

�

_äìÉ`çêÉ»

bcore-an-

Accessing RF

006Pa
This material
COMM Using RFCLI and TCL

Application Note

September 2002

CSR
 Unit 400 Cambridge Science Park

Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875
 Tel: +44 (0)1223 692000
 Fax: +44 (0)1223 692001

www.csr.com

© Copyright CSR 2002

 is subject to CSR’s non-disclosure agreement.

http://www.csr.com/

Contents

Contents

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

1 Introduction .. 4
2 RFCOMM Protocol Layer... 5

2.1 Local Server Channel and Mux ID... 8
3 Flow Control ... 12

3.1 Credit Based Flow Control... 12
3.2 Maximum Frame Size.. 15
3.3 Flow Control Layer .. 16

4 RFCOMM Firmware Build .. 18
5 Accessing RFCOMM Functionality Using RFCLI and TCL ... 19

5.1 RFCLI ... 19
5.2 TCL ... 19
5.3 Setting Up RFCOMM Link ... 19
5.4 Over Air Sniffer .. 35
5.5 Serial Sniffer .. 39

6 Example of Accessing RFCOMM Using RFCLI and TCL .. 40
6.1 Details of the RFCLI Source Script Example ... 41
6.2 Local and Remote Device Source Script ... 41
6.3 Initialisation of RFCOMM Layer in the Local Device.. 42

6.3.1 Connect to Casira .. 42
6.3.2 Initialise Port Entity Transmit and Receive Buffers... 43
6.3.3 Put Messages in Transmit Buffer ... 43
6.3.4 Initialise System Variables ... 44
6.3.5 Register with RFCOMM ... 44
6.3.6 Initialise RFCOMM... 44
6.3.7 Register with Device Manager ... 44
6.3.8 Request RFCOMM Start .. 45
6.3.9 RFCOMM Parameter Negotiation .. 45
6.3.10 RFCOMM Establishment ... 45

6.4 Initialisation of the RFCOMM Layer of the Remote Device.. 46
6.4.1 Connect to Casira .. 47
6.4.2 Initialise Port Entity Transmit and Receive Buffers... 47
6.4.3 Initialise System Variables ... 47
6.4.4 Register with RFCOMM ... 47
6.4.5 Initialise RFCOMM... 47
6.4.6 Register with Device Manager ... 47
6.4.7 Listen ... 47
6.4.8 Output “Waiting For Connection” Message .. 47
6.4.9 Connect as Slave ... 48

6.5 Main Loop and State Machine ... 48
6.6 Main Loop Functions ... 52

6.6.1 Check Transmit Buffer for Packets to Transmit.. 53
6.6.2 Check Receiver Buffer for Space... 53
6.6.3 Check for Packet in Receiver Buffer .. 53
6.6.4 Flow Control Layer ... 53
6.6.5 Process Next Received Packet in Receiver Buffer... 54
6.6.6 Steady State .. 54

6.7 Other Functions ... 54
6.7.1 Start Request ... 55
6.7.2 Register RFCOMM... 55
6.7.3 Receive RFCOMM Data .. 56
6.7.4 Transmit RFCOMM Data ... 56
6.7.5 Read Bluetooth Address Message... 57

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 2 of 77

6.7.6 Read Local Name Message... 58

Contents

6.7.7 Change Local Name Message... 59

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.8 Load Packet in Transmit Buffer .. 60
7 Document References ... 61
Appendix A RFCLI Section 5 Example Script Source Files... 62
Appendix B RFCLI Section 6 Example Script Source Files... 64
Acronyms and Definitions.. 75
Record of Changes ... 77

List of Figures

Figure 1.1: Bluetooth Protocol Stack... 4
Figure 2.1: Type 1 and Type 2 RFCOMM Devices ... 5
Figure 2.2: Bluetooth Profiles .. 7
Figure 2.3: Null Modem Pin Out .. 8
Figure 2.4: Format of the Address Field.. 8
Figure 2.5: Multiplexor and Server Channels .. 9
Figure 2.6: Multiple Emulated Serial Ports Between Two Bluetooth Devices.. 9
Figure 2.7: Multiple Emulated Serial Ports with Multiple Multiplexor Sessions.. 10
Figure 2.8: RFCOMM Service Definition Model .. 10
Figure 3.1: Credit Based Flow Control Negotiations ... 12
Figure 3.2: Updating Flow Control Credits .. 14
Figure 3.3: Flow Control Layer .. 16
Figure 5.1: RFCOMM Channel Set Up Between Local and Remote Bluetooth Device.. 21
Figure 5.2: System Set Up with Configuration One and Configuration Two.. 22
Figure 5.3: Message Sequence Chart For RFCOMM Data Link Set Up Between Two BlueCore Devices 24
Figure 5.4: Message Sequence Chart to Place Remote Device in Listening Mode .. 27
Figure 6.1: Set Up for Example... 41
Figure 6.2: Initialisation of RFCOMM Layer .. 42
Figure 6.3: Initialisation of the RFCOMM Layer of The Remote Device.. 46
Figure 6.4: Main Control Loop... 49

List of Tables

Table 2.1: RS-232 Circuits Emulated by RFCOMM .. 6
Table 2.2: ETSI GSM Specification Serial Port Control Signals.. 7
Table 5.1: RFCOMM Packets Extracted from Over Air Sniifer .. 38
Table 6.1: Main Control Loop State Transitions .. 50

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 3 of 77

Introduction

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

1 Introduction
This document is an application note specifically written to cover using RFCLI and test tool command language
(TCL) to access the RFCOMM layer within the BlueStack® Bluetooth™ protocol stack. The application note
examines the important aspects of the RFCOMM layer of the Bluetooth protocol stack outlined in Figure 1.1 and
covers the following topics:

� Understanding the RFCOMM protocol layer

� Credit based flow control

� RFCOMM firmware build

� Accessing RFCOMM functionality using RFCLI, TCL and fully functional example scripts

The aim of this application note is to give a reasonable understanding of the RFCOMM protocol layer and the
concepts behind it, including credit based flow control. It then documents a fully working example to demonstrate
the key concepts required in connecting two Bluetooth devices and passing data between them. The inclusion of
the example and its documentation allows users to explore further concepts when prototyping other features or
profiles from a known starting point.

TCS SDP

Serial
C

om
m

ands

LOGICAL LINK CONTROL & ADAPTATION (L2CAP)

HOST CONTROLLER INTERFACE (HCI)

LINK MANAGER (LM)

BASEBAND/LINK CONTROLLER (LC)

OBEX WAP

RFCOMM

Application

RADIO

Figure 1.1: Bluetooth Protocol Stack

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 4 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

2 RFCOMM Protocol Layer
The RFCOMM protocol layer is part of the Bluetooth protocol stack outlined in Figure 1.1. It is implemented in
BlueStack and for this application note is based on the RFCOMM protocol defined in the Bluetooth specification
v1.1.

The RFCOMM protocol is designed to emulate the serial cable lines and the states that are available in an
RS-232 serial port over the L2CAP protocol. This means that as well as the data signals being emulated the
non-data lines such as clear to send (CTS) are also handled. It is based on the ETSI GSM specification TS
07.10.

The RFCOMM architecture supports the two types of devices that are outlined in Figure 2.1. The type 1
RFCOMM device protocol stack contains the port emulation entity (PEE) that maps the API for the system
communications interface to the RFCOMM services. A type 1 interface would normally exist at the end point of a
communications path, such as found on a computer or printer. The type 2 interface on the other hand sits in the
middle of a communication path and has a port proxy entity (PPE) that is designed to relay data from the
RFCOMM to the external RS-232 interface linked to another device. The communications between a serial
interface and a piece of data communications equipment (DCE) like a modem is an example of a type 2 device.

Although the RFCOMM does not contain the PEE or the PPE, the RFCOMM API interfaces directly to these two
entities and can work with both either singly or running concurrently on a single device.

Another way to view the two types of RFCOMM architecture could be to look at them in terms of whether they
have a host or not. The type 1 device would be seen as being hostless, where the system is completely
embedded, an example of such a system would be a headset device. Conversely, the type 2 RFCOMM device is
a hosted system with an external processor; an example could be the embedded audio gateway part of a mobile
phone. Here, the DCE device is represented by the processor inside the mobile phone chipset and is interfaced
to the _äìÉ`çêÉ» device, which is running a RFCOMM firmware build (see Section 1 for further details on
RFCOMM firmware).

RS232

L2CAP

PORT EMULATION ENTITY

DCE Device

L2CAP

PORT PROXY ENTITY

Type 1 RFCOMM Device Type 2 RFCOMM Device

RFCOMMRFCOMM

Application

Figure 2.1: Type 1 and Type 2 RFCOMM Devices

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 5 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

As stated earlier in this section the RFCOMM layer has the responsibility of emulating the RS-232 serial ports.
The RS-232 contains 9 circuits defined by the pins indicated in Table 2.1, which includes not just the transmit and
receive data lines but also the various control signals. The RFCOMM layer is a simple and reliable transport
protocol containing provision for:

� Framing

� Multiplexing

� Modem status lines of RTS, CTS, DSR, DTR, DCD and ring

� Remote line status of break, overrun and parity

� Remote port settings such as baud rate, parity, number of data bits

� Parameter negotiation such as frame size

RS232 Pin (25 Way) RS232 Pin (9 Way) V.24 Code Circuit Name

7 5 102 Signal Common
2 3 103 Transmit Data (TD)
3 2 104 Received Data (RD)
4 7 105 Request to Send (RTS)
5 8 106 Clear to Send (CTS)
6 6 107 Data Set Ready (DSR)
20 4 108 Data Terminal Ready (DTR)
8 1 109 Data Carrier Detect (CD)
22 9 125 Ring Indicator (RI)

 Table 2.1: RS-232 Circuits Emulated by RFCOMM

The Bluetooth over the air link is seen as the replacement of the wired interface in the ETSI GSM specification,
therefore the RFCOMM layer can be seen as providing a serial cable replacement. The ETSI GSM specification
allows for the connection of a communications link between a GSM phone and another computing device, such
as a laptop computer, via a standard serial COM port interface, this link allows a laptop to use the GSM phone as
a radio modem and the RFCOMM layer replaces the standard serial COM port interface.

Although RFCOMM is based on the ETSI GSM specification it is not restricted to just GSM phones. RFCOMM is
seen as fundamental to many of the Bluetooth profiles, it forms the basis for the serial port profile (SPP) that is
core to a number of the profiles. The position of the SPP with respect to other profiles is shown in Figure 2.2 and
from this diagram it can be seen that all the profiles that reside within the SPP box have this profile as a
mandatory requirement.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 6 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Service Discovery
Application Profile

Dial-Up Networking
Profile

FAX Profile

Headset Profile

LAN Access Profile

File Transfer Profile

Object Push Profile

Synchronisation Profile

Cordless Telephony
Profile Intercom Profile

Serial Port Profile

Generic Object Exchange Profile

Telephony Control Protocol ProfileGeneric Access Profile

Figure 2.2: Bluetooth Profiles

The RFCOMM implementation, that is based on the ETSI GSM specification, from the perspective of the non
data signals of the RS-232 interface does not distinguish between a type 1or a type 2 device i.e. it does not
differentiate between a DTE or DCE equipment. The implication this has is that the control signals are sent and
received as independent DCE/DTE signals and therefore the RFCOMM layer does not distinguish between DSR
or DTR, or RTS and CTS. The way in which the ETSI GSM specification serial port control signals are defined
and their corresponding RS-232 control signals are listed in Table 2.2. Transfer of these control signals between
devices of the same kind by implication will create a null modem, an example of the wiring between two DTE
devices with the null modem emulation is shown in Figure 2.3. It has to be noted that not one individual null
modem wiring strategy will fit all schemes, even though it may be applicable in the majority of cases.

ETSI GSM Specification Signals Corresponding RS-232 Control Signals

RTC DSR, DTR
RTR RTS, CTS
IC RI
DV DCD

Table 2.2: ETSI GSM Specification Serial Port Control Signals

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 7 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

FG

TD
RD

RTS
CTS

DSR

SG

CD

DTR

RI

FG
TD
RD
RTS
CTS
DSR
SG
CD
DTR
RI

1

2
3

4
5

6

7

8

20

22

1
2
3
4
5
6
7
8
20
22

‘ON’

‘OFF’
‘ON’
‘OFF’

Figure 2.3: Null Modem Pin Out

The Bluetooth specification allows two Bluetooth devices that are communicating using RFCOMM to open
multiple emulated serial ports. Within the specification the RFCOMM layer will be permitted to open up to a
maximum 60 emulated ports, but the specific numbers of ports used on a device though will be application
specific.

Each port opened at the RFCOMM layer is identified by a Data Link Connection Identifier (DLCI) and signifies an
ongoing link between a client and a server application. A 6bit number in the range of 2 to 61 represents the value
of the DLCI that is used to identify the emulated port. The DLCI values of 1, 62 and 63 are reserved, with the
DLCI value of 0 representing the control channel.

The reserved value of DLCI as 1 is unusable in the normal sense due to the concept of server channels being
employed within RFCOMM. The server channel concept allows for the situation of both the client and server
applications residing on both sides of the RFCOMM session and being able to independently make connections
with respect to each other. Figure 2.4 show that the DLCI value space of the ETSI GSM specification is divided
between the two linked device using the RFCOMM server channel and the direction bit D. For any RFCOMM
session the initiating device is given a direction bit D a value of one and the other device is has its direction bit D
set to zero.

Alongside the direction bit, the server channel in RFCOMM is seen as a subset of the DLCI. Server applications
registering with an RFCOMM service are assigned a channel number of 1 to 30. The channels 0 and 31 are not
permitted in order to remain compatible with the ETSI GSM specification that has these corresponding DLCIs
reserved within its specification. The implication of setting the direction bit is to effectively partition the DLCI
space such that the server applications on the initiating space can be reached through odd values of DLCIs in the
range 3 to 61 and the server applications on the non-initiating device even values in the range 2 to 60. The server
channel assignment is carried out by RFCOMM and so the application must register with RFCOMM first before
the application can register with the service discovery protocol (SDP).

1 2 3 4 5 6 7 8

E A C /R D L C I

E A C /R D S e r v e r C h a n n e l

B i t N u m b e r

T S 0 7 .1 0

R F C O M M

Figure 2.4: Format of the Address Field

2.1 Local Server Channel and Mux ID

Between any two Bluetooth devices there will be a single multiplexor per device. In the case of a master device
outlined in Figure 2.5 it depicts the master connected to two slaves. Here the master is running multiple
multiplexor sessions but still has only a single multiplexor per slave device, therefore it uses MUX 1 to
communicate to SLAVE 1 and MUX 2 to communicate to SLAVE 2.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 8 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Mux 1 Mux 2 Mux 1 Mux 2

Se
rv

er
 C

ha
nn

el
 1

Se
rv

er
 C

ha
nn

el
 2

Se
rv

er
 C

ha
nn

el
 1

Se
rv

er
 C

ha
nn

el
 2

Se
rv

er
 C

ha
nn

el
 1

Se
rv

er
 C

ha
nn

el
 2

Master Slave 1 Slave 2

Mux Mux

Figure 2.5: Multiplexor and Server Channels

If in Figure 2.5 the system consisted of just the master and Slave 1 then the communications over the RFCOMM
layer with multiple emulated serial ports would look like the system depicted in Figure 2.6. The RFCOMM
specification, although optional, allows the running of multiple sessions of multiplexors. What this implies is that a
Bluetooth device supporting multiple emulated serial ports is permitted to have connection end points in different
Bluetooth devices, this is the system set-up already shown in Figure 2.5, but can be redrawn in the style of Figure
2.6 to produce Figure 2.7 showing multiple multiplexor sessions of the emulated port. It has to be noted that each
multiplexor session will possess its own L2CAP channel ID (CID)

RFCOMM

L2CAP

Baseband

2 3 61

Emulated Serial Ports

RFCOMM

L2CAP

Baseband

2 3 61

Emulated Serial Ports

Radio

Figure 2.6: Multiple Emulated Serial Ports Between Two Bluetooth Devices

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 9 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

RadioRadio

RFCOMM

L2CAP

Baseband

2 3 61

RFCOMM

L2CAP

Baseband

2 3 61

RFCOMM

2 3 61

RFCOMM

2 3 61

L2CAP

Baseband

Slave 1 Slave 2

Master

Figure 2.7: Multiple Emulated Serial Ports with Multiple Multiplexor Sessions

In the Bluetooth specification v1.1 the RFCOMM section describes a service definition model the diagram of
which is shown in Figure 2.8. From this diagram it can be seen that the application layer is the item that makes
use of the serial port communications interface. The PEE layer maps a system specific communication to the
RFCOMM services. The RFCOMM layer as described earlier multiplexes multiple emulated serial ports providing
a transparent data stream and control channel over an L2CAP channel. Taking the PEE and the RFCOMM layer
together this combination is also known as the port driver.

The service registration/discovery layer is where the server applications register on the master Bluetooth device.
The server applications register their services here in order to make them discoverable to client applications. The
information provided is associated with the SDP and is how to reach the server applications on other devices.

Application

Port Emulation Entity

SDP RFCOMM

L2CAP

Baseband

Service Registration/
Discovery

Port Interface (e.g. VCOMM)

RFCOMM Service Interface

ControlRead/Write

Data (TX/RX)
General Control Parameters

Port Parameter Settings

Figure 2.8: RFCOMM Service Definition Model

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 10 of 77

In order to form association between a service and a logical ID in RFCOMM a local server channel is used, see
Figure 2.5. The applications that have been registered within RFCOMM will have provided a server channel

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

identity to the RFCOMM layer and these server channel identities should be registered via the service registration
layer into the Service Discovery Database (SDD). Alongside registration of the server channel identity with
RFCOMM the application will also provide a protocol handle (phandle), which is used so that events can be sent
to the service. In Figure 2.5 a master device is shown communicating with two slave devices, and on this master
it contains two server channels, server channel 1 and server channel 2 that connect to specific services. In this
example it is possible for either slave to access the services on the master through the associated server
channels. The mux id being the unique identifier to each of the slaves.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 11 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

3 Flow Control
The RFCOMM layer offers two forms of flow control for data transfer. The initial form of flow control introduced in
v1.0 of the Bluetooth specification is based on an aggregate data flow scheme that uses flow control commands
to enable data flow to and from the RFCOMM layer. A description of this scheme is available in Part F-1 Section
6.3 of the Bluetooth specification v1.1. BlueStack primitives RFC_FCON and RFC_FCOFF are used to enable
and disable the dataflow respectively.

