 s
ub

-c
la

ss
es

Figure 16: Attribute Sets Contained in DICOM objects

Constructing a new MCfile Instance
The Media Storage Service manipulates MCfile objects. There are several
options available to construct new instances of the MCfile class. As mentioned
before, each MCfile instance contains an MCdataSet object and an
MCfileMetaInfo object. The MCfile may be constructed with a pre-populated data
set or with an empty data set.

It is important to realize that constructing an MCfile object does not create the
physical DICOM file out on the media; the write method of the
MCmediaStorageService class described later does that.

Construct an MCfile object with a pre-populated data set
Two forms of the constructor create an MCfile object that contains all of the
attributes of a DICOM file that will be used for the given service and command.
The attributes are maintained in a MCfileMetaInfo object and an MCdataSet
object. Normally you will only deal with the data set and the file meta information
attributes will be set automatically by Merge DICOM Toolkit.

MCfile myFile = new MCfile(command, serviceName,
“MyFileName”);

or-
MCfile myFile = new MCfile(command, serviceName);

serviceName and command are used to access configuration information that
describes the attributes of the message. If such configuration information is not
available, an empty file object is created, and a warning message is logged. The
filename parameter, if used, provides the name of the operating system file to be
associated with this MCfile object

Several ways to construct
file objects

Populating the file
with a service’s attributes

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

146

Construct an MCfile object with an empty data set
Two forms of the constructor are used if the service and command are not yet
known, or if there is no need to validate that values will be set only for attributes
assigned to a given service/command pair. It creates an empty MCdataSet
object. The resulting MCfile object is not associated with any particular DICOM
service or command. If the validate method is to be called, the
setServiceCommand method must be called first to associate this file object
with a given DICOM service and command.

MCfile myFile = MCfile(“MyFileName”);
or-
MCfile myFile = new MCfile();

The filename parameter, if used, provides the name of the operating system file
to be associated with this MCfile object.

Just as when you construct an empty MCdimseMessage object for networking,
when you construct an empty MCfile object, the message info and data dictionary
files are not accessed. This object contains no pre-allocated attributes in the
contained MCfileMetaInfo and MCdataSet objects, and the
setServiceCommand method must be called to set the service and command
for this file before it can be written to the file set. As in the case of networking,
this approach is more efficient but penalizes you in the area of run-time error
checking.

Convert an MCdimseMessage object to an MCfile object
Another form of the constructor converts a network message object into a file
object associated with a specified file system file.

MCdimseMessage message; // a non-null reference
MCfile myFile = MCfile(message, “MyFileName”);

The data set contained in message will be used in this object.

Note: The original MCdimseMessage and the new MCfile objects will be
sharing the same MCdataSet object. The filename parameter provides
the name of the operating system file to be associated with the MCfile
object.

Accessing the service and command properties
It the service and command for the MCfile object were not specified when the
object was constructed, they can be provided later, using the
setServiceCommand method. The service and command must be set if you
wish to use the validate method. The Command and ServiceName properties
can be used to retrieve these properties.

myFile.setServiceCommand(“STANDARD_CT”,
MCdimseService.C_STORE_RQ);

String serviceName = myFile.ServiceName;
ushort command = myFile.Command;

Constructing
an ‘empty’ file object

Preparing to save a
network message to file

Service and Command
Properties

setServiceCommand
ServiceName
Command

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

147

Working with the contained file meta information
The File Meta Information (MCfileMetaInfo) encapsulated in the MCfile class
contains identifying information about the data set also encapsulated in a DICOM
file. The meta information consists of a fixed-length 128-byte file Preamble, a
DICOM Prefix (“DICM”), followed by several DICOM attributes providing the
properties of the encapsulated data set. (Refer to Part 10 of the DICOM
standard for more details.) The contents of this object are maintained
automatically by Merge DICOM Toolkit, although the MetaInfo property of the
MCfile class returns a reference to its contained MCfileMetaInfo object. Using
that reference, you can call the methods it inherits from MCattributeSet.

// Get the file meta info attribute set
MCfileMetaInfo metaInfo = myFile.MetaInfo;

// Retrieve the attributes of the file meta info
foreach (MCattribute attr in metaInfo.Attributes) {
 // Use MCtag toString method to list each tag
 System.Console.Out.WriteLine(attr.Tag.ToString());
}

Accessing the File Preamble
The Preamble property is provided to access the preamble portion of the file
meta info. The property can be used to get or set the preamble. This property is
available in both the MCfile container class and the MCfileMetaInfo class.

byte[] preamble = myFile.MetaInfo.Preamble;

// The same could be accomplished as follows:
byte[] preamble = myFile.Preamble;

Working with the contained data set
The data set (MCdataSet) encapsulated in the MCfile class contains the DICOM
information object associated with the file. You can retrieve a reference to the
contained MCdataSet object with the DataSet property. Using that reference,
you can call the methods it inherits from MCattributeSet.

// Get the data set attribute set
MCdataSet ds = myFile.DataSet;

// Retrieve the attributes of the data set
foreach (MCattribute attr in ds.Attributes) {
 // Use MCtag toString method to list each tag
 System.Console.Out.WriteLine(attr.Tag.ToString());
}

Resetting the MCfile object
You can use the removeFileValues method to remove the values of each
attribute in the file’s data set and meta info set. This is equivalent to calling the
MCattributeSet removeValues method for each attribute in the file’s contained
MCdataSet and MCfileMetaInfo objects. This method is useful for applications
that reuse an MCfile object and want to insure there are no attribute values
remaining from the last use of the object. Attributes with no values are skipped
when streaming the collection for network transfer or for writing a DICOM file.

File Meta Information
Attribute Set

MCfileMetaInfo
MetaInfo

The Data Set

MCdataSet
DataSet
removeFileValues

Starting Over

removeFileValues

File Meta Information
Attribute Set

MCfileMetaInfo
MetaInfo
Preamble property

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

148

myFile.removeFileValues();

File validation
You can validate that the data set meets the requirements of the
service/command pair associated with the file by using the validate method of
the MCfile object. (You could also use the validate method of the contained
MCdataSet object). You can also validate an individual attribute within the data
set using the validateAttribute method.

MCfile myFile; // non-null reference

bool validates;
validates = myFile.validateAttribute(MCdicom.PATIENTS_NAME,

MCvalidateLevel.Errors_Only);
if (!validates)
{
 MCvalidationError err = myFile.g,etNextValidationError();
 while (err != null)
 {
 System.Console.Out.WriteLine(err.ToString());
 err = msg.getNextValidationError();
 }
}

To understand the overhead involved in file validation, please refer to The
Overhead of Validation on page 124.

The MCfile stream
Merge DICOM concatenates the contents of the MCfileMetaInfo object and the
MCdataSet object when streaming the MCfile object. We will discuss later how
to use the MCmediaStorageService to read and write the DICOM file streams.
You may need to know ahead of time how large the streamed file object will be
before writing the object to media. The stream’s size can be obtained using the
streamLength method.

uint length = myFile.streamLength();

Setting the file transfer syntax UID
You can use the TransferSyntax property to set the value of the DICOM
“Transfer Syntax UID” associated with this file. It is sets attribute (0002,0010) in
the file’s file meta information to the UID string you provide.

myFile.MetaInfo.TransferSyntax =
MCtransferSyntax.ExplicitLittleEndian;

Setting the file system file associated with the MCfile object
Whether or not you specify a file system file name when constructing the MCfile
object, you can set or get the name at any time using the FileName property:

myFile.FileName = “FileName”;
String file = myFile.FileName;

Data Set Validation

validate
validateAttribute

How big is the file stream?

streamLength

The transfer syntax UID

TransferSyntax property

The file’s name

FileName property

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

149

Listing the file’s attributes
The list method produces a report describing the contents of the File Meta Info
and Dataset contained in this MCfile. The report will be written to the stream
identified by the stream object provided. If no stream object is specified the report
will be written to the system’s standard output (stdout).

If the object contains an attribute with a Value Representation of SQ (sequence
of items), each item in the sequence will be listed. Each sequence of items is
indented in the listing four spaces to the right of its owning message or items.

System.IO.StreamWriter writer = new StreamWriter(“myFile”);
myFile.list(writer); // list to myFile

myFile.list(); // list to stdout

Using the MCmediaStorageService Class
Analogous to the MCdimseService class that handles DICOM network message
exchange, the MCmediaStorageService class handles services dealing with
DICOM media files. The MCmediaStorageService provides methods to read and
write DICOM files.

All the media interchange functionality of the DICOM Toolkit relies on methods
that you supply to interface with the particular physical medium and file system
format on your target device. This approach was chosen because of the wide
variety of media and file system configurations allowed by the DICOM Standard
and the potentially unlimited combination of media devices, device drivers, and
file system combinations for which DICOM media interchange applications may
be developed.

Similar to working with streams, if your application will read DICOM files, you
must use a class that implements the MCdataSource interface. If your
application will write DICOM files, you must use a class that implements the
MCdataSink interface. These interfaces have been discussed in detail in
previous sections.

You will find that the DICOM Toolkit provides powerful DICOM media
functionality by supplying your application with:

• a greatly simplified way to deal with the complex encoding and decoding
required within a DICOM file.

• an API that is very consistent with that used for the maintenance of DICOM
messages used in network functionality; many of the encoding and decoding
methods already described apply equally to DICOM file attribute sets.

To perform all this functionality on your medium of choice, you need only supply
the two file system interface implementation, just discussed, and use the
methods of the MCmediaStorageService class.

You must interface with the
selected media device

Listing the file

list

DICOM
File Service Classes

MCfileService
MCmediaStorageService

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

150

Figure 17: Classes and Methods Used for Handling DICOM Media Files

Constructing an MCmediaStorageService object
Each MCmediaStorageService instance is associated with an application entity.
It is necessary to provide a reference to your AE’s MCapplication object when
constructing an instance of the MCmediaStorageService.

MCapplication myApp; // non-null reference
MCmediaStorageService myMediaService = new

MCmediaStorageService(myApp);

Reading Files
To read in the contents of a DICOM file for analysis or parsing you use one or
three methods available in the MCmediaStorageService class for reading DICOM
files. Each of the methods passes a reference to a class that implements the
MCdataSource interface. The callback class will actually read the file stream
from media.

The three methods are:

• readFile — This method calls your MCdataSource to retrieve the DICOM file
stream. It decodes the stream and populates the MCfileMetaInfo and
MCdataSet attribute sets that are contained in your MCfile object. If the
stream contains an attribute for which an MCattributeContainer instance has
been registered, the attribute’s value is passed on to the
MCattributeContainer, rather than having Merge DICOM store the value.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile(“FileName”);
MCdataSource source = new

MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new

MCmediaStorageService(myApp);
try {

DICOM
Media

Application

DICOM
Media

writeFile()

MCdataSink

MCdataSource

readFile()
readFileUpToTag()
readFileBypassLargeData() DICOM

File

File System Interface MCmediaStorageService

MCfile
object

DICOM
File

MCfile
object

A Media Storage Service
is associated with your
application

Three ways
To read a media file

Pass OB/OW/OD/OF data
to registered callbacks (if
any)

readFile

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

151

 service.readFile(fileObj, source);
} catch (Exception e) {…}

• readFileBypassLargeData — This method reads the file just as the readFile
method does, with one exception. If the stream contains an attribute for
which an MCattributeContainer instance has been registered, the attribute’s
value is NOT passed on to the MCattributeContainer, but instead the values
length and offset into the file is passed to the receiveMediaDataLength
method of the MCattributeContainer. This provides the opportunity for
substantial performance improvement. Note that if no MCattributeContainer
is registered for the OB/OW/OD/OF attribute, the attribute’s value will be
stored by Merge DICOM Toolkit, as usual.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile(“FileName”);
MCdataSource source = new

MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new

MCmediaStorageService(myApp);
try {
 service.readFileBypassLargeData(fileObj, source);
} catch (Exception e) {…}

• readFileUpToTag — This method retrieves the values of the file stream just
as the readFile method does, but it will stop requesting data when it has
processed the last attribute whose tag is ≤ the “last tag” parameter. It will
return the file offset to the first byte of the first attribute whose tag is > the
“last tag” parameter.

This method can be used to increase performance for handling attributes of
Value Representations OB, OW, OD or OF. It is most useful when a file
contains pixel data (7FE0, 0010) as its last attribute and this pixel data is
very large. In these instances you may wish to ignore the pixel data, read it
in later (using the returned file offset), or process it directly from the file using
your own special filters or hardware. This can be done by specifying
MCdicom.PIXEL_DATA for “last tag” parameter.

MCapplication myApp; // non-null reference

MCfile fileObj = new MCfile(“FileName”);
MCdataSource source = new

MCfileDataSource(fileObj.FileName);

MCmediaStorageService service = new

MCmediaStorageService(myApp);
try {
 service.readFileUpToTag (fileObj, MCdicom.PIXEL_DATA-1,

source);
} catch (Exception e) {…}

The other way to handle the large pixel data (7FE0, 0010) is to use
overloaded readFileUpToTag method defined with parameter
bypassOBOW. If bypassOBOW is set to true than the attribute will be read,

Pass OB/OW/OD data
offset and length only
to registered callbacks (if
any)

readFileBypassLargeDat

Read only up to the Pixel
Data

readFileUpToTag

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

152

but its attributes value ignored. The above example in this case will look as
following:

try {
 service.readFileUpToTag (fileObj, MCdicom.PIXEL_DATA,

true, source);
} catch (Exception e) {…}

You might use a callback mechanism to retrieve the attribute’s value upon
request later (see "Using a Callback Class to Retrieve an Attribute’s
Value" section for details).

See the Assembly Windows Help File for a detailed description of the use of
these read methods.

Creating and Writing Files
When you have a populated MCfile object you can create a DICOM file stream
by using the writeFile method of the MCmediaStorageService class. This
method utilizes the MCdataSink class to present the file stream for writing to
media.

If your application has one or more MCattributeContainer objects registered for
OB/OW/OF attributes, the writeFile method retrieve an attribute’s value from
a callback if an MCattributeContainer callback is registered for it.

The second parameter of writeFile specifies a byte padding number. The
attribute (FFFC, FFFC) will be added to the MCfile object and given a length
such that the total length of the streamed file is a multiple of the byte padding
number. If 0 is specified, there will be no padding of the file stream. The
parameter must be an even number.

If the file contains “group length” attributes (i.e. attributes with tags of the form
gggg0000: any group, element zero), this method will automatically calculate the
group length value when supply it to the callback.

The byte stream will be formatted in the transfer syntax specified by the attribute
transfer syntax UID (specified by the MCdicom.TRANSFER_SYNTAX_UID
(0002,0010) attribute in the file’s Meta Information set). (You can set this value
using the TransferSyntax property of the MCfile class.)

Two group 2 attributes within the file meta information will be automatically filled
in if you have not set them yourself:

• The Implementation Class UID (0002,0012) will be filled in with the value set
for the IMPLEMENTATION_CLASS_UID configuration value in the
mergecom.pro file.

• The Implementation Version Name (0002,0013) will be filled in with the value
set for the IMPLEMENTATION_VERSION configuration value in the
mergecom.pro file.

DICOM allows you
to pad the file

Merge DICOM Toolkit
assures accurate group
lengths

You control the endian
used in the file stream

Merge DICOM Toolkit
automatically
sets fields in the
File Meta Information

writeFile

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

153

The following example is taken from the StorageSCP sample application.

MCapplication myApp; // non-null reference
MCdimseMessage msg; // a network message just received
MCfile fileObj = new MCfile(msg, “MyFileName”)
MCdataSink destination = new

MCfileDataSink(fileObj.FileName);
MCmediaStorageService mediaService = new

MCmediaStorageService(myApp);
try {
 mediaService.writeFile(fileObj, 0, destination);
} catch (Exception e) {
 System.Console.Out.WriteLine(“writeFile failed”, e);
}

Saving Raw (Unparsed) Messages as DICOM Files
A common usage of the Merge DICOM Toolkit is to save incoming (received from
network) messages. When reading a DICOM message from network, attributes
in a message are parsed, validated before storing them in memory, and then
later written out from memory objects to a DICOM file. With a message that has
many level of nested items, the parsing/creating of DICOM attributes in memory
have a significant impact in performance. Very often, the intention of the Storage
SCP application is to write out the received message content to a DICOM file
without the need to modify the attributes of the message. When such a case is
needed, it is best to just save the raw streamed content as quickly and efficiently
as possible. The following code snippet shows how to save an incoming
message into a DICOM file without parsing: (For detail implementation, please
refer to samples\StorageSCP\StorageSCP.cs in the distribution folder.)

 // To read message from the association and save the raw
 // content without parsing the message's dataset, use
 // MCassociation.readToTag() to read only the "group 0"
 // part of the message instead of using
 // MCassociation.read() to read the entire message content.
 msg = assoc.readToTag(30000,
 0x00010000, // (0001,000) tag is just after group 0
 out error);

 // Add DICOM Group 2 elements to a new dummy MCfile object
 // using the group 0 elements of msg.
 MCfile fileObj = new MCfile();

 // Refer to addGroup2ElementsFromGroup0() in
 // samples\StorageSCP\StorageSCP.cs
 if (!addGroup2ElementsFromGroup0(msg, fileObj))
 {
 // error
 }

 // Create file sink with a file name to write
 MCfileDataSink sink = new MCfileDataSink(file.ToString());

 // Stream out the dummy fileObj that contains only metaInfo.
 // Transfer syntax must be ExplicitLittleEndian
 fileObj.MetaInfo.streamOut(
 MCtransferSyntax.ExplicitLittleEndian, sink);

Sample media write snippet

Performance
Tuning

Raw (Unparsed)
Messages

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

154

 fileObj.dispose();

 // Continue to read data set from original message and
 // stream out directly
 MCReadError error = assoc.continueReadToStream(sink, msg);

 // Close file sink
 sink.close();

 // Dispose received message
 msg.dispose();

Note: Due to the raw saving technique, non DICOM compliant message will be
saved as is and no warning will be issued (due to no parsing of
message).

The DICOMDIR file
As discussed earlier, in each DICOM File Set (containing many DICOM files)
their must exist a single DICOM File with the reserved File ID “DICOMDIR”.
This file contains identifying information for the file set that most often includes a
directory of the file sets contents. A media interchange application would make
use of and maintain the DICOMDIR to locate a particular file within the file set for
processing.

Structure
A information object portion of a DICOMDIR file has a special structure that is
described in Part 3 (PS 3.3) of the DICOM Standard. We described the this
structure earlier in this document (see Figure 8 on page 38) as a hierarchy of
directory records, where each directory record may contain a set of related
directory records. These directory records can have a one-to-one relationship to
a DICOM file within the file set described by the DICOMDIR. Directory records
do not have to reference a DICOM file, they can be used solely to contain
information that helps an application navigate down the directory hierarchy to
locate the desired DICOM file.

As an example, the Root directory record might contain two Patient directory
records and a Topic directory record. One of the Patient directory records
references multiple Series records and a Film Session record for that Patient.
Each of these Series records reference Image records for that patient. It is these
Image records that reference the DICOM file containing the image objects
acquired for the Patient whose directory hierarchy we have traversed. (See
above on page 39 for a description of the allowed entity hierarchies).

This directory record hierarchy is encoded within the DICOMDIR as a single,
potentially very complex, sequence of items where each item is a directory
record. Byte offset attributes within the directory records are used to point to
other directory records at the same level in the hierarchy, as well as lower-level
directory records. DICOM File ID’s are encoded in the directory record if the
record references a particular DICOM file in the file set.

Review:
what are
directory entities?
directory records?

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

155

The key observation here is that rather than using nested Sequences of Items to
encode the DICOMDIR hierarchy, the standard chose to use a single, potentially
very large, sequence of items and byte offsets. The standard defines these byte
offsets as being measured “from the first byte of the file meta-information”. As
you might well imagine, the complexity of maintaining these byte offsets
accurately, as directory records are added to or removed from directory entities
within the DICOMDIR file, is very great and can be very cumbersome.

Fortunately, the Merge DICOM Toolkit supplies methods that make DICOMDIR
maintenance much simpler for your application. These methods are now
described.

Constructing a new MCdir Instance
To create a special type of DICOM file that contains a DICOMDIR directory,
construct a new MCdir object. The MCdir class is a subclass of the MCfile class
since it is simply a form of a DICOM file. The file name provided MUST refer to a
file named “DICOMDIR”.

MCdir myDICOMDIR = MCdir (“HERE/DICOMDIR”);

When you construct an MCdir object, Merge DICOM creates an instance of the
MCfile class that has a service name of “DICOMDIR” and uses C_STORE_RQ
for the command (see Error! Reference source not found.).

The MCdirRecord class
The MCdirRecord class represents a DICOMDIR record and is simply a
container for a number of public properties and methods:

• Parent — A property that returns the MCdirRecord instance for the parent
record of this directory record.

• RecordName — This property gets a String name assigned to the requested
DICOMDIR record

• Directory — This property returns the MCdir that this directory record is
contained within.

• IsLast — a Boolean that is true if the record is the last child record of the
parent record. This property is not updated when new child records are
added or removed to/from the parent record.

• RecordItem — This property is the MCitem instance for the directory
record.

• getChildCount()— This method returns a count of the number of child
records.

• getFirstChild()— This method returns the MCdirRecord for the first
child of this directory record.

• getNextChild()— This method can be called repeatedly to get
subsequent child directory records.

DICOMDIR’s are ugly!

But we pretty them up

MCdir extends the MCfile
class

MCdir

Directory record properties

MCdirRecord

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

156

• getReferencedRecordCount() — This method traverses all child
directory records and returns a count of these records.

• addChildRecord(String newItemName) — This method adds a child
record.

• delete() — This method deletes the current directory record within the
DICOMDIR.

• deleteChildren() — This method deletes all the child directory records
below this record.

The following sections describe these methods and properties in further detail.

Navigating the DICOMDIR
The MCdirRecord class provides routines for traversing the DICOMDIR. The
MCdir class has a property, Root, which returns an MCdirRecord instance which
is a placeholder for the parent of the root directory records within the DICOMDIR.
This directory record in turn can be used to navigate through the root records of
the DICOMDIR and the remainder of the DICOMDIR.

The first step in navigating a DICOMDIR usually involves getting the Root
property root of the DICOMDIR. From there the getFirstChild and
getNextChild are used to traverse lower level records referenced by a
particular record. When working with a specific directory record, the
RecordItem property can be used to get the MCitem associated with a specific
directory record. This MCitem instance can be used to access the attributes
within the directory record. The following code sample shows the use of these
routines.

MCdir dir; // Non-null reference
MCdirRecord rootRec = dir.Root;
MCdirRecord curRec;
curRec = rootRec.getFirstChild();
while (curRec != null)
{
 if (curRec.RecordName.Equals(“DIR_REC_PATIENT”))
 {
 MCitem item = curRec.RecordItem;
 // Access patient directory record tags here
 }
 curRec = rootRec.getNextChild();
}

In the above example, the directory records below the root record could be
traversed by calling the getFirstChild and getNextChild routines.

Please refer to the MCdirRecord and MCdir classes in the Assembly Windows
Help File for further details on traversing a DICOMDIR.

navigating through a
DICOMDIR

MCdirRecord
MCdir.Root

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

157

Adding and Deleting DICOMDIR Records
The addition and deletion of directory records are handled using the
addChildRecord, deleteChild, and delete methods. These calls are prototyped
as follows:

public MCdirRecord addChildRecord(String newItemName);
public void deleteChildren();
public void delete();

When adding a directory record, you must supply a string identifying the
directory record item type (newItemName). For example, if you wished to add a
Study record, newItemName would be a string containing “DIR_STUDY”. The
method returns an MCdirRecord object encapsulating the newly created directory
record.

When deleting records using deleteChildren or delete no parameters are
required. When a directory record is deleted, all lower level directory entities
(and the directory records contained within them) are also freed. The
deleteChildren deletes all children for the current directory record. The delete
method deletes the current record and all of the children of the directory record.

The Merge DICOM Toolkit updates and maintains all the byte offsets that are
part of the DICOMDIR structure automatically. But, one important note: All the
changes to a DICOMDIR are made in memory and are not committed to media
until a writeFile call is made.

Memory Management
The Merge DICOM C library contains it’s own memory management routines
that are optimized for how it uses memory. They have been adapted to manage
specific data structures that are frequently allocated by the Merge DICOM C
toolkit. These include but are not limited to data structures for associations,
messages, and tags. The memory management routines have the characteristic
that they do not actually “free” the memory that has been acquired. Instead, they
mark the data as being free and place the memory in a list for reuse later. These
routines have been optimized to quickly acquire and free memory being used by
Merge DICOM Toolkit. They also allow Merge DICOM to not depend on the
memory management of a particular operating system.