The second form of flow control implementation was introduced in v1.1 of the Bluetooth specification and can be
found in Part F-1 Section 6.5 of the Bluetooth Specification v1.1. This form of flow control, known as credit based
flow control, its description and implementation is described in Section 3.1. CSR’s proprietary extensions to credit
based flow control include a flow control layer are described in Section 3.3.

3.1 Credit Based Flow Control

Credit based flow control has been introduced into v1.1 of the Bluetooth specification and is a mandatory
requirement for conformity to this version of the specification. This form of flow control is provided on a per
RFCOMM channel basis, i.e. each data link connection (DLC) will have flow control associated with it.

The starting point for the use of credit based flow control is at the port entity, which is either the PEE or the PPE.
The port entity requests the use of credit based flow control and issues the initial number of credits to the
RFCOMM layer. These parameters are passed to the RFCOMM layer through the RFC_PARNEG primitive,
which can be seen as one of the initial steps in Figure 3.1. The RFC_PARNEG primitive is a structure within
BlueStack of type DLC_PAR_T that contains the DLC parameters. The fields within the structure required for
initiating the flow control are:

� credit_flow_control: Enables credit based flow control when set to TRUE

� initial_credits: Determines the initial number of credits for data transfer, 16bit parameter (8bits
useable). Initial number of credits issued depends upon the application, in resource limited systems the
number of credits issued is minimised (4 to 7 credits), occasionally such systems may wish to issue no
credits until the RFCOMM connection has been established.

LOCAL REMOTE

STAGE 2:

STAGE 3:

STAGE 4:

STAGE 9:

STAGE 8:

STAGE 7:

dlc_pars.credit_flow_ctrl = TRUE
dlc_pars.initial_credits

STAGE 5:

dlc_pars.credit_flow_ctrl = TRUE
dlc_pars.initial_credits

STAGE 6:

dlc_pars.credit_flow_ctrl = TRUE
dlc_pars.initial_credits

STAGE 1:

dlc_pars.credit_flow_ctrl = TRUE
dlc_pars.initial_credits

STAGE 10:

Port Entity Port EntityRFCOMM RFCOMM

RFC_PARNEG_REQ

RFC_PARNEG_RES

RFC_PARNEG_IND

RFC_PARNEG_CFM

Parameter
Negotiation (PN)

Parameter
Negotiation (PN)

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 12 of 77

Figure 3.1: Credit Based Flow Control Negotiations

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Figure 3.1 shows the initialisation of credit based flow control between a local device and its corresponding
remote peer. The steps through which the local and remote port entities go through to establish credit based flow
control along a DLC are as follows:

1. Assume that a RFCOMM connection already exists between the local and the remote device. See
Section 1 for further details on how to set up a RFCOMM connection.

2. At STAGE 1 in Figure 3.1 the local port entity within the local device requests the use of credit based
flow control by setting:

� dlc_pars.credit_flow_ctrl to TRUE

� The initial credits for upstream packets to the RFCOMM in the parameter
dlc_pars.initial_credits. This initial value represents the number of credits for data
receipt by the local port entity.

3. At STAGE 2 the local port entity passes the DLC_PARS_T structure containing the credit flow control
enable and the initial credits in a RFC_PARNEG_REQ primitive to the local RFCOMM layer.

4. At STAGE 3 the local RFCOMM layer communicates with the remote RFCOMM layer using the
parameter negotiation (PN) command. The PN command is used to configure the DLC.

5. At STAGE 4 the remote RFCOMM layer passes a RFC_PARNEG_IND primitive to the remote port
entity containing the requests for credit based flow control from the RFCOMM layer on the local peer
device. It receives the parameters dlc_pars.credit_flow_ctrl and
dlc_pars.initial_credits in the DLC_PARS_T structure.

6. At STAGE 5 the parameters from the RFC_PARNEG_IND primitive are received at the remote port
entity. Here the initial credits represent the number of credits for data transmission by the remote port
entity.

7. At STAGE 6 the remote port entity responds to the RFC_PARNEG_IND primitive by setting:

� dlc_pars.credit_flow_ctrl to TRUE if it is willing to accept the request for credit based
flow control

� The initial credits permitted for the number of packets destined for receipt by the remote port entity
in the parameter dlc_pars.initial_credits. This initial value represents the number of
credits for data receipt by the remote port entity.

8. At STAGE 7 the parameters set at STAGE 6 are passed in RFC_PARNEG_RES primitive from the
remote port entity to the remote RFCOMM.

9. At STAGE 8 the PN command is used to communicate the parameters between the two peer RFCOMM
layers.

10. At STAGE 9 the local RFCOMM layer finally sends a RFC_PARNEG_CFM primitive as a response to
the RFC_PARNEG_REQ primitive issued at STAGE 2.

11. At STAGE 10 with the parameter dlc_pars.credit_flow_ctrl set to TRUE then the
negotiation for credit based flow control has been successful. The value
dlc_pars.initial_credits is the number of credits that the local RFCOMM layer gives the
local port entity for downstream packets, which it may want to transmit. In other words it is the number of
credits for data transmission by the local port entity.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 13 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

The above steps outline a negotiation for the use of credit based flow control and in this scenario the negotiation
has been successful. Now what has to be noted at this point is the following:

� The actual number of credits set is not negotiated at any stage. The parameter of
dlc_pars.initial_credits that used to pass initial credits between the various port entities
and the their corresponding RFCOMM layers just reports the initial credits that it has.

� If at STAGE 5 the remote port entity is unable to support credit based flow control then at STAGE 6 the
DLC_PAR_T parameters will be set as follows and these values will also appear at STAGE 10 set to
these values:

� dlc_pars.credit_flow_ctrl is set to FALSE

� dlc_pars.initial_credits is set to 0

� Negotiation for credit based flow control is on a per DLC basis referenced to a server channel.
RFCOMM does not support multiple flow control methods on a multiplexor, therefore once a flow control
method is initially set for a multiplexor then any proceeding DLC channels set up on this multiplexor are
forced to use the initial flow control method that has been set.

Once credit based flow control has been set up successfully between two peer RFCOMM layers over a DLC
channel there needs a mechanism that exists to update the credits. Figure 3.2 shows how the credits are
updated using the credits field within the RFC_DATA_REQ and RFC_DATA_IND primitives. In the example
shown in Figure 3.2 there is no user data exchanged, here the mechanism is being used to transfer the credits to
update the credit value. There is no reason why these primitives should not contain data being transferred along
side the credit values being update. Therefore it is perfectly acceptable to see along a typical DLC channel, the
RFC_DATA_REQ and RFC_DATA_IND primitives with data being transferred combined with credit values being
updated, mixed with primitives that are just updating the credit values.

L O C A L

N o u s e r d a t a i n R F C _ D A T A _ I N D m e s s a g e ,
c r e d i t s f i e l d u s e d t o u p d a t e l o c a l c r e d i t s .

P o r t E n t i t y R F C O M M

R F C _ D A T A _ R E Q

R F C _ D A T A _ I N D

Figure 3.2: Updating Flow Control Credits

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 14 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Using the example shown in Figure 3.2 the credit update scheme works as follows:

� The port entity will have been given an initial credit value as was shown in STAGE 10 in Figure 3.1. This
initial credit value is the amount of packets that the port entity can transmit.

� Assume the initial credit value for the port entity is set to 5

� The port entity transmits 3 packets leaving remaining credit value of 2.

� The port entity receives a RFC_DATA_IND primitive with the credits parameter set to 2

� The port entity now increases its remaining credit value by the credit parameter contained in the
RFC_DATA_IND primitive therefore its new credit value is 4

In the above example it showed how the port entity transmit credit value is updated via the RFC_DATA_IND
primitive, the transmit credit value for port entity will also be decremented for each packet sent and will be
initialised when the RFC_PARNEG_CFM primitive is received. The piece of C type pseudo code below shows
these three cases and their interaction on the transmit credit value called tx_credits:

switch(status)
{
 case RFC_PARNEG_CFM:
 {
 if(dlc_pars.credit_flow_control)
 {
 tx_credits = dlc_pars.initial_credits;
 }
 }
 break;

 case RFC_DATA_IND:
 {
 tx_credits += credits;
 }
 break;

 case Data to Transmit:
 {
 if(tx_credits > 0)
 {
 send data to RFCOMM in a RFC_DATA_REQ;
 tx_credits--;
 }
 }
 break;
}

3.2 Maximum Frame Size

During initialisation of credit based flow control the maximum frame size of the RFCOMM packet to be used
between the master and slave is negotiated. This negotiation occurs at the PN stages, which are STAGE 3 and
STAGE 8 shown in Figure 3.1. During the PN stages details are passed between the master and slave using a
PN packet. In general, one device sends a PN message and the other devices replies with another PN message.
The device that sends the first PN message proposes a maximum frame size and the replying device may
respond with a smaller value for maximum frame size, but it is not allowed to propose a larger value. PN
messages may be exchanged until the device that initiated the first message is satisfied with the parameters it
receives.

In the Bluetooth Specification v1.1 the default value for the maximum frame size is 127bytes, however this value
may be too large for some applications. Some of the profiles built from RFCOMM have smaller maximum frame
sizes, for example a headset application might typically have a maximum frame size around 32bytes.The smaller
maximum frame size have to be taken into account when attempting an RFCOMM connection between two
devices. For the link to function correctly the maximum frame size for the link must be set to the smallest
maximum frame size value of the two devices.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 15 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

3.3 Flow Control Layer

Before data is to be transmitted over the air it is buffered in random access memory (RAM) on BlueCore devices.
The RAM available for this buffering is a limited resource and therefore it is important that the data being
streamed to the peer does not overflow this memory resource. In earlier releases of the RFCOMM firmware the
firmware governed the flow of credits in order to regulate the amount of data on the chip.

The new scheme that is outlined in Figure 3.4 is a modification to the standard credit based flow control scheme
described in Section 3.1. This scheme introduces the concept of a Flow Control Layer (FCL) that sits on the host
between the application layer and the transport layer. The main responsibility of the FCL is for checking that the
BlueCore device is not being overloaded with RFCOMM data requests or other primitives. The FCL monitors the
number of primitives that have been issued to BlueCore and the number of primitives that have been consumed.
In Section 3.1 it was shown how the number of credits is updated via the RFC_DATA_IND primitive, this same
strategy is used to signal to the host the number of primitives that have been consumed. This is done through the
use of a special case of the RFC_DATA_IND primitive called the flow control token (FCT). The FCT is identified
by the fact that the parameter mux_id has been set to 0xff and the payload_length is set to 0.

Application

Transport

Flow Control Layer

RFC Prim itives

RFC Prim itives + Flow Control Prim itives

Figure 3.3: Flow Control Layer

It was mentioned earlier in this section that introducing the FCL was a modification to the standard credit based
flow control scheme outlined in Section 3.1. The implication this has for the overall system is that FCL layer
needs to be implemented as part of the host design. In theory the application layer may not need to be modified
much when the FCL layer is introduced. It can still issue and receive RFCOMM data and primitives but instead of
sending these directly to the RFCOMM layer these are passed via the FCL. The FCL will then strip out, modify
and act on the flow control primitives such as the FCT and therefore ensure that should the application issue
more data than the BlueCore device can handle the FCL buffers the data until memory resource becomes
available.

The simplest way the FCL controls the data flow and decides whether it needs to buffer the primitives before
passing them onto BlueCore due to the RFCOMM buffer being full is through the use of windows. The FCL layer
aims to ensure that the number of slots in the windows is less than or equal to the number of primitives issued
minus the number of primitives consumed i.e.

window >= (Number of primitives issued)(1) – (Number of primitives consumed)(2)

Now the window will be proportional to the number of primitives that can be stored within the RFCOMM buffer, so
if the primitive size is based on the largest primitive i.e. RFC_DATA_REQ, then the maximum primitive size will
be equal to header size which is 12 bytes plus the frame size n bytes negotiated during the RFCOMM parameter
negotiation. Therefore,

window = (RFCOMM buffer size(3)) / (Maximum primitive size)

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 16 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

As stated earlier in this section the FCL must count all primitives issued to the chip, this includes the RFCOMM
initialisation and channel setup primitives. Until a frame size has been negotiated a "working" window of 1 can be
set to allow these primitives to be sent. However, the window should then be recalculated once a frame size has
been negotiated.

Note:
(1) Is the count of RFCOMM primitives sent to BlueCore. It is therefore essential as part of the application design

or as part of the FCL that a count of the number of primitives issued is kept.
(2) Can be read from the credits field of the FCT
(3) The RFCOMM buffer size is the parameter RFCOMM_BUFFER_SIZE = 1024 - 256 bytes, this is a fixed

firmware parameter that is not modifiable by the user.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 17 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

4 RFCOMM Firmware Build
To be able to use RFCLI or access other layers of the Bluetooth protocol stack above the HCI layer, a RFCOMM
firmware build needs to be loaded onto a Bluecore device. In general there are two forms of firmware release
available from CSR for the BlueCore devices. These firmware releases are based on splits in the Bluetooth
protocol stack shown in Figure 1.1. The usual split is at the HCI or RFCOMM level and therefore the two firmware
releases available are known as either the HCI firmware or the RFCOMM firmware builds. This section describes
the fundamentals of an RFCOMM firmware build.

The RFCOMM firmware build is based on BlueStack and gives the application programming interface (API)
access to the RFCOMM layer, L2CAP layer, SDP and device manager. The primary uses for the RFCOMM
firmware is for developing profiles and VM applications. It is not suitable for third party stacks, as it does not give
full or direct access to the HCI interface layer.

The RFCOMM firmware is usually supplied as two versions one that supports BCSP and the other supports H4
the Bluetooth UART protocol. There are then two encryption variants of each of the RFCOMM firmware versions,
these cover 56bit and 128bit encryption. An example of the RFCOMM firmware is RFCOMM1.1v13.10.5, this is
the top level name and its name can be split down to identify it. The ‘RFCOMM’ meaning that it is RFCOMM
firmware, ‘1.1’ indicates the version of the Bluetooth specification it supports, ’13.10’ is the level of HCI firmware
the RFCOMM firmware is based upon i.e. here it is HCI Stack1.1v13.10 and ‘.5’ means that this is fifth software
build. The top level description for the firmware will then have four builds associated with it and for this example
RFCOMM1.1v13.10.5 has build identifiers of 339, 340, 341 and 342 that represent whether the build is for BCSP
or H4 and whether it is using 56bit or 128bit encryption.

In the RFCOMM firmware there are a few restrictions that are noticeable:

� Full access to the HCI layer is not support, limited interface to HCI commands is supported through the
device manager

� The USB transport layer is not supported

� There may be no or limited DFU support

� Bandwidth is limited in comparison to HCI firmware. The new credit based flow control with the FCL
achieves around 300kbps. Bandwidths can be varied depending on frame size employed.

� There is Piconet support but generally the RFCOMM build usually defaults to point to point devices such
as headset, DUN, cable replacement etc. The settings for PSKEYS can be modified in order to achieve
Piconet support, at present this is limited to three slave devices.

� Not all the built in self test functions (BIST) are supported

� Restrictions for a particular RFCOMM firmware build can be found in its software release note

Note:
To find the latest version and documentation on the RFCOMM firmware see the CSR website for further
information. This includes the latest qualified version of RFCOMM to the Bluetooth specification and the
protocol implementation confirmation statement (PICS) for baseband, LM, L2CAP, RFCOMM, SPP, SDP
and GAP.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 18 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

5 Accessing RFCOMM Functionality Using RFCLI and
TCL

The aim of this section is to explore in a step-by-step manner the basic principles required to use RFCLI and TCL
to create an RFCOMM connection and pass data between two BlueCore devices. Alongside the use of RFCLI
and TCL, the results are examined using the output data captured by an over air sniffer. The output data is
included to confirm that the correct RFCOMM packets are sent and received over the air between the two
BlueCore devices.

The over air sniffer also has the ability to capture the serial traffic on the BCSP links and therefore this data is
included so that the complete passage of data between the two BlueCore devices can be thoroughly understood.

5.1 RFCLI

RFCLI is a MSDOS based software tool that allows access to various layers of the Bluetooth protocol stack
through the BlueStack API. To fully understand RFCLI there is a RFCLI User Guide that covers its features with
worked examples and executable source scripts, that allow a user to get up and running fully. The RFCLI tool
consists of the following elements:

� The TCL interpreter

� The FCL

� A primitive converter, used to convert the primitives entered in RFCLI to the correct structure used by
BCSP, BlueCore and BlueStack and select the correct BCSP channel

� A BCSP driver

5.2 TCL

The RFCLI tool contains a TCL Interpreter v8.3, which allows the sending and receiving of primitives to various
layers of BlueStack. TCL is a simple scripting language that extends RFCLI by providing programming facilities
such as variables, loops, procedures and libraries. TCL structure and syntax is similar to the C language and
therefore lends itself to reasonably rapid understanding and prototyping of functions.

For further information on TCL then there is plenty of information available:

� On the world wide web

� In the examples in the RFCLI User Guide

� In the book Tcl and the Tk Toolkit by John K. Ousterhout

The use of TCL to extend RFCLI allows the user to build extra functionality into RFCLI in terms of procedures
that can be kept in specific libraries and used as required. Within the libraries supplied with RFCLI there is extra
functionality to control specific profiles such as the headset and HID, as well as more basic procedures that group
single primitives together into one procedure call e.g. the procedure rfc_connect_mst available in the library
covers the functionality of three pairs of primitives:

� RFC_START_REQ and RFC_START_CFM

� RFC_PARNEG_REQ and RFC_PARNEG_CFM

� RFC_ESTABLISH_REQ and RFC_ESTABLISH_CFM

5.3 Setting Up RFCOMM Link

This section brings together the use of the RFCLI and TCL to demonstrate how to form an RFCOMM link
between two BlueCore devices and then pass data between them. In section 6 the principles developed here are
extended further to include items such as the credit based flow control.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 19 of 77

RFCOMM as outlined in Section 2 is based on the GSM TS 07.10 specification. This specification is a
asymmetrical protocol that allows the multiplexing of streams of data onto one serial cable. RFCOMM differs in
the fact that it is designed as a symmetrical specification and sends TS 07.10 frames of data over the L2CAP

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

layer using a subset of the feature frames and commands of TS 07.10 that have been adapted for Bluetooth
usage.

RFCOMM layers communicate with each other through the use of frames and these frames make up the data
payload of a L2CAP packet. There are five types of RFCOMM frames and these are:

1. The start asynchronous balanced mode (SABM) frame that is used as the start up the link command

2. The unnumbered acknowledgement (UA) frame that is used as a response when connected

3. The disconnect command (DISC)

4. The disconnected mode (DM) that is the response to a command when disconnected

5. The unnumbered information with header check (UIH) that is used for data

RFCOMM makes use of channels, which all have a unique DLCI. The DCLI of 0 is a special case that is used for
RFCOMM control signalling, therefore if data is sent in a UIH frame along the DCLI channel of 0 then this data
contains a control message. The SABM, UA, DM and DISC frames are control frames that also utilise DCLI = 0.

RFCOMM frames are carried in L2CAP payloads and to be able to aid this the RFCOMM specification in
Bluetooth has reserved a PSM value for L2CAP of 0x0003. This means that if the L2CAP should receive frames
with the PSM = 0x0003, the frame will be passed on to the RFCOMM layer for processing.

Figure 5.1 outlines the overall generic message sequence chart that is required between two RFCOMM layers
that exist on separate BlueCore devices in order to form a data channel between them. The local RFCOMM
device in Figure 5.1 is responsible for initiating the link and the remote RFCOMM device is responsible for
responding to the initiating device. With reference to Figure 5.1, in order to set up a RFCOMM link between two
Bluetooth devices the following steps are required:

1. Set up an L2CAP connection between the local and the remote device, this requires setting up the
L2CAP channel for RFCOMM with PSM = 0x3000

2. The first frame sent by the local RFCOMM is a SABM frame and this is sent on DLCI = 0. When a
command is sent from RFCOMM an acknowledgement timer (T1) is started. The timeout value of T1
value is normally set between 10 to 60 seconds and if a command is not acknowledged before T1
reaches the timeout value then the connection is shutdown.

3. The remote RFCOMM when it receives the SABM frame and is willing to connect enters asynchronous
balanced mode (ABM) and sends back a UA frame in response. Should the remote device not wish to
connect then it will return a DM frame.

4. Once the local RFCOMM receives the UA frame as acknowledgement, the connection has succeeded
and the local and remote devices enter the parameter negotiation phase that is outlined in STAGE 3 and
STAGE 8 of Figure 3.1 and described in Section 3.1. Although the parameter negotiation stage is
optional for all channels that are set up, this first parameter negotiations phase would usually occur
here, as the parameters set up here are often left unchanged for the rest of the channels that are set up.
The parameter negation command is passed as a message on a UIH frame on DLCI = 0. At the point
when the parameter negotiation is complete then DLCI = 0 is completely up and running.

5. Once DLCI is completely up and running a second DLCI channel needs to be started to create a data
link on the RFCOMM channel, therefore a second SABM frame is initiated by the local RFCOMM to the
remote RFCOMM.

6. The remote RFCOMM when it receives the SABM frame can optionally go into a LMP authentication
and encryption phase. If this phase is required then the timeout value on the acknowledgement timer T1
needs to be extended to typically between 60 to 300 seconds to allow for authentication and encryption
to complete successfully before timeout occurs. If the remote device is willing to connect it enters ABM
and sends back a UA frame in response. Should the remote device not wish to connect then it will return
a DM frame.

7. Once the UA frame has been received at the local RFCOMM layer an optional modem status
commands (MSC) can be exchanged between the local and the remote RFCOMM via a control
message on DLCI = 0.

8. Once the MSC phase is complete the data channel is available to exchange data on the connection or
an optional parameter negotiation phase can be entered prior to the data exchange starting.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 20 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

To summarise the above steps to create a RFCOMM channel so that data can be passed between two devices:

1. The control channel needs to be set up and the parameters for the link negotiated

2. A second channel needs to be set up for data with options available for authentication and encryption,
modem status commands and parameter negotiation

In order to shut down an RFCOMM connection a DISC must be sent on the individual channels leaving the
control channel on DLCI = 0 until last. The final DISC sent on DCLI = 0 is responsible for shutting down the
multiplexor and is also responsible for closing down the L2CAP channel.

Local RFCOMM Remote RFCOMM

Parameter Negotiation
Command

Parameter Negotiation
Response

SABM
DLCI - 0

UA
DLCI = 0

SABM

UA

L2CAP Set Up
PSM = 0x0003

LMP Authentication and
Encryption

Modem Status Commands

UIH Data Frames

Figure 5.1: RFCOMM Channel Set Up Between Local and Remote Bluetooth Device

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 21 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

In Figure 5.1 this shows a generic set up of an RFCOMM data channel between two Bluetooth devices, this can
be minimised by the removing the following optional steps:

� LMP authentication and encryption

� The modem status command exchange between the local and remote RFCOMM

Local PC Remote PC

COM1 COM1

Casira - Local Device Casira - Remote Device

USB

Sniffer PC

COM1 COM2

Casira - Local Device Casira - Remote Device

USB

PC

Configuration
One

Configuration
Two

Sniffer

Sniffer

Figure 5.2: System Set Up with Configuration One and Configuration Two

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 22 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

If the above two optional steps are missed out then the messages passed between two RFCOMM layers in order
to set up a data link between two BlueCore devices is shown in Figure 5.3. To understand the overall process of
setting up an RFCOMM link between two BlueCore devices the message sequence chart in Figure 5.3 can be
examined practically with the equipment set-up shown in Figure 5.2. Figure 5.2 has two configuration depending
on PC requirements available, if a PC has two standard serial COM ports and a USB port then Configuration Two
is the most practical and compact. The system set up requirements to be able to run this example in
Configuration Two are as follows:

1. Two Casiras loaded with a BCSP version of RFCOMM firmware are required. The encryption type is not
important therefore it may be convenient to use the latest RFCOMM firmware(1) that is available in
BlueLab™.

2. A sniffer is connected to the USB port of the PC to as an over air sniffer and record communications
traffic on this link. Depending on chosen the sniffer equipment it may be possible to monitor the
RFCOMM packets on serial port.

3. The sniffer is set up with the local device set to be the master and the remote device set to be the slave.
The sniffer is set recording and left in a state to synchronise to the local and remote device. For further
details on setting up the sniffer see the manufacturers user manual.

4. Two RFCLI sessions must be running on a PC where the local device is the Casira attached to COM1
and the remote device is the Casira attached to COM2 of the PC as shown in Figure 5.3.

5. On one RFCLI session run the slave source exampleslave.tcl that is shown in Appendix A1 on
the remote device by entering the command:

source exampleslave.tcl

6. Wait for the message Waiting for a connection to appear on the RFCLI session on the
remote device before running a second session on RFCLI

7. On the second RFCLI session run the source script examplemaster.tcl that is shown in Appendix
A2 on the local device by entering the command:

source examplemaster.tcl

8. The local device script will then attempt to connect to the remote device at the RFCOMM layer

9. Once a successful connection has been made between the local device and remote device, commands
and data are passed between the two devices and then the example finishes and the sniffer should
have captured either the over air message traffic, the BCSP traffic on COM1 or the BCSP traffic on
COM2 depending on the sniffer used and the set up configuration.

Notes:
(1) The RFCOMM firmware used in this example came from BlueLab 2.4. The version used was a BCSP build

for Bluecore2. The build ID was 334 and its title was 2xRfc1v1Gccsdk-2-4

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 23 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Note: Automatically set up by
RFCLI

Local
Port Entity

Local
RFCOMM

Remote
RFCOMM

Remote
Port Entity

RFC_REGISTER_REQ

RFC_REGISTER_CFM

RFC_INIT_REQ

RFC_INIT_CFM

DM_AM_REGISTER_REQ

DM_AM_REGISTER_CFM

RFC_START_REQ

RFC_START_CFM

RFC_PARNEG_REQ

RFC_PARNEG_CFM

RFC_ESTABLISH_REQ

RFC_ESTABLISH_CFM

Parameter Negotiation
Command

Parameter Negotiation
Response

RFC_REGISTER_REQ

RFC_REGISTER_CFM

RFC_INIT_REQ

RFC_INIT_CFM

DM_AM_REGISTER_REQ

DM_AM_REGISTER_CFM

DM_HCI_WRITE_PAGESCAN_ACTIVITY

DM_HCI_WRITE_PAGESCAN_ACTIVITY_COMPLETE

DM_HCI_WRITE_SCAN_ENABLE

DM_HCI_WRITE_SCAN_ENABLE_COMPLETE

RFC_START_IND

RFC_START_RES

RFC_START_IND

RFC_START_RES

RFC_PARNEG_IND

RFC_PARNEG_RES

RFC_ESTABLISH_IND

RFC_ESTABLISH_RES

SABM

UA

SABM

UA

ACL Opened

L2CAP Connection

RFC_DATA_REQ

UIH

RFC_DATA_IND

Figure 5.3: Message Sequence Chart For RFCOMM Data Link Set Up Between Two BlueCore Devices

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 24 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Using Configuration Two in Figure 5.2 and the two TCL source scripts for the local and remote devices listed in
Appendix A1 and A2 respectively the interactions of the message sequence chart in Figure 5.3 can be
demonstrated and observed. In order to understand the complete example the two scripts can be broken down
into key stages as follows:

1. The remote device must be connected to its respective RFCLI session and set up any global variables
required, this is not shown in Figure 5.3, the script for the remote device is as follows:
#Slave script
#Connect to Casira
puts "Connect to Casira"
BC_connect com2 bcsp 115200
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set max_frame_size 0x7f
set initial_credits 0x07

2. The local device must be connected to its respective RFCLI session, this is not shown in Figure 5.3. In
the local script the LAP, UAP and NAP must be set up for the remote device, so these three lines will
need to change to reflect the address of the device on COM2. The script for local device is as follows:
#Master script
#Connect to Casira
puts "Connect to Casira"
BC_connect com1 bcsp 115200
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set bd_addr.lap 0x10e46
set bd_addr.uap 0x5b
set bd_addr.nap 0x02
set max_frame_size 0x7f
set initial_credits 0x07

3. The local and the remote device port entities register with RFCOMM. For both port entities this requires
sending a RFC_REGISTER_REQ along with a port handle (phandle) to the RFCOMM layer and waiting
for a RFC_REGISTER_CFM to be returned. The phandle is usually set to 0x8000 which is the default
setting. In the local and remote script the script is the same and the default setting for phandle is used,
the script is as follows:
#Register with RFCOMM
puts "Register with RFCOMM"
RFC_REGISTER_REQ $phandle
RFC_REGISTER_CFM

The output on RFCLI expected in both the local and remote device RFCLI session is:

---- 15:26:56.055 ------------------
RFC_REGISTER_REQ_T
 type = 03
 phandle = 8000

---- 15:26:56.321 ------------------
RFC_REGISTER_CFM_T
 type = 04
 phandle = 8000
 server_chan = 01
 accept = 01

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 25 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

4. The local and remote port entities initialise RFCOMM by issuing a RFC_INIT_REQ primitive and wait for
a RFC_INIT_CFM primitive to be returned. The RFC_INIT_REQ primitive takes the default parameters
for the system except for flow control set up which was set up in step 1. The local and remote scripts are
the same and are:
#Initialise RFCOMM
puts "Initialise RFCOMM"
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type
$fc_threshold $fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM

The output on RFCLI expected in both the local and remote device RFCLI session is:

---- 15:26:56.337 ------------------
RFC_INIT_REQ_T
 type = 01
 phandle = 8000
 psm_local = 03
 use_flow_control = 01
 fc_type = 01
 fc_threshold = 03
 fc_timer = 01
 rsvd_4 = 00
 rsvd_5 = 00

---- 15:26:56.368 ------------------
RFC_INIT_CFM_T
 type = 02
 phandle = 8000
 psm_local = 03
 fc_type = 8000
 fc_threshold = 03
 fc_timer = 01
 rsvd_4 = 00
 rsvd_5 = 00

5. The local and remote port entities initialise the device manager by issuing a DM_AM_REGISTER_REQ
primitive and wait for a DM_AM_REGISTER_CFM primitive to be returned. The port entities need to
register with the device manager to allow functions such inquiry, inquiry scanning, paging and page
scanning to occur. The default phandle value is used and the local and remote scripts are the same:
#Register with Device Manager
puts "Register with Device Manager"
DM_AM_REGISTER_REQ $phandle
DM_AM_REGISTER_CFM

The output on RFCLI expected in both the local and remote device RFCLI session is:

---- 15:26:56.399 ------------------
DM_AM_REGISTER_REQ_T
 type = 00
 phandle = 8000

---- 15:26:56.415 ------------------
DM_AM_REGISTER_CFM_T
 type = 01
 phandle = 8000

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 26 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6. The remote port entity now places the remote device in listening mode by sending primitives to the
device manager turning on page scanning and inquiry scanning, this allows the remote device to be
found and connected to. At the end of this stage the remote device displays a message Waiting for
a connection on the RFCLI session and waits for the local device to connect to it. The message
sequence chart for this stage can be seen in Figure 5.4 and the script for the slave is as follows:
#Enabling page scanning so that the Master can connect to us
DM_HCI_WRITE_PAGESCAN_ACTIVITY 0x800 0x700
DM_HCI_WRITE_PAGESCAN_ACTIVITY_COMPLETE
DM_HCI_WRITE_SCAN_ENABLE 3
DM_HCI_WRITE_SCAN_ENABLE_COMPLETE
#Wait for a connection and respond appropriately
puts "Waiting for a connection"

Remote
RFCOMM

Remote
Port Entity

DM_HCI_WRITE_PAGESCAN_ACTIVITY

DM_HCI_WRITE_PAGESCAN_ACTIVITY_COMPLETE

DM_HCI_WRITE_SCAN_ENABLE

DM_HCI_WRITE_SCAN_ENABLE_COMPLETE

Figure 5.4: Message Sequence Chart to Place Remote Device in Listening Mode

The output on RFCLI expected is:

---- 15:26:56.415 ------------------
HCI_WRITE_PAGESCAN_ACTIVITY_T
 HCI_COMMAND_COMMON_T
 op_code = c1c
 length = 04
 pagescan_interval = 800
 pagescan_window = 700

---- 15:26:56.430 ------------------
DM_HCI_STANDARD_COMMAND_COMPLETE_T
 type = c53
 phandle = 8000
 status = 00

---- 15:26:56.446 ------------------
HCI_WRITE_SCAN_ENABLE_T
 HCI_COMMAND_COMMON_T
 op_code = c1a
 length = 02
 scan_enable = 03

---- 15:26:56.462 ------------------
DM_HCI_STANDARD_COMMAND_COMPLETE_T
 type = c51
 phandle = 8000
 status = 00

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 27 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

7. Once the remote device is listening the local device issues a RFCOMM start command by sending a
RFC_START_REQ primitive. The local device script has been written so that it sits in a loop waiting for
the RFC_START_CFM to be received. Usually the script returns a pending status for the first
RFC_START_CFM, so the local device needs to wait for a success status to be returned as a
result_code before it can continue. At this point the first over air message will be seen when the
first SABM frame is sent from the local RFCOMM layer to the remote RFCOMM layer with the DLCI = 0
The script for the local device is:
#Request RFCOMM Start
puts "Request RFCOMM Start"
RFC_START_REQ - - - $psm_remote ${sys_pars.port_speed}
${sys_pars.max_frame_size} $respond_phandle
RFC_START_CFM
#If result_code is not success we need to wait
while {$result_code == 1} {
 RFC_START_CFM
}

The output on RFCLI expected is shown below, notice that an ACL connection has been opened
automatically and the remote features of the remote device read without user intervention:
---- 15:28:54.380 ------------------
RFC_START_REQ_T
 type = 05
 BD_ADDR_T
 lap = 10e46
 uap = 5b
 nap = 02
 psm_remote = 03
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 7f
 respond_phandle = 8000

---- 15:28:57.020 ------------------
DM_ACL_OPENED_IND_T
 type = 280d
 phandle = 8000
 BD_ADDR_T
 lap = 10e46
 uap = 5b
 nap = 02
 incoming = 00
 dev_class = 00

---- 15:28:57.036 ------------------
RFC_START_CFM_T
 type = 08
 phandle = 8000
 BD_ADDR_T
 lap = 10e46
 uap = 5b
 nap = 02
 mux_id = 00
 result_code = 01
 SYS_PAR_T
 port_speed = 00
 max_frame_size = 00

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 28 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

---- 15:28:57.067 ------------------
DM_HCI_READ_REMOTE_FEATURES_COMPLETE_T
 type = 42a
 phandle = 8000
 status = 00
 BD_ADDR_T
 lap = 10e46
 uap = 5b
 nap = 02
 features [c] = ffff
 features [c] = 0f
 features [c] = 00
 features [c] = 00

---- 15:28:57.223 ------------------
RFC_START_CFM_T
 type = 08
 phandle = 8000
 BD_ADDR_T
 lap = 10e46
 uap = 5b
 nap = 02
 mux_id = 00
 result_code = 00
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 7f

8. The remote device in response to the SABM will see a couple of RFC_START_IND primitives at the
remote port entity to indicate that RFCOMM has started. To each indication primitive the remote port
entity needs to respond with a RFC_START_RES primitive to the remote RFCOMM layer. Having
responded correctly the RFCOMM layer will issue an UA frame to the local RFCOMM layer and issue a
RFC_STARTCMP_IND to indicate the RFCOMM start has completed. The remote script is:
RFC_START_IND
RFC_START_RES
RFC_START_IND
RFC_START_RES
RFC_STARTCMP_IND

The output on RFCLI expected is shown below, as was noticed in the local device the remote device
also has an ACL connection opened automatically and the remote features of the local device are read
without user intervention:

---- 15:28:57.036 ------------------
DM_ACL_OPENED_IND_T
 type = 280d
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 incoming = 01
 dev_class = 00

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 29 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

---- 15:28:57.067 ------------------
RFC_START_IND_T
 type = 07
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 mux_id = 00
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 00

---- 15:28:57.098 ------------------
RFC_START_RES_T
 type = 06
 mux_id = 00
 accept = 01
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 00
 respond_phandle = 8000

---- 15:28:57.098 ------------------
DM_HCI_READ_REMOTE_FEATURES_COMPLETE_T
 type = 42a
 phandle = 8000
 status = 00
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 features [c] = ffff
 features [c] = 0f
 features [c] = 00
 features [c] = 00

---- 15:28:57.145 ------------------
RFC_START_IND_T
 type = 07
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 mux_id = 00
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 7f

---- 15:28:57.161 ------------------
RFC_START_RES_T
 type = 06
 mux_id = 00
 accept = 01
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 7f
 respond_phandle = 8000

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 30 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

---- 15:28:57.208 ------------------
RFC_STARTCMP_IND_T
 type = 09
 phandle = 8000
 mux_id = 00
 result_code = 00
 SYS_PAR_T
 port_speed = ff
 max_frame_size = 7f

9. The parameter negotiation stage sets the link to use credit based flow control, with an initial credit size
of 7 and maximum frame size for RFCOMM packets of 0x7f hex. These parameters are set by the local
port entity by issuing a RFC_PARNEG_REQ primitive and waits for the remote device parameters,
which are contained in the RFC_PARNEG_CFM. Once the local RFCOMM layer receives the
RFC_PARNEG_REQ primitive from the local port entity it issues an over air parameter negotiation
command over the air as a control message on DLCI = 0. The script for the local device is:
#RFCOMM Parameter Negotiation
puts "RFCOMM Parameter Negotiation"
RFC_PARNEG_REQ $mux_id - - $max_frame_size $use_flow_control
$initial_credits
RFC_PARNEG_CFM

The output on RFCLI expected is shown below:
---- 15:28:57.255 ------------------
RFC_PARNEG_REQ_T
 type = 20
 mux_id = 00
 loc_server_chan = 01
 rem_server_chan = 01
 DLC_PAR_T
 max_frame_size = 7f
 credit_flow_ctrl = 01
 initial_credits = 07

---- 15:28:57.333 ------------------
RFC_PARNEG_CFM_T
 type = 23
 phandle = 8000
 mux_id = 00
 server_chan = 01
 DLC_PAR_T
 max_frame_size = 7f
 credit_flow_ctrl = 01
 initial_credits = 07

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 31 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

10. The parameter negotiation stage in the remote device takes in the set of parameters it receives from the
local device and uses these in its response via the over air parameter negotiation frame. If the remote
device requires a smaller frame size or needed to set a different value for initial credits these
parameters would need to be set in the RFC_PARNEG_RES primitive. The script for the remote device
is:
RFC_PARNEG_IND
RFC_PARNEG_RES

The output on RFCLI expected is shown below:
---- 15:28:57.302 ------------------
RFC_PARNEG_IND_T
 type = 22
 phandle = 8000
 mux_id = 00
 server_chan = 01
 DLC_PAR_T
 max_frame_size = 7f
 credit_flow_ctrl = 01
 initial_credits = 07

---- 15:28:57.302 ------------------
RFC_PARNEG_RES_T
 type = 21
 mux_id = 00
 server_chan = 01
 DLC_PAR_T
 max_frame_size = 7f
 credit_flow_ctrl = 01
 initial_credits = 07

11. When the parameter negotiation stage is complete the control channel is completely set up. Once the
control channel is fully available a data channel can then be established between the two BlueCore
devices attached to COM1 and COM2 of the PC. This is done using the RFC_ESTABLISH_REQ
primitive that in this example uses default parameters for items such as the multiplexor indentifier and
the local and remote server channels. At this point another SABM frame is issued but this time on a
different DLCI channel, here DLCI is equal to 1. The local port entity will wait for the RFCOMM layer to
receive a UA frame on DLCI = 1 to confirm the link is established. Once the local RFCOMM layer
receives the UA frame it issues the RFC_ESTABLISH_CFM primitive that the local port entity is
expecting. The script for the local device is:
#RFCOMM Establish
puts "RFCOMM Establish"
RFC_ESTABLISH_REQ $mux_id $loc_server_chan $rem_server_chan
RFC_ESTABLISH_CFM

The output on RFCLI expected is shown below:
---- 15:28:57.364 ------------------
RFC_ESTABLISH_REQ_T
 type = 0c
 mux_id = 00
 loc_server_chan = 01
 rem_server_chan = 01

---- 15:28:57.427 ------------------
RFC_ESTABLISH_CFM_T
 type = 0f
 phandle = 8000
 mux_id = 00
 server_chan = 01
 result_code = 00

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 32 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

12. The remote device in the data channel establishment phase receives the SABM frame on DLCI = 1 and
passes the RFC_ESTABLISH_IND primitive to the remote port entity. The remote port entity responds
with a RFC_ESTABLISH_CFM using default parameters for the multiplexor identifier and server channel
and also accepts the link. An UA frame is then sent over the air to accept the link. The remote script is:
RFC_ESTABLISH_IND
RFC_ESTABLISH_RES

The output on RFCLI expected is shown below:
---- 15:28:57.395 ------------------
RFC_ESTABLISH_IND_T
 type = 0e
 phandle = 8000
 mux_id = 00
 server_chan = 01

---- 15:28:57.395 ------------------
RFC_ESTABLISH_RES_T
 type = 0d
 mux_id = 00
 server_chan = 01
 accept = 01

13. Once the data link is set up on DLCI = 1 the local device transmits two message to the remote device
using the RFC_DATA_REQ primitive. The first message is the numbers 1 to 9 and the second message
is “Hello World”. After these two messages have been sent the example script is complete but the data
link is left up. The script is:
#Send a data primitive
puts "Connection made, starting transfer"
RFC_DATA_REQ - - 0 ? {1 2 3 4 5 6 7 8 9}
#Send another primitive
RFC_DATA_REQ - - 0 ? {"Hello World"}
puts "All done"

The output on RFCLI expected is shown below:
---- 15:28:57.442 ------------------
RFC_DATA_REQ_T
 type = 18
 mux_id = 00
 server_chan = 01
 credits = 00
 payload_length = 09
 01 02 03 04 05 06 07 08 09

---- 15:28:57.458 ------------------
RFC_DATA_REQ_T
 type = 18
 mux_id = 00
 server_chan = 01
 credits = 00
 payload_length = 0b
 48 65 6c 6c 6f 20 57 6f 72 6c 64
All done

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 33 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

14. The remote device once the data link is set up on DLCI = 1 waits for two messages from the local
device. Each message will be carried within a RFC_DATA_IND primitive. When each message has
been received it displays the payload of the RFCOMM data packet. the local device transmits two
message to the remote device. The first message is the numbers 1 to 9 and the second message is
“Hello Word”. After these two messages have been received the example script is complete but the data
link is left up. The script is:
#Wait for an incoming data primitive
puts "Connection made, starting transfer"
set result [RFC_DATA_IND]
#Wait for another incoming data primitive
puts "Received payload: [lindex $result 5]"
set result [RFC_DATA_IND]
puts "Received payload: [lindex $result 5]"
puts "All done"

The output on RFCLI expected is shown below:
---- 15:28:57.536 ------------------
RFC_DATA_IND_T
 type = 19
 phandle = 8000
 mux_id = 00
 server_chan = 01
 credits = 00
 payload_length = 09
 01 02 03 04 05 06 07 08 09

Received payload: 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09

---- 15:28:57.552 ------------------
RFC_DATA_IND_T
 type = 19
 phandle = 8000
 mux_id = 00
 server_chan = 01
 credits = 00
 payload_length = 0b
 48 65 6c 6c 6f 20 57 6f 72 6c 64

Received payload: 0x48 0x65 0x6c 0x6c 0x6f 0x20 0x57 0x6f 0x72 0x6c
0x64
All done

15. Whilst executing the two TCL scripts there will be an output on the RFCLI screen that is in the same
form as the message shown below. This message is the FCT that is explained in Section 3.3:
---- 15:28:57.177 ------------------
RFC_DATA_IND_T
 type = 19
 phandle = 8000
 mux_id = ff
 server_chan = ff
 credits = 04
 payload_length = 00

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 34 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

5.4 Over Air Sniffer

To be able to verify that the correct RFCOMM frames are sent over the air between the local and the remote
RFCOMM layers an over air sniffer is used. There are numerous sniffers available from manufacturers such as
CATC™, Agilent™, Digianswer™ and Frontline™ to name just a few.

Section 5.3 was a step-by-step guide to setting up an RFCOMM link between two BlueCore devices using two
Casiras and passing data from the local device to the remote device. It also shows with examples the outputs
expected in RFCLI for each phase as re-assurance. Further assurance can be gained by the use of a sniffer. If
the system being used to do the investigations is as per Configuration Two of Figure 5.2 then the sniffer being
used can be configured as an over air sniffer or as a serial line sniffer. The over air sniffer has the ability to record
the frames transmitted from the RFCOMM layer such as the SABM, UA, PN and UIH frames as well as other
layers. Therefore the sniffer is being used here as a tool that can examine what is going on in various parts of the
whole link and is especially useful in investigating when the link operates incorrectly. The sniffer used top capture
data used in this section and Section 5.5 was the Frontline sniffer but the results could equally have been
captured using another manufacturers sniffer. In order to set up a different manufacturers refer to their user guide
and compare their set up against the Frontline Sniffer Quick Start User Guide available from CSR.

In this section the example in Section 5.3 is investigated using the sniffer to look at the over air RFCOMM frames
If the over air RFCOMM frames are extracted from the captured over air trace, the RFCOMM packets captured
can be compared to the message sequence chart in Figure 5.3 verifying correct set up of the RFCOMM link and
transmission of expected data. Table 5.1 represents the RFCOMM packet sequence shown in Figure 5.3, it
shows in sequential order the frame type and the contents of each RFCOMM frame that have been extracted.
Note that the last two frames represent the two data messages - these two messages would be contained within
UIH frames.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 35 of 77

Frame Type RFCOMM Packet Details

SABM Role: Master
Address: 1
Address: 03
 DLCI: 00
 Server Channel: 0
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Set Async Balanced Mode
Poll/Final Bit: 1
Length Extension: Not Extended
Length: 0
FCS: 1c

UA Role: Slave
Address: 1
Address: 03
 DLCI: 00
 Server Channel: 0
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Acknowledgement
Poll/Final Bit: 1
Length Extension: Not Extended
Length: 0
FCS: d7

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Frame Type
(continued)

RFCOMM Packet Details (continued)

UIH Role: Master
Address: 1
Address: 03
 DLCI: 00
 Server Channel: 0
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Info with Header Check
Poll/Final Bit: 0
Length Extension: Not Extended
Length: 10
UIH Command/Response:
 Command Type: Parameter Negotiation
 Command/Response: Command
 Type Extension: Not Extended
 Length Extension: Not Extended
 Length: 8
 Parameter Negotiation:
 DLCI: 2
 Credit Based Flow Control: Sender Supports CFC
 Type of Frame for Information: UIH Frames
 Priority: 0
 Acknowledgement Timer: 0
 Maximum Frame Size: 127
 Maximum Number of Retransmission: 0
 Initial Number of Credits: 7
FCS: 70

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 36 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Frame Type
(continued)

RFCOMM Packet Details (continued)

UIH Role: Slave
Address: 1
Address: 01
 DLCI: 00
 Server Channel: 0
 Direction: Responder to Initiator
 Command/Response: Responder Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Info with Header Check
Poll/Final Bit: 0
Length Extension: Not Extended
Length: 10
UIH Command/Response:
 Command Type: Parameter Negotiation
 Command/Response: Response
 Type Extension: Not Extended
 Length Extension: Not Extended
 Length: 8
 Parameter Negotiation:
 DLCI: 2
 Credit Based Flow Control: Responder Supports CFC
 Type of Frame for Information: UIH Frames
 Priority: 0
 Acknowledgement Timer: 0
 Maximum Frame Size: 127
 Maximum Number of Retransmission: 0
 Initial Number of Credits: 7
FCS: aa

SABM Role: Master
Address: 1
Address: 0b
 DLCI: 01
 Server Channel: 1
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Set Async Balanced Mode
Poll/Final Bit: 1
Length Extension: Not Extended
Length: 0
FCS: 59

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 37 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Frame Type
(continued)

RFCOMM Packet Details (continued)

UA Role: Slave
Address: 1
Address: 0b
 DLCI: 01
 Server Channel: 1
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Acknowledgement
Poll/Final Bit: 1
Length Extension: Not Extended
Length: 0
FCS: 92

UIH Role: Master
Address: 1
Address: 0b
 DLCI: 01
 Server Channel: 1
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Info with Header Check
Poll/Final Bit: 0
Length Extension: Not Extended
Length: 9
FCS: 9a

UIH Role: Master
Address: 1
Address: 0b
 DLCI: 01
 Server Channel: 1
 Direction: Responder to Initiator
 Command/Response: Initiator Started C/R Sequence
 Extension Bit: Not Extended
Frame Type: Unnumbered Info with Header Check
Poll/Final Bit: 0
Length Extension: Not Extended
Length: 11
FCS: 9a

Table 5.1: RFCOMM Packets Extracted from Over Air Sniifer

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 38 of 77

Accessing RFCOMM Functionality Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

5.5 Serial Sniffer

To complete the analysis of the set up of the RFCOM link, a serial port sniffer can be used to monitor the serial
port traffic and some sniffers have the ability to decode BCSP packets. This means that the traffic on the serial
ports for both Casiras on COM1 and COM2 for Configuration Two in Figure 5.2 can be monitored. The serial line
sniffer used to capture the data in this section can only record the serial packets on one BCSP serial link at a
time, not both.

The RFCOMM packets that are carried along as BCSP packets on the serial ports of the local and remote
devices represent the RFCOMM primitives sent from each port entity to their corresponding RFCOMM layer. In
order to set up the serial port sniffer refer to manufacturer’s user manual and compare against Frontline Sniffer
Quick Start User Guide for reference.

Once data has been captured for the serial port for the connection between the port entity and the RFCOMM
layer on both the local and the remote devices. The captured data can be analysed to check that the packets
captured correspond to the primitives expected in Figure 5.3.

For example the frame shown below was taken from the file that captured the serial traffic between the local port
entity and the RFCOMM layer on the local BlueCore device:

--- Frame 23 (DTE)--- Length: 11 --- Errors: 0 --- Time: 24/09/2002
17:16:27.471 ---

Summary Header Labels

BlueCore Serial Protocol,Ack,Seq,Length,Channel

Layer Summaries

BlueCore Serial Protocol,0,0,4,RFCOMM

Protocol Decodes

Physical Frame:
 db dc 49 00 f6 03 00 00 80 da 8a

BlueCore Serial Protocol (logical frame):
 c0 49 00 f6 03 00 00 80 da 8a

BlueCore Serial Protocol:
 Flags:
 Protocol Type: Reliable Datagram Stream
 CRC Present: Yes
 Ack: 0
 Sequence: 0
 Payload Length: 4
 Channel: RFCOMM
 Checksum: f6
 CRC: da8a

Data:
 Hex: 03 00 00 80
 ASCII: . .

This frame represents the RFC_REGISTER_REQ primitive shown in Figure 5.3 that is sent from the local port
entity and the local RFCOMM layer. This can be decoded from the data section of the frame, which has the four
hex values of 03, 00, 00 and 80. As the data is 16bit and in Little Endian format the two data values then become
the hex values of 0x0003 and 0x8000. The first 16bit value represents the RFCOMM primitive, where 0x0003 is
the value for RFC_REGISTER_REQ. This value can be checked by looking in the header file rfcomm_prim.h
included as part of BlueLab. As the RFC_REGISTER_REQ requires a 16bit parameter phandle then the hex
value of 0x8000 represents this parameter.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 39 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6 Example of Accessing RFCOMM Using RFCLI and TCL
As stated previously one of the layers accessible using RFCLI is the RFCOMM layer. This section and the
application note Accessing RFCOMM Using µBCSP cover examples of how to access the RFCOMM layer. The
same examples used in this section and the application note Accessing RFCOMM Using µBCSP cover both
access via RFCLI on a PC and via an external host using BCSP/µBCSP. These examples are based on a type 2
RFCOMM device depicted in Figure 2.1.

The example developed in this section is written in TCL and is designed to transfer a series of commands and
data from a local device to a remote device over the RFCOMM layer in each peer device. The local device sends
out a series of requests that may include data to the remote device, which will respond to the various commands
with an answer to the local device. In this example the aspects of credit based flow control and the interaction
with the FCL are highlighted if the options –s and –e are used when RFCLI is invoked. In order to use the FCL
in a correct manner the use of a buffer is also included in this example.

To be able to run this example two Casiras loaded with BCSP version of RFCOMM firmware are required. The
encryption type is not important therefore it may be convenient to use the latest RFCOMM firmware that is
available in BlueLab.(1) Two RFCLI sessions must be running on a PC and the local device is the Casira attached
to COM1 and the remote device is the Casira attached to COM2 of the PC as shown in Configuration Two in
Figure 6.1. In order to run this example the following steps are required:

1. On one RFCLI session run the source script rfcslv.tcl on the remote device by entering the
command

source rfcslv.tcl

2. Wait for the message ‘Waiting for a connection’ to appear on the RFCLI session on the remote device
before running a second session on RFCLI

3. On the second RFCLI session run the source script rfcmst.tcl on the local device by entering the
command

source rfcmst.tcl

4. The local device script will then attempt to connect to the remote device at RFCOMM layer the
sequence of which is explained in Section 6.1.

5. Once a successful connection has been made between the local device and remote device commands,
data is passed between the two devices and the example finishes.