These memory routines have also been extended for use with variable sized
memory buffers. Merge DICOM uses these routines to allocate buffers in sizes
between 4 bytes and 28K. When an allocation is requested, Merge DICOM will
take the smallest buffer that will fit the bytes requested. These buffers will be
kept in Merge DICOM Toolkit’s internal memory pool and never freed. For
allocations larger than 28K, Merge DICOM will simply use the ‘C’ functions
malloc() and free().

The end result of these routines is that applications using Merge DICOM expand
to the maximum amount of memory used at one time. The total memory
allocation will not shrink from this point. In applications that repeatedly perform a
consistent operation, the memory being used by Merge DICOM should stabilize
and not increase in size. As a result of these routines, the first time an
application performs a DICOM operation is typically slower than subsequent
operations.

Make sure you are
committed!!

Automatic deletion of
referenced items

Adding and deleting
directory records

dirAddRecord
dirDeleteRecord

Performance Tuning

Really!
It’s not a memory leak

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

158

When developing a DICOM application with Merge DICOM Toolkit, the most
memory intensive operation is dealing with image data. The following sections
discuss various Merge DICOM methods. A description is given of how these
methods manage memory in conjunction with various Merge DICOM
configuration settings.

Assigning Pixel Data
The MCattribute.setValue method is used in conjunction with the
MCdataSource interface to assign OB, OW, OD or OF data to a DICOM
attribute. These value representations are used to store image data or other
large data elements. setValue is described in further detail elsewhere in this
manual.

The MCdataSource implementation can pass data to the library in a single
call, or in several smaller chunks. When passed data, the library will
allocate a buffer the size of the chunk passed to it and copy the data into this
buffer for storage.

The size of data returned by provideData will dictate how the image data is
stored. If the data is passed in chunks smaller than 28K, Merge DICOM Toolkit’s
internal memory management code will be used. If the chunks are larger than
28K, malloc() will be used to allocate storage for the buffers. If large images
are being dealt with, it may be desirable to pass this data in chunks larger than
28K, so the memory is freed after processing has been completed for the image.
This will keep the nominal memory usage of Merge DICOM lower. When
passing data in chunks less than 28K, it is recommended that sizes of 16K, 20K,
24K, or 28K be used. Using these size chunks will reduce the overhead in
storing the data.

The library can also be directed to store data in temporary files. The
LARGE_DATA_STORE and LARGE_DATA_SIZE configuration options in the
mergecom.pro file dictate when data is stored in temporary files. When the
LARGE_DATA_STORE option is set to FILE, data elements that are larger than
configured by the LARGE_DATA_SIZE option are stored in temporary files. The
size of buffer returned by provideData does not have an effect on memory usage.

Using Attribute Containers
Merge DICOM also supplies a method to allow the user to manage image data
through the use of registered callback methods. The MCapplication class
registerAttributeContainer method associates a callback class with a
DICOM attribute such as pixel data. These callbacks are limited to attributes with
the value representations of OB, OW, OD or OF. When encountered, the
attribute’s data is passed to a method of the registered callback class instead of
being stored within Merge DICOM Toolkit. The callback is also used to supply
the attribute’s data. The size of data elements to use in callbacks can also be
specified. The CALLBACK_MIN_DATA_SIZE configuration option can specify the
minimum size or length required for the use of a registered callback class.

There are three models in which registerAttributeContainer can be
used. First, it can be used to seamlessly replace Merge DICOM Toolkit’s
memory management functions. Use of this method can for the most part be

Performance
Tuning

setValueFromMethod

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

159

hidden from the application. Secondly, the method can be used as an interface
to receive or supply data only when it is needed. When writing a network
application, the image data can be supplied to the user directly as it is read off
the network. The data can also be supplied when it is about to be written to the
network. This functionality can also be used when creating and reading DICOM
files. Finally, registerAttributeContainer can be used to save an image
to disk as it is received over the network.

Replacing Merge DICOM Toolkit’s Memory Management
Functions
When using registerAttributeContainer to replace Merge DICOM
Toolkit’s memory management functions, the user would still use the MCattribute
readBulkData and setValue methods to access the image. When requested,
Merge DICOM will receive or supply the attribute’s value to the attribute
container.

Accessing Data When Needed
When dealing with large multi-frame images, it is sometimes impractical to load
the entire image into memory at once. registerAttributeContainer can
be used to access image data only when needed. The memory requirements of
an application can be greatly reduced by using this functionality.

When reading messages from the network, the MCassociation read method
supplies the user’s registered callback class with the image data. If the data
does not need to be byte swapped into the system’s native endian, the amount of
data supplied with each call is dictated by the PDU size of the data received.
When the data is byte swapped, the length of data is specified by the
WORK_BUFFER_SIZE configuration value. As the data is received, it would
typically be written to disk in this scenario. When the read method returns, the
user is given the message read from the network encapsulated in an
MCdimseMessage object. The message object still contains a link to the
registered callback class. This link can be removed by calling the MCattributeSet
removeValues method for the registered attribute. The header data can then
be examined and later written to disk.

When sending data over the network, the MCdimseService class
sendRequestMessage method (or the equivalent method from one of the
MCdimseService subclasses) will call the user’s registered callback class for the
image data. The data can be supplied to Merge DICOM in any length as
required by the user’s application. The data is typically read from disk at this
point and directly passed to Merge DICOM Toolkit. After
sendRequestMessage receives the data, it byte swaps the data if needed, and
then writes it to the network.

This functionality is conducive to storing a message’s header data separately
from its image data. Depending on system requirements, this may be an aid in
quickly loading image data while bypassing Merge DICOM Toolkit. The complete
image file can be reassembled later using Merge DICOM Toolkit.

This can be tricky

Performance Tuning

read
sendRequestMessage

Performance Tuning

getValueToMethod
setValueFromMethod

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

160

Saving Received Images Directly to Disk
In conjunction with the registered callback class, data can also be stored directly
to disk when it is being read. The image’s header data can be written to disk from
within the registered callback. The user must write the attribute tag, value
representation if needed, and the length of the image data attribute to the file.
The image data is written to the file in subsequent calls to the user’s registered
callback method.

When read is parsing a message being received, it will notify the user’s
registered callback class when it has parsed the header information and
determines the image data’s length. The registered callback’s
receiveDataLength method will be called, providing the length of the
registered attribute’s value, as well as a reference to the MCattributeSet being
populated. At this point, the user can stream the header file to disk using the
MCattributeSet streamOut method. As the image data is received, it can be
added to the end of this file.

Data can also be stored as DICOM files with this method. The message cannot
be converted into a file object at this point using the special form of the MCfile
constructor as would normally done. So, a separate MCfile object must be
constructed to add the DICOM Part 10 Meta Header information. This header
can be written out from within the callback by using the streamOut method on
the contained MCfileMetaInfo object. After the end of the meta header, the
message can be streamed to disk with a call to streamOut in the transfer syntax
specified in the Meta Header. As subsequent image data is passed to the user’s
callback class, the data can be written to file. Because the endian of the transfer
syntax being written may be different than the endian of the system being used,
there may be a need for byte swapping of the pixel data in this implementation.

There is a potential risk with this implementation. Although the data elements
after the pixel data in the current definition of the DICOM image types are not
widely used, future versions may add data elements that will get wider
acceptance among implementors.

DICOM Structured Reporting
The Merge DICOM Toolkit provides high-level functionality to handle DICOM
Structured Report (SR) Documents. This functionality provides a simple way for
encoding and decoding SR Document content by manipulating content items and
their attributes instead of tags and values.

Structured Report Structure and Modules
The DICOM standard Part 3 defines the following generic types of SR
Information Object Definitions (IODs):

Performance Tuning

Read streamOut

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

161

• Basic Text SR Information Object Definition — The Basic Text Structured
Report (SR) IOD is intended for the representation of reports with minimal
usage of coded entries (typically used in Document Title and headings) and a
hierarchical tree of headings under which may appear text and subheadings.
Reference to SOP Instances (e.g., images or waveforms or other SR
Documents) is restricted to appear at the level of the leaves of this primarily
textual tree. This structure simplifies the encoding of conventional textual
reports as SR Documents, as well as their rendering.

• Enhanced SR Information Object Definition — The Enhanced Structured
Report (SR) IOD is a superset of the Basic Text SR IOD. It is also intended
for the representation of reports with minimal usage of coded entries
(typically Document Title and headings) and a hierarchical tree of headings
under which may appear text and subheadings. In addition, it supports the
use of numeric measurements with coded measurement names and units.
Reference to SOP Instances (e.g., images or waveforms or SR Documents)
are restricted to display at the leaf level of this primarily textual tree. The
Enhanced Structured Report (SR) IOD enhances references to SOP
Instances with spatial regions of interest (points, lines, circle, ellipse, etc.)
and temporal regions of interest.

• Comprehensive SR Information Object Definition — The Comprehensive
SR IOD is a superset of the Basic Text SR IOD and the Enhanced SR IOD
which specifies a class of documents (the content of which may include
textual and a variety of coded information, numeric measurement values,
references to the SOP Instances and spatial or temporal regions of interest
within such SOP Instances). Relationships by-reference are enabled
between Content Items.

There are more specific SR IODs defined in the DICOM, like Key Object
Selection Document and Mammography CAD SR. These IODs use the same
method to encode data but differ in constrains on the Content Item Types and
their relationships. Figure 18 illustrates the typical SR Document structure. The
top level header is similar to the DICOM image IODs and consists of the same
Patient, Study and Series modules. The main difference from other IODs is the
SR Document Content Module. The attributes in this Module convey the
content of an SR Document.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

162

Figure 18: SR Document Structure example

The Document Content Module has a tree structure and consists of a single root
Content Item (Node 1) that is the root of the SR Document tree. The root
Content Item conveys either directly or indirectly, all of the other nested Content
Items in the document. The hierarchical structuring of the Content Tree is
provided by recursively nesting Content Items. A parent (or source) Content Item
has an explicit relationship to each child (or target) Content Item, and is
conveyed by the Relationship Type. Figure 19 illustrates the relationship of SR
Documents to Content Items and the relationships of Content Items to other
Content Items, as well as to the Observation Context.

The SR Document Hierarchy

SR Document General Module
Referenced Request Sequence
>Requested Procedure ID
>Requested Procedure Description

General Study Module
Study Instance UID
Accession Number

SR Document Content Module

Node 1

Contains

Node 2

Node C1 Node C2

Has Obs Ctx

Node 3 Node 4

Has Obs Ctx Contains Has Properties

SR Document Series Module
Modality

Patient Module
Patient Name
Patient ID
Patient Sex
Patient Date Of Birth

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

163

Figure 19: SR Information Model

Each Content Item contains the following.

• A name/value pair, consisting of:

o a single Concept Name Code that is the name of a name/value pair or a
heading; and

o a value (text, numeric, code, etc.);

• References to images, waveforms or other composite objects, with or without
coordinates; and

• Relationships to other Items, either by-value through nested Content
Sequences, or by-reference.

Note: Some Content Item Types can have multiple values.

contains

1

1

SR Document

Content Item

related to

1

0-n

Note: A Content Item may
contain either Observation
Context or other content.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

164

Content Item Types
Table 21 defines all possible Content Item Types that can be used in the SR
Document Content Module. The choice of which may be constrained by the IOD
in which this Module is contained. The Merge DICOM Toolkit Class column
specifies the enumerated value used in the Toolkit to identify the Content Item
Type.

Table 21: SR Content Item Types

Item Type Merge DICOM Toolkit
Class

Concept Name Description

TEXT MCtextItem Type of text, e.g.,
"Findings", or
name of identifier,
e.g., “Lesion ID”

Free text, narrative
description of unlimited
length. May also be used
to provide a label or
identifier value.

NUM MCnumItem Type of numeric
value or
measurement,
e.g., "BPD"

Numeric value fully
qualified by coded
representation of the
measurement name and
unit of measurement.

CODE MCcodeItem Type of code, e.g.,
"Findings"

Categorical coded value.
Representation of
nominal or non-numeric
ordinal values.

DATETIME MCdateTimeItem Type of DateTime,
e.g., "Date/Time
of onset"

Date and time of
occurrence of the type of
event denoted by the
Concept Name.

DATE MCdateItem Type of Date, e.g.,
"Birth Date"

Date of occurrence of the
type of event denoted by
the Concept Name.

TIME MCtimeItem Type of Time,
e.g., "Start Time"

Time of occurrence of
the type of event denoted
by the Concept Name.

UIDREF MCuidReferenceItem Type of UID, e.g.,
"Study Instance
UID"

Unique Identifier (UID) of
the entity identified by
the Concept Name.

PNAME MCpersonNameItem Role of person,
e.g., "Recording
Observer"

Person name of the
person whose role is
described by the
Concept Name.

COMPOSIT
E

MCcompositeItem Purpose of
Reference

A reference to one
Composite SOP Instance
which is not an Image or
Waveform.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

165

Item Type Merge DICOM Toolkit
Class

Concept Name Description

IMAGE MCimageItem Purpose of
Reference

A reference to one
Image. IMAGE Content
Item may convey a
reference to a Softcopy
Presentation State
associated with the
Image.

WAVEFOR
M

MCwaveformItem Purpose of
Reference

A reference to one
Waveform.

SCOORD MCspatialCoordinates
Item

Purpose of
Reference

Spatial coordinates of a
geometric region of
interest in the DICOM
image coordinate
system. The IMAGE
Content Item from which
spatial coordinates are
selected is denoted by a
SELECTED FROM
relationship.

TCOORD MCtemporalCoordDate
TimeItem

MCtemporalCoordTim
e
OffsetsItem

MCtemporalCoord
PositionsItem

Purpose of
Reference

Temporal Coordinates
(i.e. time or event based
coordinates) of a region
of interest in the DICOM
waveform coordinate
system. The
WAVEFORM or IMAGE
or SCOORD Content
Item from which
Temporal Coordinates
are selected is denoted
by a SELECTED FROM
relationship.

CONTAINE
R

MCcontainerItem Document Title or
document section
heading. Concept
Name conveys the
Document Title (if
the ONTAINER
is the Document
Root Content
Item) or the
category of
observation.

CONTAINER groups
Content Items and
defines the heading or
category of observation
that applies to that
content. The heading
describes the content of
the CONTAINER
Content Item and may
map to a document
section heading in a
printed or displayed
document.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

166

Relationship Types between Content Items
Table 22 describes the Relationship Types between Source Content Items and
the Target Content Items. The choice of which may be constrained by the IOD in
which this Module is contained. The Merge DICOM Toolkit Definition column
specifies the enumerated value used in the Toolkit to identify the Content Item
Relationship.

Table 22: SR Relationship Types

Relationship Type Merge DICOM
Toolkit Definition

Description

CONTAINS CONTAINS Source Item contains Target Content
Item, e.g., CONTAINER "History"
{CONTAINS: TEXT: “mother had
breast cancer”; CONTAINS IMAGE
36}

HAS OBS
CONTEXT

HAS_OBS_CONTEX
T

Has Observation Context. Target
Content Items shall convey any
specialization of Observation Context
needed for unambiguous
documentation of the Source Content
Item.

e.g., CONTAINER: "Report" {HAS
OBS CONTEXT: PNAME: “Recording
Observer” = “Smith^John^^Dr^”}

HAS CONCEPT
MOD

HAS_CONCEPT_MO
D

Has Concept Modifier. Used to qualify
or describe the Concept Name of the
Source Content item, such as to create
a post-coordinated description of a
concept, or to further describe a
concept.

e.g., CODE "Chest X-Ray" {HAS
CONCEPT MOD: CODE "View = PA
and Lateral"}

e.g., CODE "Breast" {HAS
CONCEPT MOD: TEXT "French
Translation" = "Sein"}

e.g., CODE "2VCXRPALAT" {HAS
CONCEPT MOD: TEXT "Further
Explanation" = "Chest X-Ray, Two
Views, Posteroanterior and Lateral"}

HAS PROPERTIES HAS_PROPERTIES Description of properties of the Source
Content Item.

e.g., CODE "Mass" {HAS
PROPERTIES: CODE “anatomic
location”, HAS PROPERTIES: CODE
“diameter”, HAS PROPERTIES:
CODE “margin”, ...}.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

167

Relationship Type Merge DICOM
Toolkit Definition

Description

HAS ACQ
CONTEXT

HAS_ACQ_CONTEX
T

Has Acquisition Context. The Target
Content Item describes the conditions
present during data acquisition of the
Source Content Item.

e.g., IMAGE 36 {HAS ACQ
CONTEXT: CODE “contrast agent”,
HAS ACQ CONTEXT: CODE “position
of imaging subject”, ...}.

INFERRED FROM INFERRED_FROM Source Content Item conveys a
measurement or other inference made
from the Target Content Items.
Denotes the supporting evidence for a
measurement or judgment.

e.g., CODE "Malignancy" {INFERRED
FROM: CODE "Mass", INFERRED
FROM: CODE
"Lymphadenopathy",...}.

e.g., NUM: "BPD = 5mm" {INFERRED
FROM: SCOORD}.

SELECTED FROM SELECTED_FROM Source Content Item conveys spatial
or temporal coordinates selected from
the Target Content Item(s).

e.g., SCOORD: "CLOSED 1,1 5,10"
{SELECTED FROM: IMAGE 36}.

e.g., TCOORD: "SEGMENT 60-
200mS" {SELECTED FROM:
WAVEFORM}.

Content Item Identifier
Content Items are identified by their position in the Content Item tree. They have
an implicit order as defined by the order of the Sequence Items. When a Content
Item is the target of a by reference relationship, its position is specified as the
Referenced Content Item Identifier in the source Content Item. Figure 20
illustrates an SR content tree and identifiers associated with each Content Item.
The MCitemIdentifer class encapsulates the Content Item Identifer.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

168

Seq(___,___)

Seq(___,___)

Content Item ID :
01

Content Item ID :
01 01

Content Item ID :
01 02

Content Item ID :
01 01 01

Content Item ID :
01 01 02

Root

Figure 20: SR Item Identifier

Observation Context
Observation Context describes who or what is performing the interpretation,
whether the examination of evidence is direct or quoted, what procedure
generated the evidence that is being interpreted, and who or what is the subject
of the evidence that is being interpreted.

Initial Observation Context is defined outside the SR Document Content tree by
other modules in the SR IOD (i.e., Patient Module, Specimen Identification,
General Study, Patient Study, SR Document Series, Frame of Reference,
Synchronization, General Equipment and SR Document General modules).
Observation Context defined by attributes in these modules applies to all Content
Items in the SR Document Content tree and need not be explicitly coded in the
tree. The initial Observation Context from outside the tree can be explicitly
replaced.

If a Content Item in the SR Document Content tree has Observation Context
different from the context already encoded elsewhere in the IOD, the context
information of that Content Item shall be encoded as child nodes of the Content
Item in the tree using the HAS OBS CONTEXT relationship, i.e., Observation
Context is a property of its parent Content Item.

The context information specified in the Observation Context child nodes (i.e.
target of the HAS OBS CONTEXT relationship) adds to the Observation Context
of their parent node Content item, and shall apply to all by-value descendant
nodes of that parent node regardless of the relationship type between the parent
and the descendant nodes. Observation Context is encoded in the same manner
as any other Content Item. Observation Context shall not be inherited across by-
reference relationships.

Observation DateTime is not included as part of the HAS OBS CONTEXT
relationship, and therefore is not inherited along with other Observation Context.
The Observation DateTime Attribute is included in each Content Item which
allows different observation dates and times to be attached to different Content
Items.

The IOD may specify restrictions on Content Items and Relationship Types that
also constrain the flexibility with which Observation Context may be described.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

169

The IOD may specify Templates that offer or restrict patterns and content in
Observation Context.

Structured Reporting Templates
Templates are patterns that specify the Concept Names, Requirements,
Conditions, Value Types, Value Multiplicity, Value Set restrictions, Relationship
Types and other attributes of Content Items for a particular application. SR
Document templates are defined in the Part 16 of the DICOM Standard. Part 17
of the DICOM also has some explanatory information on encoding SR
Documents. The Merge DICOM Toolkit SR Functions follow DICOM Templates
structures and allow straightforward encoding based on template tables.

SR Templates are described using tables of the form shown on Table 23.

Table 23: SR Template Definition

 NL Rel with
Parent

VT Concept
Name

VM Req Type Condition Value Set
Constraint

1

2

3

Row Number
Each row of a Template Table is denoted by a row number. The first row is
numbered 1 and subsequent rows are numbered in ascending order with
increments of 1. This number denotes a row for convenient description as well as
reference in conditions. The Row Number of a Content Item in a Template may
or may not be the same as the ordinal position of the corresponding node in the
encoded document. The Merge DICOM Toolkit does not use this number in any
way.

Nesting Level (NL)
The nesting level of Content Items is denoted by “>” symbols, one per level of
nesting below the initial Source Content Item (of the Template) in a manner
similar to the depiction of nested Sequences of Items in Modules Tables in Part 3
of the DICOM. When it is necessary to specify the Target Content Item(s) of a
relationship, they are specified in the row(s) immediately following the
corresponding Source Content Item. The Merge DICOM Toolkit provides
functions to add nested (child) Content Items to the parent Content Item node.
The following function shall be used to add a child node with relationship.

public void AddChild(MCcontentItem childItem,
MCrelationshipType relationshipType)

Relationship with Source Content Item (Parent)
Relationship Type and Mode are specified for each row that specifies a target
content item. The Relationship Types are enumerated in the Table 22.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

170

Relationship Type and Mode may also be specified when another Template is
included, either “top-down” or “bottom-up” or both (i.e., in the “INCLUDE
Template” row of the calling Template, or in all rows of the included Template, or
in both places). There shall be no conflict between the Relationship Type and
Mode of a row that includes another Template and the Relationship Type and
Mode of the rows of the included Template.

When the relationship is defined in a form as R-RTYPE, it means that
Relationship Mode is “By-reference “and Relationship Type is “RTYPE”. For
example, “R-INFERRED FROM”. Merge DICOM Toolkit provides following
functions to encode/decode references:

public void AddReference(MCitemRelationship reference)
public void RemoveReference(MCcontentItem targetItem)
public void RemoveReference(MCitemRelationship reference)
public ReadOnlyCollection<MCitemRelationship> References

Value Type (VT)
The Value Type field specifies the SR Value Type of the Content Item or conveys
the word “INCLUDE” to indicate that another Template is to be included
(substituted for the row). The Merge DICOM Toolkit provides specific classes for
each Content Item Type as it described above.

Concept Name
Any constraints on Concept Name are specified in this field as defined or
enumerated coded entries, or as baseline or defined context groups.
Alternatively, when the VT field is “INCLUDE”, the Concept Name field specifies
the template to be included. The Merge DICOM Toolkit uses the
MCbasicCodedEntry class to specify the Concept Name.

You will find that some of the Content Item types require Concep Name in the
constructor and some are not, because it is optional for those Content Item
Types. In that case, the Concept Name can be set by using the public property.

Templates define References to coded concepts take the following form:

EV or DT (ConceptNameValue, ConceptNameSheme,
“ConceptNameMeaning”)

For example, EV (T-04000, SNM3, “Breast”) would mean that hardcoded values
shall be used for that Concept Name. Some template items don’t have DT or EV
abbreviation and just specify the hardcoded values.

The following abbreviations are used in template definitions.

• EV Enumerated Value —values for are provided in the brackets.

• DT Defined Term —values are provided in the brackets.

• BCID Baseline Context Group ID — identifier that specifies the suggested
Context Group. The suggested values can be found in the DICOM Part 16
and identified by a Context ID provided in the brackets.

Abbreviations
used in templates

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

171

• DCID Defined Context Group ID — identifier that specifies the Context Group
for a Coded Value that shall be used. The values can be found in the DICOM
Part 16 and identified by a Context ID provided in the brackets.

• BTID Baseline Template ID — identifier that specifies a template suggested
to be used in the creation of a set of Content Items. The referenced template
can be found in the DICOM Part 16 and identified by a Template ID provided
in the brackets.

• DTID Defined Template ID — identifier that specifies a template that shall be
used in the creation of a set of Content Items. The referenced template can
be found in the DICOM Part 16 and identified by a Template ID provided in
the brackets.

Value Multiplicity (VM)
The VM field indicates the number of times that a Content Item of the specified
pattern, or an included Template may appear in this position. Table 24 specifies
the values that are permitted in this field.

Table 24: Permitted Values for VM

Expression Definition

i (where ‘i’ represents
an integer)

Exactly i occurrences, where i>=1. e.g., when i=1 there shall be
one occurrence of the Content Item in this position.

i-j From i to j occurrences, where i and j are >=1 and j>i.

1-n One or more occurrences

Requirement Type
The Requirement Type field specifies the requirements on the presence or
absence of the Content Item or included Template. The following symbols are
used.

• M — Mandatory. Shall be present.

• MC — Mandatory Conditional. Shall be present if the specified condition is
satisfied.

• U — User Option. May or may not be present.

• UC — User Option Conditional. May not be present. May be present
according to the specified condition.

Condition
The Condition field specifies any conditions upon which presence or absence of
the Content Item or its values depends. This field specifies any Concept
Name(s) or Values upon which there are dependencies.

References may also be made to row numbers (e.g., to specify exclusive OR
conditions that span multiple rows of a Template table).

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

172

The following abbreviations are used.

• XOR — Exclusive OR One and only one row shall be selected from mutually-
exclusive options.

Note: For example, if one of rows 1, 2, 3 or 4 may be included, then for row 2,
the abbreviation “XOR rows 1,3,4” is specified for the condition.

• IF — Shall be present if the condition is TRUE; may be present otherwise.

• IFF — If and only if. Shall be present if the condition is TRUE; shall not be
present otherwise.

• CV — Code Value

• CSD — Coding Scheme Designator

• CM — Code Meaning

• CSV — Coding Scheme Version

Value Set Constraint
Value Set Constraints, if any, are specified in this field as defined or enumerated
coded entries, or as baseline or defined context groups.

The Value Set Constraint column may specify a default value for the Content
Item if the Content Item is not present, either as a fixed value, or by reference to
another Content Item, or by reference to an Attribute from the dataset other than
within the Content Sequence (0040,A730).

Inclusion of Templates
A Template may include another Template by specifying “INCLUDE” in the Value
Type field and the identifier of the included Template in the Concept Name field.
All of the rows of the specified Template are in included in the invoking Template,
effectively substituting the specified template for the row where the inclusion is
invoked. Whether or not the inclusion is user optional, mandatory or conditional is
specified in the Requirement and Condition fields. The number of times the
included Template may be repeated is specified in the VM field.

We recommend that you implement templates as a subroutine or function call. In
that case, the inclusion of the template will be implemented as a call to that
template with passing parameters. Some of the templates defined in DICOM Part
16 already have predefined parameters and they are indicated by a name
beginning with the character "$".

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

173

Overview of the Merge DICOM Toolkit SR Classes

Figure 21: SR Class Diagram

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

174

In Figure 21, there are two top level classes.

• MCstructuredReport — This class is encapsulating the Structured Report
Content Module and has utility functions for reading and writing content tree
from DICOM datasets.

• MCcontentItem — This is a base class for all content item classes and
encapsulates common functionality for all of them.

Each Content Item type is implemented as a separate class with the specific data
exposed as public properties. All Content Item classes are implementing the
MCserializableToDataSet interface that is used by the Toolkit to read and write
individual Content Items.

The Merge DICOM Toolkit allows you to extend existing Content Item classes by
providing your own derived classes from existing types. For example, if you want
to store the Content Item data in your own format or save extra DICOM attributes
that are not covered by the Toolkit classes. Once you created your own extended
class, you need to register it with the class factory that is responsible for creating
classes during reading data from DICOM datasets. By default, Toolkit will create
a known class per each Content Item Type according to Table 21. The class
factory is implemented in the MCstructuredReport class and can be updated
by calling the following function:

public void UpdateItemFactory(ContentItemType itemType,
Type classType)

Note: The class factory registration is not global and the registration shall be
done per instance of the MCstructuredReport class.

Encoding SR Documents
The creation of the SR document involves following steps:

1. Creating a new MCstructuredReport object.

2. Adding Content Items (nodes) to the tree based on the templates definition.

3. Creating a new dataset.

4. Saving SR Content to the dataset.

5. Adding Patient/Study/Series and other attributes required by the IOD
definition,

6. Saving the result dataset object to a file.

To create a new SR, you need to know the IOD type you are creating and the
templates that will be used to generate the SR Document Content.

Extending Toolkit Classes

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

175

Key Object Selection Example
The Key Object Selection document is constrained by a single template. The
following template is taken from the DICOM Part 16.

TID 2010
KEY OBJECT SELECTION

Type: Non-Extensible

 NL Rel with Parent VT Concept Name VM Req
Typ
e

Condition Value Set
Constraint

1 CONTAI
NER

DCID(7010) Key Object
Selection Document
Titles

1 M Root node

2 > HAS CONCEPT MOD CODE EV (113011, DCM,
"Document Title
Modifier")

1-n U

3 > HAS CONCEPT MOD CODE EV (113011, DCM,
"Document Title
Modifier")

1 UC IF Row 1 Concept
Name = (113001,
DCM, "Rejected for
Quality Reasons")
or (113010, DCM,"
Quality Issue")

DCID
(7011)

4 > HAS CONCEPT MOD CODE EV (113011, DCM,
"Document Title
Modifier")

1 MC IF Row 1 Concept
Name = (113013,
DCM, "Best In
Set")

DCID
(7012)

5 > HAS CONCEPT MOD INCLUD
E

DTID(1204) Language of
Content Item and
Descendants

1 U

6 > HAS OBS CONTEXT INCLUD
E

DTID(1002) Observer
Context

1-n U

7 > CONTAINS TEXT EV(113012, DCM, ”Key
Object Description”)

1 U

8 > CONTAINS IMAGE Purpose of Reference
shall not be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

9 > CONTAINS WAVEF
ORM

Purpose of Reference
shall not be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

10 > CONTAINS COMPO
SITE

Purpose of Reference
shall not be present

1-n MC At least one of
Rows 8, 9 and 10
shall be present

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

176

The code below generates a valid DICOM KO object and illustrates how the
template is encoded using the Merge DICOM Toolkit functions.

private MCdataSet CreateKO()
{
 MCcontentItem item;

 /*
 * Create a KEY OBJECT DOCUMENT
 * The template ID is 2010 and we used the "Best in Set"
 * context ID from the CID 7010.
 */
 MCsructuredReport sr = new MCstructuredReport("2010",
 MCcontainerItem.Continuity.SEPARATE,
 new MCbasicCodedEntry("113013", "DCM", "Best In Set"));

 /*
 * Skipping Row 2 and 3 of the template and encoding Row 4.
 * The code is taken from the CID 7012.
 */
 item = new MCcodeItem(new MCbasicCodedEntry("113015", "DCM",
"Series"),
 new MCbasicCodedEntry("113011", "DCM",
 "Document Title Modifier"));
 sr.RootItem.AddChild(item, MCrelationshipType.HAS_CONCEPT_MOD);

 /*
 * Skipping Row 5 and 6 of the template and encoding Row 7.
 * The code is taken from the CID 7012.
 * The text value shall describe the image selection.
 */
 item = new MCtextItem("Doctor's comments on selection",
 new MCbasicCodedEntry("113012", "DCM",
 "Key Object Description"));
 sr.RootItem.AddChild(item, MCrelationshipType.CONTAINS);

 /*
 * Adding an IMAGE from Row 8.
 * The values "1.2.3.4.1", "1.2.3.4.5.1" suppose to be an image SOP
Class
 * and SOP Instance.
 */
 item = new MCimageItem(new MCsopInstanceReference("1.2.3.4.1",
 "1.2.3.4.5.1"));
 sr.RootItem.AddChild(item, MCrelationshipType.CONTAINS);

 /* Creating a new DataSet */
 MCdataSet dataSet = new MCdataSet(MCdimseService.C_STORE_RQ,
 "KEY_OBJECT_SELECTION_DOC");
 /* Saving SR Document contentent into the DataSet */
 sr.Write(dataSet);

 /*
 * Adding other root lvel attributes
 */
 dataSet.setValue(MCdicom.SOP_CLASS_UID, "1.2.840.10008.5.1.4.1.1.88.59");
 dataSet.setValue(MCdicom.SOP_INSTANCE_UID, "1.2.3.4.5.6.7.300");
 dataSet.setValue(MCdicom.STUDY_DATE, "19991029");
 dataSet.setValue(MCdicom.CONTENT_DATE, "19991029");
 dataSet.setValue(MCdicom.STUDY_TIME, "154500");
 dataSet.setValue(MCdicom.CONTENT_TIME, "154510");
 dataSet.setValue(MCdicom.ACCESSION_NUMBER, "123456");
 dataSet.setValue(MCdicom.MODALITY, "KO");
 dataSet.setValue(MCdicom.MANUFACTURER, "MERGE");
 dataSet.setValue(MCdicom.REFERRING_PHYSICIANS_NAME,
 "Luke^Will^^Dr.^M.D.");

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

177

 dataSet.setValue(MCdicom.REFERENCED_PERFORMED_PROCEDURE_STEP_SEQUENCE,
 null);
 dataSet.setValue(MCdicom.PATIENTS_NAME, "Jane^Doo");
 dataSet.setValue(MCdicom.PATIENT_ID, "234567");
 dataSet.setValue(MCdicom.PATIENTS_BIRTH_DATE, "19991109");
 dataSet.setValue(MCdicom.PATIENTS_SEX, "F");
 dataSet.setValue(MCdicom.STUDY_INSTANCE_UID, "1.2.3.4.5.6.7.100");
 dataSet.setValue(MCdicom.SERIES_INSTANCE_UID, "1.2.3.4.5.6.7.200");
 dataSet.setValue(MCdicom.STUDY_ID, "345678");
 dataSet.setValue(MCdicom.SERIES_NUMBER, "1");
 dataSet.setValue(MCdicom.INSTANCE_NUMBER, "1");
 dataSet.setValue(MCdicom.PERFORMED_PROCEDURE_CODE_SEQUENCE, null);
 MCitem item1 = new MCitem("HIERARCHICAL_SOP_INST_REF_MACRO");
 item1.setValue(MCdicom.STUDY_INSTANCE_UID, "1.2.3.4.5.6.7.100");
 MCitem item2 = new MCitem("HIERARCHICAL_SERIES_REF_MACRO");
 item2.setValue(MCdicom.SERIES_INSTANCE_UID, "1.2.3.4.5.6.7.200");
 MCitem item3 = new MCitem("REF_SOP");
 /** following UIDs are the same as used in the Row 8 item ****/
 item3.setValue(MCdicom.REFERENCED_SOP_CLASS_UID, "1.2.3.4.1");
 item3.setValue(MCdicom.REFERENCED_SOP_INSTANCE_UID, "1.2.3.4.5.1");
 item2.setValue(MCdicom.REFERENCED_SOP_SEQUENCE, item3);
 item1.setValue(MCdicom.REFERENCED_SERIES_SEQUENCE, item2);
 dataSet.setValue(MCdicom.CURRENT_REQUESTED_PROCEDURE_EVIDENCE_SEQUENCE,
 item1);

 return dataSet;
}

Reading SR Documents
Reading SR Documents is done in a similar way to encoding, but in reverse
sequence.

1. Reading a File or receiving a message object.

2. Reading root level attributes.

3. Creating a new MCstructuredReport object.

4. Reading SR Content from the dataset.

5. Traversing SR content tree and accessing Content Node attributes.

The following code illustrates a reading sequence for the Key Object Document
generated above.

private void ReadKO(MCdataSet dataset)
{
 // Create a new SR instance and fill it from the dataset
 MCsructuredReport sr = new MCstructuredReport();
 sr.Read(dataset);
 // Print information from the root CONTAINER item
 Console.WriteLine("Document Title: " +
 sr.RootItem.ConceptName.CodeMeaning);
 Console.WriteLine("Template Id: " + sr.RootItem.TemplateId);

 // Reading the first children as a CODE item
 if (sr.RootItem.Children[0] is MCcodeItem)
 {
 MCcodeItem codeItem = sr.RootItem.Children[0] as MCcodeItem;
 Console.Write(codeItem.ContentItemType + ": ");
 Console.WriteLine(codeItem.ConceptName.CodeMeaning + ": " +
 codeItem.Code.CodeMeaning);
 }

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

178

 // Reading the next children as a TEXT item
 if (sr.RootItem.Children[1] is MCtextItem)
 {
 MCtextItem textItem = sr.RootItem.Children[1] as MCtextItem;
 Console.Write(textItem.ContentItemType + ": ");
 Console.WriteLine(textItem.ConceptName.CodeMeaning + ": " +
 textItem.Text);
 }

 // Reading the next children as a IMAGE item
 if (sr.RootItem.Children[2] is MCimageItem)
 {
 MCimageItem imageItem = sr.RootItem.Children[2] as MCimageItem;
 Console.Write(imageItem.ContentItemType + ": ");
 Console.WriteLine("Sop Class: " +
 imageItem.SopReference.ReferencedSopClassUid +
 " Sop Instance: " +
 imageItem.SopReference.ReferencedSopInstanceUid);
 }

Working with Mergecom WADO Classes
DICOM standard introduces the mechanisms and specifications for Web services
to access and present DICOM objects through Http/Https protocols - Web
Access of DICOM Persistent Objects (WADO, see PS3.18 DICOM PS3.18
2015a Web Services).

The Merge DICOM Toolkit provides a flexible framework to handle WADO
requests and DICOM service responses for the Web clients. This functionality
gives to the user a simple way to parse a complex DICOM Http request into a set
of Mergecom Toolkit DIMSE messages for DICOM service and, then, convert
DICOM service response into Http response message.

Mergecom WADO framework supports WADO-RS, WADO-URI, WADO-WS,
QIDO-RS and STOW-RS standards and provides interfaces for DICOM
storage/retrieve services. It is built on top of Mergecom DICOM Toolkit and re-
uses its architecture and base classes.

As an upper layer of Mergecom Dicom Toolkit the WADO framework is released
as a separate Mergecomws.dll assembly, which requires Mergecom DICOM
Toolkit assemblies and configuration files. It is built using Windows .NET
Framework 4.5.

Configuring Wado Http Controllers and MCwado Services
Mergecom WADO framework uses Microsoft ASP.NET Web API 2.2 framework
to handle Http clients requests. There are four different types of MCcontrollers
derived from System.Web.Http.ApiController class. Each MCcontroller is
designed to handle a specific type of WADO request - WADO-RS, WADO-URI,
WADO-WS, QIDO-RS or STOW-RS.

Each of MCcontrollers is used for a specific Http service and has to be registered
in System.Web.Http.HttpConfiguration in HttpRoute collections with multiple URI
templates. The ASP.NET Web API framework will then route all the GET or
POST requests to the specific methods of MCcontroller. The source code for
MCcontrollers as well as an examples of URI templates are provided in
Appendix F.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

179

The user is encouraged to implement their own ApiController classes that would
match the requirements of their Web service application.

Mergecom WADO framework uses a singleton MCwado class for initializing
Mergecom DICOM Toolkit, registering users DICOM services as well as
conversion methods and WADO framework configuration settings.

To initialize Mergcom DICOM Toolkit one of the overloaded Init static methods
should be called at application bootstrap:

/// <summary>Initializes <see cref="MCwado"/> singleton instance</summary>
public static void Init()

/// <summary>Initializes <see cref="MCwado"/> singleton instance</summary>
/// <param name="mergeInifile"><see cref="FileInfo"/> of MERGE.INI file </param>
public static void Init(FileInfo mergeInifile)

/// <summary>Initializes <see cref="MCwado"/> singleton instance</summary>
/// <param name="mergeInifile"><see cref="FileInfo"/> of MERGE.INI file </param>
/// <param name="license">Mergecom Toolkit license</param>
public static void Init(FileInfo mergeInifile, string license)

MCwado class provides a set of static properties for registering user DICOM
services to handle DICOM WADO requests/responses: IMCservice Service,
IMCcache Cache, IMCdicomRenderer DicomRenderer and IMCdicomRenderer
HttpConverter:

public static IMCservice Service { get; set }
public static IMCcache Cache { get; set }
public static IMCDicomRenderer DicomRenderer { get; set }
public static IMCHttpConverter HttpConverter { get; set }

The IMCservice interface is used to access the DICOM service for storing and
retrieving DICOM objects, IMCcache is used to store and retrieve DICOM objects
to/from the user cache storage, IMCDicomRenderer interface is used to render
DICOM service messages into different format or TransferSyntax and
IMCHttpConverter provides a way to convert a DICOM service response to a
HttpResponseMessage.

The MCwado Settings property is a Dictionary<String,String> hosting the
configuration settings of the WADO framework.

Constructing an MCrequest
MCrequest is a base class which is used to instantiate a DICOM service request.
Its constructor takes an HttpResponseMessage object, a request type and a list
of DICOM request parameters as constructor parameters:

/// <summary>Class constructor</summary>
/// <param name="httpRequestMessage"><see cref="HttpRequestMessage"/> object</param>
/// <param name="requestType"><see cref="MCrequestType"/> of current request</param>
/// <param name="parms">List of <see cref="MCrequestParameter"/> of current
request</param>
public MCrequest(HttpRequestMessage httpRequestMessage, MCrequestType requestType,
MCrequestParameter[] parms)
{
 HttpRequestMessage = httpRequestMessage;

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

180

 RequestType = requestType;
 Parameters = parms;
}

There are five types of MCrequest which are used for DICOM services -
WadoURI, WadoRS, WadoWS, Stow and Qido:

// <summary>WadoURI <see cref="MCrequestType"/></summary>
public static MCrequestType WadoURI = new MCrequestType { Name = @"WADOURI" };
/// <summary>WadoRS <see cref="MCrequestType"/></summary>
public static MCrequestType WadoRS = new MCrequestType { Name = @"WADORS" };
/// <summary>WadoWS <see cref="MCrequestType"/></summary>
public static MCrequestType WadoWS = new MCrequestType { Name = @"WADOWS" };
/// <summary>Stow <see cref="MCrequestType"/></summary>
public static MCrequestType Stow = new MCrequestType { Name = @"STOW" };
/// <summary>Qido <see cref="MCrequestType"/></summary>
public static MCrequestType Qido = new MCrequestType { Name = @"QIDO" };
/// <summary>Unknown <see cref="MCrequestType"/></summary>
public static MCrequestType Unknown = new MCrequestType { Name = @"UNKNOWN" };

The list of MCrequestParameter consists of WADO request parameters for that
specific request which might include DICOM attributes as well. Examples of
MCrequest for different WADO request types are given in Appendix F.

MCrequest class implements MCrequest.Submit() method to send a request
to the DICOM service which returns an HttpResponseMessage object as a result
of the request. Internally, MCrequest object accesses an MCwado singleton object
to get a registered IMCservice and an IMCcache interfaces for storing or
retrieving DICOM objects, an IMCdicomRenderer interface to render DICOM
service response and an IMCHttpConverter interface to convert a DICOM
service response to an HttpResponseMessage object.

Using MCrequestParameter and MCrequstAttribute Classes
The MCrequestParameter class is used to describe a WADO request parameter
and populate the internal data of WADO framework structures. It has the
properties:

String Name { get; set; }
String RequestRequirement { get; set; }

where the latter defines if the WADO parameter is REQUIRED or OPTIONAL. The
property:

IEnumerable<String> Values { get; set; }

contains a list of strings, which are a multi-string representation of the WADO
parameter value.

Some of the WADO parameters (for instance, StudyInstanceUID, PatientName
etc. in QIDO-RS request) could be presented as DICOM attributes. For that
purpose MCrequestParameter implements a property:

IEnumerable<MCrequestAttribute> Attributes { get; set; }

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

181

which is a list of MCrequestAttribute objects. Each MCrequestAttribute
instance describes a single DICOM attribute using properties:

public uint Tag { get; set; }
public String Item { get; set; }
public String Keyword { get; set; }
public IEnumerable<string> Values
public List<MCrequestAttribute> Children

where Tag is a DICOM attribute tag, Item is a user-defined alias, Keyword is a
DICOM keyword, Values represents multiple values encoded as string and
Children is a set of child attributes in case the attribute is a DICOM sequence.
In case of a sequence attribute, the Values, property, naturally, is empty.

The code fragment below shows how to create an MCrequestParameter with
MCrequestAttribute, describing a WADO studyInstanceUid request
parameter:

string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

MCrequestAttribute attr = new MCrequestAttribute()
 {
 Item = keyword,
 Tag = MCdicom.STUDY_INSTANCE_UID,
 Keyword = keyword,
 Values = new string[] { studyInstanceUid }
 };

MCrequestParameter parm = new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 };

Implementing IMCservice and IMCcache Interfaces
Mergecom WADO framework provides a mechanism to convert DICOM WADO
Http requests into Mergecom DIMSE request messages for a DICOM service.
Howerver, the implementation of the DICOM service itself is out of the scope of
the framework. To access a user DICOM service, the Mergecom WADO
framework provides interfaces which will have to be registered through
corresponding static properties of the MCwado singleton object:

 /// <summary>Defines the methods of DICOM service to retrieve and store DICOM objects</summary>
 public interface IMCservice
 {
 /// <summary>Retrieves DICOM response from DICOM service storage for WADO/QIDO request</summary>
 /// <param name="request">WADO/QIDO request encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <param name="xmlRequestParameters">XML <see cref="string"/> encoded from the list of <see
cref="MCparameter"/> of WADO/QIDO request</param>
 /// <param name="response">DICOM service response encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <param name="xmlResponseParameters">XML <see cref="string"/> encoded from the list of <see
cref="MCparameter"/> of WADO/QIDO response</param>
 /// <returns>Returns <c>True</c> if <c>Retrieve</c> operation succeeded</returns>
 bool Retrieve(MCabstractMessage[] request, String xmlRequestParameters, out MCabstractMessage[]

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

182

response, out String xmlResponseParameters);
 /// <summary>Stores DICOM objects of STOW-RS request into DICOM service storage</summary>
 /// <param name="request">STOW-RS request encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <param name="xmlRequestParameters">XML <see cref="string"/> encoded from the list of <see
cref="MCparameter"/> of STOW-RS request</param>
 /// <param name="response">DICOM service response encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <param name="xmlResponseParameters">XML <see cref="string"/> encoded from the list of <see
cref="MCparameter"/> of STOW-RS response</param>
 /// <returns>Returns <c>True</c> if store operation succeeded</returns>
 bool Store(MCabstractMessage[] request, String xmlRequestParameters, out MCabstractMessage[]
response, out String xmlResponseParameters);
 }

 /// <summary>Defines the cache operations to store and retrieve the results of <see cref="MCabstractMessage"
requests</summary>
 public interface IMCcache
 {
 /// <summary>Checks if WADO request exists in the cache storage</summary>
 /// <param name="request"><see cref="MCabstractMessage"/> WADO request encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <returns>Returns <c>True</c> if the request exists</returns>
 bool Exists(MCabstractMessage[] request);
 /// <summary>Removes WADO request from the cache storage</summary>
 /// <param name="request"><see cref="MCabstractMessage"/> WADO request encoded as an array of <see
cref="MCabstractMessage"/></param>
 /// <returns>Returns <c>True</c> if remove operation was successful</returns>
 bool Remove(MCabstractMessage[] request);
 /// <summary>Add WADO request and DICOM service response to the cache storage</summary>
 /// <param name="request">WADO request encoded as an array of <see cref="MCabstractMessage"/></param>
 /// <param name="response">DICOM service response encoded as an array of <see cref="MCabstractMessage"/>
 /// <returns>Returns <c>True</c> if the operation was successful</returns>
 bool Put(MCabstractMessage[] request, MCabstractMessage[] response);
 /// <summary>Retrieves DICOM service response for given WADO request</summary>
 /// <param name="request">WADO request encoded as an array of <see cref="MCabstractMessage"/></param>
 /// <param name="response">DICOM service response encoded as an array of <see cref="MCabstractMessage"/>
 /// <returns>Returns <c>True</c> if the operation was successful</returns>
 bool Get(MCabstractMessage[] request, out MCabstractMessage[] response);
 }

Implementing Mergecom WADO interfaces allows to re-use Mergecom DICOM
Toolkit architecture for DICOM store, find and retrieve operations. IMCservice
and IMCcache methods require MCabstractMessage objects as a request
parameter. In addition, the IMCservice methods have a String
xmlRequestParameters parameter, which is an XML string encoded from the list
of MCrequestParameter for that specific request, including both DICOM and
non-DICOM request parameters.

The xmlParameters string could be decoded back to the list of
MCrequestParameter objects using the static MCrequestParameter method:

IEnumerable<MCrequestParameter> ParseXmlToParameters(String xml)

DICOM service response is represented by an array of MCabstractMessage
objects and xmlResponseParameters String, which is used if necessary to
describe the list of MCrequestParameter returned for that specific service
response.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

183

The user is advised to look into the Mergecom WADO framework samples code
as an examples of DICOM client and service implementation.