Note:
(1) The RFCOMM firmware used in this example came from BlueLab 2.4. The version used was a BCSP build

for BlueCore2. The build ID was 334 and its title was 2xRfc1v1Gccsdk-2-4

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 40 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Local PC Remote PC

COM1 COM1

Casira - Local Device Casira - Remote Device

COM1 COM2

Casira - Local Device Casira - Remote Device

PC

Configuration
One

Configuration
Two

Figure 6.1: Set Up for Example

6.1 Details of the RFCLI Source Script Example

The following sections examine in detail the output from the RFCLI scripts rfcmst.tcl and rfcslv.tcl.
The overall functionality of the system is described in terms of how the component parts interact. The main
functionality of the example is contained within the local device and the majority of these are replicated and re-
used inside the remote device script.

6.2 Local and Remote Device Source Script

The flow of functionality of the local device script breaks down into the two state transition diagrams Figure 6.2
and Figure 6.4. Figure 6.2 contains the various states that make up the initialisation of the local device. All these
initialisation states shown in Figure 6.2 are contained within the state called ‘Initialisation of RFCOMM Layer’ in
Figure 6.4. The script for the local device script rfcmst.tcl is contained in Appendix B1 and the comments
clearly indicate where each state is within the script.

The remote device source script is very similar in structure to that of the local device source script and the
subsections of this section will highlight the difference from the local device script file on initialisation of the
RFCOMM layer and the main loop and state machine. The script for the remote device script rfcslv.tcl is
contained in Appendix B2.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 41 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.3 Initialisation of RFCOMM Layer in the Local Device

Figure 6.2 depicts the states that need to be transitioned in order to initialise the RFCOMM layer as well as the
system variables and buffers.

Connect to Casira

Put Messages in
Transmit Buffer

Initialise Port
Entity Transmit

and Receive
Buffers

Initialise System
Variables

Register with
RFCOMM

Initialise
RFCOMM

Register with
Device Manager

Request
RFCOMM Start

RFCOMM
Parameter
Negotiation

RFCOMM
Establish

To Main Loop

Figure 6.2: Initialisation of RFCOMM Layer

In the example script the initialisation of the local device is sequenced and each state completes before going
onto the next state, at the end of the initialisation phase the local device will be connected to the remote device. If
any state is unsuccessful either RFCLI causes the script to stop, or it may pause indefinitely waiting for a
confirmation message. A description of each state of Figure 6.2 is described in Sections 6.3.1 to Section 6.3.10.

6.3.1 Connect to Casira

This state is very important, as it is responsible for connecting the RFCLI session running on the PC to the
BlueCore device running on the Casira on serial port COM1. This BlueCore device represents the local device.
This state issues a BC_connect command to connect to the Casira on serial COM1 at 115Kbaud and the
script is shown below:

#Connect to Casira
puts "Connect to Casira"
BC_connect com1 bcsp 115200

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 42 of 77

This state completes when the BC_connect completes successfully, otherwise the script will end and no
further states are executed.

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.3.2 Initialise Port Entity Transmit and Receive Buffers

This state initialises the transmit and receive buffers and fills them with the value 0xc0ffee, sets up the
pointers for the top and bottom of each buffer, the number of packets and buffer size. The script for both local
and the remote device is:

#Initialise Port Entity Transmit Buffer
puts "Initialise Port Entity Transmit Buffer"
set tx_buffer(noofpackets) 0
set tx_buffer(txcredits) 0
set tx_buffer(pointer) 0
set tx_buffer(buffersize) 10
set tx_buffer(topptr) 0
set tx_buffer(bottomptr) 0
set tx_buffer(transmitted) 0
for {set cnt 0} {$cnt < $tx_buffer(buffersize)} {incr cnt} {
 set tx_buffer($cnt) 0xc0ffee
}
#Initialise Port Entity Receive Buffer
puts "Initialise Port Entity Receive Buffer"
set rx_buffer(noofpackets) 0
set rx_buffer(txcredits) 0
set rx_buffer(pointer) 0
set rx_buffer(topptr) 0
set rx_buffer(bottomptr) 0
set rx_buffer(buffersize) 10
set rx_buffer(received) 0
for {set cnt 0} {$cnt < $rx_buffer(buffersize)} {incr cnt} {
 set rx_buffer($cnt) 0xc0ffee
}

The state will transition in to the next state when all the space inside each buffer inside transmit and receive
buffers are initialised. The size of each buffer is set by the buffersize for each buffer.

6.3.3 Put Messages in Transmit Buffer

This script forms part of the initialisation of the local device script only. It demonstrates how to load the complete
transmit buffer. It makes use of the Load Packet in Transmit Buffer in Section 1.1.1 and loads all slots in the
buffer dictated by the buffer size value stored in tx_buffer(buffersize). In this script the
tx_buffer(buffersize) is set ten so ten messages are loaded into the transmit buffer to be sent to the
remote device. The data to be loaded in the buffer is first loaded into the variable txmsg and this is then placed
in the transit buffer by calling the Load Packet in Transmit Buffer state:

#Put Messages in Transmit Buffer
puts "Put Messages in Transmit Buffer"
for {set cnt 0} {$cnt < $tx_buffer(buffersize)} {incr cnt} {
 switch $cnt {
 0 {set txmsg {1}}
 1 {set txmsg {2}}
 2 {set txmsg {3 "Name changed by RFCLI"}}
 3 {set txmsg {1}}
 4 {set txmsg {2}}
 5 {set txmsg {3 "Name changed by RFCLI"}}
 6 {set txmsg {1}}
 7 {set txmsg {2}}
 8 {set txmsg {3 "Name changed by RFCLI"}}
 9 {set txmsg {0}}
 default {set txmsg {0}}
 }
 if {[putpktpetxbuffer $txmsg]} {
 puts "Message failed to load in PE Tx Buffer"
 }
}

This state will transition on to the next state when the transmit buffer is completely loaded with all messages.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 43 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.3.4 Initialise System Variables

This state initialises variables such as the Bluetooth address of the remote device that is being connected to and
the maximum frame size and initial credits. The script is below and the variables bd_addr.lap,
bd_addr.uap and bd_addr.nap represent the lap, uap and nap respectively of the Bluetooth address of
the remote device, these will need to be modified depending on the address of the user’s remote device:

#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set bd_addr.lap 0x10e46
set bd_addr.uap 0x5b
set bd_addr.nap 0x02
set max_frame_size 0x7f
set initial_credits 0x07
set state 1
puts "Connection Attempts: $connectionAttempts"

The state transitions when all variables are set.

6.3.5 Register with RFCOMM

This state registers the local device with RFCOMM layer and waits for confirmation. The registration is done
using the routine register_rfcomm that is documented in Section 6.7.2 to carry out this function complete:

#Register with RFCOMM
puts "Register with RFCOMM"
register_rfcomm

Receipt of RFC_REGISTER_CFM within the register_rfcomm confirms registration of RFCOMM has
completed.

6.3.6 Initialise RFCOMM
This state initialises the RFCOMM connection by setting the flow control and type to credit based flow control in
the RFC_INIT_REQ primitive and issues the primitive. The script is

#Initialise RFCOMM
puts "Initialise RFCOMM"
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type $fc_threshold
$fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM

With the introduction of the FCL as documented in Section 3.3 most of the fields in the RFC_INIT_REQ are now
redundant. However, two still have meaning:

1. tx_credits_issue_threshold, this controls how often the chip will issue an FCT i.e., when the
number of unconsumed primitives on-chip passes this threshold, and FCT will be emitted.

2. tx_credits_issue_timer, sets the number of microseconds between checks that the number of
unconsumed primitives on-chip has changed. If this number has changed, an FCT will be emitted
regardless of the setting of tx_credits_issue_threshold.

The state transitions when the receipt of RFC_INIT_CFM to confirm initialisation of RFCOMM has completed.

6.3.7 Register with Device Manager

This state registers with device manager allowing for options such as inquiry, security manager primitives and
specific device manager primitives to be available. The script is:

#Register with Device Manager
puts "Register with Device Manager"
puts "DM phandle: $phandle"
DM_AM_REGISTER_REQ $phandle
DM_AM_REGISTER_CFM

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 44 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

The state transitions when the receipt of DM_AM_REGISTER_CFM to confirm registration of device manager
has completed.

6.3.8 Request RFCOMM Start

This state requests to start RFCOMM with port speed and maximum frame size, it calls the start_request
function that is documented in Section 6.7.1. The script is:

#Request RFCOMM Start
puts "Request RFCOMM Start"
start_request ${sys_pars.port_speed} ${sys_pars.max_frame_size}

The state transitions when the receipt of RFC_START_CFM inside the start_request function confirms that
RFCOMM has started.

6.3.9 RFCOMM Parameter Negotiation

This state is the parameter negotiation state for RFCOMM, here is where the use flow control and the initial
credits are set for the RFCOMM link and the maximum frame size is negotiated for the link. The script is:

#RFCOMM Parameter Negotiation
puts "RFCOMM Parameter Negotiation"
RFC_PARNEG_REQ $mux_id - - $max_frame_size $use_flow_control
$initial_credits
RFC_PARNEG_CFM
puts "Credits: ${dlc_pars.initial_credits}"

The state transitions when the receipt of RFC_PARNEG_CFM occurs to confirm the RFCOMM parameter
negotiation has completed.

6.3.10 RFCOMM Establishment

This state establishes a RFCOMM connection with the remote device identified with a specific mux id, server
channel and remote server channel. The script is:

#RFCOMM Establish
puts "RFCOMM Establish"
RFC_ESTABLISH_REQ $mux_id $loc_server_chan $rem_server_chan
RFC_ESTABLISH_CFM

The state transitions when the receipt of RFC_ESTABLISH_CFM to confirm RFCOMM has occurred. In this
overall system example the RFC_ESTABLISH_CFM is issued once the local device is connected to the remote
device that is in the Connect as Slave outlined in Section 6.4.9.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 45 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.4 Initialisation of the RFCOMM Layer of the Remote Device

The initialisation of the RFCOMM layer for the remote device script is shown in Figure 6.3, the differences
between the initialisation of the local device shown in Figure 6.2 are:

� The transmit buffer is not loaded with messages during the initialisation phase, the buffer is loaded
during the main loop

� The Listen state, enables page scanning so the local device can connect to it

� Output the “Waiting For Connection Message” to indicate that the local device script can be run

� Connect as Slave, sits here until the local device has established a connection with the remote device

Connect to Casira

Initialise Port
Entity Transmit

and Receive
Buffers

Initialise System
Variables

Register with
RFCOMM

Initialise
RFCOMM

Register with
Device Manager

Listen

Output “Waiting
For Connection”

Message

Connect as Slave

To Main Loop

Figure 6.3: Initialisation of the RFCOMM Layer of The Remote Device

In the example script the initialisation of the remote device is in sequence and each state completes before going
onto the next state, at the Connect as Slave state of the initialisation phase the remote device will be waiting to
be connected to the local device. Once the Connect as Slave is exited the remote and local device will have a
RFCOMM connection. If any state is unsuccessful either RFCLI causes the script to stop, or it may pause
indefinitely waiting for a confirmation message. A description of each state of Figure 6.3 is documented in the
Section 6.4.1 to Section 6.4.9.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 46 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.4.1 Connect to Casira

This state is very similar to the local device script for this state as shown in Section 6.3.1. It is responsible for
connecting the RFCLI session running on the PC to the BlueCore device running on the Casira on serial port
COM2. This BlueCore device represents the remote device. This state issues a BC_connect command to
connect to the Casira on serial COM2 at 115Kbaud and the script is shown below:

#Connect to Casira
puts "Connect to Casira"
BC_connect com1 bcsp 115200

This state completes when the BC_connect completes successfully, otherwise the script will end and no
further states are executed.

6.4.2 Initialise Port Entity Transmit and Receive Buffers

For the remote device this state is exactly the same as the local device outlined in Section 6.3.2.

6.4.3 Initialise System Variables

This state Initialises the system variables such as the maximum frame size and initial credits for the remote
device. The script is:

#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set max_frame_size 0x7f
set initial_credits 0x07
set state 1
set taskcompleteflag 0

The state transitions when all variables are set.

6.4.4 Register with RFCOMM

For the remote device this state is exactly the same as the local device outlined in Section 6.3.5.

6.4.5 Initialise RFCOMM

For the remote device this state is exactly the same as the local device outlined in Section 6.3.6.

6.4.6 Register with Device Manager

For the remote device this state is exactly the same as the local device outlined in Section 6.3.7.

6.4.7 Listen

This state makes a call to the library command listen that enables the inquiry scan and page scan so that
remote device is discoverable and connectable. The script is:

#Listen
listen

The state transitions once all scanning is turned on.

6.4.8 Output “Waiting For Connection” Message

This state displays a “Waiting For Connection” Message output to indicate that remote device is waiting for local
device to establish a connection. The script is;

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 47 of 77

#Output Waiting For Connection Message
puts "Waiting For Connection Message"

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

The state transitions once the message is displayed.

6.4.9 Connect as Slave

This state calls the library command rfc_connect_slv, which waits for a RFCOMM connection to be
established from the local device. The script is:

#Connect as Remote
rfc_connect_slv
#Wait for an incoming data primitive
puts "Connection made, starting transfer"

Whilst the remote device is in the Connect as Slave state it will not transition out of this state until the receipt of
the RFC_STARTCMP_IND within the rfc_connect_slv library function. The RFC_STARTCMP_IND will be
issued once the local device has completed the RFCOMM Establish state described in Section 6.3.10. At the end
of the Connect as Slave state the RFCOMM link is complete.

6.5 Main Loop and State Machine

Once the local device has completed its initialisation phase and is connected to the remote device it then enters
the main loop and transitions through the states outlined in Figure 6.4. At the heart of the script is essentially a
small state machine that has five main states, which are:

1. State 0, all tasks are complete and the script is complete

2. State 1, steady state

3. State 2, the transmit buffer is checked and packets are sent

4. State 3, packets are received

5. State 4, received packets are processed

As shown in Figure 6.4 states 2 and 3 both transition through the Flow Control Layer, in RFCLI the Flow Control
Layer is just a simple switch to pass control either to the transmitter or receiver functions. This is due to the fact
that RFCLI handles the Flow Control Layer of the credit based flow control function. In application note Accessing
RFCOMM using BCSP/µBCSP the Flow Control Layer is more complex when implemented with BCSP/µBCSP,
and this needs to be explicitly written. The Flow Control Layer block is drawn Figure 6.4 so that this state
transition diagram applies to both this example that uses RFCLI and the one that uses BCSP/µBCSP.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 48 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Main Loop

Check Transmit
Buffer for Packets

to Transmit

YES

TX

NO

State > 0

Flow Control
Layer

Check State

State = 2

State = 3

Check Receiver
Buffer for Space

YES

RX

Initialisation of
RFCOMM Layer

Check for Packet
in Receiver Buffer

State = 4
_______ NO

Process Next
Received Packet
in Receiver Buffer

YES

RX

State = 4

State = 1
NO

State = 4

TX

State = 3

Steady State

State = 1

State = 1

Figure 6.4: Main Control Loop

Table 6.1 describes the various states within the main control loop outlined by Figure 6.4 and highlights what
causes the transition between the states and which state it goes onto. The ideal behind the main control loop is
to:

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 49 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

1. Transition between state 1, 2, 3 and 4 in sequence whilst there is packets to transmit, packets to receive
or received packets to process.

2. The packets stored within the transmit buffer have simple commands that the remote device must
respond to, these commands are:

� 1, this causes the remote device to carry out a read of its own Bluetooth address and respond
with 1 and the Bluetooth address to the local device

� 2, this causes the remote device to carry out a read of its own local name and respond with a 2
plus the local name to the local device

� 3, this causes the remote device to change its own local name to the name supplied to the
local device and will then reply with 3 and the new name

� 0, this causes the remote device to stop responding to messages as the task is complete, the
remote device will then respond with 0 to signify completion

3. Once all packets are transmitted, received and processed the state is set to 0 and the main control is
exited and the example is complete.

State Description Cause of State
Transition

Next State

Main Loop The start of the main
control loop

State >0 Check State

Check State Checks the state value to
see whether needs to
transmit, receive or
process a packet

State > 0 If state = 2 then Check
Transmit Buffer for
Packets to Transmit
If state = 3 then Check
Receiver Buffer for Space
If state = 4 then Check for
Packet in Receiver Buffer

Check Transmit Buffer for
Packets to Transmit

See if there are any
packets to transmit to the
remote device

No packets or packets to
transmit

No packets, return to
Main Loop
Packets, transition to
Flow Control Layer

Flow Control Layer Decides to call the actual
RFCOMM data
transmission or reception
procedures depending on
whether it receives a TX
for transmit or RX for
receive

Data transmitted or
received

Return to Main Loop

Check Receiver Buffer for
Space

Does not allow data to be
received if space is not
available in the receive
buffer.

Either space available in
receive buffer or not

No space, return to Main
Loop
Space, transition to Flow
Control Layer

Check for Packet in
Receiver Buffer

Examines the receiver
buffer to see if there are
packets to be processed

No receive packet
available, or a receive
packet to be processed

No packet, return to Main
Loop.
Packet available,
transition to Process Next
Received Packet in
Receiver Buffer

Process Next Received
Packet in Receiver Buffer

Process and respond to
the next packet in the
receive buffer.

Receive packet has been
processed

Return to Main Loop

Table 6.1: Main Control Loop State Transitions

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 50 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

The general structure of the main loop and state machine of the remote device is similar to the local device script
shown in Figure 6.4. The script for the Main control loop itself in master device is:

#Main Loop
puts "Main Loop"
while {$state} {
 checkstate
}
puts "All Done"
puts "Number of Transmitted Packets = $tx_buffer(transmitted)"
puts "Number of Received Packets = $rx_buffer(received)"

The differences in the script of the remote device compared to the local device are as follows:

� The Process Next Received Packet in Receiver Buffer state has a different functionality to the local
device it responds to the commands listed in Section 6.5.