Using MCdicomResponse Class
MCdicomResponse encapsulates the results of the service response and converts
it into an HttpResponseMessage sent to Http client. On service response
Mergecom WADO framework instantiates an MCdicomResponse object using a
public static method:

MCdicomResponse CreateInstance(MCrequestType type, MCabstractMessage[] response,
string xmlRequestParameters, string xmlResponseParameters);

where the parameters are MCrequestType, DICOM service response messages,
xmlRequestParameters string and xmlResponseParameters string. To create
the HttpResponseMessage object, MCdicomResponse exposes the public
method:

HttpResponseMessage GetHttpResponseMessage();

which renders the DICOM service data and converts the rendered data into a
HttpResponseMessage object using the methods of IMCdicomRenderer and
IMChttpConverter interfaces. The following figure shows the corrsponding
workflow implemented in Mergecom WADO framework.

IMCDicomRenderer Interface and Rendering DICOM Service
Response
DICOM service response could be rendered to the different binary format or
Transfer Syntax using IMCdicomRenderer interface.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

184

/// <summary>Defines the conversion operation of DICOM Service response to an array of <see cref="Stream"/>
objects</summary>
public interface IMCdicomRenderer
{
 /// <summary>Renders DICOM service response into <see cref="Stream"/> object using an array of <see
cref="MCparameter"/></summary>
 /// <param name="response">DICOM service response encoded as an array of of <see
cref="MCabstractMessage"/></param>
 /// <param name="xmlRequestParameters">XML string of <see cref="MCparameter"/> used for WADO
request</param>
 /// <param name="xmlResponseParameters">XML string of <see cref="MCparameter"/> returned from DICOM
service</param>
 /// <returns>An array of <see cref="Stream"/> objects generated from DICOM service response</returns>
 Stream[] Render(MCabstractMessage[] response, String xmlRequestParameters, ref String
xmlResponseParameters);
}

The Render method takes an array of MCabstractMessage objects from DICOM
service as a parameter and returns an arrays of binary Stream data, which are
used as an input for IMChttpConverter.Convert method.

IMCHttpConverter Interface and Constructing
HttpResponseMessage
Constructing the HttpResponseMessage object from a rendered binary data
returned by IMChttpConverter.Convert is the final stage of the workflow.
Mergecom WADO framework uses the IMCHttpConverter interface to convert
an array of Stream into an HttpResponseMessage. The interface itself has only
one method to implement:

/// <summary>Defines the conversion operation of rendered DICOM streams into an array of <see
cref="HttpContent"/> objects</summary>
public interface IMChttpConverter
{
 /// <summary>Converts an arrays of rendered DICOM stream into array of <see cref="HttpContent"/> objects
based on request parameters</summary>
 /// <param name="streams">DICOM streams</param>
 /// <param name="xmlRequestParameters">XML string of <see cref="MCparameter"/> used for WADO
request</param>
 /// <param name="xmlResponseParameters">XML string of <see cref="MCparameter"/> returned from DICOM
service</param>
 /// <returns>A <see cref="HttpResponseMessage"/> object generated from DICOM service response</returns>
 HttpContent[] Convert(Stream[] streams, String xmlRequestParameters, ref String xmlResponseParameters);
}

Based on DICOM service architecture details, the user might implement his own
rendering and conversion classes and register them as an IMCdicomRenderer
and IMCHttpConverter interfaces using the MCwado singleton class. For
instance:

public class DicomRenderer : IMCdicomRenderer;

IMCdicomRenderer renderer = new DicomRenderer();
MCwado.DicomRenderer = renderer;

public class HttpConverter : IMChttpConverter ;

IMChttpConverter converter = new HttpConverter();
MCwado.HttpConverter = converter;

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

185

On receiving the DICOM service response, the Mergecom WADO framework
would create a MCdicomResponse object and executes
GetHttpResponseMessage() method which would first call the Render method
of the registered IMCDicomRenderer interface and then the Convert method of
IMChttpConverter interface. If an IMCDicomRenderer or IMCHttpConverter
interfaces are not registered, the Mergecom WADO framework would use its own
MCdicomRenderer and MChttpConverter public classes.

As the MCdicomRenderer and MChttpConverter classes imply some restrictions
on the DICOM service implementation, the user is encouraged to implement his
own IMCdicomRenderer rendering and IMChttpConverter conversion based on
the knowledge of DICOM service architecture..

Deploying Applications
There are several issues to consider when deploying a Merge DICOM based
application. These include deciding which Merge DICOM files are needed for
your application, how to set important configuration options to reduce problems in
the field, and how to deal with potential UN VR problems. The following sections
describe these issues in further detail.

Merge DICOM Required Files
There are a number of files required by Merge DICOM applications. These files
are described in Table 25.

Table 25: Files needed when deploying an application.

File Description and Use

Mergecom.dll .NET Merge DICOM library wrapper. This library
services your calls to the Native Merge DICOM Toolkit
Library.

Mergecom.Native.dll Native Merge DICOM Toolkit library.
(required for deployments on 32-bit platforms)

Mergecom.Native64.dll Native Merge DICOM Toolkit library for 64-bit
processes. (required for deployments on 64-bit
platforms)

Mergecomws.dll .NET Mergecom DICOM WADO library wrapper. This
library services your calls to DICOM WADO. Only
present in the edition for 64-bit platforms.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

186

File Description and Use

Picn20.dll

Picn6220.dll

Picn6320.dll

Picn6420.dll

Picn6520.dll

Picn6820.dll

Picn6920.dll

Pegasus libraries used for compression.

Pegasus Imaging Corporation (Hwww.jpg.comH)

(required for deployments on 32-bit platforms)

picx20.dll

picx6220.ssm

picx6320.ssm

picx6420.ssm

picx6520.ssm

picx6820.ssm

picx6920.ssm

64-bit Pegasus libraries used for compression.

Pegasus Imaging Corporation (Hwww.jpg.comH)

(required for deployments on 64-bit platforms)

merge.ini Merge DICOM initialization file. This file contains
logging configuration and path names for the other
configuration files.

mergecom.pro Merge DICOM system profile. This file contains general
run-time configuration options.

mergecom.app Merge DICOM application profile. This file contains
configuration information about the services supported
by the Merge DICOM application and information about
remote DICOM applications.

mergecom.srv Merge DICOM services file. This file contains
information about the services supported by Merge
DICOM Toolkit.

mrgcom3.msg Merge DICOM message information file. This file
contains validation information for DICOM messages.
This file is required if a non-empty MCdataSet, MCitem,
MCdimseMessage or MCfile object is constructed by
the application; or if any validate or validateAttribute is
called; or if an MCdir object is constructed.

mrgcom3.dct Merge DICOM data dictionary file.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/
http://www.jpg.com/
http://www.jpg.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

187

Configuration Options
The majority of Merge DICOM Toolkit’s configuration options can be used to
solve interoperability problems in the field. There are some options, however,
that can be set before deploying a Merge DICOM application to help reduce
potential problems. These options are listed in Table 26 with descriptions of how
they can be set.

Table 26: Configuration options to consider when deploying an application.

Configuration Option Description

ACCEPT_ANY_APPLICATION_TITLE When set to NO, Merge DICOM requires that
the Application Entity title sent in an
association request match one of the
registered application titles for the SCP.
When there is no match, the association will
be automatically rejected. Setting this option
to YES will eliminate some association
negotiation problems in the field for SCP
applications.

ACCEPT_ANY_HOSTNAME When set to NO, Merge DICOM will attempt
to resolve the IP address of the SCU
application into a hostname. If this resolution
cannot be done, the association will
automatically be rejected. Setting this option
to YES will reduce configuration problems in
the field for SCP applications.

EXPORT_UN_VR_TO_MEDIA Setting this option to NO will cause UN VR
attributes to not be exported when writing
DICOM Part 10 format files with the writeFile
or writeFileByCallback methods of the
MCmediaStorageService class. See the
following sections for a further discussion of
UN VR.

EXPORT_UN_VR_TO_NETWORK Setting this option to NO will cause UN VR
attributes to not be exported over the network
when sending messages using the
MCdimseService class. See the following
sections for a further discussion of UN VR.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

188

Configuration Option Description

IMPLEMENTATION_CLASS_UID The Implementation Class UID is used to
identify in a unique manner a specific class of
implementation. PS3.7 of DICOM states:
“(The Implementation Class UID) is intended
to provide respective (each network node
knows the other’s implementation identity)
and non-ambiguous identification in the event
of communication problems encountered
between two nodes.” PS3.7 of DICOM
further defines how this UID should be
defined: “different equipment of the same
type or product line (but having different serial
numbers) shall use the same Implementation
Class UID if they share the same
implementation environment (i.e., software).”

IMPLEMENTATION_VERSION The Implementation Version is intended to
distinguish between software versions of an
implementation. It should be set to the
version of the Merge DICOM application.

UN VR
DICOM Supplement 14, Unknown Value Representation, became a part of the
DICOM standard on June 3, 1997. This supplement added a new value
representation, UN, to the DICOM standard. It was developed to fix two related
holes in the DICOM standard:

When standard or private attributes were received in an implicit value
representation (VR) transfer syntax, and the user does not have a knowledge of
the VR of the attributes, there is no way to represent the VR for these attributes
in an explicit VR transfer syntax.

Every time a new VR is added to the standard, there is no way to determine if the
length field in explicit value representation transfer syntaxes should be encoded
as 2 bytes or 4 bytes, so a general parser could not be properly written to handle
future VRs.

The need for this supplement is mainly for use in “archive” systems. An “archive”
will typically want to preserve the private attributes contained within a message
for later use. There also may be a need to add support for new image objects
with new VRs to an “archive” system without having to change the software.

Unfortunately, the method that Supplement 14 specifies for encoding UN value
representation attributes is in some cases not compatible with older DICOM
implementations. Versions previous to 2.2.2 of the Merge DICOM toolkit do not
parse these attributes properly. The MCassociation read method will fail and
the association will be aborted if a UN VR attribute is received. This has
obviously caused a variety of interoperability problems in the field.

The typical DICOM scenario where UN VR can cause a DICOM communication
failure is the following: a modality exports a series of images to a PACS or

What to do when all
network partners are not
aware of the UN VR

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

189

“archive” system via the DICOM storage service class. The images were
encoded in the implicit VR little endian transfer syntax and contain multiple
private attributes. Later, a DICOM workstation decided to retrieve the images
from the “archive” or PACS system. The workstation does not yet support UN
VR, however, the PACS or “archive” system does. The workstation uses the
DICOM query/retrieve service class to retrieve the series of images. When the
images are exported to the workstation with an explicit VR transfer syntax, the
workstation fails to parse the first image received when it encounters the first UN
VR attribute, and the association is automatically aborted by the workstation.

We have added several methods to solve this interoperability problem through
the Merge DICOM toolkit’s configuration files. For SCU systems that are
exporting UN VR tags to systems that cannot handle them, the following can be
done:

Configure the SCU to only use the Implicit VR Little Endian transfer syntax when
exporting objects. This can be done through the use of transfer syntax lists
within the mergecom.app file or through commenting out the UID definitions for
the other transfer syntaxes within the mergecom.pro file.

Set the UNKNOWN_VR_CODE configuration option in the mergecom.pro file to
‘OB’. This forces unknown VR attributes to be encoded as OB instead of as UN.
All implementations can handle OB encoding. There are several drawbacks to
this option. If the attributes are encoded as OB, it is harder for these attributes to
be converted back to their normal VR. Secondly, this option changes all
instances of the UN VR into OB. Systems that can handle the UN VR will now
also receive these attributes as OB.

Set the EXPORT_UN_VR_TO_NETWORK configuration option to ‘No’. This will
cause the Merge DICOM toolkit to not export attributes encoded as UN VR to the
network.

For SCP systems receiving UN VR tags when they cannot handle them, the
following can be done:

Configure the SCP to only negotiate the Implicit VR Little Endian transfer syntax
when receiving objects.

With the help of these options, most UN VR problems in the field can be fixed
simply by changing configuration values with the Merge DICOM toolkit.

SCU application strategy

SCP application strategy

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

190

Appendix A: Frequently Asked Questions
This appendix lists some frequently asked questions by toolkit users.

1. It is inconvenient to set absolute paths for the various configuration options in
the merge.ini and mergecom.pro files that need them. Is there a way to
make these pathnames be configurable at run-time?
Merge DICOM allows the placement of environment variables in these
pathnames. This allows setting of a root directory for these pathnames. The
following is an example of how this functionality is used in our configuration
files:

MERGECOM_PRO = $(MERGE_ROOT)\mc3apps\mergecom.pro

In this example, MERGE_ROOT would be an environment variable.

A special macro "MC3INIDIR" is used to represent the directory where
"merge.ini" is. It is used like the environment variable with the difference that
it is automatically resolved and does not need to be set.

If MERGECOM_3_PROFILE, MERGECOM_3_SERVICES or
MERGECOM_3_APPLICATIONS contain relative paths with a prefix
"$(MC3INIDIR)" or "%MC3INIDIR%", the toolkit considers the path relative to
the location of the "merge.ini" file.

For example:

MERGECOM_3_PROFILE = $(MC3INIDIR)../config/mergecom.pro

The path of the profile file is "../config/mergecom.pro" relative to the location
of the "merge.ini" file.

2. I am testing the sample applications for the first time and cannot get the
client (SCU) application to connect to the server (SCP) for any of the sample
applications. The MCapplication requestAssociation method is throwing an
exception. It appears as though the connection is opening, but it is quickly
dropped. Why is this happening?
As a security measure, the MCassociation startListening method used in
SCPs attempts to determine the hostname of SCUs connecting to it. If it
cannot determine the remote hostname, it will drop the connection. The
startListening method uses the local system’s host file or its configured
domain name server to translate the SCU’s IP address into its hostname. By
configuring the SCU’s hostname in your local hosts file, this problem will be
eliminated. Also, the ACCEPT_ANY_HOSTNAME configuration value in the
mergecom.pro file disables this checking.

3. What can be done to reduce the memory requirements of the Merge DICOM
Toolkit?
There are several methods for reducing the memory requirements of Merge
DICOM Toolkit. The first approach is to construct “empty” MCfile,
MCdataSet and MCdimseMessage objects by not specifying any service or
command parameters. These constructors reduce memory by not reading in

Performance Tuning

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

191

all of the information needed for validation of messages and files
respectively. This approach will also improve performance.

There are several configuration values that reduce Merge DICOM Toolkit’s
memory requirements. The following describes each of these options:

FORCE_OPEN_EMPTY_ITEM — This configuration option performs the same
function as constructing empty MCdimseMessage objects, except that it is for
items. It is especially useful for reducing the amount of memory used when
creating large DICOMDIRs.

LARGE_DATA_STORE and LARGE_DATA_SIZE — These options control the
ability of Merge DICOM to store pixel data in temporary files instead of RAM.
This functionality is enabled by setting LARGE_DATA_STORE to FILE, and
adjusting LARGE_DATA_SIZE to the size of data element that you want
spooled to temporary file. Note however that this will decrease performance.

4. What can be done to increase the performance of the Merge DICOM Toolkit?
There are several Merge DICOM configuration values that impact
performance in different ways. The following is a summary of these options:

ELIMINATE_ITEM_REFERENCES — This option improves the performance
of removeMessageValues mthod in MCdimseMessage, clear method in
MCattributeSet and removeFileValues method in MCfile. This option will
disable functionality within the toolkit that causes the toolkit to search all
currently open message objects for references to an item that is being freed
by one of these calls. This call is especially useful when your application
uses very large DICOMDIR files.

PDU_MAXIMUM_LENGTH — This option sets the maximum sized PDU that
the toolkit will receive. If during association negotiation the maximum sized
PDU of the system negotiating with the toolkit application is larger than this
value, the PDU size will be limited to this value. Increasing this value
increases the amount of data that is passed to the TCP/IP level. This may
increase network performance of the library.

WORK_BUFFER_SIZE — This option specifies how the toolkit buffers data
before storing it or passing it to a user’s callback class. Setting higher values
for this option will increase performance.

TCPIP_RECEIVE_BUFFER_SIZE — This option sets the TCP/IP receive
buffer size. Higher values for this buffer generally will increase the network
performance of the toolkit for server (SCP) applications. This value should
also be slightly larger than the PDU_MAXIMUM_LENGTH to increase
performance. Setting this value to an even multiple of the MSS (1460 bytes)
will help increase performance on most platforms.

TCPIP_SEND_BUFFER_SIZE — This option sets the TCP/IP send buffer
size. Higher values for this buffer generally will increase the network
performance of the toolkit for client (SCU) applications. This value should
also be slightly larger than the PDU_MAXIMUM_LENGTH to increase
performance. Setting this value to an even multiple of the MSS (1460 bytes)
will help increase performance on most platforms

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

192

5. Which of the options listed above have the greatest impact on network
performance?
The TCPIP_RECEIVE_BUFFER_SIZE and TCPIP_SEND_BUFFER_SIZE
configuration options have the greatest impact on network performance.
Setting these properly directly increases the network performance of Merge
DICOM Toolkit.

6. I am sending 8-bit images with Merge DICOM Toolkit, however, after sending
the data to another system, the pixel data is byte swapped incorrectly. What
is causing this problem?
The Merge DICOM Toolkit Users Manual contains the section “8-bit Pixel
Data” (page 114) which describes this problem. This is typically only a
problem on Big Endian machines. To summarize the problem, on big endian
machines, we expect 8-bit data to be byte swapped. We do not look at the
“bits allocated” and “bits stored” tags to determine that the pixel data itself is
8-bit data, we always treat pixel data (7fe0,0010) as OW. The pixel data
must be assigned as byte swapped.

7. I recently upgraded to a new release of the Merge DICOM Toolkit. Since this
upgrade, exceptions are being thrown by the MCattributeSet attribute
encoding methods. This code worked before the upgrade. What is causing
these problems?
The Merge DICOM data dictionary changes from release to release. In some
cases, the identification number for a particular message type changes.
When upgrading, if you do not change all of the data dictionary files, this
error will occur. The following files should be upgraded with each release:

mergecom.srv

mrgcom3.msg

mrgcom3.dct

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

193

Appendix B: Unique Identifiers (UIDs)
UIDs provide the capability to identify many different types of items. The purpose
of UIDs are to guarantee the uniqueness of the these different types of items.
DICOM uses UIDs to uniquely identify items such as SOP classes, image
instances and network negotiation parameters. Part 5, Section 9 along with
Annexes B and C of the DICOM Standard discusses how UIDs are composed,
encoded and registered.

Summary of UID Composition
A UID is composed of a number of numeric values as defined by ISO 8824. The
following is a typical example of a UID:

1.2.840.10008.2.45.1.12345

A UID is composed of two parts: a <root> and a <suffix> and has the
following form:

UID = <root>.<suffix>

where <root> is assigned by a registration authority (e.g., ANSI) with the
distinguishing component being the organization ID. The <root> portion of the
UID uniquely identifies an organization while the <suffix> portion is used to
uniquely identify a specific object within the scope of the organization. While the
<root> component of the UID stays constant, the <suffix> portion will change
in a manner that will provide uniqueness for objects that need UIDs.

Note: This implies that the organization is responsible for maintaining the
uniqueness of the <suffix>.

For example, using the UID above, <root> = 1.2.840.10008 and
<suffix> = 2.45.1.12345. Where the organization ID portion of the <root>
(10008) distinguishes organizations from each other.

Note: The above example is typical for UIDs obtained by ANSI during the time
when the DICOM standard was first released. The organization ID of
10008 has actually been assigned to NEMA and is used as part of the
<root> for DICOM standard UIDs such as SOP Classes, Transfer
Syntaxes, etc. For example, vendors creating images need to obtain
their own organization ID and cannot use 10008.

For future UIDs, ISO has developed a joint relationship with CCITT and has
changed the <root> structure. Therefore, new UIDs from ANSI will no longer be
of the form 1.2.840.xxxxx. but are currently assigned using the form, <root> =
2.16.840.1.10008. Where, of course, 10008 is the organization ID.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

194

Obtaining a UID
The <root> portion of the UID should be registered by an organization that
guarantees global uniqueness. The American National Standards Institute (ANSI)
is the registration authority for the United States. Other national registration
authorities exist for nations throughout the world such as IBN in Belgium, AFNOR
in France, BSI in Great Britain, DIN in Germany, and COSIRA in Canada.

Obtaining a UID From ANSI
ANSI is the registration authority for the US for organization names (i.e.,
<root>) under the global registration process established by the International
Standards Organization (ISO) and the International Telegraph and Telephone
Consultative Committee (CCITT). ANSI’s registration service conforms with
CCITT X.660 and ISO/IEC 9834-1. The ANSI organization name registration
service assigns one name component to the hierarchy defined by CCITT and
ISO/IEC.

An organization seeking registration may do so by submitting a Request for
Registration application form along with a fee (as of August 1996 the fee is
$1,000) to the Registration Coordinator. The Request for Registration application
form can be obtained from ANSI by use of the following information:

American National Standards Institute

11 West 42nd Street

New York, New York 10036

TEL: 212.642.4900

FAX: 212.398.0023

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

195

Appendix C: Writing a DICOM Conformance
Statement
Detailed below is a guideline for writing a DICOM conformance statement for
your application. Since the Toolkit is not an application, this section only gives an
outline of the DICOM services it supports. Responsibility for full DICOM
conformance to particular SOP classes rests with the application developer,
since many of the requirements for such conformance lie outside the realm of the
Toolkit. For example, the high level behavior of Query/Retrieve service class
SCUs and SCPs as defined in Part 4 of the DICOM standard, is implemented by
the application developer in conjunction with the toolkit functionality.

Conformance Statement Sections
Implementation Model
The Implementation model consists of three sections:
• the Application Data Flow Diagram which specifyies the relationship between

the Application Entities and the “external world” or Real-World activities;

• a functional description of each Application Entity; and

• the sequencing constraints among them.

Application Data Flow
As part of the Implementation model, an Application Data Flow Diagram is
included. This diagram represents all of the Application Entities present in an
implementation, and graphically depicts the relationship of the AE's use of
DICOM to Real-World Activities as well as any applicable user interaction.

The Merge DICOM Toolkit provides the core functionality required to facilitate
data flow between SCUs and SCPs.

Application conformance statements include a data flow diagram. An example is
shown below for a simple Storage Service Class SCP.

Figure C-1: MERGE_STORE_SCP application data flow diagram

MERGE_STORE_SCP
STORE

Association Acceptance

DICOM Standard Interface

Write received
images to disk

Remote Storage
Service Class user

RemoteLocal

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

196

Functional Definition of Application Entities (AE)
This section contains a functional definition for each individual, local Application
Entity. It describes in general terms, the functions that are performed by the AE,
and the DICOM services used to accomplish these functions. In this sense,
"DICOM services" refers not only to DICOM Service Classes, but also to lower
level DICOM services, such as Association Services.

Application conformance statements are described in this section with a general
specification of functions to be performed by SCU or SCP.

Sequencing of Real World Activities
If applicable, this section will contain a description of sequencing as well as
potential constraints on real-world activities. These include any applicable user
interaction as performed by all the AEs. A UML sequence diagram that depicts
the real-world activities as vertical bars, and shows events exchanged between
them as arrows, is strongly recommended.

Application conformance statements are included in this section along with any
associated sequence of real-world activities. For example, a Storage Service
Class SCP might perform the following real-world activities: store an image,
modify it in some defined manner, act as a Storage Service Class SCU and
forward the modified image somewhere.

AE Specifications
The next section in the DICOM Conformance Statement is a set of Application
Entity specifications. There is one specification for the AE. Each individual AE
specification has a subsection. There are as many of these subsections as there
are different AE's in the implementation. That is, if there are two distinct AEs,
then there are two subsections. The Merge DICOM Toolkit uses the
mergecom.app configuration file to read configuration parameters for each AE.
The following subsections are filled in for each AE:

Application Entity
o SOP Classes
o Association Policies

 General
 Number of Associations
 Asynchronous Nature
 Implementation Identifying Information

o Association Initiation Policy
 Activity

 Description and Sequencing of Activities
 Proposed Presentation Contexts
 SOP Specific Conformance for SOP Class(es)

o Association Acceptance Policy
 Activity

 Description and sequencing of Activities
 Accepted Presentation Contexts
 SOP Specific Conformance for SOP Class(es)

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

197

SOP Classes
Application conformance statements specify the DICOM SOPs which are
supported by each Application Entity. For SCP Entities, the initiation of
associations. Please see the “System Profile” section in ANNEX B:
CONFIGURATION PARAMETERS and the “MC_Wait_For_Association” or
“MC_Wait_For_Secure_Association” definition in this Reference Manual. For
SCU Entities, the list of supported SOP classes will correspond to the services
specified in “mergecom.app” for any SCPs to which the SCU wishes to connect.

Number of Associations
The Merge DICOM Toolkit does not impose any limit on the number of
simultaneous associations that can be requested or accepted. The only limitation
on the number of simultaneous associations is imposed by the operating system
and available resources. However, if your application enforces this limit, it is
defined here.

The MAX_PENDING_CONNECTIONSsetting in the “mergecom.pro” file refers to
the maximum number of outstanding connection requests per listener socket. It
does not limit the maximum number of simultaneous associations.

Asynchronous Nature
Merge DICOM Toolkit does not currently support multiple outstanding
transactions over a single association.

Implementation Identifying Information
Application conformance statements specify the Implementation Class Unique
Identifier (UID) for the application, as well as the Implementation version name.
These identifiers are taken from the mergecom.pro configuration file under the
following keys:

IMPLEMENTATION_CLASS_UID

IMPLEMENTATION_VERSION

This UID must follow the syntax rules specified in Part 5 of the DICOM standard.

Proposed or Accepted Presentation Contexts
Application conformance statements specify all presentation contexts that are
used for association negotiation. A presentation context consists of:

• an Abstract Syntax which is a DICOM service class name and unique
identifier(UID);

• a transfer syntax name and UID. A transfer syntax represents a set of data
encoding rules that are specified in the “mergecom.pro” file. Please see the
“System Profile” section in Appendix B: Configuration Parameters;

• the role that the application will perform within the service class. The roles
associated with a particular service class are discussed in Part 4 of the
DICOM standard;

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

198

• any extended negotiation information used when creating associations. See
the “MC_Get_Negotiation_Info” function in the Merge DICOM Reference
Manual; and; and

• any rules that govern the acceptance of presentation contexts for the AE.
This includes rules for which combinations of Abstract/Transfer Syntaxes are
acceptable, and rules for prioritization of presentation contexts. Rules that
govern selection of transfer syntax within a presentation context are stated
here. Please see the “Application Profile” section in the Appendix B:
Configuration Parameters. Also, see the “MC_Get_Association_Info”
function in the Merge DICOM Reference Manual to learn about the
presentation contexts that are queryable by an application program.

Refer to Table 27 for an example.

Table 27: Example Presentation Context

Presentation Context Table

Abstract Syntax Transfer Syntax Role Extended

Name UID Name List UID List Negotiation

Computed
Radiography
Image
Storage

1.2.840.10008.
5.1.4.1.1.1

DICOM
Implicit VR
Little Endian

1.2.840.1000
8.1.2

SCP None

 DICOM
Explicit VR
Little Endian

1.2.840.1000
8.1.2.1

 DICOM
Explicit VR Big
Endian

1.2.840.1000
8.1.2.2

Merge DICOM Toolkit uses mergecom.app configuration settings to specify
presentation contexts shown above.

SOP Specific Conformance
This section includes the SOP specific behavior, i.e., error codes, error and
exception handling and time-outs, etc. The information is described in the SOP
specific Conformance Statement section of PS 3.4 (or relevant private SOP
definition).

Transfer Syntax Selection Policies
Merge DICOM Toolkit uses the following policy when selecting a transfer syntax:

• An SCU offers any transfer syntaxes which are defined in it’s mergecom.pro
file.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

199

• The SCP prefers it’s native byte ordering, and will prefer explicit over implicit
VR.

Network Interfaces

Physical Network Interface
Merge DICOM Toolkit runs over the TCP/IP protocol stack on any physical
interconnection media supporting the TCP/IP stack.

IPv4 and IPv6 Support
Merge DICOM Toolkit supports both IPv4 and IPV6 protocols and is configurable
in the system profile.

Configuration
Refer to the Appendix B: Configuration Parameters for complete configuration
information.

Applications reference four (4) configuration files. The first, merge.ini, is found
through the MERGE_INI environment variable. They are as follows:

• merge.ini — Specifies the names of the other three (3) configuration files and
also contains message logging parameters.

• mergecom.pro — Specifies run-time parameters for the application.

• mergecom.app — Defines service lists and applications on other network
nodes to which connections are possible.

• mergecom.srv — Service and sequence definitions.

AE Title/Presentation Address Mapping
Presentation address mapping is configured in the mergecom.app file. The
Presentation Address of an SCU/SCP application is specified by configuring the
Listen Port in the mergecom.pro file, and specifying the AE title for the SCU/SCP
within the application itself.

Configurable Parameters
The mergecom.pro configuration file can be used to set or modify other lower-
level communication parameters. This includes time-outs and other parameters.
Some information about supported SOP classes is also stored here. Most
parameters in this file should NEVER be changed. Doing so may
compromise DICOM conformance. Before modifying any parameters, such as
time-out, be sure to have a backup of the originally supplied mergecom.pro file.
Also, before modifying other parameters, you should consider contacting Merge
Healthcare for advice.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

200

PDU size
The maximum PDU size is configurable with a minimum of 4,096 bytes.

Application conformance statements specify the chosen PDU (Protocol Data
Units) size and any general rules governing the initiation of associations. Please
see the “System Profile” section of the Merge DICOM Reference Manual for
further information about configuring the PDU size.

Extensions/Specializations/Privatizations

Standard Extended/Specialized/Private SOPs
Application conformance statements list extended, specialized, or private SOPs
that are supported.

Private Transfer Syntaxes
This section describes private transfer syntaxes that are listed in the Transfer
Syntax Tables. See the System Profile section in Appendix B: Configuration
Parameters for details.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

201

Appendix D: Configuration Parameters
This appendix describes each configuration parameter in detail. Information
contained in these tables is the parameter names, descriptions and sections
where it is contained. The parameters are listed alphabetically and organized by
the initialization file where they are used.

Initialization File
The following parameters are recognized by Merge DICOM in the initialization
file.

Table 28: Initialization file parameters

Name Section Description

BLANK_FILL_LOG_FILE MergeCOM3 This parameter informs the toolkit
whether or not to expand the log
file to its maximum size on
initialization. Setting this value to
“NO” will decrease the time spent
in the MC.mcInitialization call but
increase the time spent doing
actual logging while the application
is running.

DEFAULT: YES

ERROR_MESSAGE MergeCOM3 This parameter informs the toolkit
to log error messages.

INFO_MESSAGE MergeCOM3 This parameter informs the toolkit
to log error messages.

LOG_FILE MergeCOM3 This is the name of the Merge
DICOM message log. The file will
be [re-]created by Merge DICOM
Toolkit. This parameter is ignored
by embedded toolkits.

DEFAULT: ./merge.log

LOG_FILE_BACKUP MergeCOM3 This is a Boolean parameter that
tells Merge DICOM to create a
backup of the log file before
starting a new log. If “ON”, any
existing log file is renamed with a
file extension of .Lnn where nn is
an integer number between 01 and
99.

DEFAULT: OFF.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

202

Name Section Description

LOG_FILE_LINE_LENGTH MergeCOM3 This option specifies the number of
characters that occur on a line
within the merge.log file.

DEFAULT: 78

MINIMUM: 16

MAXIMUM: 254

LOG_FILE_SIZE MergeCOM3 This is the number of 80-byte
records which will be created for
the log file, i.e. the number of 80
character lines in the log file. If
BLANK_FILL_LOG_FILE is set to
YES, the file is initialized to all
binary zeros before the first
message is logged.

DEFAULT: 1000

LOG_MEMORY_SIZE MergeCOM3 This is the number of 80-byte
records which will be created for
the memory log, i.e. the number of
80 character lines in the memory
file. Note that this option is ignored
when using the .NET Assembly.

DEFAULT: 1024.

MERGECOM_3_APPLICATIONS MergeCOM3 File containing the Merge DICOM
application configurations

MERGECOM_3_PROFILE MergeCOM3 File containing the Merge DICOM
system profile parameters

MERGECOM_3_SERVICES MergeCOM3 File containing the Merge DICOM
system service and message
definitions

NUM_HISTORICAL_LOG_FILES MergeCOM3 This parameter informs the toolkit
of the number of historical log files
to keep. The valid range of
number for this parameter is 1 - 99.
The historical log files are named
basename.L01 to basename.LXX
where basename.LXX is the latest
log file. The basename is
determined by the LOG_FILE
parameter. When the maximum
number of historical log files is met,
the oldest log file is deleted and the
log files are renamed. Note that a
new log file is created each time
the library is initialized. This
parameter is only used when
LOG_FILE_BACKUP is set to YES.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

203

Name Section Description

T3_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to association negotiation.

T4_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
when incoming associations are
automatically rejected.

T5_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to regular and extended
validation.

T6_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to configuration.

T7_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to logging of command
level attributes in messages sent or
received.

T8_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to the streaming in and out
of messages and file objects.

T9_MESSAGE MergeCOM3 This logging level parameter
informs the toolkit to log messages
relating to PDU’s sent and
received. NOTE: Receipt and
transmission of P-DATA PDU’s are
logged; not the actual PDU itself.

WARNING_MESSAGE MergeCOM3 This parameter informs the toolkit
to log warning messages.

Application Profile
The application profile is a configuration file that is application dependent. The
application profile does not set specific parameters. It sets parameters related to
characteristics of your own application entity. A detailed description of the
application profile can be found in Merge DICOM Toolkit: Users Manual.

This section will define how each parameter should be defined within the
application profile.

Sections
The application profile contains the following sections.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

204

Table 29: Application profile section headings

Section Description

<remote_application_title> Section describing a remote DICOM Application
Entity title(s). The remote Application Entity titles
listed here must be 1 to 16 bytes in length with no
embedded spaces. Simply, this section is where
you list the DICOM applications you want to
communicate with.

<service_list_name> List(s) of DICOM services that will be provided by
the Application Entities listed in the
[<remote_application_title>] sections. The service
names listed here must be 1 to 33 bytes in length
with no embedded spaces. Simply, this section is
where you list the services that are provided by
the remote DICOM applications.

<syntax_list_name> List(s) of DICOM transfer syntaxes that will be
supported by the services listed in the
[<service_list_name>] sections. The transfer
syntaxes must be one of those listed in Table 32.

Parameters
The application profile contains the following parameters:

Table 30: Application profile section headers

Parameter Section Description

PORT_NUMBER <remote_application_title> This parameter is the TCP/IP
port on which the remote
DICOM system listens for
connections. The commonly
used port number is 104. This
default value may be overridden
by the requestAssociation
method of the MCassociation
class.

HOST_NAME <remote_application_title> This parameter is the name of
the remote host as it is known
to your TCP/IP system. This
default value may be overridden
by the requestAssociation
method of the MCassociation
class. The parameters value
must be 1 to 19 bytes in length
with no embedded spaces.
NOTE that a numeric internet
address may be used: e.g.,
192.204.32.1

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

205

Parameter Section Description

SERVICE_LIST <remote_application_title> This parameter is the name of a
section in the application profile
which provides a list of services
for which local applications will
negotiate when attempting to
establish an association. This
is a default list; another list may
be specified in the
requestAssociation method of
the MCassociation class. The
parameters value names must
be 1 to 33 bytes in length with
no embedded spaces.

The SERVICE_LIST section of the Application Profile is used to describe the
DICOM services that will be negotiated by the listed Application Entity. The
parameter values are text strings recognizable by the Merge DICOM toolkit.
These strings are defined in detail in message.txt. This file is located in the
mc3msg directory of your distribution. The following is a list of currently
supported services:

Table 31: Application profile parameters

Merge DICOM Toolkit Service Parameter DICOM Service
Class

ARTERIAL_PULSE_WAVEFORM Storage

AUTOREFRACTION_MEASUREMENTS Storage

BASIC_ANNOTATION_BOX Print Management

BASIC_COLOR_IMAGE_BOX Print Management

BASIC_FILM_BOX Print Management

BASIC_FILM_SESSION Print Management

BASIC_GRAYSCALE_IMAGE_BOX Print Management

BASIC_PRINT_IMAGE_OVERLAY_BOX Print Management

BASIC_STRUCTURED_DISPLAY Storage

BREAST_IMAGING_RPI_QUERY Relevant Patient
Information Query

BREAST_PROJ_PRESENT Storage

BREAST_PROJ_PROCESS Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

206

Merge DICOM Toolkit Service Parameter DICOM Service
Class

BREAST_TOMO_IMAGE_STORAGE Storage

CARDIAC_RPI_QUERY Relevant Patient
Information Query

CHEST_CAD_SR Storage

COLON_CAD_SR Storage

COLOR_PALETTE_FIND Query/Retrieve

COLOR_PALETTE_GET Query/Retrieve

COLOR_PALETTE_MOVE Query/Retrieve

COLOR_PALETTE_STORAGE Storage

COMPOSITE_INST_RET_NO_BULK_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_GET Query/Retrieve

COMPOSITE_INSTANCE_ROOT_RET_MOVE Query/Retrieve

COMPREHENSIVE_3D_SR Storage

CORNEAL_TOPOGRAPHY_MAP Storage

DEFORMABLE_SPATIAL_REGISTRATION Storage

DETACHED_INTERP_MANAGEMENT Results
Management

DETACHED_PATIENT_MANAGEMENT Patient Management

DETACHED_RESULTS_MANAGEMENT Results
Management

DETACHED_STUDY_MANAGEMENT Study Management

DETACHED_VISIT_MANAGEMENT Patient Management

DICOMDIR Media Storage

ENCAPSULATED_CDA Storage

ENHANCED_CT_IMAGE Storage

ENHANCED_MR_COLOR_IMAGE Storage

ENHANCED_MR_IMAGE Storage

ENHANCED_PET_IMAGE Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

207

Merge DICOM Toolkit Service Parameter DICOM Service
Class

ENHANCED_US_VOLUME Storage

ENHANCED_XA_IMAGE Storage

ENHANCED_XRF_IMAGE Storage

G_P_PERFORMED_PROCEDURE_STEP Study Management

G_P_SCHEDULED_PROCEDURE_STEP Study Management

G_P_WORKLIST Basic Worklist
Management

GENERAL_AUDIO_WAVEFORM Storage

GENERAL_RPI_QUERY Relevant Patient
Information Query

GENERIC_IMPLANT_TEMPLATE Storage

GENERIC_IMPLANT_TEMPLATE_FIND Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_GET Query/Retrieve

GENERIC_IMPLANT_TEMPLATE_MOVE Query/Retrieve

HANGING_PROTOCOL Hanging Protocol
Storage

HANGING_PROTOCOL_FIND Hanging Protocol
Query/Retrieve

HANGING_PROTOCOL_GET Hanging Protocol
Query/Retrieve

HANGING_PROTOCOL_MOVE Hanging Protocol
Query/Retrieve

IMAGE_OVERLAY_BOX_RETIRED Print Management

IMPLANT_ASSEMBLY_TEMPLATE Storage

IMPLANT_ASSEMBLY_TEMPLATE_FIND Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_GET Query/Retrieve

IMPLANT_ASSEMBLY_TEMPLATE_MOVE Query/Retrieve

IMPLANT_TEMPLATE_GROUP Storage

IMPLANT_TEMPLATE_GROUP_FIND Query/Retrieve

IMPLANT_TEMPLATE_GROUP_GET Query/Retrieve

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

208

Merge DICOM Toolkit Service Parameter DICOM Service
Class

IMPLANT_TEMPLATE_GROUP_MOVE Query/Retrieve

IMPLANTATION_PLAN_SR_DOCUMENT Storage

INSTANCE_AVAIL_NOTIFICATION Instance Availability
Notification

INTRAOCULAR_LENS_CALCULATIONS Storage

KERATOMETRY_MEASUREMENTS Storage

KEY_OBJECT_SELECTION_DOC Storage

LEGACY_CONVERTED_ENHANCED_CT_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_MR_IMAGE Storage

LEGACY_CONVERTED_ENHANCED_PET_IMAGE Storage

LENSOMETRY_MEASUREMENTS Storage

MACULAR_GRID_THIICKNESS_VOLUME Storage

MAMMOGRAPHY_CAD_SR Storage

MEDIA_CREATION_MANAGEMENT Media Creation
Management

MODALITY_WORKLIST_FIND Modality Work list

MR_SPECTROSCOPY Storage

OPHT_VIS_FIELD_STATIC_PERIM_MEAS Storage

OPHTHALMIC_AXIAL_MEASUREMENTS Storage

OPHTHALMIC_TOMOGRAPHY_IMAGE Storage

OPM_THICKNESS_MAP Storage

PATIENT_ROOT_QR_FIND Query/Retrieve

PATIENT_ROOT_QR_GET Query/Retrieve

PATIENT_ROOT_QR_MOVE Query/Retrieve

PATIENT_STUDY_ONLY_QR_FIND Query/Retrieve

PATIENT_STUDY_ONLY_QR_GET Query/Retrieve

PATIENT_STUDY_ONLY_QR_MOVE Query/Retrieve

PERFORMED_PROCEDURE_STEP Study Management

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

209

Merge DICOM Toolkit Service Parameter DICOM Service
Class

PERFORMED_PROCEDURE_STEP_NOTIFY Study Management

PERFORMED_PROCEDURE_STEP_RETR Study Management

PRESENTATION_LUT Print Management

PRINT_JOB Print Management

PRINT_QUEUE_MANAGEMENT Print Management

PRINTER Print Management

PRINTER_CONFIGURATION Print Management

PROCEDURAL_EVENT_LOGGING Application Event
Logging

PROCEDURE_LOG Storage

PRODUCT_CHARACTERISTICS_QUERY Query/Retrieve

PULL_PRINT_REQUEST Print Management

RAW_DATA Storage

REAL_WORLD_VALUE_MAPPING Storage

REFERENCED_IMAGE_BOX Print Management

RESPIRATORY_WAVEFORM Storage

RT_BEAMS_DELIVERY_INSTR_RET Storage

RT_BEAMS_DELIVERY_INSTRUCTION Storage

RT_CONV_MACHINE_VERIF_RET Verification

RT_CONVENTIONAL_MACHINE_VERIF Verification

RT_ION_MACHINE_VERIF Verification

RT_ION_MACHINE_VERIF_RET Verification

SC_MULTIFRAME_GRAYSCALE_BYTE Storage

SC_MULTIFRAME_GRAYSCALE_WORD Storage

SC_MULTIFRAME_SINGLE_BIT Storage

SC_MULTIFRAME_TRUE_COLOR Storage

SEGMENTATION Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

210

Merge DICOM Toolkit Service Parameter DICOM Service
Class

SPATIAL_FIDUCIALS Storage

SPATIAL_REGISTRATION Storage

SPECTACLE_PRESCRIPTION_REPORT Storage

STANDARD_BASIC_TEXT_SR Storage

STANDARD_BLENDING_SOFTCOPY_PS Storage

STANDARD_COLOR_SOFTCOPY_PS Storage

STANDARD_COMPREHENSIVE_SR Storage

STANDARD_CR Storage

STANDARD_CT Storage

STANDARD_CURVE Storage

STANDARD_DX_PRESENT Storage

STANDARD_DX_PROCESS Storage

STANDARD_ECHO Verification

STANDARD_ENCAPSULATED_PDF Storage

STANDARD_ENHANCED_SR Storage

STANDARD_GRAYSCALE_SOFTCOPY_PS Storage

STANDARD_HARDCOPY_COLOR Storage

STANDARD_HARDCOPY_GRAYSCALE Storage

STANDARD_IO_PRESENT Storage

STANDARD_IO_PROCESS Storage

STANDARD_IVOCT_PRESENT Storage

STANDARD_IVOCT_PROCESS Storage

STANDARD_MG_PRESENT Storage

STANDARD_MG_PROCESS Storage

STANDARD_MODALITY_LUT Storage

STANDARD_MR Storage

STANDARD_NM Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

211

Merge DICOM Toolkit Service Parameter DICOM Service
Class

STANDARD_NM_RETIRED Storage

STANDARD_OPHTHALMIC_16_BIT Storage

STANDARD_OPHTHALMIC_8_BIT Storage

STANDARD_OVERLAY Storage

STANDARD_PET Storage

STANDARD_PET_CURVE Storage

STANDARD_PRINT_STORAGE Storage

STANDARD_PSEUDOCOLOR_SOFTCOPY_PS Storage

STANDARD_RT_BEAMS_TREAT Storage

STANDARD_RT_BRACHY_TREAT Storage

STANDARD_RT_DOSE Storage

STANDARD_RT_IMAGE Storage

STANDARD_RT_ION_BEAMS_TREAT Storage

STANDARD_RT_ION_PLAN Storage

STANDARD_RT_PLAN Storage

STANDARD_RT_STRUCTURE_SET Storage

STANDARD_RT_TREAT_SUM Storage

STANDARD_SEC_CAPTURE Storage

STANDARD_US Storage

STANDARD_US_MF Storage

STANDARD_US_MF_RETIRED Storage

STANDARD_US_RETIRED Storage

STANDARD_VIDEO_ENDOSCOPIC Storage

STANDARD_VIDEO_MICROSCOPIC Storage

STANDARD_VIDEO_PHOTOGRAPHIC Storage

STANDARD_VL_ENDOSCOPIC Storage

STANDARD_VL_MICROSCOPIC Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

212

Merge DICOM Toolkit Service Parameter DICOM Service
Class

STANDARD_VL_PHOTOGRAPHIC Storage

STANDARD_VL_SLIDE_MICROSCOPIC Storage

STANDARD_VOI_LUT Storage

STANDARD_WAVEFORM_12_LEAD_ECG Storage

STANDARD_WAVEFORM_AMBULATORY_ECG Storage

STANDARD_WAVEFORM_BASIC_VOICE_AU Storage

STANDARD_WAVEFORM_CARDIAC_EP Storage

STANDARD_WAVEFORM_GENERAL_ECG Storage

STANDARD_WAVEFORM_HEMODYNAMIC Storage

STANDARD_XRAY_ANGIO Storage

STANDARD_XRAY_ANGIO_BIPLANE Storage

STANDARD_XRAY_RF Storage

STEREOMETRIC_RELATIONSHIP Storage

STORAGE_COMMITMENT_PULL Storage
Commitment

STORAGE_COMMITMENT_PUSH Storage
Commitment

STUDY_COMPONENT_MANAGEMENT Study Management

STUDY_CONTENT_NOTIFICATION Study Content
Notification

STUDY_ROOT_QR_FIND Query/Retrieve

STUDY_ROOT_QR_GET Query/Retrieve

STUDY_ROOT_QR_MOVE Query/Retrieve

SUBJ_REFRACTION_MEASUREMENTS Storage

SUBSTANCE_ADMIN_LOGGING Storage

SUBSTANCE_APPROVAL_QUERY Storage

SURFACE_SCAN_MESH Storage

SURFACE_SCAN_POINT_CLOUD Storage

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

213

Merge DICOM Toolkit Service Parameter DICOM Service
Class

SURFACE_SEGMENTATION Storage

UPS_EVENT_SOP Unified Procedure
Step Management

UPS_EVENT_SOP_TRIAL_RETIRED Unified Procedure
Step Management

UPS_PULL_SOP Unified Procedure
Step Management

UPS_PULL_SOP_TRIAL_RETIRED Unified Procedure
Step Management

UPS_PUSH_SOP Unified Procedure
Step Management

UPS_PUSH_SOP_TRIAL_RETIRED Unified Procedure
Step Management

UPS_WATCH_SOP Unified Procedure
Step Management

UPS_WATCH_SOP_TRIAL_RETIRED Unified Procedure
Step Management

VISUAL_ACUITY_MEASUREMENTS Storage

VL_WHOLE_SLIDE_MICROSCOPY_IMAGE Storage

VOI_LUT_BOX Print Management

XA_XRF_GRAYSCALE_SOFTCOPY_PS Storage

XRAY_3D_ANGIO_IMAGE Storage

XRAY_3D_CRANIO_IMAGE Storage

XRAY_RADATION_DOSE_SR Storage

BASIC_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

BASIC_GRAYSCALE_PRINT_MANAGEMENT
(META_SOP)

Print Management

DETACHED_PATIENT_MANAGEMENT_META
(META_SOP)

Patient Management

DETACHED_RESULTS_MANAGEMENT_META
(META_SOP)

Results
Management

G_P_WORKLIST_MANAGMENT_META (META_SOP) Basic Worklist
Management

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

214

Merge DICOM Toolkit Service Parameter DICOM Service
Class

PULL_STORED_PRINT_MANAGEMENT (META_SOP) Print Management

REF_COLOR_PRINT_MANAGEMENT (META_SOP) Print Management

REF_GRAYSCALE_PRINT_MANAGEMENT (META_SOP) Print Management

STUDY_MANAGEMENT (META_SOP) Study Management

Transfer syntax lists are contained in the service lists. The following is a list of
the currently supported transfer syntaxes.