� The transmit buffer is loaded with individual packets during the Process Next Received Packet in
Receiver Buffer state and not during the initialisation phase

� The Main Loop is slightly different to the local device, the reason for this is that it needs to signal to the
local device when it has received the last task complete message. The script is:
#Main Loop
puts "Main Loop"
while {$state} {
 if {$taskcompleteflag} {
 #Flush Transmit buffer to tell the Local to finish
 set state 2
 checkstate
 set state 0
 } else {
 checkstate
 }
}
puts "All Done"
puts "Number of Transmitted Packets = $tx_buffer(transmitted)"
puts "Number of Received Packets = $rx_buffer(received)"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 51 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.6 Main Loop Functions

The subsections within this section are here to describe how significant functions found in the local device and
remote device scripts operate. Some of the functions within the local device and remote device are common to
both and these are highlighted and compared within the individual functions, which may be unique to either the
local device or the remote device but not both. All the functions that are examined primarily make up the calls
from the main loop, some of the scripts of the initialisation phase are included.

These two functions are the same in both the local device and the remote device scripts, they can be described
together as the Main Loop simply calls the Check State routine if the state is non zero. If the state is zero then the
Main Loop finishes and displays the message “All Done”.

The Check State routine is the state machine that is described in Section 6.5 and calls the appropriate function
depending on the state reached. The Check State function script is:

#Check State
proc checkstate {} {
 global state
 switch $state {
 0 {puts "Task Complete"}
 1 {steadystate}
 2 {if {[checkpetxbuffer]} {flowcontrollayer 0}}
 3 {if {[receiverspace]} {flowcontrollayer 1}}
 4 {if {[checkperxbuffer]} {processrx}}
 default {puts "Unknown State"}
 }
 incr state
 #Check to see if we have done all processing
 if {$state == 5} {
 if {[checkpetxbuffer] || [checkperxbuffer]} {
 set state 1
 } else {
 set state 0
 }
 }
}

The initial part of the function is a C type switch statement that has the states of the state machine as its options.
Depending on the state the switch calls the appropriate task. In the case of when the state is 2 a check of the
transmit buffer for packets is done. If there are packets then the flow control layer is called with a parameter of
value 0 passed to it, this value 0 represents the TX parameter in Figure 6.4. In the case of when the state is 3 a
check of the receive buffer for space is done and if there is space then the flow control layer is called with a
parameter of value 1 passed to it, this value 1 represents the RX parameter in Figure 6.4.

After the switch statement the state is incremented to the next state and the boundaries of the new state are
checked. If the last state has been reached, then there is a check of the transmitter and receiver buffers to see if
there are any more packets that need to be transmitted or processed. If there are, then the next state is set to 1
and the state machine carries on, otherwise the state is set to 0 and this causes the main loop to finish.

The steadystate function that is called in this example has no real functionality. The state that accompanies
this function has been added so that if required the addition of a sleep mode can be added at this point. The use
of this state becomes more apparent when you use the µBCSP engine.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 52 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.6.1 Check Transmit Buffer for Packets to Transmit

The script below is the state for Check Transmit Buffer for Packets to Transmit in Figure 6.4 in the local device
and remote device and checks to see whether there are packets in the transmit buffer to transmit. All the function
does is return the number packets in the buffer:

#Check Transmit Buffer for Packets to Transmit
proc checkpetxbuffer {} {
 global tx_buffer
 if {$tx_buffer(noofpackets) > 0x00} {
 puts "Port Entity has $tx_buffer(noofpackets) packet(s) to transmit"
 set pckcount $tx_buffer(noofpackets)
 } else {
 puts "Port Entity has no packets to transmit"
 set pckcount 0x00
 }
 return $pckcount
}

6.6.2 Check Receiver Buffer for Space

A simple script that returns a 1 if there is space in the receiver buffer to receive a packet or returns 0 if no space
is available. The script in the local device and remote device is :

#Check Receiver Buffer for Space
proc receiverspace {} {
 global rx_buffer
 if {$rx_buffer(noofpackets) < $rx_buffer(buffersize)} {
 return 1
 } else {
 return 0
 }
}

6.6.3 Check for Packet in Receiver Buffer

A simple script that examines if there are packets within the receiver buffer, used to see whether there are
packets to be processed. The script for the local device is:

#Check For Packet in Receiver Buffer
proc checkperxbuffer {} {
 global rx_buffer
 if {$rx_buffer(noofpackets) > 0x00} {
 puts "Port Entity has received $rx_buffer(noofpackets) packet(s)"
 set pckcount $rx_buffer(noofpackets)
 } else {
 puts "Port Entity has no receive packets"
 set pckcount 0x00
 }
 return $pckcount
}

6.6.4 Flow Control Layer

As RFCLI controls the flow control layer described in Section 3.3 then the Flow Control Layer state in Figure 6.4
is a relatively simple script in the local and remote devices its as follows:

#Flow Control Layer
proc flowcontrollayer {fclstate} {
 global state
 switch $fclstate {
 0 {transmittx}
 1 {receiverx}
 default {puts "Unknown FCL State"}
 }

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 53 of 77

}

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

This function calls the function to transmit or receive a packet depending on whether it had a parameter of TX or
RX passed into it. The Flow Control Layer function is here primarily to allow the same state transition diagram
Figure 6.4 to be used for the example based on RFCLI as well as BCSP/µBCSP. In the latter example the Flow
Control Layer becomes more complex.

6.6.5 Process Next Received Packet in Receiver Buffer

This function sets a pointer to the top of the receiver buffer and loads the contents of packet into result, it then
re-adjusts the buffer by decrementing the number of received packets, moving the pointer to point at the next
message and wrapping the pointers if the bottom of the buffer is reached. Once the result is loaded the first
character of the message payload is stripped off to get at the command. The command will cause the function to
carry out 1 of for tasks:

� Indicate that data transfer has been completed

� Call the Read Bluetooth Address Message outlined in Section 6.7.5

� Call the Read Local Name Message outlined in Section 1.1.1

� Call the Change Local Name Message outlined in Section 1.1.1

The local device and remote device script are as follows:

#Process Next Received Packet in Receiver Buffer
proc processrx {} {
 global rx_buffer
 puts "Process receive buffer"
 #Get the Next Received packet to process
 set rxptr $rx_buffer(topptr)
 #Decrement the number of packets
 incr rx_buffer(noofpackets) -1
 #Increment the top of rx buffer pointer
 incr rx_buffer(topptr)
 #Check if top pointer needs to wrap around
 if {$rx_buffer(topptr) == $rx_buffer(buffersize)} {
 set rx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both rx buffer pointers
 if {$rx_buffer(noofpackets) == 0} {
 set rx_buffer(topptr) 0
 set rx_buffer(bottomptr) 0
 }
 set result $rx_buffer($rxptr)
 puts "Payload: [lindex $result 5]"
 set firstchar [lindex [lindex $result 5] 0]
 puts "First character of payload $firstchar"
 switch $firstchar {
 0x00 {puts "Data transfer complete"}
 0x01 {readbdaddr [lindex $result 5]}
 0x02 {readlocalname [lindex $result 5] [lindex $result 4]}
 0x03 {changelocalname [lindex $result 5] [lindex $result 4]}
 }
}

6.6.6 Steady State

At present the example script for the Steady Sate for the local and remote device does nothing but is available as
a hook if functionality at a later date is required. Added functionality may include sleep modes.

6.7 Other Functions

This section documents functions or useful sections of TCL script that do not appear on the Main Control Loop
diagram in Figure 6.4. The reason they may not appear is that either they are internal to a state in the Main
Control Loop or they are part of the initialisation phase for the local or remote device.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 54 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.1 Start Request

This state initialises a logical connection between devices with suggested parameters for the port speed and the
maximum frame size of a RFCOMM packet. In the example port speed is set to 0xff, which means that this
parameter is unused and the maximum frame size is left as the default size of 127bytes. The script for both the
local and remote device is:

#Start Request
proc start_request {port_speed max_frame_size} {
 global result_code connectionAttempts
 global psm_remote respond_phandle
 #Start Request
 puts "RFC START Request"
 set ps $port_speed
 set fs $max_frame_size
 for {set c 1} {$c < $connectionAttempts} {incr c} {
 puts "Attempt: $c"
 set port_speed $ps
 set max_frame_size $fs
 RFC_START_REQ - - - $psm_remote $port_speed $max_frame_size
$respond_phandle
 RFC_START_CFM
 #If result_code is not success we need to wait
 while {$result_code == 1} {
 RFC_START_CFM
 }
 puts "result_code: $result_code"
 if {$result_code != 6} {return $result_code}
 }
 return $result_code
}

The state will not transition until a RFC_START_CFM has been received and the result_code that is
received with the RFC_START_CFM primitive is not RFC_CONNECTION_PENDING (which in this script is
equivalent to result_code equal to 1). This state will eventually return the result_code that is received
with the RFC_START_CFM primitive, which indicates whether the request has been successful i.e. when the
return value is zero, or it has failed i.e. any value greater than one. If there is a failure the return value represents
a reason code that can be found in the Section 4.4.3 in the BlueStack User Manual.

6.7.2 Register RFCOMM

This state allows the port entity to register a protocol handle (phandle) with RFCOMM. The registered phandle is
used to signal to the port entity the arrival of RFC_ESTABLISH_IND message on the given server channel, see
Section 6.3.10 for details on the RFC_ESTABLISH_IND. The script for the local and remote device is:

#Register RFCOMM
proc register_rfcomm {} {
 global phandle server_chan accept
 set state 0x00
 while {$state == 0} {
 #Register with RFCOMM
 puts "Register with RFCOMM"
 RFC_REGISTER_REQ $phandle
 RFC_REGISTER_CFM
 puts "Server Channel: $server_chan"
 puts "Accept : $accept"
 puts "phandle : $phandle"
 if {$accept == 1} {
 puts "RFCOMM Registration Accepted"
 incr state +1
 } else {
 puts "RFCOMM Registration NOT Accepted"
 }
 }
}

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 55 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

The state transition occurs once RFC_REGISTER_CFM is received. A check on the accept variable may be
required but at this stage this is not included.

6.7.3 Receive RFCOMM Data

This routine is found within the Flow Control Layer state and received data on the RFCOMM channel is stored as
a packet in the receiver buffer, the script for the local device and the remote device is as follows:

#Receive RFCOMM Data
proc receiverx {} {
 global rx_buffer
 global credits
 puts "Wait to receive data"
 set result [RFC_DATA_IND]
 puts "Credits $credits"
 puts "result $result"
 if {$rx_buffer(noofpackets)} {
 incr rx_buffer(bottomptr)
 }
 set rxptr $rx_buffer($bottomptr)
 set rx_buffer($rxptr) $result
 #Increment number of received packets
 incr rx_buffer(noofpackets)
 #Check for bottom pointer needs to wrap around
 if {$rx_buffer(bottomptr) == $rx_buffer(buffersize)} {
 set rx_buffer(bottomptr) 0
 }
}

The initial part of the function waits for the data to arrive and stores it in result. The contents of result are
then placed in the next free slot in the receive buffer. The number of received packets is incremented, the
pointers modified and pointers wrapped around as required.

6.7.4 Transmit RFCOMM Data

This routine is found within the Flow Control Layer state and transmits data of the next packet from the top of the
transmit buffer along the RFCOMM channel, the script for the local device and the remote device is as follows:

#Transmit RFCOMM Data
proc transmittx {} {
 global tx_buffer
 puts "Transmit RFCOMM"
 set txptr $tx_buffer(topptr)
 RFC_DATA_REQ - - - ? $tx_buffer($txptr)
 #Decrement the number of packets
 incr tx_buffer(noofpackets) -1
 #Increment the top of tx buffer pointer
 incr tx_buffer(topptr)
 #Check if top pointer needs to wrap around
 if {$tx_buffer(topptr) == $tx_buffer(buffersize)} {
 set tx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both tx buffer pointers
 if { $tx_buffer(noofpackets) == 0} {
 set tx_buffer(topptr) 0
 set tx_buffer(bottomptr) 0
 }
 incr tx_buffer(transmitted)
}

The initial part of the function takes data from the top of the buffer and is sent out along the RFCOMM channel
with the RFC_DATA_REQ command. The transmit buffer is then re-adjusted to remove this packet by
decrementing the number of transmitted packets, the pointers modified and wrapped around as required.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 56 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.5 Read Bluetooth Address Message

In the local device and remote device script the Read Bluetooth Address Message is internal to the state Process
Next Received Packet in Receiver Buffer as outlined in Section 6.6.5. The actual functions differ slightly between
the local device and the remote device scripts. In the local device the function just strips out the lap, uap and nap
from the data passed to it and formats this to be displayed as a hex number. The local device script is as follows:

#Read Bluetooth Address Message
proc readbdaddr {remotebdaddr} {
 puts "Bluetooth Address:"
 set nap0 [lindex $remotebdaddr 1]
 set nap1 [lindex $remotebdaddr 2]
 set uap [lindex $remotebdaddr 3]
 set lap0 [lindex $remotebdaddr 4]
 set lap1 [lindex $remotebdaddr 5]
 set lap2 [lindex $remotebdaddr 6]
 set nap [expr (($nap0*0x100)+$nap1)]
 set lap [expr (($lap0*0x10000)+($lap1*0x100)+$lap2)]
 puts [format "NAP: 0x%x" $nap]
 puts [format "UAP: 0x%x" $uap]
 puts [format "LAP: 0x%x" $lap]
}

The remote device script for Read Bluetooth Address Message sends a primitive to the device manager that is
the HCI command Read_BD_ADDR command. The script waits for the HCI command to be returned from the
device manager and the complete data returned from this completed message is stored into result. The
Bluetooth lap, uap and nap are then stripped out of result and these are loaded as a response into the
transmit buffer. The remote device script is:

#Read Bluetooth Address Message
proc readbdaddr {} {
 puts "Read Bluetooth Address Message"
 DM_HCI_READ_BD_ADDR
 set result [DM_HCI_READ_BD_ADDR_COMPLETE]
 puts "Bluetooth Address: "
 set lap [lindex $result 2]
 #Create correct number of bytes for lap
 set lap0 [expr $lap/0x10000]
 set laptemp [expr $lap%0x10000]
 set lap1 [expr $laptemp/0x100]
 set lap2 [expr $laptemp%0x100]
 set uap [lindex $result 3]
 set nap [lindex $result 4]
 puts [format "NAP: 0x%x" $nap]
 puts [format "UAP: 0x%x" $uap]
 puts [format "LAP: 0x%x" $lap]
 #Create correct number of bytes for nap
 set nap0 [expr $nap/0x100]
 set nap1 [expr $nap%0x100]
 #Create response character
 set resp 0x01
 #Bind Message together
 set bd "$resp $nap0 $nap1 $uap $lap0 $lap1 $lap2"
 #Put Message in the transmit buffer
 if {[putpktpetxbuffer $bd]} {
 puts "Read Local Bluetooth Address Message failed to load in PE Tx
Buffer"
 }
}

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 57 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.6 Read Local Name Message

In the local device and remote device script the Read Local Name Message is internal to the state Process Next
Received Packet in Receiver Buffer as outlined in Section 6.6.5. The actual functions differ slightly between the
local device and the remote device scripts. In the local device the function just strips out the local name portion
from the data passed to it and formats this to be displayed. The local device script is as follows:

#Read Local Name Message
proc readlocalname {remotename remotenamelength} {
 puts "READ LOCAL NAME"
 puts "Length = [expr $remotenamelength-1]"
 set rln0 [format "%s" $remotename]
 set rln [lreplace $rln0 0 0]
 puts "Local Name ASCII: $rln"
 set fln {}
 foreach el $rln {
 lappend fln [format "%1c" $el]
 }
 puts "Local Name: $fln"
 set lfln [llength $fln]
 puts "Length of Name: $lfln"
}

The remote device script for Read Local Name Message sends a primitive to the device manager that is the HCI
command Read_Local_Name command. The script waits for the HCI command Read_Local_Name_Complete to
be returned from the device manager and the complete data returned from this completed message is stored into
result. The Local name is then stripped out of the out of result and formatted and loaded into the transmit
buffer. The remote device script is:

#Read Local Name Message
proc readlocalname {} {
 puts "Read Local Name Message"
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Local Name: [lindex $result 2]"
 set rln0 0x02
 set rln1 [lindex $result 2]
 set rln2 [split $rln1 {}]
 set strl [llength $rln2]
 for {set c 0} {$c < $strl} {incr c} {
 scan [lindex $rln2 $c] %c rln3
 lappend rln0 $rln3
 }
 if {[putpktpetxbuffer $rln0]} {
 puts "Read Local Name Message failed to load in PE Tx Buffer"
 }
}

Note:
On the RFCLI screen for the local device the local name is displayed formatted as below. This format is due
to the way TCL displays a variable that contains a list of elements. Each character in the local name is an
element of the variable; the spaces are denoted by the curly brackets “{ }“ and the spaces between each
character are shown as an element separator and therefore are not true elements:

Local Name: 2 : { } N a m e { } c h a n g e d { } b y { } R F C L I

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 58 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.7 Change Local Name Message

In the local device and remote device script the Change Local Name Message is internal to the state Process
Next Received Packet in Receiver Buffer as outlined in Section 6.6.5. The actual functions differ slightly between
the local device and the remote device scripts. In the local device the function just strips out the new local name
portion from the data passed to it and formats this to be displayed. The local device script is as follows:

#Change Local Name Message
proc changelocalname {changename changenamelength} {
 puts "CHANGE LOCAL NAME"
 puts "Length = [expr $changenamelength-1]"
 puts "$changename"
 set cln0 [format "%s" $changename]
 set cln [lreplace $cln0 0 0]
 puts "Local Name ASCII: $cln"
 set fln {}
 foreach el $cln {
 lappend fln [format "%1c" $el]
 }
 puts "Local Name: $fln"
 set lfln [llength $fln]
 puts "Length of Name: $lfln"
}

The remote device script for Change Local Name Message sends a primitive to the device manager that is the
HCI command Change_Local_Name command. The new local name supplied to the primitive is taken from the
data supplied by the local device. The script removes the command and the rest of the payload is the new local
name to be used. The script waits for the HCI command Read_Local_Name_Complete to be returned from the
device manager and the complete data returned from this completed message is stored into result. The Local
name is then stripped out of result and formatted and loaded into the transmit buffer. The remote device script
is:

#Change Local Name Message
proc changelocalname {changename changenamelength} {
 set cln [lreplace $changename 0 0]
 set changename $cln
 puts "Change Local Name Message"
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Old Local Name = [lindex $result 2]"
 puts "Requested Name = $changename"
 DM_HCI_CHANGE_LOCAL_NAME $changename
 set result [DM_HCI_CHANGE_LOCAL_NAME_COMPLETE]
 #Read the local name and send back to the master
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Local Name: [lindex $result 2]"
 set rln0 0x03
 set rln1 [lindex $result 2]
 set rln2 [split $rln1 {}]
 set strl [llength $rln2]
 for {set c 0} {$c < $strl} {incr c} {
 scan [lindex $rln2 $c] %c rln3
 lappend rln0 $rln3
 }
 if {[putpktpetxbuffer $rln0]} {
 puts "Change Local Name Message failed to load in PE Tx Buffer"
 }
}

Note:
On the RFCLI screen for the local device the local name is displayed in same format as described Section
6.7.6.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 59 of 77

Example of Accessing RFCOMM Using RFCLI and TCL

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

6.7.8 Load Packet in Transmit Buffer

The Load Packet in Transmit Buffer script is available in the local device and the remote device its function is to
check for free space within the transmit buffer and then load the command packet into the transmit buffer. If
there is no space then an error code of 1 is returned to the calling routine. If there is no error the new packet is
placed at the bottom of the queue inside the buffer, number of packets is incremented and the pointers are
adjusted and wrapped if necessary. The script is:

#Load Packet in Tranmit Buffer
proc putpktpetxbuffer {petxpacket} {
 global tx_buffer
 #Check for space in the buffer
 if {$tx_buffer(noofpackets) < $tx_buffer(buffersize)} {
 set errcode 0x00
 #Put tx packet at bottom of the tx buffer
 set bptr $tx_buffer(bottomptr)
 set tx_buffer($bptr) $petxpacket
 #Calculate Next available position in tx buffer
 incr tx_buffer(noofpackets)
 incr tx_buffer(bottomptr)
 #Check if bottom pointer needs to wrap around
 if {$tx_buffer(bottomptr) == $tx_buffer(buffersize)} {
 set tx_buffer(bottomptr) 0x00
 }
 } else {
 set errcode 0x01
 }
 return $errcode
}

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 60 of 77

Document References

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

7 Document References
Document: Reference, Date:

Bluetooth Specification - Core V1.1, v1.1, 22 February 2001
BlueStack User Manual C6066-UM-001, v1.6
RFCLI User Manual bcore-ug-003Pa, a, September 2002
Bluetooth Connect Without Cables – Jennifer
Bray and Charles F Sturman ISBN 0-13-089840-6, Prentice Hall PTR, 2001

Tcl and the Tk Toolkit – John K Ousterhout ISBN 0-201-63337-X, Addison-Wesley, 1994
RFCOMM Packing Rules Application Note bcore-an-004Pa, a, August 2002
Frontline Sniffer Quick Start User Guide bcore-ug-004Pa, a, September 2002

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 61 of 77

Appendix A

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

A1

Appendix A RFCLI Section 5 Example Script Source Files
RFCLI Source Script file for exampleslave.tcl

#Slave script
#Connect to Casira
puts "Connect to Casira"
BC_connect com2 bcsp 115200
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set max_frame_size 0x7f
set initial_credits 0x07
#Register with RFCOMM
puts "Register with RFCOMM"
RFC_REGISTER_REQ $phandle
RFC_REGISTER_CFM
#Initialize RFCOMM
puts "Initialise RFCOMM"
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type $fc_threshold
$fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM
#Register with Device Manager
puts "Register with Device Manager"
DM_AM_REGISTER_REQ $phandle
DM_AM_REGISTER_CFM
#Enabling page scanning so that the Master can connect to us
DM_HCI_WRITE_PAGESCAN_ACTIVITY 0x800 0x700
DM_HCI_WRITE_PAGESCAN_ACTIVITY_COMPLETE
DM_HCI_WRITE_SCAN_ENABLE 3
DM_HCI_WRITE_SCAN_ENABLE_COMPLETE
#Wait for a connection and respond appropriately
puts "Waiting for a connection"
RFC_START_IND
RFC_START_RES
RFC_START_IND
RFC_START_RES
RFC_STARTCMP_IND
RFC_PARNEG_IND
RFC_PARNEG_RES
RFC_ESTABLISH_IND
RFC_ESTABLISH_RES
#Wait for an incoming data primitive
puts "Connection made, starting transfer"
set result [RFC_DATA_IND]
#Wait for another incoming data primitive
puts "Received payload: [lindex $result 5]"
set result [RFC_DATA_IND]
puts "Received payload: [lindex $result 5]"
puts "All done"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 62 of 77

Appendix A

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

A2 RFCLI Source Script file for examplemaster.tcl
#Master script
#Connect to Casira
puts "Connect to Casira"
BC_connect com1 bcsp 115200
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set bd_addr.lap 0x10e46
set bd_addr.uap 0x5b
set bd_addr.nap 0x02
set max_frame_size 0x7f
set initial_credits 0x07
#Register with RFCOMM
puts "Register with RFCOMM"
RFC_REGISTER_REQ $phandle
RFC_REGISTER_CFM
#Initialize RFCOMM
puts "Initialise RFCOMM"
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type $fc_threshold
$fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM
#Register with Device Manager
puts "Register with Device Manager"
DM_AM_REGISTER_REQ $phandle
DM_AM_REGISTER_CFM
#Request RFCOMM Start
puts "Request RFCOMM Start"
RFC_START_REQ - - - $psm_remote ${sys_pars.port_speed}
${sys_pars.max_frame_size} $respond_phandle
RFC_START_CFM
#If result_code is not success we need to wait
while {$result_code == 1} {
 RFC_START_CFM
}
#RFCOMM Parameter Negotiation
puts "RFCOMM Parameter Negotiation"
RFC_PARNEG_REQ $mux_id - - $max_frame_size $use_flow_control
$initial_credits
RFC_PARNEG_CFM
puts "Credits: ${dlc_pars.initial_credits}"
#RFCOMM Establish
puts "RFCOMM Establish"
RFC_ESTABLISH_REQ $mux_id $loc_server_chan $rem_server_chan
RFC_ESTABLISH_CFM
#Send a data primitive
puts "Connection made, starting transfer"
RFC_DATA_REQ - - 0 ? {1 2 3 4 5 6 7 8 9}
#Send another primitive
RFC_DATA_REQ - - 0 ? {"Hello World"}
puts "All done"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 63 of 77

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

B1

Appendix B RFCLI Section 6 Example Script Source Files
Local Device Script File

#Local Script

proc start_request {port_speed max_frame_size} {
 global result_code connectionAttempts
 global psm_remote respond_phandle
 #Start Request
 puts "RFC START Request"
 set ps $port_speed
 set fs $max_frame_size
 for {set c 1} {$c < $connectionAttempts} {incr c} {
 puts "Attempt: $c"
 set port_speed $ps
 set max_frame_size $fs
 RFC_START_REQ - - - $psm_remote $port_speed $max_frame_size
$respond_phandle
 RFC_START_CFM
 #If result_code is not success we need to wait
 while {$result_code == 1} {
 RFC_START_CFM
 }
 puts "result_code: $result_code"
 if {$result_code != 6} {return $result_code}
 }
 return $result_code
}

proc register_rfcomm {} {
 global phandle server_chan accept
 set state 0x00
 while {$state == 0} {
 #Register with RFCOMM
 puts "Register with RFCOMM"
 RFC_REGISTER_REQ $phandle
 RFC_REGISTER_CFM
 puts "Server Channel: $server_chan"
 puts "Accept : $accept"
 puts "phandle : $phandle"
 if {$accept == 1} {
 puts "DM Registration Accepted"
 incr state +1
 } else {
 puts "DM Registration NOT Accepted"
 }
 }
}

#Check Transmit Buffer for Packets to Transmit
proc checkpetxbuffer {} {
 global tx_buffer
 puts "Check Transmit Buffer for Packets to Transmit"
 if {$tx_buffer(noofpackets) > 0x00} {
 puts "Port Entity has $tx_buffer(noofpackets) packet(s) to transmit"
 set pckcount $tx_buffer(noofpackets)
 } else {
 puts "Port Entity has no packets to transmit"
 set pckcount 0x00
 }
 return $pckcount
}

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 64 of 77

#Check For Packet in Receiver Buffer

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

proc checkperxbuffer {} {
 global rx_buffer
 if {$rx_buffer(noofpackets) > 0x00} {
puts "Port Entity has received $rx_buffer(noofpackets) packet(s)"
 set pckcount $rx_buffer(noofpackets)
 } else {
 puts "Port Entity has no receive packets"
 set pckcount 0x00
 }
 return $pckcount
}

#Load Packet in Tranmit Buffer
proc putpktpetxbuffer {petxpacket} {
 global tx_buffer
 #Check for space in the buffer
 if {$tx_buffer(noofpackets) < $tx_buffer(buffersize)} {
 set errcode 0x00
 #Put tx packet at bottom of the tx buffer
 set bptr $tx_buffer(bottomptr)
 set tx_buffer($bptr) $petxpacket
 #Calculate Next available position in tx buffer
 incr tx_buffer(noofpackets)
 incr tx_buffer(bottomptr)
 #Check if bottom pointer needs to wrap around
 if {$tx_buffer(bottomptr) == $tx_buffer(buffersize)} {
 set tx_buffer(bottomptr) 0x00
 }
 } else {
 set errcode 0x01
 }
 return $errcode
}

#Transmit RFCOMM Data
proc transmittx {} {
 global tx_buffer
 puts "Transmit RFCOMM"
 set txptr $tx_buffer(topptr)
 RFC_DATA_REQ - - - ? $tx_buffer($txptr)
 #Decrement the number of packets
 incr tx_buffer(noofpackets) -1
 #Increment the top of tx buffer pointer
 incr tx_buffer(topptr)
 #Check if top pointer needs to wrap around
 if {$tx_buffer(topptr) == $tx_buffer(buffersize)} {
 set tx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both tx buffer pointers
 if { $tx_buffer(noofpackets) == 0} {
 set tx_buffer(topptr) 0
 set tx_buffer(bottomptr) 0
 }
 incr tx_buffer(transmitted)
}

#Receive RFCOMM Data
proc receiverx {} {
 global rx_buffer
 global credits
 puts "Wait to receive data"
 set result [RFC_DATA_IND]
 puts "Credits $credits"
 if {$rx_buffer(noofpackets)} {
 incr rx_buffer(bottomptr)
 }

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 65 of 77

 set rxptr $rx_buffer(bottomptr)
 set rx_buffer($rxptr) $result

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

 #Increment number of received packets
 incr rx_buffer(noofpackets)
 #Check for bottom pointer needs to wrap around
 if {$rx_buffer(bottomptr) == $rx_buffer(buffersize)} {
 set rx_buffer(bottomptr) 0
 }
 incr rx_buffer(received)
}

#Flow Control Layer
proc flowcontrollayer {fclstate} {
 global state
 switch $fclstate {
 0 {transmittx}
 1 {receiverx}
 default {puts "Unknown FCL State"}
 }
}

#Read Bluetooth Address Message
proc readbdaddr {remotebdaddr} {
 puts "Bluetooth Address:"
 set nap0 [lindex $remotebdaddr 1]
 set nap1 [lindex $remotebdaddr 2]
 set uap [lindex $remotebdaddr 3]
 set lap0 [lindex $remotebdaddr 4]
 set lap1 [lindex $remotebdaddr 5]
 set lap2 [lindex $remotebdaddr 6]
 set nap [expr (($nap0*0x100)+$nap1)]
 set lap [expr (($lap0*0x10000)+($lap1*0x100)+$lap2)]
 puts [format "NAP: 0x%x" $nap]
 puts [format "UAP: 0x%x" $uap]
 puts [format "LAP: 0x%x" $lap]
}

#Read Local Name Message
proc readlocalname {remotename remotenamelength} {
 puts "READ LOCAL NAME"
 puts "Length = [expr $remotenamelength-1]"
 set rln0 [format "%s" $remotename]
 set rln [lreplace $rln0 0 0]
 puts "Local Name ASCII: $rln"
 set fln {}
 foreach el $rln {
 lappend fln [format "%1c" $el]
 }
 puts "Local Name: $fln"
 set lfln [llength $fln]
 puts "Length of Name: $lfln"
}

#Change Local Name Message
proc changelocalname {changename changenamelength} {
 puts "CHANGE LOCAL NAME"
 puts "Length = [expr $changenamelength-1]"
 puts "$changename"
 set cln0 [format "%s" $changename]
 set cln [lreplace $cln0 0 0]
 puts "Local Name ASCII: $cln"
 set fln {}
 foreach el $cln {
 lappend fln [format "%1c" $el]
 }
 puts "Local Name: $fln"
 set lfln [llength $fln]
 puts "Length of Name: $lfln"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 66 of 77

}

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

#Process Next Received Packet in Receiver Buffer
proc processrx {} {
 global rx_buffer
 puts "Process receive buffer"
 #Get the Next Received packet to process
 set rxptr $rx_buffer(topptr)
 #Decrement the number of packets
 incr rx_buffer(noofpackets) -1
 #Increment the top of rx buffer pointer
 incr rx_buffer(topptr)
 #Check if top pointer needs to wrap around
 if {$rx_buffer(topptr) == $rx_buffer(buffersize)} {
 set rx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both rx buffer pointers
 if {$rx_buffer(noofpackets) == 0} {
 set rx_buffer(topptr) 0
 set rx_buffer(bottomptr) 0
 }
 set result $rx_buffer($rxptr)
 puts "Payload: [lindex $result 5]"
 set firstchar [lindex [lindex $result 5] 0]
 puts "First character of payload $firstchar"
 switch $firstchar {
 0x00 {puts "Data transfer complete"}
 0x01 {readbdaddr [lindex $result 5]}
 0x02 {readlocalname [lindex $result 5] [lindex $result 4]}
 0x03 {changelocalname [lindex $result 5] [lindex $result 4]}
 }
}

proc steadystate {} {
 puts "Steady State"
}

#Check Receiver Buffer for Space
proc receiverspace {} {
 global rx_buffer
 if {$rx_buffer(noofpackets) < $rx_buffer(buffersize)} {
 return 1
 } else {
 return 0
 }
}

#Check State
proc checkstate {} {
 global state
 switch $state {
 0 {puts "Task Complete"}
 1 {steadystate}
 2 {if {[checkpetxbuffer]} {flowcontrollayer 0}}
 3 {if {[receiverspace]} {flowcontrollayer 1}}
 4 {if {[checkperxbuffer]} {processrx}}
 default {puts "Unknown State"}
 }
 incr state
 #Check to see if we have done all processing
 if {$state == 5} {
 if {[checkpetxbuffer] || [checkperxbuffer]} {
 set state 1
 } else {
 set state 0
 }
 }
}

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 67 of 77

#Connect to Casira

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

puts "Connect to Casira"
BC_connect com1 bcsp 115200
#Initialise Port Entity Transmit Buffer
puts "Initialise Port Entity Transmit Buffer"
set tx_buffer(noofpackets) 0
set tx_buffer(txcredits) 0
set tx_buffer(pointer) 0
set tx_buffer(buffersize) 10
set tx_buffer(topptr) 0
set tx_buffer(bottomptr) 0
set tx_buffer(transmitted) 0
for {set cnt 0} {$cnt < $tx_buffer(buffersize)} {incr cnt} {
 set tx_buffer($cnt) 0xc0ffee
}
#Initialise Port Entity Receive Buffer
puts "Initialise Port Entity Receive Buffer"
set rx_buffer(noofpackets) 0
set rx_buffer(txcredits) 0
set rx_buffer(pointer) 0
set rx_buffer(topptr) 0
set rx_buffer(bottomptr) 0
set rx_buffer(buffersize) 10
set rx_buffer(received) 0
for {set cnt 0} {$cnt < $rx_buffer(buffersize)} {incr cnt} {
 set rx_buffer($cnt) 0xc0ffee
}
#Put Messages in Transmit Buffer
puts "Put Messages in Transmit Buffer"
for {set cnt 0} {$cnt < $tx_buffer(buffersize)} {incr cnt} {
 switch $cnt {
 0 {set txmsg {1}}
 1 {set txmsg {2}}
 2 {set txmsg {3 "1: Name changed by RFCLI"}}
 3 {set txmsg {1}}
 4 {set txmsg {2}}
 5 {set txmsg {3 "2: Name changed by RFCLI"}}
 6 {set txmsg {1}}
 7 {set txmsg {2}}
 8 {set txmsg {3 "3: Name changed by RFCLI"}}
 9 {set txmsg {0}}
 default {set txmsg {0}}
 }
 if {[putpktpetxbuffer $txmsg]} {
 puts "Message failed to load in PE Tx Buffer"
 }
}
#printtxbuffer
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set bd_addr.lap 0x10e46
set bd_addr.uap 0x5b
set bd_addr.nap 0x02
set max_frame_size 0x7f
set initial_credits 0x07
puts "Connection Attempts: $connectionAttempts"
#Register with RFCOMM
puts "Register with RFCOMM"
register_rfcomm
#Initialise RFCOMM
puts "Initialise RFCOMM"
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type $fc_threshold
$fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM
#Register with Device Manager
puts "Register with Device Manager"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 68 of 77

puts "DM phandle: $phandle"
DM_AM_REGISTER_REQ $phandle

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

B2

DM_AM_REGISTER_CFM
#Request RFCOMM Start
puts "Request RFCOMM Start"
start_request ${sys_pars.port_speed} ${sys_pars.max_frame_size}
#RFCOMM Parameter Negotiation
puts "RFCOMM Parameter Negotiation"
RFC_PARNEG_REQ $mux_id - - $max_frame_size $use_flow_control
$initial_credits
RFC_PARNEG_CFM
puts "Credits: ${dlc_pars.initial_credits}"
#RFCOMM Establish
puts "RFCOMM Establish"
RFC_ESTABLISH_REQ $mux_id $loc_server_chan $rem_server_chan
RFC_ESTABLISH_CFM
set state 1
#Main Loop
puts "Main Loop"
while {$state} {
 checkstate
}
puts "All Done"
puts "Number of Transmitted Packets = $tx_buffer(transmitted)"
puts "Number of Received Packets = $rx_buffer(received)"