Table 32: Transfer Syntax List Parameters

Merge DICOM Transfer Syntax Parameter Description

IMPLICIT_LITTLE_ENDIAN Implicit VR Little Endian: Default Transfer
Syntax for DICOM

IMPLICIT_BIG_ENDIAN Implicit VR Big Endian

EXPLICIT_LITTLE_ENDIAN Explicit VR Little Endian

EXPLICIT_BIG_ENDIAN Explicit VR Big Endian

RLE Run length Encoding

DEFLATED_EXPLICIT_LITTLE_ENDIAN Deflated Explicit VR Little Endian

JPEG_BASELINE JPEG Baseline (Process 1): Default
Transfer Syntax for Lossy JPEG 8 Bit
Image Compression

JPEG_EXTENDED_2_4 JPEG Extended (Process 2 & 4): Default
Transfer Syntax for Lossy JPEG 12 Bit
Image Compression (Process 4 only)

JPEG_EXTENDED_3_5 JPEG Extended (Process 3 & 5)

JPEG_SPEC_NON_HIER_6_8 JPEG Spectral Selection, Non-
Hierarchical (Process 6 & 8)

JPEG_SPEC_NON_HIER_7_9 JPEG Spectral Selection, Non-
Hierarchical (Process 7 & 9)

JPEG_FULL_PROG_NON_HIER_10_12 JPEG Full Progression, Non-Hierarchical
(Process 10 & 12)

JPEG_FULL_PROG_NON_HIER_11_13 JPEG Full Progression, Non-Hierarchical
(Process 11 & 13)

JPEG_LOSSLESS_NON_HIER_14 JPEG Lossless, Non-Hierarchical
(Process 14)

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

215

Merge DICOM Transfer Syntax Parameter Description

JPEG_LOSSLESS_NON_HIER_15 JPEG Lossless, Non-Hierarchical
(Process 15)

JPEG_EXTENDED_HIER_16_18 JPEG Extended, Hierarchical (Process 16
& 18)

JPEG_EXTENDED_HIER_17_19 JPEG Extended, Hierarchical (Process 17
& 19)

JPEG_SPEC_HIER_20_22 JPEG Spectral Selection, Hierarchical
(Process 20 & 22)

JPEG_SPEC_HIER_21_23 JPEG Spectral Selection, Hierarchical
(Process 21 & 23)

JPEG_FULL_PROG_HIER_24_26 JPEG Full Progression, Hierarchical
(Process 24 & 26)

JPEG_FULL_PROG_HIER_25_27 JPEG Full Progression, Hierarchical
(Process 25 & 27)

JPEG_LOSSLESS_HIER_28 JPEG Lossless, Hierarchical (Process 28)

JPEG_LOSSLESS_HIER_29 JPEG Lossless, Hierarchical (Process 29)

JPEG_LOSSLESS_HIER_14 JPEG Lossless, Hierarchical, First-Order
Prediction (Process 14 [Selection Value
1]): Default Transfer Syntax for Lossless
JPEG Image Compression

JPEG_2000_LOSSLESS_ONLY JPEG 2000, Lossless

JPEG_2000 JPEG 2000, Lossless or Lossy

JPEG_LS_LOSSLESS JPEG LS Lossless

JPEG_LS_LOSSY JPEG LS Lossy (Near-Lossless)

JPEG_2000_MC_LOSSLESS_ONLY JPEG 2000 Part 2 Multi-component Image
Compression (Lossless Only)

JPEG_2000_MC JPEG 2000 Part 2 Multi-component Image
Compression

JPIP_REFERENCED JPIP Referenced

JPIP_REFERENCED_DEFLATE JPIP Referenced Deflate

MPEG2_MPHL MPEG2 Main Profile @ High Level

MPEG2_MPML MPEG2 Main Profile @ Main Level

MPEG4_AVC_H264_HP_LEVEL_4_1 MPEG-4 AVC/H.264 High Profile /
Level 4.1

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

216

Merge DICOM Transfer Syntax Parameter Description

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1 MPEG-4 AVC/H.264 BDcompatible High
Profile / Level 4.1

PRIVATE_SYNTAX_1 Private transfer syntax 1 with the
characteristics specified by the
PRIVATE_SYNTAX_1_LITTLE_ENDIAN,
PRIVATE_SYNTAX_1_EXPLICIT_VR,
and
PRIVATE_SYNTAX_1_ENCAPSULATED
configuration options.

PRIVATE_SYNTAX_2 Private transfer syntax 2 with the
characteristics specified by the
PRIVATE_SYNTAX_2_LITTLE_ENDIAN,
PRIVATE_SYNTAX_2_EXPLICIT_VR,
and
PRIVATE_SYNTAX_2_ENCAPSULATED
configuration options.

System Profile
The System Profile is used to define system-wide parameters. These
parameters apply across all associations with other DICOM application entities.
The location of this file is provided by the MERGECOM_3_PROFILE parameter of
the [MergeCOM3] section of the MERGE.INI file.

The following are a few notes to keep in mind concerning the System Profile:

• You must specify your own unique DICOM Implementation Class UID and
place it in this file along with an optional Implementation Version. These
need to be documented in your DICOM conformance statement.

• There are several exception options specified at both the association and
DIMSE levels of DICOM communication. You should not have to modify
these options in normal circumstances and doing so could make your
application non DICOM conformant.

• The DICOM Upper Layer section network time-outs can be modified. This is
useful on slower or less-predictable networks (e.g., WAN’s).

• The section of the System Profile dealing with transport parameters is
important. This is where you specify the TCP/IP listen port for a DICOM
server (SCP) application, along with the number of simultaneous
associations your server will support over this port.

Table 33 through

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

217

Table 38 define how each parameter should be defined within the system profile.

Table 33: [ASSOC_PARMS] section of system profile parameters

Name Description

ACCEPT_ANY_APPLICATION_TITLE † If set to YES, the remote system need not specify a correct DICOM
application title when requesting an association. If set to NO a correct
application title must be used. When this value is set to YES, the toolkit
will report the remote application as connecting to the first application
registered.

DEFAULT: NO

ACCEPT_ANY_CONTEXT_NAME † If set to YES, the remote system need not specify the
LOCAL_APPL_CONTEXT_NAME when requesting an association. If
set to NO, the correct context name must be used.

DEFAULT: NO

ACCEPT_ANY_HOSTNAME If set to YES, the toolkit will not check if applications connecting to an
SCP can have their hostname resolved through the SCP’s hostfile or
domain name server. If set to NO, the toolkit will automatically reject
associations from unknown hosts.

DEFAULT: NO

ACCEPT_ANY_PRESENTATION_CONTEXT † If set to YES, the toolkit will not validate that the presentation context ID
contained in a message’s PDU header information matches the ID of
the presentation context negotiated for the type of message contained
in the PDU. If set to NO, the toolkit will abort associations when these
values do not match.

DEFAULT: NO

ACCEPT_DIFFERENT_IC_UID † If set to NO, the remote system must specify the local
IMPLEMENTATION_CLASS_UID when requesting an association. If
set to YES, a different implementation class UID may be used.

DEFAULT: YES

ACCEPT_DIFFERENT_VERSION † If set to NO, the remote system must specify the local
IMPLEMENTATION_VERSION when requesting an association. If set
to YES, a different implementation version may be used.

DEFAULT: YES

ACCEPT_MULTIPLE_PRES_CONTEXTS If set to YES, SCP applications will allow multiple presentation contexts
to be negotiated for a single DICOM service. If set to NO, an SCP will
only accept a single presentation context for a DICOM service.

DEFAULT:YES

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

218

Name Description

ACCEPT_RELATED_GENERAL_SERVICES This parameter sets the Merge DICOM Toolkit behavior in regards to
support for DICOM Supplement 90. Supplement 90 defines a method
for association requestors to specify the generalized version of a SOP
Class. When set to YES, Merge DICOM Toolkit will allow association
acceptors to accept a presentation context whose generalized SOP
Class is supported; however, the customized SOP Class is not
specifically supported.

DEFAULT: NO

ACCEPT_STORAGE_SERVICE_CONTEXTS This parameter sets the Merge DICOM Toolkit behavior in regards to
support for DICOM Supplement 90. When set to YES, Merge DICOM
Toolkit will accept any presentation context which is defined as a
Storage Service Class SOP Class.

DEFAULT: NO

AUTO_ECHO_SUPPORT If set to YES, the toolkit automatically handles C-ECHO requests when
the application doesn't explicitly include STANDARD_ECHO in its
supported service list. If set to NO, the toolkit rejects C-ECHO requests
when the application doesn't explicitly include STANDARD_ECHO in its
supported service list.

DEFAULT: YES

DEFLATED_EXPLICIT_LITTLE_ENDIAN_
SYNTAX

This value defines the UID of the Deflated explicit VR little endian
transfer syntax.

DEFAULT: 1.2.840.10008.1.2.1.99

EXPLICIT_BIG_ENDIAN_SYNTAX This value defines the UID of the explicit VR big endian transfer syntax.

DEFAULT: 1.2.840.10008.1.2.2

EXPLICIT_LITTLE_ENDIAN_SYNTAX This value defines the UID of the explicit VR little endian transfer
syntax.

DEFAULT: 1.2.840.10008.1.2.1

HARD_CLOSE_TCP_IP_CONNECTION This parameter specifies how TCP/IP connections are closed by the
toolkit. When set to YES, TCP/IP connections are instantaneously
closed with an RST packet. When set to NO, TCP/IP connections are
closed gracefully with a FIN packet. Note, that in the NO case the
toolkit must wait for an operating system dependent amount of time for
the response to the FIN packet.

DEFAULT: YES

IMPLEMENTATION_CLASS_UID The DICOM Implementation Class UID (as specified in your DICOM
conformance statement).

IMPLEMENTATION_VERSION The Implementation Version Number (as specified in your DICOM
conformance statement).

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

219

Name Description

IMPLICIT_BIG_ENDIAN_SYNTAX The implicit big endian transfer syntax is not defined by the DICOM
standard. This value is provided to supply compatibility with private
implementations.

DEFAULT: <none>

IMPLICIT_LITTLE_ENDIAN_SYNTAX The implicit little endian transfer syntax is the default network transfer
syntax of the DICOM standard. The implicit little endian transfer syntax
must always be defined.

DEFAULT: 1.2.840.10008.1.2

JPEG_2000_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000, Lossless transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.90

JPEG_2000_MC_LOSSLESS_ONLY_SYNTAX This value defines the UID for JPEG 2000 Part 2 Multi-component
Image Compression (Lossless Only) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.92

JPEG_2000_MC_SYNTAX This value defines the UID for JPEG 2000 Part 2 Multi-component
Image Compression transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.93

JPEG_2000_SYNTAX This value defines the UID for JPEG 2000 transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.91

JPEG_BASELINE_SYNTAX This value defines the UID for JPEG Baseline (Process 1) transfer
syntax.

DEFAULT: 1.2.840.10008.1.2.4.50

JPEG_EXTENDED_2_4_SYNTAX This value defines the UID for JPEG Extended (Process 2 & 4) transfer
syntax.

DEFAULT: 1.2.840.10008.1.2.4.51

JPEG_EXTENDED_3_5_SYNTAX This value defines the UID for JPEG Extended (Process 3 & 5) transfer
syntax.

DEFAULT: 1.2.840.10008.1.2.4.52

JPEG_EXTENDED_HIER_16_18_SYNTAX This value defines the UID for JPEG Extended, Hierarchical (Process
16 & 18) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.59

JPEG_EXTENDED_HIER_17_19_SYNTAX This value defines the UID for JPEG Extended, Hierarchical (Process
17 & 19) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.60

JPEG_FULL_PROG_HIER_24_26_SYNTAX This value defines the UID for JPEG Full Progression, Hierarchical
(Process 24 & 26) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.63

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

220

Name Description

JPEG_FULL_PROG_HIER_25_27_SYNTAX This value defines the UID for JPEG Full Progression, Hierarchical
(Process 25 & 27) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.64

JPEG_FULL_PROG_NON_HIER_10_12_
SYNTAX

This value defines the UID for JPEG Full Progression, Non-Hierarchical
(Process 10 & 12) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.55

JPEG_FULL_PROG_NON_HIER_11_13_
SYNTAX

This value defines the UID for JPEG Full Progression, Non-Hierarchical
(Process 11 & 13) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.56

JPEG_LOSSLESS_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-Hierarchical, First-
Order Prediction (Process 14, Selection Value 1) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.70

JPEG_LOSSLESS_HIER_28_SYNTAX This value defines the UID for JPEG Lossless, Hierarchical (Process
28) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.65

JPEG_LOSSLESS_HIER_29_SYNTAX This value defines the UID for JPEG Lossless, Hierarchical (Process
29) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.66

JPEG_LOSSLESS_NON_HIER_14_SYNTAX This value defines the UID for JPEG Lossless, Non-Hierarchical
(Process 14) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.57

JPEG_LOSSLESS_NON_HIER_15_SYNTAX This value defines the UID for JPEG Lossless, Non-Hierarchical
(Process 15) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.58

JPEG_LS_LOSSLESS_SYNTAX This value defines the UID for JPEG LS Lossless transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.80

JPEG_LS_LOSSY_SYNTAX This value defines the UID for JPEG LS Lossy (Near Lossless) transfer
syntax.

DEFAULT: 1.2.840.10008.1.2.4.81

JPEG_SPEC_HIER_20_22_SYNTAX This value defines the UID for JPEG Spectral Selection, Hierarchical
(Process 20 & 22) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.61

JPEG_SPEC_HIER_21_23_SYNTAX This value defines the UID for JPEG Spectral Selection, Hierarchical
(Process 21 & 23) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.62

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

221

Name Description

JPEG_SPEC_NON_HIER_6_8_SYNTAX This value defines the UID for JPEG Spectral Selection,
Non-Hierarchical (Process 6 & 8) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.53

JPEG_SPEC_NON_HIER_7_9_SYNTAX This value defines the UID for JPEG Spectral Selection,
Non-Hierarchical (Process 7 & 9) transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.54

JPIP_REFERENCED_DEFLATE_SYNTAX This value defines the UID for JPIP Referenced Deflate transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.95

JPIP_REFERENCED_SYNTAX This value defines the UID for JPIP Referenced transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.94

LICENSE The Merge DICOM Toolkit license number that was supplied when the
toolkit was purchased.

LOCAL_APPL_CONTEXT_NAME The DICOM Application Context Name (UID) (as specified in the
DICOM Standard).

DEFAULT: 1.2.840.10008.3.1.1.1

MPEG2_MPHL_SYNTAX This value defines the UID for MPEG2 Main Profile @ High Level
transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.101

MPEG2_MPML_SYNTAX This value defines the UID for MPEG2 Main Profile @ Main Level
transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.100

MPEG4_AVC_H264_BDC_HP_LEVEL_4_1_
SYNTAX

This value defines the UID for MPEG-4 AVC/H.264 BD-compatible High
Profile / Level 4.1 transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.103

MPEG4_AVC_H264_HP_LEVEL_4_1_
SYNTAX

This value defines the UID for MPEG-4 AVC/H.264 High Profile / Level 4.1
transfer syntax.

DEFAULT: 1.2.840.10008.1.2.4.102

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

222

Name Description

PDU_MAXIMUM_LENGTH * The maximum size of Protocol Data Units that can be received by this
Merge DICOM Toolkit implementation. This value will also place a limit
on how large PDU values being sent can be. Setting this so that a PDU
fits within an even multiple of the default TCP/IP MSS (Maximum
Segment Size) of 1460 will optimize network performance. Note that 6
bytes for the PDU header must be added to the configured maximum
PDU size when calculating a multiple of the MSS.

Note also to see the TCPIP_SEND_BUFFER_SIZE and
TCPIP_RECEIVE_BUFFER_SIZE configuration values for improving
performance.

Example: (1460*44)-6 = 64234 PDU Size

DEFAULT: 64234

MINIMUM: 4K

MAXIMUM: NONE

PRIVATE_SYNTAX_1_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 1 as having its pixel data tag (7fe0,0010) being encoded as
undefined length in the same manner as the JPEG and RLE transfer
syntaxes are encoded.

DEFAULT: NO

PRIVATE_SYNTAX_1_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 1 as being encoded in explicit VR format.

DEFAULT: YES

PRIVATE_SYNTAX_1_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 1 as being encoded in little endian format.

DEFAULT: YES

PRIVATE_SYNTAX_1_SYNTAX The unique identifier (UID) Merge DICOM Toolkit will use to identify
private transfer syntax 1. When this value is set to “<none>”, private
transfer syntax support is shut off.

DEFAULT: <none>

PRIVATE_SYNTAX_2_ENCAPSULATED When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 2 as having its pixel data tag (7fe0,0010) being encoded as
undefined length in the same manner as the JPEG and RLE transfer
syntaxes are encoded.

DEFAULT: NO

PRIVATE_SYNTAX_2_EXPLICIT_VR When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 2 as being encoded in explicit VR format.

DEFAULT: YES

PRIVATE_SYNTAX_2_LITTLE_ENDIAN When set to YES, Merge DICOM Toolkit will interpret private transfer
syntax 2 as being encoded in little endian format.

DEFAULT: YES

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

223

Name Description

PRIVATE_SYNTAX_2_SYNTAX The unique identifier (UID) Merge DICOM Toolkit will use to identify
private transfer syntax 2. When this value is set to “<none>”, private
transfer syntax support is shut off.

DEFAULT: <none>

RLE_SYNTAX This value defines the UID of the RLE Lossless transfer syntax.

DEFAULT: 1.2.840.10008.1.2.5

† These options allow for non-standard DICOM operations. Such exceptions,
if used, should be noted in your DICOM conformance statement.
* Performance tuning.
Table 34: [DIMSE_PARMS] section of system profile parameters

Name Description

INITIATOR_NAME † The DICOM standard has retired the old ACR/NEMA Initiator Name
attribute in command messages. To generate such an attribute in
command messages, specify an initiator name. <none> means do not
put initiator name in messages.

DEFAULT: <none>

RECEIVER_NAME † The DICOM standard has retired the old ACR/NEMA Receiver Name
attribute in command messages. To generate such an attribute in
command messages, specify a receiver name. <none> means do not
put receiver name in messages.

DEFAULT: <none>

SEND_ECHO_PRIORITY † The DICOM standard has retired the message priority attribute in echo
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message priority in echo
messages, specify NO.

DEFAULT: NO

SEND_LENGTH_TO_END † The DICOM standard has retired the old Group-Length-To-End attribute
in command messages. To generate such an attribute in command
messages, specify YES. If you do not want to generate
Group-Length-To-End, specify NO.

DEFAULT: NO

SEND_MSG_ID_RESPONSE † The DICOM standard has retired the message ID attribute in response
command messages. To generate such an attribute in command
messages, specify YES. To NOT use message ID in response
messages, specify NO.

DEFAULT: NO

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

224

Name Description

SEND_RECOGNITION_CODE † The DICOM standard has retired the old Recognition Code attribute in
command messages. To generate such an attribute in command
messages, specify YES. If you do not want to generate such an
attribute, specify NO.

DEFAULT: NO

SEND_RESPONSE_PRIORITY † The DICOM standard has retired the message priority attribute in
response messages. To generate such an attribute in response
messages, specify YES. To NOT use message priority in response
messages, specify NO.

DEFAULT: NO

SEND_SOP_CLASS_UID † Certain DICOM service classes demand that the affected SOP class
UID be present in the message. To prevent the library from ensuring
that this is done, specify NO. To ensure that Affected SOP class UID is
present, specify YES.

DEFAULT: YES

SEND_SOP_INSTANCE_UID † Certain DICOM service classes demand that the affected SOP instance
UID be present in the message. To prevent the library from ensuring
that this is done, specify NO. To ensure that Affected SOP instance
UID is present, specify YES.

DEFAULT: YES

† These options allow for non-standard DICOM operations. Such exceptions,
if used, should be noted in your DICOM conformance statement.

Table 35: [DUL_PARMS] section of system profile parameters

Name Description

ARTIM_TIMEOUT The number of seconds to use as a time out waiting for an association
request or waiting for the peer to shut down an association.

DEFAULT: 30

ASSOC_REPLY_TIMEOUT The number of seconds to wait for a reply to an associate request.

DEFAULT: 15.

CONNECT_TIMEOUT The number of seconds to wait for a network connect to be accepted.

DEFAULT: 15.

INACTIVITY_TIMEOUT The number of seconds to wait in between packets of data received
over the network after the initial packet of data in a message is
received. Used by the MC_Read_Message() and
MC_Read_To_Stream functions.

DEFAULT: 15.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

225

Name Description

INSURE_EVEN_UID_LENGTH † Set to NO, if odd-length UIDs in PDU’s should NOT be padded with a
NULL to ensure even length unique Ids. Set to YES to ensure even
UIDs in PDUs.

DEFAULT: NO

RELEASE_TIMEOUT The number of seconds to wait for a reply to an associate release.

DEFAULT: 15.

WRITE_TIMEOUT The number of seconds to wait for a network write to be accepted.

DEFAULT: 15.

† These options allow for non-standard DICOM operations. Such exceptions,
if used, should be noted in your DICOM conformance statement.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

226

Table 36: [MEDIA_PARMS] section of system profile parameters

Name Description

DICOMDIR_STREAM_STORAGE When set to yes, DICOMDIRs read in leave their directory records
internally in “stream” format and are not parsed until the directory
record is referenced. This can greatly reduce memory usage when
reading in large DICOMDIRs when the entire DICOMDIR is not
referenced.

Default: NO

EXPORT_GROUP_LENGTHS_TO_MEDIA * When set to NO, do not write group length attributes with
MC_Write_File() and MC_Write_File_By_Callback().

DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES_TO_
MEDIA

When set to NO, disable the exporting of private attributes in files
written with the MC_Write_File() and
MC_Write_File_By_Callback() functions.

DEFAULT: YES

EXPORT_UN_VR_TO_MEDIA When set to NO, disable the exporting of attributes with a VR of UN in
files written with the MC_Write_File() and
MC_Write_File_By_Callback() functions.

DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_SQ_IN_
DICOMDIR *

When set to NO, DICOMDIRs written with MC_Write_File() are
created with their sequence attributes having defined lengths. Setting
this option to Yes will increase performance.

DEFAULT: YES

* Performance tuning.

Table 37:{MESSAGE_PARMS] section of system profile parameters

Name Description

ALLOW_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, a comma or a period will be allowed in the value
passed to MC_Set_Value_From_String() for attributes with a
VR of DS, FL or FD. When set to No, only a period will be
acceptable as a decimal separator. Note that the toolkit will always
ensure that DS attributes use a period decimal separator when
streaming to the network or to a file, regardless of current locale
settings.

DEFAULT: NO

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

227

Name Description

ALLOW_INVALID_PRIVATE_ATTRIBUTES When reading messages or file objects, this parameter specifies if
private attributes encoded in an invalid format should be ignored or
parsed.

DEFAULT: NO

ALLOW_INVALID_PRIVATE_CREATOR_CODES When reading messages or file objects, this parameter specifies if
private creator codes encoded with invalid characters should be
ignored or parsed.

DEFAULT: NO

ATT_00081190_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0008,1190) Retrieve URL was changed
from UT to the newly introduced UR. For backward compatibility,
this parameter specifies that, when reading messages or file
objects, the attribute is expected to have the old UT value
representation.

DEFAULT: NO

ATT_00287FE0_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0028,7FE0) Pixel Data Provider URL
was changed from UT to the newly introduced UR. For backward
compatibility, this parameter specifies that, when reading messages
or file objects, the attribute is expected to have the old UT value
representation.

DEFAULT: NO

ATT_0040E010_USE_UT_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0040,E010) Retrieve URI was changed
from UT to the newly introduced UR. For backward compatibility,
this parameter specifies that, when reading messages or file
objects, the attribute is expected to have the old UT value
representation.

DEFAULT: NO

ATT_0074100A_USE_ST_VR In the 2014b edition of the DICOM Standard, the value
representation of attribute (0074,100A) Contact URI was changed
from ST to the newly introduced UR. For backward compatibility,
this parameter specifies that, when reading messages or file
objects, the attribute is expected to have the old ST value
representation.

DEFAULT: NO

CALLBACK_MIN_DATA_SIZE When using the MC_Register_Callback_Function() call to
store large data such as pixel data, this option specifies the
minimum size of value for which the callback function should be
used. This option was specifically added so pixel data contained in
icons are not managed with a callback function.

DEFAULT: 1

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

228

Name Description

COMPRESSION_ALLOW_FRAGS Configuration Parameter for MC_Standard_Compressor. The
Pegasus libraries allow compressed image data to be returned as it
continues to compress more image data. This may result in an
image frame having one or more fragments. This is perfectly legal,
however some viewers may not be able to display the image if they
do not support multiple fragments per frame.

DEFAULT: YES

COMPRESSION_CHROM_FACTOR Configuration Parameter for MC_Standard_Compressor. Values
0 through 255. The chrominance compression factor is used to
adjust the default chrominance quantization table values. When
ChromFactor is 32, the default chrominance quantization table
values are used as is. A value of 255 corresponds to high
compression, low quality.

DEFAULT: 32

COMPRESSION_J2K_LOSSY_QUALITY Configuration Parameter for MC_Standard_Compressor. When
JPEG_2000 with COMPRESSION_WHEN_J2K_USE_LOSSY =
Yes, and COMPRESSION_J2K_LOSSY_USE_QUALITY = Yes, a
quality can be specified. Valid values are 1 to 10, 1 being highest
quality image.

DEFAULT: 1

COMPRESSION_J2K_LOSSY_RATIO Configuration Parameter for MC_Standard_Compressor. When
JPEG_2000 with COMPRESSION_WHEN_J2K_USE_LOSSY =
Yes, and COMPRESSION_J2K_LOSSY_USE_QUALITY = No, a
ratio can be specified. The compressor attempts to reduce the
image size to 1/COMPRESSION_J2K_LOSSY_RATIO.

DEFAULT: 10

COMPRESSION_J2K_LOSSY_USE_QUALITY Configuration Parameter for MC_Standard_Compressor. When
JPEG_2000 with COMPRESSION_WHEN_J2K_USE_LOSSY =
Yes, this indicates which metric should be used for lossy
compression, ratio or quality.

DEFAULT: YES

COMPRESSION_LUM_FACTOR Configuration Parameter for MC_Standard_Compressor. Values
0 through 255. 0 is the highest quality, giving a quantization table of
all 1’s. 32 corresponds to the standard quantization tables. For
values between 0 and 128, the standard tables are scaled linearly.
For values between 128 and 255, the standard tables are scaled
non-linearly and the compression increases (and the quality
decreases) by a very large amount.

DEFAULT: 32

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

229

Name Description

COMPRESSION_RGB_TRANSFORM_FORMAT This parameter allows the user to select the output format when
doing Lossy JPEG compression of RGB images. The value can be
set to YBR_FULL or YBR_FULL_422 to specifiy what photometric
interpretion Merge DICOM Toolkit should compress into when
compressing RGB images.

DEFAULT: YBR_FULL_422

COMPRESSION_USE_HEADER_QUERY If set to YES, it instructs the toolkit to give precedence to the image
parameters (rows, columns, etc.) from the JPEG header, in case
disagreement is suspected between the the DICOM header the
JPEG header. If set to NO, the DICOM header will be used.

DEFAULT: NO

COMPRESSION_WHEN_J2K_USE_LOSSY Configuration Parameter for MC_Standard_Compressor. When
JPEG_2000 is used as a transfer syntax, this could mean either
lossy or lossless compression. This parameter specifies the
intended syntax.

DEFAULT: No

CREATE_OFFSET_TABLE This parameter specifies if an offset table is created when
MC_Duplicate_Message() is used to compress a DICOM
message or file. It also specifies if an offset table is created when
the MC_Set_Encapsulated_Value_From_Function() and
MC_Set_Next_Encapsulated_Value_From_Function()
routines are used.

DEFAULT: Yes

DECODER_TAG_FILTER Specifies the list of tags to be ignored when reading DICOM files or
messages. The values are separated by commas and can be
specified in different formats:

• Single tag, e.g.: 00080020
• Tag range, e.g.: 00080020-000800FF
• Single group, e.g.: G0020
• Group range, e.g: G0020-G0022
• All private as: PRIVATE

All ranges are inclusive, meaning that G0020-G0022 will filter
groups 20 and 22.

DEFAULT: (empty)

DEFLATE_ALLOW_FLUSH Allows deflate to flush data occasionally to limit buffering.

DEFAULT: Yes

DEFLATE_COMPRESSION_LEVEL Allows the compression level of deflate to be specified when using
deflated explicit VR little endian transfer syntax. 0 is no
compression, 1 is fastest, and 9 compresses best.

DEFAULT: -1

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

230

Name Description

DESIRED_LAST_PDU_SIZE This parameter allows the user to configure the length of the last
PDU sent. This allows for interoperability with other DICOM
implementations that may be intolerant with either a zero or two
byte final PDU length. The default value used is 8.

Note: Starting with release 3.5.1, this configuration option has a
limited effect.

DICTIONARY_ACCESS This parameter specifies whether or not the DICOM dictionary is to
be loaded into memory or accessed from the dictionary file. FILE
means access information directly from the dictionary file. MEM
means load the dictionary into memory and access it there.

Note: Starting with the 3.5.1 Merge DICOM Toolkit release,
dictionary access is always memory based and can no longer be file
based. This option is now ignored.

DEFAULT: MEM

DICTIONARY_FILE This parameter specifies the name (path) of the DICOM dictionary.
An absolute or relative path may be specified.

Note: This parameter is ignored if the dictionary has been pre-
compiled.

DEFAULT: ../mc3msg/mrgcom3.dct

DUPLICATE_ENCAPSULATED_ICON When duplicating to an encapsulated transfer syntax, this
configuration value specifies whether an ICON IMAGE SEQUENCE
should also be encapsulated.

DEFAULT: NO

ELIMINATE_ITEM_REFERENCES * This parameter specifies the behavior of the message/item/file
handling functions MC_Free_Message(),
MC_Empty_Message(), MC_Free_Item(),
MC_Empty_Item(), MC_Free_File() and
MC_Empty_File(). If this parameter is set to YES, the above
functions will search for references in every currently open object to
delete when they encounter an item to free within an object.

DEFAULT: NO.

EMPTY_PRIVATE_CREATOR_CODES If set to NO, private creator codes contained in messages are not
emptied when the MC_Empty_Message() or
MC_Empty_File() function calls are made.

DEFAULT: YES

EXPORT_EMPTY_PRIVATE_CREATOR_CODES If set to NO it prevents the toolkit from exporting private creator data
elements which don't have any private attributes in the private
block. If set to YES, exporting private creator data elements with
empty private blocks is allowed.

DEFAULT: YES

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

231

Name Description

EXPORT_GROUP_LENGTHS_TO_NETWORK * When set to NO, do not export group length attributes when using
the MC_Send_Request_Message(), MC_Send_Request(),
MC_Send_Response_Message() and MC_Send_Response()
functions

DEFAULT: YES

EXPORT_PRIVATE_ATTRIBUTES_TO_NETWORK When set to NO, disable the exporting of private attributes in
messages written to the network with the
MC_Send_Request_Message(), MC_Send_Request(),
MC_Send_Response_Message() and MC_Send_Response()
functions.

DEFAULT: YES

EXPORT_UN_VR_TO_NETWORK When set to NO, disable the exporting of attributes with a VR of UN
in messages written to the network with the
MC_Send_Request_Message(), MC_Send_Request(),
MC_Send_Response_Message() and MC_Send_Response()
functions.

DEFAULT: YES

EXPORT_UNDEFINED_LENGTH_SQ * If YES, messages transferred over the network or written to disk
have their sequence attributes encoded as undefined length. This
increases performance of the library.

DEFAULT: NO

FLATE_GROW_OUTPUT_BUF_SIZE * The size that the output buffer of deflate or inflate should grow to
when its size is insufficient. An Info message is logged each time
the buffer grows.

DEFAULT: 1024

FORCE_OPEN_EMPTY_ITEM * When set to YES, the MC_Open_Item() function will act similar
to the MC_Open_Empty_Message() function. The up-front
performance cost of the MC_Open_Item() function will be
reduced, but the amount of validation done when adding tags to the
item is reduced. Setting this value to YES will also improve the
performance of the DICOMDIR directory functions. This
configuration value does not have any effect on embedded
platforms.

DEFAULT: NO

IGNORE_JPEG_BAD_SUFFIX Configuration Parameter for MC_Standard_Decompressor to
deal with lossless JPEG images whose suffix have been invalidly
written according to the JPEG specification. These images have a
16-zero-bit suffix following a -32768 prefix where the JPEG spec
says the suffix is omitted following a -32768 prefix. The following
are the valid settings:

-1 = Default, fail on these images

0 = Ignore when user detects such images

1 = Let the toolkit detect and ignore automatically

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

232

Name Description

LARGE_DATA_SIZE Defines “Large Data” to the toolkit. “Large Data” is defined as an
attribute value which has a length of LARGE_DATA_SIZE or more.

DEFAULT: 200.

LARGE_DATA_STORE This parameter specifies where “Large Data” values should be
stored. FILE means store the values in temporary files. MEM
means store the values in memory.
Note: Embedded systems should ignore this parameter and always
use MEM.

DEFAULT: MEM

LIST_SQ_DEPTH_LIMIT Limit the depth of sequences listing. This parameter should be set
to the maximum number of levels any sequence should be listed.

DEFAULT: is 0 - means do not limit the listing of sequences

LIST_UN_ATTRIBUTES If No, attributes with Unknown VR will not be listed by
MC_List_Message() and T2 logging option.

DEFAULT: Yes

LIST_VALUE_LIMIT Limit the size of listed values by MC_List_Message() or T2
logging option. This parameter should be set to the maximum
number of lines to be printed for any attribute in the list.

DEFAULT: 0 - means show the whole value.

MSG_FILE_ITEM_OBJ_TRACE This parameter allows the tracking of the creation, referencing and
freeing of message, file and item objects. This option can be used if
the user suspects a memory leak in their application from not
freeing one of these object types. The logging is done at the T1
trace level which must be enabled in the merge.ini file.

DEFAULT: NO

MSG_INFO_FILE This parameter specifies the name (path) of the DICOM message
information file. An absolute or relative path may be specified.

DEFAULT: ../mc3msg/mrgcom3.msg

NULL_TYPE3_VALIDATION This parameter specifies how the toolkit will validate a single NULL
value in a type 3 attribute with VM > 1. Valid values are ERR,
WARN and INFO.

DEFAULT: ERR

OBOW_BUFFER_SIZE This parameter specifies the number of bytes of “Large Data” that
should be buffered before they are written to disk. This value is only
used when the parameter LARGE_DATA_STORE is set to FILE.

DEFAULT: 4096

PEGASUS_DISP_REG_NAME When using your own Pegasus license to remove the 3
frames/second limitation, this should have the company name that
was used to generate your Pegasus license.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

233

Name Description

PEGASUS_DISP_REGISTRATION When using your own Pegasus license to remove the 3
frames/second limitation, this should have the registration code that
goes with the Pegasus dispatcher.

PEGASUS_OP_*_NAME When using your own Pegasus license to remove the 3
frames/second limitation, this should have the company name that
was used to generate your Pegasus license.

PEGASUS_OP_*_REGISTRATION When using your own Pegasus license to remove the 3
frames/second limitation, this should have the registration code that
goes with its respective PEGASUS_OP_*_NAME.

PEGASUS_OPCODE_PATH This parameter specifies the directory where Pegasus opcode DLLs
are to be loaded from. The opcode DLL refers to files like picn6220
and not the dispatcher DLL picn20. If the option is empty, the
SSM/DLL is loaded from the same directory as the dispatcher DLL.
If these files are not found, opcode SSM/DLL is loaded using the
directory order Windows uses when loading DLLs. The SSM/DLL is
loaded from the current directory if ‘.’ is specified.

DEFAULT: (empty)

REJECT_INVALID_VR This parameter specifies whether or not to reject invalid VR values
in DICOM messages. If set to Yes, the parsing is aborted and the
data set is rejected with a status of MC_INVALID_VR. This is useful
in some scenarios when invalid attribute VR and length can result in
runaway read/copy operations which may lead to crashes.

DEFAULT: No

RELEASE_SQ_ITEMS If set to NO, existing item IDs will not be freed when setting a null
value or an empty value or a new value to a sequence attribute.
Setting it to YES will allow sequence items that have no other
references to be freed.

DEFAULT: No

REMOVE_PADDING_CHARS When set to Yes, Merge DICOM Toolkit will remove space padding
characters from all text based attributes. This removal will occur
when the attribute is encoded with one of the MC_Set_Value...
functions, or when the attribute is read with one of the streaming or
network read functions.

DEFAULT: No

REMOVE_SINGLE_TRAILING_SPACE If set to YES, the toolkit will strip a single trailing padding space
character from an attribute value of string type. Otherwise it will not.

DEFAULT: YES

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

234

Name Description

RETURN_COMMA_IN_DS_FL_FD_STRINGS When set to Yes, Merge DICOM Toolkit will return a comma
character as a decimal separator in a value when
MC_Get_Value_To_String() is called for an attribute with a VR
of DS, FL, or FD. When set to No, a period will always be returned
for the decimal separator. Note that DS values will always be
properly encoded with a period in DICOM message objects.

DEFAULT: No

TEMP_FILE_DIRECTORY This parameter specifies the directory in which temporary files
should be created. This parameter is used only if
LARGE_DATA_STORE = FILE. An absolute or relative path may
be specified.

DEFAULT: ./

TOLERATE_INVALID_IN_DEFAULT_CHARSET This parameter specifies if non-ASCII characters are to be tolerated
in the default repertoire. When set to Yes, the validation of the
attribute/message will not be enforced, but a warning message will
still be logged.

DEFAULT: Yes

UN_VR_CODE VR Code to use for attributes with unknown VRs. This may be set
to ‘OB’ if an implementation does not understand ‘UN’.

DEFAULT: UN

VALID VALUES: UN, OB

UPDATE_GROUP_0028_ON_DUPLICATE When set to Yes, the group 0028 attributes within a message will be
updated when duplicating a message or file with
MC_Duplicate_Message() and the standard compressor or
decompressor. The Photometric Interpretation will be updated as
appropriate, and the Lossy Image Compression, Lossy Image
Compression Ratio and Lossy Image Compression Method tags will
be updated if Lossy Image Compression was applied to the image.

DEFAULT: No

USE_FREE_DATA_CALLBACK When set to Yes, all registered callback functions registered with
MC_Register_Callback_Function are called with the
FREE_DATA callback type when the memory associated with the
callback is to be freed, because the enclosing message, file, or item
is being freed.

DEFAULT: No

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

235

Name Description

WORK_BUFFER_SIZE * This parameter specifies the amount of data that is buffered in the
toolkit before being stored internally or passed to a user’s callback
function. This option impacts the MC_Message_To_Stream(),
MC_Stream_To_Message(), MC_Send_Request_Message(),
MC_Send_Request(), MC_Send_Response_Message(),
MC_Send_Response(), MC_Read_Message(),
MC_Read_To_Stream(), MC_Open_File(),
MC_Open_File_Bypass_OBOW(),
MC_Open_File_Upto_Tag(), MC_Write_File() and
MC_Write_File_By_Callback() functions.

Setting this option to values larger than 28K will in most cases
cause the toolkit to use the operating system‘s memory
management scheme instead of the toolkit’s internal mechanism.

DEFAULT: 28K

* Performance tuning.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

236

Table 38: [TRANSPORT_PARMS] section of system profile parameters

Name Description

CAPTURE_FILE This parameter specifies the base name to use for capture files.
(Capture files are generated if the NETWORK_CAPTURE value is set
to Yes.) If only one capture file is requested (see
NUMBER_OF_CAP_FILES), the capture file will have the name
specified. If more than one is requested, nnn will be appended to the
base file name specified (e.g. merge001.cap)

DEFAULT: merge.cap (in the current directory)

CAPTURE_FILE_SIZE This parameter specifies the maximum size (in kilobytes) that capture
files are allowed to grow (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If more than one capture
file is requested (see NUMBER_OF_CAP_FILES), each file generated
will have this maximum size. If a value less than 1 is specified only one
capture file of unlimited length will be generated.

DEFAULT: 0

IP_TYPE This parameter specifies the preferred IP type for network
communications. When set to IPV4, Merge DICOM Toolkit will attempt
to utilize only IPV4 network connections. When set to IPV6, Merge
DICOM Toolkit will attempt to use only IPV6 network connections.
When set to AVAILABLE in an SCP, Merge DICOM Toolkit will prefer
IPV6 if it is enabled in the operating system over IPV4. If IPV6 is used,
the socket is put into dual stack mode, if supported by the operating
system, to accept connections from both IPV4 and IPV6. When set to
AVAILABLE in an SCU, Merge DICOM Toolkit will use the available
type of IP networking.

DEFAULT: AVAILABLE

VALID VALUES: AVAILABLE, IPV4, IPV6

MAX_PENDING_CONNECTIONS This parameter specifies the maximum number of open listen channels.
Its value is used as the second argument of a TCP listen() call.

DEFAULT: 5

NETWORK_CAPTURE This parameter specifies whether or not network data should be
captured in files suitable to be read by the MergeDPM utility. Use these
parameters to customize the network capture:

CAPTURE_FILE
CAPTURE_FILE_SIZE
NUMBER_OF_CAP_FILES
REWRITE_CAPTURE_FILES

DEFAULT: No

NUMBER_OF_CAP_FILES This parameter specifies the number of capture files to generate
(capture files are generated if the NETWORK_CAPTURE value is set to
Yes). Each capture file generated will have maximum size specified by
CAPTURE_FILE_SIZE. If CAPTURE_FILE_SIZE is less than 1
(unlimited size) this parameter’s value is ignored.

DEFAULT: 1

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

237

Name Description

REWRITE_CAPTURE_FILES This parameter specifies whether or not the capture files should be
rewritten when all files have reached the maximum size specified by
CAPTURE_FILE_SIZE (capture files are generated if the
NETWORK_CAPTURE value is set to Yes). If Yes is specified, the
oldest file will be rewritten. If No is specified and all requested files
have been written (see NUMBER_OF_CAP_FILES), no more data will
be captured.

DEFAULT: Yes

TCPIP_DISABLE_NAGLE This parameter specifies if the Nagle Algorithm should be used when
sending packets at the TCP/IP level. Most operating systems enable
this by default. It allows small segments of data to delay sending a
fixed amount of time to possibly be combined with other small
segments and be sent as one larger packet. Disabling this may cause
high network traffic.

DEFAULT: No

TCPIP_LISTEN_PORT This parameter specifies the TCP/IP port on which server applications
are to listen for associate requests.

DEFAULT: 104

TCPIP_RECEIVE_BUFFER_SIZE * This parameter specifies the TCP/IP receive buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_SEND_BUFFER_SIZE are operating system dependent. If the
values of these options are set too high, a message will be logged to
the toolkit's log files, although no errors will be returned through the
toolkit's API.

Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that for
optimum performance, these values should be at least slightly larger
than the PDU_MAXIMUM_LENGTH configuration value.

Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.

Note, also that some operating systems such as Linux have auto-tuning
of TCP/IP buffer sizes implemented when an explicit TCP/IP Send and
Receive buffer size are not set. These options can be set to zero to
disable Merge DICOM Toolkit's setting of each buffer size.

DEFAULT: 131400

MAXIMUM: Operating System dependent

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

238

Name Description

TCPIP_SEND_BUFFER_SIZE * This parameter specifies the TCP/IP send buffer size for each
connection. Note that the maximum values for this constant and
TCPIP_RECEIVE_BUFFER_SIZE are operating system dependent. If
the values of these options are set too high, a message will be logged
to the toolkit's log files, although no errors will be returned through the
toolkit's API.

Larger values for these constants will greatly improve network
performance on networks with minimal network activity. Note that for
optimum performance, these values should be at least slightly larger
than the PDU_MAXIMUM_LENGTH configuration value.

Note also that setting these values to an even multiple of the TCP/IP
MSS (Maximum Segment Size) of 1460 bytes can help increase
performance.

Note, also that some operating systems such as Linux have auto-tuning
of TCP/IP buffer sizes implemented when an explicit TCP/IP Send and
Receive buffer size are not set. These options can be set to zero to
disable Merge DICOM Toolkit's setting of each buffer size.

DEFAULT: 131400

MAXIMUM: Operating System dependent

* Performance tuning.

Service Profile
The Service Profile is generated by Merge OEM and contains DICOM standard
services and commands and is a useful reference (along with the message.txt
file mentioned previously) to find the Merge DICOM names for the standard
DICOM services and items. It is used by the library to negotiate the proper SOP
Class UIDs and to access the binary dictionary and message information files
when creating instances of message objects and validating messages.

In most cases, it will not be necessary to modify the Service Profile. However, if
you are using an extended toolkit to create your own private services, you will
need to add specifications for these private services to the Service Profile. See
the Merge DICOM Toolkit: Extended Toolkit Manual for further details.

The location of the Service Profile is provided by the MERGECOM_3_SERVICES
parameter of the [MergeCOM3] section of the MERGE.INI file.

Remember, the Service Profile is GENERATED by the Merge DICOM Profile
Database Utilities at Merge OEM. Unless you are absolutely confident about
changes being made, DO NOT CHANGE THE CONTENTS OF THIS FILE.

The Service Profile contains the following sections.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

239

Table 39: Service profile parameters

Name Description

[SERVICE_TABLE] List of service names and numbers. This list registers every
service available to an Application Entity. The parameters
associated with [SERVICE_LIST] are
NUMBER_OF_SERVICES_SUPPORTED (the number of
service names that will be listed immediately following
NUMBER_OF_SERVICES_SUPPORTED) and one entry for
each supported service.

[<service_number>] One section number for each of the above services registered
in [SERVICE_TABLE]. Each section contains a Service Name,
a DICOM SOP Class UID for the Service, a flag that tells
whether it is a BASE or META Service (SOP) and a list of
commands supported for that service.

[ITEM_TABLE] One item name and number for each DICOM item that can be
encoded in an attribute of Value representation SQ (Sequence
of Items).

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

240

Appendix E: Proprietary Schema XML
structure
The Merge DICOM Toolkit provides an API to convert a DICOM message, file or
attribute set into a proprietary schema XML string. The following displays the
basic structure of the XML string.

Base64 encoding of bulks and attributes with VR UN:
<?xml version="1.0" encoding="utf-8"?>
<DcmFile>
 <FileMetaInfo Service="STANDARD_SEC_CAPTURE"

Command="C_STORE_RQ">
 <Attribute Tag="00020001" VR="OB" Name="File Meta

Information Version" Length="2">AAE=</Attribute>
 <Attribute Tag="00020002" VR="UI" Name="Media Storage

SOP Class UID" Length="25">...</Attribute>
 <Attribute Tag="00020003" VR="UI" Name="Media Storage

SOP Instance UID" Length="29">...</Attribute>
 <Attribute Tag="00020010" VR="UI" Name="Transfer Syntax

UID" Length="19">1.2.840.10008.1.2.1</Attribute>

 <Attribute Tag="00020016" VR="AE" Name="Source

Application Entity Title"
Length="15">MERGE_STORE_SCP</Attribute>

 </FileMetaInfo>
 <DataSet Service="STANDARD_SEC_CAPTURE"

Command="C_STORE_RQ"
TransferSyntax="1.2.840.10008.1.2.1">

 <Attribute Tag="00080008" VR="CS" Name="Image Type"
Length="24">ORIGINAL\SECONDARY\OTHER</Attribute>

 <Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

 <Attribute Tag="00080020" VR="DA" Name="Study Date"

Length="8">20020717</Attribute>
 <Attribute Tag="00080030" VR="TM" Name="Study Time"

Length="6">123429</Attribute>
 <Attribute Tag="00080060" VR="CS" Name="Modality"

Length="2">OT</Attribute>

 <Attribute Tag="00081111" VR="SQ" Name="Referenced

Performed Procedure Step Sequence" Length="1">
 <Item>
 <Attribute Tag="00081150" VR="UI" Name="Referenced

SOP Class UID"
Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

 <Attribute Tag="00081155" VR="UI" Name="Referenced
SOP Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027
.44</Attribute>

 </Item>
 </Attribute>
 <Attribute Tag="00090010" VR="LO" Name="Private Creator

Code" PCode="PrivateCode" Length="11">SAMPLE
PCODE</Attribute>

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

241

 <Attribute Tag="00091010" VR="LO" Name="Private"
PCode="SAMPLE PCODE" Length="6">Value1</Attribute>

 <Attribute Tag="00091015" VR="UN" Name="Private"
PCode="SAMPLE PCODE" Length="6">INAgNAEy</Attribute>

 <Attribute Tag="00100010" VR="PN" Name="Patient's Name"

Length="28">Last^First</Attribute>

 <Attribute Tag="7FE00010" VR="OW" Name="Pixel Data"

Encoding="Base64"
Length="262144">HQAABgMAAAIHBAM.....</Attribute>

 </DataSet>
</DcmFile>

The default encoding of bulks and attributes with VR
UN:

<?xml version="1.0" encoding="utf-8"?>
<DcmFile>
 <FileMetaInfo Service="STANDARD_SEC_CAPTURE"

Command="C_STORE_RQ">
 <Attribute Tag="00020001" VR="OB" Name="File Meta

Information Version" Length="2">00 01</Attribute>

 <Attribute Tag="00020016" VR="AE" Name="Source

Application Entity Title"
Length="15">MERGE_STORE_SCP</Attribute>

 </FileMetaInfo>
 <DataSet Service="STANDARD_SEC_CAPTURE"

Command="C_STORE_RQ"
TransferSyntax="1.2.840.10008.1.2.1">

 <Attribute Tag="00080008" VR="CS" Name="Image Type"
Length="24">ORIGINAL\SECONDARY\OTHER</Attribute>

 <Attribute Tag="00080016" VR="UI" Name="SOP Class UID"
Length="25">1.2.840.10008.5.1.4.1.1.7</Attribute>

 <Attribute Tag="00081111" VR="SQ" Name="Referenced

Performed Procedure Step Sequence" Length="1">
 <Item>
 <Attribute Tag="00081150" VR="UI" Name="Referenced

SOP Class UID"
Length="23">1.2.840.10008.3.1.2.3.3</Attribute>

 <Attribute Tag="00081155" VR="UI" Name="Referenced
SOP Instance UID"
Length="44">2.16.840.1.113669.4.960070.844.1026926027
.44</Attribute>

 </Item>
 </Attribute>
 <Attribute Tag="00090010" VR="LO" Name="Private Creator

Code" PCode="PrivateCode" Length="11">SAMPLE
PCODE</Attribute>

 <Attribute Tag="00091010" VR="LO" Name="Private"
PCode="SAMPLE PCODE" Length="6">Value1</Attribute>

 <Attribute Tag="00091015" VR="UN" Name="Private"
PCode="SAMPLE PCODE" Length="6">20 20 20 20 20
30y</Attribute>

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

242

 <Attribute Tag="7FE00010" VR="OW" Name="Pixel Data"
Encoding="Base64" Length="262144">06 00 04 00 04 00
02 00 03.....</Attribute>

 </DataSet>
</DcmFile>

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

243

Appendix F: Mergecom ApiController Classes
Mergecom WADO controller classes are derived from
System.Web.Http.ApiController and implement the Http Get and Post methods
following the specifications of the DICOM standard.