Remote Device Script File

#Remote script

proc start_request {port_speed max_frame_size} {
 global result_code connectionAttempts
 global psm_remote respond_phandle
 #Start Request
 puts "RFC START Request"
 set ps $port_speed
 set fs $max_frame_size
 for {set c 1} {$c < $connectionAttempts} {incr c} {
 puts "Attempt: $c"
 set port_speed $ps
 set max_frame_size $fs
 RFC_START_REQ - - - $psm_remote $port_speed $max_frame_size
$respond_phandle
 RFC_START_CFM
 #If result_code is not success we need to wait
 while {$result_code == 1} {
 RFC_START_CFM
 }
 puts "result_code: $result_code"
 if {$result_code != 6} {return $result_code}
 }
 return $result_code
}

proc register_rfcomm {} {
 global phandle server_chan accept
 set state 0x00
 while {$state == 0} {
 #Register with RFCOMM
 puts "Register with RFCOMM"
 RFC_REGISTER_REQ $phandle
 RFC_REGISTER_CFM
 puts "Server Channel: $server_chan"
 puts "Accept : $accept"
 puts "phandle : $phandle"
 if {$accept == 1} {
 puts "RFCOMM Registration Accepted"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 69 of 77

 incr state +1

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

 } else {
 puts "RFCOMM Registration NOT Accepted"
 }
 }
}

#Check Transmit Buffer for Packets to Transmit
proc checkpetxbuffer {} {
 global tx_buffer
 puts "Check Transmit Buffer for Packets to Transmit"
 if {$tx_buffer(noofpackets) > 0x00} {
 puts "Port Entity has $tx_buffer(noofpackets) packet(s) to transmit"
 set pckcount $tx_buffer(noofpackets)
 } else {
 puts "Port Entity has no packets to transmit"
 set pckcount 0x00
 }
 return $pckcount
}

#Check For Packet in Receiver Buffer
proc checkperxbuffer {} {
 global rx_buffer
 puts "Check For Packet in Receiver Buffer"
 if {$rx_buffer(noofpackets) > 0x00} {
 puts "Port Entity has received $rx_buffer(noofpackets) packet(s)"
 set pckcount $rx_buffer(noofpackets)
 } else {
 puts "Port Entity has no receive packets"
 set pckcount 0x00
 }
 return $pckcount
}

#Load Packet in Tranmit Buffer
proc putpktpetxbuffer {petxpacket} {
 global tx_buffer
 puts "Load Packet in Tranmit Buffer"
 #Check for space in the buffer
 if {$tx_buffer(noofpackets) < $tx_buffer(buffersize)} {
 set errcode 0x00
 #Put tx packet at bottom of the tx buffer
 set bptr $tx_buffer(bottomptr)
 set tx_buffer($bptr) $petxpacket
 #Calculate Next available position in tx buffer
 incr tx_buffer(noofpackets)
 incr tx_buffer(bottomptr)
 #Check if bottom pointer needs to wrap around
 if {$tx_buffer(bottomptr) == $tx_buffer(buffersize)} {
 set tx_buffer(bottomptr) 0x00
 }
 } else {
 set errcode 0x01
 }
 return $errcode
}

#Transmit RFCOMM Data
proc transmittx {} {
 global tx_buffer
 puts "Transmit RFCOMM Data"
 set txptr $tx_buffer(topptr)
 RFC_DATA_REQ - - - ? $tx_buffer($txptr)
 #Decrement the number of packets
 incr tx_buffer(noofpackets) -1
 #Increment the top of tx buffer pointer

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 70 of 77

 incr tx_buffer(topptr)
 #Check if top pointer needs to wrap around

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

 if {$tx_buffer(topptr) == $tx_buffer(buffersize)} {
 set tx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both tx buffer pointers
 if { $tx_buffer(noofpackets) == 0} {
 set tx_buffer(topptr) 0
 set tx_buffer(bottomptr) 0
 }
 incr tx_buffer(transmitted)
}

#Receive RFCOMM Data
proc receiverx {} {
 global rx_buffer
 global credits
 puts "Receive RFCOMM Data"
 set result [RFC_DATA_IND]
 puts "Credits $credits"
 if {$rx_buffer(noofpackets)} {
 incr rx_buffer(bottomptr)
 }
 set rxptr $rx_buffer(bottomptr)
 set rx_buffer($rxptr) $result
 #Increment number of received packets
 incr rx_buffer(noofpackets)
 #Check for bottom pointer needs to wrap around
 if {$rx_buffer(bottomptr) == $rx_buffer(buffersize)} {
 set rx_buffer(bottomptr) 0
 }
 incr rx_buffer(received)
}

#Flow Control Layer
proc flowcontrollayer {fclstate} {
 global state
 puts "Flow Control Layer"
 switch $fclstate {
 0 {transmittx}
 1 {receiverx}
 default {puts "Unknown FCL State"}
 }
}

#Read Bluetooth Address Message
proc readbdaddr {} {
 puts "Read Bluetooth Address Message"
 DM_HCI_READ_BD_ADDR
 set result [DM_HCI_READ_BD_ADDR_COMPLETE]
 puts "Bluetooth Address: "
 set lap [lindex $result 2]
 #Create correct number of bytes for lap
 set lap0 [expr $lap/0x10000]
 set laptemp [expr $lap%0x10000]
 set lap1 [expr $laptemp/0x100]
 set lap2 [expr $laptemp%0x100]
 set uap [lindex $result 3]
 set nap [lindex $result 4]
 puts [format "NAP: 0x%x" $nap]
 puts [format "UAP: 0x%x" $uap]
 puts [format "LAP: 0x%x" $lap]
 #Create correct number of bytes for nap
 set nap0 [expr $nap/0x100]
 set nap1 [expr $nap%0x100]
 #Create response character
 set resp 0x01
 #Bind Message together

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 71 of 77

 set bd "$resp $nap0 $nap1 $uap $lap0 $lap1 $lap2"
 #Put Message in the transmit buffer

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

 if {[putpktpetxbuffer $bd]} {
 puts "Read Local Bluetooth Address Message failed to load in PE Tx
Buffer"
 }
}

#Read Local Name Message
proc readlocalname {} {
 puts "Read Local Name Message"
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Local Name: [lindex $result 2]"
 set rln0 0x02
 set rln1 [lindex $result 2]
 set rln2 [split $rln1 {}]
 set strl [llength $rln2]
 for {set c 0} {$c < $strl} {incr c} {
 scan [lindex $rln2 $c] %c rln3
 lappend rln0 $rln3
 }
 if {[putpktpetxbuffer $rln0]} {
 puts "Read Local Name Message failed to load in PE Tx Buffer"
 }
}

#Change Local Name Message
proc changelocalname {changename changenamelength} {
 set cln [lreplace $changename 0 0]
 set changename $cln
 puts "Change Local Name Message"
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Old Local Name = [lindex $result 2]"
 puts "Requested Name = $changename"
 DM_HCI_CHANGE_LOCAL_NAME $changename
 set result [DM_HCI_CHANGE_LOCAL_NAME_COMPLETE]
 #Read the local name and send back to the master
 DM_HCI_READ_LOCAL_NAME
 set result [DM_HCI_READ_LOCAL_NAME_COMPLETE]
 puts "Local Name: [lindex $result 2]"
 set rln0 0x03
 set rln1 [lindex $result 2]
 set rln2 [split $rln1 {}]
 set strl [llength $rln2]
 for {set c 0} {$c < $strl} {incr c} {
 scan [lindex $rln2 $c] %c rln3
 lappend rln0 $rln3
 }
 if {[putpktpetxbuffer $rln0]} {
 puts "Change Local Name Message failed to load in PE Tx Buffer"
 }
}

#Data Transfer Complete
proc datacomplete {} {
 global taskcompleteflag
 puts "Data transfer complete"
 if {[putpktpetxbuffer 0]} {
 puts "Change Local Name Message failed to load in PE Tx Buffer"
 }
 set taskcompleteflag 1
}

#Process Next Received Packet in Receiver Buffer
proc processrx {} {
 global rx_buffer

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 72 of 77

 puts "Process receive buffer"
 #Get the Next Received packet to process

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

 set rxptr $rx_buffer(topptr)
 #Decrement the number of packets
 incr rx_buffer(noofpackets) -1
 #Increment the top of rx buffer pointer
 incr rx_buffer(topptr)
 #Check if top pointer needs to wrap around
 if {$rx_buffer(topptr) == $rx_buffer(buffersize)} {
 set rx_buffer(topptr) 0
 }
 #If number of packets is 0 then reset the both rx buffer pointers
 if {$rx_buffer(noofpackets) == 0} {
 set rx_buffer(topptr) 0
 set rx_buffer(bottomptr) 0
 }
 set result $rx_buffer($rxptr)
 puts "Payload: [lindex $result 5]"
 set firstchar [lindex [lindex $result 5] 0]
 puts "First character of payload $firstchar"
 switch $firstchar {
 0x00 {datacomplete}
 0x01 {readbdaddr}
 0x02 {readlocalname}
 0x03 {changelocalname [lindex $result 5] [lindex $result 4]}
 }
}

#Steady State
proc steadystate {} {
 puts "Steady State"
}

#Check Receiver Buffer for Space
proc receiverspace {} {
 global rx_buffer
 if {$rx_buffer(noofpackets) < $rx_buffer(buffersize)} {
 return 1
 } else {
 return 0
 }
}

#Check State
proc checkstate {} {
 global state
 switch $state {
 0 {puts "Task Complete"}
 1 {steadystate}
 2 {if {[checkpetxbuffer]} {flowcontrollayer 0}}
 3 {if {[receiverspace]} {flowcontrollayer 1}}
 4 {if {[checkperxbuffer]} {processrx}}
 default {puts "Unknown State"}
 }
 incr state
 #Check to see if we have done all processing
 if {$state == 5} {
 if {[checkpetxbuffer] || [checkperxbuffer]} {
 set state 1
 } else {
 set state 0
 }
 }
}

#Make a connection to the Casira on comport2
BC_connect com2 bcsp 115200
#Initialise Port Entity Transmit Buffer

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 73 of 77

puts "Initialise Port Entity Transmit Buffer"
set tx_buffer(noofpackets) 0

Appendix B

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

set tx_buffer(txcredits) 0
set tx_buffer(pointer) 0
set tx_buffer(buffersize) 10
set tx_buffer(topptr) 0
set tx_buffer(bottomptr) 0
set tx_buffer(transmitted) 0
for {set cnt 0} {$cnt < $tx_buffer(buffersize)} {incr cnt} {
 set tx_buffer($cnt) 0xc0ffee
}
#Initialise Port Entity Receive Buffer
puts "Initialise Port Entity Receive Buffer"
set rx_buffer(noofpackets) 0
set rx_buffer(txcredits) 0
set rx_buffer(pointer) 0
set rx_buffer(topptr) 0
set rx_buffer(bottomptr) 0
set rx_buffer(buffersize) 10
set rx_buffer(received) 0
for {set cnt 0} {$cnt < $rx_buffer(buffersize)} {incr cnt} {
 set rx_buffer($cnt) 0xc0ffee
}
#Initialise System Variables
puts "Initialise System Variables"
set use_flow_control 0x01
set max_frame_size 0x7f
set initial_credits 0x07
set state 1
set taskcompleteflag 0
#Register with RFCOMM
register_rfcomm
#Initialise RFCOMM
RFC_INIT_REQ $phandle $psm_local $use_flow_control $fc_type $fc_threshold
$fc_timer $rsvd_4 $rsvd_5
RFC_INIT_CFM
#Register with the Device Manager
puts "Register with Device Manager"
puts "DM phandle: $phandle"
DM_AM_REGISTER_REQ $phandle
DM_AM_REGISTER_CFM
#Listen
listen
#Output Waiting For Connection Message
puts "Waiting For Connection Message"
#Connect as Slave
rfc_connect_slv
#Wait for an incoming data primitive
puts "Connection made, starting transfer"
#Main Loop
puts "Main Loop"
while {$state} {
 if {$taskcompleteflag} {
 #Flush Transmit buffer to tell the Master to finish
 set state 2
 checkstate
 set state 0
 } else {
 checkstate
 }
}
puts "All Done"
puts "Number of Transmitted Packets = $tx_buffer(transmitted)"
puts "Number of Received Packets = $rx_buffer(received)"

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 74 of 77

Acronyms and Definitions

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Acronyms and Definitions

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 75 of 77

ABM Asynchronous Balanced Mode
API Application Programming Interface
BCSP BlueCore Serial port Protocol
BIST Built In Self Test
BlueCore Group term for CSR’s range of Bluetooth chips.
Bluetooth A set of technologies providing audio and data transfer over short-range radio

connections
CD Carrier Detect
CID Channel IDentifier
CTS Clear To Send
DCE Data Communications Equipment
DISC DISconnected Command
DLC Data Link Connection
DLCI Data Link Connection Identifier
DM Disconnect Mode
DSR Data Set Ready
DTE Data Terminal Equipment
DTR Data Terminal Ready
DV Data Valid
ETSI European Communications Standards Institute
FCL Flow Control Layer
FCT Flow Control Token
GSM Global System for Mobile communications
IC Incoming Call indicator
L2CAP Logical Link Control and Adaptation Protocol (protocol layer)
MSC Modem Status Commands
PC Personal Computer
PEE Port Emulation Entity
PICS Protocol Implementation Confirmation Statement
PN Parameter Negotiation
PPE Port Proxy Entity
RAM Random Access Memory
RD Receive Data
RFCLI RFCOMM Command Line Interface
RFCOMM Protocol layer providing serial port emulation over L2CAP
RI Ring Indicator
RTC Ready To Communicate
RTS Ready To Send
RTR Ready To Receive
SABM Start Asynchronous Balanced Mode frame
SDD Service Discovery Database
SDP Service Discovery Protocol
SPP Serial Port Profile

Acronyms and Definitions

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

TCL Tool kit Command Language
TD Transmit Data
UA Unnumbered Acknowledgement frame
UIH Unnumbered Information with Header frame

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 76 of 77

Record of Changes

_
äì
É
`
ç
êÉ

 A
ccessing R

FC
O

M
M

 U
sing R

FC
LI and TC

L

Record of Changes
Date: Revision Reason for Change:

25 SEP 02 a Original publication of this document. (CSR reference: bcore-an-006Pa)

Accessing RFCOMM Using RFCLI and TCL
Application Note

bcore-an-006Pa

September 2002

Bluetooth™ and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and licensed to CSR.

_äìÉ`çêÉ is a trademark of CSR.

All other product, service and company names are trademarks, registered trademarks or service marks of their
respective owners.

CSR’s products are not authorised for use in life-support or safety-critical applications.

bcore-an-006Pa

© Copyright CSR 2002

This material is subject to CSR’s non-disclosure agreement.

Page 77 of 77

	Contents
	Introduction
	Figure 1.1: Bluetooth Protocol Stack
	RFCOMM Protocol Layer
	Figure 2.1: Type 1 and Type 2 RFCOMM Devices
	Table 2.1: RS-232 Circuits Emulated by RFCOMM
	Figure 2.2: Bluetooth Profiles
	Table 2.2: ETSI GSM Specification Serial Port Control Signals
	Figure 2.3: Null Modem Pin Out
	Figure 2.4: Format of the Address Field
	Local Server Channel and Mux ID
	Figure 2.5: Multiplexor and Server Channels
	Figure 2.6: Multiple Emulated Serial Ports Between Two Bluetooth Devices
	Figure 2.7: Multiple Emulated Serial Ports with Multiple Multiplexor Sessions
	Figure 2.8: RFCOMM Service Definition Model
	Flow Control
	Credit Based Flow Control
	Figure 3.1: Credit Based Flow Control Negotiations
	Figure 3.2: Updating Flow Control Credits
	Maximum Frame Size
	Flow Control Layer
	Figure 3.3: Flow Control Layer
	RFCOMM Firmware Build
	Accessing RFCOMM Functionality Using RFCLI and TCL
	RFCLI
	TCL
	Setting Up RFCOMM Link
	Figure 5.1: RFCOMM Channel Set Up Between Local and Remote Bluetooth Device
	Figure 5.2: System Set Up with Configuration One and Configuration Two
	Figure 5.3: Message Sequence Chart For RFCOMM Data Link Set Up Between Two BlueCore Devices
	Figure 5.4: Message Sequence Chart to Place Remote Device in Listening Mode
	Over Air Sniffer
	Table 5.1: RFCOMM Packets Extracted from Over Air Sniifer
	Serial Sniffer
	Example of Accessing RFCOMM Using RFCLI and TCL
	Figure 6.1: Set Up for Example
	Details of the RFCLI Source Script Example
	Local and Remote Device Source Script
	Initialisation of RFCOMM Layer in the Local Device
	Figure 6.2: Initialisation of RFCOMM Layer
	Connect to Casira
	Initialise Port Entity Transmit and Receive Buffers
	Put Messages in Transmit Buffer
	Initialise System Variables
	Register with RFCOMM
	Initialise RFCOMM
	Register with Device Manager
	Request RFCOMM Start
	RFCOMM Parameter Negotiation
	RFCOMM Establishment

	Initialisation of the RFCOMM Layer of the Remote Device
	Figure 6.3: Initialisation of the RFCOMM Layer of The Remote Device
	Connect to Casira
	Initialise Port Entity Transmit and Receive Buffers
	Initialise System Variables
	Register with RFCOMM
	Initialise RFCOMM
	Register with Device Manager
	Listen
	Output “Waiting For Connection” Message
	Connect as Slave

	Main Loop and State Machine
	Figure 6.4: Main Control Loop
	Table 6.1: Main Control Loop State Transitions
	Main Loop Functions
	Check Transmit Buffer for Packets to Transmit
	Check Receiver Buffer for Space
	Check for Packet in Receiver Buffer
	Flow Control Layer
	Process Next Received Packet in Receiver Buffer
	Steady State

	Other Functions
	Start Request
	Register RFCOMM
	Receive RFCOMM Data
	Transmit RFCOMM Data
	Read Bluetooth Address Message
	Read Local Name Message
	Change Local Name Message
	Load Packet in Transmit Buffer

	Document References
	RFCLI Section 5 Example Script Source Files
	RFCLI Section 6 Example Script Source Files
	Acronyms and Definitions
	Record of Changes