MCcontroller

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;

namespace Mergecomws.Web
{
 /// <summary>Abstract class inherited from <see cref="ApiController"/></summary>
 public abstract class MCcontroller : ApiController
 {
 /// <summary>"MCCONTROLLER"</summary>
 public static readonly String MCCONTROLLER = "MCCONTROLLER";
 /// <summary>"MCQIDOCONTROLLER"</summary>
 public static readonly String MCQIDOCONTROLLER = "MCQIDOCONTROLLER";
 /// <summary>"MCSTOWCONTROLLER"</summary>
 public static readonly String MCSTOWCONTROLLER = "MCSTOWCONTROLLER";
 /// <summary>"MCWADORSCONTROLLER"</summary>
 public static readonly String MCWADORSCONTROLLER = "MCWADORSCONTROLLER";
 /// <summary>"MCWADOURICONTROLLER"</summary>
 public static readonly String MCWADOURICONTROLLER = "MCWADOURICONTROLLER";
 /// <summary>"MCWADOWSCONTROLLER"</summary>
 public static readonly String MCWADOWSCONTROLLER = "MCWADOWSCONTROLLER";

 /// <summary>Gets <see cref="MCcontroller"/> name, might be "MCCONTROLLER", "MCQIDOCONTROLLER",
"MCSTOWCONTROLLER", "MCWADORSCONTROLLER", "MCWADOURICONTROLLER" or "MCWADOWSCONTROLLER"</summary>
 public String Name { get; protected set; }

 /// <summary>Class constructor</summary>
 public MCcontroller() : base()
 {
 Name = MCCONTROLLER;
 }
 }
}

MCwadoRsController

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.ModelBinding;

using Mergecom;
using Mergecomws.Dicom;

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

244

namespace Mergecomws.Web
{
 /// <summary>Implements Http Get methods for DICOM WADO-RS requests</summary>
 public class MCwadoRsController : MCcontroller
 {
 /// <summary>Class constructor</summary>
 public MCwadoRsController() : base()
 {
 Name = MCcontroller.MCWADORSCONTROLLER;
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [HttpGet]
 public HttpResponseMessage Get(HttpRequestMessage request)
 {
 return new MCrequest(request, MCrequestType.WadoRS).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("study")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <param name="seriesInstanceUid">SeriesInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("series")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid, String seriesInstanceUid)

 {

 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

245

 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SERIES_INSTANCE_UID, Keyword = keyword,
Values = new string[] { seriesInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <param name="seriesInstanceUid">SeriesInstanceUID parameter</param>
 /// <param name="sopInstanceUid">SopInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("instance")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid, String seriesInstanceUid,
String sopInstanceUid)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SERIES_INSTANCE_UID, Keyword = keyword,
Values = new string[] { seriesInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SOP_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SOP_INSTANCE_UID, Keyword = keyword, Values
= new string[] { sopInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

246

 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <param name="seriesInstanceUid">SeriesInstanceUID parameter</param>
 /// <param name="sopInstanceUid">SopInstanceUID parameter</param>
 /// <param name="frameList">SimpleFrameList parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("frames")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid, String seriesInstanceUid,
String sopInstanceUid, String frameList)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SERIES_INSTANCE_UID, Keyword = keyword,
Values = new string[] { seriesInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SOP_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SOP_INSTANCE_UID, Keyword = keyword, Values
= new string[] { sopInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 keyword = MCwado.DicomKeywords[MCdicom.SIMPLE_FRAME_LIST];
 string[] frames = (!String.IsNullOrEmpty(frameList)) ? frameList.Split(new char[] {','}) : null;

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SIMPLE_FRAME_LIST, Keyword = keyword, Values
= frames };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

247

 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="uri">URI for bulk data</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bulkdata")]
 public HttpResponseMessage Get(HttpRequestMessage request, Uri uri)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 MCrequestParameter parm = new MCrequestParameter()
 {
 Name = "bulkdata",
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Values = new string[] { uri.OriginalString }
 };

 parms.Add(parm);

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <param name="metadata">Metadata parameter, might be null</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("metadata")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid, object metadata)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter()
 {
 Name = keyword,
 RequestRequirement = MCrequestParameter.Requirements.REQUIRED,
 Attributes = new List<MCrequestAttribute> { attr }
 });

 return new MCrequest(request, MCrequestType.WadoRS, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="MCrequest"/> oject</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bind")]
 public HttpResponseMessage Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)
 {
 return request.Submit();
 }
 }
}

MCwadoRsController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(
 name: "MCwadoRsBulkdata",
 routeTemplate: "api/{controller}/bulkdata/{uri}",

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

248

 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "bulkdata" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsStudy",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "study" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsMetaData",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/metadata",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "metadata" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsSeries",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/series/{seriesInstanceUid}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "series" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsInstance",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/series/{seriesInstanceUid}/instances/{sopInstanceUid}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "instance" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsFrames",
 routeTemplate:
"api/{controller}/studies/{studyInstanceUid}/series/{seriesInstanceUid}/instances/{sopInstanceUid}/frames/{FrameList}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "frames" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsGet",
 routeTemplate: "api/{controller}/{wadors}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoRsBind",
 routeTemplate: "api/{controller}/bind/{wadors}",
 defaults: new { controller = MCcontroller.MCWADORSCONTROLLER, action = "bind" }
);

config.Services.Add(typeof(ModelBinderProvider), new MCrequestBinderProvider());

MCwadoUriController

using System;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.ModelBinding;

using Mergecomws.Dicom;

namespace Mergecomws.Web
{
 /// <summary>Implements Http Get methods for DICOM WADO-URI requests</summary>
 public class MCwadoUriController : MCcontroller

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

249

 {
 /// <summary>Class constructor</summary>
 public MCwadoUriController() : base()
 {
 Name = MCcontroller.MCWADOURICONTROLLER;
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [HttpGet]
 public HttpResponseMessage Get(HttpRequestMessage request)
 {
 return new MCrequest(request, MCrequestType.WadoURI).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="MCrequest"/> oject</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bind")]
 public HttpResponseMessage Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)
 {
 return request.Submit();
 }
 }
}

MCwadoUriController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(
 name: "MCwadoUriRoute",
 routeTemplate: "api/{controller}",
 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoUriBind",
 routeTemplate: "api/{controller}/bind/{wadouri}",
 defaults: new { controller = MCcontroller.MCWADOURICONTROLLER, action = "bind" }
);

config.Services.Add(typeof(ModelBinderProvider), new MCrequestBinderProvider());

MCwadoWsController

using System;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.ModelBinding;

using Mergecomws.Dicom;

namespace Mergecomws.Web
{
 /// <summary>Implements Http Get methods for DICOM WADO-WS requests</summary>
 public class MCwadoWsController : MCcontroller
 {
 /// <summary>Class constructor</summary>
 public MCwadoWsController() : base()

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

250

 {
 Name = MCcontroller.MCWADOWSCONTROLLER;
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [HttpPost]
 public HttpResponseMessage Post(HttpRequestMessage request)
 {
 return new MCrequest(request, MCrequestType.WadoWS).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="MCrequest"/> oject</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bind")]
 public HttpResponseMessage Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)
 {
 return request.Submit();
 }
 }
}

MCwadoWsController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(
 name: "MCwadoWsRoute",
 routeTemplate: "api/{controller}/{wadows}",
 defaults: new { controller = MCcontroller.MCWADOWSCONTROLLER, action = "post" }
);

config.Routes.MapHttpRoute(
 name: "MCwadoWsBind",
 routeTemplate: "api/{controller}/{action}/{wadows}",
 defaults: new { controller = MCcontroller.MCWADOWSCONTROLLER, action = "bind" }
);

config.Services.Add(typeof(ModelBinderProvider), new MCrequestBinderProvider());

MCqidoController

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.ModelBinding;

using Mergecom;
using Mergecomws.Dicom;

namespace Mergecomws.Web
{
 /// <summary>Implements Http Get methods for DICOM QIDO-RS requests</summary>
 public class MCqidoController : MCcontroller
 {
 /// <summary>Class constructor</summary>

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

251

 public MCqidoController() : base()
 {
 Name = MCcontroller.MCQIDOCONTROLLER;
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [HttpGet]
 public HttpResponseMessage Get(HttpRequestMessage request)
 {
 return new MCrequest(request, MCrequestType.Qido).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("studyinstanceuid")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter() { Name = keyword, Attributes = new List<MCrequestAttribute> { attr } });

 return new MCrequest(request, MCrequestType.Qido, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <param name="seriesInstanceUid">SeriesInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("seriesinstanceuid")]
 public HttpResponseMessage Get(HttpRequestMessage request, String studyInstanceUid, String seriesInstanceUid)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter() { Name = keyword, Attributes = new List<MCrequestAttribute> { attr } });

 keyword = MCwado.DicomKeywords[MCdicom.SERIES_INSTANCE_UID];

 attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.SERIES_INSTANCE_UID, Keyword = keyword,
Values = new string[] { seriesInstanceUid } };
 parms.Add(new MCrequestParameter() { Name = keyword, Attributes = new List<MCrequestAttribute> { attr } });

 return new MCrequest(request, MCrequestType.Qido, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Get method</summary>
 /// <param name="request"><see cref="MCrequest"/> oject</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bind")]
 public HttpResponseMessage Get([ModelBinder(typeof(MCrequestBinder))] MCrequest request)
 {
 return request.Submit();

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

252

 }
 }
}

MCqidoController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(
 name: "MCqidoRoute",
 routeTemplate: "api/{controller}",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoStudies",
 routeTemplate: "api/{controller}/studies",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoSeriesA",
 routeTemplate: "api/{controller}/series",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoSeriesB",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/series",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "studyinstanceuid" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoInstancesA",
 routeTemplate: "api/{controller}/instances",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "get" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoInstancesB",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/instances",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "studyinstanceuid" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoInstancesC",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}/series/{seriesInstanceUid}/instances",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "seriesinstanceuid" }
);

config.Routes.MapHttpRoute(
 name: "MCqidoBind",
 routeTemplate: "api/{controller}/bind/{qido}",
 defaults: new { controller = MCcontroller.MCQIDOCONTROLLER, action = "bind" }
);

config.Services.Add(typeof(ModelBinderProvider), new MCrequestBinderProvider());

MCstowController

using System;
using System.Collections.Generic;
using System.Linq;

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

253

using System.Net.Http;
using System.Text;
using System.Threading.Tasks;
using System.Web.Http;
using System.Web.Http.ModelBinding;

using Mergecom;
using Mergecomws.Dicom;

namespace Mergecomws.Web
{
 /// <summary>Implements Http Post methods for DICOM STOW-RS requests</summary>
 public class MCstowController : MCcontroller
 {
 /// <summary>Class constructor</summary>
 public MCstowController()
 {
 Name = MCcontroller.MCSTOWCONTROLLER;
 }

 /// <summary>Http Post method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [HttpPost]
 public HttpResponseMessage Post(HttpRequestMessage request)
 {
 return new MCrequest(request, MCrequestType.Stow).Submit();
 }

 /// <summary>Http Post method</summary>
 /// <param name="request"><see cref="HttpRequestMessage"/> object</param>
 /// <param name="studyInstanceUid">StudyInstanceUID parameter</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("studyinstanceuid")]
 public HttpResponseMessage Post(HttpRequestMessage request, String studyInstanceUid)
 {
 List<MCrequestParameter> parms = new List<MCrequestParameter>();

 string keyword = MCwado.DicomKeywords[MCdicom.STUDY_INSTANCE_UID];

 MCrequestAttribute attr = new MCrequestAttribute() { Item = keyword, Tag = MCdicom.STUDY_INSTANCE_UID,
Keyword = keyword, Values = new string[] { studyInstanceUid } };
 parms.Add(new MCrequestParameter() { Name = keyword, RequestRequirement =
MCrequestParameter.Requirements.REQUIRED, Attributes = new List<MCrequestAttribute> { attr } });

 return new MCrequest(request, MCrequestType.Stow, parms.ToArray<MCrequestParameter>()).Submit();
 }

 /// <summary>Http Post method</summary>
 /// <param name="request"><see cref="MCrequest"/> oject</param>
 /// <returns><see cref="HttpResponseMessage"/> object</returns>
 [ActionName("bind")]
 public HttpResponseMessage Post([ModelBinder(typeof(MCrequestBinder))] MCrequest request)
 {
 return request.Submit();
 }
 }
}

MCstowController URI route templates

HttpConfiguration config = new HttpConfiguration();

config.Routes.MapHttpRoute(

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

.NET/C# User’s Manual Merge DICOM ToolkitTM V. 5.1.0

254

 name: "MCstowRoute",
 routeTemplate: "api/{controller}",
 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action = "post" }
);

config.Routes.MapHttpRoute(
 name: "MCstowStudy",
 routeTemplate: "api/{controller}/studies",
 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action = "post" }
);

config.Routes.MapHttpRoute(
 name: "MCstowStudyInstance",
 routeTemplate: "api/{controller}/studies/{studyInstanceUid}",
 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action = "studyinstanceuid" }
);

config.Routes.MapHttpRoute(
 name: "MCstowBind",
 routeTemplate: "api/{controller}/bind/{stow}",
 defaults: new { controller = MCcontroller.MCSTOWCONTROLLER, action = "bind" }
);

config.Services.Add(typeof(ModelBinderProvider), new MCrequestBinderProvider());

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

Merge DICOM ToolkitTM V. 5.1.0 .NET/C# User’s Manual

255

Appendix G: Json.NET License
The Merge DICOM Toolkit supports conversion from an attribute set to a DICOM
JSON Model and vice-versa by using an open source library: Json.NET.

The original copyright notice of the Json.NET software is below:

The MIT License (MIT)

Copyright (c) 2007 James Newton-King

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS
OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

https://twitter.com/MergeHealthcare
http://www.linkedin.com/company/merge-healthcare
https://www.facebook.com/MergeHealthcare
http://www.merge.com/

	Contents
	Overview
	The DICOM Standard
	The Merge DICOM Toolkit
	Development Platform Requirements
	Assembly Structure
	Merge DICOM C/C++ Toolkit Dynamic Library
	Binary Message Information and Data Dictionary Files
	Sample Applications
	Merge DICOM Message Database Manual and Tools

	Documentation Roadmap
	Conventions

	Understanding DICOM
	General Concepts
	Application Entities
	Services and Meta Services
	Information Model

	Networking
	Commands
	Association Negotiation

	Messages
	DICOM Data Dictionary
	Message Handling
	Private Attributes

	Media Interchange
	DICOM Files
	File Sets
	The DICOMDIR
	File Management Roles and Services

	Conformance

	Using the Merge DICOM Toolkit
	Configuration
	Initialization File
	Application Profile
	DICOM Asynchronous Communication
	Extended Negotiation
	Related General SOP Classes and Service Classes

	System Profile
	Service Profile

	Message Logging
	Utility Programs
	mc3comp
	mc3conv
	mc3echo
	2Bmc3list
	mc3valid
	mc3file

	Developing DICOM Applications
	Library Import
	Library Constants
	Exception Handling
	Library Initialization
	Releasing the library
	Getting the Assembly Version
	Releasing Native Memory
	Using the Merge DICOM log file
	Capturing Log Messages in Your Application
	Registering Your Application
	MCapplication objects can be disposed
	The Application Entity (AE) Title

	Association Management (Network Only)
	Preparing a Proposed Context List
	Using a Pre-configured Proposed Context List
	Creating Your Own Proposed Context List
	Using a Pre-configured Transfer Syntax List
	Creating Your Own Transfer Syntax List
	Creating Your Own Proposed Context List
	MCproposedContext properties
	MCproposedContextList properties
	MCresultContext properties
	MCtransferSyntax properties
	MCtransferSyntaxList properties
	Using Extended Negotiation Information
	Starting an Association Requester
	Starting an Association Acceptor
	Accepting or Rejecting the Association
	Negotiated Transfer Syntaxes
	Merge DICOM Message Classes
	Association Message Handling
	Releasing or Aborting the Association
	Association Properties
	Application Context Name
	TCP/IP Listen Port
	MCapplication object of the local AE
	Application Entity Title
	Implementation Class UID and Implementation Version
	BMaximum PDU Sizes
	The Proposed Context List
	The Read Timeout Value
	The Remote Host’s Name and Address
	Association Role
	Association State

	Using the MCsopClass class
	Using the MCvr class
	Using the MCtag class
	Constructing non-private tags
	Constructing private tags

	Using the MCdataElement class
	Constructing standard data elements
	Constructing non-standard data elements

	Working With Attribute Sets
	Constructing Message Objects
	Construct a message using a pre-populated data set:
	Construct a message with an empty data set:
	Construct a message using an existing data set:
	Convert an MCfile object
	MCdimseMessage Properties
	Transfer Syntax Used
	Contained attribute sets
	The service and command used by the message
	MCdimseMessage Command Set Properties
	Constructing File Objects
	Construct with a pre-populated data set:
	Construct with an empty data set:
	Convert an MCdimseMessage object to an MCfile object
	Setting data set values
	Specifying the file name
	Constructing Item Objects
	Get/Set item name
	Constructing MCdataSet Objects
	Retrieving Contained Attribute Sets
	Using the MCattribute class
	Adding Attributes to an Attribute Set
	Using the MCattributeSet indexer to access MCattribute instances
	Removing Attributes from an Attribute Set
	Attribute Properties
	Assigning Attribute Values from MCattribute
	Assigning Attribute Values from MCattributeSet
	Difference between setValue, addValue, and indexer
	Assigning a NULL Attribute Value
	Assigning a Non-NULL Attribute
	Using an MCdataSource Class to Assign an Attribute Value
	Retrieving Attribute Values
	Using a Callback Class to Retrieve an Attribute’s Value
	Retrieving an Attribute Value’s Properties
	Listing an Attribute Set
	Converting an Attribute Set into a Proprietary Schema XML String
	Converting a Proprietary Schema XML String into an Attribute Set
	Converting an Attribute Set into a Native DICOM Model XML String
	Converting a Native DICOM Model XML String into an Attribute Set
	Converting an Attribute Set into a DICOM JSON Model String
	Converting a DICOM JSON Model String into an Attribute Set
	8-bit Pixel Data
	Encapsulated Pixel Data

	Working with MCabstractMessage Derived Classes
	Compression and Decompression
	Merge DICOM Supplied Compressors and Decompressors
	Validating Attribute Sets
	DETACHED_PATIENT_MANAGEMENT - N_GET_RSP

	The Overhead of Validation
	Validating a Single Attribute
	Streaming Attribute Sets
	Message to Proprietary Schema XML Conversion
	Proprietary Schema XML to Message Conversion
	Message to Native DICOM Model XML Conversion
	Native DICOM Model XML to Message Conversion
	Message to DICOM JSON Model Conversion
	DICOM JSON Model to Message Conversion

	Message Exchange (Network Only)
	Reading Network Messages
	Using the MCdimseService
	Using the sendRequestMessage method
	Using the sendResponseMessage method

	Using Attribute Containers
	Using an Attribute Container in a Server Application
	Using an Attribute Container in a Client Application
	Declaring an MCattributeContainer and MCattributeContainerEx Classes
	Writing the provideDataLength method
	Writing the provideData method
	Writing the receiveDataLength method
	Writing the receiveData method
	Writing the receiveMediaDataLength method
	Registering Your MCattributeContainer
	Releasing Your MCattributeContainer

	Sequences of Items
	DICOM Files
	Constructing a new MCfile Instance
	Construct an MCfile object with a pre-populated data set
	Construct an MCfile object with an empty data set
	Convert an MCdimseMessage object to an MCfile object
	Accessing the service and command properties
	Working with the contained file meta information
	Accessing the File Preamble
	Working with the contained data set
	Resetting the MCfile object
	File validation
	The MCfile stream
	Setting the file transfer syntax UID
	Setting the file system file associated with the MCfile object
	Listing the file’s attributes
	Using the MCmediaStorageService Class
	Constructing an MCmediaStorageService object
	Reading Files
	Creating and Writing Files
	Saving Raw (Unparsed) Messages as DICOM Files

	The DICOMDIR file
	Structure
	Constructing a new MCdir Instance
	The MCdirRecord class
	Navigating the DICOMDIR
	Adding and Deleting DICOMDIR Records

	Memory Management
	Assigning Pixel Data
	Using Attribute Containers
	Replacing Merge DICOM Toolkit’s Memory Management Functions
	Accessing Data When Needed
	Saving Received Images Directly to Disk

	DICOM Structured Reporting
	Structured Report Structure and Modules
	Content Item Types
	Relationship Types between Content Items
	Content Item Identifier
	Observation Context
	Structured Reporting Templates
	Row Number
	Nesting Level (NL)
	Relationship with Source Content Item (Parent)
	Value Type (VT)
	Concept Name
	Value Multiplicity (VM)
	Requirement Type
	Condition
	Value Set Constraint
	Inclusion of Templates

	Overview of the Merge DICOM Toolkit SR Classes
	Encoding SR Documents
	Key Object Selection Example

	Reading SR Documents

	Working with Mergecom WADO Classes
	Configuring Wado Http Controllers and MCwado Services
	Constructing an MCrequest
	Using MCrequestParameter and MCrequstAttribute Classes
	Implementing IMCservice and IMCcache Interfaces
	Using MCdicomResponse Class
	IMCDicomRenderer Interface and Rendering DICOM Service Response
	IMCHttpConverter Interface and Constructing HttpResponseMessage

	Deploying Applications
	Merge DICOM Required Files
	Configuration Options
	UN VR

	Appendix A: Frequently Asked Questions
	Appendix B: Unique Identifiers (UIDs)
	Summary of UID Composition
	Obtaining a UID
	Obtaining a UID From ANSI

	Appendix C: Writing a DICOM Conformance Statement
	Conformance Statement Sections
	The Implementation model consists of three sections:
	Application Data Flow
	Functional Definition of Application Entities (AE)

	Sequencing of Real World Activities
	AE Specifications
	SOP Classes
	Number of Associations
	Asynchronous Nature
	Implementation Identifying Information
	Proposed or Accepted Presentation Contexts

	SOP Specific Conformance
	This section includes the SOP specific behavior, i.e., error codes, error and exception handling and time-outs, etc. The information is described in the SOP specific Conformance Statement section of PS 3.4 (or relevant private SOP definition).

	Transfer Syntax Selection Policies
	Physical Network Interface
	IPv4 and IPv6 Support
	AE Title/Presentation Address Mapping
	Configurable Parameters
	PDU size
	Standard Extended/Specialized/Private SOPs
	Private Transfer Syntaxes

	Appendix D: Configuration Parameters
	Initialization File
	Application Profile
	Sections
	Parameters

	System Profile
	Service Profile

	Appendix E: Proprietary Schema XML structure
	Base64 encoding of bulks and attributes with VR UN:
	The default encoding of bulks and attributes with VR UN:

	Appendix F: Mergecom ApiController Classes
	Appendix G: Json.NET License

